1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/bpf.h> 24 #include <linux/capability.h> 25 #include <linux/kernel.h> 26 #include <linux/filter.h> 27 #include <linux/init.h> 28 #include <linux/signal.h> 29 #include <linux/sched.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/un.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/sockios.h> 38 #include <linux/net.h> 39 #include <linux/fs.h> 40 #include <linux/slab.h> 41 #include <linux/uaccess.h> 42 #include <linux/skbuff.h> 43 #include <linux/netdevice.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/notifier.h> 48 #include <linux/security.h> 49 #include <linux/jhash.h> 50 #include <linux/jiffies.h> 51 #include <linux/random.h> 52 #include <linux/bitops.h> 53 #include <linux/mm.h> 54 #include <linux/types.h> 55 #include <linux/audit.h> 56 #include <linux/mutex.h> 57 #include <linux/vmalloc.h> 58 #include <linux/if_arp.h> 59 #include <linux/rhashtable.h> 60 #include <asm/cacheflush.h> 61 #include <linux/hash.h> 62 #include <linux/net_namespace.h> 63 #include <linux/nospec.h> 64 #include <linux/btf_ids.h> 65 66 #include <net/net_namespace.h> 67 #include <net/netns/generic.h> 68 #include <net/sock.h> 69 #include <net/scm.h> 70 #include <net/netlink.h> 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/netlink.h> 73 74 #include "af_netlink.h" 75 #include "genetlink.h" 76 77 struct listeners { 78 struct rcu_head rcu; 79 unsigned long masks[]; 80 }; 81 82 /* state bits */ 83 #define NETLINK_S_CONGESTED 0x0 84 85 static inline int netlink_is_kernel(struct sock *sk) 86 { 87 return nlk_test_bit(KERNEL_SOCKET, sk); 88 } 89 90 struct netlink_table *nl_table __read_mostly; 91 EXPORT_SYMBOL_GPL(nl_table); 92 93 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 94 95 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 96 97 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 98 "nlk_cb_mutex-ROUTE", 99 "nlk_cb_mutex-1", 100 "nlk_cb_mutex-USERSOCK", 101 "nlk_cb_mutex-FIREWALL", 102 "nlk_cb_mutex-SOCK_DIAG", 103 "nlk_cb_mutex-NFLOG", 104 "nlk_cb_mutex-XFRM", 105 "nlk_cb_mutex-SELINUX", 106 "nlk_cb_mutex-ISCSI", 107 "nlk_cb_mutex-AUDIT", 108 "nlk_cb_mutex-FIB_LOOKUP", 109 "nlk_cb_mutex-CONNECTOR", 110 "nlk_cb_mutex-NETFILTER", 111 "nlk_cb_mutex-IP6_FW", 112 "nlk_cb_mutex-DNRTMSG", 113 "nlk_cb_mutex-KOBJECT_UEVENT", 114 "nlk_cb_mutex-GENERIC", 115 "nlk_cb_mutex-17", 116 "nlk_cb_mutex-SCSITRANSPORT", 117 "nlk_cb_mutex-ECRYPTFS", 118 "nlk_cb_mutex-RDMA", 119 "nlk_cb_mutex-CRYPTO", 120 "nlk_cb_mutex-SMC", 121 "nlk_cb_mutex-23", 122 "nlk_cb_mutex-24", 123 "nlk_cb_mutex-25", 124 "nlk_cb_mutex-26", 125 "nlk_cb_mutex-27", 126 "nlk_cb_mutex-28", 127 "nlk_cb_mutex-29", 128 "nlk_cb_mutex-30", 129 "nlk_cb_mutex-31", 130 "nlk_cb_mutex-MAX_LINKS" 131 }; 132 133 static int netlink_dump(struct sock *sk, bool lock_taken); 134 135 /* nl_table locking explained: 136 * Lookup and traversal are protected with an RCU read-side lock. Insertion 137 * and removal are protected with per bucket lock while using RCU list 138 * modification primitives and may run in parallel to RCU protected lookups. 139 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 140 * been acquired * either during or after the socket has been removed from 141 * the list and after an RCU grace period. 142 */ 143 DEFINE_RWLOCK(nl_table_lock); 144 EXPORT_SYMBOL_GPL(nl_table_lock); 145 static atomic_t nl_table_users = ATOMIC_INIT(0); 146 147 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 148 149 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 150 151 152 static const struct rhashtable_params netlink_rhashtable_params; 153 154 void do_trace_netlink_extack(const char *msg) 155 { 156 trace_netlink_extack(msg); 157 } 158 EXPORT_SYMBOL(do_trace_netlink_extack); 159 160 static inline u32 netlink_group_mask(u32 group) 161 { 162 if (group > 32) 163 return 0; 164 return group ? 1 << (group - 1) : 0; 165 } 166 167 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 168 gfp_t gfp_mask) 169 { 170 unsigned int len = skb->len; 171 struct sk_buff *new; 172 173 new = alloc_skb(len, gfp_mask); 174 if (new == NULL) 175 return NULL; 176 177 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 178 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 179 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 180 181 skb_put_data(new, skb->data, len); 182 return new; 183 } 184 185 static unsigned int netlink_tap_net_id; 186 187 struct netlink_tap_net { 188 struct list_head netlink_tap_all; 189 struct mutex netlink_tap_lock; 190 }; 191 192 int netlink_add_tap(struct netlink_tap *nt) 193 { 194 struct net *net = dev_net(nt->dev); 195 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 196 197 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 198 return -EINVAL; 199 200 mutex_lock(&nn->netlink_tap_lock); 201 list_add_rcu(&nt->list, &nn->netlink_tap_all); 202 mutex_unlock(&nn->netlink_tap_lock); 203 204 __module_get(nt->module); 205 206 return 0; 207 } 208 EXPORT_SYMBOL_GPL(netlink_add_tap); 209 210 static int __netlink_remove_tap(struct netlink_tap *nt) 211 { 212 struct net *net = dev_net(nt->dev); 213 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 214 bool found = false; 215 struct netlink_tap *tmp; 216 217 mutex_lock(&nn->netlink_tap_lock); 218 219 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 220 if (nt == tmp) { 221 list_del_rcu(&nt->list); 222 found = true; 223 goto out; 224 } 225 } 226 227 pr_warn("__netlink_remove_tap: %p not found\n", nt); 228 out: 229 mutex_unlock(&nn->netlink_tap_lock); 230 231 if (found) 232 module_put(nt->module); 233 234 return found ? 0 : -ENODEV; 235 } 236 237 int netlink_remove_tap(struct netlink_tap *nt) 238 { 239 int ret; 240 241 ret = __netlink_remove_tap(nt); 242 synchronize_net(); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(netlink_remove_tap); 247 248 static __net_init int netlink_tap_init_net(struct net *net) 249 { 250 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 251 252 INIT_LIST_HEAD(&nn->netlink_tap_all); 253 mutex_init(&nn->netlink_tap_lock); 254 return 0; 255 } 256 257 static struct pernet_operations netlink_tap_net_ops = { 258 .init = netlink_tap_init_net, 259 .id = &netlink_tap_net_id, 260 .size = sizeof(struct netlink_tap_net), 261 }; 262 263 static bool netlink_filter_tap(const struct sk_buff *skb) 264 { 265 struct sock *sk = skb->sk; 266 267 /* We take the more conservative approach and 268 * whitelist socket protocols that may pass. 269 */ 270 switch (sk->sk_protocol) { 271 case NETLINK_ROUTE: 272 case NETLINK_USERSOCK: 273 case NETLINK_SOCK_DIAG: 274 case NETLINK_NFLOG: 275 case NETLINK_XFRM: 276 case NETLINK_FIB_LOOKUP: 277 case NETLINK_NETFILTER: 278 case NETLINK_GENERIC: 279 return true; 280 } 281 282 return false; 283 } 284 285 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 286 struct net_device *dev) 287 { 288 struct sk_buff *nskb; 289 struct sock *sk = skb->sk; 290 int ret = -ENOMEM; 291 292 if (!net_eq(dev_net(dev), sock_net(sk))) 293 return 0; 294 295 dev_hold(dev); 296 297 if (is_vmalloc_addr(skb->head)) 298 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 299 else 300 nskb = skb_clone(skb, GFP_ATOMIC); 301 if (nskb) { 302 nskb->dev = dev; 303 nskb->protocol = htons((u16) sk->sk_protocol); 304 nskb->pkt_type = netlink_is_kernel(sk) ? 305 PACKET_KERNEL : PACKET_USER; 306 skb_reset_network_header(nskb); 307 ret = dev_queue_xmit(nskb); 308 if (unlikely(ret > 0)) 309 ret = net_xmit_errno(ret); 310 } 311 312 dev_put(dev); 313 return ret; 314 } 315 316 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 317 { 318 int ret; 319 struct netlink_tap *tmp; 320 321 if (!netlink_filter_tap(skb)) 322 return; 323 324 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 325 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 326 if (unlikely(ret)) 327 break; 328 } 329 } 330 331 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 332 { 333 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 334 335 rcu_read_lock(); 336 337 if (unlikely(!list_empty(&nn->netlink_tap_all))) 338 __netlink_deliver_tap(skb, nn); 339 340 rcu_read_unlock(); 341 } 342 343 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 344 struct sk_buff *skb) 345 { 346 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 347 netlink_deliver_tap(sock_net(dst), skb); 348 } 349 350 static void netlink_overrun(struct sock *sk) 351 { 352 if (!nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 353 if (!test_and_set_bit(NETLINK_S_CONGESTED, 354 &nlk_sk(sk)->state)) { 355 WRITE_ONCE(sk->sk_err, ENOBUFS); 356 sk_error_report(sk); 357 } 358 } 359 atomic_inc(&sk->sk_drops); 360 } 361 362 static void netlink_rcv_wake(struct sock *sk) 363 { 364 struct netlink_sock *nlk = nlk_sk(sk); 365 366 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 367 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 368 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 369 wake_up_interruptible(&nlk->wait); 370 } 371 372 static void netlink_skb_destructor(struct sk_buff *skb) 373 { 374 if (is_vmalloc_addr(skb->head)) { 375 if (!skb->cloned || 376 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 377 vfree_atomic(skb->head); 378 379 skb->head = NULL; 380 } 381 if (skb->sk != NULL) 382 sock_rfree(skb); 383 } 384 385 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 386 { 387 WARN_ON(skb->sk != NULL); 388 skb->sk = sk; 389 skb->destructor = netlink_skb_destructor; 390 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 391 sk_mem_charge(sk, skb->truesize); 392 } 393 394 static void netlink_sock_destruct(struct sock *sk) 395 { 396 struct netlink_sock *nlk = nlk_sk(sk); 397 398 if (nlk->cb_running) { 399 if (nlk->cb.done) 400 nlk->cb.done(&nlk->cb); 401 module_put(nlk->cb.module); 402 kfree_skb(nlk->cb.skb); 403 } 404 405 skb_queue_purge(&sk->sk_receive_queue); 406 407 if (!sock_flag(sk, SOCK_DEAD)) { 408 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 409 return; 410 } 411 412 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 413 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 414 WARN_ON(nlk_sk(sk)->groups); 415 } 416 417 static void netlink_sock_destruct_work(struct work_struct *work) 418 { 419 struct netlink_sock *nlk = container_of(work, struct netlink_sock, 420 work); 421 422 sk_free(&nlk->sk); 423 } 424 425 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 426 * SMP. Look, when several writers sleep and reader wakes them up, all but one 427 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 428 * this, _but_ remember, it adds useless work on UP machines. 