xref: /linux/net/openvswitch/actions.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28 
29 #include "datapath.h"
30 #include "drop.h"
31 #include "flow.h"
32 #include "conntrack.h"
33 #include "vport.h"
34 #include "flow_netlink.h"
35 #include "openvswitch_trace.h"
36 
37 struct deferred_action {
38 	struct sk_buff *skb;
39 	const struct nlattr *actions;
40 	int actions_len;
41 
42 	/* Store pkt_key clone when creating deferred action. */
43 	struct sw_flow_key pkt_key;
44 };
45 
46 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47 struct ovs_frag_data {
48 	unsigned long dst;
49 	struct vport *vport;
50 	struct ovs_skb_cb cb;
51 	__be16 inner_protocol;
52 	u16 network_offset;	/* valid only for MPLS */
53 	u16 vlan_tci;
54 	__be16 vlan_proto;
55 	unsigned int l2_len;
56 	u8 mac_proto;
57 	u8 l2_data[MAX_L2_LEN];
58 };
59 
60 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61 
62 #define DEFERRED_ACTION_FIFO_SIZE 10
63 #define OVS_RECURSION_LIMIT 5
64 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65 struct action_fifo {
66 	int head;
67 	int tail;
68 	/* Deferred action fifo queue storage. */
69 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70 };
71 
72 struct action_flow_keys {
73 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74 };
75 
76 static struct action_fifo __percpu *action_fifos;
77 static struct action_flow_keys __percpu *flow_keys;
78 static DEFINE_PER_CPU(int, exec_actions_level);
79 
80 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81  * space. Return NULL if out of key spaces.
82  */
83 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84 {
85 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86 	int level = this_cpu_read(exec_actions_level);
87 	struct sw_flow_key *key = NULL;
88 
89 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90 		key = &keys->key[level - 1];
91 		*key = *key_;
92 	}
93 
94 	return key;
95 }
96 
97 static void action_fifo_init(struct action_fifo *fifo)
98 {
99 	fifo->head = 0;
100 	fifo->tail = 0;
101 }
102 
103 static bool action_fifo_is_empty(const struct action_fifo *fifo)
104 {
105 	return (fifo->head == fifo->tail);
106 }
107 
108 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109 {
110 	if (action_fifo_is_empty(fifo))
111 		return NULL;
112 
113 	return &fifo->fifo[fifo->tail++];
114 }
115 
116 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117 {
118 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119 		return NULL;
120 
121 	return &fifo->fifo[fifo->head++];
122 }
123 
124 /* Return true if fifo is not full */
125 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126 				    const struct sw_flow_key *key,
127 				    const struct nlattr *actions,
128 				    const int actions_len)
129 {
130 	struct action_fifo *fifo;
131 	struct deferred_action *da;
132 
133 	fifo = this_cpu_ptr(action_fifos);
134 	da = action_fifo_put(fifo);
135 	if (da) {
136 		da->skb = skb;
137 		da->actions = actions;
138 		da->actions_len = actions_len;
139 		da->pkt_key = *key;
140 	}
141 
142 	return da;
143 }
144 
145 static void invalidate_flow_key(struct sw_flow_key *key)
146 {
147 	key->mac_proto |= SW_FLOW_KEY_INVALID;
148 }
149 
150 static bool is_flow_key_valid(const struct sw_flow_key *key)
151 {
152 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153 }
154 
155 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156 			 struct sw_flow_key *key,
157 			 u32 recirc_id,
158 			 const struct nlattr *actions, int len,
159 			 bool last, bool clone_flow_key);
160 
161 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162 			      struct sw_flow_key *key,
163 			      const struct nlattr *attr, int len);
164 
165 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167 {
168 	int err;
169 
170 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171 	if (err)
172 		return err;
173 
174 	if (!mac_len)
175 		key->mac_proto = MAC_PROTO_NONE;
176 
177 	invalidate_flow_key(key);
178 	return 0;
179 }
180 
181 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182 		    const __be16 ethertype)
183 {
184 	int err;
185 
186 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188 	if (err)
189 		return err;
190 
191 	if (ethertype == htons(ETH_P_TEB))
192 		key->mac_proto = MAC_PROTO_ETHERNET;
193 
194 	invalidate_flow_key(key);
195 	return 0;
196 }
197 
198 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199 		    const __be32 *mpls_lse, const __be32 *mask)
200 {
201 	struct mpls_shim_hdr *stack;
202 	__be32 lse;
203 	int err;
204 
205 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206 		return -ENOMEM;
207 
208 	stack = mpls_hdr(skb);
209 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210 	err = skb_mpls_update_lse(skb, lse);
211 	if (err)
212 		return err;
213 
214 	flow_key->mpls.lse[0] = lse;
215 	return 0;
216 }
217 
218 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219 {
220 	int err;
221 
222 	err = skb_vlan_pop(skb);
223 	if (skb_vlan_tag_present(skb)) {
224 		invalidate_flow_key(key);
225 	} else {
226 		key->eth.vlan.tci = 0;
227 		key->eth.vlan.tpid = 0;
228 	}
229 	return err;
230 }
231 
232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 		     const struct ovs_action_push_vlan *vlan)
234 {
235 	if (skb_vlan_tag_present(skb)) {
236 		invalidate_flow_key(key);
237 	} else {
238 		key->eth.vlan.tci = vlan->vlan_tci;
239 		key->eth.vlan.tpid = vlan->vlan_tpid;
240 	}
241 	return skb_vlan_push(skb, vlan->vlan_tpid,
242 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243 }
244 
245 /* 'src' is already properly masked. */
246 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247 {
248 	u16 *dst = (u16 *)dst_;
249 	const u16 *src = (const u16 *)src_;
250 	const u16 *mask = (const u16 *)mask_;
251 
252 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
253 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
254 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
255 }
256 
257 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258 			const struct ovs_key_ethernet *key,
259 			const struct ovs_key_ethernet *mask)
260 {
261 	int err;
262 
263 	err = skb_ensure_writable(skb, ETH_HLEN);
264 	if (unlikely(err))
265 		return err;
266 
267 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268 
269 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270 			       mask->eth_src);
271 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272 			       mask->eth_dst);
273 
274 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275 
276 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278 	return 0;
279 }
280 
281 /* pop_eth does not support VLAN packets as this action is never called
282  * for them.
