1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/bpf.h> 24 #include <linux/capability.h> 25 #include <linux/kernel.h> 26 #include <linux/filter.h> 27 #include <linux/init.h> 28 #include <linux/signal.h> 29 #include <linux/sched.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/un.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/sockios.h> 38 #include <linux/net.h> 39 #include <linux/fs.h> 40 #include <linux/slab.h> 41 #include <linux/uaccess.h> 42 #include <linux/skbuff.h> 43 #include <linux/netdevice.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/notifier.h> 48 #include <linux/security.h> 49 #include <linux/jhash.h> 50 #include <linux/jiffies.h> 51 #include <linux/random.h> 52 #include <linux/bitops.h> 53 #include <linux/mm.h> 54 #include <linux/types.h> 55 #include <linux/audit.h> 56 #include <linux/mutex.h> 57 #include <linux/vmalloc.h> 58 #include <linux/if_arp.h> 59 #include <linux/rhashtable.h> 60 #include <asm/cacheflush.h> 61 #include <linux/hash.h> 62 #include <linux/genetlink.h> 63 #include <linux/net_namespace.h> 64 #include <linux/nospec.h> 65 #include <linux/btf_ids.h> 66 67 #include <net/net_namespace.h> 68 #include <net/netns/generic.h> 69 #include <net/sock.h> 70 #include <net/scm.h> 71 #include <net/netlink.h> 72 #define CREATE_TRACE_POINTS 73 #include <trace/events/netlink.h> 74 75 #include "af_netlink.h" 76 77 struct listeners { 78 struct rcu_head rcu; 79 unsigned long masks[]; 80 }; 81 82 /* state bits */ 83 #define NETLINK_S_CONGESTED 0x0 84 85 static inline int netlink_is_kernel(struct sock *sk) 86 { 87 return nlk_test_bit(KERNEL_SOCKET, sk); 88 } 89 90 struct netlink_table *nl_table __read_mostly; 91 EXPORT_SYMBOL_GPL(nl_table); 92 93 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 94 95 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 96 97 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 98 "nlk_cb_mutex-ROUTE", 99 "nlk_cb_mutex-1", 100 "nlk_cb_mutex-USERSOCK", 101 "nlk_cb_mutex-FIREWALL", 102 "nlk_cb_mutex-SOCK_DIAG", 103 "nlk_cb_mutex-NFLOG", 104 "nlk_cb_mutex-XFRM", 105 "nlk_cb_mutex-SELINUX", 106 "nlk_cb_mutex-ISCSI", 107 "nlk_cb_mutex-AUDIT", 108 "nlk_cb_mutex-FIB_LOOKUP", 109 "nlk_cb_mutex-CONNECTOR", 110 "nlk_cb_mutex-NETFILTER", 111 "nlk_cb_mutex-IP6_FW", 112 "nlk_cb_mutex-DNRTMSG", 113 "nlk_cb_mutex-KOBJECT_UEVENT", 114 "nlk_cb_mutex-GENERIC", 115 "nlk_cb_mutex-17", 116 "nlk_cb_mutex-SCSITRANSPORT", 117 "nlk_cb_mutex-ECRYPTFS", 118 "nlk_cb_mutex-RDMA", 119 "nlk_cb_mutex-CRYPTO", 120 "nlk_cb_mutex-SMC", 121 "nlk_cb_mutex-23", 122 "nlk_cb_mutex-24", 123 "nlk_cb_mutex-25", 124 "nlk_cb_mutex-26", 125 "nlk_cb_mutex-27", 126 "nlk_cb_mutex-28", 127 "nlk_cb_mutex-29", 128 "nlk_cb_mutex-30", 129 "nlk_cb_mutex-31", 130 "nlk_cb_mutex-MAX_LINKS" 131 }; 132 133 static int netlink_dump(struct sock *sk); 134 135 /* nl_table locking explained: 136 * Lookup and traversal are protected with an RCU read-side lock. Insertion 137 * and removal are protected with per bucket lock while using RCU list 138 * modification primitives and may run in parallel to RCU protected lookups. 139 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 140 * been acquired * either during or after the socket has been removed from 141 * the list and after an RCU grace period. 142 */ 143 DEFINE_RWLOCK(nl_table_lock); 144 EXPORT_SYMBOL_GPL(nl_table_lock); 145 static atomic_t nl_table_users = ATOMIC_INIT(0); 146 147 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 148 149 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 150 151 152 static const struct rhashtable_params netlink_rhashtable_params; 153 154 void do_trace_netlink_extack(const char *msg) 155 { 156 trace_netlink_extack(msg); 157 } 158 EXPORT_SYMBOL(do_trace_netlink_extack); 159 160 static inline u32 netlink_group_mask(u32 group) 161 { 162 if (group > 32) 163 return 0; 164 return group ? 1 << (group - 1) : 0; 165 } 166 167 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 168 gfp_t gfp_mask) 169 { 170 unsigned int len = skb_end_offset(skb); 171 struct sk_buff *new; 172 173 new = alloc_skb(len, gfp_mask); 174 if (new == NULL) 175 return NULL; 176 177 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 178 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 179 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 180 181 skb_put_data(new, skb->data, len); 182 return new; 183 } 184 185 static unsigned int netlink_tap_net_id; 186 187 struct netlink_tap_net { 188 struct list_head netlink_tap_all; 189 struct mutex netlink_tap_lock; 190 }; 191 192 int netlink_add_tap(struct netlink_tap *nt) 193 { 194 struct net *net = dev_net(nt->dev); 195 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 196 197 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 198 return -EINVAL; 199 200 mutex_lock(&nn->netlink_tap_lock); 201 list_add_rcu(&nt->list, &nn->netlink_tap_all); 202 mutex_unlock(&nn->netlink_tap_lock); 203 204 __module_get(nt->module); 205 206 return 0; 207 } 208 EXPORT_SYMBOL_GPL(netlink_add_tap); 209 210 static int __netlink_remove_tap(struct netlink_tap *nt) 211 { 212 struct net *net = dev_net(nt->dev); 213 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 214 bool found = false; 215 struct netlink_tap *tmp; 216 217 mutex_lock(&nn->netlink_tap_lock); 218 219 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 220 if (nt == tmp) { 221 list_del_rcu(&nt->list); 222 found = true; 223 goto out; 224 } 225 } 226 227 pr_warn("__netlink_remove_tap: %p not found\n", nt); 228 out: 229 mutex_unlock(&nn->netlink_tap_lock); 230 231 if (found) 232 module_put(nt->module); 233 234 return found ? 0 : -ENODEV; 235 } 236 237 int netlink_remove_tap(struct netlink_tap *nt) 238 { 239 int ret; 240 241 ret = __netlink_remove_tap(nt); 242 synchronize_net(); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(netlink_remove_tap); 247 248 static __net_init int netlink_tap_init_net(struct net *net) 249 { 250 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 251 252 INIT_LIST_HEAD(&nn->netlink_tap_all); 253 mutex_init(&nn->netlink_tap_lock); 254 return 0; 255 } 256 257 static struct pernet_operations netlink_tap_net_ops = { 258 .init = netlink_tap_init_net, 259 .id = &netlink_tap_net_id, 260 .size = sizeof(struct netlink_tap_net), 261 }; 262 263 static bool netlink_filter_tap(const struct sk_buff *skb) 264 { 265 struct sock *sk = skb->sk; 266 267 /* We take the more conservative approach and 268 * whitelist socket protocols that may pass. 269 */ 270 switch (sk->sk_protocol) { 271 case NETLINK_ROUTE: 272 case NETLINK_USERSOCK: 273 case NETLINK_SOCK_DIAG: 274 case NETLINK_NFLOG: 275 case NETLINK_XFRM: 276 case NETLINK_FIB_LOOKUP: 277 case NETLINK_NETFILTER: 278 case NETLINK_GENERIC: 279 return true; 280 } 281 282 return false; 283 } 284 285 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 286 struct net_device *dev) 287 { 288 struct sk_buff *nskb; 289 struct sock *sk = skb->sk; 290 int ret = -ENOMEM; 291 292 if (!net_eq(dev_net(dev), sock_net(sk))) 293 return 0; 294 295 dev_hold(dev); 296 297 if (is_vmalloc_addr(skb->head)) 298 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 299 else 300 nskb = skb_clone(skb, GFP_ATOMIC); 301 if (nskb) { 302 nskb->dev = dev; 303 nskb->protocol = htons((u16) sk->sk_protocol); 304 nskb->pkt_type = netlink_is_kernel(sk) ? 305 PACKET_KERNEL : PACKET_USER; 306 skb_reset_network_header(nskb); 307 ret = dev_queue_xmit(nskb); 308 if (unlikely(ret > 0)) 309 ret = net_xmit_errno(ret); 310 } 311 312 dev_put(dev); 313 return ret; 314 } 315 316 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 317 { 318 int ret; 319 struct netlink_tap *tmp; 320 321 if (!netlink_filter_tap(skb)) 322 return; 323 324 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 325 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 326 if (unlikely(ret)) 327 break; 328 } 329 } 330 331 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 332 { 333 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 334 335 rcu_read_lock(); 336 337 if (unlikely(!list_empty(&nn->netlink_tap_all))) 338 __netlink_deliver_tap(skb, nn); 339 340 rcu_read_unlock(); 341 } 342 343 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 344 struct sk_buff *skb) 345 { 346 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 347 netlink_deliver_tap(sock_net(dst), skb); 348 } 349 350 static void netlink_overrun(struct sock *sk) 351 { 352 if (!nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 353 if (!test_and_set_bit(NETLINK_S_CONGESTED, 354 &nlk_sk(sk)->state)) { 355 WRITE_ONCE(sk->sk_err, ENOBUFS); 356 sk_error_report(sk); 357 } 358 } 359 atomic_inc(&sk->sk_drops); 360 } 361 362 static void netlink_rcv_wake(struct sock *sk) 363 { 364 struct netlink_sock *nlk = nlk_sk(sk); 365 366 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 367 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 368 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 369 wake_up_interruptible(&nlk->wait); 370 } 371 372 static void netlink_skb_destructor(struct sk_buff *skb) 373 { 374 if (is_vmalloc_addr(skb->head)) { 375 if (!skb->cloned || 376 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 377 vfree(skb->head); 378 379 skb->head = NULL; 380 } 381 if (skb->sk != NULL) 382 sock_rfree(skb); 383 } 384 385 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 386 { 387 WARN_ON(skb->sk != NULL); 388 skb->sk = sk; 389 skb->destructor = netlink_skb_destructor; 390 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 391 sk_mem_charge(sk, skb->truesize); 392 } 393 394 static void netlink_sock_destruct(struct sock *sk) 395 { 396 struct netlink_sock *nlk = nlk_sk(sk); 397 398 if (nlk->cb_running) { 399 if (nlk->cb.done) 400 nlk->cb.done(&nlk->cb); 401 module_put(nlk->cb.module); 402 kfree_skb(nlk->cb.skb); 403 } 404 405 skb_queue_purge(&sk->sk_receive_queue); 406 407 if (!sock_flag(sk, SOCK_DEAD)) { 408 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 409 return; 410 } 411 412 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 413 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 414 WARN_ON(nlk_sk(sk)->groups); 415 } 416 417 static void netlink_sock_destruct_work(struct work_struct *work) 418 { 419 struct netlink_sock *nlk = container_of(work, struct netlink_sock, 420 work); 421 422 sk_free(&nlk->sk); 423 } 424 425 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 426 * SMP. Look, when several writers sleep and reader wakes them up, all but one 427 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 428 * this, _but_ remember, it adds useless work on UP machines. 