1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 8 * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 9 * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) 10 */ 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/capability.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/socket.h> 17 #include <linux/in.h> 18 #include <linux/kernel.h> 19 #include <linux/sched.h> 20 #include <linux/timer.h> 21 #include <linux/string.h> 22 #include <linux/sockios.h> 23 #include <linux/net.h> 24 #include <linux/stat.h> 25 #include <net/ax25.h> 26 #include <linux/inet.h> 27 #include <linux/netdevice.h> 28 #include <linux/if_arp.h> 29 #include <linux/skbuff.h> 30 #include <net/sock.h> 31 #include <asm/uaccess.h> 32 #include <asm/system.h> 33 #include <linux/fcntl.h> 34 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 35 #include <linux/mm.h> 36 #include <linux/interrupt.h> 37 #include <linux/notifier.h> 38 #include <net/netrom.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <net/ip.h> 42 #include <net/tcp_states.h> 43 #include <net/arp.h> 44 #include <linux/init.h> 45 46 static int nr_ndevs = 4; 47 48 int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; 49 int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; 50 int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; 51 int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; 52 int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; 53 int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; 54 int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; 55 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; 56 int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; 57 int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; 58 int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; 59 int sysctl_netrom_reset_circuit = NR_DEFAULT_RESET; 60 61 static unsigned short circuit = 0x101; 62 63 static HLIST_HEAD(nr_list); 64 static DEFINE_SPINLOCK(nr_list_lock); 65 66 static const struct proto_ops nr_proto_ops; 67 68 /* 69 * NETROM network devices are virtual network devices encapsulating NETROM 70 * frames into AX.25 which will be sent through an AX.25 device, so form a 71 * special "super class" of normal net devices; split their locks off into a 72 * separate class since they always nest. 73 */ 74 static struct lock_class_key nr_netdev_xmit_lock_key; 75 76 /* 77 * Socket removal during an interrupt is now safe. 78 */ 79 static void nr_remove_socket(struct sock *sk) 80 { 81 spin_lock_bh(&nr_list_lock); 82 sk_del_node_init(sk); 83 spin_unlock_bh(&nr_list_lock); 84 } 85 86 /* 87 * Kill all bound sockets on a dropped device. 88 */ 89 static void nr_kill_by_device(struct net_device *dev) 90 { 91 struct sock *s; 92 struct hlist_node *node; 93 94 spin_lock_bh(&nr_list_lock); 95 sk_for_each(s, node, &nr_list) 96 if (nr_sk(s)->device == dev) 97 nr_disconnect(s, ENETUNREACH); 98 spin_unlock_bh(&nr_list_lock); 99 } 100 101 /* 102 * Handle device status changes. 103 */ 104 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 105 { 106 struct net_device *dev = (struct net_device *)ptr; 107 108 if (event != NETDEV_DOWN) 109 return NOTIFY_DONE; 110 111 nr_kill_by_device(dev); 112 nr_rt_device_down(dev); 113 114 return NOTIFY_DONE; 115 } 116 117 /* 118 * Add a socket to the bound sockets list. 119 */ 120 static void nr_insert_socket(struct sock *sk) 121 { 122 spin_lock_bh(&nr_list_lock); 123 sk_add_node(sk, &nr_list); 124 spin_unlock_bh(&nr_list_lock); 125 } 126 127 /* 128 * Find a socket that wants to accept the Connect Request we just 129 * received. 130 */ 131 static struct sock *nr_find_listener(ax25_address *addr) 132 { 133 struct sock *s; 134 struct hlist_node *node; 135 136 spin_lock_bh(&nr_list_lock); 137 sk_for_each(s, node, &nr_list) 138 if (!ax25cmp(&nr_sk(s)->source_addr, addr) && 139 s->sk_state == TCP_LISTEN) { 140 bh_lock_sock(s); 141 goto found; 142 } 143 s = NULL; 144 found: 145 spin_unlock_bh(&nr_list_lock); 146 return s; 147 } 148 149 /* 150 * Find a connected NET/ROM socket given my circuit IDs. 151 */ 152 static struct sock *nr_find_socket(unsigned char index, unsigned char id) 153 { 154 struct sock *s; 155 struct hlist_node *node; 156 157 spin_lock_bh(&nr_list_lock); 158 sk_for_each(s, node, &nr_list) { 159 struct nr_sock *nr = nr_sk(s); 160 161 if (nr->my_index == index && nr->my_id == id) { 162 bh_lock_sock(s); 163 goto found; 164 } 165 } 166 s = NULL; 167 found: 168 spin_unlock_bh(&nr_list_lock); 169 return s; 170 } 171 172 /* 173 * Find a