429 */ 430 431 void netlink_table_grab(void) 432 __acquires(nl_table_lock) 433 { 434 might_sleep(); 435 436 write_lock_irq(&nl_table_lock); 437 438 if (atomic_read(&nl_table_users)) { 439 DECLARE_WAITQUEUE(wait, current); 440 441 add_wait_queue_exclusive(&nl_table_wait, &wait); 442 for (;;) { 443 set_current_state(TASK_UNINTERRUPTIBLE); 444 if (atomic_read(&nl_table_users) == 0) 445 break; 446 write_unlock_irq(&nl_table_lock); 447 schedule(); 448 write_lock_irq(&nl_table_lock); 449 } 450 451 __set_current_state(TASK_RUNNING); 452 remove_wait_queue(&nl_table_wait, &wait); 453 } 454 } 455 456 void netlink_table_ungrab(void) 457 __releases(nl_table_lock) 458 { 459 write_unlock_irq(&nl_table_lock); 460 wake_up(&nl_table_wait); 461 } 462 463 static inline void 464 netlink_lock_table(void) 465 { 466 unsigned long flags; 467 468 /* read_lock() synchronizes us to netlink_table_grab */ 469 470 read_lock_irqsave(&nl_table_lock, flags); 471 atomic_inc(&nl_table_users); 472 read_unlock_irqrestore(&nl_table_lock, flags); 473 } 474 475 static inline void 476 netlink_unlock_table(void) 477 { 478 if (atomic_dec_and_test(&nl_table_users)) 479 wake_up(&nl_table_wait); 480 } 481 482 struct netlink_compare_arg 483 { 484 possible_net_t pnet; 485 u32 portid; 486 }; 487 488 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 489 #define netlink_compare_arg_len \ 490 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 491 492 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 493 const void *ptr) 494 { 495 const struct netlink_compare_arg *x = arg->key; 496 const struct netlink_sock *nlk = ptr; 497 498 return nlk->portid != x->portid || 499 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 500 } 501 502 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 503 struct net *net, u32 portid) 504 { 505 memset(arg, 0, sizeof(*arg)); 506 write_pnet(&arg->pnet, net); 507 arg->portid = portid; 508 } 509 510 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 511 struct net *net) 512 { 513 struct netlink_compare_arg arg; 514 515 netlink_compare_arg_init(&arg, net, portid); 516 return rhashtable_lookup_fast(&table->hash, &arg, 517 netlink_rhashtable_params); 518 } 519 520 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 521 { 522 struct netlink_compare_arg arg; 523 524 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 525 return rhashtable_lookup_insert_key(&table->hash, &arg, 526 &nlk_sk(sk)->node, 527 netlink_rhashtable_params); 528 } 529 530 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 531 { 532 struct netlink_table *table = &nl_table[protocol]; 533 struct sock *sk; 534 535 rcu_read_lock(); 536 sk = __netlink_lookup(table, portid, net); 537 if (sk) 538 sock_hold(sk); 539 rcu_read_unlock(); 540 541 return sk; 542 } 543 544 static const struct proto_ops netlink_ops; 545 546 static void 547 netlink_update_listeners(struct sock *sk) 548 { 549 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 550 unsigned long mask; 551 unsigned int i; 552 struct listeners *listeners; 553 554 listeners = nl_deref_protected(tbl->listeners); 555 if (!listeners) 556 return; 557 558 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 559 mask = 0; 560 sk_for_each_bound(sk, &tbl->mc_list) { 561 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 562 mask |= nlk_sk(sk)->groups[i]; 563 } 564 listeners->masks[i] = mask; 565 } 566 /* this function is only called with the netlink table "grabbed", which 567 * makes sure updates are visible before bind or setsockopt return. */ 568 } 569 570 static int netlink_insert(struct sock *sk, u32 portid) 571 { 572 struct netlink_table *table = &nl_table[sk->sk_protocol]; 573 int err; 574 575 lock_sock(sk); 576 577 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 578 if (nlk_sk(sk)->bound) 579 goto err; 580 581 /* portid can be read locklessly from netlink_getname(). */ 582 WRITE_ONCE(nlk_sk(sk)->portid, portid); 583 584 sock_hold(sk); 585 586 err = __netlink_insert(table, sk); 587 if (err) { 588 /* In case the hashtable backend returns with -EBUSY 589 * from here, it must not escape to the caller. 590 */ 591 if (unlikely(err == -EBUSY)) 592 err = -EOVERFLOW; 593 if (err == -EEXIST) 594 err = -EADDRINUSE; 595 sock_put(sk); 596 goto err; 597 } 598 599 /* We need to ensure that the socket is hashed and visible. */ 600 smp_wmb(); 601 /* Paired with lockless reads from netlink_bind(), 602 * netlink_connect() and netlink_sendmsg(). 603 */ 604 WRITE_ONCE(nlk_sk(sk)->bound, portid); 605 606 err: 607 release_sock(sk); 608 return err; 609 } 610 611 static void netlink_remove(struct sock *sk) 612 { 613 struct netlink_table *table; 614 615 table = &nl_table[sk->sk_protocol]; 616 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 617 netlink_rhashtable_params)) { 618 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 619 __sock_put(sk); 620 } 621 622 netlink_table_grab(); 623 if (nlk_sk(sk)->subscriptions) { 624 __sk_del_bind_node(sk); 625 netlink_update_listeners(sk); 626 } 627 if (sk->sk_protocol == NETLINK_GENERIC) 628 atomic_inc(&genl_sk_destructing_cnt); 629 netlink_table_ungrab(); 630 } 631 632 static struct proto netlink_proto = { 633 .name = "NETLINK", 634 .owner = THIS_MODULE, 635 .obj_size = sizeof(struct netlink_sock), 636 }; 637 638 static int __netlink_create(struct net *net, struct socket *sock, 639 int protocol, int kern) 640 { 641 struct sock *sk; 642 struct netlink_sock *nlk; 643 644 sock->ops = &netlink_ops; 645 646 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 647 if (!sk) 648 return -ENOMEM; 649 650 sock_init_data(sock, sk); 651 652 nlk = nlk_sk(sk); 653 mutex_init(&nlk->nl_cb_mutex); 654 lockdep_set_class_and_name(&nlk->nl_cb_mutex, 655 nlk_cb_mutex_keys + protocol, 656 nlk_cb_mutex_key_strings[protocol]); 657 init_waitqueue_head(&nlk->wait); 658 659 sk->sk_destruct = netlink_sock_destruct; 660 sk->sk_protocol = protocol; 661 return 0; 662 } 663 664 static int netlink_create(struct net *net, struct socket *sock, int protocol, 665 int kern) 666 { 667 struct module *module = NULL; 668 struct netlink_sock *nlk; 669 int (*bind)(struct net *net, int group); 670 void (*unbind)(struct net *net, int group); 671 void (*release)(struct sock *sock, unsigned long *groups); 672 int err = 0; 673 674 sock->state = SS_UNCONNECTED; 675 676 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 677 return -ESOCKTNOSUPPORT; 678 679 if (protocol < 0 || protocol >= MAX_LINKS) 680 return -EPROTONOSUPPORT; 681 protocol = array_index_nospec(protocol, MAX_LINKS); 682 683 netlink_lock_table(); 684 #ifdef CONFIG_MODULES 685 if (!nl_table[protocol].registered) { 686 netlink_unlock_table(); 687 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 688 netlink_lock_table(); 689 } 690 #endif 691 if (nl_table[protocol].registered && 692 try_module_get(nl_table[protocol].module)) 693 module = nl_table[protocol].module; 694 else 695 err = -EPROTONOSUPPORT; 696 bind = nl_table[protocol].bind; 697 unbind = nl_table[protocol].unbind; 698 release = nl_table[protocol].release; 699 netlink_unlock_table(); 700 701 if (err < 0) 702 goto out; 703 704 err = __netlink_create(net, sock, protocol, kern); 705 if (err < 0) 706 goto out_module; 707 708 sock_prot_inuse_add(net, &netlink_proto, 1); 709 710 nlk = nlk_sk(sock->sk); 711 nlk->module = module; 712 nlk->netlink_bind = bind; 713 nlk->netlink_unbind = unbind; 714 nlk->netlink_release = release; 715 out: 716 return err; 717 718 out_module: 719 module_put(module); 720 goto out; 721 } 722 723 static void deferred_put_nlk_sk(struct rcu_head *head) 724 { 725 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 726 struct sock *sk = &nlk->sk; 727 728 kfree(nlk->groups); 729 nlk->groups = NULL; 730 731 if (!refcount_dec_and_test(&sk->sk_refcnt)) 732 return; 733 734 if (nlk->cb_running && nlk->cb.done) { 735 INIT_WORK(&nlk->work, netlink_sock_destruct_work); 736 schedule_work(&nlk->work); 737 return; 738 } 739 740 sk_free(sk); 741 } 742 743 static int netlink_release(struct socket *sock) 744 { 745 struct sock *sk = sock->sk; 746 struct netlink_sock *nlk; 747 748 if (!sk) 749 return 0; 750 751 netlink_remove(sk); 752 sock_orphan(sk); 753 nlk = nlk_sk(sk); 754 755 /* 756 * OK. Socket is unlinked, any packets that arrive now 757 * will be purged. 