283  */
284 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285 {
286 	int err;
287 
288 	err = skb_eth_pop(skb);
289 	if (err)
290 		return err;
291 
292 	/* safe right before invalidate_flow_key */
293 	key->mac_proto = MAC_PROTO_NONE;
294 	invalidate_flow_key(key);
295 	return 0;
296 }
297 
298 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299 		    const struct ovs_action_push_eth *ethh)
300 {
301 	int err;
302 
303 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
304 			   ethh->addresses.eth_src);
305 	if (err)
306 		return err;
307 
308 	/* safe right before invalidate_flow_key */
309 	key->mac_proto = MAC_PROTO_ETHERNET;
310 	invalidate_flow_key(key);
311 	return 0;
312 }
313 
314 static noinline_for_stack int push_nsh(struct sk_buff *skb,
315 				       struct sw_flow_key *key,
316 				       const struct nlattr *a)
317 {
318 	u8 buffer[NSH_HDR_MAX_LEN];
319 	struct nshhdr *nh = (struct nshhdr *)buffer;
320 	int err;
321 
322 	err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
323 	if (err)
324 		return err;
325 
326 	err = nsh_push(skb, nh);
327 	if (err)
328 		return err;
329 
330 	/* safe right before invalidate_flow_key */
331 	key->mac_proto = MAC_PROTO_NONE;
332 	invalidate_flow_key(key);
333 	return 0;
334 }
335 
336 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
337 {
338 	int err;
339 
340 	err = nsh_pop(skb);
341 	if (err)
342 		return err;
343 
344 	/* safe right before invalidate_flow_key */
345 	if (skb->protocol == htons(ETH_P_TEB))
346 		key->mac_proto = MAC_PROTO_ETHERNET;
347 	else
348 		key->mac_proto = MAC_PROTO_NONE;
349 	invalidate_flow_key(key);
350 	return 0;
351 }
352 
353 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
354 				  __be32 addr, __be32 new_addr)
355 {
356 	int transport_len = skb->len - skb_transport_offset(skb);
357 
358 	if (nh->frag_off & htons(IP_OFFSET))
359 		return;
360 
361 	if (nh->protocol == IPPROTO_TCP) {
362 		if (likely(transport_len >= sizeof(struct tcphdr)))
363 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
364 						 addr, new_addr, true);
365 	} else if (nh->protocol == IPPROTO_UDP) {
366 		if (likely(transport_len >= sizeof(struct udphdr))) {
367 			struct udphdr *uh = udp_hdr(skb);
368 
369 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
370 				inet_proto_csum_replace4(&uh->check, skb,
371 							 addr, new_addr, true);
372 				if (!uh->check)
373 					uh->check = CSUM_MANGLED_0;
374 			}
375 		}
376 	}
377 }
378 
379 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
380 			__be32 *addr, __be32 new_addr)
381 {
382 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
383 	csum_replace4(&nh->check, *addr, new_addr);
384 	skb_clear_hash(skb);
385 	ovs_ct_clear(skb, NULL);
386 	*addr = new_addr;
387 }
388 
389 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
390 				 __be32 addr[4], const __be32 new_addr[4])
391 {
392 	int transport_len = skb->len - skb_transport_offset(skb);
393 
394 	if (l4_proto == NEXTHDR_TCP) {
395 		if (likely(transport_len >= sizeof(struct tcphdr)))
396 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
397 						  addr, new_addr, true);
398 	} else if (l4_proto == NEXTHDR_UDP) {
399 		if (likely(transport_len >= sizeof(struct udphdr))) {
400 			struct udphdr *uh = udp_hdr(skb);
401 
402 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
403 				inet_proto_csum_replace16(&uh->check, skb,
404 							  addr, new_addr, true);
405 				if (!uh->check)
406 					uh->check = CSUM_MANGLED_0;
407 			}
408 		}
409 	} else if (l4_proto == NEXTHDR_ICMP) {
410 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
411 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
412 						  skb, addr, new_addr, true);
413 	}
414 }
415 
416 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
417 			   const __be32 mask[4], __be32 masked[4])
418 {
419 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
420 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
421 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
422 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
423 }
424 
425 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
426 			  __be32 addr[4], const __be32 new_addr[4],
427 			  bool recalculate_csum)
428 {
429 	if (recalculate_csum)
430 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
431 
432 	skb_clear_hash(skb);
433 	ovs_ct_clear(skb, NULL);
434 	memcpy(addr, new_addr, sizeof(__be32[4]));
435 }
436 
437 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
438 {
439 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
440 
441 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
442 
443 	if (skb->ip_summed == CHECKSUM_COMPLETE)
444 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
445 			     (__force __wsum)(ipv6_tclass << 12));
446 
447 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
448 }
449 
450 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
451 {
452 	u32 ofl;
453 
454 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
455 	fl = OVS_MASKED(ofl, fl, mask);
456 
457 	/* Bits 21-24 are always unmasked, so this retains their values. */
458 	nh->flow_lbl[0] = (u8)(fl >> 16);
459 	nh->flow_lbl[1] = (u8)(fl >> 8);
460 	nh->flow_lbl[2] = (u8)fl;
461 
462 	if (skb->ip_summed == CHECKSUM_COMPLETE)
463 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
464 }
465 
466 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
467 {
468 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
469 
470 	if (skb->ip_summed == CHECKSUM_COMPLETE)
471 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
472 			     (__force __wsum)(new_ttl << 8));
473 	nh->hop_limit = new_ttl;
474 }
475 
476 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
477 		       u8 mask)
478 {
479 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
480 
481 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
482 	nh->ttl = new_ttl;
483 }
484 
485 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
486 		    const struct ovs_key_ipv4 *key,
487 		    const struct ovs_key_ipv4 *mask)
488 {
489 	struct iphdr *nh;
490 	__be32 new_addr;
491 	int err;
492 
493 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
494 				  sizeof(struct iphdr));
495 	if (unlikely(err))
496 		return err;
497 
498 	nh = ip_hdr(skb);
499 
500 	/* Setting an IP addresses is typically only a side effect of
501 	 * matching on them in the current userspace implementation, so it
502 	 * makes sense to check if the value actually changed.
