1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/bpf.h> 24 #include <linux/capability.h> 25 #include <linux/kernel.h> 26 #include <linux/filter.h> 27 #include <linux/init.h> 28 #include <linux/signal.h> 29 #include <linux/sched.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/un.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/sockios.h> 38 #include <linux/net.h> 39 #include <linux/fs.h> 40 #include <linux/slab.h> 41 #include <linux/uaccess.h> 42 #include <linux/skbuff.h> 43 #include <linux/netdevice.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/notifier.h> 48 #include <linux/security.h> 49 #include <linux/jhash.h> 50 #include <linux/jiffies.h> 51 #include <linux/random.h> 52 #include <linux/bitops.h> 53 #include <linux/mm.h> 54 #include <linux/types.h> 55 #include <linux/audit.h> 56 #include <linux/mutex.h> 57 #include <linux/vmalloc.h> 58 #include <linux/if_arp.h> 59 #include <linux/rhashtable.h> 60 #include <asm/cacheflush.h> 61 #include <linux/hash.h> 62 #include <linux/net_namespace.h> 63 #include <linux/nospec.h> 64 #include <linux/btf_ids.h> 65 66 #include <net/net_namespace.h> 67 #include <net/netns/generic.h> 68 #include <net/sock.h> 69 #include <net/scm.h> 70 #include <net/netlink.h> 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/netlink.h> 73 74 #include "af_netlink.h" 75 #include "genetlink.h" 76 77 struct listeners { 78 struct rcu_head rcu; 79 unsigned long masks[]; 80 }; 81 82 /* state bits */ 83 #define NETLINK_S_CONGESTED 0x0 84 85 static inline int netlink_is_kernel(struct sock *sk) 86 { 87 return nlk_test_bit(KERNEL_SOCKET, sk); 88 } 89 90 struct netlink_table *nl_table __read_mostly; 91 EXPORT_SYMBOL_GPL(nl_table); 92 93 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 94 95 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 96 97 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 98 "nlk_cb_mutex-ROUTE", 99 "nlk_cb_mutex-1", 100 "nlk_cb_mutex-USERSOCK", 101 "nlk_cb_mutex-FIREWALL", 102 "nlk_cb_mutex-SOCK_DIAG", 103 "nlk_cb_mutex-NFLOG", 104 "nlk_cb_mutex-XFRM", 105 "nlk_cb_mutex-SELINUX", 106 "nlk_cb_mutex-ISCSI", 107 "nlk_cb_mutex-AUDIT", 108 "nlk_cb_mutex-FIB_LOOKUP", 109 "nlk_cb_mutex-CONNECTOR", 110 "nlk_cb_mutex-NETFILTER", 111 "nlk_cb_mutex-IP6_FW", 112 "nlk_cb_mutex-DNRTMSG", 113 "nlk_cb_mutex-KOBJECT_UEVENT", 114 "nlk_cb_mutex-GENERIC", 115 "nlk_cb_mutex-17", 116 "nlk_cb_mutex-SCSITRANSPORT", 117 "nlk_cb_mutex-ECRYPTFS", 118 "nlk_cb_mutex-RDMA", 119 "nlk_cb_mutex-CRYPTO", 120 "nlk_cb_mutex-SMC", 121 "nlk_cb_mutex-23", 122 "nlk_cb_mutex-24", 123 "nlk_cb_mutex-25", 124 "nlk_cb_mutex-26", 125 "nlk_cb_mutex-27", 126 "nlk_cb_mutex-28", 127 "nlk_cb_mutex-29", 128 "nlk_cb_mutex-30", 129 "nlk_cb_mutex-31", 130 "nlk_cb_mutex-MAX_LINKS" 131 }; 132 133 static int netlink_dump(struct sock *sk, bool lock_taken); 134 135 /* nl_table locking explained: 136 * Lookup and traversal are protected with an RCU read-side lock. Insertion 137 * and removal are protected with per bucket lock while using RCU list 138 * modification primitives and may run in parallel to RCU protected lookups. 139 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 140 * been acquired * either during or after the socket has been removed from 141 * the list and after an RCU grace period. 142 */ 143 DEFINE_RWLOCK(nl_table_lock); 144 EXPORT_SYMBOL_GPL(nl_table_lock); 145 static atomic_t nl_table_users = ATOMIC_INIT(0); 146 147 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 148 149 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 150 151 152 static const struct rhashtable_params netlink_rhashtable_params; 153 154 void do_trace_netlink_extack(const char *msg) 155 { 156 trace_netlink_extack(msg); 157 } 158 EXPORT_SYMBOL(do_trace_netlink_extack); 159 160 static inline u32 netlink_group_mask(u32 group) 161 { 162 if (group > 32) 163 return 0; 164 return group ? 1 << (group - 1) : 0; 165 } 166 167 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 168 gfp_t gfp_mask) 169 { 170 unsigned int len = skb->len; 171 struct sk_buff *new; 172 173 new = alloc_skb(len, gfp_mask); 174 if (new == NULL) 175 return NULL; 176 177 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 178 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 179 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 180 181 skb_put_data(new, skb->data, len); 182 return new; 183 } 184 185 static unsigned int netlink_tap_net_id; 186 187 struct netlink_tap_net { 188 struct list_head netlink_tap_all; 189 struct mutex netlink_tap_lock; 190 }; 191 192 int netlink_add_tap(struct netlink_tap *nt) 193 { 194 struct net *net = dev_net(nt->dev); 195 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 196 197 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 198 return -EINVAL; 199 200 mutex_lock(&nn->netlink_tap_lock); 201 list_add_rcu(&nt->list, &nn->netlink_tap_all); 202 mutex_unlock(&nn->netlink_tap_lock); 203 204 __module_get(nt->module); 205 206 return 0; 207 } 208 EXPORT_SYMBOL_GPL(netlink_add_tap); 209 210 static int __netlink_remove_tap(struct netlink_tap *nt) 211 { 212 struct net *net = dev_net(nt->dev); 213 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 214 bool found = false; 215 struct netlink_tap *tmp; 216 217 mutex_lock(&nn->netlink_tap_lock); 218 219 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 220 if (nt == tmp) { 221 list_del_rcu(&nt->list); 222 found = true; 223 goto out; 224 } 225 } 226 227 pr_warn("__netlink_remove_tap: %p not found\n", nt); 228 out: 229 mutex_unlock(&nn->netlink_tap_lock); 230 231 if (found) 232 module_put(nt->module); 233 234 return found ? 0 : -ENODEV; 235 } 236 237 int netlink_remove_tap(struct netlink_tap *nt) 238 { 239 int ret; 240 241 ret = __netlink_remove_tap(nt); 242 synchronize_net(); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(netlink_remove_tap); 247 248 static __net_init int netlink_tap_init_net(struct net *net) 249 { 250 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 251 252 INIT_LIST_HEAD(&nn->netlink_tap_all); 253 mutex_init(&nn->netlink_tap_lock); 254 return 0; 255 } 256 257 static struct pernet_operations netlink_tap_net_ops = { 258 .init = netlink_tap_init_net, 259 .id = &netlink_tap_net_id, 260 .size = sizeof(struct netlink_tap_net), 261 }; 262 263 static bool netlink_filter_tap(const struct sk_buff *skb) 264 { 265 struct sock *sk = skb->sk; 266 267 /* We take the more conservative approach and 268 * whitelist socket protocols that may pass. 269 */ 270 switch (sk->sk_protocol) { 271 case NETLINK_ROUTE: 272 case NETLINK_USERSOCK: 273 case NETLINK_SOCK_DIAG: 274 case NETLINK_NFLOG: 275 case NETLINK_XFRM: 276 case NETLINK_FIB_LOOKUP: 277 case NETLINK_NETFILTER: 278 case NETLINK_GENERIC: 279 return true; 280 } 281 282 return false; 283 } 284 285 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 286 struct net_device *dev) 287 { 288 struct sk_buff *nskb; 289 struct sock *sk = skb->sk; 290 int ret = -ENOMEM; 291 292 if (!net_eq(dev_net(dev), sock_net(sk))) 293 return 0; 294 295 dev_hold(dev); 296 297 if (is_vmalloc_addr(skb->head)) 298 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 299 else 300 nskb = skb_clone(skb, GFP_ATOMIC); 301 if (nskb) { 302 nskb->dev = dev; 303 nskb->protocol = htons((u16) sk->sk_protocol); 304 nskb->pkt_type = netlink_is_kernel(sk) ? 305 PACKET_KERNEL : PACKET_USER; 306 skb_reset_network_header(nskb); 307 ret = dev_queue_xmit(nskb); 308 if (unlikely(ret > 0)) 309 ret = net_xmit_errno(ret); 310 } 311 312 dev_put(dev); 313 return ret; 314 } 315 316 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 317 { 318 int ret; 319 struct netlink_tap *tmp; 320 321 if (!netlink_filter_tap(skb)) 322 return; 323 324 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 325 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 326 if (unlikely(ret)) 327 break; 328 } 329 } 330 331 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 332 { 333 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 334 335 rcu_read_lock(); 336 337 if (unlikely(!list_empty(&nn->netlink_tap_all))) 338 __netlink_deliver_tap(skb, nn); 339 340 rcu_read_unlock(); 341 } 342 343 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 344 struct sk_buff *skb) 345 { 346 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 347 netlink_deliver_tap(sock_net(dst), skb); 348 } 349 350 static void netlink_overrun(struct sock *sk) 351 { 352 if (!nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 353 if (!test_and_set_bit(NETLINK_S_CONGESTED, 354 &nlk_sk(sk)->state)) { 355 WRITE_ONCE(sk->sk_err, ENOBUFS); 356 sk_error_report(sk); 357 } 358 } 359 atomic_inc(&sk->sk_drops); 360 } 361 362 static void netlink_rcv_wake(struct sock *sk) 363 { 364 struct netlink_sock *nlk = nlk_sk(sk); 365 366 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 367 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 368 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 369 wake_up_interruptible(&nlk->wait); 370 } 371 372 static void netlink_skb_destructor(struct sk_buff *skb) 373 { 374 if (is_vmalloc_addr(skb->head)) { 375 if (!skb->cloned || 376 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 377 vfree_atomic(skb->head); 378 379 skb->head = NULL; 380 } 381 if (skb->sk != NULL) 382 sock_rfree(skb); 383 } 384 385 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 386 { 387 WARN_ON(skb->sk != NULL); 388 skb->sk = sk; 389 skb->destructor = netlink_skb_destructor; 390 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 391 sk_mem_charge(sk, skb->truesize); 392 } 393 394 static void netlink_sock_destruct(struct sock *sk) 395 { 396 skb_queue_purge(&sk->sk_receive_queue); 397 398 if (!sock_flag(sk, SOCK_DEAD)) { 399 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 400 return; 401 } 402 403 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 404 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 405 WARN_ON(nlk_sk(sk)->groups); 406 } 407 408 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 409 * SMP. Look, when several writers sleep and reader wakes them up, all but one 410 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 411 * this, _but_ remember, it adds useless work on UP machines. 