xref: /linux/net/openvswitch/actions.c (revision 9958d30f38b96fb763a10d44d18ddad39127d5f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/ip.h>
21 #include <net/ipv6.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
25 #include <net/mpls.h>
26 #include <net/sctp/checksum.h>
27 
28 #include "datapath.h"
29 #include "flow.h"
30 #include "conntrack.h"
31 #include "vport.h"
32 #include "flow_netlink.h"
33 #include "openvswitch_trace.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
165 {
166 	int err;
167 
168 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
169 	if (err)
170 		return err;
171 
172 	if (!mac_len)
173 		key->mac_proto = MAC_PROTO_NONE;
174 
175 	invalidate_flow_key(key);
176 	return 0;
177 }
178 
179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180 		    const __be16 ethertype)
181 {
182 	int err;
183 
184 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
185 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
186 	if (err)
187 		return err;
188 
189 	if (ethertype == htons(ETH_P_TEB))
190 		key->mac_proto = MAC_PROTO_ETHERNET;
191 
192 	invalidate_flow_key(key);
193 	return 0;
194 }
195 
196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
197 		    const __be32 *mpls_lse, const __be32 *mask)
198 {
199 	struct mpls_shim_hdr *stack;
200 	__be32 lse;
201 	int err;
202 
203 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
204 		return -ENOMEM;
205 
206 	stack = mpls_hdr(skb);
207 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
208 	err = skb_mpls_update_lse(skb, lse);
209 	if (err)
210 		return err;
211 
212 	flow_key->mpls.lse[0] = lse;
213 	return 0;
214 }
215 
216 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
217 {
218 	int err;
219 
220 	err = skb_vlan_pop(skb);
221 	if (skb_vlan_tag_present(skb)) {
222 		invalidate_flow_key(key);
223 	} else {
224 		key->eth.vlan.tci = 0;
225 		key->eth.vlan.tpid = 0;
226 	}
227 	return err;
228 }
229 
230 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
231 		     const struct ovs_action_push_vlan *vlan)
232 {
233 	if (skb_vlan_tag_present(skb)) {
234 		invalidate_flow_key(key);
235 	} else {
236 		key->eth.vlan.tci = vlan->vlan_tci;
237 		key->eth.vlan.tpid = vlan->vlan_tpid;
238 	}
239 	return skb_vlan_push(skb, vlan->vlan_tpid,
240 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
241 }
242 
243 /* 'src' is already properly masked. */
244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
245 {
246 	u16 *dst = (u16 *)dst_;
247 	const u16 *src = (const u16 *)src_;
248 	const u16 *mask = (const u16 *)mask_;
249 
250 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
251 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
252 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
253 }
254 
255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
256 			const struct ovs_key_ethernet *key,
257 			const struct ovs_key_ethernet *mask)
258 {
259 	int err;
260 
261 	err = skb_ensure_writable(skb, ETH_HLEN);
262 	if (unlikely(err))
263 		return err;
264 
265 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266 
267 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
268 			       mask->eth_src);
269 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
270 			       mask->eth_dst);
271 
272 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
273 
274 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
275 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
276 	return 0;
277 }
278 
279 /* pop_eth does not support VLAN packets as this action is never called
280  * for them.
281  */
282 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
283 {
284 	int err;
285 
286 	err = skb_eth_pop(skb);
287 	if (err)
288 		return err;
289 
290 	/* safe right before invalidate_flow_key */
291 	key->mac_proto = MAC_PROTO_NONE;
292 	invalidate_flow_key(key);
293 	return 0;
294 }
295 
296 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
297 		    const struct ovs_action_push_eth *ethh)
298 {
299 	int err;
300 
301 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
302 			   ethh->addresses.eth_src);
303 	if (err)
304 		return err;
305 
306 	/* safe right before invalidate_flow_key */
307 	key->mac_proto = MAC_PROTO_ETHERNET;
308 	invalidate_flow_key(key);
309 	return 0;
310 }
311 
312 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
313 		    const struct nshhdr *nh)
314 {
315 	int err;
316 
317 	err = nsh_push(skb, nh);
318 	if (err)
319 		return err;
320 
321 	/* safe right before invalidate_flow_key */
322 	key->mac_proto = MAC_PROTO_NONE;
323 	invalidate_flow_key(key);
324 	return 0;
325 }
326 
327 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
328 {
329 	int err;
330 
331 	err = nsh_pop(skb);
332 	if (err)
333 		return err;
334 
335 	/* safe right before invalidate_flow_key */
336 	if (skb->protocol == htons(ETH_P_TEB))
337 		key->mac_proto = MAC_PROTO_ETHERNET;
338 	else
339 		key->mac_proto = MAC_PROTO_NONE;
340 	invalidate_flow_key(key);
341 	return 0;
342 }
343 
344 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
345 				  __be32 addr, __be32 new_addr)
346 {
347 	int transport_len = skb->len - skb_transport_offset(skb);
348 
