1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk) 8 * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk) 9 * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk) 10 */ 11 #include <linux/config.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/socket.h> 17 #include <linux/in.h> 18 #include <linux/kernel.h> 19 #include <linux/sched.h> 20 #include <linux/timer.h> 21 #include <linux/string.h> 22 #include <linux/sockios.h> 23 #include <linux/net.h> 24 #include <linux/stat.h> 25 #include <net/ax25.h> 26 #include <linux/inet.h> 27 #include <linux/netdevice.h> 28 #include <linux/if_arp.h> 29 #include <linux/skbuff.h> 30 #include <net/sock.h> 31 #include <asm/uaccess.h> 32 #include <asm/system.h> 33 #include <linux/fcntl.h> 34 #include <linux/termios.h> /* For TIOCINQ/OUTQ */ 35 #include <linux/mm.h> 36 #include <linux/interrupt.h> 37 #include <linux/notifier.h> 38 #include <net/netrom.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 #include <net/ip.h> 42 #include <net/tcp_states.h> 43 #include <net/arp.h> 44 #include <linux/init.h> 45 46 static int nr_ndevs = 4; 47 48 int sysctl_netrom_default_path_quality = NR_DEFAULT_QUAL; 49 int sysctl_netrom_obsolescence_count_initialiser = NR_DEFAULT_OBS; 50 int sysctl_netrom_network_ttl_initialiser = NR_DEFAULT_TTL; 51 int sysctl_netrom_transport_timeout = NR_DEFAULT_T1; 52 int sysctl_netrom_transport_maximum_tries = NR_DEFAULT_N2; 53 int sysctl_netrom_transport_acknowledge_delay = NR_DEFAULT_T2; 54 int sysctl_netrom_transport_busy_delay = NR_DEFAULT_T4; 55 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW; 56 int sysctl_netrom_transport_no_activity_timeout = NR_DEFAULT_IDLE; 57 int sysctl_netrom_routing_control = NR_DEFAULT_ROUTING; 58 int sysctl_netrom_link_fails_count = NR_DEFAULT_FAILS; 59 60 static unsigned short circuit = 0x101; 61 62 static HLIST_HEAD(nr_list); 63 static DEFINE_SPINLOCK(nr_list_lock); 64 65 static struct proto_ops nr_proto_ops; 66 67 /* 68 * Socket removal during an interrupt is now safe. 69 */ 70 static void nr_remove_socket(struct sock *sk) 71 { 72 spin_lock_bh(&nr_list_lock); 73 sk_del_node_init(sk); 74 spin_unlock_bh(&nr_list_lock); 75 } 76 77 /* 78 * Kill all bound sockets on a dropped device. 79 */ 80 static void nr_kill_by_device(struct net_device *dev) 81 { 82 struct sock *s; 83 struct hlist_node *node; 84 85 spin_lock_bh(&nr_list_lock); 86 sk_for_each(s, node, &nr_list) 87 if (nr_sk(s)->device == dev) 88 nr_disconnect(s, ENETUNREACH); 89 spin_unlock_bh(&nr_list_lock); 90 } 91 92 /* 93 * Handle device status changes. 94 */ 95 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr) 96 { 97 struct net_device *dev = (struct net_device *)ptr; 98 99 if (event != NETDEV_DOWN) 100 return NOTIFY_DONE; 101 102 nr_kill_by_device(dev); 103 nr_rt_device_down(dev); 104 105 return NOTIFY_DONE; 106 } 107 108 /* 109 * Add a socket to the bound sockets list. 110 */ 111 static void nr_insert_socket(struct sock *sk) 112 { 113 spin_lock_bh(&nr_list_lock); 114 sk_add_node(sk, &nr_list); 115 spin_unlock_bh(&nr_list_lock); 116 } 117 118 /* 119 * Find a socket that wants to accept the Connect Request we just 120 * received. 121 */ 122 static struct sock *nr_find_listener(ax25_address *addr) 123 { 124 struct sock *s; 125 struct hlist_node *node; 126 127 spin_lock_bh(&nr_list_lock); 128 sk_for_each(s, node, &nr_list) 129 if (!ax25cmp(&nr_sk(s)->source_addr, addr) && 130 s->sk_state == TCP_LISTEN) { 131 bh_lock_sock(s); 132 goto found; 133 } 134 s = NULL; 135 found: 136 spin_unlock_bh(&nr_list_lock); 137 return s; 138 } 139 140 /* 141 * Find a connected NET/ROM socket given my circuit IDs. 142 */ 143 static struct sock *nr_find_socket(unsigned char index, unsigned char id) 144 { 145 struct sock *s; 146 struct hlist_node *node; 147 148 spin_lock_bh(&nr_list_lock); 149 sk_for_each(s, node, &nr_list) { 150 struct nr_sock *nr = nr_sk(s); 151 152 if (nr->my_index == index && nr->my_id == id) { 153 bh_lock_sock(s); 154 goto found; 155 } 156 } 157 s = NULL; 158 found: 159 spin_unlock_bh(&nr_list_lock); 160 return s; 161 } 162 163 /* 164 * Find a connected NET/ROM socket given their circuit IDs. 165 */ 166 static struct sock *nr_find_peer(unsigned char index, unsigned char id, 167 ax25_address *dest) 168 { 169 struct sock *s; 170 struct hlist_node *node; 171 172 spin_lock_bh(&nr_list_lock); 173 sk_for_each(s, node, &nr_list) { 174 struct nr_sock *nr = nr_sk(s); 175 176 if (nr->your_index == index && nr->your_id == id && 177 !ax25cmp(&nr->dest_addr, dest)) { 178 bh_lock_sock(s); 179 goto found; 180 } 181 } 182 s = NULL; 183 found: 184 spin_unlock_bh(&nr_list_lock); 185 return s; 186 } 187 188 /* 189 * Find next free circuit ID. 190 */ 191 static unsigned short nr_find_next_circuit(void) 192 { 193 unsigned short id = circuit; 194 unsigned char i, j; 195 struct sock *sk; 196 197 for (;;) { 198 i = id / 256; 199 j = id % 256; 200 201 if (i != 0 && j != 0) { 202 if ((sk=nr_find_socket(i, j)) == NULL) 203 break; 204 bh_unlock_sock(sk); 205 } 206 207 id++; 208 } 209 210 return id; 211 } 212 213 /* 214 * Deferred destroy. 