503 	 */
504 	if (mask->ipv4_src) {
505 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
506 
507 		if (unlikely(new_addr != nh->saddr)) {
508 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
509 			flow_key->ipv4.addr.src = new_addr;
510 		}
511 	}
512 	if (mask->ipv4_dst) {
513 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
514 
515 		if (unlikely(new_addr != nh->daddr)) {
516 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
517 			flow_key->ipv4.addr.dst = new_addr;
518 		}
519 	}
520 	if (mask->ipv4_tos) {
521 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
522 		flow_key->ip.tos = nh->tos;
523 	}
524 	if (mask->ipv4_ttl) {
525 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
526 		flow_key->ip.ttl = nh->ttl;
527 	}
528 
529 	return 0;
530 }
531 
532 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
533 {
534 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
535 }
536 
537 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
538 		    const struct ovs_key_ipv6 *key,
539 		    const struct ovs_key_ipv6 *mask)
540 {
541 	struct ipv6hdr *nh;
542 	int err;
543 
544 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
545 				  sizeof(struct ipv6hdr));
546 	if (unlikely(err))
547 		return err;
548 
549 	nh = ipv6_hdr(skb);
550 
551 	/* Setting an IP addresses is typically only a side effect of
552 	 * matching on them in the current userspace implementation, so it
553 	 * makes sense to check if the value actually changed.
554 	 */
555 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
556 		__be32 *saddr = (__be32 *)&nh->saddr;
557 		__be32 masked[4];
558 
559 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
560 
561 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
562 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
563 				      true);
564 			memcpy(&flow_key->ipv6.addr.src, masked,
565 			       sizeof(flow_key->ipv6.addr.src));
566 		}
567 	}
568 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
569 		unsigned int offset = 0;
570 		int flags = IP6_FH_F_SKIP_RH;
571 		bool recalc_csum = true;
572 		__be32 *daddr = (__be32 *)&nh->daddr;
573 		__be32 masked[4];
574 
575 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
576 
577 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
578 			if (ipv6_ext_hdr(nh->nexthdr))
579 				recalc_csum = (ipv6_find_hdr(skb, &offset,
580 							     NEXTHDR_ROUTING,
581 							     NULL, &flags)
582 					       != NEXTHDR_ROUTING);
583 
584 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
585 				      recalc_csum);
586 			memcpy(&flow_key->ipv6.addr.dst, masked,
587 			       sizeof(flow_key->ipv6.addr.dst));
588 		}
589 	}
590 	if (mask->ipv6_tclass) {
591 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
592 		flow_key->ip.tos = ipv6_get_dsfield(nh);
593 	}
594 	if (mask->ipv6_label) {
595 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
596 			    ntohl(mask->ipv6_label));
597 		flow_key->ipv6.label =
598 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
599 	}
600 	if (mask->ipv6_hlimit) {
601 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
602 		flow_key->ip.ttl = nh->hop_limit;
603 	}
604 	return 0;
605 }
606 
607 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
608 		   const struct nlattr *a)
609 {
610 	struct nshhdr *nh;
611 	size_t length;
612 	int err;
613 	u8 flags;
614 	u8 ttl;
615 	int i;
616 
617 	struct ovs_key_nsh key;
618 	struct ovs_key_nsh mask;
619 
620 	err = nsh_key_from_nlattr(a, &key, &mask);
621 	if (err)
622 		return err;
623 
624 	/* Make sure the NSH base header is there */
625 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
626 		return -ENOMEM;
627 
628 	nh = nsh_hdr(skb);
629 	length = nsh_hdr_len(nh);
630 
631 	/* Make sure the whole NSH header is there */
632 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
633 				       length);
634 	if (unlikely(err))
635 		return err;
636 
637 	nh = nsh_hdr(skb);
638 	skb_postpull_rcsum(skb, nh, length);
639 	flags = nsh_get_flags(nh);
640 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
641 	flow_key->nsh.base.flags = flags;
642 	ttl = nsh_get_ttl(nh);
643 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
644 	flow_key->nsh.base.ttl = ttl;
645 	nsh_set_flags_and_ttl(nh, flags, ttl);
646 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
647 				  mask.base.path_hdr);
648 	flow_key->nsh.base.path_hdr = nh->path_hdr;
649 	switch (nh->mdtype) {
650 	case NSH_M_TYPE1:
651 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
652 			nh->md1.context[i] =
653 			    OVS_MASKED(nh->md1.context[i], key.context[i],
654 				       mask.context[i]);
655 		}
656 		memcpy(flow_key->nsh.context, nh->md1.context,
657 		       sizeof(nh->md1.context));
658 		break;
659 	case NSH_M_TYPE2:
660 		memset(flow_key->nsh.context, 0,
661 		       sizeof(flow_key->nsh.context));
662 		break;
663 	default:
664 		return -EINVAL;
665 	}
666 	skb_postpush_rcsum(skb, nh, length);
667 	return 0;
668 }
669 
670 /* Must follow skb_ensure_writable() since that can move the skb data. */
671 static void set_tp_port(struct sk_buff *skb, __be16 *port,
672 			__be16 new_port, __sum16 *check)
673 {
674 	ovs_ct_clear(skb, NULL);
675 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
676 	*port = new_port;
677 }
678 
679 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
680 		   const struct ovs_key_udp *key,
681 		   const struct ovs_key_udp *mask)
682 {
683 	struct udphdr *uh;
684 	__be16 src, dst;
685 	int err;
686 
687 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
688 				  sizeof(struct udphdr));
689 	if (unlikely(err))
690 		return err;
691 
692 	uh = udp_hdr(skb);
693 	/* Either of the masks is non-zero, so do not bother checking them. */
694 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
695 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
696 
697 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
698 		if (likely(src != uh->source)) {
699 			set_tp_port(skb, &uh->source, src, &uh->check);
700 			flow_key->tp.src = src;
701 		}
702 		if (likely(dst != uh->dest)) {
703 			set_tp_port(skb, &uh->dest, dst, &uh->check);
704 			flow_key->tp.dst = dst;
705 		}
706 
707 		if (unlikely(!uh->check))
708 			uh->check = CSUM_MANGLED_0;
709 	} else {
710 		uh->source = src;
711 		uh->dest = dst;
712 		flow_key->tp.src = src;
713 		flow_key->tp.dst = dst;
714 		ovs_ct_clear(skb, NULL);
715 	}
716 
717 	skb_clear_hash(skb);
718 
719 	return 0;
720 }
721 
722 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
723 		   const struct ovs_key_tcp *key,
724 		   const struct ovs_key_tcp *mask)
725 {