connected NET/ROM socket given their circuit IDs. 174 */ 175 static struct sock *nr_find_peer(unsigned char index, unsigned char id, 176 ax25_address *dest) 177 { 178 struct sock *s; 179 struct hlist_node *node; 180 181 spin_lock_bh(&nr_list_lock); 182 sk_for_each(s, node, &nr_list) { 183 struct nr_sock *nr = nr_sk(s); 184 185 if (nr->your_index == index && nr->your_id == id && 186 !ax25cmp(&nr->dest_addr, dest)) { 187 bh_lock_sock(s); 188 goto found; 189 } 190 } 191 s = NULL; 192 found: 193 spin_unlock_bh(&nr_list_lock); 194 return s; 195 } 196 197 /* 198 * Find next free circuit ID. 199 */ 200 static unsigned short nr_find_next_circuit(void) 201 { 202 unsigned short id = circuit; 203 unsigned char i, j; 204 struct sock *sk; 205 206 for (;;) { 207 i = id / 256; 208 j = id % 256; 209 210 if (i != 0 && j != 0) { 211 if ((sk=nr_find_socket(i, j)) == NULL) 212 break; 213 bh_unlock_sock(sk); 214 } 215 216 id++; 217 } 218 219 return id; 220 } 221 222 /* 223 * Deferred destroy. 224 */ 225 void nr_destroy_socket(struct sock *); 226 227 /* 228 * Handler for deferred kills. 229 */ 230 static void nr_destroy_timer(unsigned long data) 231 { 232 struct sock *sk=(struct sock *)data; 233 bh_lock_sock(sk); 234 sock_hold(sk); 235 nr_destroy_socket(sk); 236 bh_unlock_sock(sk); 237 sock_put(sk); 238 } 239 240 /* 241 * This is called from user mode and the timers. Thus it protects itself 242 * against interrupt users but doesn't worry about being called during 243 * work. Once it is removed from the queue no interrupt or bottom half 244 * will touch it and we are (fairly 8-) ) safe. 245 */ 246 void nr_destroy_socket(struct sock *sk) 247 { 248 struct sk_buff *skb; 249 250 nr_remove_socket(sk); 251 252 nr_stop_heartbeat(sk); 253 nr_stop_t1timer(sk); 254 nr_stop_t2timer(sk); 255 nr_stop_t4timer(sk); 256 nr_stop_idletimer(sk); 257 258 nr_clear_queues(sk); /* Flush the queues */ 259 260 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 261 if (skb->sk != sk) { /* A pending connection */ 262 /* Queue the unaccepted socket for death */ 263 sock_set_flag(skb->sk, SOCK_DEAD); 264 nr_start_heartbeat(skb->sk); 265 nr_sk(skb->sk)->state = NR_STATE_0; 266 } 267 268 kfree_skb(skb); 269 } 270 271 if (atomic_read(&sk->sk_wmem_alloc) || 272 atomic_read(&sk->sk_rmem_alloc)) { 273 /* Defer: outstanding buffers */ 274 sk->sk_timer.function = nr_destroy_timer; 275 sk->sk_timer.expires = jiffies + 2 * HZ; 276 add_timer(&sk->sk_timer); 277 } else 278 sock_put(sk); 279 } 280 281 /* 282 * Handling for system calls applied via the various interfaces to a 283 * NET/ROM socket object. 284 */ 285 286 static int nr_setsockopt(struct socket *sock, int level, int optname, 287 char __user *optval, int optlen) 288 { 289 struct sock *sk = sock->sk; 290 struct nr_sock *nr = nr_sk(sk); 291 int opt; 292 293 if (level != SOL_NETROM) 294 return -ENOPROTOOPT; 295 296 if (optlen < sizeof(int)) 297 return -EINVAL; 298 299 if (get_user(opt, (int __user *)optval)) 300 return -EFAULT; 301 302 switch (optname) { 303 case NETROM_T1: 304 if (opt < 1) 305 return -EINVAL; 306 nr->t1 = opt * HZ; 307 return 0; 308 309 case NETROM_T2: 310 if (opt < 1) 311 return -EINVAL; 312 nr->t2 = opt * HZ; 313 return 0; 314 315 case NETROM_N2: 316 if (opt < 1 || opt > 31) 317 return -EINVAL; 318 nr->n2 = opt; 319 return 0; 320 321 case NETROM_T4: 322 if (opt < 1) 323 return -EINVAL; 324 nr->t4 = opt * HZ; 325 return 0; 326 327 case NETROM_IDLE: 328 if (opt < 0) 329 return -EINVAL; 330 nr->idle = opt * 60 * HZ; 331 return 0; 332 333 default: 334 return -ENOPROTOOPT; 335 } 336 } 337 338 static int nr_getsockopt(struct socket *sock, int level, int optname, 339 char __user *optval, int __user *optlen) 340 { 341 struct sock *sk = sock->sk; 342 struct nr_sock *nr = nr_sk(sk); 343 int val = 0; 344 int len; 345 346 if (level != SOL_NETROM) 347 return -ENOPROTOOPT; 348 349 if (get_user(len, optlen)) 350 return -EFAULT; 351 352 if (len < 0) 353 return -EINVAL; 354 355 switch (optname) { 356 case NETROM_T1: 357 val = nr->t1 / HZ; 358 break; 359 360 case NETROM_T2: 361 val = nr->t2 / HZ; 362 break; 363 364 case NETROM_N2: 365 val = nr->n2; 366 break; 367 368 case NETROM_T4: 369 val = nr->t4 / HZ; 370 break; 371 372 case NETROM_IDLE: 373 val = nr->idle / (60 * HZ); 374 break; 375 376 default: 377 return -ENOPROTOOPT; 378 } 379 380 len = min_t(unsigned int, len, sizeof(int)); 381 382 if (put_user(len, optlen)) 383 return -EFAULT; 384 385 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 386 } 387 388 static int