1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2007-2017 Nicira, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/skbuff.h> 9 #include <linux/in.h> 10 #include <linux/ip.h> 11 #include <linux/openvswitch.h> 12 #include <linux/sctp.h> 13 #include <linux/tcp.h> 14 #include <linux/udp.h> 15 #include <linux/in6.h> 16 #include <linux/if_arp.h> 17 #include <linux/if_vlan.h> 18 19 #include <net/dst.h> 20 #include <net/gso.h> 21 #include <net/ip.h> 22 #include <net/ipv6.h> 23 #include <net/ip6_fib.h> 24 #include <net/checksum.h> 25 #include <net/dsfield.h> 26 #include <net/mpls.h> 27 28 #if IS_ENABLED(CONFIG_PSAMPLE) 29 #include <net/psample.h> 30 #endif 31 32 #include <net/sctp/checksum.h> 33 34 #include "datapath.h" 35 #include "drop.h" 36 #include "flow.h" 37 #include "conntrack.h" 38 #include "vport.h" 39 #include "flow_netlink.h" 40 #include "openvswitch_trace.h" 41 42 struct ovs_pcpu_storage __percpu *ovs_pcpu_storage; 43 44 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys' 45 * space. Return NULL if out of key spaces. 46 */ 47 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_) 48 { 49 struct ovs_pcpu_storage *ovs_pcpu = this_cpu_ptr(ovs_pcpu_storage); 50 struct action_flow_keys *keys = &ovs_pcpu->flow_keys; 51 int level = ovs_pcpu->exec_level; 52 struct sw_flow_key *key = NULL; 53 54 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) { 55 key = &keys->key[level - 1]; 56 *key = *key_; 57 } 58 59 return key; 60 } 61 62 static void action_fifo_init(struct action_fifo *fifo) 63 { 64 fifo->head = 0; 65 fifo->tail = 0; 66 } 67 68 static bool action_fifo_is_empty(const struct action_fifo *fifo) 69 { 70 return (fifo->head == fifo->tail); 71 } 72 73 static struct deferred_action *action_fifo_get(struct action_fifo *fifo) 74 { 75 if (action_fifo_is_empty(fifo)) 76 return NULL; 77 78 return &fifo->fifo[fifo->tail++]; 79 } 80 81 static struct deferred_action *action_fifo_put(struct action_fifo *fifo) 82 { 83 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) 84 return NULL; 85 86 return &fifo->fifo[fifo->head++]; 87 } 88 89 /* Return true if fifo is not full */ 90 static struct deferred_action *add_deferred_actions(struct sk_buff *skb, 91 const struct sw_flow_key *key, 92 const struct nlattr *actions, 93 const int actions_len) 94 { 95 struct action_fifo *fifo = this_cpu_ptr(&ovs_pcpu_storage->action_fifos); 96 struct deferred_action *da; 97 98 da = action_fifo_put(fifo); 99 if (da) { 100 da->skb = skb; 101 da->actions = actions; 102 da->actions_len = actions_len; 103 da->pkt_key = *key; 104 } 105 106 return da; 107 } 108 109 static void invalidate_flow_key(struct sw_flow_key *key) 110 { 111 key->mac_proto |= SW_FLOW_KEY_INVALID; 112 } 113 114 static bool is_flow_key_valid(const struct sw_flow_key *key) 115 { 116 return !(key->mac_proto & SW_FLOW_KEY_INVALID); 117 } 118 119 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 120 struct sw_flow_key *key, 121 u32 recirc_id, 122 const struct nlattr *actions, int len, 123 bool last, bool clone_flow_key); 124 125 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 126 struct sw_flow_key *key, 127 const struct nlattr *attr, int len); 128 129 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, 130 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len) 131 { 132 int err; 133 134 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len); 135 if (err) 136 return err; 137 138 if (!mac_len) 139 key->mac_proto = MAC_PROTO_NONE; 140 141 invalidate_flow_key(key); 142 return 0; 143 } 144 145 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, 146 const __be16 ethertype) 147 { 148 int err; 149 150 err = skb_mpls_pop(skb, ethertype, skb->mac_len, 151 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET); 152 if (err) 153 return err; 154 155 if (ethertype == htons(ETH_P_TEB)) 156 key->mac_proto = MAC_PROTO_ETHERNET; 157 158 invalidate_flow_key(key); 159 return 0; 160 } 161 162 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, 163 const __be32 *mpls_lse, const __be32 *mask) 164 { 165 struct mpls_shim_hdr *stack; 166 __be32 lse; 167 int err; 168 169 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 170 return -ENOMEM; 171 172 stack = mpls_hdr(skb); 173 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask); 174 err = skb_mpls_update_lse(skb, lse); 175 if (err) 176 return err; 177 178 flow_key->mpls.lse[0] = lse; 179 return 0; 180 } 181 182 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) 183 { 184 int err; 185 186 err = skb_vlan_pop(skb); 187 if (skb_vlan_tag_present(skb)) { 188 invalidate_flow_key(key); 189 } else { 190 key->eth.vlan.tci = 0; 191 key->eth.vlan.tpid = 0; 192 } 193 return err; 194 } 195 196 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, 197 const struct ovs_action_push_vlan *vlan) 198 { 199 int err; 200 201 if (skb_vlan_tag_present(skb)) { 202 invalidate_flow_key(key); 203 } else { 204 key->eth.vlan.tci = vlan->vlan_tci; 205 key->eth.vlan.tpid = vlan->vlan_tpid; 206 } 207 err = skb_vlan_push(skb, vlan->vlan_tpid, 208 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK); 209 skb_reset_mac_len(skb); 210 return err; 211 } 212 213 /* 'src' is already properly masked. */ 214 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) 215 { 216 u16 *dst = (u16 *)dst_; 217 const u16 *src = (const u16 *)src_; 218 const u16 *mask = (const u16 *)mask_; 219 220 OVS_SET_MASKED(dst[0], src[0], mask[0]); 221 OVS_SET_MASKED(dst[1], src[1], mask[1]); 222 OVS_SET_MASKED(dst[2], src[2], mask[2]); 