726 	struct tcphdr *th;
727 	__be16 src, dst;
728 	int err;
729 
730 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
731 				  sizeof(struct tcphdr));
732 	if (unlikely(err))
733 		return err;
734 
735 	th = tcp_hdr(skb);
736 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
737 	if (likely(src != th->source)) {
738 		set_tp_port(skb, &th->source, src, &th->check);
739 		flow_key->tp.src = src;
740 	}
741 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
742 	if (likely(dst != th->dest)) {
743 		set_tp_port(skb, &th->dest, dst, &th->check);
744 		flow_key->tp.dst = dst;
745 	}
746 	skb_clear_hash(skb);
747 
748 	return 0;
749 }
750 
751 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
752 		    const struct ovs_key_sctp *key,
753 		    const struct ovs_key_sctp *mask)
754 {
755 	unsigned int sctphoff = skb_transport_offset(skb);
756 	struct sctphdr *sh;
757 	__le32 old_correct_csum, new_csum, old_csum;
758 	int err;
759 
760 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
761 	if (unlikely(err))
762 		return err;
763 
764 	sh = sctp_hdr(skb);
765 	old_csum = sh->checksum;
766 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
767 
768 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
769 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
770 
771 	new_csum = sctp_compute_cksum(skb, sctphoff);
772 
773 	/* Carry any checksum errors through. */
774 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
775 
776 	skb_clear_hash(skb);
777 	ovs_ct_clear(skb, NULL);
778 
779 	flow_key->tp.src = sh->source;
780 	flow_key->tp.dst = sh->dest;
781 
782 	return 0;
783 }
784 
785 static int ovs_vport_output(struct net *net, struct sock *sk,
786 			    struct sk_buff *skb)
787 {
788 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
789 	struct vport *vport = data->vport;
790 
791 	if (skb_cow_head(skb, data->l2_len) < 0) {
792 		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
793 		return -ENOMEM;
794 	}
795 
796 	__skb_dst_copy(skb, data->dst);
797 	*OVS_CB(skb) = data->cb;
798 	skb->inner_protocol = data->inner_protocol;
799 	if (data->vlan_tci & VLAN_CFI_MASK)
800 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
801 	else
802 		__vlan_hwaccel_clear_tag(skb);
803 
804 	/* Reconstruct the MAC header.  */
805 	skb_push(skb, data->l2_len);
806 	memcpy(skb->data, &data->l2_data, data->l2_len);
807 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
808 	skb_reset_mac_header(skb);
809 
810 	if (eth_p_mpls(skb->protocol)) {
811 		skb->inner_network_header = skb->network_header;
812 		skb_set_network_header(skb, data->network_offset);
813 		skb_reset_mac_len(skb);
814 	}
815 
816 	ovs_vport_send(vport, skb, data->mac_proto);
817 	return 0;
818 }
819 
820 static unsigned int
821 ovs_dst_get_mtu(const struct dst_entry *dst)
822 {
823 	return dst->dev->mtu;
824 }
825 
826 static struct dst_ops ovs_dst_ops = {
827 	.family = AF_UNSPEC,
828 	.mtu = ovs_dst_get_mtu,
829 };
830 
831 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
832  * ovs_vport_output(), which is called once per fragmented packet.
833  */
834 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
835 			 u16 orig_network_offset, u8 mac_proto)
836 {
837 	unsigned int hlen = skb_network_offset(skb);
838 	struct ovs_frag_data *data;
839 
840 	data = this_cpu_ptr(&ovs_frag_data_storage);
841 	data->dst = skb->_skb_refdst;
842 	data->vport = vport;
843 	data->cb = *OVS_CB(skb);
844 	data->inner_protocol = skb->inner_protocol;
845 	data->network_offset = orig_network_offset;
846 	if (skb_vlan_tag_present(skb))
847 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
848 	else
849 		data->vlan_tci = 0;
850 	data->vlan_proto = skb->vlan_proto;
851 	data->mac_proto = mac_proto;
852 	data->l2_len = hlen;
853 	memcpy(&data->l2_data, skb->data, hlen);
854 
855 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
856 	skb_pull(skb, hlen);
857 }
858 
859 static void ovs_fragment(struct net *net, struct vport *vport,
860 			 struct sk_buff *skb, u16 mru,
861 			 struct sw_flow_key *key)
862 {
863 	enum ovs_drop_reason reason;
864 	u16 orig_network_offset = 0;
865 
866 	if (eth_p_mpls(skb->protocol)) {
867 		orig_network_offset = skb_network_offset(skb);
868 		skb->network_header = skb->inner_network_header;
869 	}
870 
871 	if (skb_network_offset(skb) > MAX_L2_LEN) {
872 		OVS_NLERR(1, "L2 header too long to fragment");
873 		reason = OVS_DROP_FRAG_L2_TOO_LONG;
874 		goto err;
875 	}
876 
877 	if (key->eth.type == htons(ETH_P_IP)) {
878 		struct rtable ovs_rt = { 0 };
879 		unsigned long orig_dst;
880 
881 		prepare_frag(vport, skb, orig_network_offset,
882 			     ovs_key_mac_proto(key));
883 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
884 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
885 		ovs_rt.dst.dev = vport->dev;
886 
887 		orig_dst = skb->_skb_refdst;
888 		skb_dst_set_noref(skb, &ovs_rt.dst);
889 		IPCB(skb)->frag_max_size = mru;
890 
891 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
892 		refdst_drop(orig_dst);
893 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
894 		unsigned long orig_dst;
895 		struct rt6_info ovs_rt;
896 
897 		prepare_frag(vport, skb, orig_network_offset,
898 			     ovs_key_mac_proto(key));
899 		memset(&ovs_rt, 0, sizeof(ovs_rt));
900 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
901 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
902 		ovs_rt.dst.dev = vport->dev;
903 
904 		orig_dst = skb->_skb_refdst;
905 		skb_dst_set_noref(skb, &ovs_rt.dst);
906 		IP6CB(skb)->frag_max_size = mru;
907 
908 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
909 		refdst_drop(orig_dst);
910 	} else {
911 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
912 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
913 			  vport->dev->mtu);
914 		reason = OVS_DROP_FRAG_INVALID_PROTO;
915 		goto err;
916 	}
917 
918 	return;
919 err:
920 	ovs_kfree_skb_reason(skb, reason);
921 }
922 
923 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
924 		      struct sw_flow_key *key)
925 {
926 	struct vport *vport = ovs_vport_rcu(dp, out_port);
927 
928 	if (likely(vport && netif_carrier_ok(vport->dev))) {
929 		u16 mru = OVS_CB(skb)->mru;
930 		u32 cutlen = OVS_CB(skb)->cutlen;
931 
932 		if (unlikely(cutlen > 0)) {
933 			if (skb->len - cutlen > ovs_mac_header_len(key))
934 				pskb_trim(skb, skb->len - cutlen);
935 			else
936 				pskb_trim(skb, ovs_mac_header_len(key));
937 		}
938 
939 		/* Need to set the pkt_type to involve the routing layer.  The
940 		 * packet movement through the OVS datapath doesn't generally
941 		 * use routing, but this is needed for tunnel cases.
