xref: /linux/net/openvswitch/actions.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/ip.h>
21 #include <net/ipv6.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
25 #include <net/mpls.h>
26 #include <net/sctp/checksum.h>
27 
28 #include "datapath.h"
29 #include "flow.h"
30 #include "conntrack.h"
31 #include "vport.h"
32 #include "flow_netlink.h"
33 
34 struct deferred_action {
35 	struct sk_buff *skb;
36 	const struct nlattr *actions;
37 	int actions_len;
38 
39 	/* Store pkt_key clone when creating deferred action. */
40 	struct sw_flow_key pkt_key;
41 };
42 
43 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
44 struct ovs_frag_data {
45 	unsigned long dst;
46 	struct vport *vport;
47 	struct ovs_skb_cb cb;
48 	__be16 inner_protocol;
49 	u16 network_offset;	/* valid only for MPLS */
50 	u16 vlan_tci;
51 	__be16 vlan_proto;
52 	unsigned int l2_len;
53 	u8 mac_proto;
54 	u8 l2_data[MAX_L2_LEN];
55 };
56 
57 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
58 
59 #define DEFERRED_ACTION_FIFO_SIZE 10
60 #define OVS_RECURSION_LIMIT 5
61 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
62 struct action_fifo {
63 	int head;
64 	int tail;
65 	/* Deferred action fifo queue storage. */
66 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
67 };
68 
69 struct action_flow_keys {
70 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
71 };
72 
73 static struct action_fifo __percpu *action_fifos;
74 static struct action_flow_keys __percpu *flow_keys;
75 static DEFINE_PER_CPU(int, exec_actions_level);
76 
77 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
78  * space. Return NULL if out of key spaces.
79  */
80 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
81 {
82 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
83 	int level = this_cpu_read(exec_actions_level);
84 	struct sw_flow_key *key = NULL;
85 
86 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
87 		key = &keys->key[level - 1];
88 		*key = *key_;
89 	}
90 
91 	return key;
92 }
93 
94 static void action_fifo_init(struct action_fifo *fifo)
95 {
96 	fifo->head = 0;
97 	fifo->tail = 0;
98 }
99 
100 static bool action_fifo_is_empty(const struct action_fifo *fifo)
101 {
102 	return (fifo->head == fifo->tail);
103 }
104 
105 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
106 {
107 	if (action_fifo_is_empty(fifo))
108 		return NULL;
109 
110 	return &fifo->fifo[fifo->tail++];
111 }
112 
113 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
114 {
115 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
116 		return NULL;
117 
118 	return &fifo->fifo[fifo->head++];
119 }
120 
121 /* Return true if fifo is not full */
122 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
123 				    const struct sw_flow_key *key,
124 				    const struct nlattr *actions,
125 				    const int actions_len)
126 {
127 	struct action_fifo *fifo;
128 	struct deferred_action *da;
129 
130 	fifo = this_cpu_ptr(action_fifos);
131 	da = action_fifo_put(fifo);
132 	if (da) {
133 		da->skb = skb;
134 		da->actions = actions;
135 		da->actions_len = actions_len;
136 		da->pkt_key = *key;
137 	}
138 
139 	return da;
140 }
141 
142 static void invalidate_flow_key(struct sw_flow_key *key)
143 {
144 	key->mac_proto |= SW_FLOW_KEY_INVALID;
145 }
146 
147 static bool is_flow_key_valid(const struct sw_flow_key *key)
148 {
149 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
150 }
151 
152 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
153 			 struct sw_flow_key *key,
154 			 u32 recirc_id,
155 			 const struct nlattr *actions, int len,
156 			 bool last, bool clone_flow_key);
157 
158 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
159 			      struct sw_flow_key *key,
160 			      const struct nlattr *attr, int len);
161 
162 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
163 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
164 {
165 	int err;
166 
167 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
168 	if (err)
169 		return err;
170 
171 	if (!mac_len)
172 		key->mac_proto = MAC_PROTO_NONE;
173 
174 	invalidate_flow_key(key);
175 	return 0;
176 }
177 
178 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
179 		    const __be16 ethertype)
180 {
181 	int err;
182 
183 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
184 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
185 	if (err)
186 		return err;
187 
188 	if (ethertype == htons(ETH_P_TEB))
189 		key->mac_proto = MAC_PROTO_ETHERNET;
190 
191 	invalidate_flow_key(key);
192 	return 0;
193 }
194 
195 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
196 		    const __be32 *mpls_lse, const __be32 *mask)
197 {
198 	struct mpls_shim_hdr *stack;
199 	__be32 lse;
200 	int err;
201 
202 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
203 		return -ENOMEM;
204 
205 	stack = mpls_hdr(skb);
206 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
207 	err = skb_mpls_update_lse(skb, lse);
208 	if (err)
209 		return err;
210 
211 	flow_key->mpls.lse[0] = lse;
212 	return 0;
213 }
214 
215 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
216 {
217 	int err;
218 
219 	err = skb_vlan_pop(skb);
220 	if (skb_vlan_tag_present(skb)) {
221 		invalidate_flow_key(key);
222 	} else {
223 		key->eth.vlan.tci = 0;
224 		key->eth.vlan.tpid = 0;
225 	}
226 	return err;
227 }
228 
229 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
230 		     const struct ovs_action_push_vlan *vlan)
231 {
232 	if (skb_vlan_tag_present(skb)) {
233 		invalidate_flow_key(key);
234 	} else {
235 		key->eth.vlan.tci = vlan->vlan_tci;
236 		key->eth.vlan.tpid = vlan->vlan_tpid;
237 	}
238 	return skb_vlan_push(skb, vlan->vlan_tpid,
239 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
240 }
241 
242 /* 'src' is already properly masked. */
243 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
244 {
245 	u16 *dst = (u16 *)dst_;
246 	const u16 *src = (const u16 *)src_;
247 	const u16 *mask = (const u16 *)mask_;
248 
249 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
250 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
251 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
252 }
253 
254 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
255 			const struct ovs_key_ethernet *key,
256 			const struct ovs_key_ethernet *mask)
257 {
258 	int err;
259 
260 	err = skb_ensure_writable(skb, ETH_HLEN);
261 	if (unlikely(err))
262 		return err;
263 
264 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
265 
266 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
267 			       mask->eth_src);
268 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
269 			       mask->eth_dst);
270 
271 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
272 
273 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
274 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
275 	return 0;
276 }
277 
278 /* pop_eth does not support VLAN packets as this action is never called
279  * for them.