429 */ 430 431 void netlink_table_grab(void) 432 __acquires(nl_table_lock) 433 { 434 might_sleep(); 435 436 write_lock_irq(&nl_table_lock); 437 438 if (atomic_read(&nl_table_users)) { 439 DECLARE_WAITQUEUE(wait, current); 440 441 add_wait_queue_exclusive(&nl_table_wait, &wait); 442 for (;;) { 443 set_current_state(TASK_UNINTERRUPTIBLE); 444 if (atomic_read(&nl_table_users) == 0) 445 break; 446 write_unlock_irq(&nl_table_lock); 447 schedule(); 448 write_lock_irq(&nl_table_lock); 449 } 450 451 __set_current_state(TASK_RUNNING); 452 remove_wait_queue(&nl_table_wait, &wait); 453 } 454 } 455 456 void netlink_table_ungrab(void) 457 __releases(nl_table_lock) 458 { 459 write_unlock_irq(&nl_table_lock); 460 wake_up(&nl_table_wait); 461 } 462 463 static inline void 464 netlink_lock_table(void) 465 { 466 unsigned long flags; 467 468 /* read_lock() synchronizes us to netlink_table_grab */ 469 470 read_lock_irqsave(&nl_table_lock, flags); 471 atomic_inc(&nl_table_users); 472 read_unlock_irqrestore(&nl_table_lock, flags); 473 } 474 475 static inline void 476 netlink_unlock_table(void) 477 { 478 if (atomic_dec_and_test(&nl_table_users)) 479 wake_up(&nl_table_wait); 480 } 481 482 struct netlink_compare_arg 483 { 484 possible_net_t pnet; 485 u32 portid; 486 }; 487 488 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 489 #define netlink_compare_arg_len \ 490 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 491 492 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 493 const void *ptr) 494 { 495 const struct netlink_compare_arg *x = arg->key; 496 const struct netlink_sock *nlk = ptr; 497 498 return nlk->portid != x->portid || 499 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 500 } 501 502 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 503 struct net *net, u32 portid) 504 { 505 memset(arg, 0, sizeof(*arg)); 506 write_pnet(&arg->pnet, net); 507 arg->portid = portid; 508 } 509 510 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 511 struct net *net) 512 { 513 struct netlink_compare_arg arg; 514 515 netlink_compare_arg_init(&arg, net, portid); 516 return rhashtable_lookup_fast(&table->hash, &arg, 517 netlink_rhashtable_params); 518 } 519 520 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 521 { 522 struct netlink_compare_arg arg; 523 524 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 525 return rhashtable_lookup_insert_key(&table->hash, &arg, 526 &nlk_sk(sk)->node, 527 netlink_rhashtable_params); 528 } 529 530 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 531 { 532 struct netlink_table *table = &nl_table[protocol]; 533 struct sock *sk; 534 535 rcu_read_lock(); 536 sk = __netlink_lookup(table, portid, net); 537 if (sk) 538 sock_hold(sk); 539 rcu_read_unlock(); 540 541 return sk; 542 } 543 544 static const struct proto_ops netlink_ops; 545 546 static void 547 netlink_update_listeners(struct sock *sk) 548 { 549 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 550 unsigned long mask; 551 unsigned int i; 552 struct listeners *listeners; 553 554 listeners = nl_deref_protected(tbl->listeners); 555 if (!listeners) 556 return; 557 558 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 559 mask = 0; 560 sk_for_each_bound(sk, &tbl->mc_list) { 561 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 562 mask |= nlk_sk(sk)->groups[i]; 563 } 564 listeners->masks[i] = mask; 565 } 566 /* this function is only called with the netlink table "grabbed", which 567 * makes sure updates are visible before bind or setsockopt return. */ 568 } 569 570 static int netlink_insert(struct sock *sk, u32 portid) 571 { 572 struct netlink_table *table = &nl_table[sk->sk_protocol]; 573 int err; 574 575 lock_sock(sk); 576 577 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 578 if (nlk_sk(sk)->bound) 579 goto err; 580 581 /* portid can be read locklessly from netlink_getname(). */ 582 WRITE_ONCE(nlk_sk(sk)->portid, portid); 583 584 sock_hold(sk); 585 586 err = __netlink_insert(table, sk); 587 if (err) { 588 /* In case the hashtable backend returns with -EBUSY 589 * from here, it must not escape to the caller. 590 */ 591 if (unlikely(err == -EBUSY)) 592 err = -EOVERFLOW; 593 if (err == -EEXIST) 594 err = -EADDRINUSE; 595 sock_put(sk); 596 goto err; 597 } 598 599 /* We need to ensure that the socket is hashed and visible. */ 600 smp_wmb(); 601 /* Paired with lockless reads from netlink_bind(), 602 * netlink_connect() and netlink_sendmsg(). 603 */ 604 WRITE_ONCE(nlk_sk(sk)->bound, portid); 605 606 err: 607 release_sock(sk); 608 return err; 609 } 610 611 static void netlink_remove(struct sock *sk) 612 { 613 struct netlink_table *table; 614 615 table = &nl_table[sk->sk_protocol]; 616 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 617 netlink_rhashtable_params)) { 618 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 619 __sock_put(sk); 620 } 621 622 netlink_table_grab(); 623 if (nlk_sk(sk)->subscriptions) { 624 __sk_del_bind_node(sk); 625 netlink_update_listeners(sk); 626 } 627 if (sk->sk_protocol == NETLINK_GENERIC) 628 atomic_inc(&genl_sk_destructing_cnt); 629 netlink_table_ungrab(); 630 } 631 632 static struct proto netlink_proto = { 633 .name = "NETLINK", 634 .owner = THIS_MODULE, 635 .obj_size = sizeof(struct netlink_sock), 636 }; 637 638 static int __netlink_create(struct net *net, struct socket *sock, 639 struct mutex *cb_mutex, int protocol, 640 int kern) 641 { 642 struct sock *sk; 643 struct netlink_sock *nlk; 644 645 sock->ops = &netlink_ops; 646 647 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 648 if (!sk) 649 return -ENOMEM; 650 651 sock_init_data(sock, sk); 652 653 nlk = nlk_sk(sk); 654 if (cb_mutex) { 655 nlk->cb_mutex = cb_mutex; 656 } else { 657 nlk->cb_mutex = &nlk->cb_def_mutex; 658 mutex_init(nlk->cb_mutex); 659 lockdep_set_class_and_name(nlk->cb_mutex, 660 nlk_cb_mutex_keys + protocol, 661 nlk_cb_mutex_key_strings[protocol]); 662 } 663 init_waitqueue_head(&nlk->wait); 664 665 sk->sk_destruct = netlink_sock_destruct; 666 sk->sk_protocol = protocol; 667 return 0; 668 } 669 670 static int netlink_create(struct net *net, struct socket *sock, int protocol, 671 int kern) 672 { 673 struct module *module = NULL; 674 struct mutex *cb_mutex; 675 struct netlink_sock *nlk; 676 int (*bind)(struct net *net, int group); 677 void (*unbind)(struct net *net, int group); 678 void (*release)(struct sock *sock, unsigned long *groups); 679 int err = 0; 680 681 sock->state = SS_UNCONNECTED; 682 683 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 684 return -ESOCKTNOSUPPORT; 685 686 if (protocol < 0 || protocol >= MAX_LINKS) 687 return -EPROTONOSUPPORT; 688 protocol = array_index_nospec(protocol, MAX_LINKS); 689 690 netlink_lock_table(); 691 #ifdef CONFIG_MODULES 692 if (!nl_table[protocol].registered) { 693 netlink_unlock_table(); 694 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 695 netlink_lock_table(); 696 } 697 #endif 698 if (nl_table[protocol].registered && 699 try_module_get(nl_table[protocol].module)) 700 module = nl_table[protocol].module; 701 else 702 err = -EPROTONOSUPPORT; 703 cb_mutex = nl_table[protocol].cb_mutex; 704 bind = nl_table[protocol].bind; 705 unbind = nl_table[protocol].unbind; 706 release = nl_table[protocol].release; 707 netlink_unlock_table(); 708 709 if (err < 0) 710 goto out; 711 712 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 713 if (err < 0) 714 goto out_module; 715 716 sock_prot_inuse_add(net, &netlink_proto, 1); 717 718 nlk = nlk_sk(sock->sk); 719 nlk->module = module; 720 nlk->netlink_bind = bind; 721 nlk->netlink_unbind = unbind; 722 nlk->netlink_release = release; 723 out: 724 return err; 725 726 out_module: 727 module_put(module); 728 goto out; 729 } 730 731 static void deferred_put_nlk_sk(struct rcu_head *head) 732 { 733 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 734 struct sock *sk = &nlk->sk; 735 736 kfree(nlk->groups); 737 nlk->groups = NULL; 738 739 if (!refcount_dec_and_test(&sk->sk_refcnt)) 740 return; 741 742 if (nlk->cb_running && nlk->cb.done) { 743 INIT_WORK(&nlk->work, netlink_sock_destruct_work); 744 schedule_work(&nlk->work); 745 return; 746 } 747 748 sk_free(sk); 749 } 750 751 static int netlink_release(struct socket *sock) 752 { 753 struct sock *sk = sock->sk; 754 struct netlink_sock *nlk; 755 756 if (!sk) 757 return 0; 758 759 netlink_remove(sk); 760 sock_orphan(sk); 761 nlk = nlk_sk(sk); 762 763 /* 764 * OK. Socket is unlinked, any packets that arrive now 765 * will be purged. 