223 } 224 225 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, 226 const struct ovs_key_ethernet *key, 227 const struct ovs_key_ethernet *mask) 228 { 229 int err; 230 231 err = skb_ensure_writable(skb, ETH_HLEN); 232 if (unlikely(err)) 233 return err; 234 235 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 236 237 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, 238 mask->eth_src); 239 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, 240 mask->eth_dst); 241 242 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); 243 244 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); 245 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); 246 return 0; 247 } 248 249 /* pop_eth does not support VLAN packets as this action is never called 250 * for them. 251 */ 252 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key) 253 { 254 int err; 255 256 err = skb_eth_pop(skb); 257 if (err) 258 return err; 259 260 /* safe right before invalidate_flow_key */ 261 key->mac_proto = MAC_PROTO_NONE; 262 invalidate_flow_key(key); 263 return 0; 264 } 265 266 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key, 267 const struct ovs_action_push_eth *ethh) 268 { 269 int err; 270 271 err = skb_eth_push(skb, ethh->addresses.eth_dst, 272 ethh->addresses.eth_src); 273 if (err) 274 return err; 275 276 /* safe right before invalidate_flow_key */ 277 key->mac_proto = MAC_PROTO_ETHERNET; 278 invalidate_flow_key(key); 279 return 0; 280 } 281 282 static noinline_for_stack int push_nsh(struct sk_buff *skb, 283 struct sw_flow_key *key, 284 const struct nlattr *a) 285 { 286 u8 buffer[NSH_HDR_MAX_LEN]; 287 struct nshhdr *nh = (struct nshhdr *)buffer; 288 int err; 289 290 err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN); 291 if (err) 292 return err; 293 294 err = nsh_push(skb, nh); 295 if (err) 296 return err; 297 298 /* safe right before invalidate_flow_key */ 299 key->mac_proto = MAC_PROTO_NONE; 300 invalidate_flow_key(key); 301 return 0; 302 } 303 304 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key) 305 { 306 int err; 307 308 err = nsh_pop(skb); 309 if (err) 310 return err; 311 312 /* safe right before invalidate_flow_key */ 313 if (skb->protocol == htons(ETH_P_TEB)) 314 key->mac_proto = MAC_PROTO_ETHERNET; 315 else 316 key->mac_proto = MAC_PROTO_NONE; 317 invalidate_flow_key(key); 318 return 0; 319 } 320 321 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, 322 __be32 addr, __be32 new_addr) 323 { 324 int transport_len = skb->len - skb_transport_offset(skb); 325 326 if (nh->frag_off & htons(IP_OFFSET)) 327 return; 328 329 if (nh->protocol == IPPROTO_TCP) { 330 if (likely(transport_len >= sizeof(struct tcphdr))) 331 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, 332 addr, new_addr, true); 333 } else if (nh->protocol == IPPROTO_UDP) { 334 if (likely(transport_len >= sizeof(struct udphdr))) { 335 struct udphdr *uh = udp_hdr(skb); 336 337 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 338 inet_proto_csum_replace4(&uh->check, skb, 339 addr, new_addr, true); 340 if (!uh->check) 341 uh->check = CSUM_MANGLED_0; 342 } 343 } 344 } 345 } 346 347 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, 348 __be32 *addr, __be32 new_addr) 349 { 350 update_ip_l4_checksum(skb, nh, *addr, new_addr); 351 csum_replace4(&nh->check, *addr, new_addr); 352 skb_clear_hash(skb); 353 ovs_ct_clear(skb, NULL); 354 *addr = new_addr; 355 } 356 357 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, 358 __be32 addr[4], const __be32 new_addr[4]) 359 { 360 int transport_len = skb->len - skb_transport_offset(skb); 361 362 if (l4_proto == NEXTHDR_TCP) { 363 if (likely(transport_len >= sizeof(struct tcphdr))) 364 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, 365 addr, new_addr, true); 366 } else if (l4_proto == NEXTHDR_UDP) { 367 if (likely(transport_len >= sizeof(struct udphdr))) { 368 struct udphdr *uh = udp_hdr(skb); 369 370 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { 371 inet_proto_csum_replace16(&uh->check, skb, 372 addr, new_addr, true); 373 if (!uh->check) 374 uh->check = CSUM_MANGLED_0; 375 } 376 } 377 } else if (l4_proto == NEXTHDR_ICMP) { 378 if (likely(transport_len >= sizeof(struct icmp6hdr))) 379 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, 380 skb, addr, new_addr, true); 381 } 382 } 383 384 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], 385 const __be32 mask[4], __be32 masked[4]) 386 { 387 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); 388 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); 389 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); 390 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); 391 } 392 393 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, 394 __be32 addr[4], const __be32 new_addr[4], 395 bool recalculate_csum) 396 { 397 if (recalculate_csum) 398 update_ipv6_checksum(skb, l4_proto, addr, new_addr); 399 400 skb_clear_hash(skb); 401 ovs_ct_clear(skb, NULL); 402 memcpy(addr, new_addr, sizeof(__be32[4])); 403 } 404 405 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask) 406 { 407 u8 old_ipv6_tclass = ipv6_get_dsfield(nh); 408 409 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask); 410 411 if (skb->ip_summed == CHECKSUM_COMPLETE) 412 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12), 413 (__force __wsum)(ipv6_tclass << 12)); 414 415 ipv6_change_dsfield(nh, ~mask, ipv6_tclass); 416 } 417 418 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask) 419 { 420 