xref: /linux/net/netlink/af_netlink.c (revision f24e9f586b377749dff37554696cf3a105540c94)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@redhat.com>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  *
7  *		This program is free software; you can redistribute it and/or
8  *		modify it under the terms of the GNU General Public License
9  *		as published by the Free Software Foundation; either version
10  *		2 of the License, or (at your option) any later version.
11  *
12  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
13  *                               added netlink_proto_exit
14  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
15  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
16  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
17  * 				 - inc module use count of module that owns
18  * 				   the kernel socket in case userspace opens
19  * 				   socket of same protocol
20  * 				 - remove all module support, since netlink is
21  * 				   mandatory if CONFIG_NET=y these days
22  */
23 
24 #include <linux/module.h>
25 
26 #include <linux/capability.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/signal.h>
30 #include <linux/sched.h>
31 #include <linux/errno.h>
32 #include <linux/string.h>
33 #include <linux/stat.h>
34 #include <linux/socket.h>
35 #include <linux/un.h>
36 #include <linux/fcntl.h>
37 #include <linux/termios.h>
38 #include <linux/sockios.h>
39 #include <linux/net.h>
40 #include <linux/fs.h>
41 #include <linux/slab.h>
42 #include <asm/uaccess.h>
43 #include <linux/skbuff.h>
44 #include <linux/netdevice.h>
45 #include <linux/rtnetlink.h>
46 #include <linux/proc_fs.h>
47 #include <linux/seq_file.h>
48 #include <linux/smp_lock.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/selinux.h>
59 
60 #include <net/sock.h>
61 #include <net/scm.h>
62 #include <net/netlink.h>
63 
64 #define NLGRPSZ(x)	(ALIGN(x, sizeof(unsigned long) * 8) / 8)
65 
66 struct netlink_sock {
67 	/* struct sock has to be the first member of netlink_sock */
68 	struct sock		sk;
69 	u32			pid;
70 	u32			dst_pid;
71 	u32			dst_group;
72 	u32			flags;
73 	u32			subscriptions;
74 	u32			ngroups;
75 	unsigned long		*groups;
76 	unsigned long		state;
77 	wait_queue_head_t	wait;
78 	struct netlink_callback	*cb;
79 	spinlock_t		cb_lock;
80 	void			(*data_ready)(struct sock *sk, int bytes);
81 	struct module		*module;
82 };
83 
84 #define NETLINK_KERNEL_SOCKET	0x1
85 #define NETLINK_RECV_PKTINFO	0x2
86 
87 static inline struct netlink_sock *nlk_sk(struct sock *sk)
88 {
89 	return (struct netlink_sock *)sk;
90 }
91 
92 struct nl_pid_hash {
93 	struct hlist_head *table;
94 	unsigned long rehash_time;
95 
96 	unsigned int mask;
97 	unsigned int shift;
98 
99 	unsigned int entries;
100 	unsigned int max_shift;
101 
102 	u32 rnd;
103 };
104 
105 struct netlink_table {
106 	struct nl_pid_hash hash;
107 	struct hlist_head mc_list;
108 	unsigned long *listeners;
109 	unsigned int nl_nonroot;
110 	unsigned int groups;
111 	struct module *module;
112 	int registered;
113 };
114 
115 static struct netlink_table *nl_table;
116 
117 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
118 
119 static int netlink_dump(struct sock *sk);
120 static void netlink_destroy_callback(struct netlink_callback *cb);
121 
122 static DEFINE_RWLOCK(nl_table_lock);
123 static atomic_t nl_table_users = ATOMIC_INIT(0);
124 
125 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
126 
127 static u32 netlink_group_mask(u32 group)
128 {
129 	return group ? 1 << (group - 1) : 0;
130 }
131 
132 static struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
133 {
134 	return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
135 }
136 
137 static void netlink_sock_destruct(struct sock *sk)
138 {
139 	skb_queue_purge(&sk->sk_receive_queue);
140 
141 	if (!sock_flag(sk, SOCK_DEAD)) {
142 		printk("Freeing alive netlink socket %p\n", sk);
143 		return;
144 	}
145 	BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
146 	BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
147 	BUG_TRAP(!nlk_sk(sk)->cb);
148 	BUG_TRAP(!nlk_sk(sk)->groups);
149 }
150 
151 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on SMP.
152  * Look, when several writers sleep and reader wakes them up, all but one
153  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
154  * this, _but_ remember, it adds useless work on UP machines.
155  */
156 
157 static void netlink_table_grab(void)
158 {
159 	write_lock_irq(&nl_table_lock);
160 
161 	if (atomic_read(&nl_table_users)) {
162 		DECLARE_WAITQUEUE(wait, current);
163 
164 		add_wait_queue_exclusive(&nl_table_wait, &wait);
165 		for(;;) {
166 			set_current_state(TASK_UNINTERRUPTIBLE);
167 			if (atomic_read(&nl_table_users) == 0)
168 				break;
169 			write_unlock_irq(&nl_table_lock);
170 			schedule();
171 			write_lock_irq(&nl_table_lock);
172 		}
173 
174 		__set_current_state(TASK_RUNNING);
175 		remove_wait_queue(&nl_table_wait, &wait);
176 	}
177 }
178 
179 static __inline__ void netlink_table_ungrab(void)
180 {
181 	write_unlock_irq(&nl_table_lock);
182 	wake_up(&nl_table_wait);
183 }
184 
185 static __inline__ void
186 netlink_lock_table(void)
187 {
188 	/* read_lock() synchronizes us to netlink_table_grab */
189 
190 	read_lock(&nl_table_lock);
191 	atomic_inc(&nl_table_users);
192 	read_unlock(&nl_table_lock);
193 }
194 
195 static __inline__ void
196 netlink_unlock_table(void)
197 {
198 	if (atomic_dec_and_test(&nl_table_users))
199 		wake_up(&nl_table_wait);
200 }
201 
202 static __inline__ struct sock *netlink_lookup(int protocol, u32 pid)
203 {
204 	struct nl_pid_hash *hash = &nl_table[protocol].hash;
205 	struct hlist_head *head;
206 	struct sock *sk;
207 	struct hlist_node *node;
208 
209 	read_lock(&nl_table_lock);
210 	head = nl_pid_hashfn(hash, pid);
211 	sk_for_each(sk, node, head) {
212 		if (nlk_sk(sk)->pid == pid) {
213 			sock_hold(sk);
214 			goto found;
215 		}
216 	}
217 	sk = NULL;
218 found:
219 	read_unlock(&nl_table_lock);
220 	return sk;
221 }
222 
223 static inline struct hlist_head *nl_pid_hash_alloc(size_t size)
224 {
225 	if (size <= PAGE_SIZE)
226 		return kmalloc(size, GFP_ATOMIC);
227 	else
228 		return (struct hlist_head *)
229 			__get_free_pages(GFP_ATOMIC, get_order(size));
230 }
231 