766 */ 767 if (nlk->netlink_release) 768 nlk->netlink_release(sk, nlk->groups); 769 770 /* must not acquire netlink_table_lock in any way again before unbind 771 * and notifying genetlink is done as otherwise it might deadlock 772 */ 773 if (nlk->netlink_unbind) { 774 int i; 775 776 for (i = 0; i < nlk->ngroups; i++) 777 if (test_bit(i, nlk->groups)) 778 nlk->netlink_unbind(sock_net(sk), i + 1); 779 } 780 if (sk->sk_protocol == NETLINK_GENERIC && 781 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 782 wake_up(&genl_sk_destructing_waitq); 783 784 sock->sk = NULL; 785 wake_up_interruptible_all(&nlk->wait); 786 787 skb_queue_purge(&sk->sk_write_queue); 788 789 if (nlk->portid && nlk->bound) { 790 struct netlink_notify n = { 791 .net = sock_net(sk), 792 .protocol = sk->sk_protocol, 793 .portid = nlk->portid, 794 }; 795 blocking_notifier_call_chain(&netlink_chain, 796 NETLINK_URELEASE, &n); 797 } 798 799 module_put(nlk->module); 800 801 if (netlink_is_kernel(sk)) { 802 netlink_table_grab(); 803 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 804 if (--nl_table[sk->sk_protocol].registered == 0) { 805 struct listeners *old; 806 807 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 808 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 809 kfree_rcu(old, rcu); 810 nl_table[sk->sk_protocol].module = NULL; 811 nl_table[sk->sk_protocol].bind = NULL; 812 nl_table[sk->sk_protocol].unbind = NULL; 813 nl_table[sk->sk_protocol].flags = 0; 814 nl_table[sk->sk_protocol].registered = 0; 815 } 816 netlink_table_ungrab(); 817 } 818 819 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 820 821 /* Because struct net might disappear soon, do not keep a pointer. */ 822 if (!sk->sk_net_refcnt && sock_net(sk) != &init_net) { 823 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 824 /* Because of deferred_put_nlk_sk and use of work queue, 825 * it is possible netns will be freed before this socket. 826 */ 827 sock_net_set(sk, &init_net); 828 __netns_tracker_alloc(&init_net, &sk->ns_tracker, 829 false, GFP_KERNEL); 830 } 831 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 832 return 0; 833 } 834 835 static int netlink_autobind(struct socket *sock) 836 { 837 struct sock *sk = sock->sk; 838 struct net *net = sock_net(sk); 839 struct netlink_table *table = &nl_table[sk->sk_protocol]; 840 s32 portid = task_tgid_vnr(current); 841 int err; 842 s32 rover = -4096; 843 bool ok; 844 845 retry: 846 cond_resched(); 847 rcu_read_lock(); 848 ok = !__netlink_lookup(table, portid, net); 849 rcu_read_unlock(); 850 if (!ok) { 851 /* Bind collision, search negative portid values. */ 852 if (rover == -4096) 853 /* rover will be in range [S32_MIN, -4097] */ 854 rover = S32_MIN + get_random_u32_below(-4096 - S32_MIN); 855 else if (rover >= -4096) 856 rover = -4097; 857 portid = rover--; 858 goto retry; 859 } 860 861 err = netlink_insert(sk, portid); 862 if (err == -EADDRINUSE) 863 goto retry; 864 865 /* If 2 threads race to autobind, that is fine. */ 866 if (err == -EBUSY) 867 err = 0; 868 869 return err; 870 } 871 872 /** 873 * __netlink_ns_capable - General netlink message capability test 874 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 875 * @user_ns: The user namespace of the capability to use 876 * @cap: The capability to use 877 * 878 * Test to see if the opener of the socket we received the message 879 * from had when the netlink socket was created and the sender of the 880 * message has the capability @cap in the user namespace @user_ns. 881 */ 882 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 883 struct user_namespace *user_ns, int cap) 884 { 885 return ((nsp->flags & NETLINK_SKB_DST) || 886 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 887 ns_capable(user_ns, cap); 888 } 889 EXPORT_SYMBOL(__netlink_ns_capable); 890 891 /** 892 * netlink_ns_capable - General netlink message capability test 893 * @skb: socket buffer holding a netlink command from userspace 894 * @user_ns: The user namespace of the capability to use 895 * @cap: The capability to use 896 * 897 * Test to see if the opener of the socket we received the message 898 * from had when the netlink socket was created and the sender of the 899 * message has the capability @cap in the user namespace @user_ns. 900 */ 901 bool netlink_ns_capable(const struct sk_buff *skb, 902 struct user_namespace *user_ns, int cap) 903 { 904 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 905 } 906 EXPORT_SYMBOL(netlink_ns_capable); 907 908 /** 909 * netlink_capable - Netlink global message capability test 910 * @skb: socket buffer holding a netlink command from userspace 911 * @cap: The capability to use 912 * 913 * Test to see if the opener of the socket we received the message 914 * from had when the netlink socket was created and the sender of the 915 * message has the capability @cap in all user namespaces. 916 */ 917 bool netlink_capable(const struct sk_buff *skb, int cap) 918 { 919 return netlink_ns_capable(skb, &init_user_ns, cap); 920 } 921 EXPORT_SYMBOL(netlink_capable); 922 923 /** 924 * netlink_net_capable - Netlink network namespace message capability test 925 * @skb: socket buffer holding a netlink command from userspace 926 * @cap: The capability to use 927 * 928 * Test to see if the opener of the socket we received the message 929 * from had when the netlink socket was created and the sender of the 930 * message has the capability @cap over the network namespace of 931 * the socket we received the message from. 932 */ 933 bool netlink_net_capable(const struct sk_buff *skb, int cap) 934 { 935 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 936 } 937 EXPORT_SYMBOL(netlink_net_capable); 938 939 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 940 { 941 return (nl_table[sock->sk->sk_protocol].flags & flag) || 942 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 943 } 944 945 static void 946 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 947 { 948 struct netlink_sock *nlk = nlk_sk(sk); 949 950 if (nlk->subscriptions && !subscriptions) 951 __sk_del_bind_node(sk); 952 else if (!nlk->subscriptions && subscriptions) 953 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 954 nlk->subscriptions = subscriptions; 955 } 956 957 static int netlink_realloc_groups(struct sock *sk) 958 { 959 struct netlink_sock *nlk = nlk_sk(sk); 960 unsigned int groups; 961 unsigned long *new_groups; 962 int err = 0; 963 964 netlink_table_grab(); 965 966 groups = nl_table[sk->sk_protocol].groups; 967 if (!nl_table[sk->sk_protocol].registered) { 968 err = -ENOENT; 969 goto out_unlock; 970 } 971 972 if (nlk->ngroups >= groups) 973 goto out_unlock; 974 975 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 976 if (new_groups == NULL) { 977 err = -ENOMEM; 978 goto out_unlock; 979 } 980 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 981 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 982 983 nlk->groups = new_groups; 984 nlk->ngroups = groups; 985 out_unlock: 986 netlink_table_ungrab(); 987 return err; 988 } 989 990 static void netlink_undo_bind(int group, long unsigned int groups, 991 struct sock *sk) 992 { 993 struct netlink_sock *nlk = nlk_sk(sk); 994 int undo; 995 996 if (!nlk->netlink_unbind) 997 return; 998 999 for (undo = 0; undo < group; undo++) 1000 if (test_bit(undo, &groups)) 1001 nlk->netlink_unbind(sock_net(sk), undo + 1); 1002 } 1003 1004 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1005 int addr_len) 1006 { 1007 struct sock *sk = sock->sk; 1008 struct net *net = sock_net(sk); 1009 struct netlink_sock *nlk = nlk_sk(sk); 1010 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1011 int err = 0; 1012 unsigned long groups; 1013 bool bound; 1014 1015 if (addr_len < sizeof(struct sockaddr_nl)) 1016 return -EINVAL; 1017 1018 if (nladdr->nl_family != AF_NETLINK) 1019 return -EINVAL; 1020 groups = nladdr->nl_groups; 1021 1022 /* Only superuser is allowed to listen multicasts */ 1023 if (groups) { 1024 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1025 return -EPERM; 1026 err = netlink_realloc_groups(sk); 1027 if (err) 1028 return err; 1029 } 1030 1031 if (nlk->ngroups < BITS_PER_LONG) 1032 groups &= (1UL << nlk->ngroups) - 1; 1033 1034 /* Paired with WRITE_ONCE() in netlink_insert() */ 1035 bound = READ_ONCE(nlk->bound); 1036 if (bound) { 1037 /* Ensure nlk->portid is up-to-date. */ 1038 smp_rmb(); 1039 1040 if (nladdr->nl_pid != nlk->portid) 1041 return -EINVAL; 1042 } 1043 1044 if (nlk->netlink_bind && groups) { 1045 int group; 1046 1047 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1048 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1049 if (!test_bit(group, &groups)) 1050 continue; 1051 err = nlk->netlink_bind(net, group + 1); 1052 if (!err) 1053 continue; 1054 netlink_undo_bind(group, groups, sk); 1055 return err; 1056 } 1057 } 1058 1059 /* No need for barriers here as we return to user-space without 1060 * using any of the bound attributes. 1061 */ 1062 netlink_lock_table(); 1063 if (!bound) { 1064 err = nladdr->nl_pid ? 1065 netlink_insert(sk, nladdr->nl_pid) : 1066 netlink_autobind(sock); 1067 if (err) { 1068 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1069 goto unlock; 1070 } 1071 } 1072 1073 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1074 goto unlock; 1075 netlink_unlock_table(); 1076 1077 netlink_table_grab(); 1078 netlink_update_subscriptions(sk, nlk->subscriptions + 1079 hweight32(groups) - 1080 hweight32(nlk->groups[0])); 1081 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1082 netlink_update_listeners(sk); 1083 netlink_table_ungrab(); 1084 1085 return 0; 1086 1087 unlock: 1088 netlink_unlock_table(); 1089 return err; 1090 } 1091 1092 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1093 int alen, int flags) 1094 { 1095 int err = 0; 1096 struct sock *sk = sock->sk; 1097 struct netlink_sock *nlk = nlk_sk(sk); 1098 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1099 1100 if (alen < sizeof(addr->sa_family)) 1101 return -EINVAL; 1102 1103 if (addr->sa_family == AF_UNSPEC) { 1104 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1105 WRITE_ONCE(sk->sk_state, NETLINK_UNCONNECTED); 1106 /* dst_portid and dst_group can be read locklessly */ 1107 WRITE_ONCE(nlk->dst_portid, 0); 1108 WRITE_ONCE(nlk->dst_group, 0); 1109 return 0; 1110 } 1111 if (addr->sa_family != AF_NETLINK) 1112 return -EINVAL; 1113 1114 if (alen < sizeof(struct sockaddr_nl)) 1115 return -EINVAL; 1116 1117 if ((nladdr->nl_groups || nladdr->nl_pid) && 1118 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1119 return -EPERM; 1120 1121 /* No need for barriers here as we return to user-space without 1122 * using any of the bound attributes. 