412 */ 413 414 void netlink_table_grab(void) 415 __acquires(nl_table_lock) 416 { 417 might_sleep(); 418 419 write_lock_irq(&nl_table_lock); 420 421 if (atomic_read(&nl_table_users)) { 422 DECLARE_WAITQUEUE(wait, current); 423 424 add_wait_queue_exclusive(&nl_table_wait, &wait); 425 for (;;) { 426 set_current_state(TASK_UNINTERRUPTIBLE); 427 if (atomic_read(&nl_table_users) == 0) 428 break; 429 write_unlock_irq(&nl_table_lock); 430 schedule(); 431 write_lock_irq(&nl_table_lock); 432 } 433 434 __set_current_state(TASK_RUNNING); 435 remove_wait_queue(&nl_table_wait, &wait); 436 } 437 } 438 439 void netlink_table_ungrab(void) 440 __releases(nl_table_lock) 441 { 442 write_unlock_irq(&nl_table_lock); 443 wake_up(&nl_table_wait); 444 } 445 446 static inline void 447 netlink_lock_table(void) 448 { 449 unsigned long flags; 450 451 /* read_lock() synchronizes us to netlink_table_grab */ 452 453 read_lock_irqsave(&nl_table_lock, flags); 454 atomic_inc(&nl_table_users); 455 read_unlock_irqrestore(&nl_table_lock, flags); 456 } 457 458 static inline void 459 netlink_unlock_table(void) 460 { 461 if (atomic_dec_and_test(&nl_table_users)) 462 wake_up(&nl_table_wait); 463 } 464 465 struct netlink_compare_arg 466 { 467 possible_net_t pnet; 468 u32 portid; 469 }; 470 471 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 472 #define netlink_compare_arg_len \ 473 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 474 475 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 476 const void *ptr) 477 { 478 const struct netlink_compare_arg *x = arg->key; 479 const struct netlink_sock *nlk = ptr; 480 481 return nlk->portid != x->portid || 482 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 483 } 484 485 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 486 struct net *net, u32 portid) 487 { 488 memset(arg, 0, sizeof(*arg)); 489 write_pnet(&arg->pnet, net); 490 arg->portid = portid; 491 } 492 493 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 494 struct net *net) 495 { 496 struct netlink_compare_arg arg; 497 498 netlink_compare_arg_init(&arg, net, portid); 499 return rhashtable_lookup_fast(&table->hash, &arg, 500 netlink_rhashtable_params); 501 } 502 503 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 504 { 505 struct netlink_compare_arg arg; 506 507 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 508 return rhashtable_lookup_insert_key(&table->hash, &arg, 509 &nlk_sk(sk)->node, 510 netlink_rhashtable_params); 511 } 512 513 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 514 { 515 struct netlink_table *table = &nl_table[protocol]; 516 struct sock *sk; 517 518 rcu_read_lock(); 519 sk = __netlink_lookup(table, portid, net); 520 if (sk) 521 sock_hold(sk); 522 rcu_read_unlock(); 523 524 return sk; 525 } 526 527 static const struct proto_ops netlink_ops; 528 529 static void 530 netlink_update_listeners(struct sock *sk) 531 { 532 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 533 unsigned long mask; 534 unsigned int i; 535 struct listeners *listeners; 536 537 listeners = nl_deref_protected(tbl->listeners); 538 if (!listeners) 539 return; 540 541 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 542 mask = 0; 543 sk_for_each_bound(sk, &tbl->mc_list) { 544 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 545 mask |= nlk_sk(sk)->groups[i]; 546 } 547 listeners->masks[i] = mask; 548 } 549 /* this function is only called with the netlink table "grabbed", which 550 * makes sure updates are visible before bind or setsockopt return. */ 551 } 552 553 static int netlink_insert(struct sock *sk, u32 portid) 554 { 555 struct netlink_table *table = &nl_table[sk->sk_protocol]; 556 int err; 557 558 lock_sock(sk); 559 560 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 561 if (nlk_sk(sk)->bound) 562 goto err; 563 564 /* portid can be read locklessly from netlink_getname(). */ 565 WRITE_ONCE(nlk_sk(sk)->portid, portid); 566 567 sock_hold(sk); 568 569 err = __netlink_insert(table, sk); 570 if (err) { 571 /* In case the hashtable backend returns with -EBUSY 572 * from here, it must not escape to the caller. 573 */ 574 if (unlikely(err == -EBUSY)) 575 err = -EOVERFLOW; 576 if (err == -EEXIST) 577 err = -EADDRINUSE; 578 sock_put(sk); 579 goto err; 580 } 581 582 /* We need to ensure that the socket is hashed and visible. */ 583 smp_wmb(); 584 /* Paired with lockless reads from netlink_bind(), 585 * netlink_connect() and netlink_sendmsg(). 586 */ 587 WRITE_ONCE(nlk_sk(sk)->bound, portid); 588 589 err: 590 release_sock(sk); 591 return err; 592 } 593 594 static void netlink_remove(struct sock *sk) 595 { 596 struct netlink_table *table; 597 598 table = &nl_table[sk->sk_protocol]; 599 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 600 netlink_rhashtable_params)) { 601 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 602 __sock_put(sk); 603 } 604 605 netlink_table_grab(); 606 if (nlk_sk(sk)->subscriptions) { 607 __sk_del_bind_node(sk); 608 netlink_update_listeners(sk); 609 } 610 if (sk->sk_protocol == NETLINK_GENERIC) 611 atomic_inc(&genl_sk_destructing_cnt); 612 netlink_table_ungrab(); 613 } 614 615 static struct proto netlink_proto = { 616 .name = "NETLINK", 617 .owner = THIS_MODULE, 618 .obj_size = sizeof(struct netlink_sock), 619 }; 620 621 static int __netlink_create(struct net *net, struct socket *sock, 622 int protocol, int kern) 623 { 624 struct sock *sk; 625 struct netlink_sock *nlk; 626 627 sock->ops = &netlink_ops; 628 629 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 630 if (!sk) 631 return -ENOMEM; 632 633 sock_init_data(sock, sk); 634 635 nlk = nlk_sk(sk); 636 mutex_init(&nlk->nl_cb_mutex); 637 lockdep_set_class_and_name(&nlk->nl_cb_mutex, 638 nlk_cb_mutex_keys + protocol, 639 nlk_cb_mutex_key_strings[protocol]); 640 init_waitqueue_head(&nlk->wait); 641 642 sk->sk_destruct = netlink_sock_destruct; 643 sk->sk_protocol = protocol; 644 return 0; 645 } 646 647 static int netlink_create(struct net *net, struct socket *sock, int protocol, 648 int kern) 649 { 650 struct module *module = NULL; 651 struct netlink_sock *nlk; 652 int (*bind)(struct net *net, int group); 653 void (*unbind)(struct net *net, int group); 654 void (*release)(struct sock *sock, unsigned long *groups); 655 int err = 0; 656 657 sock->state = SS_UNCONNECTED; 658 659 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 660 return -ESOCKTNOSUPPORT; 661 662 if (protocol < 0 || protocol >= MAX_LINKS) 663 return -EPROTONOSUPPORT; 664 protocol = array_index_nospec(protocol, MAX_LINKS); 665 666 netlink_lock_table(); 667 #ifdef CONFIG_MODULES 668 if (!nl_table[protocol].registered) { 669 netlink_unlock_table(); 670 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 671 netlink_lock_table(); 672 } 673 #endif 674 if (nl_table[protocol].registered && 675 try_module_get(nl_table[protocol].module)) 676 module = nl_table[protocol].module; 677 else 678 err = -EPROTONOSUPPORT; 679 bind = nl_table[protocol].bind; 680 unbind = nl_table[protocol].unbind; 681 release = nl_table[protocol].release; 682 netlink_unlock_table(); 683 684 if (err < 0) 685 goto out; 686 687 err = __netlink_create(net, sock, protocol, kern); 688 if (err < 0) 689 goto out_module; 690 691 sock_prot_inuse_add(net, &netlink_proto, 1); 692 693 nlk = nlk_sk(sock->sk); 694 nlk->module = module; 695 nlk->netlink_bind = bind; 696 nlk->netlink_unbind = unbind; 697 nlk->netlink_release = release; 698 out: 699 return err; 700 701 out_module: 702 module_put(module); 703 goto out; 704 } 705 706 static void deferred_put_nlk_sk(struct rcu_head *head) 707 { 708 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 709 struct sock *sk = &nlk->sk; 710 711 kfree(nlk->groups); 712 nlk->groups = NULL; 713 714 if (!refcount_dec_and_test(&sk->sk_refcnt)) 715 return; 716 717 sk_free(sk); 718 } 719 720 static int netlink_release(struct socket *sock) 721 { 722 struct sock *sk = sock->sk; 723 struct netlink_sock *nlk; 724 725 if (!sk) 726 return 0; 727 728 netlink_remove(sk); 729 sock_orphan(sk); 730 nlk = nlk_sk(sk); 731 732 /* 733 * OK. Socket is unlinked, any packets that arrive now 734 * will be purged. 735 */ 736 if (nlk->netlink_release) 737 nlk->netlink_release(sk, nlk->groups); 738 739 /* must not acquire netlink_table_lock in any way again before unbind 740 * and notifying genetlink is done as otherwise it might deadlock 741 */ 742 if (nlk->netlink_unbind) { 743 int i; 744 745 for (i = 0; i < nlk->ngroups; i++) 746 if (test_bit(i, nlk->groups)) 747 nlk->netlink_unbind(sock_net(sk), i + 1); 748 } 749 if (sk->sk_protocol == NETLINK_GENERIC && 750 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 751 wake_up(&genl_sk_destructing_waitq); 752 753 sock->sk = NULL; 754 wake_up_interruptible_all(&nlk->wait); 755 756 skb_queue_purge(&sk->sk_write_queue); 757 758 if (nlk->portid && nlk->bound) { 759 struct netlink_notify n = { 760 .net = sock_net(sk), 761 .protocol = sk->sk_protocol, 762 .portid = nlk->portid, 763 }; 764 blocking_notifier_call_chain(&netlink_chain, 765 NETLINK_URELEASE, &n); 766 } 767 768 /* Terminate any outstanding dump */ 769 if (nlk->cb_running) { 770 if (nlk->cb.done) 771 nlk->cb.done(&nlk->cb); 772 module_put(nlk->cb.module); 773 kfree_skb(nlk->cb.skb); 774 } 775 776 module_put(nlk->module); 777 778 if (netlink_is_kernel(sk)) { 779 netlink_table_grab(); 780 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 781 if (--nl_table[sk->sk_protocol].registered == 0) { 782 struct listeners *old; 783 784 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 785 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 786 kfree_rcu(old, rcu); 787 nl_table[sk->sk_protocol].module = NULL; 788 nl_table[sk->sk_protocol].bind = NULL; 789 nl_table[sk->sk_protocol].unbind = NULL; 790 nl_table[sk->sk_protocol].flags = 0; 791 nl_table[sk->sk_protocol].registered = 0; 792 } 793 netlink_table_ungrab(); 794 } 795 796 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 797 798 /* Because struct net might disappear soon, do not keep a pointer. */ 799 if (!sk->sk_net_refcnt && sock_net(sk) != &init_net) { 800 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 801 /* Because of deferred_put_nlk_sk and use of work queue, 802 * it is possible netns will be freed before this socket. 