232 static inline void nl_pid_hash_free(struct hlist_head *table, size_t size)
233 {
234 	if (size <= PAGE_SIZE)
235 		kfree(table);
236 	else
237 		free_pages((unsigned long)table, get_order(size));
238 }
239 
240 static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
241 {
242 	unsigned int omask, mask, shift;
243 	size_t osize, size;
244 	struct hlist_head *otable, *table;
245 	int i;
246 
247 	omask = mask = hash->mask;
248 	osize = size = (mask + 1) * sizeof(*table);
249 	shift = hash->shift;
250 
251 	if (grow) {
252 		if (++shift > hash->max_shift)
253 			return 0;
254 		mask = mask * 2 + 1;
255 		size *= 2;
256 	}
257 
258 	table = nl_pid_hash_alloc(size);
259 	if (!table)
260 		return 0;
261 
262 	memset(table, 0, size);
263 	otable = hash->table;
264 	hash->table = table;
265 	hash->mask = mask;
266 	hash->shift = shift;
267 	get_random_bytes(&hash->rnd, sizeof(hash->rnd));
268 
269 	for (i = 0; i <= omask; i++) {
270 		struct sock *sk;
271 		struct hlist_node *node, *tmp;
272 
273 		sk_for_each_safe(sk, node, tmp, &otable[i])
274 			__sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
275 	}
276 
277 	nl_pid_hash_free(otable, osize);
278 	hash->rehash_time = jiffies + 10 * 60 * HZ;
279 	return 1;
280 }
281 
282 static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
283 {
284 	int avg = hash->entries >> hash->shift;
285 
286 	if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
287 		return 1;
288 
289 	if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
290 		nl_pid_hash_rehash(hash, 0);
291 		return 1;
292 	}
293 
294 	return 0;
295 }
296 
297 static const struct proto_ops netlink_ops;
298 
299 static void
300 netlink_update_listeners(struct sock *sk)
301 {
302 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
303 	struct hlist_node *node;
304 	unsigned long mask;
305 	unsigned int i;
306 
307 	for (i = 0; i < NLGRPSZ(tbl->groups)/sizeof(unsigned long); i++) {
308 		mask = 0;
309 		sk_for_each_bound(sk, node, &tbl->mc_list)
310 			mask |= nlk_sk(sk)->groups[i];
311 		tbl->listeners[i] = mask;
312 	}
313 	/* this function is only called with the netlink table "grabbed", which
314 	 * makes sure updates are visible before bind or setsockopt return. */
315 }
316 
317 static int netlink_insert(struct sock *sk, u32 pid)
318 {
319 	struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
320 	struct hlist_head *head;
321 	int err = -EADDRINUSE;
322 	struct sock *osk;
323 	struct hlist_node *node;
324 	int len;
325 
326 	netlink_table_grab();
327 	head = nl_pid_hashfn(hash, pid);
328 	len = 0;
329 	sk_for_each(osk, node, head) {
330 		if (nlk_sk(osk)->pid == pid)
331 			break;
332 		len++;
333 	}
334 	if (node)
335 		goto err;
336 
337 	err = -EBUSY;
338 	if (nlk_sk(sk)->pid)
339 		goto err;
340 
341 	err = -ENOMEM;
342 	if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
343 		goto err;
344 
345 	if (len && nl_pid_hash_dilute(hash, len))
346 		head = nl_pid_hashfn(hash, pid);
347 	hash->entries++;
348 	nlk_sk(sk)->pid = pid;
349 	sk_add_node(sk, head);
350 	err = 0;
351 
352 err:
353 	netlink_table_ungrab();
354 	return err;
355 }
356 
357 static void netlink_remove(struct sock *sk)
358 {
359 	netlink_table_grab();
360 	if (sk_del_node_init(sk))
361 		nl_table[sk->sk_protocol].hash.entries--;
362 	if (nlk_sk(sk)->subscriptions)
363 		__sk_del_bind_node(sk);
364 	netlink_table_ungrab();
365 }
366 
367 static struct proto netlink_proto = {
368 	.name	  = "NETLINK",
369 	.owner	  = THIS_MODULE,
370 	.obj_size = sizeof(struct netlink_sock),
371 };
372 
373 static int __netlink_create(struct socket *sock, int protocol)
374 {
375 	struct sock *sk;
376 	struct netlink_sock *nlk;
377 
378 	sock->ops = &netlink_ops;
379 
380 	sk = sk_alloc(PF_NETLINK, GFP_KERNEL, &netlink_proto, 1);
381 	if (!sk)
382 		return -ENOMEM;
383 
384 	sock_init_data(sock, sk);
385 
386 	nlk = nlk_sk(sk);
387 	spin_lock_init(&nlk->cb_lock);
388 	init_waitqueue_head(&nlk->wait);
389 
390 	sk->sk_destruct = netlink_sock_destruct;
391 	sk->sk_protocol = protocol;
392 	return 0;
393 }
394 
395 static int netlink_create(struct socket *sock, int protocol)
396 {
397 	struct module *module = NULL;
398 	struct netlink_sock *nlk;
399 	unsigned int groups;
400 	int err = 0;
401 
402 	sock->state = SS_UNCONNECTED;
403 
404 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
405 		return -ESOCKTNOSUPPORT;
406 
407 	if (protocol<0 || protocol >= MAX_LINKS)
408 		return -EPROTONOSUPPORT;
409 
410 	netlink_lock_table();
411 #ifdef CONFIG_KMOD
412 	if (!nl_table[protocol].registered) {
413 		netlink_unlock_table();
414 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
415 		netlink_lock_table();
416 	}
417 #endif
418 	if (nl_table[protocol].registered &&
419 	    try_module_get(nl_table[protocol].module))
420 		module = nl_table[protocol].module;
421 	groups = nl_table[protocol].groups;
422 	netlink_unlock_table();
423 
424 	if ((err = __netlink_create(sock, protocol)) < 0)
425 		goto out_module;
426 
427 	nlk = nlk_sk(sock->sk);
428 	nlk->module = module;
429 out:
430 	return err;
431 
432 out_module:
433 	module_put(module);
434 	goto out;
435 }
436 
437 static int netlink_release(struct socket *sock)
438 {
439 	struct sock *sk = sock->sk;
440 	struct netlink_sock *nlk;
441 
442 	if (!sk)
443 		return 0;
444 
445 	netlink_remove(sk);
446 	nlk = nlk_sk(sk);
447 
448 	spin_lock(&nlk->cb_lock);
449 	if (nlk->cb) {
450 		if (nlk->cb->done)
451 			nlk->cb->done(nlk->cb);
452 		netlink_destroy_callback(nlk->cb);
453 		nlk->cb = NULL;
454 	}
455 	spin_unlock(&nlk->cb_lock);
456 
457 	/* OK. Socket is unlinked, and, therefore,
458 	   no new packets will arrive */
459 
460 	sock_orphan(sk);
461 	sock->sk = NULL;
462 	wake_up_interruptible_all(&nlk->wait);
463 
464 	skb_queue_purge(&sk->sk_write_queue);
465 
466 	if (nlk->pid && !nlk->subscriptions) {
467 		struct netlink_notify n = {
468 						.protocol = sk->sk_protocol,
469 						.pid = nlk->pid,
470 					  };
471 		atomic_notifier_call_chain(&netlink_chain,
472 				NETLINK_URELEASE, &n);
473 	}
474 
475 	if (nlk->module)
476 		module_put(nlk->module);
477 
478 	netlink_table_grab();
479 	if (nlk->flags & NETLINK_KERNEL_SOCKET) {
480 		kfree(nl_table[sk->sk_protocol].listeners);
481 		nl_table[sk->sk_protocol].module = NULL;