349 	if (nh->frag_off & htons(IP_OFFSET))
350 		return;
351 
352 	if (nh->protocol == IPPROTO_TCP) {
353 		if (likely(transport_len >= sizeof(struct tcphdr)))
354 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
355 						 addr, new_addr, true);
356 	} else if (nh->protocol == IPPROTO_UDP) {
357 		if (likely(transport_len >= sizeof(struct udphdr))) {
358 			struct udphdr *uh = udp_hdr(skb);
359 
360 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
361 				inet_proto_csum_replace4(&uh->check, skb,
362 							 addr, new_addr, true);
363 				if (!uh->check)
364 					uh->check = CSUM_MANGLED_0;
365 			}
366 		}
367 	}
368 }
369 
370 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
371 			__be32 *addr, __be32 new_addr)
372 {
373 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
374 	csum_replace4(&nh->check, *addr, new_addr);
375 	skb_clear_hash(skb);
376 	*addr = new_addr;
377 }
378 
379 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
380 				 __be32 addr[4], const __be32 new_addr[4])
381 {
382 	int transport_len = skb->len - skb_transport_offset(skb);
383 
384 	if (l4_proto == NEXTHDR_TCP) {
385 		if (likely(transport_len >= sizeof(struct tcphdr)))
386 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
387 						  addr, new_addr, true);
388 	} else if (l4_proto == NEXTHDR_UDP) {
389 		if (likely(transport_len >= sizeof(struct udphdr))) {
390 			struct udphdr *uh = udp_hdr(skb);
391 
392 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
393 				inet_proto_csum_replace16(&uh->check, skb,
394 							  addr, new_addr, true);
395 				if (!uh->check)
396 					uh->check = CSUM_MANGLED_0;
397 			}
398 		}
399 	} else if (l4_proto == NEXTHDR_ICMP) {
400 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
401 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
402 						  skb, addr, new_addr, true);
403 	}
404 }
405 
406 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
407 			   const __be32 mask[4], __be32 masked[4])
408 {
409 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
410 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
411 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
412 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
413 }
414 
415 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
416 			  __be32 addr[4], const __be32 new_addr[4],
417 			  bool recalculate_csum)
418 {
419 	if (recalculate_csum)
420 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
421 
422 	skb_clear_hash(skb);
423 	memcpy(addr, new_addr, sizeof(__be32[4]));
424 }
425 
426 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
427 {
428 	/* Bits 21-24 are always unmasked, so this retains their values. */
429 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
430 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
431 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
432 }
433 
434 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
435 		       u8 mask)
436 {
437 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
438 
439 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
440 	nh->ttl = new_ttl;
441 }
442 
443 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
444 		    const struct ovs_key_ipv4 *key,
445 		    const struct ovs_key_ipv4 *mask)
446 {
447 	struct iphdr *nh;
448 	__be32 new_addr;
449 	int err;
450 
451 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
452 				  sizeof(struct iphdr));
453 	if (unlikely(err))
454 		return err;
455 
456 	nh = ip_hdr(skb);
457 
458 	/* Setting an IP addresses is typically only a side effect of
459 	 * matching on them in the current userspace implementation, so it
460 	 * makes sense to check if the value actually changed.
461 	 */
462 	if (mask->ipv4_src) {
463 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
464 
465 		if (unlikely(new_addr != nh->saddr)) {
466 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
467 			flow_key->ipv4.addr.src = new_addr;
468 		}
469 	}
470 	if (mask->ipv4_dst) {
471 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
472 
473 		if (unlikely(new_addr != nh->daddr)) {
474 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
475 			flow_key->ipv4.addr.dst = new_addr;
476 		}
477 	}
478 	if (mask->ipv4_tos) {
479 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
480 		flow_key->ip.tos = nh->tos;
481 	}
482 	if (mask->ipv4_ttl) {
483 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
484 		flow_key->ip.ttl = nh->ttl;
485 	}
486 
487 	return 0;
488 }
489 
490 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
491 {
492 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
493 }
494 
495 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
496 		    const struct ovs_key_ipv6 *key,
497 		    const struct ovs_key_ipv6 *mask)
498 {
499 	struct ipv6hdr *nh;
500 	int err;
501 
502 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
503 				  sizeof(struct ipv6hdr));
504 	if (unlikely(err))
505 		return err;
506 
507 	nh = ipv6_hdr(skb);
508 
509 	/* Setting an IP addresses is typically only a side effect of
510 	 * matching on them in the current userspace implementation, so it
511 	 * makes sense to check if the value actually changed.