758 */ 759 if (nlk->netlink_release) 760 nlk->netlink_release(sk, nlk->groups); 761 762 /* must not acquire netlink_table_lock in any way again before unbind 763 * and notifying genetlink is done as otherwise it might deadlock 764 */ 765 if (nlk->netlink_unbind) { 766 int i; 767 768 for (i = 0; i < nlk->ngroups; i++) 769 if (test_bit(i, nlk->groups)) 770 nlk->netlink_unbind(sock_net(sk), i + 1); 771 } 772 if (sk->sk_protocol == NETLINK_GENERIC && 773 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 774 wake_up(&genl_sk_destructing_waitq); 775 776 sock->sk = NULL; 777 wake_up_interruptible_all(&nlk->wait); 778 779 skb_queue_purge(&sk->sk_write_queue); 780 781 if (nlk->portid && nlk->bound) { 782 struct netlink_notify n = { 783 .net = sock_net(sk), 784 .protocol = sk->sk_protocol, 785 .portid = nlk->portid, 786 }; 787 blocking_notifier_call_chain(&netlink_chain, 788 NETLINK_URELEASE, &n); 789 } 790 791 module_put(nlk->module); 792 793 if (netlink_is_kernel(sk)) { 794 netlink_table_grab(); 795 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 796 if (--nl_table[sk->sk_protocol].registered == 0) { 797 struct listeners *old; 798 799 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 800 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 801 kfree_rcu(old, rcu); 802 nl_table[sk->sk_protocol].module = NULL; 803 nl_table[sk->sk_protocol].bind = NULL; 804 nl_table[sk->sk_protocol].unbind = NULL; 805 nl_table[sk->sk_protocol].flags = 0; 806 nl_table[sk->sk_protocol].registered = 0; 807 } 808 netlink_table_ungrab(); 809 } 810 811 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 812 813 /* Because struct net might disappear soon, do not keep a pointer. */ 814 if (!sk->sk_net_refcnt && sock_net(sk) != &init_net) { 815 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 816 /* Because of deferred_put_nlk_sk and use of work queue, 817 * it is possible netns will be freed before this socket. 818 */ 819 sock_net_set(sk, &init_net); 820 __netns_tracker_alloc(&init_net, &sk->ns_tracker, 821 false, GFP_KERNEL); 822 } 823 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 824 return 0; 825 } 826 827 static int netlink_autobind(struct socket *sock) 828 { 829 struct sock *sk = sock->sk; 830 struct net *net = sock_net(sk); 831 struct netlink_table *table = &nl_table[sk->sk_protocol]; 832 s32 portid = task_tgid_vnr(current); 833 int err; 834 s32 rover = -4096; 835 bool ok; 836 837 retry: 838 cond_resched(); 839 rcu_read_lock(); 840 ok = !__netlink_lookup(table, portid, net); 841 rcu_read_unlock(); 842 if (!ok) { 843 /* Bind collision, search negative portid values. */ 844 if (rover == -4096) 845 /* rover will be in range [S32_MIN, -4097] */ 846 rover = S32_MIN + get_random_u32_below(-4096 - S32_MIN); 847 else if (rover >= -4096) 848 rover = -4097; 849 portid = rover--; 850 goto retry; 851 } 852 853 err = netlink_insert(sk, portid); 854 if (err == -EADDRINUSE) 855 goto retry; 856 857 /* If 2 threads race to autobind, that is fine. */ 858 if (err == -EBUSY) 859 err = 0; 860 861 return err; 862 } 863 864 /** 865 * __netlink_ns_capable - General netlink message capability test 866 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 867 * @user_ns: The user namespace of the capability to use 868 * @cap: The capability to use 869 * 870 * Test to see if the opener of the socket we received the message 871 * from had when the netlink socket was created and the sender of the 872 * message has the capability @cap in the user namespace @user_ns. 873 */ 874 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 875 struct user_namespace *user_ns, int cap) 876 { 877 return ((nsp->flags & NETLINK_SKB_DST) || 878 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 879 ns_capable(user_ns, cap); 880 } 881 EXPORT_SYMBOL(__netlink_ns_capable); 882 883 /** 884 * netlink_ns_capable - General netlink message capability test 885 * @skb: socket buffer holding a netlink command from userspace 886 * @user_ns: The user namespace of the capability to use 887 * @cap: The capability to use 888 * 889 * Test to see if the opener of the socket we received the message 890 * from had when the netlink socket was created and the sender of the 891 * message has the capability @cap in the user namespace @user_ns. 892 */ 893 bool netlink_ns_capable(const struct sk_buff *skb, 894 struct user_namespace *user_ns, int cap) 895 { 896 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 897 } 898 EXPORT_SYMBOL(netlink_ns_capable); 899 900 /** 901 * netlink_capable - Netlink global message capability test 902 * @skb: socket buffer holding a netlink command from userspace 903 * @cap: The capability to use 904 * 905 * Test to see if the opener of the socket we received the message 906 * from had when the netlink socket was created and the sender of the 907 * message has the capability @cap in all user namespaces. 908 */ 909 bool netlink_capable(const struct sk_buff *skb, int cap) 910 { 911 return netlink_ns_capable(skb, &init_user_ns, cap); 912 } 913 EXPORT_SYMBOL(netlink_capable); 914 915 /** 916 * netlink_net_capable - Netlink network namespace message capability test 917 * @skb: socket buffer holding a netlink command from userspace 918 * @cap: The capability to use 919 * 920 * Test to see if the opener of the socket we received the message 921 * from had when the netlink socket was created and the sender of the 922 * message has the capability @cap over the network namespace of 923 * the socket we received the message from. 924 */ 925 bool netlink_net_capable(const struct sk_buff *skb, int cap) 926 { 927 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 928 } 929 EXPORT_SYMBOL(netlink_net_capable); 930 931 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 932 { 933 return (nl_table[sock->sk->sk_protocol].flags & flag) || 934 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 935 } 936 937 static void 938 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 939 { 940 struct netlink_sock *nlk = nlk_sk(sk); 941 942 if (nlk->subscriptions && !subscriptions) 943 __sk_del_bind_node(sk); 944 else if (!nlk->subscriptions && subscriptions) 945 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 946 nlk->subscriptions = subscriptions; 947 } 948 949 static int netlink_realloc_groups(struct sock *sk) 950 { 951 struct netlink_sock *nlk = nlk_sk(sk); 952 unsigned int groups; 953 unsigned long *new_groups; 954 int err = 0; 955 956 netlink_table_grab(); 957 958 groups = nl_table[sk->sk_protocol].groups; 959 if (!nl_table[sk->sk_protocol].registered) { 960 err = -ENOENT; 961 goto out_unlock; 962 } 963 964 if (nlk->ngroups >= groups) 965 goto out_unlock; 966 967 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 968 if (new_groups == NULL) { 969 err = -ENOMEM; 970 goto out_unlock; 971 } 972 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 973 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 974 975 nlk->groups = new_groups; 976 nlk->ngroups = groups; 977 out_unlock: 978 netlink_table_ungrab(); 979 return err; 980 } 981 982 static void netlink_undo_bind(int group, long unsigned int groups, 983 struct sock *sk) 984 { 985 struct netlink_sock *nlk = nlk_sk(sk); 986 int undo; 987 988 if (!nlk->netlink_unbind) 989 return; 990 991 for (undo = 0; undo < group; undo++) 992 if (test_bit(undo, &groups)) 993 nlk->netlink_unbind(sock_net(sk), undo + 1); 994 } 995 996 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 997 int addr_len) 998 { 999 struct sock *sk = sock->sk; 1000 struct net *net = sock_net(sk); 1001 struct netlink_sock *nlk = nlk_sk(sk); 1002 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1003 int err = 0; 1004 unsigned long groups; 1005 bool bound; 1006 1007 if (addr_len < sizeof(struct sockaddr_nl)) 1008 return -EINVAL; 1009 1010 if (nladdr->nl_family != AF_NETLINK) 1011 return -EINVAL; 1012 groups = nladdr->nl_groups; 1013 1014 /* Only superuser is allowed to listen multicasts */ 1015 if (groups) { 1016 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1017 return -EPERM; 1018 err = netlink_realloc_groups(sk); 1019 if (err) 1020 return err; 1021 } 1022 1023 if (nlk->ngroups < BITS_PER_LONG) 1024 groups &= (1UL << nlk->ngroups) - 1; 1025 1026 /* Paired with WRITE_ONCE() in netlink_insert() */ 1027 bound = READ_ONCE(nlk->bound); 1028 if (bound) { 1029 /* Ensure nlk->portid is up-to-date. */ 1030 smp_rmb(); 1031 1032 if (nladdr->nl_pid != nlk->portid) 1033 return -EINVAL; 1034 } 1035 1036 if (nlk->netlink_bind && groups) { 1037 int group; 1038 1039 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1040 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1041 if (!test_bit(group, &groups)) 1042 continue; 1043 err = nlk->netlink_bind(net, group + 1); 1044 if (!err) 1045 continue; 1046 netlink_undo_bind(group, groups, sk); 1047 return err; 1048 } 1049 } 1050 1051 /* No need for barriers here as we return to user-space without 1052 * using any of the bound attributes. 1053 */ 1054 netlink_lock_table(); 1055 if (!bound) { 1056 err = nladdr->nl_pid ? 1057 netlink_insert(sk, nladdr->nl_pid) : 1058 netlink_autobind(sock); 1059 if (err) { 1060 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1061 goto unlock; 1062 } 1063 } 1064 1065 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1066 goto unlock; 1067 netlink_unlock_table(); 1068 1069 netlink_table_grab(); 1070 netlink_update_subscriptions(sk, nlk->subscriptions + 1071 hweight32(groups) - 1072 hweight32(nlk->groups[0])); 1073 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1074 netlink_update_listeners(sk); 1075 netlink_table_ungrab(); 1076 1077 return 0; 1078 1079 unlock: 1080 netlink_unlock_table(); 1081 return err; 1082 } 1083 1084 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1085 int alen, int flags) 1086 { 1087 int err = 0; 1088 struct sock *sk = sock->sk; 1089 struct netlink_sock *nlk = nlk_sk(sk); 1090 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1091 1092 if (alen < sizeof(addr->sa_family)) 1093 return -EINVAL; 1094 1095 if (addr->sa_family == AF_UNSPEC) { 1096 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1097 WRITE_ONCE(sk->sk_state, NETLINK_UNCONNECTED); 1098 /* dst_portid and dst_group can be read locklessly */ 1099 WRITE_ONCE(nlk->dst_portid, 0); 1100 WRITE_ONCE(nlk->dst_group, 0); 1101 return 0; 1102 } 1103 if (addr->sa_family != AF_NETLINK) 1104 return -EINVAL; 1105 1106 if (alen < sizeof(struct sockaddr_nl)) 1107 return -EINVAL; 1108 1109 if ((nladdr->nl_groups || nladdr->nl_pid) && 1110 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1111 return -EPERM; 1112 1113 /* No need for barriers here as we return to user-space without 1114 * using any of the bound attributes. 1115 * Paired with WRITE_ONCE() in netlink_insert(). 