1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NETLINK Kernel-user communication protocol. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * Patrick McHardy <kaber@trash.net> 8 * 9 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 10 * added netlink_proto_exit 11 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 12 * use nlk_sk, as sk->protinfo is on a diet 8) 13 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 14 * - inc module use count of module that owns 15 * the kernel socket in case userspace opens 16 * socket of same protocol 17 * - remove all module support, since netlink is 18 * mandatory if CONFIG_NET=y these days 19 */ 20 21 #include <linux/module.h> 22 23 #include <linux/bpf.h> 24 #include <linux/capability.h> 25 #include <linux/kernel.h> 26 #include <linux/filter.h> 27 #include <linux/init.h> 28 #include <linux/signal.h> 29 #include <linux/sched.h> 30 #include <linux/errno.h> 31 #include <linux/string.h> 32 #include <linux/stat.h> 33 #include <linux/socket.h> 34 #include <linux/un.h> 35 #include <linux/fcntl.h> 36 #include <linux/termios.h> 37 #include <linux/sockios.h> 38 #include <linux/net.h> 39 #include <linux/fs.h> 40 #include <linux/slab.h> 41 #include <linux/uaccess.h> 42 #include <linux/skbuff.h> 43 #include <linux/netdevice.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/proc_fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/notifier.h> 48 #include <linux/security.h> 49 #include <linux/jhash.h> 50 #include <linux/jiffies.h> 51 #include <linux/random.h> 52 #include <linux/bitops.h> 53 #include <linux/mm.h> 54 #include <linux/types.h> 55 #include <linux/audit.h> 56 #include <linux/mutex.h> 57 #include <linux/vmalloc.h> 58 #include <linux/if_arp.h> 59 #include <linux/rhashtable.h> 60 #include <asm/cacheflush.h> 61 #include <linux/hash.h> 62 #include <linux/net_namespace.h> 63 #include <linux/nospec.h> 64 #include <linux/btf_ids.h> 65 66 #include <net/net_namespace.h> 67 #include <net/netns/generic.h> 68 #include <net/sock.h> 69 #include <net/scm.h> 70 #include <net/netlink.h> 71 #define CREATE_TRACE_POINTS 72 #include <trace/events/netlink.h> 73 74 #include "af_netlink.h" 75 #include "genetlink.h" 76 77 struct listeners { 78 struct rcu_head rcu; 79 unsigned long masks[]; 80 }; 81 82 /* state bits */ 83 #define NETLINK_S_CONGESTED 0x0 84 85 static inline int netlink_is_kernel(struct sock *sk) 86 { 87 return nlk_test_bit(KERNEL_SOCKET, sk); 88 } 89 90 struct netlink_table *nl_table __read_mostly; 91 EXPORT_SYMBOL_GPL(nl_table); 92 93 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 94 95 static struct lock_class_key nlk_cb_mutex_keys[MAX_LINKS]; 96 97 static const char *const nlk_cb_mutex_key_strings[MAX_LINKS + 1] = { 98 "nlk_cb_mutex-ROUTE", 99 "nlk_cb_mutex-1", 100 "nlk_cb_mutex-USERSOCK", 101 "nlk_cb_mutex-FIREWALL", 102 "nlk_cb_mutex-SOCK_DIAG", 103 "nlk_cb_mutex-NFLOG", 104 "nlk_cb_mutex-XFRM", 105 "nlk_cb_mutex-SELINUX", 106 "nlk_cb_mutex-ISCSI", 107 "nlk_cb_mutex-AUDIT", 108 "nlk_cb_mutex-FIB_LOOKUP", 109 "nlk_cb_mutex-CONNECTOR", 110 "nlk_cb_mutex-NETFILTER", 111 "nlk_cb_mutex-IP6_FW", 112 "nlk_cb_mutex-DNRTMSG", 113 "nlk_cb_mutex-KOBJECT_UEVENT", 114 "nlk_cb_mutex-GENERIC", 115 "nlk_cb_mutex-17", 116 "nlk_cb_mutex-SCSITRANSPORT", 117 "nlk_cb_mutex-ECRYPTFS", 118 "nlk_cb_mutex-RDMA", 119 "nlk_cb_mutex-CRYPTO", 120 "nlk_cb_mutex-SMC", 121 "nlk_cb_mutex-23", 122 "nlk_cb_mutex-24", 123 "nlk_cb_mutex-25", 124 "nlk_cb_mutex-26", 125 "nlk_cb_mutex-27", 126 "nlk_cb_mutex-28", 127 "nlk_cb_mutex-29", 128 "nlk_cb_mutex-30", 129 "nlk_cb_mutex-31", 130 "nlk_cb_mutex-MAX_LINKS" 131 }; 132 133 static int netlink_dump(struct sock *sk, bool lock_taken); 134 135 /* nl_table locking explained: 136 * Lookup and traversal are protected with an RCU read-side lock. Insertion 137 * and removal are protected with per bucket lock while using RCU list 138 * modification primitives and may run in parallel to RCU protected lookups. 139 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 140 * been acquired * either during or after the socket has been removed from 141 * the list and after an RCU grace period. 142 */ 143 DEFINE_RWLOCK(nl_table_lock); 144 EXPORT_SYMBOL_GPL(nl_table_lock); 145 static atomic_t nl_table_users = ATOMIC_INIT(0); 146 147 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 148 149 static BLOCKING_NOTIFIER_HEAD(netlink_chain); 150 151 152 static const struct rhashtable_params netlink_rhashtable_params; 153 154 void do_trace_netlink_extack(const char *msg) 155 { 156 trace_netlink_extack(msg); 157 } 158 EXPORT_SYMBOL(do_trace_netlink_extack); 159 160 static inline u32 netlink_group_mask(u32 group) 161 { 162 if (group > 32) 163 return 0; 164 return group ? 