1123 * Paired with WRITE_ONCE() in netlink_insert(). 1124 */ 1125 if (!READ_ONCE(nlk->bound)) 1126 err = netlink_autobind(sock); 1127 1128 if (err == 0) { 1129 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1130 WRITE_ONCE(sk->sk_state, NETLINK_CONNECTED); 1131 /* dst_portid and dst_group can be read locklessly */ 1132 WRITE_ONCE(nlk->dst_portid, nladdr->nl_pid); 1133 WRITE_ONCE(nlk->dst_group, ffs(nladdr->nl_groups)); 1134 } 1135 1136 return err; 1137 } 1138 1139 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1140 int peer) 1141 { 1142 struct sock *sk = sock->sk; 1143 struct netlink_sock *nlk = nlk_sk(sk); 1144 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1145 1146 nladdr->nl_family = AF_NETLINK; 1147 nladdr->nl_pad = 0; 1148 1149 if (peer) { 1150 /* Paired with WRITE_ONCE() in netlink_connect() */ 1151 nladdr->nl_pid = READ_ONCE(nlk->dst_portid); 1152 nladdr->nl_groups = netlink_group_mask(READ_ONCE(nlk->dst_group)); 1153 } else { 1154 /* Paired with WRITE_ONCE() in netlink_insert() */ 1155 nladdr->nl_pid = READ_ONCE(nlk->portid); 1156 netlink_lock_table(); 1157 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1158 netlink_unlock_table(); 1159 } 1160 return sizeof(*nladdr); 1161 } 1162 1163 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1164 unsigned long arg) 1165 { 1166 /* try to hand this ioctl down to the NIC drivers. 1167 */ 1168 return -ENOIOCTLCMD; 1169 } 1170 1171 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1172 { 1173 struct sock *sock; 1174 struct netlink_sock *nlk; 1175 1176 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1177 if (!sock) 1178 return ERR_PTR(-ECONNREFUSED); 1179 1180 /* Don't bother queuing skb if kernel socket has no input function */ 1181 nlk = nlk_sk(sock); 1182 /* dst_portid and sk_state can be changed in netlink_connect() */ 1183 if (READ_ONCE(sock->sk_state) == NETLINK_CONNECTED && 1184 READ_ONCE(nlk->dst_portid) != nlk_sk(ssk)->portid) { 1185 sock_put(sock); 1186 return ERR_PTR(-ECONNREFUSED); 1187 } 1188 return sock; 1189 } 1190 1191 struct sock *netlink_getsockbyfilp(struct file *filp) 1192 { 1193 struct inode *inode = file_inode(filp); 1194 struct sock *sock; 1195 1196 if (!S_ISSOCK(inode->i_mode)) 1197 return ERR_PTR(-ENOTSOCK); 1198 1199 sock = SOCKET_I(inode)->sk; 1200 if (sock->sk_family != AF_NETLINK) 1201 return ERR_PTR(-EINVAL); 1202 1203 sock_hold(sock); 1204 return sock; 1205 } 1206 1207 struct sk_buff *netlink_alloc_large_skb(unsigned int size, int broadcast) 1208 { 1209 struct sk_buff *skb; 1210 void *data; 1211 1212 if (size <= NLMSG_GOODSIZE || broadcast) 1213 return alloc_skb(size, GFP_KERNEL); 1214 1215 size = SKB_DATA_ALIGN(size) + 1216 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1217 1218 data = vmalloc(size); 1219 if (data == NULL) 1220 return NULL; 1221 1222 skb = __build_skb(data, size); 1223 if (skb == NULL) 1224 vfree(data); 1225 else 1226 skb->destructor = netlink_skb_destructor; 1227 1228 return skb; 1229 } 1230 1231 /* 1232 * Attach a skb to a netlink socket. 1233 * The caller must hold a reference to the destination socket. On error, the 1234 * reference is dropped. The skb is not send to the destination, just all 1235 * all error checks are performed and memory in the queue is reserved. 1236 * Return values: 1237 * < 0: error. skb freed, reference to sock dropped. 1238 * 0: continue 1239 * 1: repeat lookup - reference dropped while waiting for socket memory. 1240 */ 1241 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1242 long *timeo, struct sock *ssk) 1243 { 1244 struct netlink_sock *nlk; 1245 1246 nlk = nlk_sk(sk); 1247 1248 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1249 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1250 DECLARE_WAITQUEUE(wait, current); 1251 if (!*timeo) { 1252 if (!ssk || netlink_is_kernel(ssk)) 1253 netlink_overrun(sk); 1254 sock_put(sk); 1255 kfree_skb(skb); 1256 return -EAGAIN; 1257 } 1258 1259 __set_current_state(TASK_INTERRUPTIBLE); 1260 add_wait_queue(&nlk->wait, &wait); 1261 1262 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1263 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1264 !sock_flag(sk, SOCK_DEAD)) 1265 *timeo = schedule_timeout(*timeo); 1266 1267 __set_current_state(TASK_RUNNING); 1268 remove_wait_queue(&nlk->wait, &wait); 1269 sock_put(sk); 1270 1271 if (signal_pending(current)) { 1272 kfree_skb(skb); 1273 return sock_intr_errno(*timeo); 1274 } 1275 return 1; 1276 } 1277 netlink_skb_set_owner_r(skb, sk); 1278 return 0; 1279 } 1280 1281 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1282 { 1283 int len = skb->len; 1284 1285 netlink_deliver_tap(sock_net(sk), skb); 1286 1287 skb_queue_tail(&sk->sk_receive_queue, skb); 1288 sk->sk_data_ready(sk); 1289 return len; 1290 } 1291 1292 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1293 { 1294 int len = __netlink_sendskb(sk, skb); 1295 1296 sock_put(sk); 1297 return len; 1298 } 1299 1300 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1301 { 1302 kfree_skb(skb); 1303 sock_put(sk); 1304 } 1305 1306 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1307 { 1308 int delta; 1309 1310 WARN_ON(skb->sk != NULL); 1311 delta = skb->end - skb->tail; 1312 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1313 return skb; 1314 1315 if (skb_shared(skb)) { 1316 struct sk_buff *nskb = skb_clone(skb, allocation); 1317 if (!nskb) 1318 return skb; 1319 consume_skb(skb); 1320 skb = nskb; 1321 } 1322 1323 pskb_expand_head(skb, 0, -delta, 1324 (allocation & ~__GFP_DIRECT_RECLAIM) | 1325 __GFP_NOWARN | __GFP_NORETRY); 1326 return skb; 1327 } 1328 1329 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1330 struct sock *ssk) 1331 { 1332 int ret; 1333 struct netlink_sock *nlk = nlk_sk(sk); 1334 1335 ret = -ECONNREFUSED; 1336 if (nlk->netlink_rcv != NULL) { 1337 ret = skb->len; 1338 netlink_skb_set_owner_r(skb, sk); 1339 NETLINK_CB(skb).sk = ssk; 1340 netlink_deliver_tap_kernel(sk, ssk, skb); 1341 nlk->netlink_rcv(skb); 1342 consume_skb(skb); 1343 } else { 1344 kfree_skb(skb); 1345 } 1346 sock_put(sk); 1347 return ret; 1348 } 1349 1350 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1351 u32 portid, int nonblock) 1352 { 1353 struct sock *sk; 1354 int err; 1355 long timeo; 1356 1357 skb = netlink_trim(skb, gfp_any()); 1358 1359 timeo = sock_sndtimeo(ssk, nonblock); 1360 retry: 1361 sk = netlink_getsockbyportid(ssk, portid); 1362 if (IS_ERR(sk)) { 1363 kfree_skb(skb); 1364 return PTR_ERR(sk); 1365 } 1366 if (netlink_is_kernel(sk)) 1367 return netlink_unicast_kernel(sk, skb, ssk); 1368 1369 if (sk_filter(sk, skb)) { 1370 err = skb->len; 1371 kfree_skb(skb); 1372 sock_put(sk); 1373 return err; 1374 } 1375 1376 err = netlink_attachskb(sk, skb, &timeo, ssk); 1377 if (err == 1) 1378 goto retry; 1379 if (err) 1380 return err; 1381 1382 return netlink_sendskb(sk, skb); 1383 } 1384 EXPORT_SYMBOL(netlink_unicast); 1385 1386 int netlink_has_listeners(struct sock *sk, unsigned int group) 1387 { 1388 int res = 0; 1389 struct listeners *listeners; 1390 1391 BUG_ON(!netlink_is_kernel(sk)); 1392 1393 rcu_read_lock(); 1394 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1395 1396 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1397 res = test_bit(group - 1, listeners->masks); 1398 1399 rcu_read_unlock(); 1400 1401 return res; 1402 } 1403 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1404 1405 bool netlink_strict_get_check(struct sk_buff *skb) 1406 { 1407 return nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 1408 } 1409 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1410 1411 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1412 { 1413 struct netlink_sock *nlk = nlk_sk(sk); 1414 1415 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1416 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1417 netlink_skb_set_owner_r(skb, sk); 1418 __netlink_sendskb(sk, skb); 1419 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1420 } 1421 return -1; 1422 } 1423 1424 struct netlink_broadcast_data { 1425 struct sock *exclude_sk; 1426 struct net *net; 1427 u32 portid; 1428 u32 group; 1429 int failure; 1430 int delivery_failure; 1431 int congested; 1432 int delivered; 1433 gfp_t allocation; 1434 struct sk_buff *skb, *skb2; 1435 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1436 void *tx_data; 1437 }; 1438 1439 static void do_one_broadcast(struct sock *sk, 1440 struct netlink_broadcast_data *p) 1441 { 1442 struct netlink_sock *nlk = nlk_sk(sk); 1443 int val; 1444 1445 if (p->exclude_sk == sk) 1446 return; 1447 1448 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1449 !test_bit(p->group - 1, nlk->groups)) 1450 return; 1451 1452 if (!net_eq(sock_net(sk), p->net)) { 1453 if (!nlk_test_bit(LISTEN_ALL_NSID, sk)) 1454 return; 1455 1456 if (!peernet_has_id(sock_net(sk), p->net)) 1457 return; 1458 1459 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1460 CAP_NET_BROADCAST)) 1461 return; 1462 } 1463 1464 if (p->failure) { 1465 netlink_overrun(sk); 1466 return; 1467 } 1468 1469 sock_hold(sk); 1470 if (p->skb2 == NULL) { 1471 if (skb_shared(p->skb)) { 1472 p->skb2 = skb_clone(p->skb, p->allocation); 1473 } else { 1474 p->skb2 = skb_get(p->skb); 1475 /* 1476 * skb ownership may have been set when 1477 * delivered to a previous socket. 