1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 65 #include <net/net_namespace.h> 66 #include <net/sock.h> 67 #include <net/scm.h> 68 #include <net/netlink.h> 69 70 #include "af_netlink.h" 71 72 struct listeners { 73 struct rcu_head rcu; 74 unsigned long masks[0]; 75 }; 76 77 /* state bits */ 78 #define NETLINK_CONGESTED 0x0 79 80 /* flags */ 81 #define NETLINK_KERNEL_SOCKET 0x1 82 #define NETLINK_RECV_PKTINFO 0x2 83 #define NETLINK_BROADCAST_SEND_ERROR 0x4 84 #define NETLINK_RECV_NO_ENOBUFS 0x8 85 86 static inline int netlink_is_kernel(struct sock *sk) 87 { 88 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 89 } 90 91 struct netlink_table *nl_table; 92 EXPORT_SYMBOL_GPL(nl_table); 93 94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 95 96 static int netlink_dump(struct sock *sk); 97 static void netlink_skb_destructor(struct sk_buff *skb); 98 99 /* nl_table locking explained: 100 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock 101 * combined with an RCU read-side lock. Insertion and removal are protected 102 * with nl_sk_hash_lock while using RCU list modification primitives and may 103 * run in parallel to nl_table_lock protected lookups. Destruction of the 104 * Netlink socket may only occur *after* nl_table_lock has been acquired 105 * either during or after the socket has been removed from the list. 106 */ 107 DEFINE_RWLOCK(nl_table_lock); 108 EXPORT_SYMBOL_GPL(nl_table_lock); 109 static atomic_t nl_table_users = ATOMIC_INIT(0); 110 111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 112 113 /* Protects netlink socket hash table mutations */ 114 DEFINE_MUTEX(nl_sk_hash_lock); 115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock); 116 117 static int lockdep_nl_sk_hash_is_held(void) 118 { 119 #ifdef CONFIG_LOCKDEP 120 if (debug_locks) 121 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock); 122 #endif 123 return 1; 124 } 125 126 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 127 128 static DEFINE_SPINLOCK(netlink_tap_lock); 129 static struct list_head netlink_tap_all __read_mostly; 130 131 static inline u32 netlink_group_mask(u32 group) 132 { 133 return group ? 1 << (group - 1) : 0; 134 } 135 136 int netlink_add_tap(struct netlink_tap *nt) 137 { 138 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 139 return -EINVAL; 140 141 spin_lock(&netlink_tap_lock); 142 list_add_rcu(&nt->list, &netlink_tap_all); 143 spin_unlock(&netlink_tap_lock); 144 145 if (nt->module) 146 __module_get(nt->module); 147 148 return 0; 149 } 150 EXPORT_SYMBOL_GPL(netlink_add_tap); 151 152 static int __netlink_remove_tap(struct netlink_tap *nt) 153 { 154 bool found = false; 155 struct netlink_tap *tmp; 156 157 spin_lock(&netlink_tap_lock); 158 159 list_for_each_entry(tmp, &netlink_tap_all, list) { 160 if (nt == tmp) { 161 list_del_rcu(&nt->list); 162 found = true; 163 goto out; 164 } 165 } 166 167 pr_warn("__netlink_remove_tap: %p not found\n", nt); 168 out: 169 spin_unlock(&netlink_tap_lock); 170 171 if (found && nt->module) 172 module_put(nt->module); 173 174 return found ? 0 : -ENODEV; 175 } 176 177 int netlink_remove_tap(struct netlink_tap *nt) 178 { 179 int ret; 180 181 ret = __netlink_remove_tap(nt); 182 synchronize_net(); 183 184 return ret; 185 } 186 EXPORT_SYMBOL_GPL(netlink_remove_tap); 187 188 static bool netlink_filter_tap(const struct sk_buff *skb) 189 { 190 struct sock *sk = skb->sk; 191 192 /* We take the more conservative approach and 193 * whitelist socket protocols that may pass. 194 */ 195 switch (sk->sk_protocol) { 196 case NETLINK_ROUTE: 197 case NETLINK_USERSOCK: 198 case NETLINK_SOCK_DIAG: 199 case NETLINK_NFLOG: 200 case NETLINK_XFRM: 201 case NETLINK_FIB_LOOKUP: 202 case NETLINK_NETFILTER: 203 case NETLINK_GENERIC: 204 return true; 205 } 206 207 return false; 208 } 209 210 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 211 struct net_device *dev) 212 { 213 struct sk_buff *nskb; 214 struct sock *sk = skb->sk; 215 int ret = -ENOMEM; 216 217 dev_hold(dev); 218 nskb = skb_clone(skb, GFP_ATOMIC); 219 if (nskb) { 220 nskb->dev = dev; 221 nskb->protocol = htons((u16) sk->sk_protocol); 222 nskb->pkt_type = netlink_is_kernel(sk) ? 223 PACKET_KERNEL : PACKET_USER; 224 skb_reset_network_header(nskb); 225 ret = dev_queue_xmit(nskb); 226 if (unlikely(ret > 0)) 227 ret = net_xmit_errno(ret); 228 } 229 230 dev_put(dev); 231 return ret; 232 } 233 234 static void __netlink_deliver_tap(struct sk_buff *skb) 235 { 236 int ret; 237 struct netlink_tap *tmp; 238 239 if (!netlink_filter_tap(skb)) 240 return; 241 242 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 243 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 244 if (unlikely(ret)) 245 break; 246 } 247 } 248 249 static void netlink_deliver_tap(struct sk_buff *skb) 250 { 251 rcu_read_lock(); 252 253 if (unlikely(!list_empty(&netlink_tap_all))) 254 __netlink_deliver_tap(skb); 255 256 rcu_read_unlock(); 257 } 258 259 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 260 struct sk_buff *skb) 261 { 262 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 263 netlink_deliver_tap(skb); 264 } 265 266 static void netlink_overrun(struct sock *sk) 267 { 268 struct netlink_sock *nlk = nlk_sk(sk); 269 270 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 271 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 272 sk->sk_err = ENOBUFS; 273 sk->sk_error_report(sk); 274 } 275 } 276 atomic_inc(&sk->sk_drops); 277 } 278 279 static void netlink_rcv_wake(struct sock *sk) 280 { 281 struct netlink_sock *nlk = nlk_sk(sk); 282 283 if (skb_queue_empty(&sk->sk_receive_queue)) 284 clear_bit(NETLINK_CONGESTED, &nlk->state); 285 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 286 wake_up_interruptible(&nlk->wait); 287 } 288 289 #ifdef CONFIG_NETLINK_MMAP 290 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 291 { 292 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 293 } 294 295 static bool netlink_rx_is_mmaped(struct sock *sk) 296 { 297 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 298 } 299 300 static bool netlink_tx_is_mmaped(struct sock *sk) 301 { 302 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 303 } 304 305 static __pure struct page *pgvec_to_page(const void *addr) 306 { 307 if (is_vmalloc_addr(addr)) 308 return vmalloc_to_page(addr); 309 else 310 return virt_to_page(addr); 311 } 312 313 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 314 { 315 unsigned int i; 316 317 for (i = 0; i < len; i++) { 318 if (pg_vec[i] != NULL) { 319 if (is_vmalloc_addr(pg_vec[i])) 320 vfree(pg_vec[i]); 321 else 322 free_pages((unsigned long)pg_vec[i], order); 323 } 324 } 325 kfree(pg_vec); 326 } 327 328 static void *alloc_one_pg_vec_page(unsigned long order) 329 { 330 void *buffer; 331 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 332 __GFP_NOWARN | __GFP_NORETRY; 333 334 buffer = (void *)__get_free_pages(gfp_flags, order); 335 if (buffer != NULL) 336 return buffer; 337 338 buffer = vzalloc((1 << order) * PAGE_SIZE); 339 if (buffer != NULL) 340 return buffer; 341 342 gfp_flags &= ~__GFP_NORETRY; 343 return (void *)__get_free_pages(gfp_flags, order); 344 } 345 346 static void **alloc_pg_vec(struct netlink_sock *nlk, 347 struct nl_mmap_req *req, unsigned int order) 348 { 349 unsigned int block_nr = req->nm_block_nr; 350 unsigned int i; 351 void **pg_vec; 352 353 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 354 if (pg_vec == NULL) 355 return NULL; 356 357 for (i = 0; i < block_nr; i++) { 358 pg_vec[i] = alloc_one_pg_vec_page(order); 359 if (pg_vec[i] == NULL) 360 goto err1; 361 } 362 363 return pg_vec; 364 err1: 365 free_pg_vec(pg_vec, order, block_nr); 366 return NULL; 367 } 368 369 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 370 bool closing, bool tx_ring) 371 { 372 struct netlink_sock *nlk = nlk_sk(sk); 373 struct netlink_ring *ring; 374 struct sk_buff_head *queue; 375 void **pg_vec = NULL; 376 unsigned int order = 0; 377 int err; 378 379 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 380 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 381 382 if (!closing) { 383 if (atomic_read(&nlk->mapped)) 384 return -EBUSY; 385 if (atomic_read(&ring->pending)) 386 return -EBUSY; 387 } 388 389 if (req->nm_block_nr) { 390 if (ring->pg_vec != NULL) 391 return -EBUSY; 392 393 if ((int)req->nm_block_size <= 0) 394 return -EINVAL; 395 if (!PAGE_ALIGNED(req->nm_block_size)) 396 return -EINVAL; 397 if (req->nm_frame_size < NL_MMAP_HDRLEN) 398 return -EINVAL; 399 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 400 return -EINVAL; 401 402 ring->frames_per_block = req->nm_block_size / 403 req->nm_frame_size; 404 if (ring->frames_per_block == 0) 405 return -EINVAL; 406 if (ring->frames_per_block * req->nm_block_nr != 407 req->nm_frame_nr) 408 return -EINVAL; 409 410 order = get_order(req->nm_block_size); 411 pg_vec = alloc_pg_vec(nlk, req, order); 412 if (pg_vec == NULL) 413 return -ENOMEM; 414 } else { 415 if (req->nm_frame_nr) 416 return -EINVAL; 417 } 418 419 err = -EBUSY; 420 mutex_lock(&nlk->pg_vec_lock); 421 if (closing || atomic_read(&nlk->mapped) == 0) { 422 err = 0; 423 spin_lock_bh(&queue->lock); 424 425 ring->frame_max = req->nm_frame_nr - 1; 426 ring->head = 0; 427 ring->frame_size = req->nm_frame_size; 428 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 429 430 swap(ring->pg_vec_len, req->nm_block_nr); 431 swap(ring->pg_vec_order, order); 432 swap(ring->pg_vec, pg_vec); 433 434 __skb_queue_purge(queue); 435 spin_unlock_bh(&queue->lock); 436 437 WARN_ON(atomic_read(&nlk->mapped)); 438 } 439 mutex_unlock(&nlk->pg_vec_lock); 440 441 if (pg_vec) 442 free_pg_vec(pg_vec, order, req->nm_block_nr); 443 return err; 444 } 445 446 static void netlink_mm_open(struct vm_area_struct *vma) 447 { 448 struct file *file = vma->vm_file; 449 struct socket *sock = file->private_data; 450 struct sock *sk = sock->sk; 451 452 if (sk) 453 atomic_inc(&nlk_sk(sk)->mapped); 454 } 455 456 static void netlink_mm_close(struct vm_area_struct *vma) 457 { 458 struct file *file = vma->vm_file; 459 struct socket *sock = file->private_data; 460 struct sock *sk = sock->sk; 461 462 if (sk) 463 atomic_dec(&nlk_sk(sk)->mapped); 464 } 465 466 static const struct vm_operations_struct netlink_mmap_ops = { 467 .open = netlink_mm_open, 468 .close = netlink_mm_close, 469 }; 470 471 static int netlink_mmap(struct file *file, struct socket *sock, 472 struct vm_area_struct *vma) 473 { 474 struct sock *sk = sock->sk; 475 struct netlink_sock *nlk = nlk_sk(sk); 476 struct netlink_ring *ring; 477 unsigned long start, size, expected; 478 unsigned int i; 479 int err = -EINVAL; 480 481 if (vma->vm_pgoff) 482 return -EINVAL; 483 484 mutex_lock(&nlk->pg_vec_lock); 485 486 expected = 0; 487 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 488 if (ring->pg_vec == NULL) 489 continue; 490 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 491 } 492 493 if (expected == 0) 494 goto out; 495 496 size = vma->vm_end - vma->vm_start; 497 if (size != expected) 498 goto out; 499 500 start = vma->vm_start; 501 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 502 if (ring->pg_vec == NULL) 503 continue; 504 505 for (i = 0; i < ring->pg_vec_len; i++) { 506 struct page *page; 507 void *kaddr = ring->pg_vec[i]; 508 unsigned int pg_num; 509 510 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 511 page = pgvec_to_page(kaddr); 512 err = vm_insert_page(vma, start, page); 513 if (err < 0) 514 goto out; 515 start += PAGE_SIZE; 516 kaddr += PAGE_SIZE; 517 } 518 } 519 } 520 521 atomic_inc(&nlk->mapped); 522 vma->vm_ops = &netlink_mmap_ops; 523 err = 0; 524 out: 525 mutex_unlock(&nlk->pg_vec_lock); 526 return err; 527 } 528 529 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr) 530 { 531 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 532 struct page *p_start, *p_end; 533 534 /* First page is flushed through netlink_{get,set}_status */ 535 p_start = pgvec_to_page(hdr + PAGE_SIZE); 536 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1); 537 while (p_start <= p_end) { 538 flush_dcache_page(p_start); 539 p_start++; 540 } 541 #endif 542 } 543 544 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 545 { 546 smp_rmb(); 547 flush_dcache_page(pgvec_to_page(hdr)); 548 return hdr->nm_status; 549 } 550 551 static void netlink_set_status(struct nl_mmap_hdr *hdr, 552 enum nl_mmap_status status) 553 { 554 hdr->nm_status = status; 555 flush_dcache_page(pgvec_to_page(hdr)); 556 smp_wmb(); 557 } 558 559 static struct nl_mmap_hdr * 560 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 561 { 562 unsigned int pg_vec_pos, frame_off; 563 564 pg_vec_pos = pos / ring->frames_per_block; 565 frame_off = pos % ring->frames_per_block; 566 567 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 568 } 569 570 static struct nl_mmap_hdr * 571 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 572 enum nl_mmap_status status) 573 { 574 struct nl_mmap_hdr *hdr; 575 576 hdr = __netlink_lookup_frame(ring, pos); 577 if (netlink_get_status(hdr) != status) 578 return NULL; 579 580 return hdr; 581 } 582 583 static struct nl_mmap_hdr * 584 netlink_current_frame(const struct netlink_ring *ring, 585 enum nl_mmap_status status) 586 { 587 return netlink_lookup_frame(ring, ring->head, status); 588 } 589 590 static struct nl_mmap_hdr * 591 netlink_previous_frame(const struct netlink_ring *ring, 592 enum nl_mmap_status status) 593 { 594 unsigned int prev; 595 596 prev = ring->head ? ring->head - 1 : ring->frame_max; 597 return netlink_lookup_frame(ring, prev, status); 598 } 599 600 static void netlink_increment_head(struct netlink_ring *ring) 601 { 602 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 603 } 604 605 static void netlink_forward_ring(struct netlink_ring *ring) 606 { 607 unsigned int head = ring->head, pos = head; 608 const struct nl_mmap_hdr *hdr; 609 610 do { 611 hdr = __netlink_lookup_frame(ring, pos); 612 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 613 break; 614 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 615 break; 616 netlink_increment_head(ring); 617 } while (ring->head != head); 618 } 619 620 static bool netlink_dump_space(struct netlink_sock *nlk) 621 { 622 struct netlink_ring *ring = &nlk->rx_ring; 623 struct nl_mmap_hdr *hdr; 624 unsigned int n; 625 626 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 627 if (hdr == NULL) 628 return false; 629 630 n = ring->head + ring->frame_max / 2; 631 if (n > ring->frame_max) 632 n -= ring->frame_max; 633 634 hdr = __netlink_lookup_frame(ring, n); 635 636 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 637 } 638 639 static unsigned int netlink_poll(struct file *file, struct socket *sock, 640 poll_table *wait) 641 { 642 struct sock *sk = sock->sk; 643 struct netlink_sock *nlk = nlk_sk(sk); 644 unsigned int mask; 645 int err; 646 647 if (nlk->rx_ring.pg_vec != NULL) { 648 /* Memory mapped sockets don't call recvmsg(), so flow control 649 * for dumps is performed here. A dump is allowed to continue 650 * if at least half the ring is unused. 651 */ 652 while (nlk->cb_running && netlink_dump_space(nlk)) { 653 err = netlink_dump(sk); 654 if (err < 0) { 655 sk->sk_err = -err; 656 sk->sk_error_report(sk); 657 break; 658 } 659 } 660 netlink_rcv_wake(sk); 661 } 662 663 mask = datagram_poll(file, sock, wait); 664 665 spin_lock_bh(&sk->sk_receive_queue.lock); 666 if (nlk->rx_ring.pg_vec) { 667 netlink_forward_ring(&nlk->rx_ring); 668 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 669 mask |= POLLIN | POLLRDNORM; 670 } 671 spin_unlock_bh(&sk->sk_receive_queue.lock); 672 673 spin_lock_bh(&sk->sk_write_queue.lock); 674 if (nlk->tx_ring.pg_vec) { 675 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 676 mask |= POLLOUT | POLLWRNORM; 677 } 678 spin_unlock_bh(&sk->sk_write_queue.lock); 679 680 return mask; 681 } 682 683 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 684 { 685 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 686 } 687 688 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 689 struct netlink_ring *ring, 690 struct nl_mmap_hdr *hdr) 691 { 692 unsigned int size; 693 void *data; 694 695 size = ring->frame_size - NL_MMAP_HDRLEN; 696 data = (void *)hdr + NL_MMAP_HDRLEN; 697 698 skb->head = data; 699 skb->data = data; 700 skb_reset_tail_pointer(skb); 701 skb->end = skb->tail + size; 702 skb->len = 0; 703 704 skb->destructor = netlink_skb_destructor; 705 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 706 NETLINK_CB(skb).sk = sk; 707 } 708 709 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 710 u32 dst_portid, u32 dst_group, 711 struct sock_iocb *siocb) 712 { 713 struct netlink_sock *nlk = nlk_sk(sk); 714 struct netlink_ring *ring; 715 struct nl_mmap_hdr *hdr; 716 struct sk_buff *skb; 717 unsigned int maxlen; 718 bool excl = true; 719 int err = 0, len = 0; 720 721 /* Netlink messages are validated by the receiver before processing. 722 * In order to avoid userspace changing the contents of the message 723 * after validation, the socket and the ring may only be used by a 724 * single process, otherwise we fall back to copying. 725 */ 726 if (atomic_long_read(&sk->sk_socket->file->f_count) > 1 || 727 atomic_read(&nlk->mapped) > 1) 728 excl = false; 729 730 mutex_lock(&nlk->pg_vec_lock); 731 732 ring = &nlk->tx_ring; 733 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 734 735 do { 736 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 737 if (hdr == NULL) { 738 if (!(msg->msg_flags & MSG_DONTWAIT) && 739 atomic_read(&nlk->tx_ring.pending)) 740 schedule(); 741 continue; 742 } 743 if (hdr->nm_len > maxlen) { 744 err = -EINVAL; 745 goto out; 746 } 747 748 netlink_frame_flush_dcache(hdr); 749 750 if (likely(dst_portid == 0 && dst_group == 0 && excl)) { 751 skb = alloc_skb_head(GFP_KERNEL); 752 if (skb == NULL) { 753 err = -ENOBUFS; 754 goto out; 755 } 756 sock_hold(sk); 757 netlink_ring_setup_skb(skb, sk, ring, hdr); 758 NETLINK_CB(skb).flags |= NETLINK_SKB_TX; 759 __skb_put(skb, hdr->nm_len); 760 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 761 atomic_inc(&ring->pending); 762 } else { 763 skb = alloc_skb(hdr->nm_len, GFP_KERNEL); 764 if (skb == NULL) { 765 err = -ENOBUFS; 766 goto out; 767 } 768 __skb_put(skb, hdr->nm_len); 769 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len); 770 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 771 } 772 773 netlink_increment_head(ring); 774 775 NETLINK_CB(skb).portid = nlk->portid; 776 NETLINK_CB(skb).dst_group = dst_group; 777 NETLINK_CB(skb).creds = siocb->scm->creds; 778 779 err = security_netlink_send(sk, skb); 780 if (err) { 781 kfree_skb(skb); 782 goto out; 783 } 784 785 if (unlikely(dst_group)) { 786 atomic_inc(&skb->users); 787 netlink_broadcast(sk, skb, dst_portid, dst_group, 788 GFP_KERNEL); 789 } 790 err = netlink_unicast(sk, skb, dst_portid, 791 msg->msg_flags & MSG_DONTWAIT); 792 if (err < 0) 793 goto out; 794 len += err; 795 796 } while (hdr != NULL || 797 (!(msg->msg_flags & MSG_DONTWAIT) && 798 atomic_read(&nlk->tx_ring.pending))); 799 800 if (len > 0) 801 err = len; 802 out: 803 mutex_unlock(&nlk->pg_vec_lock); 804 return err; 805 } 806 807 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 808 { 809 struct nl_mmap_hdr *hdr; 810 811 hdr = netlink_mmap_hdr(skb); 812 hdr->nm_len = skb->len; 813 hdr->nm_group = NETLINK_CB(skb).dst_group; 814 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 815 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 816 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 817 netlink_frame_flush_dcache(hdr); 818 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 819 820 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 821 kfree_skb(skb); 822 } 823 824 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 825 { 826 struct netlink_sock *nlk = nlk_sk(sk); 827 struct netlink_ring *ring = &nlk->rx_ring; 828 struct nl_mmap_hdr *hdr; 829 830 spin_lock_bh(&sk->sk_receive_queue.lock); 831 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 832 if (hdr == NULL) { 833 spin_unlock_bh(&sk->sk_receive_queue.lock); 834 kfree_skb(skb); 835 netlink_overrun(sk); 836 return; 837 } 838 netlink_increment_head(ring); 839 __skb_queue_tail(&sk->sk_receive_queue, skb); 840 spin_unlock_bh(&sk->sk_receive_queue.lock); 841 842 hdr->nm_len = skb->len; 843 hdr->nm_group = NETLINK_CB(skb).dst_group; 844 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 845 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 846 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 847 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 848 } 849 850 #else /* CONFIG_NETLINK_MMAP */ 851 #define netlink_skb_is_mmaped(skb) false 852 #define netlink_rx_is_mmaped(sk) false 853 #define netlink_tx_is_mmaped(sk) false 854 #define netlink_mmap sock_no_mmap 855 #define netlink_poll datagram_poll 856 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0 857 #endif /* CONFIG_NETLINK_MMAP */ 858 859 static void netlink_skb_destructor(struct sk_buff *skb) 860 { 861 #ifdef CONFIG_NETLINK_MMAP 862 struct nl_mmap_hdr *hdr; 863 struct netlink_ring *ring; 864 struct sock *sk; 865 866 /* If a packet from the kernel to userspace was freed because of an 867 * error without being delivered to userspace, the kernel must reset 868 * the status. In the direction userspace to kernel, the status is 869 * always reset here after the packet was processed and freed. 