942 		 */
943 		skb->pkt_type = PACKET_OUTGOING;
944 
945 		if (likely(!mru ||
946 		           (skb->len <= mru + vport->dev->hard_header_len))) {
947 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
948 		} else if (mru <= vport->dev->mtu) {
949 			struct net *net = read_pnet(&dp->net);
950 
951 			ovs_fragment(net, vport, skb, mru, key);
952 		} else {
953 			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
954 		}
955 	} else {
956 		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
957 	}
958 }
959 
960 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
961 			    struct sw_flow_key *key, const struct nlattr *attr,
962 			    const struct nlattr *actions, int actions_len,
963 			    uint32_t cutlen)
964 {
965 	struct dp_upcall_info upcall;
966 	const struct nlattr *a;
967 	int rem;
968 
969 	memset(&upcall, 0, sizeof(upcall));
970 	upcall.cmd = OVS_PACKET_CMD_ACTION;
971 	upcall.mru = OVS_CB(skb)->mru;
972 
973 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
974 	     a = nla_next(a, &rem)) {
975 		switch (nla_type(a)) {
976 		case OVS_USERSPACE_ATTR_USERDATA:
977 			upcall.userdata = a;
978 			break;
979 
980 		case OVS_USERSPACE_ATTR_PID:
981 			if (dp->user_features &
982 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
983 				upcall.portid =
984 				  ovs_dp_get_upcall_portid(dp,
985 							   smp_processor_id());
986 			else
987 				upcall.portid = nla_get_u32(a);
988 			break;
989 
990 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
991 			/* Get out tunnel info. */
992 			struct vport *vport;
993 
994 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
995 			if (vport) {
996 				int err;
997 
998 				err = dev_fill_metadata_dst(vport->dev, skb);
999 				if (!err)
1000 					upcall.egress_tun_info = skb_tunnel_info(skb);
1001 			}
1002 
1003 			break;
1004 		}
1005 
1006 		case OVS_USERSPACE_ATTR_ACTIONS: {
1007 			/* Include actions. */
1008 			upcall.actions = actions;
1009 			upcall.actions_len = actions_len;
1010 			break;
1011 		}
1012 
1013 		} /* End of switch. */
1014 	}
1015 
1016 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1017 }
1018 
1019 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1020 				     struct sw_flow_key *key,
1021 				     const struct nlattr *attr)
1022 {
1023 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1024 	struct nlattr *actions = nla_data(attr);
1025 
1026 	if (nla_len(actions))
1027 		return clone_execute(dp, skb, key, 0, nla_data(actions),
1028 				     nla_len(actions), true, false);
1029 
1030 	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1031 	return 0;
1032 }
1033 
1034 /* When 'last' is true, sample() should always consume the 'skb'.
1035  * Otherwise, sample() should keep 'skb' intact regardless what
1036  * actions are executed within sample().
1037  */
1038 static int sample(struct datapath *dp, struct sk_buff *skb,
1039 		  struct sw_flow_key *key, const struct nlattr *attr,
1040 		  bool last)
1041 {
1042 	struct nlattr *actions;
1043 	struct nlattr *sample_arg;
1044 	int rem = nla_len(attr);
1045 	const struct sample_arg *arg;
1046 	bool clone_flow_key;
1047 
1048 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1049 	sample_arg = nla_data(attr);
1050 	arg = nla_data(sample_arg);
1051 	actions = nla_next(sample_arg, &rem);
1052 
1053 	if ((arg->probability != U32_MAX) &&
1054 	    (!arg->probability || get_random_u32() > arg->probability)) {
1055 		if (last)
1056 			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1057 		return 0;
1058 	}
1059 
1060 	clone_flow_key = !arg->exec;
1061 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1062 			     clone_flow_key);
1063 }
1064 
1065 /* When 'last' is true, clone() should always consume the 'skb'.
1066  * Otherwise, clone() should keep 'skb' intact regardless what
1067  * actions are executed within clone().
1068  */
1069 static int clone(struct datapath *dp, struct sk_buff *skb,
1070 		 struct sw_flow_key *key, const struct nlattr *attr,
1071 		 bool last)
1072 {
1073 	struct nlattr *actions;
1074 	struct nlattr *clone_arg;
1075 	int rem = nla_len(attr);
1076 	bool dont_clone_flow_key;
1077 
1078 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1079 	clone_arg = nla_data(attr);
1080 	dont_clone_flow_key = nla_get_u32(clone_arg);
1081 	actions = nla_next(clone_arg, &rem);
1082 
1083 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1084 			     !dont_clone_flow_key);
1085 }
1086 
1087 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1088 			 const struct nlattr *attr)
1089 {
1090 	struct ovs_action_hash *hash_act = nla_data(attr);
1091 	u32 hash = 0;
1092 
1093 	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1094 		/* OVS_HASH_ALG_L4 hasing type. */
1095 		hash = skb_get_hash(skb);
1096 	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1097 		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1098 		 * extend past an encapsulated header.