482 		nl_table[sk->sk_protocol].registered = 0;
483 	} else if (nlk->subscriptions)
484 		netlink_update_listeners(sk);
485 	netlink_table_ungrab();
486 
487 	kfree(nlk->groups);
488 	nlk->groups = NULL;
489 
490 	sock_put(sk);
491 	return 0;
492 }
493 
494 static int netlink_autobind(struct socket *sock)
495 {
496 	struct sock *sk = sock->sk;
497 	struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
498 	struct hlist_head *head;
499 	struct sock *osk;
500 	struct hlist_node *node;
501 	s32 pid = current->tgid;
502 	int err;
503 	static s32 rover = -4097;
504 
505 retry:
506 	cond_resched();
507 	netlink_table_grab();
508 	head = nl_pid_hashfn(hash, pid);
509 	sk_for_each(osk, node, head) {
510 		if (nlk_sk(osk)->pid == pid) {
511 			/* Bind collision, search negative pid values. */
512 			pid = rover--;
513 			if (rover > -4097)
514 				rover = -4097;
515 			netlink_table_ungrab();
516 			goto retry;
517 		}
518 	}
519 	netlink_table_ungrab();
520 
521 	err = netlink_insert(sk, pid);
522 	if (err == -EADDRINUSE)
523 		goto retry;
524 
525 	/* If 2 threads race to autobind, that is fine.  */
526 	if (err == -EBUSY)
527 		err = 0;
528 
529 	return err;
530 }
531 
532 static inline int netlink_capable(struct socket *sock, unsigned int flag)
533 {
534 	return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
535 	       capable(CAP_NET_ADMIN);
536 }
537 
538 static void
539 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
540 {
541 	struct netlink_sock *nlk = nlk_sk(sk);
542 
543 	if (nlk->subscriptions && !subscriptions)
544 		__sk_del_bind_node(sk);
545 	else if (!nlk->subscriptions && subscriptions)
546 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
547 	nlk->subscriptions = subscriptions;
548 }
549 
550 static int netlink_alloc_groups(struct sock *sk)
551 {
552 	struct netlink_sock *nlk = nlk_sk(sk);
553 	unsigned int groups;
554 	int err = 0;
555 
556 	netlink_lock_table();
557 	groups = nl_table[sk->sk_protocol].groups;
558 	if (!nl_table[sk->sk_protocol].registered)
559 		err = -ENOENT;
560 	netlink_unlock_table();
561 
562 	if (err)
563 		return err;
564 
565 	nlk->groups = kzalloc(NLGRPSZ(groups), GFP_KERNEL);
566 	if (nlk->groups == NULL)
567 		return -ENOMEM;
568 	nlk->ngroups = groups;
569 	return 0;
570 }
571 
572 static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
573 {
574 	struct sock *sk = sock->sk;
575 	struct netlink_sock *nlk = nlk_sk(sk);
576 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
577 	int err;
578 
579 	if (nladdr->nl_family != AF_NETLINK)
580 		return -EINVAL;
581 
582 	/* Only superuser is allowed to listen multicasts */
583 	if (nladdr->nl_groups) {
584 		if (!netlink_capable(sock, NL_NONROOT_RECV))
585 			return -EPERM;
586 		if (nlk->groups == NULL) {
587 			err = netlink_alloc_groups(sk);
588 			if (err)
589 				return err;
590 		}
591 	}
592 
593 	if (nlk->pid) {
594 		if (nladdr->nl_pid != nlk->pid)
595 			return -EINVAL;
596 	} else {
597 		err = nladdr->nl_pid ?
598 			netlink_insert(sk, nladdr->nl_pid) :
599 			netlink_autobind(sock);
600 		if (err)
601 			return err;
602 	}
603 
604 	if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
605 		return 0;
606 
607 	netlink_table_grab();
608 	netlink_update_subscriptions(sk, nlk->subscriptions +
609 	                                 hweight32(nladdr->nl_groups) -
610 	                                 hweight32(nlk->groups[0]));
611 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
612 	netlink_update_listeners(sk);
613 	netlink_table_ungrab();
614 
615 	return 0;
616 }
617 
618 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
619 			   int alen, int flags)
620 {
621 	int err = 0;
622 	struct sock *sk = sock->sk;
623 	struct netlink_sock *nlk = nlk_sk(sk);
624 	struct sockaddr_nl *nladdr=(struct sockaddr_nl*)addr;
625 
626 	if (addr->sa_family == AF_UNSPEC) {
627 		sk->sk_state	= NETLINK_UNCONNECTED;
628 		nlk->dst_pid	= 0;
629 		nlk->dst_group  = 0;
630 		return 0;
631 	}
632 	if (addr->sa_family != AF_NETLINK)
633 		return -EINVAL;
634 
635 	/* Only superuser is allowed to send multicasts */
636 	if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
637 		return -EPERM;
638 
639 	if (!nlk->pid)
640 		err = netlink_autobind(sock);
641 
642 	if (err == 0) {
643 		sk->sk_state	= NETLINK_CONNECTED;
644 		nlk->dst_pid 	= nladdr->nl_pid;
645 		nlk->dst_group  = ffs(nladdr->nl_groups);
646 	}
647 
648 	return err;
649 }
650 
651 static int netlink_getname(struct socket *sock, struct sockaddr *addr, int *addr_len, int peer)
652 {
653 	struct sock *sk = sock->sk;
654 	struct netlink_sock *nlk = nlk_sk(sk);
655 	struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr;
656 
657 	nladdr->nl_family = AF_NETLINK;
658 	nladdr->nl_pad = 0;
659 	*addr_len = sizeof(*nladdr);
660 
661 	if (peer) {
662 		nladdr->nl_pid = nlk->dst_pid;
663 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
664 	} else {
665 		nladdr->nl_pid = nlk->pid;
666 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
667 	}
668 	return 0;
669 }
670 
671 static void netlink_overrun(struct sock *sk)
672 {
673 	if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
674 		sk->sk_err = ENOBUFS;
675 		sk->sk_error_report(sk);
676 	}
677 }
678 
679 static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
680 {
681 	int protocol = ssk->sk_protocol;
682 	struct sock *sock;
683 	struct netlink_sock *nlk;
684 
685 	sock = netlink_lookup(protocol, pid);
686 	if (!sock)
687 		return ERR_PTR(-ECONNREFUSED);
688 
689 	/* Don't bother queuing skb if kernel socket has no input function */
690 	nlk = nlk_sk(sock);
691 	if ((nlk->pid == 0 && !nlk->data_ready) ||
692 	    (sock->sk_state == NETLINK_CONNECTED &&
693 	     nlk->dst_pid != nlk_sk(ssk)->pid)) {
694 		sock_put(sock);
695 		return ERR_PTR(-ECONNREFUSED);
696 	}
697 	return sock;
698 }
699 
700 struct sock *netlink_getsockbyfilp(struct file *filp)
701 {
702 	struct inode *inode = filp->f_dentry->d_inode;
703 	struct sock *sock;
704 
705 	if (!S_ISSOCK(inode->i_mode))
706 		return ERR_PTR(-ENOTSOCK);
707 
708 	sock = SOCKET_I(inode)->sk;
709 	if (sock->sk_family != AF_NETLINK)
710 		return ERR_PTR(-EINVAL);
711 
712 	sock_hold(sock);
713 	return sock;
714 }
715 
716 /*
717  * Attach a skb to a netlink socket.