280  */
281 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
282 {
283 	int err;
284 
285 	err = skb_eth_pop(skb);
286 	if (err)
287 		return err;
288 
289 	/* safe right before invalidate_flow_key */
290 	key->mac_proto = MAC_PROTO_NONE;
291 	invalidate_flow_key(key);
292 	return 0;
293 }
294 
295 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
296 		    const struct ovs_action_push_eth *ethh)
297 {
298 	int err;
299 
300 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
301 			   ethh->addresses.eth_src);
302 	if (err)
303 		return err;
304 
305 	/* safe right before invalidate_flow_key */
306 	key->mac_proto = MAC_PROTO_ETHERNET;
307 	invalidate_flow_key(key);
308 	return 0;
309 }
310 
311 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
312 		    const struct nshhdr *nh)
313 {
314 	int err;
315 
316 	err = nsh_push(skb, nh);
317 	if (err)
318 		return err;
319 
320 	/* safe right before invalidate_flow_key */
321 	key->mac_proto = MAC_PROTO_NONE;
322 	invalidate_flow_key(key);
323 	return 0;
324 }
325 
326 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
327 {
328 	int err;
329 
330 	err = nsh_pop(skb);
331 	if (err)
332 		return err;
333 
334 	/* safe right before invalidate_flow_key */
335 	if (skb->protocol == htons(ETH_P_TEB))
336 		key->mac_proto = MAC_PROTO_ETHERNET;
337 	else
338 		key->mac_proto = MAC_PROTO_NONE;
339 	invalidate_flow_key(key);
340 	return 0;
341 }
342 
343 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
344 				  __be32 addr, __be32 new_addr)
345 {
346 	int transport_len = skb->len - skb_transport_offset(skb);
347 
348 	if (nh->frag_off & htons(IP_OFFSET))
349 		return;
350 
351 	if (nh->protocol == IPPROTO_TCP) {
352 		if (likely(transport_len >= sizeof(struct tcphdr)))
353 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
354 						 addr, new_addr, true);
355 	} else if (nh->protocol == IPPROTO_UDP) {
356 		if (likely(transport_len >= sizeof(struct udphdr))) {
357 			struct udphdr *uh = udp_hdr(skb);
358 
359 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
360 				inet_proto_csum_replace4(&uh->check, skb,
361 							 addr, new_addr, true);
362 				if (!uh->check)
363 					uh->check = CSUM_MANGLED_0;
364 			}
365 		}
366 	}
367 }
368 
369 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
370 			__be32 *addr, __be32 new_addr)
371 {
372 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
373 	csum_replace4(&nh->check, *addr, new_addr);
374 	skb_clear_hash(skb);
375 	*addr = new_addr;
376 }
377 
378 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
379 				 __be32 addr[4], const __be32 new_addr[4])
380 {
381 	int transport_len = skb->len - skb_transport_offset(skb);
382 
383 	if (l4_proto == NEXTHDR_TCP) {
384 		if (likely(transport_len >= sizeof(struct tcphdr)))
385 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
386 						  addr, new_addr, true);
387 	} else if (l4_proto == NEXTHDR_UDP) {
388 		if (likely(transport_len >= sizeof(struct udphdr))) {
389 			struct udphdr *uh = udp_hdr(skb);
390 
391 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
392 				inet_proto_csum_replace16(&uh->check, skb,
393 							  addr, new_addr, true);
394 				if (!uh->check)
395 					uh->check = CSUM_MANGLED_0;
396 			}
397 		}
398 	} else if (l4_proto == NEXTHDR_ICMP) {
399 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
400 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
401 						  skb, addr, new_addr, true);
402 	}
403 }
404 
405 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
406 			   const __be32 mask[4], __be32 masked[4])
407 {
408 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
409 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
410 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
411 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
412 }
413 
414 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
415 			  __be32 addr[4], const __be32 new_addr[4],
416 			  bool recalculate_csum)
417 {
418 	if (recalculate_csum)
419 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
420 
421 	skb_clear_hash(skb);
422 	memcpy(addr, new_addr, sizeof(__be32[4]));
423 }
424 
425 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
426 {
427 	/* Bits 21-24 are always unmasked, so this retains their values. */
428 	OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
429 	OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
430 	OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
431 }
432 
433 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
434 		       u8 mask)
435 {
436 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
437 
438 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
439 	nh->ttl = new_ttl;
440 }
441 
442 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
443 		    const struct ovs_key_ipv4 *key,
444 		    const struct ovs_key_ipv4 *mask)
445 {
446 	struct iphdr *nh;
447 	__be32 new_addr;
448 	int err;
449 
450 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
451 				  sizeof(struct iphdr));
452 	if (unlikely(err))
453 		return err;
454 
455 	nh = ip_hdr(skb);
456 
457 	/* Setting an IP addresses is typically only a side effect of
458 	 * matching on them in the current userspace implementation, so it
459 	 * makes sense to check if the value actually changed.