1099 		 */
1100 		hash = __skb_get_hash_symmetric(skb);
1101 	}
1102 
1103 	hash = jhash_1word(hash, hash_act->hash_basis);
1104 	if (!hash)
1105 		hash = 0x1;
1106 
1107 	key->ovs_flow_hash = hash;
1108 }
1109 
1110 static int execute_set_action(struct sk_buff *skb,
1111 			      struct sw_flow_key *flow_key,
1112 			      const struct nlattr *a)
1113 {
1114 	/* Only tunnel set execution is supported without a mask. */
1115 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1116 		struct ovs_tunnel_info *tun = nla_data(a);
1117 
1118 		skb_dst_drop(skb);
1119 		dst_hold((struct dst_entry *)tun->tun_dst);
1120 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1121 		return 0;
1122 	}
1123 
1124 	return -EINVAL;
1125 }
1126 
1127 /* Mask is at the midpoint of the data. */
1128 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1129 
1130 static int execute_masked_set_action(struct sk_buff *skb,
1131 				     struct sw_flow_key *flow_key,
1132 				     const struct nlattr *a)
1133 {
1134 	int err = 0;
1135 
1136 	switch (nla_type(a)) {
1137 	case OVS_KEY_ATTR_PRIORITY:
1138 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1139 			       *get_mask(a, u32 *));
1140 		flow_key->phy.priority = skb->priority;
1141 		break;
1142 
1143 	case OVS_KEY_ATTR_SKB_MARK:
1144 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1145 		flow_key->phy.skb_mark = skb->mark;
1146 		break;
1147 
1148 	case OVS_KEY_ATTR_TUNNEL_INFO:
1149 		/* Masked data not supported for tunnel. */
1150 		err = -EINVAL;
1151 		break;
1152 
1153 	case OVS_KEY_ATTR_ETHERNET:
1154 		err = set_eth_addr(skb, flow_key, nla_data(a),
1155 				   get_mask(a, struct ovs_key_ethernet *));
1156 		break;
1157 
1158 	case OVS_KEY_ATTR_NSH:
1159 		err = set_nsh(skb, flow_key, a);
1160 		break;
1161 
1162 	case OVS_KEY_ATTR_IPV4:
1163 		err = set_ipv4(skb, flow_key, nla_data(a),
1164 			       get_mask(a, struct ovs_key_ipv4 *));
1165 		break;
1166 
1167 	case OVS_KEY_ATTR_IPV6:
1168 		err = set_ipv6(skb, flow_key, nla_data(a),
1169 			       get_mask(a, struct ovs_key_ipv6 *));
1170 		break;
1171 
1172 	case OVS_KEY_ATTR_TCP:
1173 		err = set_tcp(skb, flow_key, nla_data(a),
1174 			      get_mask(a, struct ovs_key_tcp *));
1175 		break;
1176 
1177 	case OVS_KEY_ATTR_UDP:
1178 		err = set_udp(skb, flow_key, nla_data(a),
1179 			      get_mask(a, struct ovs_key_udp *));
1180 		break;
1181 
1182 	case OVS_KEY_ATTR_SCTP:
1183 		err = set_sctp(skb, flow_key, nla_data(a),
1184 			       get_mask(a, struct ovs_key_sctp *));
1185 		break;
1186 
1187 	case OVS_KEY_ATTR_MPLS:
1188 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1189 								    __be32 *));
1190 		break;
1191 
1192 	case OVS_KEY_ATTR_CT_STATE:
1193 	case OVS_KEY_ATTR_CT_ZONE:
1194 	case OVS_KEY_ATTR_CT_MARK:
1195 	case OVS_KEY_ATTR_CT_LABELS:
1196 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1197 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1198 		err = -EINVAL;
1199 		break;
1200 	}
1201 
1202 	return err;
1203 }
1204 
1205 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1206 			  struct sw_flow_key *key,
1207 			  const struct nlattr *a, bool last)
1208 {
1209 	u32 recirc_id;
1210 
1211 	if (!is_flow_key_valid(key)) {
1212 		int err;
1213 
1214 		err = ovs_flow_key_update(skb, key);
1215 		if (err)
1216 			return err;
1217 	}
1218 	BUG_ON(!is_flow_key_valid(key));
1219 
1220 	recirc_id = nla_get_u32(a);
1221 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1222 }
1223 
1224 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1225 				 struct sw_flow_key *key,
1226 				 const struct nlattr *attr, bool last)
1227 {
1228 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1229 	const struct nlattr *actions, *cpl_arg;
1230 	int len, max_len, rem = nla_len(attr);
1231 	const struct check_pkt_len_arg *arg;
1232 	bool clone_flow_key;
1233 
1234 	/* The first netlink attribute in 'attr' is always
1235 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1236 	 */
1237 	cpl_arg = nla_data(attr);
1238 	arg = nla_data(cpl_arg);
1239 
1240 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1241 	max_len = arg->pkt_len;
1242 
1243 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1244 	    len <= max_len) {
1245 		/* Second netlink attribute in 'attr' is always
1246 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1247 		 */
1248 		actions = nla_next(cpl_arg, &rem);
1249 		clone_flow_key = !arg->exec_for_lesser_equal;
1250 	} else {
1251 		/* Third netlink attribute in 'attr' is always
1252 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1253 		 */
1254 		actions = nla_next(cpl_arg, &rem);
1255 		actions = nla_next(actions, &rem);
1256 		clone_flow_key = !arg->exec_for_greater;
1257 	}
1258 
1259 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1260 			     nla_len(actions), last, clone_flow_key);
1261 }
1262 
1263 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1264 {
1265 	int err;
1266 
1267 	if (skb->protocol == htons(ETH_P_IPV6)) {
1268 		struct ipv6hdr *nh;
1269 
1270 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1271 					  sizeof(*nh));
1272 		if (unlikely(err))
1273 			return err;
1274 
1275 		nh = ipv6_hdr(skb);
1276 
1277 		if (nh->hop_limit <= 1)
1278 			return -EHOSTUNREACH;
1279 
1280 		key->ip.ttl = --nh->hop_limit;
1281 	} else if (skb->protocol == htons(ETH_P_IP)) {
1282 		struct iphdr *nh;
1283 		u8 old_ttl;
1284 
1285 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1286 					  sizeof(*nh));
1287 		if (unlikely(err))
1288 			return err;
1289 
1290 		nh = ip_hdr(skb);
1291 		if (nh->ttl <= 1)
1292 			return -EHOSTUNREACH;
1293 
1294 		old_ttl = nh->ttl--;
1295 		csum_replace2(&nh->check, htons(old_ttl << 8),
1296 			      htons(nh->ttl << 8));
1297 		key->ip.ttl = nh->ttl;
1298 	}
1299 	return 0;
1300 }
1301 
1302 /* Execute a list of actions against 'skb'. */
1303 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1304 			      struct sw_flow_key *key,
1305 			      const struct nlattr *attr, int len)
1306 {
1307 	const struct nlattr *a;
1308 	int rem;
1309 
1310 	for (a = attr, rem = len; rem > 0;
1311 	     a = nla_next(a, &rem)) {
1312 		int err = 0;
1313 
1314 		if (trace_ovs_do_execute_action_enabled())
1315 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1316 
1317 		/* Actions that rightfully have to consume the skb should do it
1318 		 * and return directly.