870 */ 871 if (netlink_skb_is_mmaped(skb)) { 872 hdr = netlink_mmap_hdr(skb); 873 sk = NETLINK_CB(skb).sk; 874 875 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 876 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 877 ring = &nlk_sk(sk)->tx_ring; 878 } else { 879 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 880 hdr->nm_len = 0; 881 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 882 } 883 ring = &nlk_sk(sk)->rx_ring; 884 } 885 886 WARN_ON(atomic_read(&ring->pending) == 0); 887 atomic_dec(&ring->pending); 888 sock_put(sk); 889 890 skb->head = NULL; 891 } 892 #endif 893 if (is_vmalloc_addr(skb->head)) { 894 if (!skb->cloned || 895 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 896 vfree(skb->head); 897 898 skb->head = NULL; 899 } 900 if (skb->sk != NULL) 901 sock_rfree(skb); 902 } 903 904 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 905 { 906 WARN_ON(skb->sk != NULL); 907 skb->sk = sk; 908 skb->destructor = netlink_skb_destructor; 909 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 910 sk_mem_charge(sk, skb->truesize); 911 } 912 913 static void netlink_sock_destruct(struct sock *sk) 914 { 915 struct netlink_sock *nlk = nlk_sk(sk); 916 917 if (nlk->cb_running) { 918 if (nlk->cb.done) 919 nlk->cb.done(&nlk->cb); 920 921 module_put(nlk->cb.module); 922 kfree_skb(nlk->cb.skb); 923 } 924 925 skb_queue_purge(&sk->sk_receive_queue); 926 #ifdef CONFIG_NETLINK_MMAP 927 if (1) { 928 struct nl_mmap_req req; 929 930 memset(&req, 0, sizeof(req)); 931 if (nlk->rx_ring.pg_vec) 932 netlink_set_ring(sk, &req, true, false); 933 memset(&req, 0, sizeof(req)); 934 if (nlk->tx_ring.pg_vec) 935 netlink_set_ring(sk, &req, true, true); 936 } 937 #endif /* CONFIG_NETLINK_MMAP */ 938 939 if (!sock_flag(sk, SOCK_DEAD)) { 940 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 941 return; 942 } 943 944 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 945 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 946 WARN_ON(nlk_sk(sk)->groups); 947 } 948 949 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 950 * SMP. Look, when several writers sleep and reader wakes them up, all but one 951 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 952 * this, _but_ remember, it adds useless work on UP machines. 953 */ 954 955 void netlink_table_grab(void) 956 __acquires(nl_table_lock) 957 { 958 might_sleep(); 959 960 write_lock_irq(&nl_table_lock); 961 962 if (atomic_read(&nl_table_users)) { 963 DECLARE_WAITQUEUE(wait, current); 964 965 add_wait_queue_exclusive(&nl_table_wait, &wait); 966 for (;;) { 967 set_current_state(TASK_UNINTERRUPTIBLE); 968 if (atomic_read(&nl_table_users) == 0) 969 break; 970 write_unlock_irq(&nl_table_lock); 971 schedule(); 972 write_lock_irq(&nl_table_lock); 973 } 974 975 __set_current_state(TASK_RUNNING); 976 remove_wait_queue(&nl_table_wait, &wait); 977 } 978 } 979 980 void netlink_table_ungrab(void) 981 __releases(nl_table_lock) 982 { 983 write_unlock_irq(&nl_table_lock); 984 wake_up(&nl_table_wait); 985 } 986 987 static inline void 988 netlink_lock_table(void) 989 { 990 /* read_lock() synchronizes us to netlink_table_grab */ 991 992 read_lock(&nl_table_lock); 993 atomic_inc(&nl_table_users); 994 read_unlock(&nl_table_lock); 995 } 996 997 static inline void 998 netlink_unlock_table(void) 999 { 1000 if (atomic_dec_and_test(&nl_table_users)) 1001 wake_up(&nl_table_wait); 1002 } 1003 1004 struct netlink_compare_arg 1005 { 1006 struct net *net; 1007 u32 portid; 1008 }; 1009 1010 static bool netlink_compare(void *ptr, void *arg) 1011 { 1012 struct netlink_compare_arg *x = arg; 1013 struct sock *sk = ptr; 1014 1015 return nlk_sk(sk)->portid == x->portid && 1016 net_eq(sock_net(sk), x->net); 1017 } 1018 1019 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1020 struct net *net) 1021 { 1022 struct netlink_compare_arg arg = { 1023 .net = net, 1024 .portid = portid, 1025 }; 1026 u32 hash; 1027 1028 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid)); 1029 1030 return rhashtable_lookup_compare(&table->hash, hash, 1031 &netlink_compare, &arg); 1032 } 1033 1034 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1035 { 1036 struct netlink_table *table = &nl_table[protocol]; 1037 struct sock *sk; 1038 1039 read_lock(&nl_table_lock); 1040 rcu_read_lock(); 1041 sk = __netlink_lookup(table, portid, net); 1042 if (sk) 1043 sock_hold(sk); 1044 rcu_read_unlock(); 1045 read_unlock(&nl_table_lock); 1046 1047 return sk; 1048 } 1049 1050 static const struct proto_ops netlink_ops; 1051 1052 static void 1053 netlink_update_listeners(struct sock *sk) 1054 { 1055 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1056 unsigned long mask; 1057 unsigned int i; 1058 struct listeners *listeners; 1059 1060 listeners = nl_deref_protected(tbl->listeners); 1061 if (!listeners) 1062 return; 1063 1064 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1065 mask = 0; 1066 sk_for_each_bound(sk, &tbl->mc_list) { 1067 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1068 mask |= nlk_sk(sk)->groups[i]; 1069 } 1070 listeners->masks[i] = mask; 1071 } 1072 /* this function is only called with the netlink table "grabbed", which 1073 * makes sure updates are visible before bind or setsockopt return. */ 1074 } 1075 1076 static int netlink_insert(struct sock *sk, struct net *net, u32 portid) 1077 { 1078 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1079 int err = -EADDRINUSE; 1080 1081 mutex_lock(&nl_sk_hash_lock); 1082 if (__netlink_lookup(table, portid, net)) 1083 goto err; 1084 1085 err = -EBUSY; 1086 if (nlk_sk(sk)->portid) 1087 goto err; 1088 1089 err = -ENOMEM; 1090 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX)) 1091 goto err; 1092 1093 nlk_sk(sk)->portid = portid; 1094 sock_hold(sk); 1095 rhashtable_insert(&table->hash, &nlk_sk(sk)->node, GFP_KERNEL); 1096 err = 0; 1097 err: 1098 mutex_unlock(&nl_sk_hash_lock); 1099 return err; 1100 } 1101 1102 static void netlink_remove(struct sock *sk) 1103 { 1104 struct netlink_table *table; 1105 1106 mutex_lock(&nl_sk_hash_lock); 1107 table = &nl_table[sk->sk_protocol]; 1108 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node, GFP_KERNEL)) { 1109 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1110 __sock_put(sk); 1111 } 1112 mutex_unlock(&nl_sk_hash_lock); 1113 1114 netlink_table_grab(); 1115 if (nlk_sk(sk)->subscriptions) 1116 __sk_del_bind_node(sk); 1117 netlink_table_ungrab(); 1118 } 1119 1120 static struct proto netlink_proto = { 1121 .name = "NETLINK", 1122 .owner = THIS_MODULE, 1123 .obj_size = sizeof(struct netlink_sock), 1124 }; 1125 1126 static int __netlink_create(struct net *net, struct socket *sock, 1127 struct mutex *cb_mutex, int protocol) 1128 { 1129 struct sock *sk; 1130 struct netlink_sock *nlk; 1131 1132 sock->ops = &netlink_ops; 1133 1134 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1135 if (!sk) 1136 return -ENOMEM; 1137 1138 sock_init_data(sock, sk); 1139 1140 nlk = nlk_sk(sk); 1141 if (cb_mutex) { 1142 nlk->cb_mutex = cb_mutex; 1143 } else { 1144 nlk->cb_mutex = &nlk->cb_def_mutex; 1145 mutex_init(nlk->cb_mutex); 1146 } 1147 init_waitqueue_head(&nlk->wait); 1148 #ifdef CONFIG_NETLINK_MMAP 1149 mutex_init(&nlk->pg_vec_lock); 1150 #endif 1151 1152 sk->sk_destruct = netlink_sock_destruct; 1153 sk->sk_protocol = protocol; 1154 return 0; 1155 } 1156 1157 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1158 int kern) 1159 { 1160 struct module *module = NULL; 1161 struct mutex *cb_mutex; 1162 struct netlink_sock *nlk; 1163 int (*bind)(int group); 1164 void (*unbind)(int group); 1165 int err = 0; 1166 1167 sock->state = SS_UNCONNECTED; 1168 1169 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1170 return -ESOCKTNOSUPPORT; 1171 1172 if (protocol < 0 || protocol >= MAX_LINKS) 1173 return -EPROTONOSUPPORT; 1174 1175 netlink_lock_table(); 1176 #ifdef CONFIG_MODULES 1177 if (!nl_table[protocol].registered) { 1178 netlink_unlock_table(); 1179 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1180 netlink_lock_table(); 1181 } 1182 #endif 1183 if (nl_table[protocol].registered && 1184 try_module_get(nl_table[protocol].module)) 1185 module = nl_table[protocol].module; 1186 else 1187 err = -EPROTONOSUPPORT; 1188 cb_mutex = nl_table[protocol].cb_mutex; 1189 bind = nl_table[protocol].bind; 1190 unbind = nl_table[protocol].unbind; 1191 netlink_unlock_table(); 1192 1193 if (err < 0) 1194 goto out; 1195 1196 err = __netlink_create(net, sock, cb_mutex, protocol); 1197 if (err < 0) 1198 goto out_module; 1199 1200 local_bh_disable(); 1201 sock_prot_inuse_add(net, &netlink_proto, 1); 1202 local_bh_enable(); 1203 1204 nlk = nlk_sk(sock->sk); 1205 nlk->module = module; 1206 nlk->netlink_bind = bind; 1207 nlk->netlink_unbind = unbind; 1208 out: 1209 return err; 1210 1211 out_module: 1212 module_put(module); 1213 goto out; 1214 } 1215 1216 static int netlink_release(struct socket *sock) 1217 { 1218 struct sock *sk = sock->sk; 1219 struct netlink_sock *nlk; 1220 1221 if (!sk) 1222 return 0; 1223 1224 netlink_remove(sk); 1225 sock_orphan(sk); 1226 nlk = nlk_sk(sk); 1227 1228 /* 1229 * OK. Socket is unlinked, any packets that arrive now 1230 * will be purged. 