460 	 */
461 	if (mask->ipv4_src) {
462 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
463 
464 		if (unlikely(new_addr != nh->saddr)) {
465 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
466 			flow_key->ipv4.addr.src = new_addr;
467 		}
468 	}
469 	if (mask->ipv4_dst) {
470 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
471 
472 		if (unlikely(new_addr != nh->daddr)) {
473 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
474 			flow_key->ipv4.addr.dst = new_addr;
475 		}
476 	}
477 	if (mask->ipv4_tos) {
478 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
479 		flow_key->ip.tos = nh->tos;
480 	}
481 	if (mask->ipv4_ttl) {
482 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
483 		flow_key->ip.ttl = nh->ttl;
484 	}
485 
486 	return 0;
487 }
488 
489 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
490 {
491 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
492 }
493 
494 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
495 		    const struct ovs_key_ipv6 *key,
496 		    const struct ovs_key_ipv6 *mask)
497 {
498 	struct ipv6hdr *nh;
499 	int err;
500 
501 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
502 				  sizeof(struct ipv6hdr));
503 	if (unlikely(err))
504 		return err;
505 
506 	nh = ipv6_hdr(skb);
507 
508 	/* Setting an IP addresses is typically only a side effect of
509 	 * matching on them in the current userspace implementation, so it
510 	 * makes sense to check if the value actually changed.
511 	 */
512 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
513 		__be32 *saddr = (__be32 *)&nh->saddr;
514 		__be32 masked[4];
515 
516 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
517 
518 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
519 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
520 				      true);
521 			memcpy(&flow_key->ipv6.addr.src, masked,
522 			       sizeof(flow_key->ipv6.addr.src));
523 		}
524 	}
525 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
526 		unsigned int offset = 0;
527 		int flags = IP6_FH_F_SKIP_RH;
528 		bool recalc_csum = true;
529 		__be32 *daddr = (__be32 *)&nh->daddr;
530 		__be32 masked[4];
531 
532 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
533 
534 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
535 			if (ipv6_ext_hdr(nh->nexthdr))
536 				recalc_csum = (ipv6_find_hdr(skb, &offset,
537 							     NEXTHDR_ROUTING,
538 							     NULL, &flags)
539 					       != NEXTHDR_ROUTING);
540 
541 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
542 				      recalc_csum);
543 			memcpy(&flow_key->ipv6.addr.dst, masked,
544 			       sizeof(flow_key->ipv6.addr.dst));
545 		}
546 	}
547 	if (mask->ipv6_tclass) {
548 		ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
549 		flow_key->ip.tos = ipv6_get_dsfield(nh);
550 	}
551 	if (mask->ipv6_label) {
552 		set_ipv6_fl(nh, ntohl(key->ipv6_label),
553 			    ntohl(mask->ipv6_label));
554 		flow_key->ipv6.label =
555 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
556 	}
557 	if (mask->ipv6_hlimit) {
558 		OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
559 			       mask->ipv6_hlimit);
560 		flow_key->ip.ttl = nh->hop_limit;
561 	}
562 	return 0;
563 }
564 
565 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
566 		   const struct nlattr *a)
567 {
568 	struct nshhdr *nh;
569 	size_t length;
570 	int err;
571 	u8 flags;
572 	u8 ttl;
573 	int i;
574 
575 	struct ovs_key_nsh key;
576 	struct ovs_key_nsh mask;
577 
578 	err = nsh_key_from_nlattr(a, &key, &mask);
579 	if (err)
580 		return err;
581 
582 	/* Make sure the NSH base header is there */
583 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
584 		return -ENOMEM;
585 
586 	nh = nsh_hdr(skb);
587 	length = nsh_hdr_len(nh);
588 
589 	/* Make sure the whole NSH header is there */
590 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
591 				       length);
592 	if (unlikely(err))
593 		return err;
594 
595 	nh = nsh_hdr(skb);
596 	skb_postpull_rcsum(skb, nh, length);
597 	flags = nsh_get_flags(nh);
598 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
599 	flow_key->nsh.base.flags = flags;
600 	ttl = nsh_get_ttl(nh);
601 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
602 	flow_key->nsh.base.ttl = ttl;
603 	nsh_set_flags_and_ttl(nh, flags, ttl);
604 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
605 				  mask.base.path_hdr);
606 	flow_key->nsh.base.path_hdr = nh->path_hdr;
607 	switch (nh->mdtype) {
608 	case NSH_M_TYPE1:
609 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
610 			nh->md1.context[i] =
611 			    OVS_MASKED(nh->md1.context[i], key.context[i],
612 				       mask.context[i]);
613 		}
614 		memcpy(flow_key->nsh.context, nh->md1.context,
615 		       sizeof(nh->md1.context));
616 		break;
617 	case NSH_M_TYPE2:
618 		memset(flow_key->nsh.context, 0,
619 		       sizeof(flow_key->nsh.context));
620 		break;
621 	default:
622 		return -EINVAL;
623 	}
624 	skb_postpush_rcsum(skb, nh, length);
625 	return 0;
626 }
627 
628 /* Must follow skb_ensure_writable() since that can move the skb data. */
629 static void set_tp_port(struct sk_buff *skb, __be16 *port,
630 			__be16 new_port, __sum16 *check)
631 {
632 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
633 	*port = new_port;
634 }
635 
636 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
637 		   const struct ovs_key_udp *key,