512 	 */
513 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
514 		__be32 *saddr = (__be32 *)&nh->saddr;
515 		__be32 masked[4];
516 
517 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
518 
519 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
520 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
521 				      true);
522 			memcpy(&flow_key->ipv6.addr.src, masked,
523 			       sizeof(flow_key->ipv6.addr.src));
524 		}
525 	}
526 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
527 		unsigned int offset = 0;
528 		int flags = IP6_FH_F_SKIP_RH;
529 		bool recalc_csum = true;
530 		__be32 *daddr = (__be32 *)&nh->daddr;
531 		__be32 masked[4];
532 
533 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
534 
535 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
536 			if (ipv6_ext_hdr(nh->nexthdr))
537 				recalc_csum = (ipv6_find_hdr(skb, &offset,
538 							     NEXTHDR_ROUTING,
539 							     NULL, &flags)
540 					       != NEXTHDR_ROUTING);
541 
542 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
543 				      recalc_csum);
544 			memcpy(&flow_key->ipv6.addr.dst, masked,
545 			       sizeof(flow_key->ipv6.addr.dst));
546 		}
547 	}
548 	if (mask->ipv6_tclass) {
549 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
550 		flow_key->ip.tos = ipv6_get_dsfield(nh);
551 	}
552 	if (mask->ipv6_label) {
553 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
554 			    ntohl(mask->ipv6_label));
555 		flow_key->ipv6.label =
556 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
557 	}
558 	if (mask->ipv6_hlimit) {
559 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
560 			       mask->ipv6_hlimit);
561 		flow_key->ip.ttl = nh->hop_limit;
562 	}
563 	return 0;
564 }
565 
566 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
567 		   const struct nlattr *a)
568 {
569 	struct nshhdr *nh;
570 	size_t length;
571 	int err;
572 	u8 flags;
573 	u8 ttl;
574 	int i;
575 
576 	struct ovs_key_nsh key;
577 	struct ovs_key_nsh mask;
578 
579 	err = nsh_key_from_nlattr(a, &key, &mask);
580 	if (err)
581 		return err;
582 
583 	/* Make sure the NSH base header is there */
584 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
585 		return -ENOMEM;
586 
587 	nh = nsh_hdr(skb);
588 	length = nsh_hdr_len(nh);
589 
590 	/* Make sure the whole NSH header is there */
591 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
592 				       length);
593 	if (unlikely(err))
594 		return err;
595 
596 	nh = nsh_hdr(skb);
597 	skb_postpull_rcsum(skb, nh, length);
598 	flags = nsh_get_flags(nh);
599 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
600 	flow_key->nsh.base.flags = flags;
601 	ttl = nsh_get_ttl(nh);
602 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
603 	flow_key->nsh.base.ttl = ttl;
604 	nsh_set_flags_and_ttl(nh, flags, ttl);
605 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
606 				  mask.base.path_hdr);
607 	flow_key->nsh.base.path_hdr = nh->path_hdr;
608 	switch (nh->mdtype) {
609 	case NSH_M_TYPE1:
610 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
611 			nh->md1.context[i] =
612 			    OVS_MASKED(nh->md1.context[i], key.context[i],
613 				       mask.context[i]);
614 		}
615 		memcpy(flow_key->nsh.context, nh->md1.context,
616 		       sizeof(nh->md1.context));
617 		break;
618 	case NSH_M_TYPE2:
619 		memset(flow_key->nsh.context, 0,
620 		       sizeof(flow_key->nsh.context));
621 		break;
622 	default:
623 		return -EINVAL;
624 	}
625 	skb_postpush_rcsum(skb, nh, length);
626 	return 0;
627 }
628 
629 /* Must follow skb_ensure_writable() since that can move the skb data. */
630 static void set_tp_port(struct sk_buff *skb, __be16 *port,
631 			__be16 new_port, __sum16 *check)
632 {
633 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
634 	*port = new_port;
635 }
636 
637 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
638 		   const struct ovs_key_udp *key,
639 		   const struct ovs_key_udp *mask)
640 {
641 	struct udphdr *uh;
642 	__be16 src, dst;
643 	int err;
644 
645 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
646 				  sizeof(struct udphdr));
647 	if (unlikely(err))
648 		return err;
649 
650 	uh = udp_hdr(skb);
651 	/* Either of the masks is non-zero, so do not bother checking them. */
652 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
653 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
654 
655 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
656 		if (likely(src != uh->source)) {
657 			set_tp_port(skb, &uh->source, src, &uh->check);
658 			flow_key->tp.src = src;
659 		}
660 		if (likely(dst != uh->dest)) {
661 			set_tp_port(skb, &uh->dest, dst, &uh->check);
662 			flow_key->tp.dst = dst;
663 		}
664 
665 		if (unlikely(!uh->check))
666 			uh->check = CSUM_MANGLED_0;
667 	} else {
668 		uh->source = src;
669 		uh->dest = dst;
670 		flow_key->tp.src = src;
671 		flow_key->tp.dst = dst;
672 	}
673 
674 	skb_clear_hash(skb);
675 
676 	return 0;
677 }
678 
679 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
680 		   const struct ovs_key_tcp *key,
681 		   const struct ovs_key_tcp *mask)
682 {
683 	struct tcphdr *th;
684 	__be16 src, dst;
685 	int err;
686 
687 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
688 				  sizeof(struct tcphdr));
689 	if (unlikely(err))
690 		return err;
691 
692 	th = tcp_hdr(skb);
693 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
694 	if (likely(src != th->source)) {
695 		set_tp_port(skb, &th->source, src, &th->check);
696 		flow_key->tp.src = src;
697 	}
698 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
699 	if (likely(dst != th->dest)) {
700 		set_tp_port(skb, &th->dest, dst, &th->check);
701 		flow_key->tp.dst = dst;
702 	}
703 	skb_clear_hash(skb);
704 
705 	return 0;
706 }
707 
708 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
709 		    const struct ovs_key_sctp *key,
710 		    const struct ovs_key_sctp *mask)
711 {
712 	unsigned int sctphoff = skb_transport_offset(skb);
713 	struct sctphdr *sh;
714 	__le32 old_correct_csum, new_csum, old_csum;
715 	int err;
716 
717 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
718 	if (unlikely(err))
719 		return err;
720 
721 	sh = sctp_hdr(skb);
722 	old_csum = sh->checksum;
723 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
724 
725 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
726 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
727 
728 	new_csum = sctp_compute_cksum(skb, sctphoff);
729 
730 	/* Carry any checksum errors through. */
731 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
732 
733 	skb_clear_hash(skb);
734 	flow_key->tp.src = sh->source;
735 	flow_key->tp.dst = sh->dest;
736 
737 	return 0;
738 }
739 
740 static int ovs_vport_output(struct net *net, struct sock *sk,
741 			    struct sk_buff *skb)
742 {
743 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
744 	struct vport *vport = data->vport;
745 
746 	if (skb_cow_head(skb, data->l2_len) < 0) {
747 		kfree_skb(skb);
748 		return -ENOMEM;
749 	}
750 
751 	__skb_dst_copy(skb, data->dst);
752 	*OVS_CB(skb) = data->cb;
753 	skb->inner_protocol = data->inner_protocol;
754 	if (data->vlan_tci & VLAN_CFI_MASK)
755 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
756 	else
757 		__vlan_hwaccel_clear_tag(skb);
758 
759 	/* Reconstruct the MAC header.  */
760 	skb_push(skb, data->l2_len);
761 	memcpy(skb->data, &data->l2_data, data->l2_len);
762 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
763 	skb_reset_mac_header(skb);
764 
765 	if (eth_p_mpls(skb->protocol)) {
766 		skb->inner_network_header = skb->network_header;
767 		skb_set_network_header(skb, data->network_offset);
768 		skb_reset_mac_len(skb);
769 	}
770 
771 	ovs_vport_send(vport, skb, data->mac_proto);
772 	return 0;
773 }
774 
775 static unsigned int
776 ovs_dst_get_mtu(const struct dst_entry *dst)
777 {
778 	return dst->dev->mtu;
779 }
780 
781 static struct dst_ops ovs_dst_ops = {
782 	.family = AF_UNSPEC,
783 	.mtu = ovs_dst_get_mtu,
784 };
785 
786 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
787  * ovs_vport_output(), which is called once per fragmented packet.