1478 */ 1479 skb_orphan(p->skb2); 1480 } 1481 } 1482 if (p->skb2 == NULL) { 1483 netlink_overrun(sk); 1484 /* Clone failed. Notify ALL listeners. */ 1485 p->failure = 1; 1486 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1487 p->delivery_failure = 1; 1488 goto out; 1489 } 1490 1491 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1492 kfree_skb(p->skb2); 1493 p->skb2 = NULL; 1494 goto out; 1495 } 1496 1497 if (sk_filter(sk, p->skb2)) { 1498 kfree_skb(p->skb2); 1499 p->skb2 = NULL; 1500 goto out; 1501 } 1502 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1503 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1504 NETLINK_CB(p->skb2).nsid_is_set = true; 1505 val = netlink_broadcast_deliver(sk, p->skb2); 1506 if (val < 0) { 1507 netlink_overrun(sk); 1508 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1509 p->delivery_failure = 1; 1510 } else { 1511 p->congested |= val; 1512 p->delivered = 1; 1513 p->skb2 = NULL; 1514 } 1515 out: 1516 sock_put(sk); 1517 } 1518 1519 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, 1520 u32 portid, 1521 u32 group, gfp_t allocation, 1522 netlink_filter_fn filter, 1523 void *filter_data) 1524 { 1525 struct net *net = sock_net(ssk); 1526 struct netlink_broadcast_data info; 1527 struct sock *sk; 1528 1529 skb = netlink_trim(skb, allocation); 1530 1531 info.exclude_sk = ssk; 1532 info.net = net; 1533 info.portid = portid; 1534 info.group = group; 1535 info.failure = 0; 1536 info.delivery_failure = 0; 1537 info.congested = 0; 1538 info.delivered = 0; 1539 info.allocation = allocation; 1540 info.skb = skb; 1541 info.skb2 = NULL; 1542 info.tx_filter = filter; 1543 info.tx_data = filter_data; 1544 1545 /* While we sleep in clone, do not allow to change socket list */ 1546 1547 netlink_lock_table(); 1548 1549 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1550 do_one_broadcast(sk, &info); 1551 1552 consume_skb(skb); 1553 1554 netlink_unlock_table(); 1555 1556 if (info.delivery_failure) { 1557 kfree_skb(info.skb2); 1558 return -ENOBUFS; 1559 } 1560 consume_skb(info.skb2); 1561 1562 if (info.delivered) { 1563 if (info.congested && gfpflags_allow_blocking(allocation)) 1564 yield(); 1565 return 0; 1566 } 1567 return -ESRCH; 1568 } 1569 EXPORT_SYMBOL(netlink_broadcast_filtered); 1570 1571 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1572 u32 group, gfp_t allocation) 1573 { 1574 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 1575 NULL, NULL); 1576 } 1577 EXPORT_SYMBOL(netlink_broadcast); 1578 1579 struct netlink_set_err_data { 1580 struct sock *exclude_sk; 1581 u32 portid; 1582 u32 group; 1583 int code; 1584 }; 1585 1586 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1587 { 1588 struct netlink_sock *nlk = nlk_sk(sk); 1589 int ret = 0; 1590 1591 if (sk == p->exclude_sk) 1592 goto out; 1593 1594 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1595 goto out; 1596 1597 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1598 !test_bit(p->group - 1, nlk->groups)) 1599 goto out; 1600 1601 if (p->code == ENOBUFS && nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 1602 ret = 1; 1603 goto out; 1604 } 1605 1606 WRITE_ONCE(sk->sk_err, p->code); 1607 sk_error_report(sk); 1608 out: 1609 return ret; 1610 } 1611 1612 /** 1613 * netlink_set_err - report error to broadcast listeners 1614 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1615 * @portid: the PORTID of a process that we want to skip (if any) 1616 * @group: the broadcast group that will notice the error 1617 * @code: error code, must be negative (as usual in kernelspace) 1618 * 1619 * This function returns the number of broadcast listeners that have set the 1620 * NETLINK_NO_ENOBUFS socket option. 1621 */ 1622 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1623 { 1624 struct netlink_set_err_data info; 1625 unsigned long flags; 1626 struct sock *sk; 1627 int ret = 0; 1628 1629 info.exclude_sk = ssk; 1630 info.portid = portid; 1631 info.group = group; 1632 /* sk->sk_err wants a positive error value */ 1633 info.code = -code; 1634 1635 read_lock_irqsave(&nl_table_lock, flags); 1636 1637 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1638 ret += do_one_set_err(sk, &info); 1639 1640 read_unlock_irqrestore(&nl_table_lock, flags); 1641 return ret; 1642 } 1643 EXPORT_SYMBOL(netlink_set_err); 1644 1645 /* must be called with netlink table grabbed */ 1646 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1647 unsigned int group, 1648 int is_new) 1649 { 1650 int old, new = !!is_new, subscriptions; 1651 1652 old = test_bit(group - 1, nlk->groups); 1653 subscriptions = nlk->subscriptions - old + new; 1654 __assign_bit(group - 1, nlk->groups, new); 1655 netlink_update_subscriptions(&nlk->sk, subscriptions); 1656 netlink_update_listeners(&nlk->sk); 1657 } 1658 1659 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1660 sockptr_t optval, unsigned int optlen) 1661 { 1662 struct sock *sk = sock->sk; 1663 struct netlink_sock *nlk = nlk_sk(sk); 1664 unsigned int val = 0; 1665 int nr = -1; 1666 1667 if (level != SOL_NETLINK) 1668 return -ENOPROTOOPT; 1669 1670 if (optlen >= sizeof(int) && 1671 copy_from_sockptr(&val, optval, sizeof(val))) 1672 return -EFAULT; 1673 1674 switch (optname) { 1675 case NETLINK_PKTINFO: 1676 nr = NETLINK_F_RECV_PKTINFO; 1677 break; 1678 case NETLINK_ADD_MEMBERSHIP: 1679 case NETLINK_DROP_MEMBERSHIP: { 1680 int err; 1681 1682 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1683 return -EPERM; 1684 err = netlink_realloc_groups(sk); 1685 if (err) 1686 return err; 1687 if (!val || val - 1 >= nlk->ngroups) 1688 return -EINVAL; 1689 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1690 err = nlk->netlink_bind(sock_net(sk), val); 1691 if (err) 1692 return err; 1693 } 1694 netlink_table_grab(); 1695 netlink_update_socket_mc(nlk, val, 1696 optname == NETLINK_ADD_MEMBERSHIP); 1697 netlink_table_ungrab(); 1698 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1699 nlk->netlink_unbind(sock_net(sk), val); 1700 1701 break; 1702 } 1703 case NETLINK_BROADCAST_ERROR: 1704 nr = NETLINK_F_BROADCAST_SEND_ERROR; 1705 break; 1706 case NETLINK_NO_ENOBUFS: 1707 assign_bit(NETLINK_F_RECV_NO_ENOBUFS, &nlk->flags, val); 1708 if (val) { 1709 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1710 wake_up_interruptible(&nlk->wait); 1711 } 1712 break; 1713 case NETLINK_LISTEN_ALL_NSID: 1714 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1715 return -EPERM; 1716 nr = NETLINK_F_LISTEN_ALL_NSID; 1717 break; 1718 case NETLINK_CAP_ACK: 1719 nr = NETLINK_F_CAP_ACK; 1720 break; 1721 case NETLINK_EXT_ACK: 1722 nr = NETLINK_F_EXT_ACK; 1723 break; 1724 case NETLINK_GET_STRICT_CHK: 1725 nr = NETLINK_F_STRICT_CHK; 1726 break; 1727 default: 1728 return -ENOPROTOOPT; 1729 } 1730 if (nr >= 0) 1731 assign_bit(nr, &nlk->flags, val); 1732 return 0; 1733 } 1734 1735 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1736 char __user *optval, int __user *optlen) 1737 { 1738 struct sock *sk = sock->sk; 1739 struct netlink_sock *nlk = nlk_sk(sk); 1740 unsigned int flag; 1741 int len, val; 1742 1743 if (level != SOL_NETLINK) 1744 return -ENOPROTOOPT; 1745 1746 if (get_user(len, optlen)) 1747 return -EFAULT; 1748 if (len < 0) 1749 return -EINVAL; 1750 1751 switch (optname) { 1752 case NETLINK_PKTINFO: 1753 flag = NETLINK_F_RECV_PKTINFO; 1754 break; 1755 case NETLINK_BROADCAST_ERROR: 1756 flag = NETLINK_F_BROADCAST_SEND_ERROR; 1757 break; 1758 case NETLINK_NO_ENOBUFS: 1759 flag = NETLINK_F_RECV_NO_ENOBUFS; 1760 break; 1761 case NETLINK_LIST_MEMBERSHIPS: { 1762 int pos, idx, shift, err = 0; 1763 1764 netlink_lock_table(); 1765 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1766 if (len - pos < sizeof(u32)) 1767 break; 1768 1769 idx = pos / sizeof(unsigned long); 1770 shift = (pos % sizeof(unsigned long)) * 8; 1771 if (put_user((u32)(nlk->groups[idx] >> shift), 1772 (u32 __user *)(optval + pos))) { 1773 err = -EFAULT; 1774 break; 1775 } 1776 } 1777 if (put_user(ALIGN(BITS_TO_BYTES(nlk->ngroups), sizeof(u32)), optlen)) 1778 err = -EFAULT; 1779 netlink_unlock_table(); 1780 return err; 1781 } 1782 case NETLINK_CAP_ACK: 1783 flag = NETLINK_F_CAP_ACK; 1784 break; 1785 case NETLINK_EXT_ACK: 1786 flag = NETLINK_F_EXT_ACK; 1787 break; 1788 case NETLINK_GET_STRICT_CHK: 1789 flag = NETLINK_F_STRICT_CHK; 1790 break; 1791 default: 1792 return -ENOPROTOOPT; 1793 } 1794 1795 if (len < sizeof(int)) 1796 return -EINVAL; 1797 1798 len = sizeof(int); 1799 val = test_bit(flag, &nlk->flags); 1800 1801 if (put_user(len, optlen) || 1802 copy_to_user(optval, &val, len)) 1803 return -EFAULT; 1804 1805 return 0; 1806 } 1807 1808 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1809 { 1810 struct nl_pktinfo info; 1811 1812 info.group = NETLINK_CB(skb).dst_group; 1813 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1814 } 1815 1816 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1817 struct sk_buff *skb) 1818 { 1819 if (!NETLINK_CB(skb).nsid_is_set) 1820 return; 1821 1822 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1823 &NETLINK_CB(skb).nsid); 1824 } 1825 1826 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1827 { 1828 struct sock *sk = sock->sk; 1829 struct netlink_sock *nlk = nlk_sk(sk); 1830 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1831 u32 dst_portid; 1832 u32 dst_group; 1833 struct sk_buff *skb; 1834 int err; 1835 struct scm_cookie scm; 1836 u32 netlink_skb_flags = 0; 1837 1838 if (msg->msg_flags & MSG_OOB) 1839 return -EOPNOTSUPP; 1840 1841 if (len == 0) { 1842 pr_warn_once("Zero length message leads to an empty skb\n"); 1843 return -ENODATA; 1844 } 1845 1846 err = scm_send(sock, msg, &scm, true); 1847 if (err < 0) 1848 return err; 1849 1850 if (msg->msg_namelen) { 1851 err = -EINVAL; 1852 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1853 goto out; 1854 if (addr->nl_family != AF_NETLINK) 1855 goto out; 1856 dst_portid = addr->nl_pid; 1857 dst_group = ffs(addr->nl_groups); 1858 err = -EPERM; 1859 if ((dst_group || dst_portid) && 1860 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1861 goto out; 1862 netlink_skb_flags |= NETLINK_SKB_DST; 1863 } else { 1864 /* Paired with WRITE_ONCE() in