803 */ 804 sock_net_set(sk, &init_net); 805 __netns_tracker_alloc(&init_net, &sk->ns_tracker, 806 false, GFP_KERNEL); 807 } 808 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 809 return 0; 810 } 811 812 static int netlink_autobind(struct socket *sock) 813 { 814 struct sock *sk = sock->sk; 815 struct net *net = sock_net(sk); 816 struct netlink_table *table = &nl_table[sk->sk_protocol]; 817 s32 portid = task_tgid_vnr(current); 818 int err; 819 s32 rover = -4096; 820 bool ok; 821 822 retry: 823 cond_resched(); 824 rcu_read_lock(); 825 ok = !__netlink_lookup(table, portid, net); 826 rcu_read_unlock(); 827 if (!ok) { 828 /* Bind collision, search negative portid values. */ 829 if (rover == -4096) 830 /* rover will be in range [S32_MIN, -4097] */ 831 rover = S32_MIN + get_random_u32_below(-4096 - S32_MIN); 832 else if (rover >= -4096) 833 rover = -4097; 834 portid = rover--; 835 goto retry; 836 } 837 838 err = netlink_insert(sk, portid); 839 if (err == -EADDRINUSE) 840 goto retry; 841 842 /* If 2 threads race to autobind, that is fine. */ 843 if (err == -EBUSY) 844 err = 0; 845 846 return err; 847 } 848 849 /** 850 * __netlink_ns_capable - General netlink message capability test 851 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 852 * @user_ns: The user namespace of the capability to use 853 * @cap: The capability to use 854 * 855 * Test to see if the opener of the socket we received the message 856 * from had when the netlink socket was created and the sender of the 857 * message has the capability @cap in the user namespace @user_ns. 858 */ 859 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 860 struct user_namespace *user_ns, int cap) 861 { 862 return ((nsp->flags & NETLINK_SKB_DST) || 863 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 864 ns_capable(user_ns, cap); 865 } 866 EXPORT_SYMBOL(__netlink_ns_capable); 867 868 /** 869 * netlink_ns_capable - General netlink message capability test 870 * @skb: socket buffer holding a netlink command from userspace 871 * @user_ns: The user namespace of the capability to use 872 * @cap: The capability to use 873 * 874 * Test to see if the opener of the socket we received the message 875 * from had when the netlink socket was created and the sender of the 876 * message has the capability @cap in the user namespace @user_ns. 877 */ 878 bool netlink_ns_capable(const struct sk_buff *skb, 879 struct user_namespace *user_ns, int cap) 880 { 881 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 882 } 883 EXPORT_SYMBOL(netlink_ns_capable); 884 885 /** 886 * netlink_capable - Netlink global message capability test 887 * @skb: socket buffer holding a netlink command from userspace 888 * @cap: The capability to use 889 * 890 * Test to see if the opener of the socket we received the message 891 * from had when the netlink socket was created and the sender of the 892 * message has the capability @cap in all user namespaces. 893 */ 894 bool netlink_capable(const struct sk_buff *skb, int cap) 895 { 896 return netlink_ns_capable(skb, &init_user_ns, cap); 897 } 898 EXPORT_SYMBOL(netlink_capable); 899 900 /** 901 * netlink_net_capable - Netlink network namespace message capability test 902 * @skb: socket buffer holding a netlink command from userspace 903 * @cap: The capability to use 904 * 905 * Test to see if the opener of the socket we received the message 906 * from had when the netlink socket was created and the sender of the 907 * message has the capability @cap over the network namespace of 908 * the socket we received the message from. 909 */ 910 bool netlink_net_capable(const struct sk_buff *skb, int cap) 911 { 912 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 913 } 914 EXPORT_SYMBOL(netlink_net_capable); 915 916 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 917 { 918 return (nl_table[sock->sk->sk_protocol].flags & flag) || 919 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 920 } 921 922 static void 923 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 924 { 925 struct netlink_sock *nlk = nlk_sk(sk); 926 927 if (nlk->subscriptions && !subscriptions) 928 __sk_del_bind_node(sk); 929 else if (!nlk->subscriptions && subscriptions) 930 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 931 nlk->subscriptions = subscriptions; 932 } 933 934 static int netlink_realloc_groups(struct sock *sk) 935 { 936 struct netlink_sock *nlk = nlk_sk(sk); 937 unsigned int groups; 938 unsigned long *new_groups; 939 int err = 0; 940 941 netlink_table_grab(); 942 943 groups = nl_table[sk->sk_protocol].groups; 944 if (!nl_table[sk->sk_protocol].registered) { 945 err = -ENOENT; 946 goto out_unlock; 947 } 948 949 if (nlk->ngroups >= groups) 950 goto out_unlock; 951 952 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 953 if (new_groups == NULL) { 954 err = -ENOMEM; 955 goto out_unlock; 956 } 957 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 958 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 959 960 nlk->groups = new_groups; 961 nlk->ngroups = groups; 962 out_unlock: 963 netlink_table_ungrab(); 964 return err; 965 } 966 967 static void netlink_undo_bind(int group, long unsigned int groups, 968 struct sock *sk) 969 { 970 struct netlink_sock *nlk = nlk_sk(sk); 971 int undo; 972 973 if (!nlk->netlink_unbind) 974 return; 975 976 for (undo = 0; undo < group; undo++) 977 if (test_bit(undo, &groups)) 978 nlk->netlink_unbind(sock_net(sk), undo + 1); 979 } 980 981 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 982 int addr_len) 983 { 984 struct sock *sk = sock->sk; 985 struct net *net = sock_net(sk); 986 struct netlink_sock *nlk = nlk_sk(sk); 987 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 988 int err = 0; 989 unsigned long groups; 990 bool bound; 991 992 if (addr_len < sizeof(struct sockaddr_nl)) 993 return -EINVAL; 994 995 if (nladdr->nl_family != AF_NETLINK) 996 return -EINVAL; 997 groups = nladdr->nl_groups; 998 999 /* Only superuser is allowed to listen multicasts */ 1000 if (groups) { 1001 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1002 return -EPERM; 1003 err = netlink_realloc_groups(sk); 1004 if (err) 1005 return err; 1006 } 1007 1008 if (nlk->ngroups < BITS_PER_LONG) 1009 groups &= (1UL << nlk->ngroups) - 1; 1010 1011 /* Paired with WRITE_ONCE() in netlink_insert() */ 1012 bound = READ_ONCE(nlk->bound); 1013 if (bound) { 1014 /* Ensure nlk->portid is up-to-date. */ 1015 smp_rmb(); 1016 1017 if (nladdr->nl_pid != nlk->portid) 1018 return -EINVAL; 1019 } 1020 1021 if (nlk->netlink_bind && groups) { 1022 int group; 1023 1024 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1025 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1026 if (!test_bit(group, &groups)) 1027 continue; 1028 err = nlk->netlink_bind(net, group + 1); 1029 if (!err) 1030 continue; 1031 netlink_undo_bind(group, groups, sk); 1032 return err; 1033 } 1034 } 1035 1036 /* No need for barriers here as we return to user-space without 1037 * using any of the bound attributes. 1038 */ 1039 netlink_lock_table(); 1040 if (!bound) { 1041 err = nladdr->nl_pid ? 1042 netlink_insert(sk, nladdr->nl_pid) : 1043 netlink_autobind(sock); 1044 if (err) { 1045 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1046 goto unlock; 1047 } 1048 } 1049 1050 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1051 goto unlock; 1052 netlink_unlock_table(); 1053 1054 netlink_table_grab(); 1055 netlink_update_subscriptions(sk, nlk->subscriptions + 1056 hweight32(groups) - 1057 hweight32(nlk->groups[0])); 1058 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1059 netlink_update_listeners(sk); 1060 netlink_table_ungrab(); 1061 1062 return 0; 1063 1064 unlock: 1065 netlink_unlock_table(); 1066 return err; 1067 } 1068 1069 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1070 int alen, int flags) 1071 { 1072 int err = 0; 1073 struct sock *sk = sock->sk; 1074 struct netlink_sock *nlk = nlk_sk(sk); 1075 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1076 1077 if (alen < sizeof(addr->sa_family)) 1078 return -EINVAL; 1079 1080 if (addr->sa_family == AF_UNSPEC) { 1081 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1082 WRITE_ONCE(sk->sk_state, NETLINK_UNCONNECTED); 1083 /* dst_portid and dst_group can be read locklessly */ 1084 WRITE_ONCE(nlk->dst_portid, 0); 1085 WRITE_ONCE(nlk->dst_group, 0); 1086 return 0; 1087 } 1088 if (addr->sa_family != AF_NETLINK) 1089 return -EINVAL; 1090 1091 if (alen < sizeof(struct sockaddr_nl)) 1092 return -EINVAL; 1093 1094 if ((nladdr->nl_groups || nladdr->nl_pid) && 1095 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1096 return -EPERM; 1097 1098 /* No need for barriers here as we return to user-space without 1099 * using any of the bound attributes. 1100 * Paired with WRITE_ONCE() in netlink_insert(). 