215 */ 216 void nr_destroy_socket(struct sock *); 217 218 /* 219 * Handler for deferred kills. 220 */ 221 static void nr_destroy_timer(unsigned long data) 222 { 223 struct sock *sk=(struct sock *)data; 224 bh_lock_sock(sk); 225 sock_hold(sk); 226 nr_destroy_socket(sk); 227 bh_unlock_sock(sk); 228 sock_put(sk); 229 } 230 231 /* 232 * This is called from user mode and the timers. Thus it protects itself 233 * against interrupt users but doesn't worry about being called during 234 * work. Once it is removed from the queue no interrupt or bottom half 235 * will touch it and we are (fairly 8-) ) safe. 236 */ 237 void nr_destroy_socket(struct sock *sk) 238 { 239 struct sk_buff *skb; 240 241 nr_remove_socket(sk); 242 243 nr_stop_heartbeat(sk); 244 nr_stop_t1timer(sk); 245 nr_stop_t2timer(sk); 246 nr_stop_t4timer(sk); 247 nr_stop_idletimer(sk); 248 249 nr_clear_queues(sk); /* Flush the queues */ 250 251 while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { 252 if (skb->sk != sk) { /* A pending connection */ 253 /* Queue the unaccepted socket for death */ 254 sock_set_flag(skb->sk, SOCK_DEAD); 255 nr_start_heartbeat(skb->sk); 256 nr_sk(skb->sk)->state = NR_STATE_0; 257 } 258 259 kfree_skb(skb); 260 } 261 262 if (atomic_read(&sk->sk_wmem_alloc) || 263 atomic_read(&sk->sk_rmem_alloc)) { 264 /* Defer: outstanding buffers */ 265 sk->sk_timer.function = nr_destroy_timer; 266 sk->sk_timer.expires = jiffies + 2 * HZ; 267 add_timer(&sk->sk_timer); 268 } else 269 sock_put(sk); 270 } 271 272 /* 273 * Handling for system calls applied via the various interfaces to a 274 * NET/ROM socket object. 275 */ 276 277 static int nr_setsockopt(struct socket *sock, int level, int optname, 278 char __user *optval, int optlen) 279 { 280 struct sock *sk = sock->sk; 281 struct nr_sock *nr = nr_sk(sk); 282 int opt; 283 284 if (level != SOL_NETROM) 285 return -ENOPROTOOPT; 286 287 if (optlen < sizeof(int)) 288 return -EINVAL; 289 290 if (get_user(opt, (int __user *)optval)) 291 return -EFAULT; 292 293 switch (optname) { 294 case NETROM_T1: 295 if (opt < 1) 296 return -EINVAL; 297 nr->t1 = opt * HZ; 298 return 0; 299 300 case NETROM_T2: 301 if (opt < 1) 302 return -EINVAL; 303 nr->t2 = opt * HZ; 304 return 0; 305 306 case NETROM_N2: 307 if (opt < 1 || opt > 31) 308 return -EINVAL; 309 nr->n2 = opt; 310 return 0; 311 312 case NETROM_T4: 313 if (opt < 1) 314 return -EINVAL; 315 nr->t4 = opt * HZ; 316 return 0; 317 318 case NETROM_IDLE: 319 if (opt < 0) 320 return -EINVAL; 321 nr->idle = opt * 60 * HZ; 322 return 0; 323 324 default: 325 return -ENOPROTOOPT; 326 } 327 } 328 329 static int nr_getsockopt(struct socket *sock, int level, int optname, 330 char __user *optval, int __user *optlen) 331 { 332 struct sock *sk = sock->sk; 333 struct nr_sock *nr = nr_sk(sk); 334 int val = 0; 335 int len; 336 337 if (level != SOL_NETROM) 338 return -ENOPROTOOPT; 339 340 if (get_user(len, optlen)) 341 return -EFAULT; 342 343 if (len < 0) 344 return -EINVAL; 345 346 switch (optname) { 347 case NETROM_T1: 348 val = nr->t1 / HZ; 349 break; 350 351 case NETROM_T2: 352 val = nr->t2 / HZ; 353 break; 354 355 case NETROM_N2: 356 val = nr->n2; 357 break; 358 359 case NETROM_T4: 360 val = nr->t4 / HZ; 361 break; 362 363 case NETROM_IDLE: 364 val = nr->idle / (60 * HZ); 365 break; 366 367 default: 368 return -ENOPROTOOPT; 369 } 370 371 len = min_t(unsigned int, len, sizeof(int)); 372 373 if (put_user(len, optlen)) 374 return -EFAULT; 375 376 return copy_to_user(optval, &val, len) ? -EFAULT : 0; 377 } 378 379 static int nr_listen(struct socket *sock, int backlog) 380 { 381 struct sock *sk = sock->sk; 382 383 lock_sock(sk); 384 if (sk->sk_state != TCP_LISTEN) { 385 memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN); 386 sk->sk_max_ack_backlog = backlog; 387 sk->sk_state = TCP_LISTEN; 388 release_sock(sk); 389 return 0; 390 } 391 release_sock(sk); 392 393 return -EOPNOTSUPP; 394 } 395 396 