788  */
789 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
790 			 u16 orig_network_offset, u8 mac_proto)
791 {
792 	unsigned int hlen = skb_network_offset(skb);
793 	struct ovs_frag_data *data;
794 
795 	data = this_cpu_ptr(&ovs_frag_data_storage);
796 	data->dst = skb->_skb_refdst;
797 	data->vport = vport;
798 	data->cb = *OVS_CB(skb);
799 	data->inner_protocol = skb->inner_protocol;
800 	data->network_offset = orig_network_offset;
801 	if (skb_vlan_tag_present(skb))
802 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
803 	else
804 		data->vlan_tci = 0;
805 	data->vlan_proto = skb->vlan_proto;
806 	data->mac_proto = mac_proto;
807 	data->l2_len = hlen;
808 	memcpy(&data->l2_data, skb->data, hlen);
809 
810 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
811 	skb_pull(skb, hlen);
812 }
813 
814 static void ovs_fragment(struct net *net, struct vport *vport,
815 			 struct sk_buff *skb, u16 mru,
816 			 struct sw_flow_key *key)
817 {
818 	u16 orig_network_offset = 0;
819 
820 	if (eth_p_mpls(skb->protocol)) {
821 		orig_network_offset = skb_network_offset(skb);
822 		skb->network_header = skb->inner_network_header;
823 	}
824 
825 	if (skb_network_offset(skb) > MAX_L2_LEN) {
826 		OVS_NLERR(1, "L2 header too long to fragment");
827 		goto err;
828 	}
829 
830 	if (key->eth.type == htons(ETH_P_IP)) {
831 		struct rtable ovs_rt = { 0 };
832 		unsigned long orig_dst;
833 
834 		prepare_frag(vport, skb, orig_network_offset,
835 			     ovs_key_mac_proto(key));
836 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
837 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
838 		ovs_rt.dst.dev = vport->dev;
839 
840 		orig_dst = skb->_skb_refdst;
841 		skb_dst_set_noref(skb, &ovs_rt.dst);
842 		IPCB(skb)->frag_max_size = mru;
843 
844 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
845 		refdst_drop(orig_dst);
846 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
847 		unsigned long orig_dst;
848 		struct rt6_info ovs_rt;
849 
850 		prepare_frag(vport, skb, orig_network_offset,
851 			     ovs_key_mac_proto(key));
852 		memset(&ovs_rt, 0, sizeof(ovs_rt));
853 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
854 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
855 		ovs_rt.dst.dev = vport->dev;
856 
857 		orig_dst = skb->_skb_refdst;
858 		skb_dst_set_noref(skb, &ovs_rt.dst);
859 		IP6CB(skb)->frag_max_size = mru;
860 
861 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
862 		refdst_drop(orig_dst);
863 	} else {
864 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
865 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
866 			  vport->dev->mtu);
867 		goto err;
868 	}
869 
870 	return;
871 err:
872 	kfree_skb(skb);
873 }
874 
875 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
876 		      struct sw_flow_key *key)
877 {
878 	struct vport *vport = ovs_vport_rcu(dp, out_port);
879 
880 	if (likely(vport)) {
881 		u16 mru = OVS_CB(skb)->mru;
882 		u32 cutlen = OVS_CB(skb)->cutlen;
883 
884 		if (unlikely(cutlen > 0)) {
885 			if (skb->len - cutlen > ovs_mac_header_len(key))
886 				pskb_trim(skb, skb->len - cutlen);
887 			else
888 				pskb_trim(skb, ovs_mac_header_len(key));
889 		}
890 
891 		if (likely(!mru ||
892 		           (skb->len <= mru + vport->dev->hard_header_len))) {
893 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
894 		} else if (mru <= vport->dev->mtu) {
895 			struct net *net = read_pnet(&dp->net);
896 
897 			ovs_fragment(net, vport, skb, mru, key);
898 		} else {
899 			kfree_skb(skb);
900 		}
901 	} else {
902 		kfree_skb(skb);
903 	}
904 }
905 
906 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
907 			    struct sw_flow_key *key, const struct nlattr *attr,
908 			    const struct nlattr *actions, int actions_len,
909 			    uint32_t cutlen)
910 {
911 	struct dp_upcall_info upcall;
912 	const struct nlattr *a;
913 	int rem;
914 
915 	memset(&upcall, 0, sizeof(upcall));
916 	upcall.cmd = OVS_PACKET_CMD_ACTION;
917 	upcall.mru = OVS_CB(skb)->mru;
918 
919 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
920 	     a = nla_next(a, &rem)) {
921 		switch (nla_type(a)) {
922 		case OVS_USERSPACE_ATTR_USERDATA:
923 			upcall.userdata = a;
924 			break;
925 
926 		case OVS_USERSPACE_ATTR_PID:
927 			if (dp->user_features &
928 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
929 				upcall.portid =
930 				  ovs_dp_get_upcall_portid(dp,
931 							   smp_processor_id());
932 			else
933 				upcall.portid = nla_get_u32(a);
934 			break;
935 
936 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
937 			/* Get out tunnel info. */
938 			struct vport *vport;
939 
940 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
941 			if (vport) {
942 				int err;