1101 */ 1102 if (!READ_ONCE(nlk->bound)) 1103 err = netlink_autobind(sock); 1104 1105 if (err == 0) { 1106 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1107 WRITE_ONCE(sk->sk_state, NETLINK_CONNECTED); 1108 /* dst_portid and dst_group can be read locklessly */ 1109 WRITE_ONCE(nlk->dst_portid, nladdr->nl_pid); 1110 WRITE_ONCE(nlk->dst_group, ffs(nladdr->nl_groups)); 1111 } 1112 1113 return err; 1114 } 1115 1116 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1117 int peer) 1118 { 1119 struct sock *sk = sock->sk; 1120 struct netlink_sock *nlk = nlk_sk(sk); 1121 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1122 1123 nladdr->nl_family = AF_NETLINK; 1124 nladdr->nl_pad = 0; 1125 1126 if (peer) { 1127 /* Paired with WRITE_ONCE() in netlink_connect() */ 1128 nladdr->nl_pid = READ_ONCE(nlk->dst_portid); 1129 nladdr->nl_groups = netlink_group_mask(READ_ONCE(nlk->dst_group)); 1130 } else { 1131 /* Paired with WRITE_ONCE() in netlink_insert() */ 1132 nladdr->nl_pid = READ_ONCE(nlk->portid); 1133 netlink_lock_table(); 1134 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1135 netlink_unlock_table(); 1136 } 1137 return sizeof(*nladdr); 1138 } 1139 1140 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1141 unsigned long arg) 1142 { 1143 /* try to hand this ioctl down to the NIC drivers. 1144 */ 1145 return -ENOIOCTLCMD; 1146 } 1147 1148 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1149 { 1150 struct sock *sock; 1151 struct netlink_sock *nlk; 1152 1153 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1154 if (!sock) 1155 return ERR_PTR(-ECONNREFUSED); 1156 1157 /* Don't bother queuing skb if kernel socket has no input function */ 1158 nlk = nlk_sk(sock); 1159 /* dst_portid and sk_state can be changed in netlink_connect() */ 1160 if (READ_ONCE(sock->sk_state) == NETLINK_CONNECTED && 1161 READ_ONCE(nlk->dst_portid) != nlk_sk(ssk)->portid) { 1162 sock_put(sock); 1163 return ERR_PTR(-ECONNREFUSED); 1164 } 1165 return sock; 1166 } 1167 1168 struct sock *netlink_getsockbyfilp(struct file *filp) 1169 { 1170 struct inode *inode = file_inode(filp); 1171 struct sock *sock; 1172 1173 if (!S_ISSOCK(inode->i_mode)) 1174 return ERR_PTR(-ENOTSOCK); 1175 1176 sock = SOCKET_I(inode)->sk; 1177 if (sock->sk_family != AF_NETLINK) 1178 return ERR_PTR(-EINVAL); 1179 1180 sock_hold(sock); 1181 return sock; 1182 } 1183 1184 struct sk_buff *netlink_alloc_large_skb(unsigned int size, int broadcast) 1185 { 1186 size_t head_size = SKB_HEAD_ALIGN(size); 1187 struct sk_buff *skb; 1188 void *data; 1189 1190 if (head_size <= PAGE_SIZE || broadcast) 1191 return alloc_skb(size, GFP_KERNEL); 1192 1193 data = kvmalloc(head_size, GFP_KERNEL); 1194 if (!data) 1195 return NULL; 1196 1197 skb = __build_skb(data, head_size); 1198 if (!skb) 1199 kvfree(data); 1200 else if (is_vmalloc_addr(data)) 1201 skb->destructor = netlink_skb_destructor; 1202 1203 return skb; 1204 } 1205 1206 /* 1207 * Attach a skb to a netlink socket. 1208 * The caller must hold a reference to the destination socket. On error, the 1209 * reference is dropped. The skb is not send to the destination, just all 1210 * all error checks are performed and memory in the queue is reserved. 1211 * Return values: 1212 * < 0: error. skb freed, reference to sock dropped. 1213 * 0: continue 1214 * 1: repeat lookup - reference dropped while waiting for socket memory. 1215 */ 1216 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1217 long *timeo, struct sock *ssk) 1218 { 1219 struct netlink_sock *nlk; 1220 1221 nlk = nlk_sk(sk); 1222 1223 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1224 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1225 DECLARE_WAITQUEUE(wait, current); 1226 if (!*timeo) { 1227 if (!ssk || netlink_is_kernel(ssk)) 1228 netlink_overrun(sk); 1229 sock_put(sk); 1230 kfree_skb(skb); 1231 return -EAGAIN; 1232 } 1233 1234 __set_current_state(TASK_INTERRUPTIBLE); 1235 add_wait_queue(&nlk->wait, &wait); 1236 1237 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1238 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1239 !sock_flag(sk, SOCK_DEAD)) 1240 *timeo = schedule_timeout(*timeo); 1241 1242 __set_current_state(TASK_RUNNING); 1243 remove_wait_queue(&nlk->wait, &wait); 1244 sock_put(sk); 1245 1246 if (signal_pending(current)) { 1247 kfree_skb(skb); 1248 return sock_intr_errno(*timeo); 1249 } 1250 return 1; 1251 } 1252 netlink_skb_set_owner_r(skb, sk); 1253 return 0; 1254 } 1255 1256 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1257 { 1258 int len = skb->len; 1259 1260 netlink_deliver_tap(sock_net(sk), skb); 1261 1262 skb_queue_tail(&sk->sk_receive_queue, skb); 1263 sk->sk_data_ready(sk); 1264 return len; 1265 } 1266 1267 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1268 { 1269 int len = __netlink_sendskb(sk, skb); 1270 1271 sock_put(sk); 1272 return len; 1273 } 1274 1275 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1276 { 1277 kfree_skb(skb); 1278 sock_put(sk); 1279 } 1280 1281 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1282 { 1283 int delta; 1284 1285 WARN_ON(skb->sk != NULL); 1286 delta = skb->end - skb->tail; 1287 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1288 return skb; 1289 1290 if (skb_shared(skb)) { 1291 struct sk_buff *nskb = skb_clone(skb, allocation); 1292 if (!nskb) 1293 return skb; 1294 consume_skb(skb); 1295 skb = nskb; 1296 } 1297 1298 pskb_expand_head(skb, 0, -delta, 1299 (allocation & ~__GFP_DIRECT_RECLAIM) | 1300 __GFP_NOWARN | __GFP_NORETRY); 1301 return skb; 1302 } 1303 1304 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1305 struct sock *ssk) 1306 { 1307 int ret; 1308 struct netlink_sock *nlk = nlk_sk(sk); 1309 1310 ret = -ECONNREFUSED; 1311 if (nlk->netlink_rcv != NULL) { 1312 ret = skb->len; 1313 netlink_skb_set_owner_r(skb, sk); 1314 NETLINK_CB(skb).sk = ssk; 1315 netlink_deliver_tap_kernel(sk, ssk, skb); 1316 nlk->netlink_rcv(skb); 1317 consume_skb(skb); 1318 } else { 1319 kfree_skb(skb); 1320 } 1321 sock_put(sk); 1322 return ret; 1323 } 1324 1325 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1326 u32 portid, int nonblock) 1327 { 1328 struct sock *sk; 1329 int err; 1330 long timeo; 1331 1332 skb = netlink_trim(skb, gfp_any()); 1333 1334 timeo = sock_sndtimeo(ssk, nonblock); 1335 retry: 1336 sk = netlink_getsockbyportid(ssk, portid); 1337 if (IS_ERR(sk)) { 1338 kfree_skb(skb); 1339 return PTR_ERR(sk); 1340 } 1341 if (netlink_is_kernel(sk)) 1342 return netlink_unicast_kernel(sk, skb, ssk); 1343 1344 if (sk_filter(sk, skb)) { 1345 err = skb->len; 1346 kfree_skb(skb); 1347 sock_put(sk); 1348 return err; 1349 } 1350 1351 err = netlink_attachskb(sk, skb, &timeo, ssk); 1352 if (err == 1) 1353 goto retry; 1354 if (err) 1355 return err; 1356 1357 return netlink_sendskb(sk, skb); 1358 } 1359 EXPORT_SYMBOL(netlink_unicast); 1360 1361 int netlink_has_listeners(struct sock *sk, unsigned int group) 1362 { 1363 int res = 0; 1364 struct listeners *listeners; 1365 1366 BUG_ON(!netlink_is_kernel(sk)); 1367 1368 rcu_read_lock(); 1369 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1370 1371 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1372 res = test_bit(group - 1, listeners->masks); 1373 1374 rcu_read_unlock(); 1375 1376 return res; 1377 } 1378 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1379 1380 bool netlink_strict_get_check(struct sk_buff *skb) 1381 { 1382 return nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 1383 } 1384 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1385 1386 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1387 { 1388 struct netlink_sock *nlk = nlk_sk(sk); 1389 1390 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1391 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1392 netlink_skb_set_owner_r(skb, sk); 1393 __netlink_sendskb(sk, skb); 1394 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1395 } 1396 return -1; 1397 } 1398 1399 struct netlink_broadcast_data { 1400 struct sock *exclude_sk; 1401 struct net *net; 1402 u32 portid; 1403 u32 group; 1404 int failure; 1405 int delivery_failure; 1406 int congested; 1407 int delivered; 1408 gfp_t allocation; 1409 struct sk_buff *skb, *skb2; 1410 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1411 void *tx_data; 1412 }; 1413 1414 static void do_one_broadcast(struct sock *sk, 1415 struct netlink_broadcast_data *p) 1416 { 1417 struct netlink_sock *nlk = nlk_sk(sk); 1418 int val; 1419 1420 if (p->exclude_sk == sk) 1421 return; 1422 1423 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1424 !test_bit(p->group - 1, nlk->groups)) 1425 return; 1426 1427 if (!net_eq(sock_net(sk), p->net)) { 1428 if (!nlk_test_bit(LISTEN_ALL_NSID, sk)) 1429 return; 1430 1431 if (!peernet_has_id(sock_net(sk), p->net)) 1432 return; 1433 1434 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1435 CAP_NET_BROADCAST)) 1436 return; 1437 } 1438 1439 if (p->failure) { 1440 netlink_overrun(sk); 1441 return; 1442 } 1443 1444 sock_hold(sk); 1445 if (p->skb2 == NULL) { 1446 if (skb_shared(p->skb)) { 1447 p->skb2 = skb_clone(p->skb, p->allocation); 1448 } else { 1449 p->skb2 = skb_get(p->skb); 1450 /* 1451 * skb ownership may have been set when 1452 * delivered to a previous socket. 