718  * The caller must hold a reference to the destination socket. On error, the
719  * reference is dropped. The skb is not send to the destination, just all
720  * all error checks are performed and memory in the queue is reserved.
721  * Return values:
722  * < 0: error. skb freed, reference to sock dropped.
723  * 0: continue
724  * 1: repeat lookup - reference dropped while waiting for socket memory.
725  */
726 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, int nonblock,
727 		long timeo, struct sock *ssk)
728 {
729 	struct netlink_sock *nlk;
730 
731 	nlk = nlk_sk(sk);
732 
733 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
734 	    test_bit(0, &nlk->state)) {
735 		DECLARE_WAITQUEUE(wait, current);
736 		if (!timeo) {
737 			if (!ssk || nlk_sk(ssk)->pid == 0)
738 				netlink_overrun(sk);
739 			sock_put(sk);
740 			kfree_skb(skb);
741 			return -EAGAIN;
742 		}
743 
744 		__set_current_state(TASK_INTERRUPTIBLE);
745 		add_wait_queue(&nlk->wait, &wait);
746 
747 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
748 		     test_bit(0, &nlk->state)) &&
749 		    !sock_flag(sk, SOCK_DEAD))
750 			timeo = schedule_timeout(timeo);
751 
752 		__set_current_state(TASK_RUNNING);
753 		remove_wait_queue(&nlk->wait, &wait);
754 		sock_put(sk);
755 
756 		if (signal_pending(current)) {
757 			kfree_skb(skb);
758 			return sock_intr_errno(timeo);
759 		}
760 		return 1;
761 	}
762 	skb_set_owner_r(skb, sk);
763 	return 0;
764 }
765 
766 int netlink_sendskb(struct sock *sk, struct sk_buff *skb, int protocol)
767 {
768 	int len = skb->len;
769 
770 	skb_queue_tail(&sk->sk_receive_queue, skb);
771 	sk->sk_data_ready(sk, len);
772 	sock_put(sk);
773 	return len;
774 }
775 
776 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
777 {
778 	kfree_skb(skb);
779 	sock_put(sk);
780 }
781 
782 static inline struct sk_buff *netlink_trim(struct sk_buff *skb,
783 					   gfp_t allocation)
784 {
785 	int delta;
786 
787 	skb_orphan(skb);
788 
789 	delta = skb->end - skb->tail;
790 	if (delta * 2 < skb->truesize)
791 		return skb;
792 
793 	if (skb_shared(skb)) {
794 		struct sk_buff *nskb = skb_clone(skb, allocation);
795 		if (!nskb)
796 			return skb;
797 		kfree_skb(skb);
798 		skb = nskb;
799 	}
800 
801 	if (!pskb_expand_head(skb, 0, -delta, allocation))
802 		skb->truesize -= delta;
803 
804 	return skb;
805 }
806 
807 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 pid, int nonblock)
808 {
809 	struct sock *sk;
810 	int err;
811 	long timeo;
812 
813 	skb = netlink_trim(skb, gfp_any());
814 
815 	timeo = sock_sndtimeo(ssk, nonblock);
816 retry:
817 	sk = netlink_getsockbypid(ssk, pid);
818 	if (IS_ERR(sk)) {
819 		kfree_skb(skb);
820 		return PTR_ERR(sk);
821 	}
822 	err = netlink_attachskb(sk, skb, nonblock, timeo, ssk);
823 	if (err == 1)
824 		goto retry;
825 	if (err)
826 		return err;
827 
828 	return netlink_sendskb(sk, skb, ssk->sk_protocol);
829 }
830 
831 int netlink_has_listeners(struct sock *sk, unsigned int group)
832 {
833 	int res = 0;
834 
835 	BUG_ON(!(nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET));
836 	if (group - 1 < nl_table[sk->sk_protocol].groups)
837 		res = test_bit(group - 1, nl_table[sk->sk_protocol].listeners);
838 	return res;
839 }
840 EXPORT_SYMBOL_GPL(netlink_has_listeners);
841 
842 static __inline__ int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
843 {
844 	struct netlink_sock *nlk = nlk_sk(sk);
845 
846 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
847 	    !test_bit(0, &nlk->state)) {
848 		skb_set_owner_r(skb, sk);
849 		skb_queue_tail(&sk->sk_receive_queue, skb);
850 		sk->sk_data_ready(sk, skb->len);
851 		return atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf;
852 	}
853 	return -1;
854 }
855 
856 struct netlink_broadcast_data {
857 	struct sock *exclude_sk;
858 	u32 pid;
859 	u32 group;
860 	int failure;
861 	int congested;
862 	int delivered;
863 	gfp_t allocation;
864 	struct sk_buff *skb, *skb2;
865 };
866 
867 static inline int do_one_broadcast(struct sock *sk,
868 				   struct netlink_broadcast_data *p)
869 {
870 	struct netlink_sock *nlk = nlk_sk(sk);
871 	int val;
872 
873 	if (p->exclude_sk == sk)
874 		goto out;
875 
876 	if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
877 	    !test_bit(p->group - 1, nlk->groups))
878 		goto out;
879 
880 	if (p->failure) {
881 		netlink_overrun(sk);
882 		goto out;
883 	}
884 
885 	sock_hold(sk);
886 	if (p->skb2 == NULL) {
887 		if (skb_shared(p->skb)) {
888 			p->skb2 = skb_clone(p->skb, p->allocation);
889 		} else {
890 			p->skb2 = skb_get(p->skb);
891 			/*
892 			 * skb ownership may have been set when
893 			 * delivered to a previous socket.