1116 */ 1117 if (!READ_ONCE(nlk->bound)) 1118 err = netlink_autobind(sock); 1119 1120 if (err == 0) { 1121 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1122 WRITE_ONCE(sk->sk_state, NETLINK_CONNECTED); 1123 /* dst_portid and dst_group can be read locklessly */ 1124 WRITE_ONCE(nlk->dst_portid, nladdr->nl_pid); 1125 WRITE_ONCE(nlk->dst_group, ffs(nladdr->nl_groups)); 1126 } 1127 1128 return err; 1129 } 1130 1131 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1132 int peer) 1133 { 1134 struct sock *sk = sock->sk; 1135 struct netlink_sock *nlk = nlk_sk(sk); 1136 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1137 1138 nladdr->nl_family = AF_NETLINK; 1139 nladdr->nl_pad = 0; 1140 1141 if (peer) { 1142 /* Paired with WRITE_ONCE() in netlink_connect() */ 1143 nladdr->nl_pid = READ_ONCE(nlk->dst_portid); 1144 nladdr->nl_groups = netlink_group_mask(READ_ONCE(nlk->dst_group)); 1145 } else { 1146 /* Paired with WRITE_ONCE() in netlink_insert() */ 1147 nladdr->nl_pid = READ_ONCE(nlk->portid); 1148 netlink_lock_table(); 1149 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1150 netlink_unlock_table(); 1151 } 1152 return sizeof(*nladdr); 1153 } 1154 1155 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1156 unsigned long arg) 1157 { 1158 /* try to hand this ioctl down to the NIC drivers. 1159 */ 1160 return -ENOIOCTLCMD; 1161 } 1162 1163 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1164 { 1165 struct sock *sock; 1166 struct netlink_sock *nlk; 1167 1168 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1169 if (!sock) 1170 return ERR_PTR(-ECONNREFUSED); 1171 1172 /* Don't bother queuing skb if kernel socket has no input function */ 1173 nlk = nlk_sk(sock); 1174 /* dst_portid and sk_state can be changed in netlink_connect() */ 1175 if (READ_ONCE(sock->sk_state) == NETLINK_CONNECTED && 1176 READ_ONCE(nlk->dst_portid) != nlk_sk(ssk)->portid) { 1177 sock_put(sock); 1178 return ERR_PTR(-ECONNREFUSED); 1179 } 1180 return sock; 1181 } 1182 1183 struct sock *netlink_getsockbyfilp(struct file *filp) 1184 { 1185 struct inode *inode = file_inode(filp); 1186 struct sock *sock; 1187 1188 if (!S_ISSOCK(inode->i_mode)) 1189 return ERR_PTR(-ENOTSOCK); 1190 1191 sock = SOCKET_I(inode)->sk; 1192 if (sock->sk_family != AF_NETLINK) 1193 return ERR_PTR(-EINVAL); 1194 1195 sock_hold(sock); 1196 return sock; 1197 } 1198 1199 struct sk_buff *netlink_alloc_large_skb(unsigned int size, int broadcast) 1200 { 1201 size_t head_size = SKB_HEAD_ALIGN(size); 1202 struct sk_buff *skb; 1203 void *data; 1204 1205 if (head_size <= PAGE_SIZE || broadcast) 1206 return alloc_skb(size, GFP_KERNEL); 1207 1208 data = kvmalloc(head_size, GFP_KERNEL); 1209 if (!data) 1210 return NULL; 1211 1212 skb = __build_skb(data, head_size); 1213 if (!skb) 1214 kvfree(data); 1215 else if (is_vmalloc_addr(data)) 1216 skb->destructor = netlink_skb_destructor; 1217 1218 return skb; 1219 } 1220 1221 /* 1222 * Attach a skb to a netlink socket. 1223 * The caller must hold a reference to the destination socket. On error, the 1224 * reference is dropped. The skb is not send to the destination, just all 1225 * all error checks are performed and memory in the queue is reserved. 1226 * Return values: 1227 * < 0: error. skb freed, reference to sock dropped. 1228 * 0: continue 1229 * 1: repeat lookup - reference dropped while waiting for socket memory. 1230 */ 1231 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1232 long *timeo, struct sock *ssk) 1233 { 1234 struct netlink_sock *nlk; 1235 1236 nlk = nlk_sk(sk); 1237 1238 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1239 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1240 DECLARE_WAITQUEUE(wait, current); 1241 if (!*timeo) { 1242 if (!ssk || netlink_is_kernel(ssk)) 1243 netlink_overrun(sk); 1244 sock_put(sk); 1245 kfree_skb(skb); 1246 return -EAGAIN; 1247 } 1248 1249 __set_current_state(TASK_INTERRUPTIBLE); 1250 add_wait_queue(&nlk->wait, &wait); 1251 1252 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1253 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1254 !sock_flag(sk, SOCK_DEAD)) 1255 *timeo = schedule_timeout(*timeo); 1256 1257 __set_current_state(TASK_RUNNING); 1258 remove_wait_queue(&nlk->wait, &wait); 1259 sock_put(sk); 1260 1261 if (signal_pending(current)) { 1262 kfree_skb(skb); 1263 return sock_intr_errno(*timeo); 1264 } 1265 return 1; 1266 } 1267 netlink_skb_set_owner_r(skb, sk); 1268 return 0; 1269 } 1270 1271 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1272 { 1273 int len = skb->len; 1274 1275 netlink_deliver_tap(sock_net(sk), skb); 1276 1277 skb_queue_tail(&sk->sk_receive_queue, skb); 1278 sk->sk_data_ready(sk); 1279 return len; 1280 } 1281 1282 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1283 { 1284 int len = __netlink_sendskb(sk, skb); 1285 1286 sock_put(sk); 1287 return len; 1288 } 1289 1290 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1291 { 1292 kfree_skb(skb); 1293 sock_put(sk); 1294 } 1295 1296 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1297 { 1298 int delta; 1299 1300 WARN_ON(skb->sk != NULL); 1301 delta = skb->end - skb->tail; 1302 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1303 return skb; 1304 1305 if (skb_shared(skb)) { 1306 struct sk_buff *nskb = skb_clone(skb, allocation); 1307 if (!nskb) 1308 return skb; 1309 consume_skb(skb); 1310 skb = nskb; 1311 } 1312 1313 pskb_expand_head(skb, 0, -delta, 1314 (allocation & ~__GFP_DIRECT_RECLAIM) | 1315 __GFP_NOWARN | __GFP_NORETRY); 1316 return skb; 1317 } 1318 1319 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1320 struct sock *ssk) 1321 { 1322 int ret; 1323 struct netlink_sock *nlk = nlk_sk(sk); 1324 1325 ret = -ECONNREFUSED; 1326 if (nlk->netlink_rcv != NULL) { 1327 ret = skb->len; 1328 netlink_skb_set_owner_r(skb, sk); 1329 NETLINK_CB(skb).sk = ssk; 1330 netlink_deliver_tap_kernel(sk, ssk, skb); 1331 nlk->netlink_rcv(skb); 1332 consume_skb(skb); 1333 } else { 1334 kfree_skb(skb); 1335 } 1336 sock_put(sk); 1337 return ret; 1338 } 1339 1340 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1341 u32 portid, int nonblock) 1342 { 1343 struct sock *sk; 1344 int err; 1345 long timeo; 1346 1347 skb = netlink_trim(skb, gfp_any()); 1348 1349 timeo = sock_sndtimeo(ssk, nonblock); 1350 retry: 1351 sk = netlink_getsockbyportid(ssk, portid); 1352 if (IS_ERR(sk)) { 1353 kfree_skb(skb); 1354 return PTR_ERR(sk); 1355 } 1356 if (netlink_is_kernel(sk)) 1357 return netlink_unicast_kernel(sk, skb, ssk); 1358 1359 if (sk_filter(sk, skb)) { 1360 err = skb->len; 1361 kfree_skb(skb); 1362 sock_put(sk); 1363 return err; 1364 } 1365 1366 err = netlink_attachskb(sk, skb, &timeo, ssk); 1367 if (err == 1) 1368 goto retry; 1369 if (err) 1370 return err; 1371 1372 return netlink_sendskb(sk, skb); 1373 } 1374 EXPORT_SYMBOL(netlink_unicast); 1375 1376 int netlink_has_listeners(struct sock *sk, unsigned int group) 1377 { 1378 int res = 0; 1379 struct listeners *listeners; 1380 1381 BUG_ON(!netlink_is_kernel(sk)); 1382 1383 rcu_read_lock(); 1384 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1385 1386 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1387 res = test_bit(group - 1, listeners->masks); 1388 1389 rcu_read_unlock(); 1390 1391 return res; 1392 } 1393 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1394 1395 bool netlink_strict_get_check(struct sk_buff *skb) 1396 { 1397 return nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 1398 } 1399 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1400 1401 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1402 { 1403 struct netlink_sock *nlk = nlk_sk(sk); 1404 1405 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1406 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1407 netlink_skb_set_owner_r(skb, sk); 1408 __netlink_sendskb(sk, skb); 1409 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1410 } 1411 return -1; 1412 } 1413 1414 struct netlink_broadcast_data { 1415 struct sock *exclude_sk; 1416 struct net *net; 1417 u32 portid; 1418 u32 group; 1419 int failure; 1420 int delivery_failure; 1421 int congested; 1422 int delivered; 1423 gfp_t allocation; 1424 struct sk_buff *skb, *skb2; 1425 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1426 void *tx_data; 1427 }; 1428 1429 static void do_one_broadcast(struct sock *sk, 1430 struct netlink_broadcast_data *p) 1431 { 1432 struct netlink_sock *nlk = nlk_sk(sk); 1433 int val; 1434 1435 if (p->exclude_sk == sk) 1436 return; 1437 1438 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1439 !test_bit(p->group - 1, nlk->groups)) 1440 return; 1441 1442 if (!net_eq(sock_net(sk), p->net)) { 1443 if (!nlk_test_bit(LISTEN_ALL_NSID, sk)) 1444 return; 1445 1446 if (!peernet_has_id(sock_net(sk), p->net)) 1447 return; 1448 1449 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1450 CAP_NET_BROADCAST)) 1451 return; 1452 } 1453 1454 if (p->failure) { 1455 netlink_overrun(sk); 1456 return; 1457 } 1458 1459 sock_hold(sk); 1460 if (p->skb2 == NULL) { 1461 if (skb_shared(p->skb)) { 1462 p->skb2 = skb_clone(p->skb, p->allocation); 1463 } else { 1464 p->skb2 = skb_get(p->skb); 1465 /* 1466 * skb ownership may have been set when 1467 * delivered to a previous socket. 