netlink_connect() */ 1865 dst_portid = READ_ONCE(nlk->dst_portid); 1866 dst_group = READ_ONCE(nlk->dst_group); 1867 } 1868 1869 /* Paired with WRITE_ONCE() in netlink_insert() */ 1870 if (!READ_ONCE(nlk->bound)) { 1871 err = netlink_autobind(sock); 1872 if (err) 1873 goto out; 1874 } else { 1875 /* Ensure nlk is hashed and visible. */ 1876 smp_rmb(); 1877 } 1878 1879 err = -EMSGSIZE; 1880 if (len > sk->sk_sndbuf - 32) 1881 goto out; 1882 err = -ENOBUFS; 1883 skb = netlink_alloc_large_skb(len, dst_group); 1884 if (skb == NULL) 1885 goto out; 1886 1887 NETLINK_CB(skb).portid = nlk->portid; 1888 NETLINK_CB(skb).dst_group = dst_group; 1889 NETLINK_CB(skb).creds = scm.creds; 1890 NETLINK_CB(skb).flags = netlink_skb_flags; 1891 1892 err = -EFAULT; 1893 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1894 kfree_skb(skb); 1895 goto out; 1896 } 1897 1898 err = security_netlink_send(sk, skb); 1899 if (err) { 1900 kfree_skb(skb); 1901 goto out; 1902 } 1903 1904 if (dst_group) { 1905 refcount_inc(&skb->users); 1906 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1907 } 1908 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1909 1910 out: 1911 scm_destroy(&scm); 1912 return err; 1913 } 1914 1915 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1916 int flags) 1917 { 1918 struct scm_cookie scm; 1919 struct sock *sk = sock->sk; 1920 struct netlink_sock *nlk = nlk_sk(sk); 1921 size_t copied, max_recvmsg_len; 1922 struct sk_buff *skb, *data_skb; 1923 int err, ret; 1924 1925 if (flags & MSG_OOB) 1926 return -EOPNOTSUPP; 1927 1928 copied = 0; 1929 1930 skb = skb_recv_datagram(sk, flags, &err); 1931 if (skb == NULL) 1932 goto out; 1933 1934 data_skb = skb; 1935 1936 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1937 if (unlikely(skb_shinfo(skb)->frag_list)) { 1938 /* 1939 * If this skb has a frag_list, then here that means that we 1940 * will have to use the frag_list skb's data for compat tasks 1941 * and the regular skb's data for normal (non-compat) tasks. 1942 * 1943 * If we need to send the compat skb, assign it to the 1944 * 'data_skb' variable so that it will be used below for data 1945 * copying. We keep 'skb' for everything else, including 1946 * freeing both later. 1947 */ 1948 if (flags & MSG_CMSG_COMPAT) 1949 data_skb = skb_shinfo(skb)->frag_list; 1950 } 1951 #endif 1952 1953 /* Record the max length of recvmsg() calls for future allocations */ 1954 max_recvmsg_len = max(READ_ONCE(nlk->max_recvmsg_len), len); 1955 max_recvmsg_len = min_t(size_t, max_recvmsg_len, 1956 SKB_WITH_OVERHEAD(32768)); 1957 WRITE_ONCE(nlk->max_recvmsg_len, max_recvmsg_len); 1958 1959 copied = data_skb->len; 1960 if (len < copied) { 1961 msg->msg_flags |= MSG_TRUNC; 1962 copied = len; 1963 } 1964 1965 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1966 1967 if (msg->msg_name) { 1968 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1969 addr->nl_family = AF_NETLINK; 1970 addr->nl_pad = 0; 1971 addr->nl_pid = NETLINK_CB(skb).portid; 1972 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1973 msg->msg_namelen = sizeof(*addr); 1974 } 1975 1976 if (nlk_test_bit(RECV_PKTINFO, sk)) 1977 netlink_cmsg_recv_pktinfo(msg, skb); 1978 if (nlk_test_bit(LISTEN_ALL_NSID, sk)) 1979 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1980 1981 memset(&scm, 0, sizeof(scm)); 1982 scm.creds = *NETLINK_CREDS(skb); 1983 if (flags & MSG_TRUNC) 1984 copied = data_skb->len; 1985 1986 skb_free_datagram(sk, skb); 1987 1988 if (READ_ONCE(nlk->cb_running) && 1989 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 1990 ret = netlink_dump(sk); 1991 if (ret) { 1992 WRITE_ONCE(sk->sk_err, -ret); 1993 sk_error_report(sk); 1994 } 1995 } 1996 1997 scm_recv(sock, msg, &scm, flags); 1998 out: 1999 netlink_rcv_wake(sk); 2000 return err ? : copied; 2001 } 2002 2003 static void netlink_data_ready(struct sock *sk) 2004 { 2005 BUG(); 2006 } 2007 2008 /* 2009 * We export these functions to other modules. They provide a 2010 * complete set of kernel non-blocking support for message 2011 * queueing. 2012 */ 2013 2014 struct sock * 2015 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2016 struct netlink_kernel_cfg *cfg) 2017 { 2018 struct socket *sock; 2019 struct sock *sk; 2020 struct netlink_sock *nlk; 2021 struct listeners *listeners = NULL; 2022 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2023 unsigned int groups; 2024 2025 BUG_ON(!nl_table); 2026 2027 if (unit < 0 || unit >= MAX_LINKS) 2028 return NULL; 2029 2030 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2031 return NULL; 2032 2033 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2034 goto out_sock_release_nosk; 2035 2036 sk = sock->sk; 2037 2038 if (!cfg || cfg->groups < 32) 2039 groups = 32; 2040 else 2041 groups = cfg->groups; 2042 2043 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2044 if (!listeners) 2045 goto out_sock_release; 2046 2047 sk->sk_data_ready = netlink_data_ready; 2048 if (cfg && cfg->input) 2049 nlk_sk(sk)->netlink_rcv = cfg->input; 2050 2051 if (netlink_insert(sk, 0)) 2052 goto out_sock_release; 2053 2054 nlk = nlk_sk(sk); 2055 set_bit(NETLINK_F_KERNEL_SOCKET, &nlk->flags); 2056 2057 netlink_table_grab(); 2058 if (!nl_table[unit].registered) { 2059 nl_table[unit].groups = groups; 2060 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2061 nl_table[unit].cb_mutex = cb_mutex; 2062 nl_table[unit].module = module; 2063 if (cfg) { 2064 nl_table[unit].bind = cfg->bind; 2065 nl_table[unit].unbind = cfg->unbind; 2066 nl_table[unit].release = cfg->release; 2067 nl_table[unit].flags = cfg->flags; 2068 } 2069 nl_table[unit].registered = 1; 2070 } else { 2071 kfree(listeners); 2072 nl_table[unit].registered++; 2073 } 2074 netlink_table_ungrab(); 2075 return sk; 2076 2077 out_sock_release: 2078 kfree(listeners); 2079 netlink_kernel_release(sk); 2080 return NULL; 2081 2082 out_sock_release_nosk: 2083 sock_release(sock); 2084 return NULL; 2085 } 2086 EXPORT_SYMBOL(__netlink_kernel_create); 2087 2088 void 2089 netlink_kernel_release(struct sock *sk) 2090 { 2091 if (sk == NULL || sk->sk_socket == NULL) 2092 return; 2093 2094 sock_release(sk->sk_socket); 2095 } 2096 EXPORT_SYMBOL(netlink_kernel_release); 2097 2098 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2099 { 2100 struct listeners *new, *old; 2101 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2102 2103 if (groups < 32) 2104 groups = 32; 2105 2106 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2107 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2108 if (!new) 2109 return -ENOMEM; 2110 old = nl_deref_protected(tbl->listeners); 2111 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2112 rcu_assign_pointer(tbl->listeners, new); 2113 2114 kfree_rcu(old, rcu); 2115 } 2116 tbl->groups = groups; 2117 2118 return 0; 2119 } 2120 2121 /** 2122 * netlink_change_ngroups - change number of multicast groups 2123 * 2124 * This changes the number of multicast groups that are available 2125 * on a certain netlink family. Note that it is not possible to 2126 * change the number of groups to below 32. Also note that it does 2127 * not implicitly call netlink_clear_multicast_users() when the 2128 * number of groups is reduced. 2129 * 2130 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2131 * @groups: The new number of groups. 2132 */ 2133 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2134 { 2135 int err; 2136 2137 netlink_table_grab(); 2138 err = __netlink_change_ngroups(sk, groups); 2139 netlink_table_ungrab(); 2140 2141 return err; 2142 } 2143 2144 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2145 { 2146 struct sock *sk; 2147 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2148 2149 sk_for_each_bound(sk, &tbl->mc_list) 2150 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2151 } 2152 2153 struct nlmsghdr * 2154 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2155 { 2156 struct nlmsghdr *nlh; 2157 int size = nlmsg_msg_size(len); 2158 2159 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2160 nlh->nlmsg_type = type; 2161 nlh->nlmsg_len = size; 2162 nlh->nlmsg_flags = flags; 2163 nlh->nlmsg_pid = portid; 2164 nlh->nlmsg_seq = seq; 2165 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2166 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2167 return nlh; 2168 } 2169 EXPORT_SYMBOL(__nlmsg_put); 2170 2171 /* 2172 * It looks a bit ugly. 2173 * It would be better to create kernel thread. 2174 */ 2175 2176 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2177 struct netlink_callback *cb, 2178 struct netlink_ext_ack *extack) 2179 { 2180 struct nlmsghdr *nlh; 2181 2182 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2183 NLM_F_MULTI | cb->answer_flags); 2184 if (WARN_ON(!nlh)) 2185 return -ENOBUFS; 2186 2187 nl_dump_check_consistent(cb, nlh); 2188 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2189 2190 if (extack->_msg && test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) { 2191 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2192 if (!nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)) 2193 nlmsg_end(skb, nlh); 2194 } 2195 2196 return 0; 2197 } 2198 2199 static int netlink_dump(struct sock *sk) 2200 { 2201 struct netlink_sock *nlk = nlk_sk(sk); 2202 struct netlink_ext_ack extack = {}; 2203 struct netlink_callback *cb; 2204 struct sk_buff *skb = NULL; 2205 size_t max_recvmsg_len; 2206 struct module *module; 2207 int err = -ENOBUFS; 2208 int alloc_min_size; 2209 int alloc_size; 2210 2211 mutex_lock(nlk->cb_mutex); 2212 if (!nlk->cb_running) { 2213 err = -EINVAL; 2214 goto errout_skb; 2215 } 2216 2217 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2218 goto errout_skb; 2219 2220 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2221 * required, but it makes sense to _attempt_ a 16K bytes allocation 2222 * to reduce number of system calls on dump operations, if user 2223 * ever provided a big enough buffer. 