894 			 */
895 			skb_orphan(p->skb2);
896 		}
897 	}
898 	if (p->skb2 == NULL) {
899 		netlink_overrun(sk);
900 		/* Clone failed. Notify ALL listeners. */
901 		p->failure = 1;
902 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
903 		netlink_overrun(sk);
904 	} else {
905 		p->congested |= val;
906 		p->delivered = 1;
907 		p->skb2 = NULL;
908 	}
909 	sock_put(sk);
910 
911 out:
912 	return 0;
913 }
914 
915 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
916 		      u32 group, gfp_t allocation)
917 {
918 	struct netlink_broadcast_data info;
919 	struct hlist_node *node;
920 	struct sock *sk;
921 
922 	skb = netlink_trim(skb, allocation);
923 
924 	info.exclude_sk = ssk;
925 	info.pid = pid;
926 	info.group = group;
927 	info.failure = 0;
928 	info.congested = 0;
929 	info.delivered = 0;
930 	info.allocation = allocation;
931 	info.skb = skb;
932 	info.skb2 = NULL;
933 
934 	/* While we sleep in clone, do not allow to change socket list */
935 
936 	netlink_lock_table();
937 
938 	sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
939 		do_one_broadcast(sk, &info);
940 
941 	kfree_skb(skb);
942 
943 	netlink_unlock_table();
944 
945 	if (info.skb2)
946 		kfree_skb(info.skb2);
947 
948 	if (info.delivered) {
949 		if (info.congested && (allocation & __GFP_WAIT))
950 			yield();
951 		return 0;
952 	}
953 	if (info.failure)
954 		return -ENOBUFS;
955 	return -ESRCH;
956 }
957 
958 struct netlink_set_err_data {
959 	struct sock *exclude_sk;
960 	u32 pid;
961 	u32 group;
962 	int code;
963 };
964 
965 static inline int do_one_set_err(struct sock *sk,
966 				 struct netlink_set_err_data *p)
967 {
968 	struct netlink_sock *nlk = nlk_sk(sk);
969 
970 	if (sk == p->exclude_sk)
971 		goto out;
972 
973 	if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
974 	    !test_bit(p->group - 1, nlk->groups))
975 		goto out;
976 
977 	sk->sk_err = p->code;
978 	sk->sk_error_report(sk);
979 out:
980 	return 0;
981 }
982 
983 void netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
984 {
985 	struct netlink_set_err_data info;
986 	struct hlist_node *node;
987 	struct sock *sk;
988 
989 	info.exclude_sk = ssk;
990 	info.pid = pid;
991 	info.group = group;
992 	info.code = code;
993 
994 	read_lock(&nl_table_lock);
995 
996 	sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
997 		do_one_set_err(sk, &info);
998 
999 	read_unlock(&nl_table_lock);
1000 }
1001 
1002 static int netlink_setsockopt(struct socket *sock, int level, int optname,
1003                               char __user *optval, int optlen)
1004 {
1005 	struct sock *sk = sock->sk;
1006 	struct netlink_sock *nlk = nlk_sk(sk);
1007 	int val = 0, err;
1008 
1009 	if (level != SOL_NETLINK)
1010 		return -ENOPROTOOPT;
1011 
1012 	if (optlen >= sizeof(int) &&
1013 	    get_user(val, (int __user *)optval))
1014 		return -EFAULT;
1015 
1016 	switch (optname) {
1017 	case NETLINK_PKTINFO:
1018 		if (val)
1019 			nlk->flags |= NETLINK_RECV_PKTINFO;
1020 		else
1021 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
1022 		err = 0;
1023 		break;
1024 	case NETLINK_ADD_MEMBERSHIP:
1025 	case NETLINK_DROP_MEMBERSHIP: {
1026 		unsigned int subscriptions;
1027 		int old, new = optname == NETLINK_ADD_MEMBERSHIP ? 1 : 0;
1028 
1029 		if (!netlink_capable(sock, NL_NONROOT_RECV))
1030 			return -EPERM;
1031 		if (nlk->groups == NULL) {
1032 			err = netlink_alloc_groups(sk);
1033 			if (err)
1034 				return err;
1035 		}
1036 		if (!val || val - 1 >= nlk->ngroups)
1037 			return -EINVAL;
1038 		netlink_table_grab();
1039 		old = test_bit(val - 1, nlk->groups);
1040 		subscriptions = nlk->subscriptions - old + new;
1041 		if (new)
1042 			__set_bit(val - 1, nlk->groups);
1043 		else
1044 			__clear_bit(val - 1, nlk->groups);
1045 		netlink_update_subscriptions(sk, subscriptions);
1046 		netlink_update_listeners(sk);
1047 		netlink_table_ungrab();
1048 		err = 0;
1049 		break;
1050 	}
1051 	default:
1052 		err = -ENOPROTOOPT;
1053 	}
1054 	return err;
1055 }
1056 
1057 static int netlink_getsockopt(struct socket *sock, int level, int optname,
1058                               char __user *optval, int __user *optlen)
1059 {
1060 	struct sock *sk = sock->sk;
1061 	struct netlink_sock *nlk = nlk_sk(sk);
1062 	int len, val, err;
1063 
1064 	if (level != SOL_NETLINK)
1065 		return -ENOPROTOOPT;
1066 
1067 	if (get_user(len, optlen))
1068 		return -EFAULT;
1069 	if (len < 0)
1070 		return -EINVAL;
1071 
1072 	switch (optname) {
1073 	case NETLINK_PKTINFO:
1074 		if (len < sizeof(int))
1075 			return -EINVAL;
1076 		len = sizeof(int);
1077 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
1078 		put_user(len, optlen);
1079 		put_user(val, optval);
1080 		err = 0;
1081 		break;
1082 	default:
1083 		err = -ENOPROTOOPT;
1084 	}
1085 	return err;
1086 }
1087 
1088 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
1089 {
1090 	struct nl_pktinfo info;
1091 
1092 	info.group = NETLINK_CB(skb).dst_group;
1093 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
1094 }
1095 
1096 static inline void netlink_rcv_wake(struct sock *sk)
1097 {
1098 	struct netlink_sock *nlk = nlk_sk(sk);
1099 
1100 	if (skb_queue_empty(&sk->sk_receive_queue))
1101 		clear_bit(0, &nlk->state);
1102 	if (!test_bit(0, &nlk->state))
1103 		wake_up_interruptible(&nlk->wait);
1104 }
1105 
1106 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
1107 			   struct msghdr *msg, size_t len)
1108 {
1109 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
1110 	struct sock *sk = sock->sk;
1111 	struct netlink_sock *nlk = nlk_sk(sk);
1112 	struct sockaddr_nl *addr=msg->msg_name;
1113 	u32 dst_pid;
1114 	u32 dst_group;
1115 	struct sk_buff *skb;
1116 	int err;
1117 	struct scm_cookie scm;
1118 
1119 	if (msg->msg_flags&MSG_OOB)