638 		   const struct ovs_key_udp *mask)
639 {
640 	struct udphdr *uh;
641 	__be16 src, dst;
642 	int err;
643 
644 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
645 				  sizeof(struct udphdr));
646 	if (unlikely(err))
647 		return err;
648 
649 	uh = udp_hdr(skb);
650 	/* Either of the masks is non-zero, so do not bother checking them. */
651 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
652 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
653 
654 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
655 		if (likely(src != uh->source)) {
656 			set_tp_port(skb, &uh->source, src, &uh->check);
657 			flow_key->tp.src = src;
658 		}
659 		if (likely(dst != uh->dest)) {
660 			set_tp_port(skb, &uh->dest, dst, &uh->check);
661 			flow_key->tp.dst = dst;
662 		}
663 
664 		if (unlikely(!uh->check))
665 			uh->check = CSUM_MANGLED_0;
666 	} else {
667 		uh->source = src;
668 		uh->dest = dst;
669 		flow_key->tp.src = src;
670 		flow_key->tp.dst = dst;
671 	}
672 
673 	skb_clear_hash(skb);
674 
675 	return 0;
676 }
677 
678 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
679 		   const struct ovs_key_tcp *key,
680 		   const struct ovs_key_tcp *mask)
681 {
682 	struct tcphdr *th;
683 	__be16 src, dst;
684 	int err;
685 
686 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
687 				  sizeof(struct tcphdr));
688 	if (unlikely(err))
689 		return err;
690 
691 	th = tcp_hdr(skb);
692 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
693 	if (likely(src != th->source)) {
694 		set_tp_port(skb, &th->source, src, &th->check);
695 		flow_key->tp.src = src;
696 	}
697 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
698 	if (likely(dst != th->dest)) {
699 		set_tp_port(skb, &th->dest, dst, &th->check);
700 		flow_key->tp.dst = dst;
701 	}
702 	skb_clear_hash(skb);
703 
704 	return 0;
705 }
706 
707 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
708 		    const struct ovs_key_sctp *key,
709 		    const struct ovs_key_sctp *mask)
710 {
711 	unsigned int sctphoff = skb_transport_offset(skb);
712 	struct sctphdr *sh;
713 	__le32 old_correct_csum, new_csum, old_csum;
714 	int err;
715 
716 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
717 	if (unlikely(err))
718 		return err;
719 
720 	sh = sctp_hdr(skb);
721 	old_csum = sh->checksum;
722 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
723 
724 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
725 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
726 
727 	new_csum = sctp_compute_cksum(skb, sctphoff);
728 
729 	/* Carry any checksum errors through. */
730 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
731 
732 	skb_clear_hash(skb);
733 	flow_key->tp.src = sh->source;
734 	flow_key->tp.dst = sh->dest;
735 
736 	return 0;
737 }
738 
739 static int ovs_vport_output(struct net *net, struct sock *sk,
740 			    struct sk_buff *skb)
741 {
742 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
743 	struct vport *vport = data->vport;
744 
745 	if (skb_cow_head(skb, data->l2_len) < 0) {
746 		kfree_skb(skb);
747 		return -ENOMEM;
748 	}
749 
750 	__skb_dst_copy(skb, data->dst);
751 	*OVS_CB(skb) = data->cb;
752 	skb->inner_protocol = data->inner_protocol;
753 	if (data->vlan_tci & VLAN_CFI_MASK)
754 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
755 	else
756 		__vlan_hwaccel_clear_tag(skb);
757 
758 	/* Reconstruct the MAC header.  */
759 	skb_push(skb, data->l2_len);
760 	memcpy(skb->data, &data->l2_data, data->l2_len);
761 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
762 	skb_reset_mac_header(skb);
763 
764 	if (eth_p_mpls(skb->protocol)) {
765 		skb->inner_network_header = skb->network_header;
766 		skb_set_network_header(skb, data->network_offset);
767 		skb_reset_mac_len(skb);
768 	}
769 
770 	ovs_vport_send(vport, skb, data->mac_proto);
771 	return 0;
772 }
773 
774 static unsigned int
775 ovs_dst_get_mtu(const struct dst_entry *dst)
776 {
777 	return dst->dev->mtu;
778 }
779 
780 static struct dst_ops ovs_dst_ops = {
781 	.family = AF_UNSPEC,
782 	.mtu = ovs_dst_get_mtu,
783 };
784 
785 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
786  * ovs_vport_output(), which is called once per fragmented packet.
787  */
788 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
789 			 u16 orig_network_offset, u8 mac_proto)
790 {
791 	unsigned int hlen = skb_network_offset(skb);
792 	struct ovs_frag_data *data;
793 
794 	data = this_cpu_ptr(&ovs_frag_data_storage);
795 	data->dst = skb->_skb_refdst;
796 	data->vport = vport;
797 	data->cb = *OVS_CB(skb);
798 	data->inner_protocol = skb->inner_protocol;
799 	data->network_offset = orig_network_offset;
800 	if (skb_vlan_tag_present(skb))
801 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
802 	else
803 		data->vlan_tci = 0;
804 	data->vlan_proto = skb->vlan_proto;
805 	data->mac_proto = mac_proto;
806 	data->l2_len = hlen;
807 	memcpy(&data->l2_data, skb->data, hlen);
808 
809 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
810 	skb_pull(skb, hlen);
811 }
812 
813 static void ovs_fragment(struct net *net, struct vport *vport,
814 			 struct sk_buff *skb, u16 mru,
815 			 struct sw_flow_key *key)
816 {
817 	u16 orig_network_offset = 0;
818 
819 	if (eth_p_mpls(skb->protocol)) {
820 		orig_network_offset = skb_network_offset(skb);
821 		skb->network_header = skb->inner_network_header;
822 	}
823 
824 	if (skb_network_offset(skb) > MAX_L2_LEN) {