2224 */ 2225 cb = &nlk->cb; 2226 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2227 2228 max_recvmsg_len = READ_ONCE(nlk->max_recvmsg_len); 2229 if (alloc_min_size < max_recvmsg_len) { 2230 alloc_size = max_recvmsg_len; 2231 skb = alloc_skb(alloc_size, 2232 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2233 __GFP_NOWARN | __GFP_NORETRY); 2234 } 2235 if (!skb) { 2236 alloc_size = alloc_min_size; 2237 skb = alloc_skb(alloc_size, GFP_KERNEL); 2238 } 2239 if (!skb) 2240 goto errout_skb; 2241 2242 /* Trim skb to allocated size. User is expected to provide buffer as 2243 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2244 * netlink_recvmsg())). dump will pack as many smaller messages as 2245 * could fit within the allocated skb. skb is typically allocated 2246 * with larger space than required (could be as much as near 2x the 2247 * requested size with align to next power of 2 approach). Allowing 2248 * dump to use the excess space makes it difficult for a user to have a 2249 * reasonable static buffer based on the expected largest dump of a 2250 * single netdev. The outcome is MSG_TRUNC error. 2251 */ 2252 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2253 2254 /* Make sure malicious BPF programs can not read unitialized memory 2255 * from skb->head -> skb->data 2256 */ 2257 skb_reset_network_header(skb); 2258 skb_reset_mac_header(skb); 2259 2260 netlink_skb_set_owner_r(skb, sk); 2261 2262 if (nlk->dump_done_errno > 0) { 2263 cb->extack = &extack; 2264 nlk->dump_done_errno = cb->dump(skb, cb); 2265 cb->extack = NULL; 2266 } 2267 2268 if (nlk->dump_done_errno > 0 || 2269 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2270 mutex_unlock(nlk->cb_mutex); 2271 2272 if (sk_filter(sk, skb)) 2273 kfree_skb(skb); 2274 else 2275 __netlink_sendskb(sk, skb); 2276 return 0; 2277 } 2278 2279 if (netlink_dump_done(nlk, skb, cb, &extack)) 2280 goto errout_skb; 2281 2282 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2283 /* frag_list skb's data is used for compat tasks 2284 * and the regular skb's data for normal (non-compat) tasks. 2285 * See netlink_recvmsg(). 2286 */ 2287 if (unlikely(skb_shinfo(skb)->frag_list)) { 2288 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2289 goto errout_skb; 2290 } 2291 #endif 2292 2293 if (sk_filter(sk, skb)) 2294 kfree_skb(skb); 2295 else 2296 __netlink_sendskb(sk, skb); 2297 2298 if (cb->done) 2299 cb->done(cb); 2300 2301 WRITE_ONCE(nlk->cb_running, false); 2302 module = cb->module; 2303 skb = cb->skb; 2304 mutex_unlock(nlk->cb_mutex); 2305 module_put(module); 2306 consume_skb(skb); 2307 return 0; 2308 2309 errout_skb: 2310 mutex_unlock(nlk->cb_mutex); 2311 kfree_skb(skb); 2312 return err; 2313 } 2314 2315 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2316 const struct nlmsghdr *nlh, 2317 struct netlink_dump_control *control) 2318 { 2319 struct netlink_callback *cb; 2320 struct netlink_sock *nlk; 2321 struct sock *sk; 2322 int ret; 2323 2324 refcount_inc(&skb->users); 2325 2326 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2327 if (sk == NULL) { 2328 ret = -ECONNREFUSED; 2329 goto error_free; 2330 } 2331 2332 nlk = nlk_sk(sk); 2333 mutex_lock(nlk->cb_mutex); 2334 /* A dump is in progress... */ 2335 if (nlk->cb_running) { 2336 ret = -EBUSY; 2337 goto error_unlock; 2338 } 2339 /* add reference of module which cb->dump belongs to */ 2340 if (!try_module_get(control->module)) { 2341 ret = -EPROTONOSUPPORT; 2342 goto error_unlock; 2343 } 2344 2345 cb = &nlk->cb; 2346 memset(cb, 0, sizeof(*cb)); 2347 cb->dump = control->dump; 2348 cb->done = control->done; 2349 cb->nlh = nlh; 2350 cb->data = control->data; 2351 cb->module = control->module; 2352 cb->min_dump_alloc = control->min_dump_alloc; 2353 cb->skb = skb; 2354 2355 cb->strict_check = nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 2356 2357 if (control->start) { 2358 cb->extack = control->extack; 2359 ret = control->start(cb); 2360 cb->extack = NULL; 2361 if (ret) 2362 goto error_put; 2363 } 2364 2365 WRITE_ONCE(nlk->cb_running, true); 2366 nlk->dump_done_errno = INT_MAX; 2367 2368 mutex_unlock(nlk->cb_mutex); 2369 2370 ret = netlink_dump(sk); 2371 2372 sock_put(sk); 2373 2374 if (ret) 2375 return ret; 2376 2377 /* We successfully started a dump, by returning -EINTR we 2378 * signal not to send ACK even if it was requested. 2379 */ 2380 return -EINTR; 2381 2382 error_put: 2383 module_put(control->module); 2384 error_unlock: 2385 sock_put(sk); 2386 mutex_unlock(nlk->cb_mutex); 2387 error_free: 2388 kfree_skb(skb); 2389 return ret; 2390 } 2391 EXPORT_SYMBOL(__netlink_dump_start); 2392 2393 static size_t 2394 netlink_ack_tlv_len(struct netlink_sock *nlk, int err, 2395 const struct netlink_ext_ack *extack) 2396 { 2397 size_t tlvlen; 2398 2399 if (!extack || !test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) 2400 return 0; 2401 2402 tlvlen = 0; 2403 if (extack->_msg) 2404 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2405 if (extack->cookie_len) 2406 tlvlen += nla_total_size(extack->cookie_len); 2407 2408 /* Following attributes are only reported as error (not warning) */ 2409 if (!err) 2410 return tlvlen; 2411 2412 if (extack->bad_attr) 2413 tlvlen += nla_total_size(sizeof(u32)); 2414 if (extack->policy) 2415 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2416 if (extack->miss_type) 2417 tlvlen += nla_total_size(sizeof(u32)); 2418 if (extack->miss_nest) 2419 tlvlen += nla_total_size(sizeof(u32)); 2420 2421 return tlvlen; 2422 } 2423 2424 static void 2425 netlink_ack_tlv_fill(struct sk_buff *in_skb, struct sk_buff *skb, 2426 struct nlmsghdr *nlh, int err, 2427 const struct netlink_ext_ack *extack) 2428 { 2429 if (extack->_msg) 2430 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)); 2431 if (extack->cookie_len) 2432 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2433 extack->cookie_len, extack->cookie)); 2434 2435 if (!err) 2436 return; 2437 2438 if (extack->bad_attr && 2439 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2440 (u8 *)extack->bad_attr >= in_skb->data + in_skb->len)) 2441 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2442 (u8 *)extack->bad_attr - (u8 *)nlh)); 2443 if (extack->policy) 2444 netlink_policy_dump_write_attr(skb, extack->policy, 2445 NLMSGERR_ATTR_POLICY); 2446 if (extack->miss_type) 2447 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_TYPE, 2448 extack->miss_type)); 2449 if (extack->miss_nest && 2450 !WARN_ON((u8 *)extack->miss_nest < in_skb->data || 2451 (u8 *)extack->miss_nest > in_skb->data + in_skb->len)) 2452 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_NEST, 2453 (u8 *)extack->miss_nest - (u8 *)nlh)); 2454 } 2455 2456 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2457 const struct netlink_ext_ack *extack) 2458 { 2459 struct sk_buff *skb; 2460 struct nlmsghdr *rep; 2461 struct nlmsgerr *errmsg; 2462 size_t payload = sizeof(*errmsg); 2463 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2464 unsigned int flags = 0; 2465 size_t tlvlen; 2466 2467 /* Error messages get the original request appened, unless the user 2468 * requests to cap the error message, and get extra error data if 2469 * requested. 2470 */ 2471 if (err && !test_bit(NETLINK_F_CAP_ACK, &nlk->flags)) 2472 payload += nlmsg_len(nlh); 2473 else 2474 flags |= NLM_F_CAPPED; 2475 2476 tlvlen = netlink_ack_tlv_len(nlk, err, extack); 2477 if (tlvlen) 2478 flags |= NLM_F_ACK_TLVS; 2479 2480 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2481 if (!skb) 2482 goto err_skb; 2483 2484 rep = nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2485 NLMSG_ERROR, sizeof(*errmsg), flags); 2486 if (!rep) 2487 goto err_bad_put; 2488 errmsg = nlmsg_data(rep); 2489 errmsg->error = err; 2490 errmsg->msg = *nlh; 2491 2492 if (!(flags & NLM_F_CAPPED)) { 2493 if (!nlmsg_append(skb, nlmsg_len(nlh))) 2494 goto err_bad_put; 2495 2496 memcpy(nlmsg_data(&errmsg->msg), nlmsg_data(nlh), 2497 nlmsg_len(nlh)); 2498 } 2499 2500 if (tlvlen) 2501 netlink_ack_tlv_fill(in_skb, skb, nlh, err, extack); 2502 2503 nlmsg_end(skb, rep); 2504 2505 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2506 2507 return; 2508 2509 err_bad_put: 2510 nlmsg_free(skb); 2511 err_skb: 2512 WRITE_ONCE(NETLINK_CB(in_skb).sk->sk_err, ENOBUFS); 2513 sk_error_report(NETLINK_CB(in_skb).sk); 2514 } 2515 EXPORT_SYMBOL(netlink_ack); 2516 2517 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2518 struct nlmsghdr *, 2519 struct netlink_ext_ack *)) 2520 { 2521 struct netlink_ext_ack extack; 2522 struct nlmsghdr *nlh; 2523 int err; 2524 2525 while (skb->len >= nlmsg_total_size(0)) { 2526 int msglen; 2527 2528 memset(&extack, 0, sizeof(extack)); 2529 nlh = nlmsg_hdr(skb); 2530 err = 0; 2531 2532 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2533 return 0; 2534 2535 /* Only requests are handled by the kernel */ 2536 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2537 goto ack; 2538 2539 /* Skip control messages */ 2540 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2541 goto ack; 2542 2543 err = cb(skb, nlh, &extack); 2544 if (err == -EINTR) 2545 goto skip; 2546 2547 ack: 2548 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2549 netlink_ack(skb, nlh, err, &extack); 2550 2551 skip: 2552 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2553 if (msglen > skb->len) 2554 msglen = skb->len; 2555 skb_pull(skb, msglen); 2556 } 2557 2558 return 0; 2559 } 2560 EXPORT_SYMBOL(netlink_rcv_skb); 2561 2562 /** 2563 * nlmsg_notify - send a notification netlink message 2564 * @sk: netlink socket to use 2565 * @skb: notification message 2566 * @portid: destination netlink portid for reports or 0 2567 * @group: destination multicast group or 0 2568 * @report: 1 to report back, 0 to disable 2569 * @flags: allocation