1120 		return -EOPNOTSUPP;
1121 
1122 	if (NULL == siocb->scm)
1123 		siocb->scm = &scm;
1124 	err = scm_send(sock, msg, siocb->scm);
1125 	if (err < 0)
1126 		return err;
1127 
1128 	if (msg->msg_namelen) {
1129 		if (addr->nl_family != AF_NETLINK)
1130 			return -EINVAL;
1131 		dst_pid = addr->nl_pid;
1132 		dst_group = ffs(addr->nl_groups);
1133 		if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
1134 			return -EPERM;
1135 	} else {
1136 		dst_pid = nlk->dst_pid;
1137 		dst_group = nlk->dst_group;
1138 	}
1139 
1140 	if (!nlk->pid) {
1141 		err = netlink_autobind(sock);
1142 		if (err)
1143 			goto out;
1144 	}
1145 
1146 	err = -EMSGSIZE;
1147 	if (len > sk->sk_sndbuf - 32)
1148 		goto out;
1149 	err = -ENOBUFS;
1150 	skb = alloc_skb(len, GFP_KERNEL);
1151 	if (skb==NULL)
1152 		goto out;
1153 
1154 	NETLINK_CB(skb).pid	= nlk->pid;
1155 	NETLINK_CB(skb).dst_pid = dst_pid;
1156 	NETLINK_CB(skb).dst_group = dst_group;
1157 	NETLINK_CB(skb).loginuid = audit_get_loginuid(current->audit_context);
1158 	selinux_get_task_sid(current, &(NETLINK_CB(skb).sid));
1159 	memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
1160 
1161 	/* What can I do? Netlink is asynchronous, so that
1162 	   we will have to save current capabilities to
1163 	   check them, when this message will be delivered
1164 	   to corresponding kernel module.   --ANK (980802)
1165 	 */
1166 
1167 	err = -EFAULT;
1168 	if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) {
1169 		kfree_skb(skb);
1170 		goto out;
1171 	}
1172 
1173 	err = security_netlink_send(sk, skb);
1174 	if (err) {
1175 		kfree_skb(skb);
1176 		goto out;
1177 	}
1178 
1179 	if (dst_group) {
1180 		atomic_inc(&skb->users);
1181 		netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
1182 	}
1183 	err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
1184 
1185 out:
1186 	return err;
1187 }
1188 
1189 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
1190 			   struct msghdr *msg, size_t len,
1191 			   int flags)
1192 {
1193 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
1194 	struct scm_cookie scm;
1195 	struct sock *sk = sock->sk;
1196 	struct netlink_sock *nlk = nlk_sk(sk);
1197 	int noblock = flags&MSG_DONTWAIT;
1198 	size_t copied;
1199 	struct sk_buff *skb;
1200 	int err;
1201 
1202 	if (flags&MSG_OOB)
1203 		return -EOPNOTSUPP;
1204 
1205 	copied = 0;
1206 
1207 	skb = skb_recv_datagram(sk,flags,noblock,&err);
1208 	if (skb==NULL)
1209 		goto out;
1210 
1211 	msg->msg_namelen = 0;
1212 
1213 	copied = skb->len;
1214 	if (len < copied) {
1215 		msg->msg_flags |= MSG_TRUNC;
1216 		copied = len;
1217 	}
1218 
1219 	skb->h.raw = skb->data;
1220 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1221 
1222 	if (msg->msg_name) {
1223 		struct sockaddr_nl *addr = (struct sockaddr_nl*)msg->msg_name;
1224 		addr->nl_family = AF_NETLINK;
1225 		addr->nl_pad    = 0;
1226 		addr->nl_pid	= NETLINK_CB(skb).pid;
1227 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
1228 		msg->msg_namelen = sizeof(*addr);
1229 	}
1230 
1231 	if (nlk->flags & NETLINK_RECV_PKTINFO)
1232 		netlink_cmsg_recv_pktinfo(msg, skb);
1233 
1234 	if (NULL == siocb->scm) {
1235 		memset(&scm, 0, sizeof(scm));
1236 		siocb->scm = &scm;
1237 	}
1238 	siocb->scm->creds = *NETLINK_CREDS(skb);
1239 	skb_free_datagram(sk, skb);
1240 
1241 	if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2)
1242 		netlink_dump(sk);
1243 
1244 	scm_recv(sock, msg, siocb->scm, flags);
1245 
1246 out:
1247 	netlink_rcv_wake(sk);
1248 	return err ? : copied;
1249 }
1250 
1251 static void netlink_data_ready(struct sock *sk, int len)
1252 {
1253 	struct netlink_sock *nlk = nlk_sk(sk);
1254 
1255 	if (nlk->data_ready)
1256 		nlk->data_ready(sk, len);
1257 	netlink_rcv_wake(sk);
1258 }
1259 
1260 /*
1261  *	We export these functions to other modules. They provide a
1262  *	complete set of kernel non-blocking support for message
1263  *	queueing.
1264  */
1265 
1266 struct sock *
1267 netlink_kernel_create(int unit, unsigned int groups,
1268                       void (*input)(struct sock *sk, int len),
1269                       struct module *module)
1270 {
1271 	struct socket *sock;
1272 	struct sock *sk;
1273 	struct netlink_sock *nlk;
1274 	unsigned long *listeners = NULL;
1275 
1276 	BUG_ON(!nl_table);
1277 
1278 	if (unit<0 || unit>=MAX_LINKS)
1279 		return NULL;
1280 
1281 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
1282 		return NULL;
1283 
1284 	if (__netlink_create(sock, unit) < 0)
1285 		goto out_sock_release;
1286 
1287 	if (groups < 32)
1288 		groups = 32;
1289 
1290 	listeners = kzalloc(NLGRPSZ(groups), GFP_KERNEL);
1291 	if (!listeners)
1292 		goto out_sock_release;
1293 
1294 	sk = sock->sk;
1295 	sk->sk_data_ready = netlink_data_ready;
1296 	if (input)
1297 		nlk_sk(sk)->data_ready = input;
1298 
1299 	if (netlink_insert(sk, 0))
1300 		goto out_sock_release;
1301 
1302 	nlk = nlk_sk(sk);
1303 	nlk->flags |= NETLINK_KERNEL_SOCKET;
1304 
1305 	netlink_table_grab();
1306 	nl_table[unit].groups = groups;
1307 	nl_table[unit].listeners = listeners;
1308 	nl_table[unit].module = module;
1309 	nl_table[unit].registered = 1;
1310 	netlink_table_ungrab();
1311 
1312 	return sk;
1313 
1314 out_sock_release:
1315 	kfree(listeners);
1316 	sock_release(sock);
1317 	return NULL;
1318 }
1319 
1320 void netlink_set_nonroot(int protocol, unsigned int flags)
1321 {
1322 	if ((unsigned int)protocol < MAX_LINKS)
1323 		nl_table[protocol].nl_nonroot = flags;
1324 }
1325 
1326 static void netlink_destroy_callback(struct netlink_callback *cb)
1327 {
1328 	if (cb->skb)
1329 		kfree_skb(cb->skb);
1330 	kfree(cb);
1331 }
1332 
1333 /*
1334  * It looks a bit ugly.
1335  * It would be better to create kernel thread.