1 << (group - 1) : 0; 165 } 166 167 static struct sk_buff *netlink_to_full_skb(const struct sk_buff *skb, 168 gfp_t gfp_mask) 169 { 170 unsigned int len = skb->len; 171 struct sk_buff *new; 172 173 new = alloc_skb(len, gfp_mask); 174 if (new == NULL) 175 return NULL; 176 177 NETLINK_CB(new).portid = NETLINK_CB(skb).portid; 178 NETLINK_CB(new).dst_group = NETLINK_CB(skb).dst_group; 179 NETLINK_CB(new).creds = NETLINK_CB(skb).creds; 180 181 skb_put_data(new, skb->data, len); 182 return new; 183 } 184 185 static unsigned int netlink_tap_net_id; 186 187 struct netlink_tap_net { 188 struct list_head netlink_tap_all; 189 struct mutex netlink_tap_lock; 190 }; 191 192 int netlink_add_tap(struct netlink_tap *nt) 193 { 194 struct net *net = dev_net(nt->dev); 195 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 196 197 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 198 return -EINVAL; 199 200 mutex_lock(&nn->netlink_tap_lock); 201 list_add_rcu(&nt->list, &nn->netlink_tap_all); 202 mutex_unlock(&nn->netlink_tap_lock); 203 204 __module_get(nt->module); 205 206 return 0; 207 } 208 EXPORT_SYMBOL_GPL(netlink_add_tap); 209 210 static int __netlink_remove_tap(struct netlink_tap *nt) 211 { 212 struct net *net = dev_net(nt->dev); 213 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 214 bool found = false; 215 struct netlink_tap *tmp; 216 217 mutex_lock(&nn->netlink_tap_lock); 218 219 list_for_each_entry(tmp, &nn->netlink_tap_all, list) { 220 if (nt == tmp) { 221 list_del_rcu(&nt->list); 222 found = true; 223 goto out; 224 } 225 } 226 227 pr_warn("__netlink_remove_tap: %p not found\n", nt); 228 out: 229 mutex_unlock(&nn->netlink_tap_lock); 230 231 if (found) 232 module_put(nt->module); 233 234 return found ? 0 : -ENODEV; 235 } 236 237 int netlink_remove_tap(struct netlink_tap *nt) 238 { 239 int ret; 240 241 ret = __netlink_remove_tap(nt); 242 synchronize_net(); 243 244 return ret; 245 } 246 EXPORT_SYMBOL_GPL(netlink_remove_tap); 247 248 static __net_init int netlink_tap_init_net(struct net *net) 249 { 250 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 251 252 INIT_LIST_HEAD(&nn->netlink_tap_all); 253 mutex_init(&nn->netlink_tap_lock); 254 return 0; 255 } 256 257 static struct pernet_operations netlink_tap_net_ops = { 258 .init = netlink_tap_init_net, 259 .id = &netlink_tap_net_id, 260 .size = sizeof(struct netlink_tap_net), 261 }; 262 263 static bool netlink_filter_tap(const struct sk_buff *skb) 264 { 265 struct sock *sk = skb->sk; 266 267 /* We take the more conservative approach and 268 * whitelist socket protocols that may pass. 269 */ 270 switch (sk->sk_protocol) { 271 case NETLINK_ROUTE: 272 case NETLINK_USERSOCK: 273 case NETLINK_SOCK_DIAG: 274 case NETLINK_NFLOG: 275 case NETLINK_XFRM: 276 case NETLINK_FIB_LOOKUP: 277 case NETLINK_NETFILTER: 278 case NETLINK_GENERIC: 279 return true; 280 } 281 282 return false; 283 } 284 285 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 286 struct net_device *dev) 287 { 288 struct sk_buff *nskb; 289 struct sock *sk = skb->sk; 290 int ret = -ENOMEM; 291 292 if (!net_eq(dev_net(dev), sock_net(sk))) 293 return 0; 294 295 dev_hold(dev); 296 297 if (is_vmalloc_addr(skb->head)) 298 nskb = netlink_to_full_skb(skb, GFP_ATOMIC); 299 else 300 nskb = skb_clone(skb, GFP_ATOMIC); 301 if (nskb) { 302 nskb->dev = dev; 303 nskb->protocol = htons((u16) sk->sk_protocol); 304 nskb->pkt_type = netlink_is_kernel(sk) ? 305 PACKET_KERNEL : PACKET_USER; 306 skb_reset_network_header(nskb); 307 ret = dev_queue_xmit(nskb); 308 if (unlikely(ret > 0)) 309 ret = net_xmit_errno(ret); 310 } 311 312 dev_put(dev); 313 return ret; 314 } 315 316 static void __netlink_deliver_tap(struct sk_buff *skb, struct netlink_tap_net *nn) 317 { 318 int ret; 319 struct netlink_tap *tmp; 320 321 if (!netlink_filter_tap(skb)) 322 return; 323 324 list_for_each_entry_rcu(tmp, &nn->netlink_tap_all, list) { 325 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 326 if (unlikely(ret)) 327 break; 328 } 329 } 330 331 static void netlink_deliver_tap(struct net *net, struct sk_buff *skb) 332 { 333 struct netlink_tap_net *nn = net_generic(net, netlink_tap_net_id); 334 335 rcu_read_lock(); 336 337 if (unlikely(!list_empty(&nn->netlink_tap_all))) 338 __netlink_deliver_tap(skb, nn); 339 340 rcu_read_unlock(); 341 } 342 343 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 344 struct sk_buff *skb) 345 { 346 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 347 netlink_deliver_tap(sock_net(dst), skb); 348 } 349 350 static void netlink_overrun(struct sock *sk) 351 { 352 if (!nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 353 if (!test_and_set_bit(NETLINK_S_CONGESTED, 354 &nlk_sk(sk)->state)) { 355 WRITE_ONCE(sk->sk_err, ENOBUFS); 356 sk_error_report(sk); 357 } 358 } 359 atomic_inc(&sk->sk_drops); 360 } 361 362 static void netlink_rcv_wake(struct sock *sk) 363 { 364 struct netlink_sock *nlk = nlk_sk(sk); 365 366 if (skb_queue_empty_lockless(&sk->sk_receive_queue)) 367 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 368 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 369 wake_up_interruptible(&nlk->wait); 370 } 371 372 static void netlink_skb_destructor(struct sk_buff *skb) 373 { 374 if (is_vmalloc_addr(skb->head)) { 375 if (!skb->cloned || 376 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 377 vfree_atomic(skb->head); 378 379 skb->head = NULL; 380 } 381 if (skb->sk != NULL) 382 sock_rfree(skb); 383 } 384 385 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 386 { 387 WARN_ON(skb->sk != NULL); 388 skb->sk = sk; 389 skb->destructor = netlink_skb_destructor; 390 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 391 sk_mem_charge(sk, skb->truesize); 392 } 393 394 static void netlink_sock_destruct(struct sock *sk) 395 { 396 skb_queue_purge(&sk->sk_receive_queue); 397 398 if (!sock_flag(sk, SOCK_DEAD)) { 399 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 400 return; 401 } 402 403 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 404 WARN_ON(refcount_read(&sk->sk_wmem_alloc)); 405 WARN_ON(nlk_sk(sk)->groups); 406 } 407 408 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 409 * SMP. Look, when several writers sleep and reader wakes them up, all but one 410 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 411 * this, _but_ remember, it adds useless work on UP machines. 