1453 */ 1454 skb_orphan(p->skb2); 1455 } 1456 } 1457 if (p->skb2 == NULL) { 1458 netlink_overrun(sk); 1459 /* Clone failed. Notify ALL listeners. */ 1460 p->failure = 1; 1461 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1462 p->delivery_failure = 1; 1463 goto out; 1464 } 1465 1466 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1467 kfree_skb(p->skb2); 1468 p->skb2 = NULL; 1469 goto out; 1470 } 1471 1472 if (sk_filter(sk, p->skb2)) { 1473 kfree_skb(p->skb2); 1474 p->skb2 = NULL; 1475 goto out; 1476 } 1477 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1478 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1479 NETLINK_CB(p->skb2).nsid_is_set = true; 1480 val = netlink_broadcast_deliver(sk, p->skb2); 1481 if (val < 0) { 1482 netlink_overrun(sk); 1483 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1484 p->delivery_failure = 1; 1485 } else { 1486 p->congested |= val; 1487 p->delivered = 1; 1488 p->skb2 = NULL; 1489 } 1490 out: 1491 sock_put(sk); 1492 } 1493 1494 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, 1495 u32 portid, 1496 u32 group, gfp_t allocation, 1497 netlink_filter_fn filter, 1498 void *filter_data) 1499 { 1500 struct net *net = sock_net(ssk); 1501 struct netlink_broadcast_data info; 1502 struct sock *sk; 1503 1504 skb = netlink_trim(skb, allocation); 1505 1506 info.exclude_sk = ssk; 1507 info.net = net; 1508 info.portid = portid; 1509 info.group = group; 1510 info.failure = 0; 1511 info.delivery_failure = 0; 1512 info.congested = 0; 1513 info.delivered = 0; 1514 info.allocation = allocation; 1515 info.skb = skb; 1516 info.skb2 = NULL; 1517 info.tx_filter = filter; 1518 info.tx_data = filter_data; 1519 1520 /* While we sleep in clone, do not allow to change socket list */ 1521 1522 netlink_lock_table(); 1523 1524 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1525 do_one_broadcast(sk, &info); 1526 1527 consume_skb(skb); 1528 1529 netlink_unlock_table(); 1530 1531 if (info.delivery_failure) { 1532 kfree_skb(info.skb2); 1533 return -ENOBUFS; 1534 } 1535 consume_skb(info.skb2); 1536 1537 if (info.delivered) { 1538 if (info.congested && gfpflags_allow_blocking(allocation)) 1539 yield(); 1540 return 0; 1541 } 1542 return -ESRCH; 1543 } 1544 EXPORT_SYMBOL(netlink_broadcast_filtered); 1545 1546 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1547 u32 group, gfp_t allocation) 1548 { 1549 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 1550 NULL, NULL); 1551 } 1552 EXPORT_SYMBOL(netlink_broadcast); 1553 1554 struct netlink_set_err_data { 1555 struct sock *exclude_sk; 1556 u32 portid; 1557 u32 group; 1558 int code; 1559 }; 1560 1561 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1562 { 1563 struct netlink_sock *nlk = nlk_sk(sk); 1564 int ret = 0; 1565 1566 if (sk == p->exclude_sk) 1567 goto out; 1568 1569 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1570 goto out; 1571 1572 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1573 !test_bit(p->group - 1, nlk->groups)) 1574 goto out; 1575 1576 if (p->code == ENOBUFS && nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 1577 ret = 1; 1578 goto out; 1579 } 1580 1581 WRITE_ONCE(sk->sk_err, p->code); 1582 sk_error_report(sk); 1583 out: 1584 return ret; 1585 } 1586 1587 /** 1588 * netlink_set_err - report error to broadcast listeners 1589 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1590 * @portid: the PORTID of a process that we want to skip (if any) 1591 * @group: the broadcast group that will notice the error 1592 * @code: error code, must be negative (as usual in kernelspace) 1593 * 1594 * This function returns the number of broadcast listeners that have set the 1595 * NETLINK_NO_ENOBUFS socket option. 1596 */ 1597 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1598 { 1599 struct netlink_set_err_data info; 1600 unsigned long flags; 1601 struct sock *sk; 1602 int ret = 0; 1603 1604 info.exclude_sk = ssk; 1605 info.portid = portid; 1606 info.group = group; 1607 /* sk->sk_err wants a positive error value */ 1608 info.code = -code; 1609 1610 read_lock_irqsave(&nl_table_lock, flags); 1611 1612 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1613 ret += do_one_set_err(sk, &info); 1614 1615 read_unlock_irqrestore(&nl_table_lock, flags); 1616 return ret; 1617 } 1618 EXPORT_SYMBOL(netlink_set_err); 1619 1620 /* must be called with netlink table grabbed */ 1621 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1622 unsigned int group, 1623 int is_new) 1624 { 1625 int old, new = !!is_new, subscriptions; 1626 1627 old = test_bit(group - 1, nlk->groups); 1628 subscriptions = nlk->subscriptions - old + new; 1629 __assign_bit(group - 1, nlk->groups, new); 1630 netlink_update_subscriptions(&nlk->sk, subscriptions); 1631 netlink_update_listeners(&nlk->sk); 1632 } 1633 1634 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1635 sockptr_t optval, unsigned int optlen) 1636 { 1637 struct sock *sk = sock->sk; 1638 struct netlink_sock *nlk = nlk_sk(sk); 1639 unsigned int val = 0; 1640 int nr = -1; 1641 1642 if (level != SOL_NETLINK) 1643 return -ENOPROTOOPT; 1644 1645 if (optlen >= sizeof(int) && 1646 copy_from_sockptr(&val, optval, sizeof(val))) 1647 return -EFAULT; 1648 1649 switch (optname) { 1650 case NETLINK_PKTINFO: 1651 nr = NETLINK_F_RECV_PKTINFO; 1652 break; 1653 case NETLINK_ADD_MEMBERSHIP: 1654 case NETLINK_DROP_MEMBERSHIP: { 1655 int err; 1656 1657 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1658 return -EPERM; 1659 err = netlink_realloc_groups(sk); 1660 if (err) 1661 return err; 1662 if (!val || val - 1 >= nlk->ngroups) 1663 return -EINVAL; 1664 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1665 err = nlk->netlink_bind(sock_net(sk), val); 1666 if (err) 1667 return err; 1668 } 1669 netlink_table_grab(); 1670 netlink_update_socket_mc(nlk, val, 1671 optname == NETLINK_ADD_MEMBERSHIP); 1672 netlink_table_ungrab(); 1673 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1674 nlk->netlink_unbind(sock_net(sk), val); 1675 1676 break; 1677 } 1678 case NETLINK_BROADCAST_ERROR: 1679 nr = NETLINK_F_BROADCAST_SEND_ERROR; 1680 break; 1681 case NETLINK_NO_ENOBUFS: 1682 assign_bit(NETLINK_F_RECV_NO_ENOBUFS, &nlk->flags, val); 1683 if (val) { 1684 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1685 wake_up_interruptible(&nlk->wait); 1686 } 1687 break; 1688 case NETLINK_LISTEN_ALL_NSID: 1689 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1690 return -EPERM; 1691 nr = NETLINK_F_LISTEN_ALL_NSID; 1692 break; 1693 case NETLINK_CAP_ACK: 1694 nr = NETLINK_F_CAP_ACK; 1695 break; 1696 case NETLINK_EXT_ACK: 1697 nr = NETLINK_F_EXT_ACK; 1698 break; 1699 case NETLINK_GET_STRICT_CHK: 1700 nr = NETLINK_F_STRICT_CHK; 1701 break; 1702 default: 1703 return -ENOPROTOOPT; 1704 } 1705 if (nr >= 0) 1706 assign_bit(nr, &nlk->flags, val); 1707 return 0; 1708 } 1709 1710 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1711 char __user *optval, int __user *optlen) 1712 { 1713 struct sock *sk = sock->sk; 1714 struct netlink_sock *nlk = nlk_sk(sk); 1715 unsigned int flag; 1716 int len, val; 1717 1718 if (level != SOL_NETLINK) 1719 return -ENOPROTOOPT; 1720 1721 if (get_user(len, optlen)) 1722 return -EFAULT; 1723 if (len < 0) 1724 return -EINVAL; 1725 1726 switch (optname) { 1727 case NETLINK_PKTINFO: 1728 flag = NETLINK_F_RECV_PKTINFO; 1729 break; 1730 case NETLINK_BROADCAST_ERROR: 1731 flag = NETLINK_F_BROADCAST_SEND_ERROR; 1732 break; 1733 case NETLINK_NO_ENOBUFS: 1734 flag = NETLINK_F_RECV_NO_ENOBUFS; 1735 break; 1736 case NETLINK_LIST_MEMBERSHIPS: { 1737 int pos, idx, shift, err = 0; 1738 1739 netlink_lock_table(); 1740 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1741 if (len - pos < sizeof(u32)) 1742 break; 1743 1744 idx = pos / sizeof(unsigned long); 1745 shift = (pos % sizeof(unsigned long)) * 8; 1746 if (put_user((u32)(nlk->groups[idx] >> shift), 1747 (u32 __user *)(optval + pos))) { 1748 err = -EFAULT; 1749 break; 1750 } 1751 } 1752 if (put_user(ALIGN(BITS_TO_BYTES(nlk->ngroups), sizeof(u32)), optlen)) 1753 err = -EFAULT; 1754 netlink_unlock_table(); 1755 return err; 1756 } 1757 case NETLINK_LISTEN_ALL_NSID: 1758 flag = NETLINK_F_LISTEN_ALL_NSID; 1759 break; 1760 case NETLINK_CAP_ACK: 1761 flag = NETLINK_F_CAP_ACK; 1762 break; 1763 case NETLINK_EXT_ACK: 1764 flag = NETLINK_F_EXT_ACK; 1765 break; 1766 case NETLINK_GET_STRICT_CHK: 1767 flag = NETLINK_F_STRICT_CHK; 1768 break; 1769 default: 1770 return -ENOPROTOOPT; 1771 } 1772 1773 if (len < sizeof(int)) 1774 return -EINVAL; 1775 1776 len = sizeof(int); 1777 val = test_bit(flag, &nlk->flags); 1778 1779 if (put_user(len, optlen) || 1780 copy_to_user(optval, &val, len)) 1781 return -EFAULT; 1782 1783 return 0; 1784 } 1785 1786 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1787 { 1788 struct nl_pktinfo info; 1789 1790 info.group = NETLINK_CB(skb).dst_group; 1791 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1792 } 1793 1794 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1795 struct sk_buff *skb) 1796 { 1797 if (!NETLINK_CB(skb).nsid_is_set) 1798 return; 1799 1800 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1801 &NETLINK_CB(skb).nsid); 1802 } 1803 1804 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1805 { 1806 struct sock *sk = sock->sk; 1807 struct netlink_sock *nlk = nlk_sk(sk); 1808 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1809 u32 dst_portid; 1810 u32 dst_group; 1811 struct sk_buff *skb; 1812 int err; 1813 struct scm_cookie scm; 1814 u32 netlink_skb_flags = 0; 1815 1816 if (msg->msg_flags & MSG_OOB) 1817 return -EOPNOTSUPP; 1818 1819 if (len == 0) { 1820 pr_warn_once("Zero length message leads to an empty skb\n"); 1821 return -ENODATA; 1822 } 1823 1824 err = scm_send(sock, msg, &scm, true); 1825 if (err < 0) 1826 return err; 1827 1828 if (msg->msg_namelen) { 1829 err = -EINVAL; 1830 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1831 goto out; 1832 if (addr->nl_family != AF_NETLINK) 1833 goto out; 1834 dst_portid = addr->nl_pid; 1835 dst_group = ffs(addr->nl_groups); 1836 err = -EPERM; 1837 if ((dst_group || dst_portid) && 1838 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1839 goto out; 1840 netlink_skb_flags |= NETLINK_SKB_DST; 1841 } else { 1842 /* Paired with WRITE_ONCE() in netlink_connect() */ 1843 dst_portid = READ_ONCE(nlk->dst_portid); 1844 dst_group = READ_ONCE(nlk->dst_group); 1845 } 1846 1847 /* Paired with WRITE_ONCE() in netlink_insert() */ 1848 if (!READ_ONCE(nlk->bound)) { 1849 err = netlink_autobind(sock); 1850 if (err) 1851 goto out; 1852 } else { 1853 /* Ensure nlk is hashed and visible. */ 1854 smp_rmb(); 1855 } 1856 1857 err = -EMSGSIZE; 1858 if (len > sk->sk_sndbuf - 32) 1859 goto out; 1860 err = -ENOBUFS; 1861 skb = netlink_alloc_large_skb(len, dst_group); 1862 if (skb == NULL) 1863 goto out; 1864 1865 NETLINK_CB(skb).portid = nlk->portid; 1866 NETLINK_CB(skb).dst_group = dst_group; 1867 NETLINK_CB(skb).creds = scm.creds; 1868 NETLINK_CB(skb).flags = netlink_skb_flags; 1869 1870 err = -EFAULT; 1871 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1872 kfree_skb(skb); 1873 goto out; 1874 } 1875 1876 err = security_netlink_send(sk, skb); 1877 if (err) { 1878 kfree_skb(skb); 1879 goto out; 1880 } 1881 1882 if (dst_group) { 1883 refcount_inc(&skb->users); 1884 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1885 } 1886 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1887 1888 out: 1889 scm_destroy(&scm); 1890 return err; 1891 } 1892 1893 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1894 int flags) 1895 { 1896 struct scm_cookie scm; 1897 struct sock *sk = sock->sk; 1898 struct netlink_sock *nlk = nlk_sk(sk); 1899 size_t copied, max_recvmsg_len; 1900 struct sk_buff *skb, *data_skb; 1901 int err, ret; 1902 1903 if (flags & MSG_OOB) 1904 return -EOPNOTSUPP; 1905 1906 copied = 0; 1907 1908 skb = skb_recv_datagram(sk, flags, &err); 1909 if (skb == NULL) 1910 goto out; 1911 1912 data_skb = skb; 1913 1914 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1915 if (unlikely(skb_shinfo(skb)->frag_list)) { 1916 /* 1917 * If this skb has a frag_list, then here that means that we 1918 * will have to use the frag_list skb's data for compat tasks 1919 * and the regular skb's data for normal (non-compat) tasks. 