1336  */
1337 
1338 static int netlink_dump(struct sock *sk)
1339 {
1340 	struct netlink_sock *nlk = nlk_sk(sk);
1341 	struct netlink_callback *cb;
1342 	struct sk_buff *skb;
1343 	struct nlmsghdr *nlh;
1344 	int len;
1345 
1346 	skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL);
1347 	if (!skb)
1348 		return -ENOBUFS;
1349 
1350 	spin_lock(&nlk->cb_lock);
1351 
1352 	cb = nlk->cb;
1353 	if (cb == NULL) {
1354 		spin_unlock(&nlk->cb_lock);
1355 		kfree_skb(skb);
1356 		return -EINVAL;
1357 	}
1358 
1359 	len = cb->dump(skb, cb);
1360 
1361 	if (len > 0) {
1362 		spin_unlock(&nlk->cb_lock);
1363 		skb_queue_tail(&sk->sk_receive_queue, skb);
1364 		sk->sk_data_ready(sk, len);
1365 		return 0;
1366 	}
1367 
1368 	nlh = NLMSG_NEW_ANSWER(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
1369 	memcpy(NLMSG_DATA(nlh), &len, sizeof(len));
1370 	skb_queue_tail(&sk->sk_receive_queue, skb);
1371 	sk->sk_data_ready(sk, skb->len);
1372 
1373 	if (cb->done)
1374 		cb->done(cb);
1375 	nlk->cb = NULL;
1376 	spin_unlock(&nlk->cb_lock);
1377 
1378 	netlink_destroy_callback(cb);
1379 	return 0;
1380 
1381 nlmsg_failure:
1382 	return -ENOBUFS;
1383 }
1384 
1385 int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
1386 		       struct nlmsghdr *nlh,
1387 		       int (*dump)(struct sk_buff *skb, struct netlink_callback*),
1388 		       int (*done)(struct netlink_callback*))
1389 {
1390 	struct netlink_callback *cb;
1391 	struct sock *sk;
1392 	struct netlink_sock *nlk;
1393 
1394 	cb = kzalloc(sizeof(*cb), GFP_KERNEL);
1395 	if (cb == NULL)
1396 		return -ENOBUFS;
1397 
1398 	cb->dump = dump;
1399 	cb->done = done;
1400 	cb->nlh = nlh;
1401 	atomic_inc(&skb->users);
1402 	cb->skb = skb;
1403 
1404 	sk = netlink_lookup(ssk->sk_protocol, NETLINK_CB(skb).pid);
1405 	if (sk == NULL) {
1406 		netlink_destroy_callback(cb);
1407 		return -ECONNREFUSED;
1408 	}
1409 	nlk = nlk_sk(sk);
1410 	/* A dump is in progress... */
1411 	spin_lock(&nlk->cb_lock);
1412 	if (nlk->cb) {
1413 		spin_unlock(&nlk->cb_lock);
1414 		netlink_destroy_callback(cb);
1415 		sock_put(sk);
1416 		return -EBUSY;
1417 	}
1418 	nlk->cb = cb;
1419 	spin_unlock(&nlk->cb_lock);
1420 
1421 	netlink_dump(sk);
1422 	sock_put(sk);
1423 	return 0;
1424 }
1425 
1426 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
1427 {
1428 	struct sk_buff *skb;
1429 	struct nlmsghdr *rep;
1430 	struct nlmsgerr *errmsg;
1431 	int size;
1432 
1433 	if (err == 0)
1434 		size = NLMSG_SPACE(sizeof(struct nlmsgerr));
1435 	else
1436 		size = NLMSG_SPACE(4 + NLMSG_ALIGN(nlh->nlmsg_len));
1437 
1438 	skb = alloc_skb(size, GFP_KERNEL);
1439 	if (!skb) {
1440 		struct sock *sk;
1441 
1442 		sk = netlink_lookup(in_skb->sk->sk_protocol,
1443 				    NETLINK_CB(in_skb).pid);
1444 		if (sk) {
1445 			sk->sk_err = ENOBUFS;
1446 			sk->sk_error_report(sk);
1447 			sock_put(sk);
1448 		}
1449 		return;
1450 	}
1451 
1452 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
1453 			  NLMSG_ERROR, sizeof(struct nlmsgerr), 0);
1454 	errmsg = NLMSG_DATA(rep);
1455 	errmsg->error = err;
1456 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(struct nlmsghdr));
1457 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
1458 }
1459 
1460 static int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
1461 						     struct nlmsghdr *, int *))
1462 {
1463 	unsigned int total_len;
1464 	struct nlmsghdr *nlh;
1465 	int err;
1466 
1467 	while (skb->len >= nlmsg_total_size(0)) {
1468 		nlh = (struct nlmsghdr *) skb->data;
1469 
1470 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
1471 			return 0;
1472 
1473 		total_len = min(NLMSG_ALIGN(nlh->nlmsg_len), skb->len);
1474 
1475 		if (cb(skb, nlh, &err) < 0) {
1476 			/* Not an error, but we have to interrupt processing
1477 			 * here. Note: that in this case we do not pull
1478 			 * message from skb, it will be processed later.
1479 			 */
1480 			if (err == 0)
1481 				return -1;
1482 			netlink_ack(skb, nlh, err);
1483 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
1484 			netlink_ack(skb, nlh, 0);
1485 
1486 		skb_pull(skb, total_len);
1487 	}
1488 
1489 	return 0;
1490 }
1491 
1492 /**
1493  * nelink_run_queue - Process netlink receive queue.
1494  * @sk: Netlink socket containing the queue
1495  * @qlen: Place to store queue length upon entry
1496  * @cb: Callback function invoked for each netlink message found
1497  *
1498  * Processes as much as there was in the queue upon entry and invokes
1499  * a callback function for each netlink message found. The callback
1500  * function may refuse a message by returning a negative error code
1501  * but setting the error pointer to 0 in which case this function
1502  * returns with a qlen != 0.
1503  *
1504  * qlen must be initialized to 0 before the initial entry, afterwards
1505  * the function may be called repeatedly until qlen reaches 0.
1506  */
1507 void netlink_run_queue(struct sock *sk, unsigned int *qlen,
1508 		       int (*cb)(struct sk_buff *, struct nlmsghdr *, int *))
1509 {
1510 	struct sk_buff *skb;
1511 
1512 	if (!*qlen || *qlen > skb_queue_len(&sk->sk_receive_queue))
1513 		*qlen = skb_queue_len(&sk->sk_receive_queue);
1514 
1515 	for (; *qlen; (*qlen)--) {
1516 		skb = skb_dequeue(&sk->sk_receive_queue);
1517 		if (netlink_rcv_skb(skb, cb)) {
1518 			if (skb->len)
1519 				skb_queue_head(&sk->sk_receive_queue, skb);
1520 			else {
1521 				kfree_skb(skb);
1522 				(*qlen)--;
1523 			}
1524 			break;
1525 		}
1526 
1527 		kfree_skb(skb);
1528 	}
1529 }
1530 
1531 /**
1532  * netlink_queue_skip - Skip netlink message while processing queue.
1533  * @nlh: Netlink message to be skipped
1534  * @skb: Socket buffer containing the netlink messages.
1535  *
1536  * Pulls the given netlink message off the socket buffer so the next
1537  * call to netlink_queue_run() will not reconsider the message.