943 
944 				err = dev_fill_metadata_dst(vport->dev, skb);
945 				if (!err)
946 					upcall.egress_tun_info = skb_tunnel_info(skb);
947 			}
948 
949 			break;
950 		}
951 
952 		case OVS_USERSPACE_ATTR_ACTIONS: {
953 			/* Include actions. */
954 			upcall.actions = actions;
955 			upcall.actions_len = actions_len;
956 			break;
957 		}
958 
959 		} /* End of switch. */
960 	}
961 
962 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
963 }
964 
965 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
966 				     struct sw_flow_key *key,
967 				     const struct nlattr *attr)
968 {
969 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
970 	struct nlattr *actions = nla_data(attr);
971 
972 	if (nla_len(actions))
973 		return clone_execute(dp, skb, key, 0, nla_data(actions),
974 				     nla_len(actions), true, false);
975 
976 	consume_skb(skb);
977 	return 0;
978 }
979 
980 /* When 'last' is true, sample() should always consume the 'skb'.
981  * Otherwise, sample() should keep 'skb' intact regardless what
982  * actions are executed within sample().
983  */
984 static int sample(struct datapath *dp, struct sk_buff *skb,
985 		  struct sw_flow_key *key, const struct nlattr *attr,
986 		  bool last)
987 {
988 	struct nlattr *actions;
989 	struct nlattr *sample_arg;
990 	int rem = nla_len(attr);
991 	const struct sample_arg *arg;
992 	bool clone_flow_key;
993 
994 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
995 	sample_arg = nla_data(attr);
996 	arg = nla_data(sample_arg);
997 	actions = nla_next(sample_arg, &rem);
998 
999 	if ((arg->probability != U32_MAX) &&
1000 	    (!arg->probability || prandom_u32() > arg->probability)) {
1001 		if (last)
1002 			consume_skb(skb);
1003 		return 0;
1004 	}
1005 
1006 	clone_flow_key = !arg->exec;
1007 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1008 			     clone_flow_key);
1009 }
1010 
1011 /* When 'last' is true, clone() should always consume the 'skb'.
1012  * Otherwise, clone() should keep 'skb' intact regardless what
1013  * actions are executed within clone().
1014  */
1015 static int clone(struct datapath *dp, struct sk_buff *skb,
1016 		 struct sw_flow_key *key, const struct nlattr *attr,
1017 		 bool last)
1018 {
1019 	struct nlattr *actions;
1020 	struct nlattr *clone_arg;
1021 	int rem = nla_len(attr);
1022 	bool dont_clone_flow_key;
1023 
1024 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1025 	clone_arg = nla_data(attr);
1026 	dont_clone_flow_key = nla_get_u32(clone_arg);
1027 	actions = nla_next(clone_arg, &rem);
1028 
1029 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1030 			     !dont_clone_flow_key);
1031 }
1032 
1033 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1034 			 const struct nlattr *attr)
1035 {
1036 	struct ovs_action_hash *hash_act = nla_data(attr);
1037 	u32 hash = 0;
1038 
1039 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1040 	hash = skb_get_hash(skb);
1041 	hash = jhash_1word(hash, hash_act->hash_basis);
1042 	if (!hash)
1043 		hash = 0x1;
1044 
1045 	key->ovs_flow_hash = hash;
1046 }
1047 
1048 static int execute_set_action(struct sk_buff *skb,
1049 			      struct sw_flow_key *flow_key,
1050 			      const struct nlattr *a)
1051 {
1052 	/* Only tunnel set execution is supported without a mask. */
1053 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1054 		struct ovs_tunnel_info *tun = nla_data(a);
1055 
1056 		skb_dst_drop(skb);
1057 		dst_hold((struct dst_entry *)tun->tun_dst);
1058 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1059 		return 0;
1060 	}
1061 
1062 	return -EINVAL;
1063 }
1064 
1065 /* Mask is at the midpoint of the data. */
1066 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1067 
1068 static int execute_masked_set_action(struct sk_buff *skb,
1069 				     struct sw_flow_key *flow_key,
1070 				     const struct nlattr *a)
1071 {
1072 	int err = 0;
1073 
1074 	switch (nla_type(a)) {
1075 	case OVS_KEY_ATTR_PRIORITY:
1076 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1077 			       *get_mask(a, u32 *));
1078 		flow_key->phy.priority = skb->priority;
1079 		break;
1080 
1081 	case OVS_KEY_ATTR_SKB_MARK:
1082 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1083 		flow_key->phy.skb_mark = skb->mark;
1084 		break;
1085 
1086 	case OVS_KEY_ATTR_TUNNEL_INFO:
1087 		/* Masked data not supported for tunnel. */
1088 		err = -EINVAL;
1089 		break;
1090 
1091 	case OVS_KEY_ATTR_ETHERNET:
1092 		err = set_eth_addr(skb, flow_key, nla_data(a),
1093 				   get_mask(a, struct ovs_key_ethernet *));
1094 		break;
1095 
1096 	case OVS_KEY_ATTR_NSH:
1097 		err = set_nsh(skb, flow_key, a);
1098 		break;
1099 
1100 	case OVS_KEY_ATTR_IPV4:
1101 		err = set_ipv4(skb, flow_key, nla_data(a),