nr_listen(struct socket *sock, int backlog) 389 { 390 struct sock *sk = sock->sk; 391 392 lock_sock(sk); 393 if (sk->sk_state != TCP_LISTEN) { 394 memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); 395 sk->sk_max_ack_backlog = backlog; 396 sk->sk_state = TCP_LISTEN; 397 release_sock(sk); 398 return 0; 399 } 400 release_sock(sk); 401 402 return -EOPNOTSUPP; 403 } 404 405 static struct proto nr_proto = { 406 .name = "NETROM", 407 .owner = THIS_MODULE, 408 .obj_size = sizeof(struct nr_sock), 409 }; 410 411 static int nr_create(struct socket *sock, int protocol) 412 { 413 struct sock *sk; 414 struct nr_sock *nr; 415 416 if (sock->type != SOCK_SEQPACKET || protocol != 0) 417 return -ESOCKTNOSUPPORT; 418 419 if ((sk = sk_alloc(PF_NETROM, GFP_ATOMIC, &nr_proto, 1)) == NULL) 420 return -ENOMEM; 421 422 nr = nr_sk(sk); 423 424 sock_init_data(sock, sk); 425 426 sock->ops = &nr_proto_ops; 427 sk->sk_protocol = protocol; 428 429 skb_queue_head_init(&nr->ack_queue); 430 skb_queue_head_init(&nr->reseq_queue); 431 skb_queue_head_init(&nr->frag_queue); 432 433 nr_init_timers(sk); 434 435 nr->t1 = 436 msecs_to_jiffies(sysctl_netrom_transport_timeout); 437 nr->t2 = 438 msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay); 439 nr->n2 = 440 msecs_to_jiffies(sysctl_netrom_transport_maximum_tries); 441 nr->t4 = 442 msecs_to_jiffies(sysctl_netrom_transport_busy_delay); 443 nr->idle = 444 msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout); 445 nr->window = sysctl_netrom_transport_requested_window_size; 446 447 nr->bpqext = 1; 448 nr->state = NR_STATE_0; 449 450 return 0; 451 } 452 453 static struct sock *nr_make_new(struct sock *osk) 454 { 455 struct sock *sk; 456 struct nr_sock *nr, *onr; 457 458 if (osk->sk_type != SOCK_SEQPACKET) 459 return NULL; 460 461 if ((sk = sk_alloc(PF_NETROM, GFP_ATOMIC, osk->sk_prot, 1)) == NULL) 462 return NULL; 463 464 nr = nr_sk(sk); 465 466 sock_init_data(NULL, sk); 467 468 sk->sk_type = osk->sk_type; 469 sk->sk_socket = osk->sk_socket; 470 sk->sk_priority = osk->sk_priority; 471 sk->sk_protocol = osk->sk_protocol; 472 sk->sk_rcvbuf = osk->sk_rcvbuf; 473 sk->sk_sndbuf = osk->sk_sndbuf; 474 sk->sk_state = TCP_ESTABLISHED; 475 sk->sk_sleep = osk->sk_sleep; 476 sock_copy_flags(sk, osk); 477 478 skb_queue_head_init(&nr->ack_queue); 479 skb_queue_head_init(&nr->reseq_queue); 480 skb_queue_head_init(&nr->frag_queue); 481 482 nr_init_timers(sk); 483 484 onr = nr_sk(osk); 485 486 nr->t1 = onr->t1; 487 nr->t2 = onr->t2; 488 nr->n2 = onr->n2; 489 nr->t4 = onr->t4; 490 nr->idle = onr->idle; 491 nr->window = onr->window; 492 493 nr->device = onr->device; 494 nr->bpqext = onr->bpqext; 495 496 return sk; 497 } 498 499 static int nr_release(struct socket *sock) 500 { 501 struct sock *sk = sock->sk; 502 struct nr_sock *nr; 503 504 if (sk == NULL) return 0; 505 506 sock_hold(sk); 507 lock_sock(sk); 508 nr = nr_sk(sk); 509 510 switch (nr->state) { 511 case NR_STATE_0: 512 case NR_STATE_1: 513 case NR_STATE_2: 514 nr_disconnect(sk, 0); 515 nr_destroy_socket(sk); 516 break; 517 518 case NR_STATE_3: 519 nr_clear_queues(sk); 520 nr->n2count = 0; 521 nr_write_internal(sk, NR_DISCREQ); 522 nr_start_t1timer(sk); 523 nr_stop_t2timer(sk); 524 nr_stop_t4timer(sk); 525 nr_stop_idletimer(sk); 526 nr->state = NR_STATE_2; 527 sk->sk_state = TCP_CLOSE; 528 sk->sk_shutdown |= SEND_SHUTDOWN; 529 sk->sk_state_change(sk); 530 sock_orphan(sk); 531 sock_set_flag(sk, SOCK_DESTROY); 532 sk->sk_socket = NULL; 533 break; 534 535 default: 536 sk->sk_socket = NULL; 537 break; 538 } 539 540 sock->sk = NULL; 541 release_sock(sk); 542 sock_put(sk); 543 544 return 0; 545 } 546 547 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 548 { 549 struct sock *sk = sock->sk; 550 struct nr_sock *nr = nr_sk(sk); 551 struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; 552 struct net_device *dev; 553 ax25_uid_assoc *user; 554 ax25_address *source; 555 556 lock_sock(sk); 557 if (!sock_flag(sk, SOCK_ZAPPED)) { 558 release_sock(sk); 559 return -EINVAL; 560 } 561 if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { 562 release_sock(sk); 563 return -EINVAL; 564 } 565 if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { 566 release_sock(sk); 567 return -EINVAL; 568 } 569 if (addr->fsa_ax25.sax25_family != AF_NETROM) { 570 release_sock(sk); 571 return -EINVAL; 572 } 573 if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { 574 SOCK_DEBUG(sk, "NET/ROM: bind failed: invalid node callsign\n"); 575 release_sock(sk); 576 return -EADDRNOTAVAIL; 577 } 578 579 /* 580 * Only the super user can set an arbitrary user callsign. 