412 */ 413 414 void netlink_table_grab(void) 415 __acquires(nl_table_lock) 416 { 417 might_sleep(); 418 419 write_lock_irq(&nl_table_lock); 420 421 if (atomic_read(&nl_table_users)) { 422 DECLARE_WAITQUEUE(wait, current); 423 424 add_wait_queue_exclusive(&nl_table_wait, &wait); 425 for (;;) { 426 set_current_state(TASK_UNINTERRUPTIBLE); 427 if (atomic_read(&nl_table_users) == 0) 428 break; 429 write_unlock_irq(&nl_table_lock); 430 schedule(); 431 write_lock_irq(&nl_table_lock); 432 } 433 434 __set_current_state(TASK_RUNNING); 435 remove_wait_queue(&nl_table_wait, &wait); 436 } 437 } 438 439 void netlink_table_ungrab(void) 440 __releases(nl_table_lock) 441 { 442 write_unlock_irq(&nl_table_lock); 443 wake_up(&nl_table_wait); 444 } 445 446 static inline void 447 netlink_lock_table(void) 448 { 449 unsigned long flags; 450 451 /* read_lock() synchronizes us to netlink_table_grab */ 452 453 read_lock_irqsave(&nl_table_lock, flags); 454 atomic_inc(&nl_table_users); 455 read_unlock_irqrestore(&nl_table_lock, flags); 456 } 457 458 static inline void 459 netlink_unlock_table(void) 460 { 461 if (atomic_dec_and_test(&nl_table_users)) 462 wake_up(&nl_table_wait); 463 } 464 465 struct netlink_compare_arg 466 { 467 possible_net_t pnet; 468 u32 portid; 469 }; 470 471 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 472 #define netlink_compare_arg_len \ 473 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 474 475 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 476 const void *ptr) 477 { 478 const struct netlink_compare_arg *x = arg->key; 479 const struct netlink_sock *nlk = ptr; 480 481 return nlk->portid != x->portid || 482 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 483 } 484 485 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 486 struct net *net, u32 portid) 487 { 488 memset(arg, 0, sizeof(*arg)); 489 write_pnet(&arg->pnet, net); 490 arg->portid = portid; 491 } 492 493 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 494 struct net *net) 495 { 496 struct netlink_compare_arg arg; 497 498 netlink_compare_arg_init(&arg, net, portid); 499 return rhashtable_lookup_fast(&table->hash, &arg, 500 netlink_rhashtable_params); 501 } 502 503 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 504 { 505 struct netlink_compare_arg arg; 506 507 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 508 return rhashtable_lookup_insert_key(&table->hash, &arg, 509 &nlk_sk(sk)->node, 510 netlink_rhashtable_params); 511 } 512 513 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 514 { 515 struct netlink_table *table = &nl_table[protocol]; 516 struct sock *sk; 517 518 rcu_read_lock(); 519 sk = __netlink_lookup(table, portid, net); 520 if (sk) 521 sock_hold(sk); 522 rcu_read_unlock(); 523 524 return sk; 525 } 526 527 static const struct proto_ops netlink_ops; 528 529 static void 530 netlink_update_listeners(struct sock *sk) 531 { 532 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 533 unsigned long mask; 534 unsigned int i; 535 struct listeners *listeners; 536 537 listeners = nl_deref_protected(tbl->listeners); 538 if (!listeners) 539 return; 540 541 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 542 mask = 0; 543 sk_for_each_bound(sk, &tbl->mc_list) { 544 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 545 mask |= nlk_sk(sk)->groups[i]; 546 } 547 listeners->masks[i] = mask; 548 } 549 /* this function is only called with the netlink table "grabbed", which 550 * makes sure updates are visible before bind or setsockopt return. */ 551 } 552 553 static int netlink_insert(struct sock *sk, u32 portid) 554 { 555 struct netlink_table *table = &nl_table[sk->sk_protocol]; 556 int err; 557 558 lock_sock(sk); 559 560 err = nlk_sk(sk)->portid == portid ? 0 : -EBUSY; 561 if (nlk_sk(sk)->bound) 562 goto err; 563 564 /* portid can be read locklessly from netlink_getname(). */ 565 WRITE_ONCE(nlk_sk(sk)->portid, portid); 566 567 sock_hold(sk); 568 569 err = __netlink_insert(table, sk); 570 if (err) { 571 /* In case the hashtable backend returns with -EBUSY 572 * from here, it must not escape to the caller. 573 */ 574 if (unlikely(err == -EBUSY)) 575 err = -EOVERFLOW; 576 if (err == -EEXIST) 577 err = -EADDRINUSE; 578 sock_put(sk); 579 goto err; 580 } 581 582 /* We need to ensure that the socket is hashed and visible. */ 583 smp_wmb(); 584 /* Paired with lockless reads from netlink_bind(), 585 * netlink_connect() and netlink_sendmsg(). 586 */ 587 WRITE_ONCE(nlk_sk(sk)->bound, portid); 588 589 err: 590 release_sock(sk); 591 return err; 592 } 593 594 static void netlink_remove(struct sock *sk) 595 { 596 struct netlink_table *table; 597 598 table = &nl_table[sk->sk_protocol]; 599 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 600 netlink_rhashtable_params)) { 601 WARN_ON(refcount_read(&sk->sk_refcnt) == 1); 602 __sock_put(sk); 603 } 604 605 netlink_table_grab(); 606 if (nlk_sk(sk)->subscriptions) { 607 __sk_del_bind_node(sk); 608 netlink_update_listeners(sk); 609 } 610 if (sk->sk_protocol == NETLINK_GENERIC) 611 atomic_inc(&genl_sk_destructing_cnt); 612 netlink_table_ungrab(); 613 } 614 615 static struct proto netlink_proto = { 616 .name = "NETLINK", 617 .owner = THIS_MODULE, 618 .obj_size = sizeof(struct netlink_sock), 619 }; 620 621 static int __netlink_create(struct net *net, struct socket *sock, 622 int protocol, int kern) 623 { 624 struct sock *sk; 625 struct netlink_sock *nlk; 626 627 sock->ops = &netlink_ops; 628 629 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 630 if (!sk) 631 return -ENOMEM; 632 633 sock_init_data(sock, sk); 