1102 			       get_mask(a, struct ovs_key_ipv4 *));
1103 		break;
1104 
1105 	case OVS_KEY_ATTR_IPV6:
1106 		err = set_ipv6(skb, flow_key, nla_data(a),
1107 			       get_mask(a, struct ovs_key_ipv6 *));
1108 		break;
1109 
1110 	case OVS_KEY_ATTR_TCP:
1111 		err = set_tcp(skb, flow_key, nla_data(a),
1112 			      get_mask(a, struct ovs_key_tcp *));
1113 		break;
1114 
1115 	case OVS_KEY_ATTR_UDP:
1116 		err = set_udp(skb, flow_key, nla_data(a),
1117 			      get_mask(a, struct ovs_key_udp *));
1118 		break;
1119 
1120 	case OVS_KEY_ATTR_SCTP:
1121 		err = set_sctp(skb, flow_key, nla_data(a),
1122 			       get_mask(a, struct ovs_key_sctp *));
1123 		break;
1124 
1125 	case OVS_KEY_ATTR_MPLS:
1126 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1127 								    __be32 *));
1128 		break;
1129 
1130 	case OVS_KEY_ATTR_CT_STATE:
1131 	case OVS_KEY_ATTR_CT_ZONE:
1132 	case OVS_KEY_ATTR_CT_MARK:
1133 	case OVS_KEY_ATTR_CT_LABELS:
1134 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1135 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1136 		err = -EINVAL;
1137 		break;
1138 	}
1139 
1140 	return err;
1141 }
1142 
1143 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1144 			  struct sw_flow_key *key,
1145 			  const struct nlattr *a, bool last)
1146 {
1147 	u32 recirc_id;
1148 
1149 	if (!is_flow_key_valid(key)) {
1150 		int err;
1151 
1152 		err = ovs_flow_key_update(skb, key);
1153 		if (err)
1154 			return err;
1155 	}
1156 	BUG_ON(!is_flow_key_valid(key));
1157 
1158 	recirc_id = nla_get_u32(a);
1159 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1160 }
1161 
1162 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1163 				 struct sw_flow_key *key,
1164 				 const struct nlattr *attr, bool last)
1165 {
1166 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1167 	const struct nlattr *actions, *cpl_arg;
1168 	int len, max_len, rem = nla_len(attr);
1169 	const struct check_pkt_len_arg *arg;
1170 	bool clone_flow_key;
1171 
1172 	/* The first netlink attribute in 'attr' is always
1173 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1174 	 */
1175 	cpl_arg = nla_data(attr);
1176 	arg = nla_data(cpl_arg);
1177 
1178 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1179 	max_len = arg->pkt_len;
1180 
1181 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1182 	    len <= max_len) {
1183 		/* Second netlink attribute in 'attr' is always
1184 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1185 		 */
1186 		actions = nla_next(cpl_arg, &rem);
1187 		clone_flow_key = !arg->exec_for_lesser_equal;
1188 	} else {
1189 		/* Third netlink attribute in 'attr' is always
1190 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1191 		 */
1192 		actions = nla_next(cpl_arg, &rem);
1193 		actions = nla_next(actions, &rem);
1194 		clone_flow_key = !arg->exec_for_greater;
1195 	}
1196 
1197 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1198 			     nla_len(actions), last, clone_flow_key);
1199 }
1200 
1201 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1202 {
1203 	int err;
1204 
1205 	if (skb->protocol == htons(ETH_P_IPV6)) {
1206 		struct ipv6hdr *nh;
1207 
1208 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1209 					  sizeof(*nh));
1210 		if (unlikely(err))
1211 			return err;
1212 
1213 		nh = ipv6_hdr(skb);
1214 
1215 		if (nh->hop_limit <= 1)
1216 			return -EHOSTUNREACH;
1217 
1218 		key->ip.ttl = --nh->hop_limit;
1219 	} else if (skb->protocol == htons(ETH_P_IP)) {
1220 		struct iphdr *nh;
1221 		u8 old_ttl;
1222 
1223 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1224 					  sizeof(*nh));
1225 		if (unlikely(err))
1226 			return err;
1227 
1228 		nh = ip_hdr(skb);
1229 		if (nh->ttl <= 1)
1230 			return -EHOSTUNREACH;
1231 
1232 		old_ttl = nh->ttl--;
1233 		csum_replace2(&nh->check, htons(old_ttl << 8),
1234 			      htons(nh->ttl << 8));
1235 		key->ip.ttl = nh->ttl;
1236 	}
1237 	return 0;
1238 }
1239 
1240 /* Execute a list of actions against 'skb'. */
1241 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1242 			      struct sw_flow_key *key,
1243 			      const struct nlattr *attr, int len)
1244 {
1245 	const struct nlattr *a;
1246 	int rem;
1247 
1248 	for (a = attr, rem = len; rem > 0;
1249 	     a = nla_next(a, &rem)) {
1250 		int err = 0;
1251 
1252 		if (trace_ovs_do_execute_action_enabled())
1253 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1254 
1255 		switch (nla_type(a)) {
1256 		case OVS_ACTION_ATTR_OUTPUT: {
1257 			int port = nla_get_u32(a);
1258 			struct sk_buff *clone;
1259 
1260 			/* Every output action needs a separate clone
1261 			 * of 'skb', In case the output action is the
1262 			 * last action, cloning can be avoided.