581 */ 582 if (addr->fsa_ax25.sax25_ndigis == 1) { 583 if (!capable(CAP_NET_BIND_SERVICE)) { 584 dev_put(dev); 585 release_sock(sk); 586 return -EACCES; 587 } 588 nr->user_addr = addr->fsa_digipeater[0]; 589 nr->source_addr = addr->fsa_ax25.sax25_call; 590 } else { 591 source = &addr->fsa_ax25.sax25_call; 592 593 user = ax25_findbyuid(current->euid); 594 if (user) { 595 nr->user_addr = user->call; 596 ax25_uid_put(user); 597 } else { 598 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 599 release_sock(sk); 600 dev_put(dev); 601 return -EPERM; 602 } 603 nr->user_addr = *source; 604 } 605 606 nr->source_addr = *source; 607 } 608 609 nr->device = dev; 610 nr_insert_socket(sk); 611 612 sock_reset_flag(sk, SOCK_ZAPPED); 613 dev_put(dev); 614 release_sock(sk); 615 SOCK_DEBUG(sk, "NET/ROM: socket is bound\n"); 616 return 0; 617 } 618 619 static int nr_connect(struct socket *sock, struct sockaddr *uaddr, 620 int addr_len, int flags) 621 { 622 struct sock *sk = sock->sk; 623 struct nr_sock *nr = nr_sk(sk); 624 struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; 625 ax25_address *source = NULL; 626 ax25_uid_assoc *user; 627 struct net_device *dev; 628 629 lock_sock(sk); 630 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 631 sock->state = SS_CONNECTED; 632 release_sock(sk); 633 return 0; /* Connect completed during a ERESTARTSYS event */ 634 } 635 636 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 637 sock->state = SS_UNCONNECTED; 638 release_sock(sk); 639 return -ECONNREFUSED; 640 } 641 642 if (sk->sk_state == TCP_ESTABLISHED) { 643 release_sock(sk); 644 return -EISCONN; /* No reconnect on a seqpacket socket */ 645 } 646 647 sk->sk_state = TCP_CLOSE; 648 sock->state = SS_UNCONNECTED; 649 650 if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { 651 release_sock(sk); 652 return -EINVAL; 653 } 654 if (addr->sax25_family != AF_NETROM) { 655 release_sock(sk); 656 return -EINVAL; 657 } 658 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 659 sock_reset_flag(sk, SOCK_ZAPPED); 660 661 if ((dev = nr_dev_first()) == NULL) { 662 release_sock(sk); 663 return -ENETUNREACH; 664 } 665 source = (ax25_address *)dev->dev_addr; 666 667 user = ax25_findbyuid(current->euid); 668 if (user) { 669 nr->user_addr = user->call; 670 ax25_uid_put(user); 671 } else { 672 if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { 673 dev_put(dev); 674 release_sock(sk); 675 return -EPERM; 676 } 677 nr->user_addr = *source; 678 } 679 680 nr->source_addr = *source; 681 nr->device = dev; 682 683 dev_put(dev); 684 nr_insert_socket(sk); /* Finish the bind */ 685 } 686 687 nr->dest_addr = addr->sax25_call; 688 689 release_sock(sk); 690 circuit = nr_find_next_circuit(); 691 lock_sock(sk); 692 693 nr->my_index = circuit / 256; 694 nr->my_id = circuit % 256; 695 696 circuit++; 697 698 /* Move to connecting socket, start sending Connect Requests */ 699 sock->state = SS_CONNECTING; 700 sk->sk_state = TCP_SYN_SENT; 701 702 nr_establish_data_link(sk); 703 704 nr->state = NR_STATE_1; 705 706 nr_start_heartbeat(sk); 707 708 /* Now the loop */ 709 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 710 release_sock(sk); 711 return -EINPROGRESS; 712 } 713 714 /* 715 * A Connect Ack with Choke or timeout or failed routing will go to 716 * closed. 717 */ 718 if (sk->sk_state == TCP_SYN_SENT) { 719 struct task_struct *tsk = current; 720 DECLARE_WAITQUEUE(wait, tsk); 721 722 add_wait_queue(sk->sk_sleep, &wait); 723 for (;;) { 724 set_current_state(TASK_INTERRUPTIBLE); 725 if (sk->sk_state != TCP_SYN_SENT) 726 break; 727 release_sock(sk); 728 if (!signal_pending(tsk)) { 729 schedule(); 730 lock_sock(sk); 731 continue; 732 } 733 current->state = TASK_RUNNING; 734 remove_wait_queue(sk->sk_sleep, &wait); 735 return -ERESTARTSYS; 736 } 737 current->state = TASK_RUNNING; 738 remove_wait_queue(sk->sk_sleep, &wait); 739 } 740 741 if (sk->sk_state != TCP_ESTABLISHED) { 742 sock->state = SS_UNCONNECTED; 743 release_sock(sk); 744 return sock_error(sk); /* Always set at this point */ 745 } 746 747 sock->state = SS_CONNECTED; 748 release_sock(sk); 749 750 return 0; 751 } 752 753 static int nr_accept(struct socket *sock, struct socket *newsock, int flags) 754 { 755 struct task_struct *tsk = current; 756 DECLARE_WAITQUEUE(wait, tsk); 757 struct sk_buff *skb; 758 struct sock *newsk; 759 struct sock *sk; 760 int err = 0; 761 762 if ((sk = sock->sk) == NULL) 763 return -EINVAL; 764 765 lock_sock(sk); 766 