1538  */
1539 void netlink_queue_skip(struct nlmsghdr *nlh, struct sk_buff *skb)
1540 {
1541 	int msglen = NLMSG_ALIGN(nlh->nlmsg_len);
1542 
1543 	if (msglen > skb->len)
1544 		msglen = skb->len;
1545 
1546 	skb_pull(skb, msglen);
1547 }
1548 
1549 #ifdef CONFIG_PROC_FS
1550 struct nl_seq_iter {
1551 	int link;
1552 	int hash_idx;
1553 };
1554 
1555 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
1556 {
1557 	struct nl_seq_iter *iter = seq->private;
1558 	int i, j;
1559 	struct sock *s;
1560 	struct hlist_node *node;
1561 	loff_t off = 0;
1562 
1563 	for (i=0; i<MAX_LINKS; i++) {
1564 		struct nl_pid_hash *hash = &nl_table[i].hash;
1565 
1566 		for (j = 0; j <= hash->mask; j++) {
1567 			sk_for_each(s, node, &hash->table[j]) {
1568 				if (off == pos) {
1569 					iter->link = i;
1570 					iter->hash_idx = j;
1571 					return s;
1572 				}
1573 				++off;
1574 			}
1575 		}
1576 	}
1577 	return NULL;
1578 }
1579 
1580 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
1581 {
1582 	read_lock(&nl_table_lock);
1583 	return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1584 }
1585 
1586 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1587 {
1588 	struct sock *s;
1589 	struct nl_seq_iter *iter;
1590 	int i, j;
1591 
1592 	++*pos;
1593 
1594 	if (v == SEQ_START_TOKEN)
1595 		return netlink_seq_socket_idx(seq, 0);
1596 
1597 	s = sk_next(v);
1598 	if (s)
1599 		return s;
1600 
1601 	iter = seq->private;
1602 	i = iter->link;
1603 	j = iter->hash_idx + 1;
1604 
1605 	do {
1606 		struct nl_pid_hash *hash = &nl_table[i].hash;
1607 
1608 		for (; j <= hash->mask; j++) {
1609 			s = sk_head(&hash->table[j]);
1610 			if (s) {
1611 				iter->link = i;
1612 				iter->hash_idx = j;
1613 				return s;
1614 			}
1615 		}
1616 
1617 		j = 0;
1618 	} while (++i < MAX_LINKS);
1619 
1620 	return NULL;
1621 }
1622 
1623 static void netlink_seq_stop(struct seq_file *seq, void *v)
1624 {
1625 	read_unlock(&nl_table_lock);
1626 }
1627 
1628 
1629 static int netlink_seq_show(struct seq_file *seq, void *v)
1630 {
1631 	if (v == SEQ_START_TOKEN)
1632 		seq_puts(seq,
1633 			 "sk       Eth Pid    Groups   "
1634 			 "Rmem     Wmem     Dump     Locks\n");
1635 	else {
1636 		struct sock *s = v;
1637 		struct netlink_sock *nlk = nlk_sk(s);
1638 
1639 		seq_printf(seq, "%p %-3d %-6d %08x %-8d %-8d %p %d\n",
1640 			   s,
1641 			   s->sk_protocol,
1642 			   nlk->pid,
1643 			   nlk->groups ? (u32)nlk->groups[0] : 0,
1644 			   atomic_read(&s->sk_rmem_alloc),
1645 			   atomic_read(&s->sk_wmem_alloc),
1646 			   nlk->cb,
1647 			   atomic_read(&s->sk_refcnt)
1648 			);
1649 
1650 	}
1651 	return 0;
1652 }
1653 
1654 static struct seq_operations netlink_seq_ops = {
1655 	.start  = netlink_seq_start,
1656 	.next   = netlink_seq_next,
1657 	.stop   = netlink_seq_stop,
1658 	.show   = netlink_seq_show,
1659 };
1660 
1661 
1662 static int netlink_seq_open(struct inode *inode, struct file *file)
1663 {
1664 	struct seq_file *seq;
1665 	struct nl_seq_iter *iter;
1666 	int err;
1667 
1668 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
1669 	if (!iter)
1670 		return -ENOMEM;
1671 
1672 	err = seq_open(file, &netlink_seq_ops);
1673 	if (err) {
1674 		kfree(iter);
1675 		return err;
1676 	}
1677 
1678 	seq = file->private_data;
1679 	seq->private = iter;
1680 	return 0;
1681 }
1682 
1683 static struct file_operations netlink_seq_fops = {
1684 	.owner		= THIS_MODULE,
1685 	.open		= netlink_seq_open,
1686 	.read		= seq_read,
1687 	.llseek		= seq_lseek,
1688 	.release	= seq_release_private,
1689 };
1690 
1691 #endif
1692 
1693 int netlink_register_notifier(struct notifier_block *nb)
1694 {
1695 	return atomic_notifier_chain_register(&netlink_chain, nb);
1696 }
1697 
1698 int netlink_unregister_notifier(struct notifier_block *nb)
1699 {
1700 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
1701 }
1702 
1703 static const struct proto_ops netlink_ops = {
1704 	.family =	PF_NETLINK,
1705 	.owner =	THIS_MODULE,
1706 	.release =	netlink_release,
1707 	.bind =		netlink_bind,
1708 	.connect =	netlink_connect,
1709 	.socketpair =	sock_no_socketpair,
1710 	.accept =	sock_no_accept,
1711 	.getname =	netlink_getname,
1712 	.poll =		datagram_poll,
1713 	.ioctl =	sock_no_ioctl,
1714 	.listen =	sock_no_listen,
1715 	.shutdown =	sock_no_shutdown,
1716 	.setsockopt =	netlink_setsockopt,
1717 	.getsockopt =	netlink_getsockopt,
1718 	.sendmsg =	netlink_sendmsg,
1719 	.recvmsg =	netlink_recvmsg,
1720 	.mmap =		sock_no_mmap,
1721 	.sendpage =	sock_no_sendpage,
1722 };
1723 
1724 static struct net_proto_family netlink_family_ops = {
1725 	.family = PF_NETLINK,
1726 	.create = netlink_create,
1727 	.owner	= THIS_MODULE,	/* for consistency 8) */
1728 };
1729 
1730 extern void netlink_skb_parms_too_large(void);
1731 
1732 static int __init netlink_proto_init(void)
1733 {
1734 	struct sk_buff *dummy_skb;
1735 	int i;
1736 	unsigned long max;
1737 	unsigned int order;
1738 	int err = proto_register(&netlink_proto, 0);
1739 
1740 	if (err != 0)
1741 		goto out;
1742 
1743 	if (sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb))
1744 		netlink_skb_parms_too_large();
1745 
1746 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
1747 	if (!nl_table)
1748 		goto panic;
1749 
1750 	if (num_physpages >= (128 * 1024))
1751 		max = num_physpages >> (21 - PAGE_SHIFT);
1752 	else
1753 		max = num_physpages >> (23 - PAGE_SHIFT);
1754 
1755 	order = get_bitmask_order(max) - 1 + PAGE_SHIFT;
1756 	max = (1UL << order) / sizeof(struct hlist_head);
1757 	order = get_bitmask_order(max > UINT_MAX ? UINT_MAX : max) - 1;
1758 
1759 	for (i = 0; i < MAX_LINKS; i++) {
1760 		struct nl_pid_hash *hash = &nl_table[i].hash;
1761 
1762 		hash->table = nl_pid_hash_alloc(1 * sizeof(*hash->table));
1763 		if (!hash->table) {
1764 			while (i-- > 0)
1765 				nl_pid_hash_free(nl_table[i].hash.table,
1766 						 1 * sizeof(*hash->table));
1767 			kfree(nl_table);
1768 			goto panic;
1769 		}
1770 		memset(hash->table, 0, 1 * sizeof(*hash->table));
1771 		hash->max_shift = order;
1772 		hash->shift = 0;
1773 		hash->mask = 0;
1774 		hash->rehash_time = jiffies;
1775 	}
1776 
1777 	sock_register(&netlink_family_ops);
1778 #ifdef CONFIG_PROC_FS
1779 	proc_net_fops_create("netlink", 0, &netlink_seq_fops);
1780 #endif
1781 	/* The netlink device handler may be needed early. */
1782 	rtnetlink_init();
1783 out:
1784 	return err;
1785 panic:
1786 	panic("netlink_init: Cannot allocate nl_table\n");
1787 }
1788 
1789 core_initcall(netlink_proto_init);
1790 
1791 EXPORT_SYMBOL(netlink_ack);
1792 EXPORT_SYMBOL(netlink_run_queue);
1793 EXPORT_SYMBOL(netlink_queue_skip);
1794 EXPORT_SYMBOL(netlink_broadcast);
1795 EXPORT_SYMBOL(netlink_dump_start);
1796 EXPORT_SYMBOL(netlink_kernel_create);
1797 EXPORT_SYMBOL(netlink_register_notifier);
1798 EXPORT_SYMBOL(netlink_set_err);
1799 EXPORT_SYMBOL(netlink_set_nonroot);
1800 EXPORT_SYMBOL(netlink_unicast);
1801 EXPORT_SYMBOL(netlink_unregister_notifier);
1802 
1803