static struct proto nr_proto = { 397 .name = "NETROM", 398 .owner = THIS_MODULE, 399 .obj_size = sizeof(struct nr_sock), 400 }; 401 402 static int nr_create(struct socket *sock, int protocol) 403 { 404 struct sock *sk; 405 struct nr_sock *nr; 406 407 if (sock->type != SOCK_SEQPACKET || protocol != 0) 408 return -ESOCKTNOSUPPORT; 409 410 if ((sk = sk_alloc(PF_NETROM, GFP_ATOMIC, &nr_proto, 1)) == NULL) 411 return -ENOMEM; 412 413 nr = nr_sk(sk); 414 415 sock_init_data(sock, sk); 416 417 sock->ops = &nr_proto_ops; 418 sk->sk_protocol = protocol; 419 420 skb_queue_head_init(&nr->ack_queue); 421 skb_queue_head_init(&nr->reseq_queue); 422 skb_queue_head_init(&nr->frag_queue); 423 424 nr_init_timers(sk); 425 426 nr->t1 = sysctl_netrom_transport_timeout; 427 nr->t2 = sysctl_netrom_transport_acknowledge_delay; 428 nr->n2 = sysctl_netrom_transport_maximum_tries; 429 nr->t4 = sysctl_netrom_transport_busy_delay; 430 nr->idle = sysctl_netrom_transport_no_activity_timeout; 431 nr->window = sysctl_netrom_transport_requested_window_size; 432 433 nr->bpqext = 1; 434 nr->state = NR_STATE_0; 435 436 return 0; 437 } 438 439 static struct sock *nr_make_new(struct sock *osk) 440 { 441 struct sock *sk; 442 struct nr_sock *nr, *onr; 443 444 if (osk->sk_type != SOCK_SEQPACKET) 445 return NULL; 446 447 if ((sk = sk_alloc(PF_NETROM, GFP_ATOMIC, osk->sk_prot, 1)) == NULL) 448 return NULL; 449 450 nr = nr_sk(sk); 451 452 sock_init_data(NULL, sk); 453 454 sk->sk_type = osk->sk_type; 455 sk->sk_socket = osk->sk_socket; 456 sk->sk_priority = osk->sk_priority; 457 sk->sk_protocol = osk->sk_protocol; 458 sk->sk_rcvbuf = osk->sk_rcvbuf; 459 sk->sk_sndbuf = osk->sk_sndbuf; 460 sk->sk_state = TCP_ESTABLISHED; 461 sk->sk_sleep = osk->sk_sleep; 462 sock_copy_flags(sk, osk); 463 464 skb_queue_head_init(&nr->ack_queue); 465 skb_queue_head_init(&nr->reseq_queue); 466 skb_queue_head_init(&nr->frag_queue); 467 468 nr_init_timers(sk); 469 470 onr = nr_sk(osk); 471 472 nr->t1 = onr->t1; 473 nr->t2 = onr->t2; 474 nr->n2 = onr->n2; 475 nr->t4 = onr->t4; 476 nr->idle = onr->idle; 477 nr->window = onr->window; 478 479 nr->device = onr->device; 480 nr->bpqext = onr->bpqext; 481 482 return sk; 483 } 484 485 static int nr_release(struct socket *sock) 486 { 487 struct sock *sk = sock->sk; 488 struct nr_sock *nr; 489 490 if (sk == NULL) return 0; 491 492 sock_hold(sk); 493 lock_sock(sk); 494 nr = nr_sk(sk); 495 496 switch (nr->state) { 497 case NR_STATE_0: 498 case NR_STATE_1: 499 case NR_STATE_2: 500 nr_disconnect(sk, 0); 501 nr_destroy_socket(sk); 502 break; 503 504 case NR_STATE_3: 505 nr_clear_queues(sk); 506 nr->n2count = 0; 507 nr_write_internal(sk, NR_DISCREQ); 508 nr_start_t1timer(sk); 509 nr_stop_t2timer(sk); 510 nr_stop_t4timer(sk); 511 nr_stop_idletimer(sk); 512 nr->state = NR_STATE_2; 513 sk->sk_state = TCP_CLOSE; 514 sk->sk_shutdown |= SEND_SHUTDOWN; 515 sk->sk_state_change(sk); 516 sock_orphan(sk); 517 sock_set_flag(sk, SOCK_DESTROY); 518 sk->sk_socket = NULL; 519 break; 520 521 default: 522 sk->sk_socket = NULL; 523 break; 524 } 525 526 sock->sk = NULL; 527 release_sock(sk); 528 sock_put(sk); 529 530 return 0; 531 } 532 533 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 534 { 535 struct sock *sk = sock->sk; 536 struct nr_sock *nr = nr_sk(sk); 537 struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr; 538 struct net_device *dev; 539 ax25_uid_assoc *user; 540 ax25_address *source; 541 542 lock_sock(sk); 543 if (!sock_flag(sk, SOCK_ZAPPED)) { 544 release_sock(sk); 545 return -EINVAL; 546 } 547 if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) { 548 release_sock(sk); 549 return -EINVAL; 550 } 551 if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) { 552 release_sock(sk); 553 return -EINVAL; 554 } 555 if (addr->fsa_ax25.sax25_family != AF_NETROM) { 556 release_sock(sk); 557 return -EINVAL; 558 } 559 if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) { 560 SOCK_DEBUG(sk, "NET/ROM: bind failed: invalid node callsign\n"); 561 release_sock(sk); 562 return -EADDRNOTAVAIL; 563 } 564 565 /* 566 * Only the super user can set an arbitrary user callsign. 