1920 * 1921 * If we need to send the compat skb, assign it to the 1922 * 'data_skb' variable so that it will be used below for data 1923 * copying. We keep 'skb' for everything else, including 1924 * freeing both later. 1925 */ 1926 if (flags & MSG_CMSG_COMPAT) 1927 data_skb = skb_shinfo(skb)->frag_list; 1928 } 1929 #endif 1930 1931 /* Record the max length of recvmsg() calls for future allocations */ 1932 max_recvmsg_len = max(READ_ONCE(nlk->max_recvmsg_len), len); 1933 max_recvmsg_len = min_t(size_t, max_recvmsg_len, 1934 SKB_WITH_OVERHEAD(32768)); 1935 WRITE_ONCE(nlk->max_recvmsg_len, max_recvmsg_len); 1936 1937 copied = data_skb->len; 1938 if (len < copied) { 1939 msg->msg_flags |= MSG_TRUNC; 1940 copied = len; 1941 } 1942 1943 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1944 1945 if (msg->msg_name) { 1946 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1947 addr->nl_family = AF_NETLINK; 1948 addr->nl_pad = 0; 1949 addr->nl_pid = NETLINK_CB(skb).portid; 1950 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1951 msg->msg_namelen = sizeof(*addr); 1952 } 1953 1954 if (nlk_test_bit(RECV_PKTINFO, sk)) 1955 netlink_cmsg_recv_pktinfo(msg, skb); 1956 if (nlk_test_bit(LISTEN_ALL_NSID, sk)) 1957 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1958 1959 memset(&scm, 0, sizeof(scm)); 1960 scm.creds = *NETLINK_CREDS(skb); 1961 if (flags & MSG_TRUNC) 1962 copied = data_skb->len; 1963 1964 skb_free_datagram(sk, skb); 1965 1966 if (READ_ONCE(nlk->cb_running) && 1967 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 1968 ret = netlink_dump(sk, false); 1969 if (ret) { 1970 WRITE_ONCE(sk->sk_err, -ret); 1971 sk_error_report(sk); 1972 } 1973 } 1974 1975 scm_recv(sock, msg, &scm, flags); 1976 out: 1977 netlink_rcv_wake(sk); 1978 return err ? : copied; 1979 } 1980 1981 static void netlink_data_ready(struct sock *sk) 1982 { 1983 BUG(); 1984 } 1985 1986 /* 1987 * We export these functions to other modules. They provide a 1988 * complete set of kernel non-blocking support for message 1989 * queueing. 1990 */ 1991 1992 struct sock * 1993 __netlink_kernel_create(struct net *net, int unit, struct module *module, 1994 struct netlink_kernel_cfg *cfg) 1995 { 1996 struct socket *sock; 1997 struct sock *sk; 1998 struct netlink_sock *nlk; 1999 struct listeners *listeners = NULL; 2000 unsigned int groups; 2001 2002 BUG_ON(!nl_table); 2003 2004 if (unit < 0 || unit >= MAX_LINKS) 2005 return NULL; 2006 2007 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2008 return NULL; 2009 2010 if (__netlink_create(net, sock, unit, 1) < 0) 2011 goto out_sock_release_nosk; 2012 2013 sk = sock->sk; 2014 2015 if (!cfg || cfg->groups < 32) 2016 groups = 32; 2017 else 2018 groups = cfg->groups; 2019 2020 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2021 if (!listeners) 2022 goto out_sock_release; 2023 2024 sk->sk_data_ready = netlink_data_ready; 2025 if (cfg && cfg->input) 2026 nlk_sk(sk)->netlink_rcv = cfg->input; 2027 2028 if (netlink_insert(sk, 0)) 2029 goto out_sock_release; 2030 2031 nlk = nlk_sk(sk); 2032 set_bit(NETLINK_F_KERNEL_SOCKET, &nlk->flags); 2033 2034 netlink_table_grab(); 2035 if (!nl_table[unit].registered) { 2036 nl_table[unit].groups = groups; 2037 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2038 nl_table[unit].module = module; 2039 if (cfg) { 2040 nl_table[unit].bind = cfg->bind; 2041 nl_table[unit].unbind = cfg->unbind; 2042 nl_table[unit].release = cfg->release; 2043 nl_table[unit].flags = cfg->flags; 2044 } 2045 nl_table[unit].registered = 1; 2046 } else { 2047 kfree(listeners); 2048 nl_table[unit].registered++; 2049 } 2050 netlink_table_ungrab(); 2051 return sk; 2052 2053 out_sock_release: 2054 kfree(listeners); 2055 netlink_kernel_release(sk); 2056 return NULL; 2057 2058 out_sock_release_nosk: 2059 sock_release(sock); 2060 return NULL; 2061 } 2062 EXPORT_SYMBOL(__netlink_kernel_create); 2063 2064 void 2065 netlink_kernel_release(struct sock *sk) 2066 { 2067 if (sk == NULL || sk->sk_socket == NULL) 2068 return; 2069 2070 sock_release(sk->sk_socket); 2071 } 2072 EXPORT_SYMBOL(netlink_kernel_release); 2073 2074 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2075 { 2076 struct listeners *new, *old; 2077 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2078 2079 if (groups < 32) 2080 groups = 32; 2081 2082 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2083 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2084 if (!new) 2085 return -ENOMEM; 2086 old = nl_deref_protected(tbl->listeners); 2087 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2088 rcu_assign_pointer(tbl->listeners, new); 2089 2090 kfree_rcu(old, rcu); 2091 } 2092 tbl->groups = groups; 2093 2094 return 0; 2095 } 2096 2097 /** 2098 * netlink_change_ngroups - change number of multicast groups 2099 * 2100 * This changes the number of multicast groups that are available 2101 * on a certain netlink family. Note that it is not possible to 2102 * change the number of groups to below 32. Also note that it does 2103 * not implicitly call netlink_clear_multicast_users() when the 2104 * number of groups is reduced. 2105 * 2106 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2107 * @groups: The new number of groups. 2108 */ 2109 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2110 { 2111 int err; 2112 2113 netlink_table_grab(); 2114 err = __netlink_change_ngroups(sk, groups); 2115 netlink_table_ungrab(); 2116 2117 return err; 2118 } 2119 2120 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2121 { 2122 struct sock *sk; 2123 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2124 struct hlist_node *tmp; 2125 2126 sk_for_each_bound_safe(sk, tmp, &tbl->mc_list) 2127 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2128 } 2129 2130 struct nlmsghdr * 2131 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2132 { 2133 struct nlmsghdr *nlh; 2134 int size = nlmsg_msg_size(len); 2135 2136 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2137 nlh->nlmsg_type = type; 2138 nlh->nlmsg_len = size; 2139 nlh->nlmsg_flags = flags; 2140 nlh->nlmsg_pid = portid; 2141 nlh->nlmsg_seq = seq; 2142 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2143 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2144 return nlh; 2145 } 2146 EXPORT_SYMBOL(__nlmsg_put); 2147 2148 static size_t 2149 netlink_ack_tlv_len(struct netlink_sock *nlk, int err, 2150 const struct netlink_ext_ack *extack) 2151 { 2152 size_t tlvlen; 2153 2154 if (!extack || !test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) 2155 return 0; 2156 2157 tlvlen = 0; 2158 if (extack->_msg) 2159 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2160 if (extack->cookie_len) 2161 tlvlen += nla_total_size(extack->cookie_len); 2162 2163 /* Following attributes are only reported as error (not warning) */ 2164 if (!err) 2165 return tlvlen; 2166 2167 if (extack->bad_attr) 2168 tlvlen += nla_total_size(sizeof(u32)); 2169 if (extack->policy) 2170 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2171 if (extack->miss_type) 2172 tlvlen += nla_total_size(sizeof(u32)); 2173 if (extack->miss_nest) 2174 tlvlen += nla_total_size(sizeof(u32)); 2175 2176 return tlvlen; 2177 } 2178 2179 static void 2180 netlink_ack_tlv_fill(struct sk_buff *in_skb, struct sk_buff *skb, 2181 const struct nlmsghdr *nlh, int err, 2182 const struct netlink_ext_ack *extack) 2183 { 2184 if (extack->_msg) 2185 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)); 2186 if (extack->cookie_len) 2187 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2188 extack->cookie_len, extack->cookie)); 2189 2190 if (!err) 2191 return; 2192 2193 if (extack->bad_attr && 2194 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2195 (u8 *)extack->bad_attr >= in_skb->data + in_skb->len)) 2196 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2197 (u8 *)extack->bad_attr - (const u8 *)nlh)); 2198 if (extack->policy) 2199 netlink_policy_dump_write_attr(skb, extack->policy, 2200 NLMSGERR_ATTR_POLICY); 2201 if (extack->miss_type) 2202 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_TYPE, 2203 extack->miss_type)); 2204 if (extack->miss_nest && 2205 !WARN_ON((u8 *)extack->miss_nest < in_skb->data || 2206 (u8 *)extack->miss_nest > in_skb->data + in_skb->len)) 2207 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_NEST, 2208 (u8 *)extack->miss_nest - (const u8 *)nlh)); 2209 } 2210 2211 /* 2212 * It looks a bit ugly. 2213 * It would be better to create kernel thread. 