u32 ofl; 421 422 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2]; 423 fl = OVS_MASKED(ofl, fl, mask); 424 425 /* Bits 21-24 are always unmasked, so this retains their values. */ 426 nh->flow_lbl[0] = (u8)(fl >> 16); 427 nh->flow_lbl[1] = (u8)(fl >> 8); 428 nh->flow_lbl[2] = (u8)fl; 429 430 if (skb->ip_summed == CHECKSUM_COMPLETE) 431 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl)); 432 } 433 434 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask) 435 { 436 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask); 437 438 if (skb->ip_summed == CHECKSUM_COMPLETE) 439 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8), 440 (__force __wsum)(new_ttl << 8)); 441 nh->hop_limit = new_ttl; 442 } 443 444 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, 445 u8 mask) 446 { 447 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); 448 449 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); 450 nh->ttl = new_ttl; 451 } 452 453 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, 454 const struct ovs_key_ipv4 *key, 455 const struct ovs_key_ipv4 *mask) 456 { 457 struct iphdr *nh; 458 __be32 new_addr; 459 int err; 460 461 err = skb_ensure_writable(skb, skb_network_offset(skb) + 462 sizeof(struct iphdr)); 463 if (unlikely(err)) 464 return err; 465 466 nh = ip_hdr(skb); 467 468 /* Setting an IP addresses is typically only a side effect of 469 * matching on them in the current userspace implementation, so it 470 * makes sense to check if the value actually changed. 471 */ 472 if (mask->ipv4_src) { 473 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); 474 475 if (unlikely(new_addr != nh->saddr)) { 476 set_ip_addr(skb, nh, &nh->saddr, new_addr); 477 flow_key->ipv4.addr.src = new_addr; 478 } 479 } 480 if (mask->ipv4_dst) { 481 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); 482 483 if (unlikely(new_addr != nh->daddr)) { 484 set_ip_addr(skb, nh, &nh->daddr, new_addr); 485 flow_key->ipv4.addr.dst = new_addr; 486 } 487 } 488 if (mask->ipv4_tos) { 489 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); 490 flow_key->ip.tos = nh->tos; 491 } 492 if (mask->ipv4_ttl) { 493 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); 494 flow_key->ip.ttl = nh->ttl; 495 } 496 497 return 0; 498 } 499 500 static bool is_ipv6_mask_nonzero(const __be32 addr[4]) 501 { 502 return !!(addr[0] | addr[1] | addr[2] | addr[3]); 503 } 504 505 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, 506 const struct ovs_key_ipv6 *key, 507 const struct ovs_key_ipv6 *mask) 508 { 509 struct ipv6hdr *nh; 510 int err; 511 512 err = skb_ensure_writable(skb, skb_network_offset(skb) + 513 sizeof(struct ipv6hdr)); 514 if (unlikely(err)) 515 return err; 516 517 nh = ipv6_hdr(skb); 518 519 /* Setting an IP addresses is typically only a side effect of 520 * matching on them in the current userspace implementation, so it 521 * makes sense to check if the value actually changed. 522 */ 523 if (is_ipv6_mask_nonzero(mask->ipv6_src)) { 524 __be32 *saddr = (__be32 *)&nh->saddr; 525 __be32 masked[4]; 526 527 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); 528 529 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { 530 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, 531 true); 532 memcpy(&flow_key->ipv6.addr.src, masked, 533 sizeof(flow_key->ipv6.addr.src)); 534 } 535 } 536 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { 537 unsigned int offset = 0; 538 int flags = IP6_FH_F_SKIP_RH; 539 bool recalc_csum = true; 540 __be32 *daddr = (__be32 *)&nh->daddr; 541 __be32 masked[4]; 542 543 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); 544 545 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { 546 if (ipv6_ext_hdr(nh->nexthdr)) 547 recalc_csum = (ipv6_find_hdr(skb, &offset, 548 NEXTHDR_ROUTING, 549 NULL, &flags) 550 != NEXTHDR_ROUTING); 551 552 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, 553 recalc_csum); 554 memcpy(&flow_key->ipv6.addr.dst, masked, 555 sizeof(flow_key->ipv6.addr.dst)); 556 } 557 } 558 if (mask->ipv6_tclass) { 559 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass); 560 flow_key->ip.tos = ipv6_get_dsfield(nh); 561 } 562 if (mask->ipv6_label) { 563 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label), 564 ntohl(mask->ipv6_label)); 565 flow_key->ipv6.label = 566 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); 567 } 568 if (mask->ipv6_hlimit) { 569 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit); 570 flow_key->ip.ttl = nh->hop_limit; 571 } 572 return 0; 573 } 574 575 /* Must follow skb_ensure_writable() since that can move the skb data. */ 576 static void set_tp_port(struct sk_buff *skb, __be16 *port, 577 __be16 new_port, __sum16 *check) 578 { 579 ovs_ct_clear(skb, NULL); 580 inet_proto_csum_replace2(check, skb, *port, new_port, false); 581 *port = new_port; 582 } 583 584 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, 585 const struct ovs_key_udp *key, 586 const struct ovs_key_udp *mask) 587 { 588 struct udphdr *uh; 589 __be16 src, dst; 590 int err; 591 592 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 593 sizeof(struct udphdr)); 594 if (unlikely(err)) 595 return err; 596 597 uh = udp_hdr(skb); 598 /* Either of the masks is non-zero, so do not bother checking them. */ 599 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); 600 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); 601 602 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { 603 if (likely(src != uh->source)) { 604 