if (sk->sk_type != SOCK_SEQPACKET) { 767 err = -EOPNOTSUPP; 768 goto out; 769 } 770 771 if (sk->sk_state != TCP_LISTEN) { 772 err = -EINVAL; 773 goto out; 774 } 775 776 /* 777 * The write queue this time is holding sockets ready to use 778 * hooked into the SABM we saved 779 */ 780 add_wait_queue(sk->sk_sleep, &wait); 781 for (;;) { 782 skb = skb_dequeue(&sk->sk_receive_queue); 783 if (skb) 784 break; 785 786 current->state = TASK_INTERRUPTIBLE; 787 release_sock(sk); 788 if (flags & O_NONBLOCK) { 789 current->state = TASK_RUNNING; 790 remove_wait_queue(sk->sk_sleep, &wait); 791 return -EWOULDBLOCK; 792 } 793 if (!signal_pending(tsk)) { 794 schedule(); 795 lock_sock(sk); 796 continue; 797 } 798 current->state = TASK_RUNNING; 799 remove_wait_queue(sk->sk_sleep, &wait); 800 return -ERESTARTSYS; 801 } 802 current->state = TASK_RUNNING; 803 remove_wait_queue(sk->sk_sleep, &wait); 804 805 newsk = skb->sk; 806 newsk->sk_socket = newsock; 807 newsk->sk_sleep = &newsock->wait; 808 809 /* Now attach up the new socket */ 810 kfree_skb(skb); 811 sk_acceptq_removed(sk); 812 newsock->sk = newsk; 813 814 out: 815 release_sock(sk); 816 return err; 817 } 818 819 static int nr_getname(struct socket *sock, struct sockaddr *uaddr, 820 int *uaddr_len, int peer) 821 { 822 struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; 823 struct sock *sk = sock->sk; 824 struct nr_sock *nr = nr_sk(sk); 825 826 lock_sock(sk); 827 if (peer != 0) { 828 if (sk->sk_state != TCP_ESTABLISHED) { 829 release_sock(sk); 830 return -ENOTCONN; 831 } 832 sax->fsa_ax25.sax25_family = AF_NETROM; 833 sax->fsa_ax25.sax25_ndigis = 1; 834 sax->fsa_ax25.sax25_call = nr->user_addr; 835 sax->fsa_digipeater[0] = nr->dest_addr; 836 *uaddr_len = sizeof(struct full_sockaddr_ax25); 837 } else { 838 sax->fsa_ax25.sax25_family = AF_NETROM; 839 sax->fsa_ax25.sax25_ndigis = 0; 840 sax->fsa_ax25.sax25_call = nr->source_addr; 841 *uaddr_len = sizeof(struct sockaddr_ax25); 842 } 843 release_sock(sk); 844 845 return 0; 846 } 847 848 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) 849 { 850 struct sock *sk; 851 struct sock *make; 852 struct nr_sock *nr_make; 853 ax25_address *src, *dest, *user; 854 unsigned short circuit_index, circuit_id; 855 unsigned short peer_circuit_index, peer_circuit_id; 856 unsigned short frametype, flags, window, timeout; 857 int ret; 858 859 skb->sk = NULL; /* Initially we don't know who it's for */ 860 861 /* 862 * skb->data points to the netrom frame start 863 */ 864 865 src = (ax25_address *)(skb->data + 0); 866 dest = (ax25_address *)(skb->data + 7); 867 868 circuit_index = skb->data[15]; 869 circuit_id = skb->data[16]; 870 peer_circuit_index = skb->data[17]; 871 peer_circuit_id = skb->data[18]; 872 frametype = skb->data[19] & 0x0F; 873 flags = skb->data[19] & 0xF0; 874 875 /* 876 * Check for an incoming IP over NET/ROM frame. 877 */ 878 if (frametype == NR_PROTOEXT && 879 circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { 880 skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); 881 skb->h.raw = skb->data; 882 883 return nr_rx_ip(skb, dev); 884 } 885 886 /* 887 * Find an existing socket connection, based on circuit ID, if it's 888 * a Connect Request base it on their circuit ID. 889 * 890 * Circuit ID 0/0 is not valid but it could still be a "reset" for a 891 * circuit that no longer exists at the other end ... 892 */ 893 894 sk = NULL; 895 896 if (circuit_index == 0 && circuit_id == 0) { 897 if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) 898 sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); 899 } else { 900 if (frametype == NR_CONNREQ) 901 sk = nr_find_peer(circuit_index, circuit_id, src); 902 else 903 sk = nr_find_socket(circuit_index, circuit_id); 904 } 905 906 if (sk != NULL) { 907 skb->h.raw = skb->data; 908 909 if (frametype == NR_CONNACK && skb->len == 22) 910 nr_sk(sk)->bpqext = 1; 911 else 912 nr_sk(sk)->bpqext = 0; 913 914 ret = nr_process_rx_frame(sk, skb); 915 bh_unlock_sock(sk); 916 return ret; 917 } 918 919 /* 920 * Now it should be a CONNREQ. 921 */ 922 if (frametype != NR_CONNREQ) { 923 /* 924 * Here it would be nice to be able to send a reset but 925 * NET/ROM doesn't have one. We've tried to extend the protocol 926 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that 927 * apparently kills BPQ boxes... :-( 928 * So now we try to follow the established behaviour of 929 * G8PZT's Xrouter which is sending packets with command type 7 930 * as an extension of the protocol. 