825 		OVS_NLERR(1, "L2 header too long to fragment");
826 		goto err;
827 	}
828 
829 	if (key->eth.type == htons(ETH_P_IP)) {
830 		struct rtable ovs_rt = { 0 };
831 		unsigned long orig_dst;
832 
833 		prepare_frag(vport, skb, orig_network_offset,
834 			     ovs_key_mac_proto(key));
835 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
836 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
837 		ovs_rt.dst.dev = vport->dev;
838 
839 		orig_dst = skb->_skb_refdst;
840 		skb_dst_set_noref(skb, &ovs_rt.dst);
841 		IPCB(skb)->frag_max_size = mru;
842 
843 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
844 		refdst_drop(orig_dst);
845 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
846 		unsigned long orig_dst;
847 		struct rt6_info ovs_rt;
848 
849 		prepare_frag(vport, skb, orig_network_offset,
850 			     ovs_key_mac_proto(key));
851 		memset(&ovs_rt, 0, sizeof(ovs_rt));
852 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
853 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
854 		ovs_rt.dst.dev = vport->dev;
855 
856 		orig_dst = skb->_skb_refdst;
857 		skb_dst_set_noref(skb, &ovs_rt.dst);
858 		IP6CB(skb)->frag_max_size = mru;
859 
860 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
861 		refdst_drop(orig_dst);
862 	} else {
863 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
864 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
865 			  vport->dev->mtu);
866 		goto err;
867 	}
868 
869 	return;
870 err:
871 	kfree_skb(skb);
872 }
873 
874 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
875 		      struct sw_flow_key *key)
876 {
877 	struct vport *vport = ovs_vport_rcu(dp, out_port);
878 
879 	if (likely(vport)) {
880 		u16 mru = OVS_CB(skb)->mru;
881 		u32 cutlen = OVS_CB(skb)->cutlen;
882 
883 		if (unlikely(cutlen > 0)) {
884 			if (skb->len - cutlen > ovs_mac_header_len(key))
885 				pskb_trim(skb, skb->len - cutlen);
886 			else
887 				pskb_trim(skb, ovs_mac_header_len(key));
888 		}
889 
890 		if (likely(!mru ||
891 		           (skb->len <= mru + vport->dev->hard_header_len))) {
892 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
893 		} else if (mru <= vport->dev->mtu) {
894 			struct net *net = read_pnet(&dp->net);
895 
896 			ovs_fragment(net, vport, skb, mru, key);
897 		} else {
898 			kfree_skb(skb);
899 		}
900 	} else {
901 		kfree_skb(skb);
902 	}
903 }
904 
905 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
906 			    struct sw_flow_key *key, const struct nlattr *attr,
907 			    const struct nlattr *actions, int actions_len,
908 			    uint32_t cutlen)
909 {
910 	struct dp_upcall_info upcall;
911 	const struct nlattr *a;
912 	int rem;
913 
914 	memset(&upcall, 0, sizeof(upcall));
915 	upcall.cmd = OVS_PACKET_CMD_ACTION;
916 	upcall.mru = OVS_CB(skb)->mru;
917 
918 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
919 	     a = nla_next(a, &rem)) {
920 		switch (nla_type(a)) {
921 		case OVS_USERSPACE_ATTR_USERDATA:
922 			upcall.userdata = a;
923 			break;
924 
925 		case OVS_USERSPACE_ATTR_PID:
926 			upcall.portid = nla_get_u32(a);
927 			break;
928 
929 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
930 			/* Get out tunnel info. */
931 			struct vport *vport;
932 
933 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
934 			if (vport) {
935 				int err;
936 
937 				err = dev_fill_metadata_dst(vport->dev, skb);
938 				if (!err)
939 					upcall.egress_tun_info = skb_tunnel_info(skb);
940 			}
941 
942 			break;
943 		}
944 
945 		case OVS_USERSPACE_ATTR_ACTIONS: {
946 			/* Include actions. */
947 			upcall.actions = actions;
948 			upcall.actions_len = actions_len;
949 			break;
950 		}
951 
952 		} /* End of switch. */
953 	}
954 
955 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
956 }
957 
958 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
959 				     struct sw_flow_key *key,
960 				     const struct nlattr *attr)
961 {
962 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
963 	struct nlattr *actions = nla_data(attr);
964 
965 	if (nla_len(actions))
966 		return clone_execute(dp, skb, key, 0, nla_data(actions),
967 				     nla_len(actions), true, false);
968 
969 	consume_skb(skb);
970 	return 0;
971 }
972 
973 /* When 'last' is true, sample() should always consume the 'skb'.
974  * Otherwise, sample() should keep 'skb' intact regardless what
975  * actions are executed within sample().
976  */
977 static int sample(struct datapath *dp, struct sk_buff *skb,
978 		  struct sw_flow_key *key, const struct nlattr *attr,
979 		  bool last)
980 {
981 	struct nlattr *actions;
982 	struct nlattr *sample_arg;
983 	int rem = nla_len(attr);
984 	const struct sample_arg *arg;
985 	bool clone_flow_key;
986 
987 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
988 	sample_arg = nla_data(attr);
989 	arg = nla_data(sample_arg);
990 	actions = nla_next(sample_arg, &rem);
991 
992 	if ((arg->probability != U32_MAX) &&
993 	    (!arg->probability || prandom_u32() > arg->probability)) {
994 		if (last)
995 			consume_skb(skb);
996 		return 0;
997 	}
998 
999 	clone_flow_key = !arg->exec;
1000 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1001 			     clone_flow_key);
1002 }
1003 
1004 /* When 'last' is true, clone() should always consume the 'skb'.
1005  * Otherwise, clone() should keep 'skb' intact regardless what
1006  * actions are executed within clone().