634 635 nlk = nlk_sk(sk); 636 mutex_init(&nlk->nl_cb_mutex); 637 lockdep_set_class_and_name(&nlk->nl_cb_mutex, 638 nlk_cb_mutex_keys + protocol, 639 nlk_cb_mutex_key_strings[protocol]); 640 init_waitqueue_head(&nlk->wait); 641 642 sk->sk_destruct = netlink_sock_destruct; 643 sk->sk_protocol = protocol; 644 return 0; 645 } 646 647 static int netlink_create(struct net *net, struct socket *sock, int protocol, 648 int kern) 649 { 650 struct module *module = NULL; 651 struct netlink_sock *nlk; 652 int (*bind)(struct net *net, int group); 653 void (*unbind)(struct net *net, int group); 654 void (*release)(struct sock *sock, unsigned long *groups); 655 int err = 0; 656 657 sock->state = SS_UNCONNECTED; 658 659 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 660 return -ESOCKTNOSUPPORT; 661 662 if (protocol < 0 || protocol >= MAX_LINKS) 663 return -EPROTONOSUPPORT; 664 protocol = array_index_nospec(protocol, MAX_LINKS); 665 666 netlink_lock_table(); 667 #ifdef CONFIG_MODULES 668 if (!nl_table[protocol].registered) { 669 netlink_unlock_table(); 670 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 671 netlink_lock_table(); 672 } 673 #endif 674 if (nl_table[protocol].registered && 675 try_module_get(nl_table[protocol].module)) 676 module = nl_table[protocol].module; 677 else 678 err = -EPROTONOSUPPORT; 679 bind = nl_table[protocol].bind; 680 unbind = nl_table[protocol].unbind; 681 release = nl_table[protocol].release; 682 netlink_unlock_table(); 683 684 if (err < 0) 685 goto out; 686 687 err = __netlink_create(net, sock, protocol, kern); 688 if (err < 0) 689 goto out_module; 690 691 sock_prot_inuse_add(net, &netlink_proto, 1); 692 693 nlk = nlk_sk(sock->sk); 694 nlk->module = module; 695 nlk->netlink_bind = bind; 696 nlk->netlink_unbind = unbind; 697 nlk->netlink_release = release; 698 out: 699 return err; 700 701 out_module: 702 module_put(module); 703 goto out; 704 } 705 706 static void deferred_put_nlk_sk(struct rcu_head *head) 707 { 708 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 709 struct sock *sk = &nlk->sk; 710 711 kfree(nlk->groups); 712 nlk->groups = NULL; 713 714 if (!refcount_dec_and_test(&sk->sk_refcnt)) 715 return; 716 717 sk_free(sk); 718 } 719 720 static int netlink_release(struct socket *sock) 721 { 722 struct sock *sk = sock->sk; 723 struct netlink_sock *nlk; 724 725 if (!sk) 726 return 0; 727 728 netlink_remove(sk); 729 sock_orphan(sk); 730 nlk = nlk_sk(sk); 731 732 /* 733 * OK. Socket is unlinked, any packets that arrive now 734 * will be purged. 735 */ 736 if (nlk->netlink_release) 737 nlk->netlink_release(sk, nlk->groups); 738 739 /* must not acquire netlink_table_lock in any way again before unbind 740 * and notifying genetlink is done as otherwise it might deadlock 741 */ 742 if (nlk->netlink_unbind) { 743 int i; 744 745 for (i = 0; i < nlk->ngroups; i++) 746 if (test_bit(i, nlk->groups)) 747 nlk->netlink_unbind(sock_net(sk), i + 1); 748 } 749 if (sk->sk_protocol == NETLINK_GENERIC && 750 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 751 wake_up(&genl_sk_destructing_waitq); 752 753 sock->sk = NULL; 754 wake_up_interruptible_all(&nlk->wait); 755 756 skb_queue_purge(&sk->sk_write_queue); 757 758 if (nlk->portid && nlk->bound) { 759 struct netlink_notify n = { 760 .net = sock_net(sk), 761 .protocol = sk->sk_protocol, 762 .portid = nlk->portid, 763 }; 764 blocking_notifier_call_chain(&netlink_chain, 765 NETLINK_URELEASE, &n); 766 } 767 768 /* Terminate any outstanding dump */ 769 if (nlk->cb_running) { 770 if (nlk->cb.done) 771 nlk->cb.done(&nlk->cb); 772 module_put(nlk->cb.module); 773 kfree_skb(nlk->cb.skb); 774 } 775 776 module_put(nlk->module); 777 778 if (netlink_is_kernel(sk)) { 779 netlink_table_grab(); 780 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 781 if (--nl_table[sk->sk_protocol].registered == 0) { 782 struct listeners *old; 783 784 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 785 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 786 kfree_rcu(old, rcu); 787 nl_table[sk->sk_protocol].module = NULL; 788 nl_table[sk->sk_protocol].bind = NULL; 789 nl_table[sk->sk_protocol].unbind = NULL; 790 nl_table[sk->sk_protocol].flags = 0; 791 nl_table[sk->sk_protocol].registered = 0; 792 } 793 netlink_table_ungrab(); 794 } 795 796 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 797 798 /* Because struct net might disappear soon, do not keep a pointer. */ 799 if (!sk->sk_net_refcnt && sock_net(sk) != &init_net) { 800 __netns_tracker_free(sock_net(sk), &sk->ns_tracker, false); 801 /* Because of deferred_put_nlk_sk and use of work queue, 802 * it is possible netns will be freed before this socket. 803 */ 804 sock_net_set(sk, &init_net); 805 __netns_tracker_alloc(&init_net, &sk->ns_tracker, 806 false, GFP_KERNEL); 807 } 808 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 809 return 0; 810 } 811 812 static int netlink_autobind(struct socket *sock) 813 { 814 struct sock *sk = sock->sk; 815 struct net *net = sock_net(sk); 816 struct netlink_table *table = &nl_table[sk->sk_protocol]; 817 s32 portid = task_tgid_vnr(current); 818 int err; 819 s32 rover = -4096; 820 bool ok; 821 822 retry: 823 cond_resched(); 824 rcu_read_lock(); 825 ok = !