1231 */ 1232 1233 sock->sk = NULL; 1234 wake_up_interruptible_all(&nlk->wait); 1235 1236 skb_queue_purge(&sk->sk_write_queue); 1237 1238 if (nlk->portid) { 1239 struct netlink_notify n = { 1240 .net = sock_net(sk), 1241 .protocol = sk->sk_protocol, 1242 .portid = nlk->portid, 1243 }; 1244 atomic_notifier_call_chain(&netlink_chain, 1245 NETLINK_URELEASE, &n); 1246 } 1247 1248 module_put(nlk->module); 1249 1250 netlink_table_grab(); 1251 if (netlink_is_kernel(sk)) { 1252 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1253 if (--nl_table[sk->sk_protocol].registered == 0) { 1254 struct listeners *old; 1255 1256 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1257 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1258 kfree_rcu(old, rcu); 1259 nl_table[sk->sk_protocol].module = NULL; 1260 nl_table[sk->sk_protocol].bind = NULL; 1261 nl_table[sk->sk_protocol].unbind = NULL; 1262 nl_table[sk->sk_protocol].flags = 0; 1263 nl_table[sk->sk_protocol].registered = 0; 1264 } 1265 } else if (nlk->subscriptions) { 1266 netlink_update_listeners(sk); 1267 } 1268 netlink_table_ungrab(); 1269 1270 kfree(nlk->groups); 1271 nlk->groups = NULL; 1272 1273 local_bh_disable(); 1274 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1275 local_bh_enable(); 1276 sock_put(sk); 1277 return 0; 1278 } 1279 1280 static int netlink_autobind(struct socket *sock) 1281 { 1282 struct sock *sk = sock->sk; 1283 struct net *net = sock_net(sk); 1284 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1285 s32 portid = task_tgid_vnr(current); 1286 int err; 1287 static s32 rover = -4097; 1288 1289 retry: 1290 cond_resched(); 1291 netlink_table_grab(); 1292 rcu_read_lock(); 1293 if (__netlink_lookup(table, portid, net)) { 1294 /* Bind collision, search negative portid values. */ 1295 portid = rover--; 1296 if (rover > -4097) 1297 rover = -4097; 1298 rcu_read_unlock(); 1299 netlink_table_ungrab(); 1300 goto retry; 1301 } 1302 rcu_read_unlock(); 1303 netlink_table_ungrab(); 1304 1305 err = netlink_insert(sk, net, portid); 1306 if (err == -EADDRINUSE) 1307 goto retry; 1308 1309 /* If 2 threads race to autobind, that is fine. */ 1310 if (err == -EBUSY) 1311 err = 0; 1312 1313 return err; 1314 } 1315 1316 /** 1317 * __netlink_ns_capable - General netlink message capability test 1318 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1319 * @user_ns: The user namespace of the capability to use 1320 * @cap: The capability to use 1321 * 1322 * Test to see if the opener of the socket we received the message 1323 * from had when the netlink socket was created and the sender of the 1324 * message has has the capability @cap in the user namespace @user_ns. 1325 */ 1326 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1327 struct user_namespace *user_ns, int cap) 1328 { 1329 return ((nsp->flags & NETLINK_SKB_DST) || 1330 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1331 ns_capable(user_ns, cap); 1332 } 1333 EXPORT_SYMBOL(__netlink_ns_capable); 1334 1335 /** 1336 * netlink_ns_capable - General netlink message capability test 1337 * @skb: socket buffer holding a netlink command from userspace 1338 * @user_ns: The user namespace of the capability to use 1339 * @cap: The capability to use 1340 * 1341 * Test to see if the opener of the socket we received the message 1342 * from had when the netlink socket was created and the sender of the 1343 * message has has the capability @cap in the user namespace @user_ns. 1344 */ 1345 bool netlink_ns_capable(const struct sk_buff *skb, 1346 struct user_namespace *user_ns, int cap) 1347 { 1348 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1349 } 1350 EXPORT_SYMBOL(netlink_ns_capable); 1351 1352 /** 1353 * netlink_capable - Netlink global message capability test 1354 * @skb: socket buffer holding a netlink command from userspace 1355 * @cap: The capability to use 1356 * 1357 * Test to see if the opener of the socket we received the message 1358 * from had when the netlink socket was created and the sender of the 1359 * message has has the capability @cap in all user namespaces. 1360 */ 1361 bool netlink_capable(const struct sk_buff *skb, int cap) 1362 { 1363 return netlink_ns_capable(skb, &init_user_ns, cap); 1364 } 1365 EXPORT_SYMBOL(netlink_capable); 1366 1367 /** 1368 * netlink_net_capable - Netlink network namespace message capability test 1369 * @skb: socket buffer holding a netlink command from userspace 1370 * @cap: The capability to use 1371 * 1372 * Test to see if the opener of the socket we received the message 1373 * from had when the netlink socket was created and the sender of the 1374 * message has has the capability @cap over the network namespace of 1375 * the socket we received the message from. 1376 */ 1377 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1378 { 1379 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1380 } 1381 EXPORT_SYMBOL(netlink_net_capable); 1382 1383 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1384 { 1385 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1386 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1387 } 1388 1389 static void 1390 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1391 { 1392 struct netlink_sock *nlk = nlk_sk(sk); 1393 1394 if (nlk->subscriptions && !subscriptions) 1395 __sk_del_bind_node(sk); 1396 else if (!nlk->subscriptions && subscriptions) 1397 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1398 nlk->subscriptions = subscriptions; 1399 } 1400 1401 static int netlink_realloc_groups(struct sock *sk) 1402 { 1403 struct netlink_sock *nlk = nlk_sk(sk); 1404 unsigned int groups; 1405 unsigned long *new_groups; 1406 int err = 0; 1407 1408 netlink_table_grab(); 1409 1410 groups = nl_table[sk->sk_protocol].groups; 1411 if (!nl_table[sk->sk_protocol].registered) { 1412 err = -ENOENT; 1413 goto out_unlock; 1414 } 1415 1416 if (nlk->ngroups >= groups) 1417 goto out_unlock; 1418 1419 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1420 if (new_groups == NULL) { 1421 err = -ENOMEM; 1422 goto out_unlock; 1423 } 1424 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1425 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1426 1427 nlk->groups = new_groups; 1428 nlk->ngroups = groups; 1429 out_unlock: 1430 netlink_table_ungrab(); 1431 return err; 1432 } 1433 1434 static void netlink_unbind(int group, long unsigned int groups, 1435 struct netlink_sock *nlk) 1436 { 1437 int undo; 1438 1439 if (!nlk->netlink_unbind) 1440 return; 1441 1442 for (undo = 0; undo < group; undo++) 1443 if (test_bit(group, &groups)) 1444 nlk->netlink_unbind(undo); 1445 } 1446 1447 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1448 int addr_len) 1449 { 1450 struct sock *sk = sock->sk; 1451 struct net *net = sock_net(sk); 1452 struct netlink_sock *nlk = nlk_sk(sk); 1453 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1454 int err; 1455 long unsigned int groups = nladdr->nl_groups; 1456 1457 if (addr_len < sizeof(struct sockaddr_nl)) 1458 return -EINVAL; 1459 1460 if (nladdr->nl_family != AF_NETLINK) 1461 return -EINVAL; 1462 1463 /* Only superuser is allowed to listen multicasts */ 1464 if (groups) { 1465 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1466 return -EPERM; 1467 err = netlink_realloc_groups(sk); 1468 if (err) 1469 return err; 1470 } 1471 1472 if (nlk->portid) 1473 if (nladdr->nl_pid != nlk->portid) 1474 return -EINVAL; 1475 1476 if (nlk->netlink_bind && groups) { 1477 int group; 1478 1479 for (group = 0; group < nlk->ngroups; group++) { 1480 if (!test_bit(group, &groups)) 1481 continue; 1482 err = nlk->netlink_bind(group); 1483 if (!err) 1484 continue; 1485 netlink_unbind(group, groups, nlk); 1486 return err; 1487 } 1488 } 1489 1490 if (!nlk->portid) { 1491 err = nladdr->nl_pid ? 1492 netlink_insert(sk, net, nladdr->nl_pid) : 1493 netlink_autobind(sock); 1494 if (err) { 1495 netlink_unbind(nlk->ngroups - 1, groups, nlk); 1496 return err; 1497 } 1498 } 1499 1500 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1501 return 0; 1502 1503 netlink_table_grab(); 1504 netlink_update_subscriptions(sk, nlk->subscriptions + 1505 hweight32(groups) - 1506 hweight32(nlk->groups[0])); 1507 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1508 netlink_update_listeners(sk); 1509 netlink_table_ungrab(); 1510 1511 return 0; 1512 } 1513 1514 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1515 int alen, int flags) 1516 { 1517 int err = 0; 1518 struct sock *sk = sock->sk; 1519 struct netlink_sock *nlk = nlk_sk(sk); 1520 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1521 1522 if (alen < sizeof(addr->sa_family)) 1523 return -EINVAL; 1524 1525 if (addr->sa_family == AF_UNSPEC) { 1526 sk->sk_state = NETLINK_UNCONNECTED; 1527 nlk->dst_portid = 0; 1528 nlk->dst_group = 0; 1529 return 0; 1530 } 1531 if (addr->sa_family != AF_NETLINK) 1532 return -EINVAL; 1533 1534 if ((nladdr->nl_groups || nladdr->nl_pid) && 1535 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1536 return -EPERM; 1537 1538 if (!nlk->portid) 1539 err = netlink_autobind(sock); 1540 1541 if (err == 0) { 1542 sk->sk_state = NETLINK_CONNECTED; 1543 nlk->dst_portid = nladdr->nl_pid; 1544 nlk->dst_group = ffs(nladdr->nl_groups); 1545 } 1546 1547 return err; 1548 } 1549 1550 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1551 int *addr_len, int peer) 1552 { 1553 struct sock *sk = sock->sk; 1554 struct netlink_sock *nlk = nlk_sk(sk); 1555 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1556 1557 nladdr->nl_family = AF_NETLINK; 1558 nladdr->nl_pad = 0; 1559 *addr_len = sizeof(*nladdr); 1560 1561 if (peer) { 1562 nladdr->nl_pid = nlk->dst_portid; 1563 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1564 } else { 1565 nladdr->nl_pid = nlk->portid; 1566 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1567 } 1568 return 0; 1569 } 1570 1571 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1572 { 1573 struct sock *sock; 1574 struct netlink_sock *nlk; 1575 1576 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1577 if (!sock) 1578 return ERR_PTR(-ECONNREFUSED); 1579 1580 /* Don't bother queuing skb if kernel socket has no input function */ 1581 nlk = nlk_sk(sock); 1582 if (sock->sk_state == NETLINK_CONNECTED && 1583 nlk->dst_portid != nlk_sk(ssk)->portid) { 1584 sock_put(sock); 1585 return ERR_PTR(-ECONNREFUSED); 1586 } 1587 return sock; 1588 } 1589 1590 struct sock *netlink_getsockbyfilp(struct file *filp) 1591 { 1592 struct inode *inode = file_inode(filp); 1593 struct sock *sock; 1594 1595 if (!S_ISSOCK(inode->i_mode)) 1596 return ERR_PTR(-ENOTSOCK); 1597 1598 sock = SOCKET_I(inode)->sk; 1599 if (sock->sk_family != AF_NETLINK) 1600 return ERR_PTR(-EINVAL); 1601 1602 sock_hold(sock); 1603 return sock; 1604 } 1605 1606 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1607 int broadcast) 1608 { 1609 struct sk_buff *skb; 1610 void *data; 1611 1612 if (size <= NLMSG_GOODSIZE || broadcast) 1613 return alloc_skb(size, GFP_KERNEL); 1614 1615 size = SKB_DATA_ALIGN(size) + 1616 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1617 1618 data = vmalloc(size); 1619 if (data == NULL) 1620 return NULL; 1621 1622 skb = build_skb(data, size); 1623 if (skb == NULL) 1624 vfree(data); 1625 else { 1626 skb->head_frag = 0; 1627 skb->destructor = netlink_skb_destructor; 1628 } 1629 1630 return skb; 1631 } 1632 1633 /* 1634 * Attach a skb to a netlink socket. 