1263 			 */
1264 			if (nla_is_last(a, rem)) {
1265 				do_output(dp, skb, port, key);
1266 				/* 'skb' has been used for output.
1267 				 */
1268 				return 0;
1269 			}
1270 
1271 			clone = skb_clone(skb, GFP_ATOMIC);
1272 			if (clone)
1273 				do_output(dp, clone, port, key);
1274 			OVS_CB(skb)->cutlen = 0;
1275 			break;
1276 		}
1277 
1278 		case OVS_ACTION_ATTR_TRUNC: {
1279 			struct ovs_action_trunc *trunc = nla_data(a);
1280 
1281 			if (skb->len > trunc->max_len)
1282 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1283 			break;
1284 		}
1285 
1286 		case OVS_ACTION_ATTR_USERSPACE:
1287 			output_userspace(dp, skb, key, a, attr,
1288 						     len, OVS_CB(skb)->cutlen);
1289 			OVS_CB(skb)->cutlen = 0;
1290 			break;
1291 
1292 		case OVS_ACTION_ATTR_HASH:
1293 			execute_hash(skb, key, a);
1294 			break;
1295 
1296 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1297 			struct ovs_action_push_mpls *mpls = nla_data(a);
1298 
1299 			err = push_mpls(skb, key, mpls->mpls_lse,
1300 					mpls->mpls_ethertype, skb->mac_len);
1301 			break;
1302 		}
1303 		case OVS_ACTION_ATTR_ADD_MPLS: {
1304 			struct ovs_action_add_mpls *mpls = nla_data(a);
1305 			__u16 mac_len = 0;
1306 
1307 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1308 				mac_len = skb->mac_len;
1309 
1310 			err = push_mpls(skb, key, mpls->mpls_lse,
1311 					mpls->mpls_ethertype, mac_len);
1312 			break;
1313 		}
1314 		case OVS_ACTION_ATTR_POP_MPLS:
1315 			err = pop_mpls(skb, key, nla_get_be16(a));
1316 			break;
1317 
1318 		case OVS_ACTION_ATTR_PUSH_VLAN:
1319 			err = push_vlan(skb, key, nla_data(a));
1320 			break;
1321 
1322 		case OVS_ACTION_ATTR_POP_VLAN:
1323 			err = pop_vlan(skb, key);
1324 			break;
1325 
1326 		case OVS_ACTION_ATTR_RECIRC: {
1327 			bool last = nla_is_last(a, rem);
1328 
1329 			err = execute_recirc(dp, skb, key, a, last);
1330 			if (last) {
1331 				/* If this is the last action, the skb has
1332 				 * been consumed or freed.
1333 				 * Return immediately.
1334 				 */
1335 				return err;
1336 			}
1337 			break;
1338 		}
1339 
1340 		case OVS_ACTION_ATTR_SET:
1341 			err = execute_set_action(skb, key, nla_data(a));
1342 			break;
1343 
1344 		case OVS_ACTION_ATTR_SET_MASKED:
1345 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1346 			err = execute_masked_set_action(skb, key, nla_data(a));
1347 			break;
1348 
1349 		case OVS_ACTION_ATTR_SAMPLE: {
1350 			bool last = nla_is_last(a, rem);
1351 
1352 			err = sample(dp, skb, key, a, last);
1353 			if (last)
1354 				return err;
1355 
1356 			break;
1357 		}
1358 
1359 		case OVS_ACTION_ATTR_CT:
1360 			if (!is_flow_key_valid(key)) {
1361 				err = ovs_flow_key_update(skb, key);
1362 				if (err)
1363 					return err;
1364 			}
1365 
1366 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1367 					     nla_data(a));
1368 
1369 			/* Hide stolen IP fragments from user space. */
1370 			if (err)
1371 				return err == -EINPROGRESS ? 0 : err;
1372 			break;
1373 
1374 		case OVS_ACTION_ATTR_CT_CLEAR:
1375 			err = ovs_ct_clear(skb, key);
1376 			break;
1377 
1378 		case OVS_ACTION_ATTR_PUSH_ETH:
1379 			err = push_eth(skb, key, nla_data(a));
1380 			break;
1381 
1382 		case OVS_ACTION_ATTR_POP_ETH:
1383 			err = pop_eth(skb, key);
1384 			break;
1385 
1386 		case OVS_ACTION_ATTR_PUSH_NSH: {
1387 			u8 buffer[NSH_HDR_MAX_LEN];
1388 			struct nshhdr *nh = (struct nshhdr *)buffer;
1389 
1390 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1391 						  NSH_HDR_MAX_LEN);
1392 			if (unlikely(err))
1393 				break;
1394 			err = push_nsh(skb, key, nh);
1395 			break;
1396 		}
1397 
1398 		case OVS_ACTION_ATTR_POP_NSH:
1399 			err = pop_nsh(skb, key);
1400 			break;
1401 
1402 		case OVS_ACTION_ATTR_METER:
1403 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1404 				consume_skb(skb);
1405 				return 0;
1406 			}
1407 			break;
1408 
1409 		case OVS_ACTION_ATTR_CLONE: {
1410 			bool last = nla_is_last(a, rem);
1411 
1412 			err = clone(dp, skb, key, a, last);
1413 			if (last)
1414 				return err;
1415 
1416 			break;
1417 		}
1418 
1419 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1420 			bool last = nla_is_last(a, rem);
1421 
1422 			err = execute_check_pkt_len(dp, skb, key, a, last);
1423 			if (last)
1424 				return err;
1425 
1426 			break;
1427 		}
1428 
1429 		case OVS_ACTION_ATTR_DEC_TTL:
1430 			err = execute_dec_ttl(skb, key);
1431 			if (err == -EHOSTUNREACH)
1432 				return dec_ttl_exception_handler(dp, skb,
1433 								 key, a);
1434 			break;
1435 		}
1436 
1437 		if (unlikely(err)) {
1438 			kfree_skb(skb);
1439 			return err;
1440 		}
1441 	}
1442 
1443 	consume_skb(skb);
1444 	return 0;
1445 }
1446 
1447 /* Execute the actions on the clone of the packet. The effect of the
1448  * execution does not affect the original 'skb' nor the original 'key'.