1007  */
1008 static int clone(struct datapath *dp, struct sk_buff *skb,
1009 		 struct sw_flow_key *key, const struct nlattr *attr,
1010 		 bool last)
1011 {
1012 	struct nlattr *actions;
1013 	struct nlattr *clone_arg;
1014 	int rem = nla_len(attr);
1015 	bool dont_clone_flow_key;
1016 
1017 	/* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1018 	clone_arg = nla_data(attr);
1019 	dont_clone_flow_key = nla_get_u32(clone_arg);
1020 	actions = nla_next(clone_arg, &rem);
1021 
1022 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1023 			     !dont_clone_flow_key);
1024 }
1025 
1026 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1027 			 const struct nlattr *attr)
1028 {
1029 	struct ovs_action_hash *hash_act = nla_data(attr);
1030 	u32 hash = 0;
1031 
1032 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1033 	hash = skb_get_hash(skb);
1034 	hash = jhash_1word(hash, hash_act->hash_basis);
1035 	if (!hash)
1036 		hash = 0x1;
1037 
1038 	key->ovs_flow_hash = hash;
1039 }
1040 
1041 static int execute_set_action(struct sk_buff *skb,
1042 			      struct sw_flow_key *flow_key,
1043 			      const struct nlattr *a)
1044 {
1045 	/* Only tunnel set execution is supported without a mask. */
1046 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1047 		struct ovs_tunnel_info *tun = nla_data(a);
1048 
1049 		skb_dst_drop(skb);
1050 		dst_hold((struct dst_entry *)tun->tun_dst);
1051 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1052 		return 0;
1053 	}
1054 
1055 	return -EINVAL;
1056 }
1057 
1058 /* Mask is at the midpoint of the data. */
1059 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1060 
1061 static int execute_masked_set_action(struct sk_buff *skb,
1062 				     struct sw_flow_key *flow_key,
1063 				     const struct nlattr *a)
1064 {
1065 	int err = 0;
1066 
1067 	switch (nla_type(a)) {
1068 	case OVS_KEY_ATTR_PRIORITY:
1069 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1070 			       *get_mask(a, u32 *));
1071 		flow_key->phy.priority = skb->priority;
1072 		break;
1073 
1074 	case OVS_KEY_ATTR_SKB_MARK:
1075 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1076 		flow_key->phy.skb_mark = skb->mark;
1077 		break;
1078 
1079 	case OVS_KEY_ATTR_TUNNEL_INFO:
1080 		/* Masked data not supported for tunnel. */
1081 		err = -EINVAL;
1082 		break;
1083 
1084 	case OVS_KEY_ATTR_ETHERNET:
1085 		err = set_eth_addr(skb, flow_key, nla_data(a),
1086 				   get_mask(a, struct ovs_key_ethernet *));
1087 		break;
1088 
1089 	case OVS_KEY_ATTR_NSH:
1090 		err = set_nsh(skb, flow_key, a);
1091 		break;
1092 
1093 	case OVS_KEY_ATTR_IPV4:
1094 		err = set_ipv4(skb, flow_key, nla_data(a),
1095 			       get_mask(a, struct ovs_key_ipv4 *));
1096 		break;
1097 
1098 	case OVS_KEY_ATTR_IPV6:
1099 		err = set_ipv6(skb, flow_key, nla_data(a),
1100 			       get_mask(a, struct ovs_key_ipv6 *));
1101 		break;
1102 
1103 	case OVS_KEY_ATTR_TCP:
1104 		err = set_tcp(skb, flow_key, nla_data(a),
1105 			      get_mask(a, struct ovs_key_tcp *));
1106 		break;
1107 
1108 	case OVS_KEY_ATTR_UDP:
1109 		err = set_udp(skb, flow_key, nla_data(a),
1110 			      get_mask(a, struct ovs_key_udp *));
1111 		break;
1112 
1113 	case OVS_KEY_ATTR_SCTP:
1114 		err = set_sctp(skb, flow_key, nla_data(a),
1115 			       get_mask(a, struct ovs_key_sctp *));
1116 		break;
1117 
1118 	case OVS_KEY_ATTR_MPLS:
1119 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1120 								    __be32 *));
1121 		break;
1122 
1123 	case OVS_KEY_ATTR_CT_STATE:
1124 	case OVS_KEY_ATTR_CT_ZONE:
1125 	case OVS_KEY_ATTR_CT_MARK:
1126 	case OVS_KEY_ATTR_CT_LABELS:
1127 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1128 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1129 		err = -EINVAL;
1130 		break;
1131 	}
1132 
1133 	return err;
1134 }
1135 
1136 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1137 			  struct sw_flow_key *key,
1138 			  const struct nlattr *a, bool last)
1139 {
1140 	u32 recirc_id;
1141 
1142 	if (!is_flow_key_valid(key)) {
1143 		int err;
1144 
1145 		err = ovs_flow_key_update(skb, key);
1146 		if (err)
1147 			return err;
1148 	}
1149 	BUG_ON(!is_flow_key_valid(key));
1150 
1151 	recirc_id = nla_get_u32(a);
1152 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1153 }
1154 
1155 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1156 				 struct sw_flow_key *key,
1157 				 const struct nlattr *attr, bool last)
1158 {
1159 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1160 	const struct nlattr *actions, *cpl_arg;
1161 	int len, max_len, rem = nla_len(attr);
1162 	const struct check_pkt_len_arg *arg;
1163 	bool clone_flow_key;
1164 
1165 	/* The first netlink attribute in 'attr' is always
1166 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1167 	 */
1168 	cpl_arg = nla_data(attr);
1169 	arg = nla_data(cpl_arg);
1170 
1171 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1172 	max_len = arg->pkt_len;
1173 
1174 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1175 	    len <= max_len) {
1176 		/* Second netlink attribute in 'attr' is always
1177 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1178 		 */
1179 		actions = nla_next(cpl_arg, &rem);
1180 		clone_flow_key = !arg->exec_for_lesser_equal;
1181 	} else {
1182 		/* Third netlink attribute in 'attr' is always
1183 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1184 		 */
1185 		actions = nla_next(cpl_arg, &rem);
1186 		actions = nla_next(actions, &rem);
1187 		clone_flow_key = !arg->exec_for_greater;
1188 	}
1189 
1190 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1191 			     nla_len(actions), last, clone_flow_key);
1192 }
1193 
1194 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1195 {
1196 	int err;
1197 
1198 	if (skb->protocol == htons(ETH_P_IPV6)) {
1199 		struct ipv6hdr *nh;
1200 
1201 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1202 					  sizeof(*nh));
1203 		if (unlikely(err))
1204 			return err;
1205 
1206 		nh = ipv6_hdr(skb);
1207 
1208 		if (nh->hop_limit <= 1)
1209 			return -EHOSTUNREACH;
1210 
1211 		key->ip.ttl = --nh->hop_limit;
1212 	} else if (skb->protocol == htons(ETH_P_IP)) {
1213 		struct iphdr *nh;
1214 		u8 old_ttl;
1215 
1216 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1217 					  sizeof(*nh));
1218 		if (unlikely(err))
1219 			return err;
1220 
1221 		nh = ip_hdr(skb);
1222 		if (nh->ttl <= 1)
1223 			return -EHOSTUNREACH;
1224 
1225 		old_ttl = nh->ttl--;
1226 		csum_replace2(&nh->check, htons(old_ttl << 8),
1227 			      htons(nh->ttl << 8));
1228 		key->ip.ttl = nh->ttl;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /* Execute a list of actions against 'skb'. */
1234 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1235 			      struct sw_flow_key *key,
1236 			      const struct nlattr *attr, int len)
1237 {
1238 	const struct nlattr *a;
1239 	int rem;
1240 
1241 	for (a = attr, rem = len; rem > 0;
1242 	     a = nla_next(a, &rem)) {
1243 		int err = 0;
1244 
1245 		switch (nla_type(a)) {
1246 		case OVS_ACTION_ATTR_OUTPUT: {
1247 			int port = nla_get_u32(a);
1248 			struct sk_buff *clone;
1249 
1250 			/* Every output action needs a separate clone
1251 			 * of 'skb', In case the output action is the
1252 			 * last action, cloning can be avoided.