set_tp_port(skb, &uh->source, src, &uh->check); 605 flow_key->tp.src = src; 606 } 607 if (likely(dst != uh->dest)) { 608 set_tp_port(skb, &uh->dest, dst, &uh->check); 609 flow_key->tp.dst = dst; 610 } 611 612 if (unlikely(!uh->check)) 613 uh->check = CSUM_MANGLED_0; 614 } else { 615 uh->source = src; 616 uh->dest = dst; 617 flow_key->tp.src = src; 618 flow_key->tp.dst = dst; 619 ovs_ct_clear(skb, NULL); 620 } 621 622 skb_clear_hash(skb); 623 624 return 0; 625 } 626 627 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, 628 const struct ovs_key_tcp *key, 629 const struct ovs_key_tcp *mask) 630 { 631 struct tcphdr *th; 632 __be16 src, dst; 633 int err; 634 635 err = skb_ensure_writable(skb, skb_transport_offset(skb) + 636 sizeof(struct tcphdr)); 637 if (unlikely(err)) 638 return err; 639 640 th = tcp_hdr(skb); 641 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); 642 if (likely(src != th->source)) { 643 set_tp_port(skb, &th->source, src, &th->check); 644 flow_key->tp.src = src; 645 } 646 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); 647 if (likely(dst != th->dest)) { 648 set_tp_port(skb, &th->dest, dst, &th->check); 649 flow_key->tp.dst = dst; 650 } 651 skb_clear_hash(skb); 652 653 return 0; 654 } 655 656 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, 657 const struct ovs_key_sctp *key, 658 const struct ovs_key_sctp *mask) 659 { 660 unsigned int sctphoff = skb_transport_offset(skb); 661 struct sctphdr *sh; 662 __le32 old_correct_csum, new_csum, old_csum; 663 int err; 664 665 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); 666 if (unlikely(err)) 667 return err; 668 669 sh = sctp_hdr(skb); 670 old_csum = sh->checksum; 671 old_correct_csum = sctp_compute_cksum(skb, sctphoff); 672 673 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); 674 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); 675 676 new_csum = sctp_compute_cksum(skb, sctphoff); 677 678 /* Carry any checksum errors through. */ 679 sh->checksum = old_csum ^ old_correct_csum ^ new_csum; 680 681 skb_clear_hash(skb); 682 ovs_ct_clear(skb, NULL); 683 684 flow_key->tp.src = sh->source; 685 flow_key->tp.dst = sh->dest; 686 687 return 0; 688 } 689 690 static int ovs_vport_output(struct net *net, struct sock *sk, 691 struct sk_buff *skb) 692 { 693 struct ovs_frag_data *data = this_cpu_ptr(&ovs_pcpu_storage->frag_data); 694 struct vport *vport = data->vport; 695 696 if (skb_cow_head(skb, data->l2_len) < 0) { 697 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM); 698 return -ENOMEM; 699 } 700 701 __skb_dst_copy(skb, data->dst); 702 *OVS_CB(skb) = data->cb; 703 skb->inner_protocol = data->inner_protocol; 704 if (data->vlan_tci & VLAN_CFI_MASK) 705 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK); 706 else 707 __vlan_hwaccel_clear_tag(skb); 708 709 /* Reconstruct the MAC header. */ 710 skb_push(skb, data->l2_len); 711 memcpy(skb->data, &data->l2_data, data->l2_len); 712 skb_postpush_rcsum(skb, skb->data, data->l2_len); 713 skb_reset_mac_header(skb); 714 715 if (eth_p_mpls(skb->protocol)) { 716 skb->inner_network_header = skb->network_header; 717 skb_set_network_header(skb, data->network_offset); 718 skb_reset_mac_len(skb); 719 } 720 721 ovs_vport_send(vport, skb, data->mac_proto); 722 return 0; 723 } 724 725 static unsigned int 726 ovs_dst_get_mtu(const struct dst_entry *dst) 727 { 728 return dst->dev->mtu; 729 } 730 731 static struct dst_ops ovs_dst_ops = { 732 .family = AF_UNSPEC, 733 .mtu = ovs_dst_get_mtu, 734 }; 735 736 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is 737 * ovs_vport_output(), which is called once per fragmented packet. 738 */ 739 static void prepare_frag(struct vport *vport, struct sk_buff *skb, 740 u16 orig_network_offset, u8 mac_proto) 741 { 742 unsigned int hlen = skb_network_offset(skb); 743 struct ovs_frag_data *data; 744 745 data = this_cpu_ptr(&ovs_pcpu_storage->frag_data); 746 data->dst = skb->_skb_refdst; 747 data->vport = vport; 748 data->cb = *OVS_CB(skb); 749 data->inner_protocol = skb->inner_protocol; 750 data->network_offset = orig_network_offset; 751 if (skb_vlan_tag_present(skb)) 752 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK; 753 else 754 data->vlan_tci = 0; 755 data->vlan_proto = skb->vlan_proto; 756 data->mac_proto = mac_proto; 757 data->l2_len = hlen; 758 memcpy(&data->l2_data, skb->data, hlen); 759 760 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 761 skb_pull(skb, hlen); 762 } 763 764 static void ovs_fragment(struct net *net, struct vport *vport, 765 struct sk_buff *skb, u16 mru, 766 struct sw_flow_key *key) 767 { 768 enum ovs_drop_reason reason; 769 u16 orig_network_offset = 0; 770 771 if (eth_p_mpls(skb->protocol)) { 772 orig_network_offset = skb_network_offset(skb); 773 skb->network_header = skb->inner_network_header; 774 } 775 776 if (skb_network_offset(skb) > MAX_L2_LEN) { 777 OVS_NLERR(1, "L2 header too long to fragment"); 778 reason = OVS_DROP_FRAG_L2_TOO_LONG; 779 goto err; 780 } 781 782 if (key->eth.type == htons(ETH_P_IP)) { 783 struct rtable ovs_rt = { 0 }; 784 unsigned long orig_dst; 785 786 prepare_frag(vport, skb, orig_network_offset, 787 ovs_key_mac_proto(key)); 788 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 789 DST_OBSOLETE_NONE, DST_NOCOUNT); 790 ovs_rt.dst.dev = vport->dev; 791 792 orig_dst = skb->_skb_refdst; 793 skb_dst_set_noref(skb, &ovs_rt.dst); 794 IPCB(skb)->frag_max_size = mru; 795 796 ip_do_fragment(net, skb->sk, skb, ovs_vport_output); 797 refdst_drop(orig_dst); 798 } else if (key->eth.type == htons(ETH_P_IPV6)) { 799 unsigned long orig_dst; 800 struct rt6_info ovs_rt; 801 802 prepare_frag(vport, skb, orig_network_offset, 803 ovs_key_mac_proto(key)); 804 memset(&ovs_rt, 0, sizeof(ovs_rt)); 805 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 806 DST_OBSOLETE_NONE, DST_NOCOUNT); 807 ovs_rt.dst.dev = vport->dev; 808 809 orig_dst = skb->_skb_refdst; 810 skb_dst_set_noref(skb, &ovs_rt.dst); 811 IP6CB(skb)->frag_max_size = mru; 812 813 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output); 814 refdst_drop(orig_dst); 815 } else { 816 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", 817 ovs_vport_name(vport), ntohs(key->eth.type), mru, 818 vport->dev->mtu); 819 reason = OVS_DROP_FRAG_INVALID_PROTO; 820 goto err; 821 } 822 823 return; 824 err: 825 ovs_kfree_skb_reason(skb, reason); 826 } 827 828 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, 829 struct sw_flow_key *key) 830 { 831 struct vport *vport = ovs_vport_rcu(dp, out_port); 832 833 if (likely(vport && 834 netif_running(vport->dev) && 835 netif_carrier_ok(vport->dev))) { 836 u16 mru = OVS_CB(skb)->mru; 837 u32 cutlen = OVS_CB(skb)->cutlen; 838 839 if (unlikely(cutlen > 0)) { 840 if (skb->len - cutlen > ovs_mac_header_len(key)) 841 pskb_trim(skb, skb->len - cutlen); 842 else 843 pskb_trim(skb, ovs_mac_header_len(key)); 844 } 845 846 if (likely(!mru || 847 (skb->len <= mru + vport->dev->hard_header_len))) { 848 ovs_vport_send(vport, skb, ovs_key_mac_proto(key)); 849 } else if (mru <= vport->dev->mtu) { 850 struct net *net = read_pnet(&dp->net); 851 852 ovs_fragment(net, vport, skb, mru, key); 853 } else { 854 kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG); 855 } 856 } else { 857 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY); 858 } 859 } 860 861 static int output_userspace(struct datapath *dp, struct sk_buff *skb, 862 struct sw_flow_key *key, const struct nlattr *attr, 863 const struct nlattr *actions, int actions_len, 864 uint32_t cutlen) 865 { 866 struct dp_upcall_info upcall; 867 const struct nlattr *a; 868 int rem; 869 870 memset(&upcall, 0, sizeof(upcall)); 871 upcall.cmd = OVS_PACKET_CMD_ACTION; 872 upcall.mru = OVS_CB(skb)->mru; 873 874 nla_for_each_nested(a, attr, rem) { 875 switch (nla_type(a)) { 876 case OVS_USERSPACE_ATTR_USERDATA: 877 upcall.userdata = a; 878 break; 879 880 case OVS_USERSPACE_ATTR_PID: 881 if (OVS_CB(skb)->upcall_pid) 882 upcall.portid = OVS_CB(skb)->upcall_pid; 883 else if (dp->user_features & 884 OVS_DP_F_DISPATCH_UPCALL_PER_CPU) 885 upcall.portid = 886 ovs_dp_get_upcall_portid(dp, 887 smp_processor_id()); 888 else 889 upcall.portid = nla_get_u32(a); 890 break; 891 892 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { 893 /* Get out tunnel info. */ 894 struct vport *vport; 895 896 vport = ovs_vport_rcu(dp, nla_get_u32(a)); 897 if (vport) { 898 int err; 899 900 err = dev_fill_metadata_dst(vport->dev, skb); 901 if (!err) 902 upcall.egress_tun_info = skb_tunnel_info(skb); 903 } 904 905 break; 906 } 907 908 case OVS_USERSPACE_ATTR_ACTIONS: { 909 /* Include actions. */ 910 upcall.actions = actions; 911 upcall.actions_len = actions_len; 912 break; 913 } 914 915 } /* End of switch. */ 916 } 917 918 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen); 919 } 920 921 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb, 922 struct sw_flow_key *key, 923 const struct nlattr *attr) 924 { 925 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */ 926 struct nlattr *actions = nla_data(attr); 927 928 if (nla_len(actions)) 929 return clone_execute(dp, skb, key, 0, nla_data(actions), 930 nla_len(actions), true, false); 931 932 ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL); 933 return 0; 934 } 935 936 /* When 'last' is true, sample() should always consume the 'skb'. 937 * Otherwise, sample() should keep 'skb' intact regardless what 938 * actions are executed within sample(). 939 */ 940 static int sample(struct datapath *dp, struct sk_buff *skb, 941 struct sw_flow_key *key, const struct nlattr *attr, 942 bool last) 943 { 944 struct nlattr *actions; 945 struct nlattr *sample_arg; 946 int rem = nla_len(attr); 947 const struct sample_arg *arg; 948 u32 init_probability; 949 bool clone_flow_key; 950 int err; 951 952 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */ 953 sample_arg = nla_data(attr); 954 arg = nla_data(sample_arg); 955 actions = nla_next(sample_arg, &rem); 956 init_probability = OVS_CB(skb)->probability; 957 958 if ((arg->probability != U32_MAX) && 959 (!arg->probability || get_random_u32() > arg->probability)) { 960 if (last) 961 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION); 962 return 0; 963 } 964 965 OVS_CB(skb)->probability = arg->probability; 966 967 clone_flow_key = !arg->exec; 968 err = clone_execute(dp, skb, key, 0, actions, rem, last, 969 clone_flow_key); 970 971 if (!last) 972 OVS_CB(skb)->probability = init_probability; 973 974 return err; 975 } 976 977 /* When 'last' is true, clone() should always consume the 'skb'. 978 * Otherwise, clone() should keep 'skb' intact regardless what 979 * actions are executed within clone(). 