567 */ 568 if (addr->fsa_ax25.sax25_ndigis == 1) { 569 if (!capable(CAP_NET_BIND_SERVICE)) { 570 dev_put(dev); 571 release_sock(sk); 572 return -EACCES; 573 } 574 nr->user_addr = addr->fsa_digipeater[0]; 575 nr->source_addr = addr->fsa_ax25.sax25_call; 576 } else { 577 source = &addr->fsa_ax25.sax25_call; 578 579 user = ax25_findbyuid(current->euid); 580 if (user) { 581 nr->user_addr = user->call; 582 ax25_uid_put(user); 583 } else { 584 if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) { 585 release_sock(sk); 586 dev_put(dev); 587 return -EPERM; 588 } 589 nr->user_addr = *source; 590 } 591 592 nr->source_addr = *source; 593 } 594 595 nr->device = dev; 596 nr_insert_socket(sk); 597 598 sock_reset_flag(sk, SOCK_ZAPPED); 599 dev_put(dev); 600 release_sock(sk); 601 SOCK_DEBUG(sk, "NET/ROM: socket is bound\n"); 602 return 0; 603 } 604 605 static int nr_connect(struct socket *sock, struct sockaddr *uaddr, 606 int addr_len, int flags) 607 { 608 struct sock *sk = sock->sk; 609 struct nr_sock *nr = nr_sk(sk); 610 struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr; 611 ax25_address *source = NULL; 612 ax25_uid_assoc *user; 613 struct net_device *dev; 614 615 lock_sock(sk); 616 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { 617 sock->state = SS_CONNECTED; 618 release_sock(sk); 619 return 0; /* Connect completed during a ERESTARTSYS event */ 620 } 621 622 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { 623 sock->state = SS_UNCONNECTED; 624 release_sock(sk); 625 return -ECONNREFUSED; 626 } 627 628 if (sk->sk_state == TCP_ESTABLISHED) { 629 release_sock(sk); 630 return -EISCONN; /* No reconnect on a seqpacket socket */ 631 } 632 633 sk->sk_state = TCP_CLOSE; 634 sock->state = SS_UNCONNECTED; 635 636 if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) { 637 release_sock(sk); 638 return -EINVAL; 639 } 640 if (addr->sax25_family != AF_NETROM) { 641 release_sock(sk); 642 return -EINVAL; 643 } 644 if (sock_flag(sk, SOCK_ZAPPED)) { /* Must bind first - autobinding in this may or may not work */ 645 sock_reset_flag(sk, SOCK_ZAPPED); 646 647 if ((dev = nr_dev_first()) == NULL) { 648 release_sock(sk); 649 return -ENETUNREACH; 650 } 651 source = (ax25_address *)dev->dev_addr; 652 653 user = ax25_findbyuid(current->euid); 654 if (user) { 655 nr->user_addr = user->call; 656 ax25_uid_put(user); 657 } else { 658 if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) { 659 dev_put(dev); 660 release_sock(sk); 661 return -EPERM; 662 } 663 nr->user_addr = *source; 664 } 665 666 nr->source_addr = *source; 667 nr->device = dev; 668 669 dev_put(dev); 670 nr_insert_socket(sk); /* Finish the bind */ 671 } 672 673 nr->dest_addr = addr->sax25_call; 674 675 release_sock(sk); 676 circuit = nr_find_next_circuit(); 677 lock_sock(sk); 678 679 nr->my_index = circuit / 256; 680 nr->my_id = circuit % 256; 681 682 circuit++; 683 684 /* Move to connecting socket, start sending Connect Requests */ 685 sock->state = SS_CONNECTING; 686 sk->sk_state = TCP_SYN_SENT; 687 688 nr_establish_data_link(sk); 689 690 nr->state = NR_STATE_1; 691 692 nr_start_heartbeat(sk); 693 694 /* Now the loop */ 695 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) { 696 release_sock(sk); 697 return -EINPROGRESS; 698 } 699 700 /* 701 * A Connect Ack with Choke or timeout or failed routing will go to 702 * closed. 703 */ 704 if (sk->sk_state == TCP_SYN_SENT) { 705 struct task_struct *tsk = current; 706 DECLARE_WAITQUEUE(wait, tsk); 707 708 add_wait_queue(sk->sk_sleep, &wait); 709 for (;;) { 710 set_current_state(TASK_INTERRUPTIBLE); 711 if (sk->sk_state != TCP_SYN_SENT) 712 break; 713 release_sock(sk); 714 if (!signal_pending(tsk)) { 715 schedule(); 716 lock_sock(sk); 717 continue; 718 } 719 current->state = TASK_RUNNING; 720 remove_wait_queue(sk->sk_sleep, &wait); 721 return -ERESTARTSYS; 722 } 723 current->state = TASK_RUNNING; 724 remove_wait_queue(sk->sk_sleep, &wait); 725 } 726 727 if (sk->sk_state != TCP_ESTABLISHED) { 728 sock->state = SS_UNCONNECTED; 729 release_sock(sk); 730 return sock_error(sk); /* Always set at this point */ 731 } 732 733 sock->state = SS_CONNECTED; 734 release_sock(sk); 735 736 return 0; 737 } 738 739 static int nr_accept(struct socket *sock, struct socket *newsock, int flags) 740 { 741 struct task_struct *tsk = current; 742 DECLARE_WAITQUEUE(wait, tsk); 743 struct sk_buff *skb; 744 struct sock *newsk; 745 struct sock *sk; 746 int err = 0; 747 748 if ((sk = sock->sk) == NULL) 749 return -EINVAL; 750 751 lock_sock(sk); 752 if (sk->sk_type != SOCK_SEQPACKET) { 753 err = -EOPNOTSUPP; 754 goto out; 755 } 756 757 if (sk->sk_state != TCP_LISTEN) { 758 err = -EINVAL; 759 goto out; 760 } 761 762 /* 763 * The write queue this time is holding sockets ready to use 764 * hooked into the SABM we saved 765 */ 766 add_wait_queue(sk->sk_sleep, &wait); 767 for (;;) { 768 skb = skb_dequeue(&sk->sk_receive_queue); 