1468 */ 1469 skb_orphan(p->skb2); 1470 } 1471 } 1472 if (p->skb2 == NULL) { 1473 netlink_overrun(sk); 1474 /* Clone failed. Notify ALL listeners. */ 1475 p->failure = 1; 1476 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1477 p->delivery_failure = 1; 1478 goto out; 1479 } 1480 1481 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1482 kfree_skb(p->skb2); 1483 p->skb2 = NULL; 1484 goto out; 1485 } 1486 1487 if (sk_filter(sk, p->skb2)) { 1488 kfree_skb(p->skb2); 1489 p->skb2 = NULL; 1490 goto out; 1491 } 1492 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1493 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1494 NETLINK_CB(p->skb2).nsid_is_set = true; 1495 val = netlink_broadcast_deliver(sk, p->skb2); 1496 if (val < 0) { 1497 netlink_overrun(sk); 1498 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1499 p->delivery_failure = 1; 1500 } else { 1501 p->congested |= val; 1502 p->delivered = 1; 1503 p->skb2 = NULL; 1504 } 1505 out: 1506 sock_put(sk); 1507 } 1508 1509 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, 1510 u32 portid, 1511 u32 group, gfp_t allocation, 1512 netlink_filter_fn filter, 1513 void *filter_data) 1514 { 1515 struct net *net = sock_net(ssk); 1516 struct netlink_broadcast_data info; 1517 struct sock *sk; 1518 1519 skb = netlink_trim(skb, allocation); 1520 1521 info.exclude_sk = ssk; 1522 info.net = net; 1523 info.portid = portid; 1524 info.group = group; 1525 info.failure = 0; 1526 info.delivery_failure = 0; 1527 info.congested = 0; 1528 info.delivered = 0; 1529 info.allocation = allocation; 1530 info.skb = skb; 1531 info.skb2 = NULL; 1532 info.tx_filter = filter; 1533 info.tx_data = filter_data; 1534 1535 /* While we sleep in clone, do not allow to change socket list */ 1536 1537 netlink_lock_table(); 1538 1539 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1540 do_one_broadcast(sk, &info); 1541 1542 consume_skb(skb); 1543 1544 netlink_unlock_table(); 1545 1546 if (info.delivery_failure) { 1547 kfree_skb(info.skb2); 1548 return -ENOBUFS; 1549 } 1550 consume_skb(info.skb2); 1551 1552 if (info.delivered) { 1553 if (info.congested && gfpflags_allow_blocking(allocation)) 1554 yield(); 1555 return 0; 1556 } 1557 return -ESRCH; 1558 } 1559 EXPORT_SYMBOL(netlink_broadcast_filtered); 1560 1561 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1562 u32 group, gfp_t allocation) 1563 { 1564 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 1565 NULL, NULL); 1566 } 1567 EXPORT_SYMBOL(netlink_broadcast); 1568 1569 struct netlink_set_err_data { 1570 struct sock *exclude_sk; 1571 u32 portid; 1572 u32 group; 1573 int code; 1574 }; 1575 1576 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1577 { 1578 struct netlink_sock *nlk = nlk_sk(sk); 1579 int ret = 0; 1580 1581 if (sk == p->exclude_sk) 1582 goto out; 1583 1584 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1585 goto out; 1586 1587 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1588 !test_bit(p->group - 1, nlk->groups)) 1589 goto out; 1590 1591 if (p->code == ENOBUFS && nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 1592 ret = 1; 1593 goto out; 1594 } 1595 1596 WRITE_ONCE(sk->sk_err, p->code); 1597 sk_error_report(sk); 1598 out: 1599 return ret; 1600 } 1601 1602 /** 1603 * netlink_set_err - report error to broadcast listeners 1604 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1605 * @portid: the PORTID of a process that we want to skip (if any) 1606 * @group: the broadcast group that will notice the error 1607 * @code: error code, must be negative (as usual in kernelspace) 1608 * 1609 * This function returns the number of broadcast listeners that have set the 1610 * NETLINK_NO_ENOBUFS socket option. 1611 */ 1612 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1613 { 1614 struct netlink_set_err_data info; 1615 unsigned long flags; 1616 struct sock *sk; 1617 int ret = 0; 1618 1619 info.exclude_sk = ssk; 1620 info.portid = portid; 1621 info.group = group; 1622 /* sk->sk_err wants a positive error value */ 1623 info.code = -code; 1624 1625 read_lock_irqsave(&nl_table_lock, flags); 1626 1627 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1628 ret += do_one_set_err(sk, &info); 1629 1630 read_unlock_irqrestore(&nl_table_lock, flags); 1631 return ret; 1632 } 1633 EXPORT_SYMBOL(netlink_set_err); 1634 1635 /* must be called with netlink table grabbed */ 1636 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1637 unsigned int group, 1638 int is_new) 1639 { 1640 int old, new = !!is_new, subscriptions; 1641 1642 old = test_bit(group - 1, nlk->groups); 1643 subscriptions = nlk->subscriptions - old + new; 1644 __assign_bit(group - 1, nlk->groups, new); 1645 netlink_update_subscriptions(&nlk->sk, subscriptions); 1646 netlink_update_listeners(&nlk->sk); 1647 } 1648 1649 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1650 sockptr_t optval, unsigned int optlen) 1651 { 1652 struct sock *sk = sock->sk; 1653 struct netlink_sock *nlk = nlk_sk(sk); 1654 unsigned int val = 0; 1655 int nr = -1; 1656 1657 if (level != SOL_NETLINK) 1658 return -ENOPROTOOPT; 1659 1660 if (optlen >= sizeof(int) && 1661 copy_from_sockptr(&val, optval, sizeof(val))) 1662 return -EFAULT; 1663 1664 switch (optname) { 1665 case NETLINK_PKTINFO: 1666 nr = NETLINK_F_RECV_PKTINFO; 1667 break; 1668 case NETLINK_ADD_MEMBERSHIP: 1669 case NETLINK_DROP_MEMBERSHIP: { 1670 int err; 1671 1672 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1673 return -EPERM; 1674 err = netlink_realloc_groups(sk); 1675 if (err) 1676 return err; 1677 if (!val || val - 1 >= nlk->ngroups) 1678 return -EINVAL; 1679 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1680 err = nlk->netlink_bind(sock_net(sk), val); 1681 if (err) 1682 return err; 1683 } 1684 netlink_table_grab(); 1685 netlink_update_socket_mc(nlk, val, 1686 optname == NETLINK_ADD_MEMBERSHIP); 1687 netlink_table_ungrab(); 1688 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1689 nlk->netlink_unbind(sock_net(sk), val); 1690 1691 break; 1692 } 1693 case NETLINK_BROADCAST_ERROR: 1694 nr = NETLINK_F_BROADCAST_SEND_ERROR; 1695 break; 1696 case NETLINK_NO_ENOBUFS: 1697 assign_bit(NETLINK_F_RECV_NO_ENOBUFS, &nlk->flags, val); 1698 if (val) { 1699 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1700 wake_up_interruptible(&nlk->wait); 1701 } 1702 break; 1703 case NETLINK_LISTEN_ALL_NSID: 1704 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1705 return -EPERM; 1706 nr = NETLINK_F_LISTEN_ALL_NSID; 1707 break; 1708 case NETLINK_CAP_ACK: 1709 nr = NETLINK_F_CAP_ACK; 1710 break; 1711 case NETLINK_EXT_ACK: 1712 nr = NETLINK_F_EXT_ACK; 1713 break; 1714 case NETLINK_GET_STRICT_CHK: 1715 nr = NETLINK_F_STRICT_CHK; 1716 break; 1717 default: 1718 return -ENOPROTOOPT; 1719 } 1720 if (nr >= 0) 1721 assign_bit(nr, &nlk->flags, val); 1722 return 0; 1723 } 1724 1725 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1726 char __user *optval, int __user *optlen) 1727 { 1728 struct sock *sk = sock->sk; 1729 struct netlink_sock *nlk = nlk_sk(sk); 1730 unsigned int flag; 1731 int len, val; 1732 1733 if (level != SOL_NETLINK) 1734 return -ENOPROTOOPT; 1735 1736 if (get_user(len, optlen)) 1737 return -EFAULT; 1738 if (len < 0) 1739 return -EINVAL; 1740 1741 switch (optname) { 1742 case NETLINK_PKTINFO: 1743 flag = NETLINK_F_RECV_PKTINFO; 1744 break; 1745 case NETLINK_BROADCAST_ERROR: 1746 flag = NETLINK_F_BROADCAST_SEND_ERROR; 1747 break; 1748 case NETLINK_NO_ENOBUFS: 1749 flag = NETLINK_F_RECV_NO_ENOBUFS; 1750 break; 1751 case NETLINK_LIST_MEMBERSHIPS: { 1752 int pos, idx, shift, err = 0; 1753 1754 netlink_lock_table(); 1755 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1756 if (len - pos < sizeof(u32)) 1757 break; 1758 1759 idx = pos / sizeof(unsigned long); 1760 shift = (pos % sizeof(unsigned long)) * 8; 1761 if (put_user((u32)(nlk->groups[idx] >> shift), 1762 (u32 __user *)(optval + pos))) { 1763 err = -EFAULT; 1764 break; 1765 } 1766 } 1767 if (put_user(ALIGN(BITS_TO_BYTES(nlk->ngroups), sizeof(u32)), optlen)) 1768 err = -EFAULT; 1769 netlink_unlock_table(); 1770 return err; 1771 } 1772 case NETLINK_LISTEN_ALL_NSID: 1773 flag = NETLINK_F_LISTEN_ALL_NSID; 1774 break; 1775 case NETLINK_CAP_ACK: 1776 flag = NETLINK_F_CAP_ACK; 1777 break; 1778 case NETLINK_EXT_ACK: 1779 flag = NETLINK_F_EXT_ACK; 1780 break; 1781 case NETLINK_GET_STRICT_CHK: 1782 flag = NETLINK_F_STRICT_CHK; 1783 break; 1784 default: 1785 return -ENOPROTOOPT; 1786 } 1787 1788 if (len < sizeof(int)) 1789 return -EINVAL; 1790 1791 len = sizeof(int); 1792 val = test_bit(flag, &nlk->flags); 1793 1794 if (put_user(len, optlen) || 1795 copy_to_user(optval, &val, len)) 1796 return -EFAULT; 1797 1798 return 0; 1799 } 1800 1801 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1802 { 1803 struct nl_pktinfo info; 1804 1805 info.group = NETLINK_CB(skb).dst_group; 1806 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1807 } 1808 1809 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1810 struct sk_buff *skb) 1811 { 1812 if (!NETLINK_CB(skb).nsid_is_set) 1813 return; 1814 1815 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1816 &NETLINK_CB(skb).nsid); 1817 } 1818 1819 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1820 { 1821 struct sock *sk = sock->sk; 1822 struct netlink_sock *nlk = nlk_sk(sk); 1823 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1824 u32 dst_portid; 1825 u32 dst_group; 1826 struct sk_buff *skb; 1827 int err; 1828 struct scm_cookie scm; 1829 u32 netlink_skb_flags = 0; 1830 1831 if (msg->msg_flags & MSG_OOB) 1832 return -EOPNOTSUPP; 1833 1834 if (len == 0) { 1835 pr_warn_once("Zero length message leads to an empty skb\n"); 1836 return -ENODATA; 1837 } 1838 1839 err = scm_send(sock, msg, &scm, true); 1840 if (err < 0) 1841 return err; 1842 1843 if (msg->msg_namelen) { 1844 err = -EINVAL; 1845 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1846 goto out; 1847 if (addr->nl_family != AF_NETLINK) 1848 goto out; 1849 dst_portid = addr->nl_pid; 1850 dst_group = ffs(addr->nl_groups); 1851 err = -EPERM; 1852 if ((dst_group || dst_portid) && 1853 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1854 goto out; 1855 netlink_skb_flags |= NETLINK_SKB_DST; 1856 } else { 1857 /* Paired with WRITE_ONCE() in netlink_connect() */ 1858 dst_portid = READ_ONCE(nlk->dst_portid); 1859 dst_group = READ_ONCE(nlk->dst_group); 1860 } 1861 1862 /* Paired with WRITE_ONCE() in netlink_insert() */ 1863 if (!READ_ONCE(nlk->bound)) { 1864 err = netlink_autobind(sock); 1865 if (err) 1866 goto out; 1867 } else { 1868 /* Ensure nlk is hashed and visible. */ 1869 smp_rmb(); 1870 } 1871 1872 err = -EMSGSIZE; 1873 if (len > sk->sk_sndbuf - 32) 1874 goto out; 1875 err = -ENOBUFS; 1876 skb = netlink_alloc_large_skb(len, dst_group); 1877 if (skb == NULL) 1878 goto out; 1879 1880 NETLINK_CB(skb).portid = nlk->portid; 1881 NETLINK_CB(skb).dst_group = dst_group; 1882 NETLINK_CB(skb).creds = scm.creds; 1883 NETLINK_CB(skb).flags = netlink_skb_flags; 1884 1885 err = -EFAULT; 1886 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1887 kfree_skb(skb); 1888 goto out; 1889 } 1890 1891 err = security_netlink_send(sk, skb); 1892 if (err) { 1893 kfree_skb(skb); 1894 goto out; 1895 } 1896 1897 if (dst_group) { 1898 refcount_inc(&skb->users); 1899 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1900 } 1901 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1902 1903 out: 1904 scm_destroy(&scm); 1905 return err; 1906 } 1907 1908 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1909 int flags) 1910 { 1911 struct scm_cookie scm; 1912 struct sock *sk = sock->sk; 1913 struct netlink_sock *nlk = nlk_sk(sk); 1914 size_t copied, max_recvmsg_len; 1915 struct sk_buff *skb, *data_skb; 1916 int err, ret; 1917 1918 if (flags & MSG_OOB) 1919 return -EOPNOTSUPP; 1920 1921 copied = 0; 1922 1923 skb = skb_recv_datagram(sk, flags, &err); 1924 if (skb == NULL) 1925 goto out; 1926 1927 data_skb = skb; 1928 1929 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1930 if (unlikely(skb_shinfo(skb)->frag_list)) { 1931 /* 1932 * If this skb has a frag_list, then here that means that we 1933 * will have to use the frag_list skb's data for compat tasks 1934 * and the regular skb's data for normal (non-compat) tasks. 1935 * 1936 * If we need to send the compat skb, assign it to the 1937 * 'data_skb' variable so that it will be used below for data 1938 * copying. We keep 'skb' for everything else, including 1939 * freeing both later. 1940 */ 1941 if (flags & MSG_CMSG_COMPAT) 1942 data_skb = skb_shinfo(skb)->frag_list; 1943 } 1944 #endif 1945 1946 /* Record the max length of recvmsg() calls for future allocations */ 1947 max_recvmsg_len = max(READ_ONCE(nlk->max_recvmsg_len), len); 1948 max_recvmsg_len = min_t(size_t, max_recvmsg_len, 1949 SKB_WITH_OVERHEAD(32768)); 1950 WRITE_ONCE(nlk->max_recvmsg_len, max_recvmsg_len); 1951 1952 copied = data_skb->len; 1953 if (len < copied) { 1954 msg->msg_flags |= MSG_TRUNC; 1955 copied = len; 1956 } 1957 1958 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1959 1960 if (msg->msg_name) { 1961 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1962 addr->nl_family = AF_NETLINK; 1963 addr->nl_pad = 0; 1964 addr->nl_pid = NETLINK_CB(skb).portid; 1965 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1966 msg->msg_namelen = sizeof(*addr); 1967 } 1968 1969 if (nlk_test_bit(RECV_PKTINFO, sk)) 1970 netlink_cmsg_recv_pktinfo(msg, skb); 1971 if (nlk_test_bit(LISTEN_ALL_NSID, sk)) 1972 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1973 1974 memset(&scm, 0, sizeof(scm)); 1975 scm.creds = *NETLINK_CREDS(skb); 1976 if (flags & MSG_TRUNC) 1977 copied = data_skb->len; 1978 1979 skb_free_datagram(sk, skb); 1980 1981 if (READ_ONCE(nlk->cb_running) && 1982 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 1983 ret = netlink_dump(sk, false); 1984 if (ret) { 1985 WRITE_ONCE(sk->sk_err, -ret); 1986 sk_error_report(sk); 1987 } 1988 } 1989 1990 scm_recv(sock, msg, &scm, flags); 1991 out: 1992 netlink_rcv_wake(sk); 1993 return err ? : copied; 1994 } 1995 1996 static void netlink_data_ready(struct sock *sk) 1997 { 1998 BUG(); 1999 } 2000 2001 /* 2002 * We export these functions to other modules. They provide a 2003 * complete set of kernel non-blocking support for message 2004 * queueing. 2005 */ 2006 2007 struct sock * 2008 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2009 struct netlink_kernel_cfg *cfg) 2010 { 2011 struct socket *sock; 2012 struct sock *sk; 2013 struct netlink_sock *nlk; 2014 struct listeners *listeners = NULL; 2015 unsigned int groups; 2016 2017 BUG_ON(!nl_table); 2018 2019 if (unit < 0 || unit >= MAX_LINKS) 2020 return NULL; 2021 2022 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2023 return NULL; 2024 2025 if (__netlink_create(net, sock, unit, 1) < 0) 2026 goto out_sock_release_nosk; 2027 2028 sk = sock->sk; 2029 2030 if (!cfg || cfg->groups < 32) 2031 groups = 32; 2032 else 2033 groups = cfg->groups; 2034 2035 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2036 if (!listeners) 2037 goto out_sock_release; 2038 2039 sk->sk_data_ready = netlink_data_ready; 2040 if (cfg && cfg->input) 2041 nlk_sk(sk)->netlink_rcv = cfg->input; 2042 2043 if (netlink_insert(sk, 0)) 2044 goto out_sock_release; 2045 2046 nlk = nlk_sk(sk); 2047 set_bit(NETLINK_F_KERNEL_SOCKET, &nlk->flags); 2048 2049 netlink_table_grab(); 2050 if (!nl_table[unit].registered) { 2051 nl_table[unit].groups = groups; 2052 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2053 nl_table[unit].module = module; 2054 if (cfg) { 2055 nl_table[unit].bind = cfg->bind; 2056 nl_table[unit].unbind = cfg->unbind; 2057 nl_table[unit].release = cfg->release; 2058 nl_table[unit].flags = cfg->flags; 2059 } 2060 nl_table[unit].registered = 1; 2061 } else { 2062 kfree(listeners); 2063 nl_table[unit].registered++; 2064 } 2065 netlink_table_ungrab(); 2066 return sk; 2067 2068 out_sock_release: 2069 kfree(listeners); 2070 netlink_kernel_release(sk); 2071 return NULL; 2072 2073 out_sock_release_nosk: 2074 sock_release(sock); 2075 return NULL; 2076 } 2077 EXPORT_SYMBOL(__netlink_kernel_create); 2078 2079 void 2080 netlink_kernel_release(struct sock *sk) 2081 { 2082 if (sk == NULL || sk->sk_socket == NULL) 2083 return; 2084 2085 sock_release(sk->sk_socket); 2086 } 2087 EXPORT_SYMBOL(netlink_kernel_release); 2088 2089 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2090 { 2091 struct listeners *new, *old; 2092 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2093 2094 if (groups < 32) 2095 groups = 32; 2096 2097 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2098 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2099 if (!new) 2100 return -ENOMEM; 2101 old = nl_deref_protected(tbl->listeners); 2102 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2103 rcu_assign_pointer(tbl->listeners, new); 2104 2105 kfree_rcu(old, rcu); 2106 } 2107 tbl->groups = groups; 2108 2109 return 0; 2110 } 2111 2112 /** 2113 * netlink_change_ngroups - change number of multicast groups 2114 * 2115 * This changes the number of multicast groups that are available 2116 * on a certain netlink family. Note that it is not possible to 2117 * change the number of groups to below 32. Also note that it does 2118 * not implicitly call netlink_clear_multicast_users() when the 2119 * number of groups is reduced. 2120 * 2121 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2122 * @groups: The new number of groups. 2123 */ 2124 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2125 { 2126 int err; 2127 2128 netlink_table_grab(); 2129 err = __netlink_change_ngroups(sk, groups); 2130 netlink_table_ungrab(); 2131 2132 return err; 2133 } 2134 2135 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2136 { 2137 struct sock *sk; 2138 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2139 struct hlist_node *tmp; 2140 2141 sk_for_each_bound_safe(sk, tmp, &tbl->mc_list) 2142 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2143 } 2144 2145 struct nlmsghdr * 2146 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2147 { 2148 struct nlmsghdr *nlh; 2149 int size = nlmsg_msg_size(len); 2150 2151 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2152 nlh->nlmsg_type = type; 2153 nlh->nlmsg_len = size; 2154 nlh->nlmsg_flags = flags; 2155 nlh->nlmsg_pid = portid; 2156 nlh->nlmsg_seq = seq; 2157 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2158 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2159 return nlh; 2160 } 2161 EXPORT_SYMBOL(__nlmsg_put); 2162 2163 static size_t 2164 netlink_ack_tlv_len(struct netlink_sock *nlk, int err, 2165 const struct netlink_ext_ack *extack) 2166 { 2167 size_t tlvlen; 2168 2169 if (!extack || !test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) 2170 return 0; 2171 2172 tlvlen = 0; 2173 if (extack->_msg) 2174 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2175 if (extack->cookie_len) 2176 tlvlen += nla_total_size(extack->cookie_len); 2177 2178 /* Following attributes are only reported as error (not warning) */ 2179 if (!err) 2180 return tlvlen; 2181 2182 if (extack->bad_attr) 2183 tlvlen += nla_total_size(sizeof(u32)); 2184 if (extack->policy) 2185 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2186 if (extack->miss_type) 2187 tlvlen += nla_total_size(sizeof(u32)); 2188 if (extack->miss_nest) 2189 tlvlen += nla_total_size(sizeof(u32)); 2190 2191 return tlvlen; 2192 } 2193 2194 static void 2195 netlink_ack_tlv_fill(struct sk_buff *in_skb, struct sk_buff *skb, 2196 const struct nlmsghdr *nlh, int err, 2197 const struct netlink_ext_ack *extack) 2198 { 2199 if (extack->_msg) 2200 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)); 2201 if (extack->cookie_len) 2202 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2203 extack->cookie_len, extack->cookie)); 2204 2205 if (!err) 2206 return; 2207 2208 if (extack->bad_attr && 2209 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2210 (u8 *)extack->bad_attr >= in_skb->data + in_skb->len)) 2211 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2212 (u8 *)extack->bad_attr - (const u8 *)nlh)); 2213 if (extack->policy) 2214 netlink_policy_dump_write_attr(skb, extack->policy, 2215 NLMSGERR_ATTR_POLICY); 2216 if (extack->miss_type) 2217 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_TYPE, 2218 extack->miss_type)); 2219 if (extack->miss_nest && 2220 !WARN_ON((u8 *)extack->miss_nest < in_skb->data || 2221 (u8 *)extack->miss_nest > in_skb->data + in_skb->len)) 2222 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_NEST, 2223 (u8 *)extack->miss_nest - (const u8 *)nlh)); 2224 } 2225 2226 /* 2227 * It looks a bit ugly. 2228 * It would be better to create kernel thread. 