931 */ 932 if (sysctl_netrom_reset_circuit && 933 (frametype != NR_RESET || flags != 0)) 934 nr_transmit_reset(skb, 1); 935 936 return 0; 937 } 938 939 sk = nr_find_listener(dest); 940 941 user = (ax25_address *)(skb->data + 21); 942 943 if (sk == NULL || sk_acceptq_is_full(sk) || 944 (make = nr_make_new(sk)) == NULL) { 945 nr_transmit_refusal(skb, 0); 946 if (sk) 947 bh_unlock_sock(sk); 948 return 0; 949 } 950 951 window = skb->data[20]; 952 953 skb->sk = make; 954 make->sk_state = TCP_ESTABLISHED; 955 956 /* Fill in his circuit details */ 957 nr_make = nr_sk(make); 958 nr_make->source_addr = *dest; 959 nr_make->dest_addr = *src; 960 nr_make->user_addr = *user; 961 962 nr_make->your_index = circuit_index; 963 nr_make->your_id = circuit_id; 964 965 bh_unlock_sock(sk); 966 circuit = nr_find_next_circuit(); 967 bh_lock_sock(sk); 968 969 nr_make->my_index = circuit / 256; 970 nr_make->my_id = circuit % 256; 971 972 circuit++; 973 974 /* Window negotiation */ 975 if (window < nr_make->window) 976 nr_make->window = window; 977 978 /* L4 timeout negotiation */ 979 if (skb->len == 37) { 980 timeout = skb->data[36] * 256 + skb->data[35]; 981 if (timeout * HZ < nr_make->t1) 982 nr_make->t1 = timeout * HZ; 983 nr_make->bpqext = 1; 984 } else { 985 nr_make->bpqext = 0; 986 } 987 988 nr_write_internal(make, NR_CONNACK); 989 990 nr_make->condition = 0x00; 991 nr_make->vs = 0; 992 nr_make->va = 0; 993 nr_make->vr = 0; 994 nr_make->vl = 0; 995 nr_make->state = NR_STATE_3; 996 sk_acceptq_added(sk); 997 skb_queue_head(&sk->sk_receive_queue, skb); 998 999 if (!sock_flag(sk, SOCK_DEAD)) 1000 sk->sk_data_ready(sk, skb->len); 1001 1002 bh_unlock_sock(sk); 1003 1004 nr_insert_socket(make); 1005 1006 nr_start_heartbeat(make); 1007 nr_start_idletimer(make); 1008 1009 return 1; 1010 } 1011 1012 static int nr_sendmsg(struct kiocb *iocb, struct socket *sock, 1013 struct msghdr *msg, size_t len) 1014 { 1015 struct sock *sk = sock->sk; 1016 struct nr_sock *nr = nr_sk(sk); 1017 struct sockaddr_ax25 *usax = (struct sockaddr_ax25 *)msg->msg_name; 1018 int err; 1019 struct sockaddr_ax25 sax; 1020 struct sk_buff *skb; 1021 unsigned char *asmptr; 1022 int size; 1023 1024 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1025 return -EINVAL; 1026 1027 lock_sock(sk); 1028 if (sock_flag(sk, SOCK_ZAPPED)) { 1029 err = -EADDRNOTAVAIL; 1030 goto out; 1031 } 1032 1033 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1034 send_sig(SIGPIPE, current, 0); 1035 err = -EPIPE; 1036 goto out; 1037 } 1038 1039 if (nr->device == NULL) { 1040 err = -ENETUNREACH; 1041 goto out; 1042 } 1043 1044 if (usax) { 1045 if (msg->msg_namelen < sizeof(sax)) { 1046 err = -EINVAL; 1047 goto out; 1048 } 1049 sax = *usax; 1050 if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { 1051 err = -EISCONN; 1052 goto out; 1053 } 1054 if (sax.sax25_family != AF_NETROM) { 1055 err = -EINVAL; 1056 goto out; 1057 } 1058 } else { 1059 if (sk->sk_state != TCP_ESTABLISHED) { 1060 err = -ENOTCONN; 1061 goto out; 1062 } 1063 sax.sax25_family = AF_NETROM; 1064 sax.sax25_call = nr->dest_addr; 1065 } 1066 1067 SOCK_DEBUG(sk, "NET/ROM: sendto: Addresses built.\n"); 1068 1069 /* Build a packet */ 1070 SOCK_DEBUG(sk, "NET/ROM: sendto: building packet.\n"); 1071 size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; 1072 1073 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1074 goto out; 1075 1076 skb_reserve(skb, size - len); 1077 1078 /* 1079 * Push down the NET/ROM header 1080 */ 1081 1082 asmptr = skb_push(skb, NR_TRANSPORT_LEN); 1083 SOCK_DEBUG(sk, "Building NET/ROM Header.\n"); 1084 1085 /* Build a NET/ROM Transport header */ 1086 1087 *asmptr++ = nr->your_index; 1088 *asmptr++ = nr->your_id; 1089 *asmptr++ = 0; /* To be filled in later */ 1090 *asmptr++ = 0; /* Ditto */ 1091 *asmptr++ = NR_INFO; 1092 SOCK_DEBUG(sk, "Built header.\n"); 1093 1094 /* 1095 * Put the data on the end 1096 */ 1097 1098 skb->h.raw = skb_put(skb, len); 1099 1100 asmptr = skb->h.raw; 1101 SOCK_DEBUG(sk, "NET/ROM: Appending user data\n"); 1102 1103 /* User data follows immediately after the NET/ROM transport header */ 1104 if (memcpy_fromiovec(asmptr, msg->msg_iov, len)) { 1105 kfree_skb(skb); 1106 err = -EFAULT; 1107 goto out; 1108 } 1109 1110 SOCK_DEBUG(sk, "NET/ROM: Transmitting buffer\n"); 1111 1112 if (sk->sk_state != TCP_ESTABLISHED) { 1113 kfree_skb(skb); 1114 err = -ENOTCONN; 1115 goto out; 1116 } 1117 1118 nr_output(sk, skb); /* Shove it onto the queue */ 1119 1120 err = len; 1121 out: 1122 release_sock(sk); 1123 return err; 1124 } 1125 1126 