__netlink_lookup(table, portid, net); 826 rcu_read_unlock(); 827 if (!ok) { 828 /* Bind collision, search negative portid values. */ 829 if (rover == -4096) 830 /* rover will be in range [S32_MIN, -4097] */ 831 rover = S32_MIN + get_random_u32_below(-4096 - S32_MIN); 832 else if (rover >= -4096) 833 rover = -4097; 834 portid = rover--; 835 goto retry; 836 } 837 838 err = netlink_insert(sk, portid); 839 if (err == -EADDRINUSE) 840 goto retry; 841 842 /* If 2 threads race to autobind, that is fine. */ 843 if (err == -EBUSY) 844 err = 0; 845 846 return err; 847 } 848 849 /** 850 * __netlink_ns_capable - General netlink message capability test 851 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 852 * @user_ns: The user namespace of the capability to use 853 * @cap: The capability to use 854 * 855 * Test to see if the opener of the socket we received the message 856 * from had when the netlink socket was created and the sender of the 857 * message has the capability @cap in the user namespace @user_ns. 858 */ 859 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 860 struct user_namespace *user_ns, int cap) 861 { 862 return ((nsp->flags & NETLINK_SKB_DST) || 863 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 864 ns_capable(user_ns, cap); 865 } 866 EXPORT_SYMBOL(__netlink_ns_capable); 867 868 /** 869 * netlink_ns_capable - General netlink message capability test 870 * @skb: socket buffer holding a netlink command from userspace 871 * @user_ns: The user namespace of the capability to use 872 * @cap: The capability to use 873 * 874 * Test to see if the opener of the socket we received the message 875 * from had when the netlink socket was created and the sender of the 876 * message has the capability @cap in the user namespace @user_ns. 877 */ 878 bool netlink_ns_capable(const struct sk_buff *skb, 879 struct user_namespace *user_ns, int cap) 880 { 881 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 882 } 883 EXPORT_SYMBOL(netlink_ns_capable); 884 885 /** 886 * netlink_capable - Netlink global message capability test 887 * @skb: socket buffer holding a netlink command from userspace 888 * @cap: The capability to use 889 * 890 * Test to see if the opener of the socket we received the message 891 * from had when the netlink socket was created and the sender of the 892 * message has the capability @cap in all user namespaces. 893 */ 894 bool netlink_capable(const struct sk_buff *skb, int cap) 895 { 896 return netlink_ns_capable(skb, &init_user_ns, cap); 897 } 898 EXPORT_SYMBOL(netlink_capable); 899 900 /** 901 * netlink_net_capable - Netlink network namespace message capability test 902 * @skb: socket buffer holding a netlink command from userspace 903 * @cap: The capability to use 904 * 905 * Test to see if the opener of the socket we received the message 906 * from had when the netlink socket was created and the sender of the 907 * message has the capability @cap over the network namespace of 908 * the socket we received the message from. 909 */ 910 bool netlink_net_capable(const struct sk_buff *skb, int cap) 911 { 912 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 913 } 914 EXPORT_SYMBOL(netlink_net_capable); 915 916 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 917 { 918 return (nl_table[sock->sk->sk_protocol].flags & flag) || 919 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 920 } 921 922 static void 923 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 924 { 925 struct netlink_sock *nlk = nlk_sk(sk); 926 927 if (nlk->subscriptions && !subscriptions) 928 __sk_del_bind_node(sk); 929 else if (!nlk->subscriptions && subscriptions) 930 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 931 nlk->subscriptions = subscriptions; 932 } 933 934 static int netlink_realloc_groups(struct sock *sk) 935 { 936 struct netlink_sock *nlk = nlk_sk(sk); 937 unsigned int groups; 938 unsigned long *new_groups; 939 int err = 0; 940 941 netlink_table_grab(); 942 943 groups = nl_table[sk->sk_protocol].groups; 944 if (!nl_table[sk->sk_protocol].registered) { 945 err = -ENOENT; 946 goto out_unlock; 947 } 948 949 if (nlk->ngroups >= groups) 950 goto out_unlock; 951 952 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 953 if (new_groups == NULL) { 954 err = -ENOMEM; 955 goto out_unlock; 956 } 957 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 958 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 959 960 nlk->groups = new_groups; 961 nlk->ngroups = groups; 962 out_unlock: 963 netlink_table_ungrab(); 964 return err; 965 } 966 967 static void netlink_undo_bind(int group, long unsigned int groups, 968 struct sock *sk) 969 { 970 struct netlink_sock *nlk = nlk_sk(sk); 971 int undo; 972 973 if (!nlk->netlink_unbind) 974 return; 975 976 for (undo = 0; undo < group; undo++) 977 if (test_bit(undo, &groups)) 978 nlk->netlink_unbind(sock_net(sk), undo + 1); 979 } 980 981 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 982 int addr_len) 983 { 984 struct sock *sk = sock->sk; 985 struct net *net = sock_net(sk); 986 struct netlink_sock *nlk = nlk_sk(sk); 987 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 988 int err = 0; 989 unsigned long groups; 990 bool bound; 991 992 if (addr_len < sizeof(struct sockaddr_nl)) 993 return -EINVAL; 994 995 if (nladdr->nl_family != AF_NETLINK) 996 return -EINVAL; 997 groups = nladdr->nl_groups; 998 999 /* Only superuser is allowed to listen multicasts */ 1000 if (groups) { 1001 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1002 return -EPERM; 1003 err = netlink_realloc_groups(sk); 1004 if (err) 1005 return err; 1006 } 1007 1008 if (nlk->ngroups < BITS_PER_LONG) 1009 groups &= (1UL << nlk->ngroups) - 1; 1010 1011 /* Paired with WRITE_ONCE() in netlink_insert() */ 1012 bound = READ_ONCE(nlk->bound); 1013 if (bound) { 1014 /* Ensure nlk->portid is up-to-date. */ 1015 smp_rmb(); 1016 1017 if (nladdr->nl_pid != nlk->portid) 1018 return -EINVAL; 1019 } 1020 1021 if (nlk->netlink_bind && groups) { 1022 int group; 1023 1024 /* nl_groups is a u32, so cap the maximum groups we can bind */ 1025 for (group = 0; group < BITS_PER_TYPE(u32); group++) { 1026 if (!test_bit(group, &groups)) 1027 continue; 1028 err = nlk->netlink_bind(net, group + 1); 1029 if (!err) 1030 continue; 1031 netlink_undo_bind(group, groups, sk); 1032 return err; 1033 } 1034 } 1035 1036 /* No need for barriers here as we return to user-space without 1037 * using any of the bound attributes. 