980 */ 981 static int clone(struct datapath *dp, struct sk_buff *skb, 982 struct sw_flow_key *key, const struct nlattr *attr, 983 bool last) 984 { 985 struct nlattr *actions; 986 struct nlattr *clone_arg; 987 int rem = nla_len(attr); 988 bool dont_clone_flow_key; 989 990 /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */ 991 clone_arg = nla_data(attr); 992 dont_clone_flow_key = nla_get_u32(clone_arg); 993 actions = nla_next(clone_arg, &rem); 994 995 return clone_execute(dp, skb, key, 0, actions, rem, last, 996 !dont_clone_flow_key); 997 } 998 999 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, 1000 const struct nlattr *attr) 1001 { 1002 struct ovs_action_hash *hash_act = nla_data(attr); 1003 u32 hash = 0; 1004 1005 if (hash_act->hash_alg == OVS_HASH_ALG_L4) { 1006 /* OVS_HASH_ALG_L4 hasing type. */ 1007 hash = skb_get_hash(skb); 1008 } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) { 1009 /* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't 1010 * extend past an encapsulated header. 1011 */ 1012 hash = __skb_get_hash_symmetric(skb); 1013 } 1014 1015 hash = jhash_1word(hash, hash_act->hash_basis); 1016 if (!hash) 1017 hash = 0x1; 1018 1019 key->ovs_flow_hash = hash; 1020 } 1021 1022 static int execute_set_action(struct sk_buff *skb, 1023 struct sw_flow_key *flow_key, 1024 const struct nlattr *a) 1025 { 1026 /* Only tunnel set execution is supported without a mask. */ 1027 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { 1028 struct ovs_tunnel_info *tun = nla_data(a); 1029 1030 skb_dst_drop(skb); 1031 dst_hold((struct dst_entry *)tun->tun_dst); 1032 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); 1033 return 0; 1034 } 1035 1036 return -EINVAL; 1037 } 1038 1039 /* Mask is at the midpoint of the data. */ 1040 #define get_mask(a, type) ((const type)nla_data(a) + 1) 1041 1042 static int execute_masked_set_action(struct sk_buff *skb, 1043 struct sw_flow_key *flow_key, 1044 const struct nlattr *a) 1045 { 1046 int err = 0; 1047 1048 switch (nla_type(a)) { 1049 case OVS_KEY_ATTR_PRIORITY: 1050 OVS_SET_MASKED(skb->priority, nla_get_u32(a), 1051 *get_mask(a, u32 *)); 1052 flow_key->phy.priority = skb->priority; 1053 break; 1054 1055 case OVS_KEY_ATTR_SKB_MARK: 1056 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); 1057 flow_key->phy.skb_mark = skb->mark; 1058 break; 1059 1060 case OVS_KEY_ATTR_TUNNEL_INFO: 1061 /* Masked data not supported for tunnel. */ 1062 err = -EINVAL; 1063 break; 1064 1065 case OVS_KEY_ATTR_ETHERNET: 1066 err = set_eth_addr(skb, flow_key, nla_data(a), 1067 get_mask(a, struct ovs_key_ethernet *)); 1068 break; 1069 1070 case OVS_KEY_ATTR_IPV4: 1071 err = set_ipv4(skb, flow_key, nla_data(a), 1072 get_mask(a, struct ovs_key_ipv4 *)); 1073 break; 1074 1075 case OVS_KEY_ATTR_IPV6: 1076 err = set_ipv6(skb, flow_key, nla_data(a), 1077 get_mask(a, struct ovs_key_ipv6 *)); 1078 break; 1079 1080 case OVS_KEY_ATTR_TCP: 1081 err = set_tcp(skb, flow_key, nla_data(a), 1082 get_mask(a, struct ovs_key_tcp *)); 1083 break; 1084 1085 case OVS_KEY_ATTR_UDP: 1086 err = set_udp(skb, flow_key, nla_data(a), 1087 get_mask(a, struct ovs_key_udp *)); 1088 break; 1089 1090 case OVS_KEY_ATTR_SCTP: 1091 err = set_sctp(skb, flow_key, nla_data(a), 1092 get_mask(a, struct ovs_key_sctp *)); 1093 break; 1094 1095 case OVS_KEY_ATTR_MPLS: 1096 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, 1097 __be32 *)); 1098 break; 1099 1100 case OVS_KEY_ATTR_CT_STATE: 1101 case OVS_KEY_ATTR_CT_ZONE: 1102 case OVS_KEY_ATTR_CT_MARK: 1103 case OVS_KEY_ATTR_CT_LABELS: 1104 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4: 1105 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6: 1106 case OVS_KEY_ATTR_NSH: 1107 err = -EINVAL; 1108 break; 1109 } 1110 1111 return err; 1112 } 1113 1114 static int execute_recirc(struct datapath *dp, struct sk_buff *skb, 1115 struct sw_flow_key *key, 1116 const struct nlattr *a, bool last) 1117 { 1118 u32 recirc_id; 1119 1120 if (!is_flow_key_valid(key)) { 1121 int err; 1122 1123 err = ovs_flow_key_update(skb, key); 1124 if (err) 1125 return err; 1126 } 1127 BUG_ON(!is_flow_key_valid(key)); 1128 1129 recirc_id = nla_get_u32(a); 1130 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true); 1131 } 1132 1133 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb, 1134 struct sw_flow_key *key, 1135 const struct nlattr *attr, bool last) 1136 { 1137 struct ovs_skb_cb *ovs_cb = OVS_CB(skb); 1138 const struct nlattr *actions, *cpl_arg; 1139 int len, max_len, rem = nla_len(attr); 1140 const struct check_pkt_len_arg *arg; 1141 bool clone_flow_key; 1142 1143 /* The first netlink attribute in 'attr' is always 1144 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'. 1145 */ 1146 cpl_arg = nla_data(attr); 1147 arg = nla_data(cpl_arg); 1148 1149 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len; 1150 max_len = arg->pkt_len; 1151 1152 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) || 1153 len <= max_len) { 1154 /* Second netlink attribute in 'attr' is always 1155 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'. 1156 */ 1157 actions = nla_next(cpl_arg, &rem); 1158 clone_flow_key = !arg->exec_for_lesser_equal; 1159 } else { 1160 /* Third netlink attribute in 'attr' is always 1161 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'. 