static int nr_recvmsg(struct kiocb *iocb, struct socket *sock, 1127 struct msghdr *msg, size_t size, int flags) 1128 { 1129 struct sock *sk = sock->sk; 1130 struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name; 1131 size_t copied; 1132 struct sk_buff *skb; 1133 int er; 1134 1135 /* 1136 * This works for seqpacket too. The receiver has ordered the queue for 1137 * us! We do one quick check first though 1138 */ 1139 1140 lock_sock(sk); 1141 if (sk->sk_state != TCP_ESTABLISHED) { 1142 release_sock(sk); 1143 return -ENOTCONN; 1144 } 1145 1146 /* Now we can treat all alike */ 1147 if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { 1148 release_sock(sk); 1149 return er; 1150 } 1151 1152 skb->h.raw = skb->data; 1153 copied = skb->len; 1154 1155 if (copied > size) { 1156 copied = size; 1157 msg->msg_flags |= MSG_TRUNC; 1158 } 1159 1160 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1161 1162 if (sax != NULL) { 1163 sax->sax25_family = AF_NETROM; 1164 memcpy(sax->sax25_call.ax25_call, skb->data + 7, AX25_ADDR_LEN); 1165 } 1166 1167 msg->msg_namelen = sizeof(*sax); 1168 1169 skb_free_datagram(sk, skb); 1170 1171 release_sock(sk); 1172 return copied; 1173 } 1174 1175 1176 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1177 { 1178 struct sock *sk = sock->sk; 1179 void __user *argp = (void __user *)arg; 1180 int ret; 1181 1182 switch (cmd) { 1183 case TIOCOUTQ: { 1184 long amount; 1185 1186 lock_sock(sk); 1187 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1188 if (amount < 0) 1189 amount = 0; 1190 release_sock(sk); 1191 return put_user(amount, (int __user *)argp); 1192 } 1193 1194 case TIOCINQ: { 1195 struct sk_buff *skb; 1196 long amount = 0L; 1197 1198 lock_sock(sk); 1199 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1200 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1201 amount = skb->len; 1202 release_sock(sk); 1203 return put_user(amount, (int __user *)argp); 1204 } 1205 1206 case SIOCGSTAMP: 1207 lock_sock(sk); 1208 ret = sock_get_timestamp(sk, argp); 1209 release_sock(sk); 1210 return ret; 1211 1212 case SIOCGIFADDR: 1213 case SIOCSIFADDR: 1214 case SIOCGIFDSTADDR: 1215 case SIOCSIFDSTADDR: 1216 case SIOCGIFBRDADDR: 1217 case SIOCSIFBRDADDR: 1218 case SIOCGIFNETMASK: 1219 case SIOCSIFNETMASK: 1220 case SIOCGIFMETRIC: 1221 case SIOCSIFMETRIC: 1222 return -EINVAL; 1223 1224 case SIOCADDRT: 1225 case SIOCDELRT: 1226 case SIOCNRDECOBS: 1227 if (!capable(CAP_NET_ADMIN)) return -EPERM; 1228 return nr_rt_ioctl(cmd, argp); 1229 1230 default: 1231 return -ENOIOCTLCMD; 1232 } 1233 1234 return 0; 1235 } 1236 1237 #ifdef CONFIG_PROC_FS 1238 1239 static void *nr_info_start(struct seq_file *seq, loff_t *pos) 1240 { 1241 struct sock *s; 1242 struct hlist_node *node; 1243 int i = 1; 1244 1245 spin_lock_bh(&nr_list_lock); 1246 if (*pos == 0) 1247 return SEQ_START_TOKEN; 1248 1249 sk_for_each(s, node, &nr_list) { 1250 if (i == *pos) 1251 return s; 1252 ++i; 1253 } 1254 return NULL; 1255 } 1256 1257 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) 1258 { 1259 ++*pos; 1260 1261 return (v == SEQ_START_TOKEN) ? sk_head(&nr_list) 1262 : sk_next((struct sock *)v); 1263 } 1264 1265 static void nr_info_stop(struct seq_file *seq, void *v) 1266 { 1267 spin_unlock_bh(&nr_list_lock); 1268 } 1269 1270 static int nr_info_show(struct seq_file *seq, void *v) 1271 { 1272 struct sock *s = v; 1273 struct net_device *dev; 1274 struct nr_sock *nr; 1275 const char *devname; 1276 char buf[11]; 1277 1278 if (v == SEQ_START_TOKEN) 1279 seq_puts(seq, 1280 "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); 1281 1282 else { 1283 1284 bh_lock_sock(s); 1285 nr = nr_sk(s); 1286 1287 if ((dev = nr->device) == NULL) 1288 devname = "???"; 1289 else 1290 devname = dev->name; 1291 1292 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr)); 1293 seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr)); 1294 seq_printf(seq, 1295 "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", 1296 ax2asc(buf, &nr->source_addr), 1297 devname, 1298 nr->my_index, 1299 nr->my_id, 1300 nr->your_index, 1301 nr->your_id, 1302 nr->state, 1303 nr->vs, 1304 nr->vr, 1305 nr->va, 1306 ax25_display_timer(&nr->t1timer) / HZ, 1307 nr->t1 / HZ, 1308 ax25_display_timer(&nr->t2timer) / HZ, 1309 nr->t2 / HZ, 1310 ax25_display_timer(&nr->t4timer) / HZ, 1311 nr->t4 / HZ, 1312 ax25_display_timer(&nr->idletimer) / (60 * HZ), 1313 nr->idle / (60 * HZ), 1314 nr->n2count, 1315 nr->n2, 1316 nr->window, 1317 atomic_read(&s->sk_wmem_alloc), 1318 