1038 */ 1039 netlink_lock_table(); 1040 if (!bound) { 1041 err = nladdr->nl_pid ? 1042 netlink_insert(sk, nladdr->nl_pid) : 1043 netlink_autobind(sock); 1044 if (err) { 1045 netlink_undo_bind(BITS_PER_TYPE(u32), groups, sk); 1046 goto unlock; 1047 } 1048 } 1049 1050 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1051 goto unlock; 1052 netlink_unlock_table(); 1053 1054 netlink_table_grab(); 1055 netlink_update_subscriptions(sk, nlk->subscriptions + 1056 hweight32(groups) - 1057 hweight32(nlk->groups[0])); 1058 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1059 netlink_update_listeners(sk); 1060 netlink_table_ungrab(); 1061 1062 return 0; 1063 1064 unlock: 1065 netlink_unlock_table(); 1066 return err; 1067 } 1068 1069 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1070 int alen, int flags) 1071 { 1072 int err = 0; 1073 struct sock *sk = sock->sk; 1074 struct netlink_sock *nlk = nlk_sk(sk); 1075 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1076 1077 if (alen < sizeof(addr->sa_family)) 1078 return -EINVAL; 1079 1080 if (addr->sa_family == AF_UNSPEC) { 1081 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1082 WRITE_ONCE(sk->sk_state, NETLINK_UNCONNECTED); 1083 /* dst_portid and dst_group can be read locklessly */ 1084 WRITE_ONCE(nlk->dst_portid, 0); 1085 WRITE_ONCE(nlk->dst_group, 0); 1086 return 0; 1087 } 1088 if (addr->sa_family != AF_NETLINK) 1089 return -EINVAL; 1090 1091 if (alen < sizeof(struct sockaddr_nl)) 1092 return -EINVAL; 1093 1094 if ((nladdr->nl_groups || nladdr->nl_pid) && 1095 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1096 return -EPERM; 1097 1098 /* No need for barriers here as we return to user-space without 1099 * using any of the bound attributes. 1100 * Paired with WRITE_ONCE() in netlink_insert(). 1101 */ 1102 if (!READ_ONCE(nlk->bound)) 1103 err = netlink_autobind(sock); 1104 1105 if (err == 0) { 1106 /* paired with READ_ONCE() in netlink_getsockbyportid() */ 1107 WRITE_ONCE(sk->sk_state, NETLINK_CONNECTED); 1108 /* dst_portid and dst_group can be read locklessly */ 1109 WRITE_ONCE(nlk->dst_portid, nladdr->nl_pid); 1110 WRITE_ONCE(nlk->dst_group, ffs(nladdr->nl_groups)); 1111 } 1112 1113 return err; 1114 } 1115 1116 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1117 int peer) 1118 { 1119 struct sock *sk = sock->sk; 1120 struct netlink_sock *nlk = nlk_sk(sk); 1121 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1122 1123 nladdr->nl_family = AF_NETLINK; 1124 nladdr->nl_pad = 0; 1125 1126 if (peer) { 1127 /* Paired with WRITE_ONCE() in netlink_connect() */ 1128 nladdr->nl_pid = READ_ONCE(nlk->dst_portid); 1129 nladdr->nl_groups = netlink_group_mask(READ_ONCE(nlk->dst_group)); 1130 } else { 1131 /* Paired with WRITE_ONCE() in netlink_insert() */ 1132 nladdr->nl_pid = READ_ONCE(nlk->portid); 1133 netlink_lock_table(); 1134 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1135 netlink_unlock_table(); 1136 } 1137 return sizeof(*nladdr); 1138 } 1139 1140 static int netlink_ioctl(struct socket *sock, unsigned int cmd, 1141 unsigned long arg) 1142 { 1143 /* try to hand this ioctl down to the NIC drivers. 1144 */ 1145 return -ENOIOCTLCMD; 1146 } 1147 1148 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1149 { 1150 struct sock *sock; 1151 struct netlink_sock *nlk; 1152 1153 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1154 if (!sock) 1155 return ERR_PTR(-ECONNREFUSED); 1156 1157 /* Don't bother queuing skb if kernel socket has no input function */ 1158 nlk = nlk_sk(sock); 1159 /* dst_portid and sk_state can be changed in netlink_connect() */ 1160 if (READ_ONCE(sock->sk_state) == NETLINK_CONNECTED && 1161 READ_ONCE(nlk->dst_portid) != nlk_sk(ssk)->portid) { 1162 sock_put(sock); 1163 return ERR_PTR(-ECONNREFUSED); 1164 } 1165 return sock; 1166 } 1167 1168 struct sock *netlink_getsockbyfd(int fd) 1169 { 1170 CLASS(fd, f)(fd); 1171 struct inode *inode; 1172 struct sock *sock; 1173 1174 if (fd_empty(f)) 1175 return ERR_PTR(-EBADF); 1176 1177 inode = file_inode(fd_file(f)); 1178 if (!S_ISSOCK(inode->i_mode)) 1179 return ERR_PTR(-ENOTSOCK); 1180 1181 sock = SOCKET_I(inode)->sk; 1182 if (sock->sk_family != AF_NETLINK) 1183 return ERR_PTR(-EINVAL); 1184 1185 sock_hold(sock); 1186 return sock; 1187 } 1188 1189 struct sk_buff *netlink_alloc_large_skb(unsigned int size, int broadcast) 1190 { 1191 size_t head_size = SKB_HEAD_ALIGN(size); 1192 struct sk_buff *skb; 1193 void *data; 1194 1195 if (head_size <= PAGE_SIZE || broadcast) 1196 return alloc_skb(size, GFP_KERNEL); 1197 1198 data = kvmalloc(head_size, GFP_KERNEL); 1199 if (!data) 1200 return NULL; 1201 1202 skb = __build_skb(data, head_size); 1203 if (!skb) 1204 kvfree(data); 1205 else if (is_vmalloc_addr(data)) 1206 skb->destructor = netlink_skb_destructor; 1207 1208 return skb; 1209 } 1210 1211 /* 1212 * Attach a skb to a netlink socket. 