1253 			 */
1254 			if (nla_is_last(a, rem)) {
1255 				do_output(dp, skb, port, key);
1256 				/* 'skb' has been used for output.
1257 				 */
1258 				return 0;
1259 			}
1260 
1261 			clone = skb_clone(skb, GFP_ATOMIC);
1262 			if (clone)
1263 				do_output(dp, clone, port, key);
1264 			OVS_CB(skb)->cutlen = 0;
1265 			break;
1266 		}
1267 
1268 		case OVS_ACTION_ATTR_TRUNC: {
1269 			struct ovs_action_trunc *trunc = nla_data(a);
1270 
1271 			if (skb->len > trunc->max_len)
1272 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1273 			break;
1274 		}
1275 
1276 		case OVS_ACTION_ATTR_USERSPACE:
1277 			output_userspace(dp, skb, key, a, attr,
1278 						     len, OVS_CB(skb)->cutlen);
1279 			OVS_CB(skb)->cutlen = 0;
1280 			break;
1281 
1282 		case OVS_ACTION_ATTR_HASH:
1283 			execute_hash(skb, key, a);
1284 			break;
1285 
1286 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1287 			struct ovs_action_push_mpls *mpls = nla_data(a);
1288 
1289 			err = push_mpls(skb, key, mpls->mpls_lse,
1290 					mpls->mpls_ethertype, skb->mac_len);
1291 			break;
1292 		}
1293 		case OVS_ACTION_ATTR_ADD_MPLS: {
1294 			struct ovs_action_add_mpls *mpls = nla_data(a);
1295 			__u16 mac_len = 0;
1296 
1297 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1298 				mac_len = skb->mac_len;
1299 
1300 			err = push_mpls(skb, key, mpls->mpls_lse,
1301 					mpls->mpls_ethertype, mac_len);
1302 			break;
1303 		}
1304 		case OVS_ACTION_ATTR_POP_MPLS:
1305 			err = pop_mpls(skb, key, nla_get_be16(a));
1306 			break;
1307 
1308 		case OVS_ACTION_ATTR_PUSH_VLAN:
1309 			err = push_vlan(skb, key, nla_data(a));
1310 			break;
1311 
1312 		case OVS_ACTION_ATTR_POP_VLAN:
1313 			err = pop_vlan(skb, key);
1314 			break;
1315 
1316 		case OVS_ACTION_ATTR_RECIRC: {
1317 			bool last = nla_is_last(a, rem);
1318 
1319 			err = execute_recirc(dp, skb, key, a, last);
1320 			if (last) {
1321 				/* If this is the last action, the skb has
1322 				 * been consumed or freed.
1323 				 * Return immediately.
1324 				 */
1325 				return err;
1326 			}
1327 			break;
1328 		}
1329 
1330 		case OVS_ACTION_ATTR_SET:
1331 			err = execute_set_action(skb, key, nla_data(a));
1332 			break;
1333 
1334 		case OVS_ACTION_ATTR_SET_MASKED:
1335 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1336 			err = execute_masked_set_action(skb, key, nla_data(a));
1337 			break;
1338 
1339 		case OVS_ACTION_ATTR_SAMPLE: {
1340 			bool last = nla_is_last(a, rem);
1341 
1342 			err = sample(dp, skb, key, a, last);
1343 			if (last)
1344 				return err;
1345 
1346 			break;
1347 		}
1348 
1349 		case OVS_ACTION_ATTR_CT:
1350 			if (!is_flow_key_valid(key)) {
1351 				err = ovs_flow_key_update(skb, key);
1352 				if (err)
1353 					return err;
1354 			}
1355 
1356 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1357 					     nla_data(a));
1358 
1359 			/* Hide stolen IP fragments from user space. */
1360 			if (err)
1361 				return err == -EINPROGRESS ? 0 : err;
1362 			break;
1363 
1364 		case OVS_ACTION_ATTR_CT_CLEAR:
1365 			err = ovs_ct_clear(skb, key);
1366 			break;
1367 
1368 		case OVS_ACTION_ATTR_PUSH_ETH:
1369 			err = push_eth(skb, key, nla_data(a));
1370 			break;
1371 
1372 		case OVS_ACTION_ATTR_POP_ETH:
1373 			err = pop_eth(skb, key);
1374 			break;
1375 
1376 		case OVS_ACTION_ATTR_PUSH_NSH: {
1377 			u8 buffer[NSH_HDR_MAX_LEN];
1378 			struct nshhdr *nh = (struct nshhdr *)buffer;
1379 
1380 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1381 						  NSH_HDR_MAX_LEN);
1382 			if (unlikely(err))
1383 				break;
1384 			err = push_nsh(skb, key, nh);
1385 			break;
1386 		}
1387 
1388 		case OVS_ACTION_ATTR_POP_NSH:
1389 			err = pop_nsh(skb, key);
1390 			break;
1391 
1392 		case OVS_ACTION_ATTR_METER:
1393 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1394 				consume_skb(skb);
1395 				return 0;
1396 			}
1397 			break;
1398 
1399 		case OVS_ACTION_ATTR_CLONE: {
1400 			bool last = nla_is_last(a, rem);
1401 
1402 			err = clone(dp, skb, key, a, last);
1403 			if (last)
1404 				return err;
1405 
1406 			break;
1407 		}
1408 
1409 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1410 			bool last = nla_is_last(a, rem);
1411 
1412 			err = execute_check_pkt_len(dp, skb, key, a, last);
1413 			if (last)
1414 				return err;
1415 
1416 			break;
1417 		}
1418 
1419 		case OVS_ACTION_ATTR_DEC_TTL:
1420 			err = execute_dec_ttl(skb, key);
1421 			if (err == -EHOSTUNREACH)
1422 				return dec_ttl_exception_handler(dp, skb,
1423 								 key, a);
1424 			break;
1425 		}
1426 
1427 		if (unlikely(err)) {
1428 			kfree_skb(skb);
1429 			return err;
1430 		}
1431 	}
1432 
1433 	consume_skb(skb);
1434 	return 0;
1435 }
1436 
1437 /* Execute the actions on the clone of the packet. The effect of the
1438  * execution does not affect the original 'skb' nor the original 'key'.