2214 */ 2215 2216 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2217 struct netlink_callback *cb, 2218 struct netlink_ext_ack *extack) 2219 { 2220 struct nlmsghdr *nlh; 2221 size_t extack_len; 2222 2223 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2224 NLM_F_MULTI | cb->answer_flags); 2225 if (WARN_ON(!nlh)) 2226 return -ENOBUFS; 2227 2228 nl_dump_check_consistent(cb, nlh); 2229 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2230 2231 extack_len = netlink_ack_tlv_len(nlk, nlk->dump_done_errno, extack); 2232 if (extack_len) { 2233 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2234 if (skb_tailroom(skb) >= extack_len) { 2235 netlink_ack_tlv_fill(cb->skb, skb, cb->nlh, 2236 nlk->dump_done_errno, extack); 2237 nlmsg_end(skb, nlh); 2238 } 2239 } 2240 2241 return 0; 2242 } 2243 2244 static int netlink_dump(struct sock *sk, bool lock_taken) 2245 { 2246 struct netlink_sock *nlk = nlk_sk(sk); 2247 struct netlink_ext_ack extack = {}; 2248 struct netlink_callback *cb; 2249 struct sk_buff *skb = NULL; 2250 size_t max_recvmsg_len; 2251 struct module *module; 2252 int err = -ENOBUFS; 2253 int alloc_min_size; 2254 int alloc_size; 2255 2256 if (!lock_taken) 2257 mutex_lock(&nlk->nl_cb_mutex); 2258 if (!nlk->cb_running) { 2259 err = -EINVAL; 2260 goto errout_skb; 2261 } 2262 2263 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2264 goto errout_skb; 2265 2266 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2267 * required, but it makes sense to _attempt_ a 16K bytes allocation 2268 * to reduce number of system calls on dump operations, if user 2269 * ever provided a big enough buffer. 2270 */ 2271 cb = &nlk->cb; 2272 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2273 2274 max_recvmsg_len = READ_ONCE(nlk->max_recvmsg_len); 2275 if (alloc_min_size < max_recvmsg_len) { 2276 alloc_size = max_recvmsg_len; 2277 skb = alloc_skb(alloc_size, 2278 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2279 __GFP_NOWARN | __GFP_NORETRY); 2280 } 2281 if (!skb) { 2282 alloc_size = alloc_min_size; 2283 skb = alloc_skb(alloc_size, GFP_KERNEL); 2284 } 2285 if (!skb) 2286 goto errout_skb; 2287 2288 /* Trim skb to allocated size. User is expected to provide buffer as 2289 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2290 * netlink_recvmsg())). dump will pack as many smaller messages as 2291 * could fit within the allocated skb. skb is typically allocated 2292 * with larger space than required (could be as much as near 2x the 2293 * requested size with align to next power of 2 approach). Allowing 2294 * dump to use the excess space makes it difficult for a user to have a 2295 * reasonable static buffer based on the expected largest dump of a 2296 * single netdev. The outcome is MSG_TRUNC error. 2297 */ 2298 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2299 2300 /* Make sure malicious BPF programs can not read unitialized memory 2301 * from skb->head -> skb->data 2302 */ 2303 skb_reset_network_header(skb); 2304 skb_reset_mac_header(skb); 2305 2306 netlink_skb_set_owner_r(skb, sk); 2307 2308 if (nlk->dump_done_errno > 0) { 2309 cb->extack = &extack; 2310 2311 nlk->dump_done_errno = cb->dump(skb, cb); 2312 2313 /* EMSGSIZE plus something already in the skb means 2314 * that there's more to dump but current skb has filled up. 2315 * If the callback really wants to return EMSGSIZE to user space 2316 * it needs to do so again, on the next cb->dump() call, 2317 * without putting data in the skb. 2318 */ 2319 if (nlk->dump_done_errno == -EMSGSIZE && skb->len) 2320 nlk->dump_done_errno = skb->len; 2321 2322 cb->extack = NULL; 2323 } 2324 2325 if (nlk->dump_done_errno > 0 || 2326 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2327 mutex_unlock(&nlk->nl_cb_mutex); 2328 2329 if (sk_filter(sk, skb)) 2330 kfree_skb(skb); 2331 else 2332 __netlink_sendskb(sk, skb); 2333 return 0; 2334 } 2335 2336 if (netlink_dump_done(nlk, skb, cb, &extack)) 2337 goto errout_skb; 2338 2339 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2340 /* frag_list skb's data is used for compat tasks 2341 * and the regular skb's data for normal (non-compat) tasks. 2342 * See netlink_recvmsg(). 2343 */ 2344 if (unlikely(skb_shinfo(skb)->frag_list)) { 2345 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2346 goto errout_skb; 2347 } 2348 #endif 2349 2350 if (sk_filter(sk, skb)) 2351 kfree_skb(skb); 2352 else 2353 __netlink_sendskb(sk, skb); 2354 2355 if (cb->done) 2356 cb->done(cb); 2357 2358 WRITE_ONCE(nlk->cb_running, false); 2359 module = cb->module; 2360 skb = cb->skb; 2361 mutex_unlock(&nlk->nl_cb_mutex); 2362 module_put(module); 2363 consume_skb(skb); 2364 return 0; 2365 2366 errout_skb: 2367 mutex_unlock(&nlk->nl_cb_mutex); 2368 kfree_skb(skb); 2369 return err; 2370 } 2371 2372 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2373 const struct nlmsghdr *nlh, 2374 struct netlink_dump_control *control) 2375 { 2376 struct netlink_callback *cb; 2377 struct netlink_sock *nlk; 2378 struct sock *sk; 2379 int ret; 2380 2381 refcount_inc(&skb->users); 2382 2383 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2384 if (sk == NULL) { 2385 ret = -ECONNREFUSED; 2386 goto error_free; 2387 } 2388 2389 nlk = nlk_sk(sk); 2390 mutex_lock(&nlk->nl_cb_mutex); 2391 /* A dump is in progress... */ 2392 if (nlk->cb_running) { 2393 ret = -EBUSY; 2394 goto error_unlock; 2395 } 2396 /* add reference of module which cb->dump belongs to */ 2397 if (!try_module_get(control->module)) { 2398 ret = -EPROTONOSUPPORT; 2399 goto error_unlock; 2400 } 2401 2402 cb = &nlk->cb; 2403 memset(cb, 0, sizeof(*cb)); 2404 cb->dump = control->dump; 2405 cb->done = control->done; 2406 cb->nlh = nlh; 2407 cb->data = control->data; 2408 cb->module = control->module; 2409 cb->min_dump_alloc = control->min_dump_alloc; 2410 cb->flags = control->flags; 2411 cb->skb = skb; 2412 2413 cb->strict_check = nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 2414 2415 if (control->start) { 2416 cb->extack = control->extack; 2417 ret = control->start(cb); 2418 cb->extack = NULL; 2419 if (ret) 2420 goto error_put; 2421 } 2422 2423 WRITE_ONCE(nlk->cb_running, true); 2424 nlk->dump_done_errno = INT_MAX; 2425 2426 ret = netlink_dump(sk, true); 2427 2428 sock_put(sk); 2429 2430 if (ret) 2431 return ret; 2432 2433 /* We successfully started a dump, by returning -EINTR we 2434 * signal not to send ACK even if it was requested. 2435 */ 2436 return -EINTR; 2437 2438 error_put: 2439 module_put(control->module); 2440 error_unlock: 2441 sock_put(sk); 2442 mutex_unlock(&nlk->nl_cb_mutex); 2443 error_free: 2444 kfree_skb(skb); 2445 return ret; 2446 } 2447 EXPORT_SYMBOL(__netlink_dump_start); 2448 2449 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2450 const struct netlink_ext_ack *extack) 2451 { 2452 struct sk_buff *skb; 2453 struct nlmsghdr *rep; 2454 struct nlmsgerr *errmsg; 2455 size_t payload = sizeof(*errmsg); 2456 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2457 unsigned int flags = 0; 2458 size_t tlvlen; 2459 2460 /* Error messages get the original request appened, unless the user 2461 * requests to cap the error message, and get extra error data if 2462 * requested. 2463 */ 2464 if (err && !test_bit(NETLINK_F_CAP_ACK, &nlk->flags)) 2465 payload += nlmsg_len(nlh); 2466 else 2467 flags |= NLM_F_CAPPED; 2468 2469 tlvlen = netlink_ack_tlv_len(nlk, err, extack); 2470 if (tlvlen) 2471 flags |= NLM_F_ACK_TLVS; 2472 2473 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2474 if (!skb) 2475 goto err_skb; 2476 2477 rep = nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2478 NLMSG_ERROR, sizeof(*errmsg), flags); 2479 if (!rep) 2480 goto err_bad_put; 2481 errmsg = nlmsg_data(rep); 2482 errmsg->error = err; 2483 errmsg->msg = *nlh; 2484 2485 if (!(flags & NLM_F_CAPPED)) { 2486 if (!nlmsg_append(skb, nlmsg_len(nlh))) 2487 goto err_bad_put; 2488 2489 memcpy(nlmsg_data(&errmsg->msg), nlmsg_data(nlh), 2490 nlmsg_len(nlh)); 2491 } 2492 2493 if (tlvlen) 2494 netlink_ack_tlv_fill(in_skb, skb, nlh, err, extack); 2495 2496 nlmsg_end(skb, rep); 2497 2498 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2499 2500 return; 2501 2502 err_bad_put: 2503 nlmsg_free(skb); 2504 err_skb: 2505 WRITE_ONCE(NETLINK_CB(in_skb).sk->sk_err, ENOBUFS); 2506 sk_error_report(NETLINK_CB(in_skb).sk); 2507 } 2508 EXPORT_SYMBOL(netlink_ack); 2509 2510 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2511 struct nlmsghdr *, 2512 struct netlink_ext_ack *)) 2513 { 2514 struct netlink_ext_ack extack; 2515 struct nlmsghdr *nlh; 2516 int err; 2517 2518 while (skb->len >= nlmsg_total_size(0)) { 2519 int msglen; 2520 2521 memset(&extack, 0, sizeof(extack)); 2522 nlh = nlmsg_hdr(skb); 2523 err = 0; 2524 2525 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2526 return 0; 2527 2528 /* Only requests are handled by the kernel */ 2529 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2530 goto ack; 2531 2532 /* Skip control messages */ 2533 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2534 goto ack; 2535 2536 err = cb(skb, nlh, &extack); 2537 if (err == -EINTR) 2538 goto skip; 2539 2540 ack: 2541 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2542 netlink_ack(skb, nlh, err, &extack); 2543 2544 skip: 2545 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2546 if (msglen > skb->len) 2547 msglen = skb->len; 2548 skb_pull(skb, msglen); 2549 } 2550 2551 return 0; 2552 } 2553 EXPORT_SYMBOL(netlink_rcv_skb); 2554 2555 /** 2556 * nlmsg_notify - send a notification netlink message 2557 * @sk: netlink socket to use 2558 * @skb: notification message 2559 * @portid: destination netlink portid for reports or 0 2560 * @group: destination multicast group or 0 2561 * @report: 1 to report back, 0 to disable 2562 * @flags: allocation