769 if (skb) 770 break; 771 772 current->state = TASK_INTERRUPTIBLE; 773 release_sock(sk); 774 if (flags & O_NONBLOCK) { 775 current->state = TASK_RUNNING; 776 remove_wait_queue(sk->sk_sleep, &wait); 777 return -EWOULDBLOCK; 778 } 779 if (!signal_pending(tsk)) { 780 schedule(); 781 lock_sock(sk); 782 continue; 783 } 784 current->state = TASK_RUNNING; 785 remove_wait_queue(sk->sk_sleep, &wait); 786 return -ERESTARTSYS; 787 } 788 current->state = TASK_RUNNING; 789 remove_wait_queue(sk->sk_sleep, &wait); 790 791 newsk = skb->sk; 792 newsk->sk_socket = newsock; 793 newsk->sk_sleep = &newsock->wait; 794 795 /* Now attach up the new socket */ 796 kfree_skb(skb); 797 sk->sk_ack_backlog--; 798 newsock->sk = newsk; 799 800 out: 801 release_sock(sk); 802 return err; 803 } 804 805 static int nr_getname(struct socket *sock, struct sockaddr *uaddr, 806 int *uaddr_len, int peer) 807 { 808 struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr; 809 struct sock *sk = sock->sk; 810 struct nr_sock *nr = nr_sk(sk); 811 812 lock_sock(sk); 813 if (peer != 0) { 814 if (sk->sk_state != TCP_ESTABLISHED) { 815 release_sock(sk); 816 return -ENOTCONN; 817 } 818 sax->fsa_ax25.sax25_family = AF_NETROM; 819 sax->fsa_ax25.sax25_ndigis = 1; 820 sax->fsa_ax25.sax25_call = nr->user_addr; 821 sax->fsa_digipeater[0] = nr->dest_addr; 822 *uaddr_len = sizeof(struct full_sockaddr_ax25); 823 } else { 824 sax->fsa_ax25.sax25_family = AF_NETROM; 825 sax->fsa_ax25.sax25_ndigis = 0; 826 sax->fsa_ax25.sax25_call = nr->source_addr; 827 *uaddr_len = sizeof(struct sockaddr_ax25); 828 } 829 release_sock(sk); 830 831 return 0; 832 } 833 834 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev) 835 { 836 struct sock *sk; 837 struct sock *make; 838 struct nr_sock *nr_make; 839 ax25_address *src, *dest, *user; 840 unsigned short circuit_index, circuit_id; 841 unsigned short peer_circuit_index, peer_circuit_id; 842 unsigned short frametype, flags, window, timeout; 843 int ret; 844 845 skb->sk = NULL; /* Initially we don't know who it's for */ 846 847 /* 848 * skb->data points to the netrom frame start 849 */ 850 851 src = (ax25_address *)(skb->data + 0); 852 dest = (ax25_address *)(skb->data + 7); 853 854 circuit_index = skb->data[15]; 855 circuit_id = skb->data[16]; 856 peer_circuit_index = skb->data[17]; 857 peer_circuit_id = skb->data[18]; 858 frametype = skb->data[19] & 0x0F; 859 flags = skb->data[19] & 0xF0; 860 861 /* 862 * Check for an incoming IP over NET/ROM frame. 863 */ 864 if (frametype == NR_PROTOEXT && 865 circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) { 866 skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN); 867 skb->h.raw = skb->data; 868 869 return nr_rx_ip(skb, dev); 870 } 871 872 /* 873 * Find an existing socket connection, based on circuit ID, if it's 874 * a Connect Request base it on their circuit ID. 875 * 876 * Circuit ID 0/0 is not valid but it could still be a "reset" for a 877 * circuit that no longer exists at the other end ... 878 */ 879 880 sk = NULL; 881 882 if (circuit_index == 0 && circuit_id == 0) { 883 if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG) 884 sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src); 885 } else { 886 if (frametype == NR_CONNREQ) 887 sk = nr_find_peer(circuit_index, circuit_id, src); 888 else 889 sk = nr_find_socket(circuit_index, circuit_id); 890 } 891 892 if (sk != NULL) { 893 skb->h.raw = skb->data; 894 895 if (frametype == NR_CONNACK && skb->len == 22) 896 nr_sk(sk)->bpqext = 1; 897 else 898 nr_sk(sk)->bpqext = 0; 899 900 ret = nr_process_rx_frame(sk, skb); 901 bh_unlock_sock(sk); 902 return ret; 903 } 904 905 /* 906 * Now it should be a CONNREQ. 907 */ 908 if (frametype != NR_CONNREQ) { 909 /* 910 * Here it would be nice to be able to send a reset but 911 * NET/ROM doesn't have one. The following hack would 912 * have been a way to extend the protocol but apparently 913 * it kills BPQ boxes... :-( 914 */ 915 #if 0 916 /* 917 * Never reply to a CONNACK/CHOKE. 