1319 		 */
1320 		switch (nla_type(a)) {
1321 		case OVS_ACTION_ATTR_OUTPUT: {
1322 			int port = nla_get_u32(a);
1323 			struct sk_buff *clone;
1324 
1325 			/* Every output action needs a separate clone
1326 			 * of 'skb', In case the output action is the
1327 			 * last action, cloning can be avoided.
1328 			 */
1329 			if (nla_is_last(a, rem)) {
1330 				do_output(dp, skb, port, key);
1331 				/* 'skb' has been used for output.
1332 				 */
1333 				return 0;
1334 			}
1335 
1336 			clone = skb_clone(skb, GFP_ATOMIC);
1337 			if (clone)
1338 				do_output(dp, clone, port, key);
1339 			OVS_CB(skb)->cutlen = 0;
1340 			break;
1341 		}
1342 
1343 		case OVS_ACTION_ATTR_TRUNC: {
1344 			struct ovs_action_trunc *trunc = nla_data(a);
1345 
1346 			if (skb->len > trunc->max_len)
1347 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1348 			break;
1349 		}
1350 
1351 		case OVS_ACTION_ATTR_USERSPACE:
1352 			output_userspace(dp, skb, key, a, attr,
1353 						     len, OVS_CB(skb)->cutlen);
1354 			OVS_CB(skb)->cutlen = 0;
1355 			if (nla_is_last(a, rem)) {
1356 				consume_skb(skb);
1357 				return 0;
1358 			}
1359 			break;
1360 
1361 		case OVS_ACTION_ATTR_HASH:
1362 			execute_hash(skb, key, a);
1363 			break;
1364 
1365 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1366 			struct ovs_action_push_mpls *mpls = nla_data(a);
1367 
1368 			err = push_mpls(skb, key, mpls->mpls_lse,
1369 					mpls->mpls_ethertype, skb->mac_len);
1370 			break;
1371 		}
1372 		case OVS_ACTION_ATTR_ADD_MPLS: {
1373 			struct ovs_action_add_mpls *mpls = nla_data(a);
1374 			__u16 mac_len = 0;
1375 
1376 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1377 				mac_len = skb->mac_len;
1378 
1379 			err = push_mpls(skb, key, mpls->mpls_lse,
1380 					mpls->mpls_ethertype, mac_len);
1381 			break;
1382 		}
1383 		case OVS_ACTION_ATTR_POP_MPLS:
1384 			err = pop_mpls(skb, key, nla_get_be16(a));
1385 			break;
1386 
1387 		case OVS_ACTION_ATTR_PUSH_VLAN:
1388 			err = push_vlan(skb, key, nla_data(a));
1389 			break;
1390 
1391 		case OVS_ACTION_ATTR_POP_VLAN:
1392 			err = pop_vlan(skb, key);
1393 			break;
1394 
1395 		case OVS_ACTION_ATTR_RECIRC: {
1396 			bool last = nla_is_last(a, rem);
1397 
1398 			err = execute_recirc(dp, skb, key, a, last);
1399 			if (last) {
1400 				/* If this is the last action, the skb has
1401 				 * been consumed or freed.
1402 				 * Return immediately.
1403 				 */
1404 				return err;
1405 			}
1406 			break;
1407 		}
1408 
1409 		case OVS_ACTION_ATTR_SET:
1410 			err = execute_set_action(skb, key, nla_data(a));
1411 			break;
1412 
1413 		case OVS_ACTION_ATTR_SET_MASKED:
1414 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1415 			err = execute_masked_set_action(skb, key, nla_data(a));
1416 			break;
1417 
1418 		case OVS_ACTION_ATTR_SAMPLE: {
1419 			bool last = nla_is_last(a, rem);
1420 
1421 			err = sample(dp, skb, key, a, last);
1422 			if (last)
1423 				return err;
1424 
1425 			break;
1426 		}
1427 
1428 		case OVS_ACTION_ATTR_CT:
1429 			if (!is_flow_key_valid(key)) {
1430 				err = ovs_flow_key_update(skb, key);
1431 				if (err)
1432 					return err;
1433 			}
1434 
1435 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1436 					     nla_data(a));
1437 
1438 			/* Hide stolen IP fragments from user space. */
1439 			if (err)
1440 				return err == -EINPROGRESS ? 0 : err;
1441 			break;
1442 
1443 		case OVS_ACTION_ATTR_CT_CLEAR:
1444 			err = ovs_ct_clear(skb, key);
1445 			break;
1446 
1447 		case OVS_ACTION_ATTR_PUSH_ETH:
1448 			err = push_eth(skb, key, nla_data(a));
1449 			break;
1450 
1451 		case OVS_ACTION_ATTR_POP_ETH:
1452 			err = pop_eth(skb, key);
1453 			break;
1454 
1455 		case OVS_ACTION_ATTR_PUSH_NSH:
1456 			err = push_nsh(skb, key, nla_data(a));
1457 			break;
1458 
1459 		case OVS_ACTION_ATTR_POP_NSH:
1460 			err = pop_nsh(skb, key);
1461 			break;
1462 
1463 		case OVS_ACTION_ATTR_METER:
1464 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1465 				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1466 				return 0;
1467 			}
1468 			break;
1469 
1470 		case OVS_ACTION_ATTR_CLONE: {
1471 			bool last = nla_is_last(a, rem);
1472 
1473 			err = clone(dp, skb, key, a, last);
1474 			if (last)
1475 				return err;
1476 
1477 			break;
1478 		}
1479 
1480 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1481 			bool last = nla_is_last(a, rem);
1482 
1483 			err = execute_check_pkt_len(dp, skb, key, a, last);
1484 			if (last)
1485 				return err;
1486 
1487 			break;
1488 		}
1489 
1490 		case OVS_ACTION_ATTR_DEC_TTL:
1491 			err = execute_dec_ttl(skb, key);
1492 			if (err == -EHOSTUNREACH)
1493 				return dec_ttl_exception_handler(dp, skb,
1494 								 key, a);
1495 			break;
1496 
1497 		case OVS_ACTION_ATTR_DROP: {
1498 			enum ovs_drop_reason reason = nla_get_u32(a)
1499 				? OVS_DROP_EXPLICIT_WITH_ERROR
1500 				: OVS_DROP_EXPLICIT;
1501 
1502 			ovs_kfree_skb_reason(skb, reason);
1503 			return 0;
1504 		}
1505 		}
1506 
1507 		if (unlikely(err)) {
1508 			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1509 			return err;
1510 		}
1511 	}
1512 
1513 	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1514 	return 0;
1515 }
1516 
1517 /* Execute the actions on the clone of the packet. The effect of the
1518  * execution does not affect the original 'skb' nor the original 'key'.