1635 * The caller must hold a reference to the destination socket. On error, the 1636 * reference is dropped. The skb is not send to the destination, just all 1637 * all error checks are performed and memory in the queue is reserved. 1638 * Return values: 1639 * < 0: error. skb freed, reference to sock dropped. 1640 * 0: continue 1641 * 1: repeat lookup - reference dropped while waiting for socket memory. 1642 */ 1643 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1644 long *timeo, struct sock *ssk) 1645 { 1646 struct netlink_sock *nlk; 1647 1648 nlk = nlk_sk(sk); 1649 1650 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1651 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1652 !netlink_skb_is_mmaped(skb)) { 1653 DECLARE_WAITQUEUE(wait, current); 1654 if (!*timeo) { 1655 if (!ssk || netlink_is_kernel(ssk)) 1656 netlink_overrun(sk); 1657 sock_put(sk); 1658 kfree_skb(skb); 1659 return -EAGAIN; 1660 } 1661 1662 __set_current_state(TASK_INTERRUPTIBLE); 1663 add_wait_queue(&nlk->wait, &wait); 1664 1665 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1666 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1667 !sock_flag(sk, SOCK_DEAD)) 1668 *timeo = schedule_timeout(*timeo); 1669 1670 __set_current_state(TASK_RUNNING); 1671 remove_wait_queue(&nlk->wait, &wait); 1672 sock_put(sk); 1673 1674 if (signal_pending(current)) { 1675 kfree_skb(skb); 1676 return sock_intr_errno(*timeo); 1677 } 1678 return 1; 1679 } 1680 netlink_skb_set_owner_r(skb, sk); 1681 return 0; 1682 } 1683 1684 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1685 { 1686 int len = skb->len; 1687 1688 netlink_deliver_tap(skb); 1689 1690 #ifdef CONFIG_NETLINK_MMAP 1691 if (netlink_skb_is_mmaped(skb)) 1692 netlink_queue_mmaped_skb(sk, skb); 1693 else if (netlink_rx_is_mmaped(sk)) 1694 netlink_ring_set_copied(sk, skb); 1695 else 1696 #endif /* CONFIG_NETLINK_MMAP */ 1697 skb_queue_tail(&sk->sk_receive_queue, skb); 1698 sk->sk_data_ready(sk); 1699 return len; 1700 } 1701 1702 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1703 { 1704 int len = __netlink_sendskb(sk, skb); 1705 1706 sock_put(sk); 1707 return len; 1708 } 1709 1710 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1711 { 1712 kfree_skb(skb); 1713 sock_put(sk); 1714 } 1715 1716 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1717 { 1718 int delta; 1719 1720 WARN_ON(skb->sk != NULL); 1721 if (netlink_skb_is_mmaped(skb)) 1722 return skb; 1723 1724 delta = skb->end - skb->tail; 1725 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1726 return skb; 1727 1728 if (skb_shared(skb)) { 1729 struct sk_buff *nskb = skb_clone(skb, allocation); 1730 if (!nskb) 1731 return skb; 1732 consume_skb(skb); 1733 skb = nskb; 1734 } 1735 1736 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1737 skb->truesize -= delta; 1738 1739 return skb; 1740 } 1741 1742 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1743 struct sock *ssk) 1744 { 1745 int ret; 1746 struct netlink_sock *nlk = nlk_sk(sk); 1747 1748 ret = -ECONNREFUSED; 1749 if (nlk->netlink_rcv != NULL) { 1750 ret = skb->len; 1751 netlink_skb_set_owner_r(skb, sk); 1752 NETLINK_CB(skb).sk = ssk; 1753 netlink_deliver_tap_kernel(sk, ssk, skb); 1754 nlk->netlink_rcv(skb); 1755 consume_skb(skb); 1756 } else { 1757 kfree_skb(skb); 1758 } 1759 sock_put(sk); 1760 return ret; 1761 } 1762 1763 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1764 u32 portid, int nonblock) 1765 { 1766 struct sock *sk; 1767 int err; 1768 long timeo; 1769 1770 skb = netlink_trim(skb, gfp_any()); 1771 1772 timeo = sock_sndtimeo(ssk, nonblock); 1773 retry: 1774 sk = netlink_getsockbyportid(ssk, portid); 1775 if (IS_ERR(sk)) { 1776 kfree_skb(skb); 1777 return PTR_ERR(sk); 1778 } 1779 if (netlink_is_kernel(sk)) 1780 return netlink_unicast_kernel(sk, skb, ssk); 1781 1782 if (sk_filter(sk, skb)) { 1783 err = skb->len; 1784 kfree_skb(skb); 1785 sock_put(sk); 1786 return err; 1787 } 1788 1789 err = netlink_attachskb(sk, skb, &timeo, ssk); 1790 if (err == 1) 1791 goto retry; 1792 if (err) 1793 return err; 1794 1795 return netlink_sendskb(sk, skb); 1796 } 1797 EXPORT_SYMBOL(netlink_unicast); 1798 1799 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1800 u32 dst_portid, gfp_t gfp_mask) 1801 { 1802 #ifdef CONFIG_NETLINK_MMAP 1803 struct sock *sk = NULL; 1804 struct sk_buff *skb; 1805 struct netlink_ring *ring; 1806 struct nl_mmap_hdr *hdr; 1807 unsigned int maxlen; 1808 1809 sk = netlink_getsockbyportid(ssk, dst_portid); 1810 if (IS_ERR(sk)) 1811 goto out; 1812 1813 ring = &nlk_sk(sk)->rx_ring; 1814 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1815 if (ring->pg_vec == NULL) 1816 goto out_put; 1817 1818 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1819 goto out_put; 1820 1821 skb = alloc_skb_head(gfp_mask); 1822 if (skb == NULL) 1823 goto err1; 1824 1825 spin_lock_bh(&sk->sk_receive_queue.lock); 1826 /* check again under lock */ 1827 if (ring->pg_vec == NULL) 1828 goto out_free; 1829 1830 /* check again under lock */ 1831 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1832 if (maxlen < size) 1833 goto out_free; 1834 1835 netlink_forward_ring(ring); 1836 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1837 if (hdr == NULL) 1838 goto err2; 1839 netlink_ring_setup_skb(skb, sk, ring, hdr); 1840 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1841 atomic_inc(&ring->pending); 1842 netlink_increment_head(ring); 1843 1844 spin_unlock_bh(&sk->sk_receive_queue.lock); 1845 return skb; 1846 1847 err2: 1848 kfree_skb(skb); 1849 spin_unlock_bh(&sk->sk_receive_queue.lock); 1850 netlink_overrun(sk); 1851 err1: 1852 sock_put(sk); 1853 return NULL; 1854 1855 out_free: 1856 kfree_skb(skb); 1857 spin_unlock_bh(&sk->sk_receive_queue.lock); 1858 out_put: 1859 sock_put(sk); 1860 out: 1861 #endif 1862 return alloc_skb(size, gfp_mask); 1863 } 1864 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1865 1866 int netlink_has_listeners(struct sock *sk, unsigned int group) 1867 { 1868 int res = 0; 1869 struct listeners *listeners; 1870 1871 BUG_ON(!netlink_is_kernel(sk)); 1872 1873 rcu_read_lock(); 1874 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1875 1876 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1877 res = test_bit(group - 1, listeners->masks); 1878 1879 rcu_read_unlock(); 1880 1881 return res; 1882 } 1883 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1884 1885 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1886 { 1887 struct netlink_sock *nlk = nlk_sk(sk); 1888 1889 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1890 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1891 netlink_skb_set_owner_r(skb, sk); 1892 __netlink_sendskb(sk, skb); 1893 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1894 } 1895 return -1; 1896 } 1897 1898 struct netlink_broadcast_data { 1899 struct sock *exclude_sk; 1900 struct net *net; 1901 u32 portid; 1902 u32 group; 1903 int failure; 1904 int delivery_failure; 1905 int congested; 1906 int delivered; 1907 gfp_t allocation; 1908 struct sk_buff *skb, *skb2; 1909 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1910 void *tx_data; 1911 }; 1912 1913 static void do_one_broadcast(struct sock *sk, 1914 struct netlink_broadcast_data *p) 1915 { 1916 struct netlink_sock *nlk = nlk_sk(sk); 1917 int val; 1918 1919 if (p->exclude_sk == sk) 1920 return; 1921 1922 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1923 !test_bit(p->group - 1, nlk->groups)) 1924 return; 1925 1926 if (!net_eq(sock_net(sk), p->net)) 1927 return; 1928 1929 if (p->failure) { 1930 netlink_overrun(sk); 1931 return; 1932 } 1933 1934 sock_hold(sk); 1935 if (p->skb2 == NULL) { 1936 if (skb_shared(p->skb)) { 1937 p->skb2 = skb_clone(p->skb, p->allocation); 1938 } else { 1939 p->skb2 = skb_get(p->skb); 1940 /* 1941 * skb ownership may have been set when 1942 * delivered to a previous socket. 1943 */ 1944 skb_orphan(p->skb2); 1945 } 1946 } 1947 if (p->skb2 == NULL) { 1948 netlink_overrun(sk); 1949 /* Clone failed. Notify ALL listeners. */ 1950 p->failure = 1; 1951 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1952 p->delivery_failure = 1; 1953 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1954 kfree_skb(p->skb2); 1955 p->skb2 = NULL; 1956 } else if (sk_filter(sk, p->skb2)) { 1957 kfree_skb(p->skb2); 1958 p->skb2 = NULL; 1959 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 1960 netlink_overrun(sk); 1961 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1962 p->delivery_failure = 1; 1963 } else { 1964 p->congested |= val; 1965 p->delivered = 1; 1966 p->skb2 = NULL; 1967 } 1968 sock_put(sk); 1969 } 1970 1971 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1972 u32 group, gfp_t allocation, 1973 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1974 void *filter_data) 1975 { 1976 struct net *net = sock_net(ssk); 1977 struct netlink_broadcast_data info; 1978 struct sock *sk; 1979 1980 skb = netlink_trim(skb, allocation); 1981 1982 info.exclude_sk = ssk; 1983 info.net = net; 1984 info.portid = portid; 1985 info.group = group; 1986 info.failure = 0; 1987 info.delivery_failure = 0; 1988 info.congested = 0; 1989 info.delivered = 0; 1990 info.allocation = allocation; 1991 info.skb = skb; 1992 info.skb2 = NULL; 1993 info.tx_filter = filter; 1994 info.tx_data = filter_data; 1995 1996 /* While we sleep in clone, do not allow to change socket list */ 1997 1998 netlink_lock_table(); 1999 2000 