2229 */ 2230 2231 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2232 struct netlink_callback *cb, 2233 struct netlink_ext_ack *extack) 2234 { 2235 struct nlmsghdr *nlh; 2236 size_t extack_len; 2237 2238 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2239 NLM_F_MULTI | cb->answer_flags); 2240 if (WARN_ON(!nlh)) 2241 return -ENOBUFS; 2242 2243 nl_dump_check_consistent(cb, nlh); 2244 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2245 2246 extack_len = netlink_ack_tlv_len(nlk, nlk->dump_done_errno, extack); 2247 if (extack_len) { 2248 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2249 if (skb_tailroom(skb) >= extack_len) { 2250 netlink_ack_tlv_fill(cb->skb, skb, cb->nlh, 2251 nlk->dump_done_errno, extack); 2252 nlmsg_end(skb, nlh); 2253 } 2254 } 2255 2256 return 0; 2257 } 2258 2259 static int netlink_dump(struct sock *sk, bool lock_taken) 2260 { 2261 struct netlink_sock *nlk = nlk_sk(sk); 2262 struct netlink_ext_ack extack = {}; 2263 struct netlink_callback *cb; 2264 struct sk_buff *skb = NULL; 2265 size_t max_recvmsg_len; 2266 struct module *module; 2267 int err = -ENOBUFS; 2268 int alloc_min_size; 2269 int alloc_size; 2270 2271 if (!lock_taken) 2272 mutex_lock(&nlk->nl_cb_mutex); 2273 if (!nlk->cb_running) { 2274 err = -EINVAL; 2275 goto errout_skb; 2276 } 2277 2278 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2279 goto errout_skb; 2280 2281 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2282 * required, but it makes sense to _attempt_ a 16K bytes allocation 2283 * to reduce number of system calls on dump operations, if user 2284 * ever provided a big enough buffer. 2285 */ 2286 cb = &nlk->cb; 2287 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2288 2289 max_recvmsg_len = READ_ONCE(nlk->max_recvmsg_len); 2290 if (alloc_min_size < max_recvmsg_len) { 2291 alloc_size = max_recvmsg_len; 2292 skb = alloc_skb(alloc_size, 2293 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2294 __GFP_NOWARN | __GFP_NORETRY); 2295 } 2296 if (!skb) { 2297 alloc_size = alloc_min_size; 2298 skb = alloc_skb(alloc_size, GFP_KERNEL); 2299 } 2300 if (!skb) 2301 goto errout_skb; 2302 2303 /* Trim skb to allocated size. User is expected to provide buffer as 2304 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2305 * netlink_recvmsg())). dump will pack as many smaller messages as 2306 * could fit within the allocated skb. skb is typically allocated 2307 * with larger space than required (could be as much as near 2x the 2308 * requested size with align to next power of 2 approach). Allowing 2309 * dump to use the excess space makes it difficult for a user to have a 2310 * reasonable static buffer based on the expected largest dump of a 2311 * single netdev. The outcome is MSG_TRUNC error. 2312 */ 2313 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2314 2315 /* Make sure malicious BPF programs can not read unitialized memory 2316 * from skb->head -> skb->data 2317 */ 2318 skb_reset_network_header(skb); 2319 skb_reset_mac_header(skb); 2320 2321 netlink_skb_set_owner_r(skb, sk); 2322 2323 if (nlk->dump_done_errno > 0) { 2324 cb->extack = &extack; 2325 2326 nlk->dump_done_errno = cb->dump(skb, cb); 2327 2328 /* EMSGSIZE plus something already in the skb means 2329 * that there's more to dump but current skb has filled up. 2330 * If the callback really wants to return EMSGSIZE to user space 2331 * it needs to do so again, on the next cb->dump() call, 2332 * without putting data in the skb. 2333 */ 2334 if (nlk->dump_done_errno == -EMSGSIZE && skb->len) 2335 nlk->dump_done_errno = skb->len; 2336 2337 cb->extack = NULL; 2338 } 2339 2340 if (nlk->dump_done_errno > 0 || 2341 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2342 mutex_unlock(&nlk->nl_cb_mutex); 2343 2344 if (sk_filter(sk, skb)) 2345 kfree_skb(skb); 2346 else 2347 __netlink_sendskb(sk, skb); 2348 return 0; 2349 } 2350 2351 if (netlink_dump_done(nlk, skb, cb, &extack)) 2352 goto errout_skb; 2353 2354 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2355 /* frag_list skb's data is used for compat tasks 2356 * and the regular skb's data for normal (non-compat) tasks. 2357 * See netlink_recvmsg(). 2358 */ 2359 if (unlikely(skb_shinfo(skb)->frag_list)) { 2360 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2361 goto errout_skb; 2362 } 2363 #endif 2364 2365 if (sk_filter(sk, skb)) 2366 kfree_skb(skb); 2367 else 2368 __netlink_sendskb(sk, skb); 2369 2370 if (cb->done) 2371 cb->done(cb); 2372 2373 WRITE_ONCE(nlk->cb_running, false); 2374 module = cb->module; 2375 skb = cb->skb; 2376 mutex_unlock(&nlk->nl_cb_mutex); 2377 module_put(module); 2378 consume_skb(skb); 2379 return 0; 2380 2381 errout_skb: 2382 mutex_unlock(&nlk->nl_cb_mutex); 2383 kfree_skb(skb); 2384 return err; 2385 } 2386 2387 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2388 const struct nlmsghdr *nlh, 2389 struct netlink_dump_control *control) 2390 { 2391 struct netlink_callback *cb; 2392 struct netlink_sock *nlk; 2393 struct sock *sk; 2394 int ret; 2395 2396 refcount_inc(&skb->users); 2397 2398 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2399 if (sk == NULL) { 2400 ret = -ECONNREFUSED; 2401 goto error_free; 2402 } 2403 2404 nlk = nlk_sk(sk); 2405 mutex_lock(&nlk->nl_cb_mutex); 2406 /* A dump is in progress... */ 2407 if (nlk->cb_running) { 2408 ret = -EBUSY; 2409 goto error_unlock; 2410 } 2411 /* add reference of module which cb->dump belongs to */ 2412 if (!try_module_get(control->module)) { 2413 ret = -EPROTONOSUPPORT; 2414 goto error_unlock; 2415 } 2416 2417 cb = &nlk->cb; 2418 memset(cb, 0, sizeof(*cb)); 2419 cb->dump = control->dump; 2420 cb->done = control->done; 2421 cb->nlh = nlh; 2422 cb->data = control->data; 2423 cb->module = control->module; 2424 cb->min_dump_alloc = control->min_dump_alloc; 2425 cb->flags = control->flags; 2426 cb->skb = skb; 2427 2428 cb->strict_check = nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 2429 2430 if (control->start) { 2431 cb->extack = control->extack; 2432 ret = control->start(cb); 2433 cb->extack = NULL; 2434 if (ret) 2435 goto error_put; 2436 } 2437 2438 WRITE_ONCE(nlk->cb_running, true); 2439 nlk->dump_done_errno = INT_MAX; 2440 2441 ret = netlink_dump(sk, true); 2442 2443 sock_put(sk); 2444 2445 if (ret) 2446 return ret; 2447 2448 /* We successfully started a dump, by returning -EINTR we 2449 * signal not to send ACK even if it was requested. 2450 */ 2451 return -EINTR; 2452 2453 error_put: 2454 module_put(control->module); 2455 error_unlock: 2456 sock_put(sk); 2457 mutex_unlock(&nlk->nl_cb_mutex); 2458 error_free: 2459 kfree_skb(skb); 2460 return ret; 2461 } 2462 EXPORT_SYMBOL(__netlink_dump_start); 2463 2464 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2465 const struct netlink_ext_ack *extack) 2466 { 2467 struct sk_buff *skb; 2468 struct nlmsghdr *rep; 2469 struct nlmsgerr *errmsg; 2470 size_t payload = sizeof(*errmsg); 2471 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2472 unsigned int flags = 0; 2473 size_t tlvlen; 2474 2475 /* Error messages get the original request appened, unless the user 2476 * requests to cap the error message, and get extra error data if 2477 * requested. 2478 */ 2479 if (err && !test_bit(NETLINK_F_CAP_ACK, &nlk->flags)) 2480 payload += nlmsg_len(nlh); 2481 else 2482 flags |= NLM_F_CAPPED; 2483 2484 tlvlen = netlink_ack_tlv_len(nlk, err, extack); 2485 if (tlvlen) 2486 flags |= NLM_F_ACK_TLVS; 2487 2488 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2489 if (!skb) 2490 goto err_skb; 2491 2492 rep = nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2493 NLMSG_ERROR, sizeof(*errmsg), flags); 2494 if (!rep) 2495 goto err_bad_put; 2496 errmsg = nlmsg_data(rep); 2497 errmsg->error = err; 2498 errmsg->msg = *nlh; 2499 2500 if (!(flags & NLM_F_CAPPED)) { 2501 if (!nlmsg_append(skb, nlmsg_len(nlh))) 2502 goto err_bad_put; 2503 2504 memcpy(nlmsg_data(&errmsg->msg), nlmsg_data(nlh), 2505 nlmsg_len(nlh)); 2506 } 2507 2508 if (tlvlen) 2509 netlink_ack_tlv_fill(in_skb, skb, nlh, err, extack); 2510 2511 nlmsg_end(skb, rep); 2512 2513 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2514 2515 return; 2516 2517 err_bad_put: 2518 nlmsg_free(skb); 2519 err_skb: 2520 WRITE_ONCE(NETLINK_CB(in_skb).sk->sk_err, ENOBUFS); 2521 sk_error_report(NETLINK_CB(in_skb).sk); 2522 } 2523 EXPORT_SYMBOL(netlink_ack); 2524 2525 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2526 struct nlmsghdr *, 2527 struct netlink_ext_ack *)) 2528 { 2529 struct netlink_ext_ack extack; 2530 struct nlmsghdr *nlh; 2531 int err; 2532 2533 while (skb->len >= nlmsg_total_size(0)) { 2534 int msglen; 2535 2536 memset(&extack, 0, sizeof(extack)); 2537 nlh = nlmsg_hdr(skb); 2538 err = 0; 2539 2540 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2541 return 0; 2542 2543 /* Only requests are handled by the kernel */ 2544 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2545 goto ack; 2546 2547 /* Skip control messages */ 2548 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2549 goto ack; 2550 2551 err = cb(skb, nlh, &extack); 2552 if (err == -EINTR) 2553 goto skip; 2554 2555 ack: 2556 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2557 netlink_ack(skb, nlh, err, &extack); 2558 2559 skip: 2560 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2561 if (msglen > skb->len) 2562 msglen = skb->len; 2563 skb_pull(skb, msglen); 2564 } 2565 2566 return 0; 2567 } 2568 EXPORT_SYMBOL(netlink_rcv_skb); 2569 2570 /** 2571 * nlmsg_notify - send a notification netlink message 2572 * @sk: netlink socket to use 2573 * @skb: notification message 2574 * @portid: destination netlink portid for reports or 0 2575 * @group: destination multicast group or 0 2576 * @report: 1 to report