918 */ 919 if (frametype != NR_CONNACK || flags != NR_CHOKE_FLAG) 920 nr_transmit_refusal(skb, 1); 921 #endif 922 return 0; 923 } 924 925 sk = nr_find_listener(dest); 926 927 user = (ax25_address *)(skb->data + 21); 928 929 if (sk == NULL || sk_acceptq_is_full(sk) || 930 (make = nr_make_new(sk)) == NULL) { 931 nr_transmit_refusal(skb, 0); 932 if (sk) 933 bh_unlock_sock(sk); 934 return 0; 935 } 936 937 window = skb->data[20]; 938 939 skb->sk = make; 940 make->sk_state = TCP_ESTABLISHED; 941 942 /* Fill in his circuit details */ 943 nr_make = nr_sk(make); 944 nr_make->source_addr = *dest; 945 nr_make->dest_addr = *src; 946 nr_make->user_addr = *user; 947 948 nr_make->your_index = circuit_index; 949 nr_make->your_id = circuit_id; 950 951 bh_unlock_sock(sk); 952 circuit = nr_find_next_circuit(); 953 bh_lock_sock(sk); 954 955 nr_make->my_index = circuit / 256; 956 nr_make->my_id = circuit % 256; 957 958 circuit++; 959 960 /* Window negotiation */ 961 if (window < nr_make->window) 962 nr_make->window = window; 963 964 /* L4 timeout negotiation */ 965 if (skb->len == 37) { 966 timeout = skb->data[36] * 256 + skb->data[35]; 967 if (timeout * HZ < nr_make->t1) 968 nr_make->t1 = timeout * HZ; 969 nr_make->bpqext = 1; 970 } else { 971 nr_make->bpqext = 0; 972 } 973 974 nr_write_internal(make, NR_CONNACK); 975 976 nr_make->condition = 0x00; 977 nr_make->vs = 0; 978 nr_make->va = 0; 979 nr_make->vr = 0; 980 nr_make->vl = 0; 981 nr_make->state = NR_STATE_3; 982 sk->sk_ack_backlog++; 983 984 nr_insert_socket(make); 985 986 skb_queue_head(&sk->sk_receive_queue, skb); 987 988 nr_start_heartbeat(make); 989 nr_start_idletimer(make); 990 991 if (!sock_flag(sk, SOCK_DEAD)) 992 sk->sk_data_ready(sk, skb->len); 993 994 bh_unlock_sock(sk); 995 return 1; 996 } 997 998 static int nr_sendmsg(struct kiocb *iocb, struct socket *sock, 999 struct msghdr *msg, size_t len) 1000 { 1001 struct sock *sk = sock->sk; 1002 struct nr_sock *nr = nr_sk(sk); 1003 struct sockaddr_ax25 *usax = (struct sockaddr_ax25 *)msg->msg_name; 1004 int err; 1005 struct sockaddr_ax25 sax; 1006 struct sk_buff *skb; 1007 unsigned char *asmptr; 1008 int size; 1009 1010 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) 1011 return -EINVAL; 1012 1013 lock_sock(sk); 1014 if (sock_flag(sk, SOCK_ZAPPED)) { 1015 err = -EADDRNOTAVAIL; 1016 goto out; 1017 } 1018 1019 if (sk->sk_shutdown & SEND_SHUTDOWN) { 1020 send_sig(SIGPIPE, current, 0); 1021 err = -EPIPE; 1022 goto out; 1023 } 1024 1025 if (nr->device == NULL) { 1026 err = -ENETUNREACH; 1027 goto out; 1028 } 1029 1030 if (usax) { 1031 if (msg->msg_namelen < sizeof(sax)) { 1032 err = -EINVAL; 1033 goto out; 1034 } 1035 sax = *usax; 1036 if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) { 1037 err = -EISCONN; 1038 goto out; 1039 } 1040 if (sax.sax25_family != AF_NETROM) { 1041 err = -EINVAL; 1042 goto out; 1043 } 1044 } else { 1045 if (sk->sk_state != TCP_ESTABLISHED) { 1046 err = -ENOTCONN; 1047 goto out; 1048 } 1049 sax.sax25_family = AF_NETROM; 1050 sax.sax25_call = nr->dest_addr; 1051 } 1052 1053 SOCK_DEBUG(sk, "NET/ROM: sendto: Addresses built.\n"); 1054 1055 /* Build a packet */ 1056 SOCK_DEBUG(sk, "NET/ROM: sendto: building packet.\n"); 1057 size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN; 1058 1059 if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL) 1060 goto out; 1061 1062 skb_reserve(skb, size - len); 1063 1064 /* 1065 * Push down the NET/ROM header 1066 */ 1067 1068 asmptr = skb_push(skb, NR_TRANSPORT_LEN); 1069 SOCK_DEBUG(sk, "Building NET/ROM Header.\n"); 1070 1071 /* Build a NET/ROM Transport header */ 1072 1073 *asmptr++ = nr->your_index; 1074 *asmptr++ = nr->your_id; 1075 *asmptr++ = 0; /* To be filled in later */ 1076 *asmptr++ = 0; /* Ditto */ 1077 *asmptr++ = NR_INFO; 1078 SOCK_DEBUG(sk, "Built header.\n"); 1079 1080 /* 1081 * Put the data on the end 1082 */ 1083 1084 skb->h.raw = skb_put(skb, len); 1085 1086 asmptr = skb->h.raw; 1087 SOCK_DEBUG(sk, "NET/ROM: Appending user data\n"); 1088 1089 /* User data follows immediately after the NET/ROM transport header */ 1090 if (memcpy_fromiovec(asmptr, msg->msg_iov, len)) { 1091 kfree_skb(skb); 1092 err = -EFAULT; 1093 goto out; 1094 } 1095 1096 SOCK_DEBUG(sk, "NET/ROM: Transmitting buffer\n"); 1097 1098 if (sk->sk_state != TCP_ESTABLISHED) { 1099 kfree_skb(skb); 1100 err = -ENOTCONN; 1101 goto out; 1102 } 1103 1104 nr_output(sk, skb); /* Shove it onto the queue */ 1105 1106 err = len; 1107 out: 1108 release_sock(sk); 1109 return err; 1110 } 1111 1112 static int nr_recvmsg(struct kiocb *iocb, struct socket *sock, 1113 struct msghdr *msg, size_t size, int flags) 1114 { 1115 struct sock *sk = sock->sk; 1116 struct sockaddr_ax25 *sax = (struct sockaddr_ax25 *)msg->msg_name; 1117 size_t copied; 1118 struct sk_buff *skb; 1119 int er; 1120 1121 /* 1122 * This works for seqpacket too. The receiver has ordered the queue for 1123 * us! We do one quick check first though 1124 */ 1125 1126 lock_sock(sk); 1127 if (sk->sk_state != TCP_ESTABLISHED) { 1128 release_sock(sk); 1129 return -ENOTCONN; 1130 } 1131 1132 /* Now we can treat all alike */ 1133 if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) { 1134 release_sock(sk); 1135 return er; 1136 } 1137 1138 skb->h.raw = skb->data; 1139 copied = skb->len; 1140 1141 if (copied > size) { 1142 copied = size; 1143 msg->msg_flags |= MSG_TRUNC; 1144 } 1145 1146 skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1147 1148 if (sax != NULL) { 1149 sax->sax25_family = AF_NETROM; 1150 memcpy(sax->sax25_call.ax25_call, skb->data + 7, AX25_ADDR_LEN); 1151 } 1152 1153 msg->msg_namelen = sizeof(*sax); 1154 1155 skb_free_datagram(sk, skb); 1156 1157 release_sock(sk); 1158 return copied; 1159 } 1160 1161 1162 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 1163 { 1164 struct sock *sk = sock->sk; 1165 void __user *argp = (void __user *)arg; 1166 int ret; 1167 1168 lock_sock(sk); 1169 switch (cmd) { 1170 case TIOCOUTQ: { 1171 long amount; 1172 amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 1173 if (amount < 0) 1174 amount = 0; 1175 release_sock(sk); 1176 return put_user(amount, (int __user *)argp); 1177 } 1178 1179 case TIOCINQ: { 1180 struct sk_buff *skb; 1181 long amount = 0L; 1182 /* These two are safe on a single CPU system as only user tasks fiddle here */ 1183 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) 1184 amount = skb->len; 1185 release_sock(sk); 1186 return put_user(amount, (int __user *)argp); 1187 } 1188 1189 case SIOCGSTAMP: 1190 ret = -EINVAL; 1191 if (sk != NULL) 1192 ret = sock_get_timestamp(sk, argp); 1193 release_sock(sk); 1194 return ret; 1195 1196 case SIOCGIFADDR: 1197 case SIOCSIFADDR: 1198 case SIOCGIFDSTADDR: 1199 case SIOCSIFDSTADDR: 1200 case SIOCGIFBRDADDR: 1201 case SIOCSIFBRDADDR: 1202 case SIOCGIFNETMASK: 1203 case SIOCSIFNETMASK: 1204 case SIOCGIFMETRIC: 1205 case SIOCSIFMETRIC: 1206 release_sock(sk); 1207 return -EINVAL; 1208 1209 case SIOCADDRT: 1210 case SIOCDELRT: 1211 case SIOCNRDECOBS: 1212 release_sock(sk); 1213 if (!capable(CAP_NET_ADMIN)) return -EPERM; 1214 return nr_rt_ioctl(cmd, argp); 1215 1216 default: 1217 release_sock(sk); 1218 return dev_ioctl(cmd, argp); 1219 } 1220 release_sock(sk); 1221 1222 return 0; 1223 } 1224 1225 #ifdef CONFIG_PROC_FS 1226 1227 static void *nr_info_start(struct seq_file *seq, loff_t *pos) 1228 { 1229 struct sock *s; 1230 struct hlist_node *node; 1231 int i = 1; 1232 1233 spin_lock_bh(&nr_list_lock); 1234 if (*pos == 0) 1235 return SEQ_START_TOKEN; 1236 1237 sk_for_each(s, node, &nr_list) { 1238 if (i == *pos) 1239 return s; 1240 ++i; 1241 } 1242 return NULL; 1243 } 1244 1245 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos) 1246 { 1247 ++*pos; 1248 1249 return (v == SEQ_START_TOKEN) ? sk_head(&nr_list) 1250 : sk_next((struct sock *)v); 1251 } 1252 1253 static void nr_info_stop(struct seq_file *seq, void *v) 1254 { 1255 spin_unlock_bh(&nr_list_lock); 1256 } 1257 1258 static int nr_info_show(struct seq_file *seq, void *v) 1259 { 1260 struct sock *s = v; 1261 struct net_device *dev; 1262 struct nr_sock *nr; 1263 const char *devname; 1264 1265 if (v == SEQ_START_TOKEN) 1266 seq_puts(seq, 1267 "user_addr dest_node src_node dev my your st vs vr va t1 t2 t4 idle n2 wnd Snd-Q Rcv-Q inode\n"); 1268 1269 else { 1270 1271 bh_lock_sock(s); 1272 nr = nr_sk(s); 1273 1274 if ((dev = nr->device) == NULL) 1275 devname = "???"; 1276 else 1277 devname = dev->name; 1278 1279 seq_printf(seq, "%-9s ", ax2asc(&nr->user_addr)); 1280 seq_printf(seq, "%-9s ", ax2asc(&nr->dest_addr)); 1281 seq_printf(seq, 1282 "%-9s %-3s %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n", 1283 ax2asc(&nr->source_addr), 1284 devname, 1285 nr->my_index, 1286 nr->my_id, 1287 nr->your_index, 1288 nr->your_id, 1289 nr->state, 1290 nr->vs, 1291 nr->vr, 1292 nr->va, 1293 ax25_display_timer(&nr->t1timer) / HZ, 1294 nr->t1 / HZ, 1295 ax25_display_timer(&nr->t2timer) / HZ, 1296 nr->t2 / HZ, 1297 ax25_display_timer(&nr->t4timer) / HZ, 1298 nr->t4 / HZ, 1299 ax25_display_timer(&nr->idletimer) / (60 * HZ), 1300 nr->idle / (60 * HZ), 1301 nr->n2count, 1302 nr->n2, 1303 nr->window, 1304 atomic_read(&s->sk_wmem_alloc), 1305 atomic_read(&s->sk_rmem_alloc), 1306 s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L); 1307 1308 bh_unlock_sock(s); 1309 } 1310 return 0; 1311 } 1312 1313 static struct seq_operations nr_info_seqops = { 1314 .start = nr_info_start, 1315 .next = nr_info_next, 1316 .stop = nr_info_stop, 1317 .show = nr_info_show, 1318 }; 1319 1320 static int nr_info_open(struct inode *inode, struct file *file) 1321 { 1322 return seq_open(file, &nr_info_seqops); 1323 } 1324 1325 static struct file_operations nr_info_fops = { 1326 .owner = THIS_MODULE, 1327 .open = nr_info_open, 1328 .read = seq_read, 1329 .llseek = seq_lseek, 1330 .release = seq_release, 1331 }; 1332 #endif /* CONFIG_PROC_FS */ 1333 1334 static struct net_proto_family nr_family_ops = { 1335 .family = PF_NETROM, 1336 .create = nr_create, 1337 .owner = THIS_MODULE, 1338 }; 1339 1340 static struct proto_ops nr_proto_ops = { 1341 .family = PF_NETROM, 1342 .owner = THIS_MODULE, 1343 .release = nr_release, 1344 .bind = nr_bind, 1345 .connect = nr_connect, 1346 .socketpair = sock_no_socketpair, 1347 .accept = nr_accept, 1348 .getname = nr_getname, 1349 .poll = datagram_poll, 1350 .ioctl = nr_ioctl, 1351 .listen = nr_listen, 1352 .shutdown = sock_no_shutdown, 1353 .setsockopt = nr_setsockopt, 1354 .getsockopt = nr_getsockopt, 1355 .sendmsg = nr_sendmsg, 1356 .recvmsg = nr_recvmsg, 1357 .mmap = sock_no_mmap, 1358 .sendpage = sock_no_sendpage, 1359 }; 1360 1361 static struct notifier_block nr_dev_notifier = { 1362 .notifier_call = nr_device_event, 1363 }; 1364 1365 static struct net_device **dev_nr; 1366 1367 static char banner[] __initdata = KERN_INFO "G4KLX NET/ROM for Linux. Version 0.7 for AX25.037 Linux 2.4\n"; 1368 1369 static int __init nr_proto_init(void) 1370 { 1371 int i; 1372 int rc = proto_register(&nr_proto, 0); 1373 1374 if (rc != 0) 1375 goto out; 1376 1377 if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) { 1378 printk(KERN_ERR "NET/ROM: nr_proto_init - nr_ndevs parameter to large\n"); 1379 return -1; 1380 } 1381 1382 dev_nr = kmalloc(nr_ndevs * sizeof(struct net_device *), GFP_KERNEL); 1383 if (dev_nr == NULL) { 1384 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device array\n"); 1385 return -1; 1386 } 1387 1388 memset(dev_nr, 0x00, nr_ndevs * sizeof(struct net_device *)); 1389 1390 for (i = 0; i < nr_ndevs; i++) { 1391 char name[IFNAMSIZ]; 1392 struct net_device *dev; 1393 1394 sprintf(name, "nr%d", i); 1395 dev = alloc_netdev(sizeof(struct net_device_stats), name, 1396 nr_setup); 1397 if (!dev) { 1398 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to allocate device structure\n"); 1399 goto fail; 1400 } 1401 1402 dev->base_addr = i; 1403 if (register_netdev(dev)) { 1404 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register network device\n"); 1405 free_netdev(dev); 1406 goto fail; 1407 } 1408 dev_nr[i] = dev; 1409 } 1410 1411 if (sock_register(&nr_family_ops)) { 1412 printk(KERN_ERR "NET/ROM: nr_proto_init - unable to register socket family\n"); 1413 goto fail; 1414 } 1415 1416 register_netdevice_notifier(&nr_dev_notifier); 1417 printk(banner); 1418 1419 ax25_protocol_register(AX25_P_NETROM, nr_route_frame); 1420 ax25_linkfail_register(nr_link_failed); 1421 1422 #ifdef CONFIG_SYSCTL 1423 nr_register_sysctl(); 1424 #endif 1425 1426 nr_loopback_init(); 1427 1428 proc_net_fops_create("nr", S_IRUGO, &nr_info_fops); 1429 proc_net_fops_create("nr_neigh", S_IRUGO, &nr_neigh_fops); 1430 proc_net_fops_create("nr_nodes", S_IRUGO, &nr_nodes_fops); 1431 out: 1432 return rc; 1433 fail: 1434 while (--i >= 0) { 1435 unregister_netdev(dev_nr[i]); 1436 free_netdev(dev_nr[i]); 1437 } 1438 kfree(dev_nr); 1439 proto_unregister(&nr_proto); 1440 rc = -1; 1441 goto out; 1442 } 1443 1444 module_init(nr_proto_init); 1445 1446 module_param(nr_ndevs, int, 0); 1447 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices"); 1448 1449 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>"); 1450 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol"); 1451 MODULE_LICENSE("GPL"); 1452 MODULE_ALIAS_NETPROTO(PF_NETROM); 1453 1454 static void __exit nr_exit(void) 1455 { 1456 int i; 1457 1458 proc_net_remove("nr"); 1459 proc_net_remove("nr_neigh"); 1460 proc_net_remove("nr_nodes"); 1461 nr_loopback_clear(); 1462 1463 nr_rt_free(); 1464 1465 #ifdef CONFIG_SYSCTL 1466 nr_unregister_sysctl(); 1467 #endif 1468 1469 ax25_linkfail_release(nr_link_failed); 1470 ax25_protocol_release(AX25_P_NETROM); 1471 1472 unregister_netdevice_notifier(&nr_dev_notifier); 1473 1474 sock_unregister(PF_NETROM); 1475 1476 for (i = 0; i < nr_ndevs; i++) { 1477 struct net_device *dev = dev_nr[i]; 1478 if (dev) { 1479 unregister_netdev(dev); 1480 free_netdev(dev); 1481 } 1482 } 1483 1484 kfree(dev_nr); 1485 proto_unregister(&nr_proto); 1486 } 1487 module_exit(nr_exit); 1488