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2001 do_one_broadcast(sk, &info); 2002 2003 consume_skb(skb); 2004 2005 netlink_unlock_table(); 2006 2007 if (info.delivery_failure) { 2008 kfree_skb(info.skb2); 2009 return -ENOBUFS; 2010 } 2011 consume_skb(info.skb2); 2012 2013 if (info.delivered) { 2014 if (info.congested && (allocation & __GFP_WAIT)) 2015 yield(); 2016 return 0; 2017 } 2018 return -ESRCH; 2019 } 2020 EXPORT_SYMBOL(netlink_broadcast_filtered); 2021 2022 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2023 u32 group, gfp_t allocation) 2024 { 2025 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2026 NULL, NULL); 2027 } 2028 EXPORT_SYMBOL(netlink_broadcast); 2029 2030 struct netlink_set_err_data { 2031 struct sock *exclude_sk; 2032 u32 portid; 2033 u32 group; 2034 int code; 2035 }; 2036 2037 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2038 { 2039 struct netlink_sock *nlk = nlk_sk(sk); 2040 int ret = 0; 2041 2042 if (sk == p->exclude_sk) 2043 goto out; 2044 2045 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2046 goto out; 2047 2048 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2049 !test_bit(p->group - 1, nlk->groups)) 2050 goto out; 2051 2052 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2053 ret = 1; 2054 goto out; 2055 } 2056 2057 sk->sk_err = p->code; 2058 sk->sk_error_report(sk); 2059 out: 2060 return ret; 2061 } 2062 2063 /** 2064 * netlink_set_err - report error to broadcast listeners 2065 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2066 * @portid: the PORTID of a process that we want to skip (if any) 2067 * @group: the broadcast group that will notice the error 2068 * @code: error code, must be negative (as usual in kernelspace) 2069 * 2070 * This function returns the number of broadcast listeners that have set the 2071 * NETLINK_RECV_NO_ENOBUFS socket option. 2072 */ 2073 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2074 { 2075 struct netlink_set_err_data info; 2076 struct sock *sk; 2077 int ret = 0; 2078 2079 info.exclude_sk = ssk; 2080 info.portid = portid; 2081 info.group = group; 2082 /* sk->sk_err wants a positive error value */ 2083 info.code = -code; 2084 2085 read_lock(&nl_table_lock); 2086 2087 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2088 ret += do_one_set_err(sk, &info); 2089 2090 read_unlock(&nl_table_lock); 2091 return ret; 2092 } 2093 EXPORT_SYMBOL(netlink_set_err); 2094 2095 /* must be called with netlink table grabbed */ 2096 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2097 unsigned int group, 2098 int is_new) 2099 { 2100 int old, new = !!is_new, subscriptions; 2101 2102 old = test_bit(group - 1, nlk->groups); 2103 subscriptions = nlk->subscriptions - old + new; 2104 if (new) 2105 __set_bit(group - 1, nlk->groups); 2106 else 2107 __clear_bit(group - 1, nlk->groups); 2108 netlink_update_subscriptions(&nlk->sk, subscriptions); 2109 netlink_update_listeners(&nlk->sk); 2110 } 2111 2112 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2113 char __user *optval, unsigned int optlen) 2114 { 2115 struct sock *sk = sock->sk; 2116 struct netlink_sock *nlk = nlk_sk(sk); 2117 unsigned int val = 0; 2118 int err; 2119 2120 if (level != SOL_NETLINK) 2121 return -ENOPROTOOPT; 2122 2123 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2124 optlen >= sizeof(int) && 2125 get_user(val, (unsigned int __user *)optval)) 2126 return -EFAULT; 2127 2128 switch (optname) { 2129 case NETLINK_PKTINFO: 2130 if (val) 2131 nlk->flags |= NETLINK_RECV_PKTINFO; 2132 else 2133 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2134 err = 0; 2135 break; 2136 case NETLINK_ADD_MEMBERSHIP: 2137 case NETLINK_DROP_MEMBERSHIP: { 2138 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2139 return -EPERM; 2140 err = netlink_realloc_groups(sk); 2141 if (err) 2142 return err; 2143 if (!val || val - 1 >= nlk->ngroups) 2144 return -EINVAL; 2145 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2146 err = nlk->netlink_bind(val); 2147 if (err) 2148 return err; 2149 } 2150 netlink_table_grab(); 2151 netlink_update_socket_mc(nlk, val, 2152 optname == NETLINK_ADD_MEMBERSHIP); 2153 netlink_table_ungrab(); 2154 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2155 nlk->netlink_unbind(val); 2156 2157 err = 0; 2158 break; 2159 } 2160 case NETLINK_BROADCAST_ERROR: 2161 if (val) 2162 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2163 else 2164 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2165 err = 0; 2166 break; 2167 case NETLINK_NO_ENOBUFS: 2168 if (val) { 2169 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2170 clear_bit(NETLINK_CONGESTED, &nlk->state); 2171 wake_up_interruptible(&nlk->wait); 2172 } else { 2173 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2174 } 2175 err = 0; 2176 break; 2177 #ifdef CONFIG_NETLINK_MMAP 2178 case NETLINK_RX_RING: 2179 case NETLINK_TX_RING: { 2180 struct nl_mmap_req req; 2181 2182 /* Rings might consume more memory than queue limits, require 2183 * CAP_NET_ADMIN. 2184 */ 2185 if (!capable(CAP_NET_ADMIN)) 2186 return -EPERM; 2187 if (optlen < sizeof(req)) 2188 return -EINVAL; 2189 if (copy_from_user(&req, optval, sizeof(req))) 2190 return -EFAULT; 2191 err = netlink_set_ring(sk, &req, false, 2192 optname == NETLINK_TX_RING); 2193 break; 2194 } 2195 #endif /* CONFIG_NETLINK_MMAP */ 2196 default: 2197 err = -ENOPROTOOPT; 2198 } 2199 return err; 2200 } 2201 2202 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2203 char __user *optval, int __user *optlen) 2204 { 2205 struct sock *sk = sock->sk; 2206 struct netlink_sock *nlk = nlk_sk(sk); 2207 int len, val, err; 2208 2209 if (level != SOL_NETLINK) 2210 return -ENOPROTOOPT; 2211 2212 if (get_user(len, optlen)) 2213 return -EFAULT; 2214 if (len < 0) 2215 return -EINVAL; 2216 2217 switch (optname) { 2218 case NETLINK_PKTINFO: 2219 if (len < sizeof(int)) 2220 return -EINVAL; 2221 len = sizeof(int); 2222 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2223 if (put_user(len, optlen) || 2224 put_user(val, optval)) 2225 return -EFAULT; 2226 err = 0; 2227 break; 2228 case NETLINK_BROADCAST_ERROR: 2229 if (len < sizeof(int)) 2230 return -EINVAL; 2231 len = sizeof(int); 2232 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2233 if (put_user(len, optlen) || 2234 put_user(val, optval)) 2235 return -EFAULT; 2236 err = 0; 2237 break; 2238 case NETLINK_NO_ENOBUFS: 2239 if (len < sizeof(int)) 2240 return -EINVAL; 2241 len = sizeof(int); 2242 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2243 if (put_user(len, optlen) || 2244 put_user(val, optval)) 2245 return -EFAULT; 2246 err = 0; 2247 break; 2248 default: 2249 err = -ENOPROTOOPT; 2250 } 2251 return err; 2252 } 2253 2254 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2255 { 2256 struct nl_pktinfo info; 2257 2258 info.group = NETLINK_CB(skb).dst_group; 2259 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2260 } 2261 2262 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, 2263 struct msghdr *msg, size_t len) 2264 { 2265 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2266 struct sock *sk = sock->sk; 2267 struct netlink_sock *nlk = nlk_sk(sk); 2268 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2269 u32 dst_portid; 2270 u32 dst_group; 2271 struct sk_buff *skb; 2272 int err; 2273 struct scm_cookie scm; 2274 u32 netlink_skb_flags = 0; 2275 2276 if (msg->msg_flags&MSG_OOB) 2277 return -EOPNOTSUPP; 2278 2279 if (NULL == siocb->scm) 2280 siocb->scm = &scm; 2281 2282 err = scm_send(sock, msg, siocb->scm, true); 2283 if (err < 0) 2284 return err; 2285 2286 if (msg->msg_namelen) { 2287 err = -EINVAL; 2288 if (addr->nl_family != AF_NETLINK) 2289 goto out; 2290 dst_portid = addr->nl_pid; 2291 dst_group = ffs(addr->nl_groups); 2292 err = -EPERM; 2293 if ((dst_group || dst_portid) && 2294 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2295 goto out; 2296 netlink_skb_flags |= NETLINK_SKB_DST; 2297 } else { 2298 dst_portid = nlk->dst_portid; 2299 dst_group = nlk->dst_group; 2300 } 2301 2302 if (!nlk->portid) { 2303 err = netlink_autobind(sock); 2304 if (err) 2305 goto out; 2306 } 2307 2308 if (netlink_tx_is_mmaped(sk) && 2309 msg->msg_iov->iov_base == NULL) { 2310 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2311 siocb); 2312 goto out; 2313 } 2314 2315 err = -EMSGSIZE; 2316 if (len > sk->sk_sndbuf - 32) 2317 goto out; 2318 err = -ENOBUFS; 2319 skb = netlink_alloc_large_skb(len, dst_group); 2320 if (skb == NULL) 2321 goto out; 2322 2323 NETLINK_CB(skb).portid = nlk->portid; 2324 NETLINK_CB(skb).dst_group = dst_group; 2325 NETLINK_CB(skb).creds = siocb->scm->creds; 2326 NETLINK_CB(skb).flags = netlink_skb_flags; 2327 2328 err = -EFAULT; 2329 if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) { 2330 kfree_skb(skb); 2331 goto out; 2332 } 2333 2334 err = security_netlink_send(sk, skb); 2335 if (err) { 2336 kfree_skb(skb); 2337 goto out; 2338 } 2339 2340 if (dst_group) { 2341 atomic_inc(&skb->users); 2342 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2343 } 2344 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2345 2346 out: 2347 scm_destroy(siocb->scm); 2348 return err; 2349 } 2350 2351 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, 2352 struct msghdr *msg, size_t len, 2353 int flags) 2354 { 2355 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2356 struct scm_cookie scm; 2357 struct sock *sk = sock->sk; 2358 struct netlink_sock *nlk = nlk_sk(sk); 2359 int noblock = flags&MSG_DONTWAIT; 2360 size_t copied; 2361 struct sk_buff *skb, *data_skb; 2362 int err, ret; 2363 2364 if (flags&MSG_OOB) 2365 return -EOPNOTSUPP; 2366 2367 copied = 0; 2368 2369 skb = skb_recv_datagram(sk, flags, noblock, &err); 2370 if (skb == NULL) 2371 goto out; 2372 2373 data_skb = skb; 2374 2375 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2376 if (unlikely(skb_shinfo(skb)->frag_list)) { 2377 /* 2378 * If this skb has a frag_list, then here that means that we 2379 * will have to use the frag_list skb's data for compat tasks 2380 * and the regular skb's data for normal (non-compat) tasks. 2381 * 2382 * If we need to send the compat skb, assign it to the 2383 * 'data_skb' variable so that it will be used below for data 2384 * copying. We keep 'skb' for everything else, including 2385 * freeing both later. 