atomic_read(&s->sk_rmem_alloc), 1319 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1320 1321 bh_unlock_sock(s); 1322 } 1323 return 0; 1324 } 1325 1326 static struct seq_operations nr_info_seqops = { 1327 .start = nr_info_start, 1328 .next = nr_info_next, 1329 .stop = nr_info_stop, 1330 .show = nr_info_show, 1331 }; 1332 1333 static int nr_info_open(struct inode *inode, struct file *file) 1334 { 1335 return seq_open(file, &nr_info_seqops); 1336 } 1337 1338 static struct file_operations nr_info_fops = { 1339 .owner = THIS_MODULE, 1340 .open = nr_info_open, 1341 .read = seq_read, 1342 .llseek = seq_lseek, 1343 .release = seq_release, 1344 }; 1345 #endif /* CONFIG_PROC_FS */ 1346 1347 static struct net_proto_family nr_family_ops = { 1348 .family = PF_NETROM, 1349 .create = nr_create, 1350 .owner = THIS_MODULE, 1351 }; 1352 1353 static const struct proto_ops nr_proto_ops = { 1354 .family = PF_NETROM, 1355 .owner = THIS_MODULE, 1356 .release = nr_release, 1357 .bind = nr_bind, 1358 .connect = nr_connect, 1359 .socketpair = sock_no_socketpair, 1360 .accept = nr_accept, 1361 .getname = nr_getname, 1362 .poll = datagram_poll, 1363 .ioctl = nr_ioctl, 1364 .listen = nr_listen, 1365 .shutdown = sock_no_shutdown, 1366 .setsockopt = nr_setsockopt, 1367 .getsockopt = nr_getsockopt, 1368 .sendmsg = nr_sendmsg, 1369 .recvmsg = nr_recvmsg, 1370 .mmap = sock_no_mmap, 1371 .sendpage = sock_no_sendpage, 1372 }; 1373 1374 static struct notifier_block nr_dev_notifier = { 1375 .notifier_call = nr_device_event, 1376 }; 1377 1378 static struct net_device **dev_nr; 1379 1380 static int __init nr_proto_init(void) 1381 { 1382 int i; 1383 int rc = proto_register(&nr_proto, 0); 1384 1385 if (rc != 0) 1386 goto out; 1387 1388 if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { 1389 printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n"); 1390 return -1; 1391 } 1392 1393 dev_nr = kzalloc(nr_ndevs * sizeof(struct net_device *), GFP_KERNEL); 1394 if (dev_nr == NULL) { 1395 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n"); 1396 return -1; 1397 } 1398 1399 for (i = 0; i < nr_ndevs; i++) { 1400 char name[IFNAMSIZ]; 1401 struct net_device *dev; 1402 1403 sprintf(name, "nr%d", i); 1404 dev = alloc_netdev(sizeof(struct nr_private), name, nr_setup); 1405 if (!dev) { 1406 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n"); 1407 goto fail; 1408 } 1409 1410 dev->base_addr = i; 1411 if (register_netdev(dev)) { 1412 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n"); 1413 free_netdev(dev); 1414 goto fail; 1415 } 1416 lockdep_set_class(&dev->_xmit_lock, &nr_netdev_xmit_lock_key); 1417 dev_nr[i] = dev; 1418 } 1419 1420 if (sock_register(&nr_family_ops)) { 1421 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n"); 1422 goto fail; 1423 } 1424 1425 register_netdevice_notifier(&nr_dev_notifier); 1426 1427 ax25_protocol_register(AX25_P_NETROM, nr_route_frame); 1428 ax25_linkfail_register(nr_link_failed); 1429 1430 #ifdef CONFIG_SYSCTL 1431 nr_register_sysctl(); 1432 #endif 1433 1434 nr_loopback_init(); 1435 1436 proc_net_fops_create("nr", S_IRUGO, &nr_info_fops); 1437 proc_net_fops_create("nr_neigh", S_IRUGO, &nr_neigh_fops); 1438 proc_net_fops_create("nr_nodes", S_IRUGO, &nr_nodes_fops); 1439 out: 1440 return rc; 1441 fail: 1442 while (--i >= 0) { 1443 unregister_netdev(dev_nr[i]); 1444 free_netdev(dev_nr[i]); 1445 } 1446 kfree(dev_nr); 1447 proto_unregister(&nr_proto); 1448 rc = -1; 1449 goto out; 1450 } 1451 1452 module_init(nr_proto_init); 1453 1454 module_param(nr_ndevs, int, 0); 1455 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); 1456 1457 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1458 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); 1459 MODULE_LICENSE("GPL"); 1460 MODULE_ALIAS_NETPROTO(PF_NETROM); 1461 1462 static void __exit nr_exit(void) 1463 { 1464 int i; 1465 1466 proc_net_remove("nr"); 1467 proc_net_remove("nr_neigh"); 1468 proc_net_remove("nr_nodes"); 1469 nr_loopback_clear(); 1470 1471 nr_rt_free(); 1472 1473 #ifdef CONFIG_SYSCTL 1474 nr_unregister_sysctl(); 1475 #endif 1476 1477 ax25_linkfail_release(nr_link_failed); 1478 ax25_protocol_release(AX25_P_NETROM); 1479 1480 unregister_netdevice_notifier(&nr_dev_notifier); 1481 1482 sock_unregister(PF_NETROM); 1483 1484 for (i = 0; i < nr_ndevs; i++) { 1485 struct net_device *dev = dev_nr[i]; 1486 if (dev) { 1487 unregister_netdev(dev); 1488 free_netdev(dev); 1489 } 1490 } 1491 1492 kfree(dev_nr); 1493 proto_unregister(&nr_proto); 1494 } 1495 module_exit(nr_exit); 1496