back, 0 to disable 2577 * @flags: allocation flags 2578 */ 2579 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2580 unsigned int group, int report, gfp_t flags) 2581 { 2582 int err = 0; 2583 2584 if (group) { 2585 int exclude_portid = 0; 2586 2587 if (report) { 2588 refcount_inc(&skb->users); 2589 exclude_portid = portid; 2590 } 2591 2592 /* errors reported via destination sk->sk_err, but propagate 2593 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2594 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2595 if (err == -ESRCH) 2596 err = 0; 2597 } 2598 2599 if (report) { 2600 int err2; 2601 2602 err2 = nlmsg_unicast(sk, skb, portid); 2603 if (!err) 2604 err = err2; 2605 } 2606 2607 return err; 2608 } 2609 EXPORT_SYMBOL(nlmsg_notify); 2610 2611 #ifdef CONFIG_PROC_FS 2612 struct nl_seq_iter { 2613 struct seq_net_private p; 2614 struct rhashtable_iter hti; 2615 int link; 2616 }; 2617 2618 static void netlink_walk_start(struct nl_seq_iter *iter) 2619 { 2620 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2621 rhashtable_walk_start(&iter->hti); 2622 } 2623 2624 static void netlink_walk_stop(struct nl_seq_iter *iter) 2625 { 2626 rhashtable_walk_stop(&iter->hti); 2627 rhashtable_walk_exit(&iter->hti); 2628 } 2629 2630 static void *__netlink_seq_next(struct seq_file *seq) 2631 { 2632 struct nl_seq_iter *iter = seq->private; 2633 struct netlink_sock *nlk; 2634 2635 do { 2636 for (;;) { 2637 nlk = rhashtable_walk_next(&iter->hti); 2638 2639 if (IS_ERR(nlk)) { 2640 if (PTR_ERR(nlk) == -EAGAIN) 2641 continue; 2642 2643 return nlk; 2644 } 2645 2646 if (nlk) 2647 break; 2648 2649 netlink_walk_stop(iter); 2650 if (++iter->link >= MAX_LINKS) 2651 return NULL; 2652 2653 netlink_walk_start(iter); 2654 } 2655 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2656 2657 return nlk; 2658 } 2659 2660 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2661 __acquires(RCU) 2662 { 2663 struct nl_seq_iter *iter = seq->private; 2664 void *obj = SEQ_START_TOKEN; 2665 loff_t pos; 2666 2667 iter->link = 0; 2668 2669 netlink_walk_start(iter); 2670 2671 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2672 obj = __netlink_seq_next(seq); 2673 2674 return obj; 2675 } 2676 2677 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2678 { 2679 ++*pos; 2680 return __netlink_seq_next(seq); 2681 } 2682 2683 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2684 { 2685 struct nl_seq_iter *iter = seq->private; 2686 2687 if (iter->link >= MAX_LINKS) 2688 return; 2689 2690 netlink_walk_stop(iter); 2691 } 2692 2693 2694 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2695 { 2696 if (v == SEQ_START_TOKEN) { 2697 seq_puts(seq, 2698 "sk Eth Pid Groups " 2699 "Rmem Wmem Dump Locks Drops Inode\n"); 2700 } else { 2701 struct sock *s = v; 2702 struct netlink_sock *nlk = nlk_sk(s); 2703 2704 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2705 s, 2706 s->sk_protocol, 2707 nlk->portid, 2708 nlk->groups ? (u32)nlk->groups[0] : 0, 2709 sk_rmem_alloc_get(s), 2710 sk_wmem_alloc_get(s), 2711 READ_ONCE(nlk->cb_running), 2712 refcount_read(&s->sk_refcnt), 2713 atomic_read(&s->sk_drops), 2714 sock_i_ino(s) 2715 ); 2716 2717 } 2718 return 0; 2719 } 2720 2721 #ifdef CONFIG_BPF_SYSCALL 2722 struct bpf_iter__netlink { 2723 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2724 __bpf_md_ptr(struct netlink_sock *, sk); 2725 }; 2726 2727 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2728 2729 static int netlink_prog_seq_show(struct bpf_prog *prog, 2730 struct bpf_iter_meta *meta, 2731 void *v) 2732 { 2733 struct bpf_iter__netlink ctx; 2734 2735 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2736 ctx.meta = meta; 2737 ctx.sk = nlk_sk((struct sock *)v); 2738 return bpf_iter_run_prog(prog, &ctx); 2739 } 2740 2741 static int netlink_seq_show(struct seq_file *seq, void *v) 2742 { 2743 struct bpf_iter_meta meta; 2744 struct bpf_prog *prog; 2745 2746 meta.seq = seq; 2747 prog = bpf_iter_get_info(&meta, false); 2748 if (!prog) 2749 return netlink_native_seq_show(seq, v); 2750 2751 if (v != SEQ_START_TOKEN) 2752 return netlink_prog_seq_show(prog, &meta, v); 2753 2754 return 0; 2755 } 2756 2757 static void netlink_seq_stop(struct seq_file *seq, void *v) 2758 { 2759 struct bpf_iter_meta meta; 2760 struct bpf_prog *prog; 2761 2762 if (!v) { 2763 meta.seq = seq; 2764 prog = bpf_iter_get_info(&meta, true); 2765 if (prog) 2766 (void)netlink_prog_seq_show(prog, &meta, v); 2767 } 2768 2769 netlink_native_seq_stop(seq, v); 2770 } 2771 #else 2772 static int netlink_seq_show(struct seq_file *seq, void *v) 2773 { 2774 return netlink_native_seq_show(seq, v); 2775 } 2776 2777 static void netlink_seq_stop(struct seq_file *seq, void *v) 2778 { 2779 netlink_native_seq_stop(seq, v); 2780 } 2781 #endif 2782 2783 static const struct seq_operations netlink_seq_ops = { 2784 .start = netlink_seq_start, 2785 .next = netlink_seq_next, 2786 .stop = netlink_seq_stop, 2787 .show = netlink_seq_show, 2788 }; 2789 #endif 2790 2791 int netlink_register_notifier(struct notifier_block *nb) 2792 { 2793 return blocking_notifier_chain_register(&netlink_chain, nb); 2794 } 2795 EXPORT_SYMBOL(netlink_register_notifier); 2796 2797 int netlink_unregister_notifier(struct notifier_block *nb) 2798 { 2799 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2800 } 2801 EXPORT_SYMBOL(netlink_unregister_notifier); 2802 2803 static const struct proto_ops netlink_ops = { 2804 .family = PF_NETLINK, 2805 .owner = THIS_MODULE, 2806 .release = netlink_release, 2807 .bind = netlink_bind, 2808 .connect = netlink_connect, 2809 .socketpair = sock_no_socketpair, 2810 .accept = sock_no_accept, 2811 .getname = netlink_getname, 2812 .poll = datagram_poll, 2813 .ioctl = netlink_ioctl, 2814 .listen = sock_no_listen, 2815 .shutdown = sock_no_shutdown, 2816 .setsockopt = netlink_setsockopt, 2817 .getsockopt = netlink_getsockopt, 2818 .sendmsg = netlink_sendmsg, 2819 .recvmsg = netlink_recvmsg, 2820 .mmap = sock_no_mmap, 2821 }; 2822 2823 static const struct net_proto_family netlink_family_ops = { 2824 .family = PF_NETLINK, 2825 .create = netlink_create, 2826 .owner = THIS_MODULE, /* for consistency 8) */ 2827 }; 2828 2829 static int __net_init netlink_net_init(struct net *net) 2830 { 2831 #ifdef CONFIG_PROC_FS 2832 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2833 sizeof(struct nl_seq_iter))) 2834 return -ENOMEM; 2835 #endif 2836 return 0; 2837 } 2838 2839 static void __net_exit netlink_net_exit(struct net *net) 2840 { 2841 #ifdef CONFIG_PROC_FS 2842 remove_proc_entry("netlink", net->proc_net); 2843 #endif 2844 } 2845 2846 static void __init netlink_add_usersock_entry(void) 2847 { 2848 struct listeners *listeners; 2849 int groups = 32; 2850 2851 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2852 if (!listeners) 2853 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2854 2855 netlink_table_grab(); 2856 2857 nl_table[NETLINK_USERSOCK].groups = groups; 2858 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2859 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2860 nl_table[NETLINK_USERSOCK].registered = 1; 2861 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2862 2863 netlink_table_ungrab(); 2864 } 2865 2866 static struct pernet_operations __net_initdata netlink_net_ops = { 2867 .init = netlink_net_init, 2868 .exit = netlink_net_exit, 2869 }; 2870 2871 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2872 { 2873 const struct netlink_sock *nlk = data; 2874 struct netlink_compare_arg arg; 2875 2876 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2877 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2878 } 2879 2880 static const struct rhashtable_params netlink_rhashtable_params = { 2881 .head_offset = offsetof(struct netlink_sock, node), 2882 .key_len = netlink_compare_arg_len, 2883 .obj_hashfn = netlink_hash, 2884 .obj_cmpfn = netlink_compare, 2885 .automatic_shrinking = true, 2886 }; 2887 2888 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2889 BTF_ID_LIST(btf_netlink_sock_id) 2890 BTF_ID(struct, netlink_sock) 2891 2892 static const struct bpf_iter_seq_info netlink_seq_info = { 2893 .seq_ops = &netlink_seq_ops, 2894 .init_seq_private = bpf_iter_init_seq_net, 2895 .fini_seq_private = bpf_iter_fini_seq_net, 2896 .seq_priv_size = sizeof(struct nl_seq_iter), 2897 }; 2898 2899 static struct bpf_iter_reg netlink_reg_info = { 2900 .target = "netlink", 2901 .ctx_arg_info_size = 1, 2902 .ctx_arg_info = { 2903 { offsetof(struct bpf_iter__netlink, sk), 2904 PTR_TO_BTF_ID_OR_NULL }, 2905 }, 2906 .seq_info = &netlink_seq_info, 2907 }; 2908 2909 static int __init bpf_iter_register(void) 2910 { 2911 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2912 return bpf_iter_reg_target(&netlink_reg_info); 2913 } 2914 #endif 2915 2916 static int __init netlink_proto_init(void) 2917 { 2918 int i; 2919 int err = proto_register(&netlink_proto, 0); 2920 2921 if (err != 0) 2922 goto out; 2923 2924 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2925 err = bpf_iter_register(); 2926 if (err) 2927 goto out; 2928 #endif 2929 2930 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2931 2932 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2933 if (!nl_table) 2934 goto panic; 2935 2936 for (i = 0; i < MAX_LINKS; i++) { 2937 if (rhashtable_init(&nl_table[i].hash, 2938 &netlink_rhashtable_params) < 0) { 2939 while (--i > 0) 2940 rhashtable_destroy(&nl_table[i].hash); 2941 kfree(nl_table); 2942 goto panic; 2943 } 2944 } 2945 2946 netlink_add_usersock_entry(); 2947 2948 sock_register(&netlink_family_ops); 2949 register_pernet_subsys(&netlink_net_ops); 2950 register_pernet_subsys(&netlink_tap_net_ops); 2951 /* The netlink device handler may be needed early. */ 2952 rtnetlink_init(); 2953 out: 2954 return err; 2955 panic: 2956 panic("netlink_init: Cannot allocate nl_table\n"); 2957 } 2958 2959 core_initcall(netlink_proto_init); 2960