1449  *
1450  * The execution may be deferred in case the actions can not be executed
1451  * immediately.
1452  */
1453 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1454 			 struct sw_flow_key *key, u32 recirc_id,
1455 			 const struct nlattr *actions, int len,
1456 			 bool last, bool clone_flow_key)
1457 {
1458 	struct deferred_action *da;
1459 	struct sw_flow_key *clone;
1460 
1461 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1462 	if (!skb) {
1463 		/* Out of memory, skip this action.
1464 		 */
1465 		return 0;
1466 	}
1467 
1468 	/* When clone_flow_key is false, the 'key' will not be change
1469 	 * by the actions, then the 'key' can be used directly.
1470 	 * Otherwise, try to clone key from the next recursion level of
1471 	 * 'flow_keys'. If clone is successful, execute the actions
1472 	 * without deferring.
1473 	 */
1474 	clone = clone_flow_key ? clone_key(key) : key;
1475 	if (clone) {
1476 		int err = 0;
1477 
1478 		if (actions) { /* Sample action */
1479 			if (clone_flow_key)
1480 				__this_cpu_inc(exec_actions_level);
1481 
1482 			err = do_execute_actions(dp, skb, clone,
1483 						 actions, len);
1484 
1485 			if (clone_flow_key)
1486 				__this_cpu_dec(exec_actions_level);
1487 		} else { /* Recirc action */
1488 			clone->recirc_id = recirc_id;
1489 			ovs_dp_process_packet(skb, clone);
1490 		}
1491 		return err;
1492 	}
1493 
1494 	/* Out of 'flow_keys' space. Defer actions */
1495 	da = add_deferred_actions(skb, key, actions, len);
1496 	if (da) {
1497 		if (!actions) { /* Recirc action */
1498 			key = &da->pkt_key;
1499 			key->recirc_id = recirc_id;
1500 		}
1501 	} else {
1502 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1503 		 * log an error.
1504 		 */
1505 		kfree_skb(skb);
1506 
1507 		if (net_ratelimit()) {
1508 			if (actions) { /* Sample action */
1509 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1510 					ovs_dp_name(dp));
1511 			} else {  /* Recirc action */
1512 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1513 					ovs_dp_name(dp));
1514 			}
1515 		}
1516 	}
1517 	return 0;
1518 }
1519 
1520 static void process_deferred_actions(struct datapath *dp)
1521 {
1522 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1523 
1524 	/* Do not touch the FIFO in case there is no deferred actions. */
1525 	if (action_fifo_is_empty(fifo))
1526 		return;
1527 
1528 	/* Finishing executing all deferred actions. */
1529 	do {
1530 		struct deferred_action *da = action_fifo_get(fifo);
1531 		struct sk_buff *skb = da->skb;
1532 		struct sw_flow_key *key = &da->pkt_key;
1533 		const struct nlattr *actions = da->actions;
1534 		int actions_len = da->actions_len;
1535 
1536 		if (actions)
1537 			do_execute_actions(dp, skb, key, actions, actions_len);
1538 		else
1539 			ovs_dp_process_packet(skb, key);
1540 	} while (!action_fifo_is_empty(fifo));
1541 
1542 	/* Reset FIFO for the next packet.  */
1543 	action_fifo_init(fifo);
1544 }
1545 
1546 /* Execute a list of actions against 'skb'. */
1547 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1548 			const struct sw_flow_actions *acts,
1549 			struct sw_flow_key *key)
1550 {
1551 	int err, level;
1552 
1553 	level = __this_cpu_inc_return(exec_actions_level);
1554 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1555 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1556 				     ovs_dp_name(dp));
1557 		kfree_skb(skb);
1558 		err = -ENETDOWN;
1559 		goto out;
1560 	}
1561 
1562 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1563 	err = do_execute_actions(dp, skb, key,
1564 				 acts->actions, acts->actions_len);
1565 
1566 	if (level == 1)
1567 		process_deferred_actions(dp);
1568 
1569 out:
1570 	__this_cpu_dec(exec_actions_level);
1571 	return err;
1572 }
1573 
1574 int action_fifos_init(void)
1575 {
1576 	action_fifos = alloc_percpu(struct action_fifo);
1577 	if (!action_fifos)
1578 		return -ENOMEM;
1579 
1580 	flow_keys = alloc_percpu(struct action_flow_keys);
1581 	if (!flow_keys) {
1582 		free_percpu(action_fifos);
1583 		return -ENOMEM;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 void action_fifos_exit(void)
1590 {
1591 	free_percpu(action_fifos);
1592 	free_percpu(flow_keys);
1593 }
1594