1439  *
1440  * The execution may be deferred in case the actions can not be executed
1441  * immediately.
1442  */
1443 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1444 			 struct sw_flow_key *key, u32 recirc_id,
1445 			 const struct nlattr *actions, int len,
1446 			 bool last, bool clone_flow_key)
1447 {
1448 	struct deferred_action *da;
1449 	struct sw_flow_key *clone;
1450 
1451 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1452 	if (!skb) {
1453 		/* Out of memory, skip this action.
1454 		 */
1455 		return 0;
1456 	}
1457 
1458 	/* When clone_flow_key is false, the 'key' will not be change
1459 	 * by the actions, then the 'key' can be used directly.
1460 	 * Otherwise, try to clone key from the next recursion level of
1461 	 * 'flow_keys'. If clone is successful, execute the actions
1462 	 * without deferring.
1463 	 */
1464 	clone = clone_flow_key ? clone_key(key) : key;
1465 	if (clone) {
1466 		int err = 0;
1467 
1468 		if (actions) { /* Sample action */
1469 			if (clone_flow_key)
1470 				__this_cpu_inc(exec_actions_level);
1471 
1472 			err = do_execute_actions(dp, skb, clone,
1473 						 actions, len);
1474 
1475 			if (clone_flow_key)
1476 				__this_cpu_dec(exec_actions_level);
1477 		} else { /* Recirc action */
1478 			clone->recirc_id = recirc_id;
1479 			ovs_dp_process_packet(skb, clone);
1480 		}
1481 		return err;
1482 	}
1483 
1484 	/* Out of 'flow_keys' space. Defer actions */
1485 	da = add_deferred_actions(skb, key, actions, len);
1486 	if (da) {
1487 		if (!actions) { /* Recirc action */
1488 			key = &da->pkt_key;
1489 			key->recirc_id = recirc_id;
1490 		}
1491 	} else {
1492 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1493 		 * log an error.
1494 		 */
1495 		kfree_skb(skb);
1496 
1497 		if (net_ratelimit()) {
1498 			if (actions) { /* Sample action */
1499 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1500 					ovs_dp_name(dp));
1501 			} else {  /* Recirc action */
1502 				pr_warn("%s: deferred action limit reached, drop recirc action\n",
1503 					ovs_dp_name(dp));
1504 			}
1505 		}
1506 	}
1507 	return 0;
1508 }
1509 
1510 static void process_deferred_actions(struct datapath *dp)
1511 {
1512 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1513 
1514 	/* Do not touch the FIFO in case there is no deferred actions. */
1515 	if (action_fifo_is_empty(fifo))
1516 		return;
1517 
1518 	/* Finishing executing all deferred actions. */
1519 	do {
1520 		struct deferred_action *da = action_fifo_get(fifo);
1521 		struct sk_buff *skb = da->skb;
1522 		struct sw_flow_key *key = &da->pkt_key;
1523 		const struct nlattr *actions = da->actions;
1524 		int actions_len = da->actions_len;
1525 
1526 		if (actions)
1527 			do_execute_actions(dp, skb, key, actions, actions_len);
1528 		else
1529 			ovs_dp_process_packet(skb, key);
1530 	} while (!action_fifo_is_empty(fifo));
1531 
1532 	/* Reset FIFO for the next packet.  */
1533 	action_fifo_init(fifo);
1534 }
1535 
1536 /* Execute a list of actions against 'skb'. */
1537 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1538 			const struct sw_flow_actions *acts,
1539 			struct sw_flow_key *key)
1540 {
1541 	int err, level;
1542 
1543 	level = __this_cpu_inc_return(exec_actions_level);
1544 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1545 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1546 				     ovs_dp_name(dp));
1547 		kfree_skb(skb);
1548 		err = -ENETDOWN;
1549 		goto out;
1550 	}
1551 
1552 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1553 	err = do_execute_actions(dp, skb, key,
1554 				 acts->actions, acts->actions_len);
1555 
1556 	if (level == 1)
1557 		process_deferred_actions(dp);
1558 
1559 out:
1560 	__this_cpu_dec(exec_actions_level);
1561 	return err;
1562 }
1563 
1564 int action_fifos_init(void)
1565 {
1566 	action_fifos = alloc_percpu(struct action_fifo);
1567 	if (!action_fifos)
1568 		return -ENOMEM;
1569 
1570 	flow_keys = alloc_percpu(struct action_flow_keys);
1571 	if (!flow_keys) {
1572 		free_percpu(action_fifos);
1573 		return -ENOMEM;
1574 	}
1575 
1576 	return 0;
1577 }
1578 
1579 void action_fifos_exit(void)
1580 {
1581 	free_percpu(action_fifos);
1582 	free_percpu(flow_keys);
1583 }
1584