2386 */ 2387 if (flags & MSG_CMSG_COMPAT) 2388 data_skb = skb_shinfo(skb)->frag_list; 2389 } 2390 #endif 2391 2392 /* Record the max length of recvmsg() calls for future allocations */ 2393 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2394 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2395 16384); 2396 2397 copied = data_skb->len; 2398 if (len < copied) { 2399 msg->msg_flags |= MSG_TRUNC; 2400 copied = len; 2401 } 2402 2403 skb_reset_transport_header(data_skb); 2404 err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied); 2405 2406 if (msg->msg_name) { 2407 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2408 addr->nl_family = AF_NETLINK; 2409 addr->nl_pad = 0; 2410 addr->nl_pid = NETLINK_CB(skb).portid; 2411 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2412 msg->msg_namelen = sizeof(*addr); 2413 } 2414 2415 if (nlk->flags & NETLINK_RECV_PKTINFO) 2416 netlink_cmsg_recv_pktinfo(msg, skb); 2417 2418 if (NULL == siocb->scm) { 2419 memset(&scm, 0, sizeof(scm)); 2420 siocb->scm = &scm; 2421 } 2422 siocb->scm->creds = *NETLINK_CREDS(skb); 2423 if (flags & MSG_TRUNC) 2424 copied = data_skb->len; 2425 2426 skb_free_datagram(sk, skb); 2427 2428 if (nlk->cb_running && 2429 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2430 ret = netlink_dump(sk); 2431 if (ret) { 2432 sk->sk_err = -ret; 2433 sk->sk_error_report(sk); 2434 } 2435 } 2436 2437 scm_recv(sock, msg, siocb->scm, flags); 2438 out: 2439 netlink_rcv_wake(sk); 2440 return err ? : copied; 2441 } 2442 2443 static void netlink_data_ready(struct sock *sk) 2444 { 2445 BUG(); 2446 } 2447 2448 /* 2449 * We export these functions to other modules. They provide a 2450 * complete set of kernel non-blocking support for message 2451 * queueing. 2452 */ 2453 2454 struct sock * 2455 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2456 struct netlink_kernel_cfg *cfg) 2457 { 2458 struct socket *sock; 2459 struct sock *sk; 2460 struct netlink_sock *nlk; 2461 struct listeners *listeners = NULL; 2462 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2463 unsigned int groups; 2464 2465 BUG_ON(!nl_table); 2466 2467 if (unit < 0 || unit >= MAX_LINKS) 2468 return NULL; 2469 2470 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2471 return NULL; 2472 2473 /* 2474 * We have to just have a reference on the net from sk, but don't 2475 * get_net it. Besides, we cannot get and then put the net here. 2476 * So we create one inside init_net and the move it to net. 2477 */ 2478 2479 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2480 goto out_sock_release_nosk; 2481 2482 sk = sock->sk; 2483 sk_change_net(sk, net); 2484 2485 if (!cfg || cfg->groups < 32) 2486 groups = 32; 2487 else 2488 groups = cfg->groups; 2489 2490 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2491 if (!listeners) 2492 goto out_sock_release; 2493 2494 sk->sk_data_ready = netlink_data_ready; 2495 if (cfg && cfg->input) 2496 nlk_sk(sk)->netlink_rcv = cfg->input; 2497 2498 if (netlink_insert(sk, net, 0)) 2499 goto out_sock_release; 2500 2501 nlk = nlk_sk(sk); 2502 nlk->flags |= NETLINK_KERNEL_SOCKET; 2503 2504 netlink_table_grab(); 2505 if (!nl_table[unit].registered) { 2506 nl_table[unit].groups = groups; 2507 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2508 nl_table[unit].cb_mutex = cb_mutex; 2509 nl_table[unit].module = module; 2510 if (cfg) { 2511 nl_table[unit].bind = cfg->bind; 2512 nl_table[unit].flags = cfg->flags; 2513 if (cfg->compare) 2514 nl_table[unit].compare = cfg->compare; 2515 } 2516 nl_table[unit].registered = 1; 2517 } else { 2518 kfree(listeners); 2519 nl_table[unit].registered++; 2520 } 2521 netlink_table_ungrab(); 2522 return sk; 2523 2524 out_sock_release: 2525 kfree(listeners); 2526 netlink_kernel_release(sk); 2527 return NULL; 2528 2529 out_sock_release_nosk: 2530 sock_release(sock); 2531 return NULL; 2532 } 2533 EXPORT_SYMBOL(__netlink_kernel_create); 2534 2535 void 2536 netlink_kernel_release(struct sock *sk) 2537 { 2538 sk_release_kernel(sk); 2539 } 2540 EXPORT_SYMBOL(netlink_kernel_release); 2541 2542 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2543 { 2544 struct listeners *new, *old; 2545 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2546 2547 if (groups < 32) 2548 groups = 32; 2549 2550 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2551 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2552 if (!new) 2553 return -ENOMEM; 2554 old = nl_deref_protected(tbl->listeners); 2555 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2556 rcu_assign_pointer(tbl->listeners, new); 2557 2558 kfree_rcu(old, rcu); 2559 } 2560 tbl->groups = groups; 2561 2562 return 0; 2563 } 2564 2565 /** 2566 * netlink_change_ngroups - change number of multicast groups 2567 * 2568 * This changes the number of multicast groups that are available 2569 * on a certain netlink family. Note that it is not possible to 2570 * change the number of groups to below 32. Also note that it does 2571 * not implicitly call netlink_clear_multicast_users() when the 2572 * number of groups is reduced. 2573 * 2574 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2575 * @groups: The new number of groups. 2576 */ 2577 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2578 { 2579 int err; 2580 2581 netlink_table_grab(); 2582 err = __netlink_change_ngroups(sk, groups); 2583 netlink_table_ungrab(); 2584 2585 return err; 2586 } 2587 2588 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2589 { 2590 struct sock *sk; 2591 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2592 2593 sk_for_each_bound(sk, &tbl->mc_list) 2594 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2595 } 2596 2597 struct nlmsghdr * 2598 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2599 { 2600 struct nlmsghdr *nlh; 2601 int size = nlmsg_msg_size(len); 2602 2603 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2604 nlh->nlmsg_type = type; 2605 nlh->nlmsg_len = size; 2606 nlh->nlmsg_flags = flags; 2607 nlh->nlmsg_pid = portid; 2608 nlh->nlmsg_seq = seq; 2609 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2610 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2611 return nlh; 2612 } 2613 EXPORT_SYMBOL(__nlmsg_put); 2614 2615 /* 2616 * It looks a bit ugly. 2617 * It would be better to create kernel thread. 2618 */ 2619 2620 static int netlink_dump(struct sock *sk) 2621 { 2622 struct netlink_sock *nlk = nlk_sk(sk); 2623 struct netlink_callback *cb; 2624 struct sk_buff *skb = NULL; 2625 struct nlmsghdr *nlh; 2626 int len, err = -ENOBUFS; 2627 int alloc_size; 2628 2629 mutex_lock(nlk->cb_mutex); 2630 if (!nlk->cb_running) { 2631 err = -EINVAL; 2632 goto errout_skb; 2633 } 2634 2635 cb = &nlk->cb; 2636 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2637 2638 if (!netlink_rx_is_mmaped(sk) && 2639 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2640 goto errout_skb; 2641 2642 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2643 * required, but it makes sense to _attempt_ a 16K bytes allocation 2644 * to reduce number of system calls on dump operations, if user 2645 * ever provided a big enough buffer. 2646 */ 2647 if (alloc_size < nlk->max_recvmsg_len) { 2648 skb = netlink_alloc_skb(sk, 2649 nlk->max_recvmsg_len, 2650 nlk->portid, 2651 GFP_KERNEL | 2652 __GFP_NOWARN | 2653 __GFP_NORETRY); 2654 /* available room should be exact amount to avoid MSG_TRUNC */ 2655 if (skb) 2656 skb_reserve(skb, skb_tailroom(skb) - 2657 nlk->max_recvmsg_len); 2658 } 2659 if (!skb) 2660 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2661 GFP_KERNEL); 2662 if (!skb) 2663 goto errout_skb; 2664 netlink_skb_set_owner_r(skb, sk); 2665 2666 len = cb->dump(skb, cb); 2667 2668 if (len > 0) { 2669 mutex_unlock(nlk->cb_mutex); 2670 2671 if (sk_filter(sk, skb)) 2672 kfree_skb(skb); 2673 else 2674 __netlink_sendskb(sk, skb); 2675 return 0; 2676 } 2677 2678 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2679 if (!nlh) 2680 goto errout_skb; 2681 2682 nl_dump_check_consistent(cb, nlh); 2683 2684 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2685 2686 if (sk_filter(sk, skb)) 2687 kfree_skb(skb); 2688 else 2689 __netlink_sendskb(sk, skb); 2690 2691 if (cb->done) 2692 cb->done(cb); 2693 2694 nlk->cb_running = false; 2695 mutex_unlock(nlk->cb_mutex); 2696 module_put(cb->module); 2697 consume_skb(cb->skb); 2698 return 0; 2699 2700 errout_skb: 2701 mutex_unlock(nlk->cb_mutex); 2702 kfree_skb(skb); 2703 return err; 2704 } 2705 2706 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2707 const struct nlmsghdr *nlh, 2708 struct netlink_dump_control *control) 2709 { 2710 struct netlink_callback *cb; 2711 struct sock *sk; 2712 struct netlink_sock *nlk; 2713 int ret; 2714 2715 /* Memory mapped dump requests need to be copied to avoid looping 2716 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2717 * a reference to the skb. 2718 */ 2719 if (netlink_skb_is_mmaped(skb)) { 2720 skb = skb_copy(skb, GFP_KERNEL); 2721 if (skb == NULL) 2722 return -ENOBUFS; 2723 } else 2724 atomic_inc(&skb->users); 2725 2726 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2727 if (sk == NULL) { 2728 ret = -ECONNREFUSED; 2729 goto error_free; 2730 } 2731 2732 nlk = nlk_sk(sk); 2733 mutex_lock(nlk->cb_mutex); 2734 /* A dump is in progress... */ 2735 if (nlk->cb_running) { 2736 ret = -EBUSY; 2737 goto error_unlock; 2738 } 2739 /* add reference of module which cb->dump belongs to */ 2740 if (!try_module_get(control->module)) { 2741 ret = -EPROTONOSUPPORT; 2742 goto error_unlock; 2743 } 2744 2745 cb = &nlk->cb; 2746 memset(cb, 0, sizeof(*cb)); 2747 cb->dump = control->dump; 2748 cb->done = control->done; 2749 cb->nlh = nlh; 2750 cb->data = control->data; 2751 cb->module = control->module; 2752 cb->min_dump_alloc = control->min_dump_alloc; 2753 cb->skb = skb; 2754 2755 nlk->cb_running = true; 2756 2757 mutex_unlock(nlk->cb_mutex); 2758 2759 ret = netlink_dump(sk); 2760 sock_put(sk); 2761 2762 if (ret) 2763 return ret; 2764 2765 /* We successfully started a dump, by returning -EINTR we 2766 * signal not to send ACK even if it was requested. 