flags 2570 */ 2571 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2572 unsigned int group, int report, gfp_t flags) 2573 { 2574 int err = 0; 2575 2576 if (group) { 2577 int exclude_portid = 0; 2578 2579 if (report) { 2580 refcount_inc(&skb->users); 2581 exclude_portid = portid; 2582 } 2583 2584 /* errors reported via destination sk->sk_err, but propagate 2585 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2586 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2587 if (err == -ESRCH) 2588 err = 0; 2589 } 2590 2591 if (report) { 2592 int err2; 2593 2594 err2 = nlmsg_unicast(sk, skb, portid); 2595 if (!err) 2596 err = err2; 2597 } 2598 2599 return err; 2600 } 2601 EXPORT_SYMBOL(nlmsg_notify); 2602 2603 #ifdef CONFIG_PROC_FS 2604 struct nl_seq_iter { 2605 struct seq_net_private p; 2606 struct rhashtable_iter hti; 2607 int link; 2608 }; 2609 2610 static void netlink_walk_start(struct nl_seq_iter *iter) 2611 { 2612 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2613 rhashtable_walk_start(&iter->hti); 2614 } 2615 2616 static void netlink_walk_stop(struct nl_seq_iter *iter) 2617 { 2618 rhashtable_walk_stop(&iter->hti); 2619 rhashtable_walk_exit(&iter->hti); 2620 } 2621 2622 static void *__netlink_seq_next(struct seq_file *seq) 2623 { 2624 struct nl_seq_iter *iter = seq->private; 2625 struct netlink_sock *nlk; 2626 2627 do { 2628 for (;;) { 2629 nlk = rhashtable_walk_next(&iter->hti); 2630 2631 if (IS_ERR(nlk)) { 2632 if (PTR_ERR(nlk) == -EAGAIN) 2633 continue; 2634 2635 return nlk; 2636 } 2637 2638 if (nlk) 2639 break; 2640 2641 netlink_walk_stop(iter); 2642 if (++iter->link >= MAX_LINKS) 2643 return NULL; 2644 2645 netlink_walk_start(iter); 2646 } 2647 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2648 2649 return nlk; 2650 } 2651 2652 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2653 __acquires(RCU) 2654 { 2655 struct nl_seq_iter *iter = seq->private; 2656 void *obj = SEQ_START_TOKEN; 2657 loff_t pos; 2658 2659 iter->link = 0; 2660 2661 netlink_walk_start(iter); 2662 2663 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2664 obj = __netlink_seq_next(seq); 2665 2666 return obj; 2667 } 2668 2669 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2670 { 2671 ++*pos; 2672 return __netlink_seq_next(seq); 2673 } 2674 2675 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2676 { 2677 struct nl_seq_iter *iter = seq->private; 2678 2679 if (iter->link >= MAX_LINKS) 2680 return; 2681 2682 netlink_walk_stop(iter); 2683 } 2684 2685 2686 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2687 { 2688 if (v == SEQ_START_TOKEN) { 2689 seq_puts(seq, 2690 "sk Eth Pid Groups " 2691 "Rmem Wmem Dump Locks Drops Inode\n"); 2692 } else { 2693 struct sock *s = v; 2694 struct netlink_sock *nlk = nlk_sk(s); 2695 2696 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2697 s, 2698 s->sk_protocol, 2699 nlk->portid, 2700 nlk->groups ? (u32)nlk->groups[0] : 0, 2701 sk_rmem_alloc_get(s), 2702 sk_wmem_alloc_get(s), 2703 READ_ONCE(nlk->cb_running), 2704 refcount_read(&s->sk_refcnt), 2705 atomic_read(&s->sk_drops), 2706 sock_i_ino(s) 2707 ); 2708 2709 } 2710 return 0; 2711 } 2712 2713 #ifdef CONFIG_BPF_SYSCALL 2714 struct bpf_iter__netlink { 2715 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2716 __bpf_md_ptr(struct netlink_sock *, sk); 2717 }; 2718 2719 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2720 2721 static int netlink_prog_seq_show(struct bpf_prog *prog, 2722 struct bpf_iter_meta *meta, 2723 void *v) 2724 { 2725 struct bpf_iter__netlink ctx; 2726 2727 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2728 ctx.meta = meta; 2729 ctx.sk = nlk_sk((struct sock *)v); 2730 return bpf_iter_run_prog(prog, &ctx); 2731 } 2732 2733 static int netlink_seq_show(struct seq_file *seq, void *v) 2734 { 2735 struct bpf_iter_meta meta; 2736 struct bpf_prog *prog; 2737 2738 meta.seq = seq; 2739 prog = bpf_iter_get_info(&meta, false); 2740 if (!prog) 2741 return netlink_native_seq_show(seq, v); 2742 2743 if (v != SEQ_START_TOKEN) 2744 return netlink_prog_seq_show(prog, &meta, v); 2745 2746 return 0; 2747 } 2748 2749 static void netlink_seq_stop(struct seq_file *seq, void *v) 2750 { 2751 struct bpf_iter_meta meta; 2752 struct bpf_prog *prog; 2753 2754 if (!v) { 2755 meta.seq = seq; 2756 prog = bpf_iter_get_info(&meta, true); 2757 if (prog) 2758 (void)netlink_prog_seq_show(prog, &meta, v); 2759 } 2760 2761 netlink_native_seq_stop(seq, v); 2762 } 2763 #else 2764 static int netlink_seq_show(struct seq_file *seq, void *v) 2765 { 2766 return netlink_native_seq_show(seq, v); 2767 } 2768 2769 static void netlink_seq_stop(struct seq_file *seq, void *v) 2770 { 2771 netlink_native_seq_stop(seq, v); 2772 } 2773 #endif 2774 2775 static const struct seq_operations netlink_seq_ops = { 2776 .start = netlink_seq_start, 2777 .next = netlink_seq_next, 2778 .stop = netlink_seq_stop, 2779 .show = netlink_seq_show, 2780 }; 2781 #endif 2782 2783 int netlink_register_notifier(struct notifier_block *nb) 2784 { 2785 return blocking_notifier_chain_register(&netlink_chain, nb); 2786 } 2787 EXPORT_SYMBOL(netlink_register_notifier); 2788 2789 int netlink_unregister_notifier(struct notifier_block *nb) 2790 { 2791 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2792 } 2793 EXPORT_SYMBOL(netlink_unregister_notifier); 2794 2795 static const struct proto_ops netlink_ops = { 2796 .family = PF_NETLINK, 2797 .owner = THIS_MODULE, 2798 .release = netlink_release, 2799 .bind = netlink_bind, 2800 .connect = netlink_connect, 2801 .socketpair = sock_no_socketpair, 2802 .accept = sock_no_accept, 2803 .getname = netlink_getname, 2804 .poll = datagram_poll, 2805 .ioctl = netlink_ioctl, 2806 .listen = sock_no_listen, 2807 .shutdown = sock_no_shutdown, 2808 .setsockopt = netlink_setsockopt, 2809 .getsockopt = netlink_getsockopt, 2810 .sendmsg = netlink_sendmsg, 2811 .recvmsg = netlink_recvmsg, 2812 .mmap = sock_no_mmap, 2813 }; 2814 2815 static const struct net_proto_family netlink_family_ops = { 2816 .family = PF_NETLINK, 2817 .create = netlink_create, 2818 .owner = THIS_MODULE, /* for consistency 8) */ 2819 }; 2820 2821 static int __net_init netlink_net_init(struct net *net) 2822 { 2823 #ifdef CONFIG_PROC_FS 2824 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2825 sizeof(struct nl_seq_iter))) 2826 return -ENOMEM; 2827 #endif 2828 return 0; 2829 } 2830 2831 static void __net_exit netlink_net_exit(struct net *net) 2832 { 2833 #ifdef CONFIG_PROC_FS 2834 remove_proc_entry("netlink", net->proc_net); 2835 #endif 2836 } 2837 2838 static void __init netlink_add_usersock_entry(void) 2839 { 2840 struct listeners *listeners; 2841 int groups = 32; 2842 2843 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2844 if (!listeners) 2845 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2846 2847 netlink_table_grab(); 2848 2849 nl_table[NETLINK_USERSOCK].groups = groups; 2850 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2851 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2852 nl_table[NETLINK_USERSOCK].registered = 1; 2853 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2854 2855 netlink_table_ungrab(); 2856 } 2857 2858 static struct pernet_operations __net_initdata netlink_net_ops = { 2859 .init = netlink_net_init, 2860 .exit = netlink_net_exit, 2861 }; 2862 2863 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2864 { 2865 const struct netlink_sock *nlk = data; 2866 struct netlink_compare_arg arg; 2867 2868 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2869 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2870 } 2871 2872 static const struct rhashtable_params netlink_rhashtable_params = { 2873 .head_offset = offsetof(struct netlink_sock, node), 2874 .key_len = netlink_compare_arg_len, 2875 .obj_hashfn = netlink_hash, 2876 .obj_cmpfn = netlink_compare, 2877 .automatic_shrinking = true, 2878 }; 2879 2880 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2881 BTF_ID_LIST(btf_netlink_sock_id) 2882 BTF_ID(struct, netlink_sock) 2883 2884 static const struct bpf_iter_seq_info netlink_seq_info = { 2885 .seq_ops = &netlink_seq_ops, 2886 .init_seq_private = bpf_iter_init_seq_net, 2887 .fini_seq_private = bpf_iter_fini_seq_net, 2888 .seq_priv_size = sizeof(struct nl_seq_iter), 2889 }; 2890 2891 static struct bpf_iter_reg netlink_reg_info = { 2892 .target = "netlink", 2893 .ctx_arg_info_size = 1, 2894 .ctx_arg_info = { 2895 { offsetof(struct bpf_iter__netlink, sk), 2896 PTR_TO_BTF_ID_OR_NULL }, 2897 }, 2898 .seq_info = &netlink_seq_info, 2899 }; 2900 2901 static int __init bpf_iter_register(void) 2902 { 2903 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2904 return bpf_iter_reg_target(&netlink_reg_info); 2905 } 2906 #endif 2907 2908 static int __init netlink_proto_init(void) 2909 { 2910 int i; 2911 int err = proto_register(&netlink_proto, 0); 2912 2913 if (err != 0) 2914 goto out; 2915 2916 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2917 err = bpf_iter_register(); 2918 if (err) 2919 goto out; 2920 #endif 2921 2922 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2923 2924 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2925 if (!nl_table) 2926 goto panic; 2927 2928 for (i = 0; i < MAX_LINKS; i++) { 2929 if (rhashtable_init(&nl_table[i].hash, 2930 &netlink_rhashtable_params) < 0) { 2931 while (--i > 0) 2932 rhashtable_destroy(&nl_table[i].hash); 2933 kfree(nl_table); 2934 goto panic; 2935 } 2936 } 2937 2938 netlink_add_usersock_entry(); 2939 2940 sock_register(&netlink_family_ops); 2941 register_pernet_subsys(&netlink_net_ops); 2942 register_pernet_subsys(&netlink_tap_net_ops); 2943 /* The netlink device handler may be needed early. */ 2944 rtnetlink_init(); 2945 out: 2946 return err; 2947 panic: 2948 panic("netlink_init: Cannot allocate nl_table\n"); 2949 } 2950 2951 core_initcall(netlink_proto_init); 2952