1213 * The caller must hold a reference to the destination socket. On error, the 1214 * reference is dropped. The skb is not send to the destination, just all 1215 * all error checks are performed and memory in the queue is reserved. 1216 * Return values: 1217 * < 0: error. skb freed, reference to sock dropped. 1218 * 0: continue 1219 * 1: repeat lookup - reference dropped while waiting for socket memory. 1220 */ 1221 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1222 long *timeo, struct sock *ssk) 1223 { 1224 struct netlink_sock *nlk; 1225 1226 nlk = nlk_sk(sk); 1227 1228 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1229 test_bit(NETLINK_S_CONGESTED, &nlk->state))) { 1230 DECLARE_WAITQUEUE(wait, current); 1231 if (!*timeo) { 1232 if (!ssk || netlink_is_kernel(ssk)) 1233 netlink_overrun(sk); 1234 sock_put(sk); 1235 kfree_skb(skb); 1236 return -EAGAIN; 1237 } 1238 1239 __set_current_state(TASK_INTERRUPTIBLE); 1240 add_wait_queue(&nlk->wait, &wait); 1241 1242 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1243 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1244 !sock_flag(sk, SOCK_DEAD)) 1245 *timeo = schedule_timeout(*timeo); 1246 1247 __set_current_state(TASK_RUNNING); 1248 remove_wait_queue(&nlk->wait, &wait); 1249 sock_put(sk); 1250 1251 if (signal_pending(current)) { 1252 kfree_skb(skb); 1253 return sock_intr_errno(*timeo); 1254 } 1255 return 1; 1256 } 1257 netlink_skb_set_owner_r(skb, sk); 1258 return 0; 1259 } 1260 1261 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1262 { 1263 int len = skb->len; 1264 1265 netlink_deliver_tap(sock_net(sk), skb); 1266 1267 skb_queue_tail(&sk->sk_receive_queue, skb); 1268 sk->sk_data_ready(sk); 1269 return len; 1270 } 1271 1272 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1273 { 1274 int len = __netlink_sendskb(sk, skb); 1275 1276 sock_put(sk); 1277 return len; 1278 } 1279 1280 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1281 { 1282 kfree_skb(skb); 1283 sock_put(sk); 1284 } 1285 1286 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1287 { 1288 int delta; 1289 1290 WARN_ON(skb->sk != NULL); 1291 delta = skb->end - skb->tail; 1292 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1293 return skb; 1294 1295 if (skb_shared(skb)) { 1296 struct sk_buff *nskb = skb_clone(skb, allocation); 1297 if (!nskb) 1298 return skb; 1299 consume_skb(skb); 1300 skb = nskb; 1301 } 1302 1303 pskb_expand_head(skb, 0, -delta, 1304 (allocation & ~__GFP_DIRECT_RECLAIM) | 1305 __GFP_NOWARN | __GFP_NORETRY); 1306 return skb; 1307 } 1308 1309 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1310 struct sock *ssk) 1311 { 1312 int ret; 1313 struct netlink_sock *nlk = nlk_sk(sk); 1314 1315 ret = -ECONNREFUSED; 1316 if (nlk->netlink_rcv != NULL) { 1317 ret = skb->len; 1318 netlink_skb_set_owner_r(skb, sk); 1319 NETLINK_CB(skb).sk = ssk; 1320 netlink_deliver_tap_kernel(sk, ssk, skb); 1321 nlk->netlink_rcv(skb); 1322 consume_skb(skb); 1323 } else { 1324 kfree_skb(skb); 1325 } 1326 sock_put(sk); 1327 return ret; 1328 } 1329 1330 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1331 u32 portid, int nonblock) 1332 { 1333 struct sock *sk; 1334 int err; 1335 long timeo; 1336 1337 skb = netlink_trim(skb, gfp_any()); 1338 1339 timeo = sock_sndtimeo(ssk, nonblock); 1340 retry: 1341 sk = netlink_getsockbyportid(ssk, portid); 1342 if (IS_ERR(sk)) { 1343 kfree_skb(skb); 1344 return PTR_ERR(sk); 1345 } 1346 if (netlink_is_kernel(sk)) 1347 return netlink_unicast_kernel(sk, skb, ssk); 1348 1349 if (sk_filter(sk, skb)) { 1350 err = skb->len; 1351 kfree_skb(skb); 1352 sock_put(sk); 1353 return err; 1354 } 1355 1356 err = netlink_attachskb(sk, skb, &timeo, ssk); 1357 if (err == 1) 1358 goto retry; 1359 if (err) 1360 return err; 1361 1362 return netlink_sendskb(sk, skb); 1363 } 1364 EXPORT_SYMBOL(netlink_unicast); 1365 1366 int netlink_has_listeners(struct sock *sk, unsigned int group) 1367 { 1368 int res = 0; 1369 struct listeners *listeners; 1370 1371 BUG_ON(!netlink_is_kernel(sk)); 1372 1373 rcu_read_lock(); 1374 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1375 1376 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1377 res = test_bit(group - 1, listeners->masks); 1378 1379 rcu_read_unlock(); 1380 1381 return res; 1382 } 1383 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1384 1385 bool netlink_strict_get_check(struct sk_buff *skb) 1386 { 1387 return nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 1388 } 1389 EXPORT_SYMBOL_GPL(netlink_strict_get_check); 1390 1391 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1392 { 1393 struct netlink_sock *nlk = nlk_sk(sk); 1394 1395 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1396 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1397 netlink_skb_set_owner_r(skb, sk); 1398 __netlink_sendskb(sk, skb); 1399 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1400 } 1401 return -1; 1402 } 1403 1404 struct netlink_broadcast_data { 1405 struct sock *exclude_sk; 1406 struct net *net; 1407 u32 portid; 1408 u32 group; 1409 int failure; 1410 int delivery_failure; 1411 int congested; 1412 int delivered; 1413 gfp_t allocation; 1414 struct sk_buff *skb, *skb2; 1415 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1416 void *tx_data; 1417 }; 1418 1419 static void do_one_broadcast(struct sock *sk, 1420 struct netlink_broadcast_data *p) 1421 { 1422 struct netlink_sock *nlk = nlk_sk(sk); 1423 int val; 1424 1425 if (p->exclude_sk == sk) 1426 return; 1427 1428 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1429 !test_bit(p->group - 1, nlk->groups)) 1430 return; 1431 1432 if (!net_eq(sock_net(sk), p->net)) { 1433 if (!nlk_test_bit(LISTEN_ALL_NSID, sk)) 1434 return; 1435 1436 if (!peernet_has_id(sock_net(sk), p->net)) 1437 return; 1438 1439 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1440 CAP_NET_BROADCAST)) 1441 return; 1442 } 1443 1444 if (p->failure) { 1445 netlink_overrun(sk); 1446 return; 1447 } 1448 1449 sock_hold(sk); 1450 if (p->skb2 == NULL) { 1451 if (skb_shared(p->skb)) { 1452 p->skb2 = skb_clone(p->skb, p->allocation); 1453 } else { 1454 p->skb2 = skb_get(p->skb); 1455 /* 1456 * skb ownership may have been set when 1457 * delivered to a previous socket. 