2767 */ 2768 return -EINTR; 2769 2770 error_unlock: 2771 sock_put(sk); 2772 mutex_unlock(nlk->cb_mutex); 2773 error_free: 2774 kfree_skb(skb); 2775 return ret; 2776 } 2777 EXPORT_SYMBOL(__netlink_dump_start); 2778 2779 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2780 { 2781 struct sk_buff *skb; 2782 struct nlmsghdr *rep; 2783 struct nlmsgerr *errmsg; 2784 size_t payload = sizeof(*errmsg); 2785 2786 /* error messages get the original request appened */ 2787 if (err) 2788 payload += nlmsg_len(nlh); 2789 2790 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2791 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2792 if (!skb) { 2793 struct sock *sk; 2794 2795 sk = netlink_lookup(sock_net(in_skb->sk), 2796 in_skb->sk->sk_protocol, 2797 NETLINK_CB(in_skb).portid); 2798 if (sk) { 2799 sk->sk_err = ENOBUFS; 2800 sk->sk_error_report(sk); 2801 sock_put(sk); 2802 } 2803 return; 2804 } 2805 2806 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2807 NLMSG_ERROR, payload, 0); 2808 errmsg = nlmsg_data(rep); 2809 errmsg->error = err; 2810 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2811 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2812 } 2813 EXPORT_SYMBOL(netlink_ack); 2814 2815 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2816 struct nlmsghdr *)) 2817 { 2818 struct nlmsghdr *nlh; 2819 int err; 2820 2821 while (skb->len >= nlmsg_total_size(0)) { 2822 int msglen; 2823 2824 nlh = nlmsg_hdr(skb); 2825 err = 0; 2826 2827 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2828 return 0; 2829 2830 /* Only requests are handled by the kernel */ 2831 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2832 goto ack; 2833 2834 /* Skip control messages */ 2835 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2836 goto ack; 2837 2838 err = cb(skb, nlh); 2839 if (err == -EINTR) 2840 goto skip; 2841 2842 ack: 2843 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2844 netlink_ack(skb, nlh, err); 2845 2846 skip: 2847 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2848 if (msglen > skb->len) 2849 msglen = skb->len; 2850 skb_pull(skb, msglen); 2851 } 2852 2853 return 0; 2854 } 2855 EXPORT_SYMBOL(netlink_rcv_skb); 2856 2857 /** 2858 * nlmsg_notify - send a notification netlink message 2859 * @sk: netlink socket to use 2860 * @skb: notification message 2861 * @portid: destination netlink portid for reports or 0 2862 * @group: destination multicast group or 0 2863 * @report: 1 to report back, 0 to disable 2864 * @flags: allocation flags 2865 */ 2866 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2867 unsigned int group, int report, gfp_t flags) 2868 { 2869 int err = 0; 2870 2871 if (group) { 2872 int exclude_portid = 0; 2873 2874 if (report) { 2875 atomic_inc(&skb->users); 2876 exclude_portid = portid; 2877 } 2878 2879 /* errors reported via destination sk->sk_err, but propagate 2880 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2881 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2882 } 2883 2884 if (report) { 2885 int err2; 2886 2887 err2 = nlmsg_unicast(sk, skb, portid); 2888 if (!err || err == -ESRCH) 2889 err = err2; 2890 } 2891 2892 return err; 2893 } 2894 EXPORT_SYMBOL(nlmsg_notify); 2895 2896 #ifdef CONFIG_PROC_FS 2897 struct nl_seq_iter { 2898 struct seq_net_private p; 2899 int link; 2900 int hash_idx; 2901 }; 2902 2903 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) 2904 { 2905 struct nl_seq_iter *iter = seq->private; 2906 int i, j; 2907 struct netlink_sock *nlk; 2908 struct sock *s; 2909 loff_t off = 0; 2910 2911 for (i = 0; i < MAX_LINKS; i++) { 2912 struct rhashtable *ht = &nl_table[i].hash; 2913 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2914 2915 for (j = 0; j < tbl->size; j++) { 2916 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) { 2917 s = (struct sock *)nlk; 2918 2919 if (sock_net(s) != seq_file_net(seq)) 2920 continue; 2921 if (off == pos) { 2922 iter->link = i; 2923 iter->hash_idx = j; 2924 return s; 2925 } 2926 ++off; 2927 } 2928 } 2929 } 2930 return NULL; 2931 } 2932 2933 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) 2934 __acquires(nl_table_lock) __acquires(RCU) 2935 { 2936 read_lock(&nl_table_lock); 2937 rcu_read_lock(); 2938 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2939 } 2940 2941 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2942 { 2943 struct rhashtable *ht; 2944 struct netlink_sock *nlk; 2945 struct nl_seq_iter *iter; 2946 struct net *net; 2947 int i, j; 2948 2949 ++*pos; 2950 2951 if (v == SEQ_START_TOKEN) 2952 return netlink_seq_socket_idx(seq, 0); 2953 2954 net = seq_file_net(seq); 2955 iter = seq->private; 2956 nlk = v; 2957 2958 i = iter->link; 2959 ht = &nl_table[i].hash; 2960 rht_for_each_entry(nlk, nlk->node.next, ht, node) 2961 if (net_eq(sock_net((struct sock *)nlk), net)) 2962 return nlk; 2963 2964 j = iter->hash_idx + 1; 2965 2966 do { 2967 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2968 2969 for (; j < tbl->size; j++) { 2970 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) { 2971 if (net_eq(sock_net((struct sock *)nlk), net)) { 2972 iter->link = i; 2973 iter->hash_idx = j; 2974 return nlk; 2975 } 2976 } 2977 } 2978 2979 j = 0; 2980 } while (++i < MAX_LINKS); 2981 2982 return NULL; 2983 } 2984 2985 static void netlink_seq_stop(struct seq_file *seq, void *v) 2986 __releases(RCU) __releases(nl_table_lock) 2987 { 2988 rcu_read_unlock(); 2989 read_unlock(&nl_table_lock); 2990 } 2991 2992 2993 static int netlink_seq_show(struct seq_file *seq, void *v) 2994 { 2995 if (v == SEQ_START_TOKEN) { 2996 seq_puts(seq, 2997 "sk Eth Pid Groups " 2998 "Rmem Wmem Dump Locks Drops Inode\n"); 2999 } else { 3000 struct sock *s = v; 3001 struct netlink_sock *nlk = nlk_sk(s); 3002 3003 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3004 s, 3005 s->sk_protocol, 3006 nlk->portid, 3007 nlk->groups ? (u32)nlk->groups[0] : 0, 3008 sk_rmem_alloc_get(s), 3009 sk_wmem_alloc_get(s), 3010 nlk->cb_running, 3011 atomic_read(&s->sk_refcnt), 3012 atomic_read(&s->sk_drops), 3013 sock_i_ino(s) 3014 ); 3015 3016 } 3017 return 0; 3018 } 3019 3020 static const struct seq_operations netlink_seq_ops = { 3021 .start = netlink_seq_start, 3022 .next = netlink_seq_next, 3023 .stop = netlink_seq_stop, 3024 .show = netlink_seq_show, 3025 }; 3026 3027 3028 static int netlink_seq_open(struct inode *inode, struct file *file) 3029 { 3030 return seq_open_net(inode, file, &netlink_seq_ops, 3031 sizeof(struct nl_seq_iter)); 3032 } 3033 3034 static const struct file_operations netlink_seq_fops = { 3035 .owner = THIS_MODULE, 3036 .open = netlink_seq_open, 3037 .read = seq_read, 3038 .llseek = seq_lseek, 3039 .release = seq_release_net, 3040 }; 3041 3042 #endif 3043 3044 int netlink_register_notifier(struct notifier_block *nb) 3045 { 3046 return atomic_notifier_chain_register(&netlink_chain, nb); 3047 } 3048 EXPORT_SYMBOL(netlink_register_notifier); 3049 3050 int netlink_unregister_notifier(struct notifier_block *nb) 3051 { 3052 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3053 } 3054 EXPORT_SYMBOL(netlink_unregister_notifier); 3055 3056 static const struct proto_ops netlink_ops = { 3057 .family = PF_NETLINK, 3058 .owner = THIS_MODULE, 3059 .release = netlink_release, 3060 .bind = netlink_bind, 3061 .connect = netlink_connect, 3062 .socketpair = sock_no_socketpair, 3063 .accept = sock_no_accept, 3064 .getname = netlink_getname, 3065 .poll = netlink_poll, 3066 .ioctl = sock_no_ioctl, 3067 .listen = sock_no_listen, 3068 .shutdown = sock_no_shutdown, 3069 .setsockopt = netlink_setsockopt, 3070 .getsockopt = netlink_getsockopt, 3071 .sendmsg = netlink_sendmsg, 3072 .recvmsg = netlink_recvmsg, 3073 .mmap = netlink_mmap, 3074 .sendpage = sock_no_sendpage, 3075 }; 3076 3077 static const struct net_proto_family netlink_family_ops = { 3078 .family = PF_NETLINK, 3079 .create = netlink_create, 3080 .owner = THIS_MODULE, /* for consistency 8) */ 3081 }; 3082 3083 static int __net_init netlink_net_init(struct net *net) 3084 { 3085 #ifdef CONFIG_PROC_FS 3086 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3087 return -ENOMEM; 3088 #endif 3089 return 0; 3090 } 3091 3092 static void __net_exit netlink_net_exit(struct net *net) 3093 { 3094 #ifdef CONFIG_PROC_FS 3095 remove_proc_entry("netlink", net->proc_net); 3096 #endif 3097 } 3098 3099 static void __init netlink_add_usersock_entry(void) 3100 { 3101 struct listeners *listeners; 3102 int groups = 32; 3103 3104 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3105 if (!listeners) 3106 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3107 3108 netlink_table_grab(); 3109 3110 nl_table[NETLINK_USERSOCK].groups = groups; 3111 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3112 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3113 nl_table[NETLINK_USERSOCK].registered = 1; 3114 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3115 3116 netlink_table_ungrab(); 3117 } 3118 3119 static struct pernet_operations __net_initdata netlink_net_ops = { 3120 .init = netlink_net_init, 3121 .exit = netlink_net_exit, 3122 }; 3123 3124 static int __init netlink_proto_init(void) 3125 { 3126 int i; 3127 int err = proto_register(&netlink_proto, 0); 3128 struct rhashtable_params ht_params = { 3129 .head_offset = offsetof(struct netlink_sock, node), 3130 .key_offset = offsetof(struct netlink_sock, portid), 3131 .key_len = sizeof(u32), /* portid */ 3132 .hashfn = arch_fast_hash, 3133 .max_shift = 16, /* 64K */ 3134 .grow_decision = rht_grow_above_75, 3135 .shrink_decision = rht_shrink_below_30, 3136 .mutex_is_held = lockdep_nl_sk_hash_is_held, 3137 }; 3138 3139 if (err != 0) 3140 goto out; 3141 3142 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3143 3144 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3145 if (!nl_table) 3146 goto panic; 3147 3148 for (i = 0; i < MAX_LINKS; i++) { 3149 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) { 3150 while (--i > 0) 3151 rhashtable_destroy(&nl_table[i].hash); 3152 kfree(nl_table); 3153 goto panic; 3154 } 3155 } 3156 3157 INIT_LIST_HEAD(&netlink_tap_all); 3158 3159 netlink_add_usersock_entry(); 3160 3161 sock_register(&netlink_family_ops); 3162 register_pernet_subsys(&netlink_net_ops); 3163 /* The netlink device handler may be needed early. */ 3164 rtnetlink_init(); 3165 out: 3166 return err; 3167 panic: 3168 panic("netlink_init: Cannot allocate nl_table\n"); 3169 } 3170 3171 core_initcall(netlink_proto_init); 3172