1162 */ 1163 actions = nla_next(cpl_arg, &rem); 1164 actions = nla_next(actions, &rem); 1165 clone_flow_key = !arg->exec_for_greater; 1166 } 1167 1168 return clone_execute(dp, skb, key, 0, nla_data(actions), 1169 nla_len(actions), last, clone_flow_key); 1170 } 1171 1172 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key) 1173 { 1174 int err; 1175 1176 if (skb->protocol == htons(ETH_P_IPV6)) { 1177 struct ipv6hdr *nh; 1178 1179 err = skb_ensure_writable(skb, skb_network_offset(skb) + 1180 sizeof(*nh)); 1181 if (unlikely(err)) 1182 return err; 1183 1184 nh = ipv6_hdr(skb); 1185 1186 if (nh->hop_limit <= 1) 1187 return -EHOSTUNREACH; 1188 1189 key->ip.ttl = --nh->hop_limit; 1190 } else if (skb->protocol == htons(ETH_P_IP)) { 1191 struct iphdr *nh; 1192 u8 old_ttl; 1193 1194 err = skb_ensure_writable(skb, skb_network_offset(skb) + 1195 sizeof(*nh)); 1196 if (unlikely(err)) 1197 return err; 1198 1199 nh = ip_hdr(skb); 1200 if (nh->ttl <= 1) 1201 return -EHOSTUNREACH; 1202 1203 old_ttl = nh->ttl--; 1204 csum_replace2(&nh->check, htons(old_ttl << 8), 1205 htons(nh->ttl << 8)); 1206 key->ip.ttl = nh->ttl; 1207 } 1208 return 0; 1209 } 1210 1211 #if IS_ENABLED(CONFIG_PSAMPLE) 1212 static void execute_psample(struct datapath *dp, struct sk_buff *skb, 1213 const struct nlattr *attr) 1214 { 1215 struct psample_group psample_group = {}; 1216 struct psample_metadata md = {}; 1217 const struct nlattr *a; 1218 u32 rate; 1219 int rem; 1220 1221 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) { 1222 switch (nla_type(a)) { 1223 case OVS_PSAMPLE_ATTR_GROUP: 1224 psample_group.group_num = nla_get_u32(a); 1225 break; 1226 1227 case OVS_PSAMPLE_ATTR_COOKIE: 1228 md.user_cookie = nla_data(a); 1229 md.user_cookie_len = nla_len(a); 1230 break; 1231 } 1232 } 1233 1234 psample_group.net = ovs_dp_get_net(dp); 1235 md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex; 1236 md.trunc_size = skb->len - OVS_CB(skb)->cutlen; 1237 md.rate_as_probability = 1; 1238 1239 rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX; 1240 1241 psample_sample_packet(&psample_group, skb, rate, &md); 1242 } 1243 #else 1244 static void execute_psample(struct datapath *dp, struct sk_buff *skb, 1245 const struct nlattr *attr) 1246 {} 1247 #endif 1248 1249 /* Execute a list of actions against 'skb'. */ 1250 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, 1251 struct sw_flow_key *key, 1252 const struct nlattr *attr, int len) 1253 { 1254 const struct nlattr *a; 1255 int rem; 1256 1257 for (a = attr, rem = len; rem > 0; 1258 a = nla_next(a, &rem)) { 1259 int err = 0; 1260 1261 if (trace_ovs_do_execute_action_enabled()) 1262 trace_ovs_do_execute_action(dp, skb, key, a, rem); 1263 1264 /* Actions that rightfully have to consume the skb should do it 1265 * and return directly. 1266 */ 1267 switch (nla_type(a)) { 1268 case OVS_ACTION_ATTR_OUTPUT: { 1269 int port = nla_get_u32(a); 1270 struct sk_buff *clone; 1271 1272 /* Every output action needs a separate clone 1273 * of 'skb', In case the output action is the 1274 * last action, cloning can be avoided. 1275 */ 1276 if (nla_is_last(a, rem)) { 1277 do_output(dp, skb, port, key); 1278 /* 'skb' has been used for output. 1279 */ 1280 return 0; 1281 } 1282 1283 clone = skb_clone(skb, GFP_ATOMIC); 1284 if (clone) 1285 do_output(dp, clone, port, key); 1286 OVS_CB(skb)->cutlen = 0; 1287 break; 1288 } 1289 1290 case OVS_ACTION_ATTR_TRUNC: { 1291 struct ovs_action_trunc *trunc = nla_data(a); 1292 1293 if (skb->len > trunc->max_len) 1294 OVS_CB(skb)->cutlen = skb->len - trunc->max_len; 1295 break; 1296 } 1297 1298 case OVS_ACTION_ATTR_USERSPACE: 1299 output_userspace(dp, skb, key, a, attr, 1300 len, OVS_CB(skb)->cutlen); 1301 OVS_CB(skb)->cutlen = 0; 1302 if (nla_is_last(a, rem)) { 1303 consume_skb(skb); 1304 return 0; 1305 } 1306 break; 1307 1308 case OVS_ACTION_ATTR_HASH: 1309 execute_hash(skb, key, a); 1310 break; 1311 1312 case OVS_ACTION_ATTR_PUSH_MPLS: { 1313 struct ovs_action_push_mpls *mpls = nla_data(a); 1314 1315 err = push_mpls(skb, key, mpls->mpls_lse, 1316 mpls->mpls_ethertype, skb->mac_len); 1317 break; 1318 } 1319 case OVS_ACTION_ATTR_ADD_MPLS: { 1320 struct ovs_action_add_mpls *mpls = nla_data(a); 1321 __u16 mac_len = 0; 1322 1323 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK) 1324 mac_len = skb->mac_len; 1325 1326 err = push_mpls(skb, key, mpls->mpls_lse, 1327 mpls->mpls_ethertype, mac_len); 1328 break; 1329 } 1330 case OVS_ACTION_ATTR_POP_MPLS: 1331 err = pop_mpls(skb, key, nla_get_be16(a)); 1332 break; 1333 1334 case OVS_ACTION_ATTR_PUSH_VLAN: 1335 err = push_vlan(skb, key, nla_data(a)); 1336 break; 1337 1338 case OVS_ACTION_ATTR_POP_VLAN: 1339 err = pop_vlan(skb, key); 1340 break; 1341 1342 case OVS_ACTION_ATTR_RECIRC: { 1343 bool last = nla_is_last(a, rem); 1344 1345 err = execute_recirc(dp, skb, key, a, last); 1346 if (last) { 1347 /* If this is the last action, the skb has 1348 * been consumed or freed. 1349 * Return immediately. 1350 */ 1351 return err; 1352 } 1353 break; 1354 } 1355 1356 case OVS_ACTION_ATTR_SET: 1357 err = execute_set_action(skb, key, nla_data(a)); 1358 break; 1359 1360 case OVS_ACTION_ATTR_SET_MASKED: 1361 case OVS_ACTION_ATTR_SET_TO_MASKED: 1362 err = execute_masked_set_action(skb, key, nla_data(a)); 1363 break; 1364 1365 case OVS_ACTION_ATTR_SAMPLE: { 1366 bool last = nla_is_last(a, rem); 1367 1368 err = sample(dp, skb, key, a, last); 1369 if (last) 1370 return err; 1371 1372 break; 1373 } 1374 1375 case OVS_ACTION_ATTR_CT: 1376 if (!is_flow_key_valid(key)) { 1377 err = ovs_flow_key_update(skb, key); 1378 if (err) 1379 return err; 1380 } 1381 1382 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, 1383 nla_data(a)); 1384 1385 /* Hide stolen IP fragments from user space. */ 1386 if (err) 1387 return err == -EINPROGRESS ? 