1519  *
1520  * The execution may be deferred in case the actions can not be executed
1521  * immediately.
1522  */
1523 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1524 			 struct sw_flow_key *key, u32 recirc_id,
1525 			 const struct nlattr *actions, int len,
1526 			 bool last, bool clone_flow_key)
1527 {
1528 	struct deferred_action *da;
1529 	struct sw_flow_key *clone;
1530 
1531 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1532 	if (!skb) {
1533 		/* Out of memory, skip this action.
1534 		 */
1535 		return 0;
1536 	}
1537 
1538 	/* When clone_flow_key is false, the 'key' will not be change
1539 	 * by the actions, then the 'key' can be used directly.
1540 	 * Otherwise, try to clone key from the next recursion level of
1541 	 * 'flow_keys'. If clone is successful, execute the actions
1542 	 * without deferring.
1543 	 */
1544 	clone = clone_flow_key ? clone_key(key) : key;
1545 	if (clone) {
1546 		int err = 0;
1547 
1548 		if (actions) { /* Sample action */
1549 			if (clone_flow_key)
1550 				__this_cpu_inc(exec_actions_level);
1551 
1552 			err = do_execute_actions(dp, skb, clone,
1553 						 actions, len);
1554 
1555 			if (clone_flow_key)
1556 				__this_cpu_dec(exec_actions_level);
1557 		} else { /* Recirc action */
1558 			clone->recirc_id = recirc_id;
1559 			ovs_dp_process_packet(skb, clone);
1560 		}
1561 		return err;
1562 	}
1563 
1564 	/* Out of 'flow_keys' space. Defer actions */
1565 	da = add_deferred_actions(skb, key, actions, len);
1566 	if (da) {
1567 		if (!actions) { /* Recirc action */
1568 			key = &da->pkt_key;
1569 			key->recirc_id = recirc_id;
1570 		}
1571 	} else {
1572 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1573 		 * log an error.
1574 		 */
1575 		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1576 
1577 		if (net_ratelimit()) {
1578 			if (actions) { /* Sample action */
1579 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1580 					ovs_dp_name(dp));
1581 			} else {  /* Recirc action */
1582 				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1583 					ovs_dp_name(dp), recirc_id);
1584 			}
1585 		}
1586 	}
1587 	return 0;
1588 }
1589 
1590 static void process_deferred_actions(struct datapath *dp)
1591 {
1592 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1593 
1594 	/* Do not touch the FIFO in case there is no deferred actions. */
1595 	if (action_fifo_is_empty(fifo))
1596 		return;
1597 
1598 	/* Finishing executing all deferred actions. */
1599 	do {
1600 		struct deferred_action *da = action_fifo_get(fifo);
1601 		struct sk_buff *skb = da->skb;
1602 		struct sw_flow_key *key = &da->pkt_key;
1603 		const struct nlattr *actions = da->actions;
1604 		int actions_len = da->actions_len;
1605 
1606 		if (actions)
1607 			do_execute_actions(dp, skb, key, actions, actions_len);
1608 		else
1609 			ovs_dp_process_packet(skb, key);
1610 	} while (!action_fifo_is_empty(fifo));
1611 
1612 	/* Reset FIFO for the next packet.  */
1613 	action_fifo_init(fifo);
1614 }
1615 
1616 /* Execute a list of actions against 'skb'. */
1617 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1618 			const struct sw_flow_actions *acts,
1619 			struct sw_flow_key *key)
1620 {
1621 	int err, level;
1622 
1623 	level = __this_cpu_inc_return(exec_actions_level);
1624 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1625 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1626 				     ovs_dp_name(dp));
1627 		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1628 		err = -ENETDOWN;
1629 		goto out;
1630 	}
1631 
1632 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1633 	err = do_execute_actions(dp, skb, key,
1634 				 acts->actions, acts->actions_len);
1635 
1636 	if (level == 1)
1637 		process_deferred_actions(dp);
1638 
1639 out:
1640 	__this_cpu_dec(exec_actions_level);
1641 	return err;
1642 }
1643 
1644 int action_fifos_init(void)
1645 {
1646 	action_fifos = alloc_percpu(struct action_fifo);
1647 	if (!action_fifos)
1648 		return -ENOMEM;
1649 
1650 	flow_keys = alloc_percpu(struct action_flow_keys);
1651 	if (!flow_keys) {
1652 		free_percpu(action_fifos);
1653 		return -ENOMEM;
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 void action_fifos_exit(void)
1660 {
1661 	free_percpu(action_fifos);
1662 	free_percpu(flow_keys);
1663 }
1664