flags 2563 */ 2564 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2565 unsigned int group, int report, gfp_t flags) 2566 { 2567 int err = 0; 2568 2569 if (group) { 2570 int exclude_portid = 0; 2571 2572 if (report) { 2573 refcount_inc(&skb->users); 2574 exclude_portid = portid; 2575 } 2576 2577 /* errors reported via destination sk->sk_err, but propagate 2578 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2579 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2580 if (err == -ESRCH) 2581 err = 0; 2582 } 2583 2584 if (report) { 2585 int err2; 2586 2587 err2 = nlmsg_unicast(sk, skb, portid); 2588 if (!err) 2589 err = err2; 2590 } 2591 2592 return err; 2593 } 2594 EXPORT_SYMBOL(nlmsg_notify); 2595 2596 #ifdef CONFIG_PROC_FS 2597 struct nl_seq_iter { 2598 struct seq_net_private p; 2599 struct rhashtable_iter hti; 2600 int link; 2601 }; 2602 2603 static void netlink_walk_start(struct nl_seq_iter *iter) 2604 { 2605 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2606 rhashtable_walk_start(&iter->hti); 2607 } 2608 2609 static void netlink_walk_stop(struct nl_seq_iter *iter) 2610 { 2611 rhashtable_walk_stop(&iter->hti); 2612 rhashtable_walk_exit(&iter->hti); 2613 } 2614 2615 static void *__netlink_seq_next(struct seq_file *seq) 2616 { 2617 struct nl_seq_iter *iter = seq->private; 2618 struct netlink_sock *nlk; 2619 2620 do { 2621 for (;;) { 2622 nlk = rhashtable_walk_next(&iter->hti); 2623 2624 if (IS_ERR(nlk)) { 2625 if (PTR_ERR(nlk) == -EAGAIN) 2626 continue; 2627 2628 return nlk; 2629 } 2630 2631 if (nlk) 2632 break; 2633 2634 netlink_walk_stop(iter); 2635 if (++iter->link >= MAX_LINKS) 2636 return NULL; 2637 2638 netlink_walk_start(iter); 2639 } 2640 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2641 2642 return nlk; 2643 } 2644 2645 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2646 __acquires(RCU) 2647 { 2648 struct nl_seq_iter *iter = seq->private; 2649 void *obj = SEQ_START_TOKEN; 2650 loff_t pos; 2651 2652 iter->link = 0; 2653 2654 netlink_walk_start(iter); 2655 2656 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2657 obj = __netlink_seq_next(seq); 2658 2659 return obj; 2660 } 2661 2662 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2663 { 2664 ++*pos; 2665 return __netlink_seq_next(seq); 2666 } 2667 2668 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2669 { 2670 struct nl_seq_iter *iter = seq->private; 2671 2672 if (iter->link >= MAX_LINKS) 2673 return; 2674 2675 netlink_walk_stop(iter); 2676 } 2677 2678 2679 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2680 { 2681 if (v == SEQ_START_TOKEN) { 2682 seq_puts(seq, 2683 "sk Eth Pid Groups " 2684 "Rmem Wmem Dump Locks Drops Inode\n"); 2685 } else { 2686 struct sock *s = v; 2687 struct netlink_sock *nlk = nlk_sk(s); 2688 2689 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2690 s, 2691 s->sk_protocol, 2692 nlk->portid, 2693 nlk->groups ? (u32)nlk->groups[0] : 0, 2694 sk_rmem_alloc_get(s), 2695 sk_wmem_alloc_get(s), 2696 READ_ONCE(nlk->cb_running), 2697 refcount_read(&s->sk_refcnt), 2698 atomic_read(&s->sk_drops), 2699 sock_i_ino(s) 2700 ); 2701 2702 } 2703 return 0; 2704 } 2705 2706 #ifdef CONFIG_BPF_SYSCALL 2707 struct bpf_iter__netlink { 2708 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2709 __bpf_md_ptr(struct netlink_sock *, sk); 2710 }; 2711 2712 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2713 2714 static int netlink_prog_seq_show(struct bpf_prog *prog, 2715 struct bpf_iter_meta *meta, 2716 void *v) 2717 { 2718 struct bpf_iter__netlink ctx; 2719 2720 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2721 ctx.meta = meta; 2722 ctx.sk = nlk_sk((struct sock *)v); 2723 return bpf_iter_run_prog(prog, &ctx); 2724 } 2725 2726 static int netlink_seq_show(struct seq_file *seq, void *v) 2727 { 2728 struct bpf_iter_meta meta; 2729 struct bpf_prog *prog; 2730 2731 meta.seq = seq; 2732 prog = bpf_iter_get_info(&meta, false); 2733 if (!prog) 2734 return netlink_native_seq_show(seq, v); 2735 2736 if (v != SEQ_START_TOKEN) 2737 return netlink_prog_seq_show(prog, &meta, v); 2738 2739 return 0; 2740 } 2741 2742 static void netlink_seq_stop(struct seq_file *seq, void *v) 2743 { 2744 struct bpf_iter_meta meta; 2745 struct bpf_prog *prog; 2746 2747 if (!v) { 2748 meta.seq = seq; 2749 prog = bpf_iter_get_info(&meta, true); 2750 if (prog) 2751 (void)netlink_prog_seq_show(prog, &meta, v); 2752 } 2753 2754 netlink_native_seq_stop(seq, v); 2755 } 2756 #else 2757 static int netlink_seq_show(struct seq_file *seq, void *v) 2758 { 2759 return netlink_native_seq_show(seq, v); 2760 } 2761 2762 static void netlink_seq_stop(struct seq_file *seq, void *v) 2763 { 2764 netlink_native_seq_stop(seq, v); 2765 } 2766 #endif 2767 2768 static const struct seq_operations netlink_seq_ops = { 2769 .start = netlink_seq_start, 2770 .next = netlink_seq_next, 2771 .stop = netlink_seq_stop, 2772 .show = netlink_seq_show, 2773 }; 2774 #endif 2775 2776 int netlink_register_notifier(struct notifier_block *nb) 2777 { 2778 return blocking_notifier_chain_register(&netlink_chain, nb); 2779 } 2780 EXPORT_SYMBOL(netlink_register_notifier); 2781 2782 int netlink_unregister_notifier(struct notifier_block *nb) 2783 { 2784 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2785 } 2786 EXPORT_SYMBOL(netlink_unregister_notifier); 2787 2788 static const struct proto_ops netlink_ops = { 2789 .family = PF_NETLINK, 2790 .owner = THIS_MODULE, 2791 .release = netlink_release, 2792 .bind = netlink_bind, 2793 .connect = netlink_connect, 2794 .socketpair = sock_no_socketpair, 2795 .accept = sock_no_accept, 2796 .getname = netlink_getname, 2797 .poll = datagram_poll, 2798 .ioctl = netlink_ioctl, 2799 .listen = sock_no_listen, 2800 .shutdown = sock_no_shutdown, 2801 .setsockopt = netlink_setsockopt, 2802 .getsockopt = netlink_getsockopt, 2803 .sendmsg = netlink_sendmsg, 2804 .recvmsg = netlink_recvmsg, 2805 .mmap = sock_no_mmap, 2806 }; 2807 2808 static const struct net_proto_family netlink_family_ops = { 2809 .family = PF_NETLINK, 2810 .create = netlink_create, 2811 .owner = THIS_MODULE, /* for consistency 8) */ 2812 }; 2813 2814 static int __net_init netlink_net_init(struct net *net) 2815 { 2816 #ifdef CONFIG_PROC_FS 2817 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2818 sizeof(struct nl_seq_iter))) 2819 return -ENOMEM; 2820 #endif 2821 return 0; 2822 } 2823 2824 static void __net_exit netlink_net_exit(struct net *net) 2825 { 2826 #ifdef CONFIG_PROC_FS 2827 remove_proc_entry("netlink", net->proc_net); 2828 #endif 2829 } 2830 2831 static void __init netlink_add_usersock_entry(void) 2832 { 2833 struct listeners *listeners; 2834 int groups = 32; 2835 2836 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2837 if (!listeners) 2838 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2839 2840 netlink_table_grab(); 2841 2842 nl_table[NETLINK_USERSOCK].groups = groups; 2843 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2844 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2845 nl_table[NETLINK_USERSOCK].registered = 1; 2846 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2847 2848 netlink_table_ungrab(); 2849 } 2850 2851 static struct pernet_operations __net_initdata netlink_net_ops = { 2852 .init = netlink_net_init, 2853 .exit = netlink_net_exit, 2854 }; 2855 2856 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2857 { 2858 const struct netlink_sock *nlk = data; 2859 struct netlink_compare_arg arg; 2860 2861 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2862 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2863 } 2864 2865 static const struct rhashtable_params netlink_rhashtable_params = { 2866 .head_offset = offsetof(struct netlink_sock, node), 2867 .key_len = netlink_compare_arg_len, 2868 .obj_hashfn = netlink_hash, 2869 .obj_cmpfn = netlink_compare, 2870 .automatic_shrinking = true, 2871 }; 2872 2873 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2874 BTF_ID_LIST(btf_netlink_sock_id) 2875 BTF_ID(struct, netlink_sock) 2876 2877 static const struct bpf_iter_seq_info netlink_seq_info = { 2878 .seq_ops = &netlink_seq_ops, 2879 .init_seq_private = bpf_iter_init_seq_net, 2880 .fini_seq_private = bpf_iter_fini_seq_net, 2881 .seq_priv_size = sizeof(struct nl_seq_iter), 2882 }; 2883 2884 static struct bpf_iter_reg netlink_reg_info = { 2885 .target = "netlink", 2886 .ctx_arg_info_size = 1, 2887 .ctx_arg_info = { 2888 { offsetof(struct bpf_iter__netlink, sk), 2889 PTR_TO_BTF_ID_OR_NULL }, 2890 }, 2891 .seq_info = &netlink_seq_info, 2892 }; 2893 2894 static int __init bpf_iter_register(void) 2895 { 2896 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2897 return bpf_iter_reg_target(&netlink_reg_info); 2898 } 2899 #endif 2900 2901 static int __init netlink_proto_init(void) 2902 { 2903 int i; 2904 int err = proto_register(&netlink_proto, 0); 2905 2906 if (err != 0) 2907 goto out; 2908 2909 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2910 err = bpf_iter_register(); 2911 if (err) 2912 goto out; 2913 #endif 2914 2915 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2916 2917 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2918 if (!nl_table) 2919 goto panic; 2920 2921 for (i = 0; i < MAX_LINKS; i++) { 2922 if (rhashtable_init(&nl_table[i].hash, 2923 &netlink_rhashtable_params) < 0) { 2924 while (--i > 0) 2925 rhashtable_destroy(&nl_table[i].hash); 2926 kfree(nl_table); 2927 goto panic; 2928 } 2929 } 2930 2931 netlink_add_usersock_entry(); 2932 2933 sock_register(&netlink_family_ops); 2934 register_pernet_subsys(&netlink_net_ops); 2935 register_pernet_subsys(&netlink_tap_net_ops); 2936 /* The netlink device handler may be needed early. */ 2937 rtnetlink_init(); 2938 out: 2939 return err; 2940 panic: 2941 panic("netlink_init: Cannot allocate nl_table\n"); 2942 } 2943 2944 core_initcall(netlink_proto_init); 2945