0 : err; 1388 break; 1389 1390 case OVS_ACTION_ATTR_CT_CLEAR: 1391 err = ovs_ct_clear(skb, key); 1392 break; 1393 1394 case OVS_ACTION_ATTR_PUSH_ETH: 1395 err = push_eth(skb, key, nla_data(a)); 1396 break; 1397 1398 case OVS_ACTION_ATTR_POP_ETH: 1399 err = pop_eth(skb, key); 1400 break; 1401 1402 case OVS_ACTION_ATTR_PUSH_NSH: 1403 err = push_nsh(skb, key, nla_data(a)); 1404 break; 1405 1406 case OVS_ACTION_ATTR_POP_NSH: 1407 err = pop_nsh(skb, key); 1408 break; 1409 1410 case OVS_ACTION_ATTR_METER: 1411 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) { 1412 ovs_kfree_skb_reason(skb, OVS_DROP_METER); 1413 return 0; 1414 } 1415 break; 1416 1417 case OVS_ACTION_ATTR_CLONE: { 1418 bool last = nla_is_last(a, rem); 1419 1420 err = clone(dp, skb, key, a, last); 1421 if (last) 1422 return err; 1423 1424 break; 1425 } 1426 1427 case OVS_ACTION_ATTR_CHECK_PKT_LEN: { 1428 bool last = nla_is_last(a, rem); 1429 1430 err = execute_check_pkt_len(dp, skb, key, a, last); 1431 if (last) 1432 return err; 1433 1434 break; 1435 } 1436 1437 case OVS_ACTION_ATTR_DEC_TTL: 1438 err = execute_dec_ttl(skb, key); 1439 if (err == -EHOSTUNREACH) 1440 return dec_ttl_exception_handler(dp, skb, 1441 key, a); 1442 break; 1443 1444 case OVS_ACTION_ATTR_DROP: { 1445 enum ovs_drop_reason reason = nla_get_u32(a) 1446 ? OVS_DROP_EXPLICIT_WITH_ERROR 1447 : OVS_DROP_EXPLICIT; 1448 1449 ovs_kfree_skb_reason(skb, reason); 1450 return 0; 1451 } 1452 1453 case OVS_ACTION_ATTR_PSAMPLE: 1454 execute_psample(dp, skb, a); 1455 OVS_CB(skb)->cutlen = 0; 1456 if (nla_is_last(a, rem)) { 1457 consume_skb(skb); 1458 return 0; 1459 } 1460 break; 1461 } 1462 1463 if (unlikely(err)) { 1464 ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR); 1465 return err; 1466 } 1467 } 1468 1469 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION); 1470 return 0; 1471 } 1472 1473 /* Execute the actions on the clone of the packet. The effect of the 1474 * execution does not affect the original 'skb' nor the original 'key'. 1475 * 1476 * The execution may be deferred in case the actions can not be executed 1477 * immediately. 1478 */ 1479 static int clone_execute(struct datapath *dp, struct sk_buff *skb, 1480 struct sw_flow_key *key, u32 recirc_id, 1481 const struct nlattr *actions, int len, 1482 bool last, bool clone_flow_key) 1483 { 1484 struct deferred_action *da; 1485 struct sw_flow_key *clone; 1486 1487 skb = last ? skb : skb_clone(skb, GFP_ATOMIC); 1488 if (!skb) { 1489 /* Out of memory, skip this action. 1490 */ 1491 return 0; 1492 } 1493 1494 /* When clone_flow_key is false, the 'key' will not be change 1495 * by the actions, then the 'key' can be used directly. 1496 * Otherwise, try to clone key from the next recursion level of 1497 * 'flow_keys'. If clone is successful, execute the actions 1498 * without deferring. 1499 */ 1500 clone = clone_flow_key ? clone_key(key) : key; 1501 if (clone) { 1502 int err = 0; 1503 if (actions) { /* Sample action */ 1504 if (clone_flow_key) 1505 __this_cpu_inc(ovs_pcpu_storage->exec_level); 1506 1507 err = do_execute_actions(dp, skb, clone, 1508 actions, len); 1509 1510 if (clone_flow_key) 1511 __this_cpu_dec(ovs_pcpu_storage->exec_level); 1512 } else { /* Recirc action */ 1513 clone->recirc_id = recirc_id; 1514 ovs_dp_process_packet(skb, clone); 1515 } 1516 return err; 1517 } 1518 1519 /* Out of 'flow_keys' space. Defer actions */ 1520 da = add_deferred_actions(skb, key, actions, len); 1521 if (da) { 1522 if (!actions) { /* Recirc action */ 1523 key = &da->pkt_key; 1524 key->recirc_id = recirc_id; 1525 } 1526 } else { 1527 /* Out of per CPU action FIFO space. Drop the 'skb' and 1528 * log an error. 1529 */ 1530 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT); 1531 1532 if (net_ratelimit()) { 1533 if (actions) { /* Sample action */ 1534 pr_warn("%s: deferred action limit reached, drop sample action\n", 1535 ovs_dp_name(dp)); 1536 } else { /* Recirc action */ 1537 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n", 1538 ovs_dp_name(dp), recirc_id); 1539 } 1540 } 1541 } 1542 return 0; 1543 } 1544 1545 static void process_deferred_actions(struct datapath *dp) 1546 { 1547 struct action_fifo *fifo = this_cpu_ptr(&ovs_pcpu_storage->action_fifos); 1548 1549 /* Do not touch the FIFO in case there is no deferred actions. */ 1550 if (action_fifo_is_empty(fifo)) 1551 return; 1552 1553 /* Finishing executing all deferred actions. */ 1554 do { 1555 struct deferred_action *da = action_fifo_get(fifo); 1556 struct sk_buff *skb = da->skb; 1557 struct sw_flow_key *key = &da->pkt_key; 1558 const struct nlattr *actions = da->actions; 1559 int actions_len = da->actions_len; 1560 1561 if (actions) 1562 do_execute_actions(dp, skb, key, actions, actions_len); 1563 else 1564 ovs_dp_process_packet(skb, key); 1565 } while (!action_fifo_is_empty(fifo)); 1566 1567 /* Reset FIFO for the next packet. */ 1568 action_fifo_init(fifo); 1569 } 1570 1571 /* Execute a list of actions against 'skb'. */ 1572 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, 1573 const struct sw_flow_actions *acts, 1574 struct sw_flow_key *key) 1575 { 1576 int err, level; 1577 1578 level = __this_cpu_inc_return(ovs_pcpu_storage->exec_level); 1579 if (unlikely(level > OVS_RECURSION_LIMIT)) { 1580 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n", 1581 ovs_dp_name(dp)); 1582 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT); 1583 err = -ENETDOWN; 1584 goto out; 1585 } 1586 1587 OVS_CB(skb)->acts_origlen = acts->orig_len; 1588 err = do_execute_actions(dp, skb, key, 1589 acts->actions, acts->actions_len); 1590 1591 if (level == 1) 1592 process_deferred_actions(dp); 1593 1594 out: 1595 __this_cpu_dec(ovs_pcpu_storage->exec_level); 1596 return err; 1597 } 1598