1458 */ 1459 skb_orphan(p->skb2); 1460 } 1461 } 1462 if (p->skb2 == NULL) { 1463 netlink_overrun(sk); 1464 /* Clone failed. Notify ALL listeners. */ 1465 p->failure = 1; 1466 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1467 p->delivery_failure = 1; 1468 goto out; 1469 } 1470 1471 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1472 kfree_skb(p->skb2); 1473 p->skb2 = NULL; 1474 goto out; 1475 } 1476 1477 if (sk_filter(sk, p->skb2)) { 1478 kfree_skb(p->skb2); 1479 p->skb2 = NULL; 1480 goto out; 1481 } 1482 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 1483 if (NETLINK_CB(p->skb2).nsid != NETNSA_NSID_NOT_ASSIGNED) 1484 NETLINK_CB(p->skb2).nsid_is_set = true; 1485 val = netlink_broadcast_deliver(sk, p->skb2); 1486 if (val < 0) { 1487 netlink_overrun(sk); 1488 if (nlk_test_bit(BROADCAST_SEND_ERROR, sk)) 1489 p->delivery_failure = 1; 1490 } else { 1491 p->congested |= val; 1492 p->delivered = 1; 1493 p->skb2 = NULL; 1494 } 1495 out: 1496 sock_put(sk); 1497 } 1498 1499 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, 1500 u32 portid, 1501 u32 group, gfp_t allocation, 1502 netlink_filter_fn filter, 1503 void *filter_data) 1504 { 1505 struct net *net = sock_net(ssk); 1506 struct netlink_broadcast_data info; 1507 struct sock *sk; 1508 1509 skb = netlink_trim(skb, allocation); 1510 1511 info.exclude_sk = ssk; 1512 info.net = net; 1513 info.portid = portid; 1514 info.group = group; 1515 info.failure = 0; 1516 info.delivery_failure = 0; 1517 info.congested = 0; 1518 info.delivered = 0; 1519 info.allocation = allocation; 1520 info.skb = skb; 1521 info.skb2 = NULL; 1522 info.tx_filter = filter; 1523 info.tx_data = filter_data; 1524 1525 /* While we sleep in clone, do not allow to change socket list */ 1526 1527 netlink_lock_table(); 1528 1529 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1530 do_one_broadcast(sk, &info); 1531 1532 consume_skb(skb); 1533 1534 netlink_unlock_table(); 1535 1536 if (info.delivery_failure) { 1537 kfree_skb(info.skb2); 1538 return -ENOBUFS; 1539 } 1540 consume_skb(info.skb2); 1541 1542 if (info.delivered) { 1543 if (info.congested && gfpflags_allow_blocking(allocation)) 1544 yield(); 1545 return 0; 1546 } 1547 return -ESRCH; 1548 } 1549 EXPORT_SYMBOL(netlink_broadcast_filtered); 1550 1551 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 1552 u32 group, gfp_t allocation) 1553 { 1554 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 1555 NULL, NULL); 1556 } 1557 EXPORT_SYMBOL(netlink_broadcast); 1558 1559 struct netlink_set_err_data { 1560 struct sock *exclude_sk; 1561 u32 portid; 1562 u32 group; 1563 int code; 1564 }; 1565 1566 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 1567 { 1568 struct netlink_sock *nlk = nlk_sk(sk); 1569 int ret = 0; 1570 1571 if (sk == p->exclude_sk) 1572 goto out; 1573 1574 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 1575 goto out; 1576 1577 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1578 !test_bit(p->group - 1, nlk->groups)) 1579 goto out; 1580 1581 if (p->code == ENOBUFS && nlk_test_bit(RECV_NO_ENOBUFS, sk)) { 1582 ret = 1; 1583 goto out; 1584 } 1585 1586 WRITE_ONCE(sk->sk_err, p->code); 1587 sk_error_report(sk); 1588 out: 1589 return ret; 1590 } 1591 1592 /** 1593 * netlink_set_err - report error to broadcast listeners 1594 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 1595 * @portid: the PORTID of a process that we want to skip (if any) 1596 * @group: the broadcast group that will notice the error 1597 * @code: error code, must be negative (as usual in kernelspace) 1598 * 1599 * This function returns the number of broadcast listeners that have set the 1600 * NETLINK_NO_ENOBUFS socket option. 1601 */ 1602 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 1603 { 1604 struct netlink_set_err_data info; 1605 unsigned long flags; 1606 struct sock *sk; 1607 int ret = 0; 1608 1609 info.exclude_sk = ssk; 1610 info.portid = portid; 1611 info.group = group; 1612 /* sk->sk_err wants a positive error value */ 1613 info.code = -code; 1614 1615 read_lock_irqsave(&nl_table_lock, flags); 1616 1617 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 1618 ret += do_one_set_err(sk, &info); 1619 1620 read_unlock_irqrestore(&nl_table_lock, flags); 1621 return ret; 1622 } 1623 EXPORT_SYMBOL(netlink_set_err); 1624 1625 /* must be called with netlink table grabbed */ 1626 static void netlink_update_socket_mc(struct netlink_sock *nlk, 1627 unsigned int group, 1628 int is_new) 1629 { 1630 int old, new = !!is_new, subscriptions; 1631 1632 old = test_bit(group - 1, nlk->groups); 1633 subscriptions = nlk->subscriptions - old + new; 1634 __assign_bit(group - 1, nlk->groups, new); 1635 netlink_update_subscriptions(&nlk->sk, subscriptions); 1636 netlink_update_listeners(&nlk->sk); 1637 } 1638 1639 static int netlink_setsockopt(struct socket *sock, int level, int optname, 1640 sockptr_t optval, unsigned int optlen) 1641 { 1642 struct sock *sk = sock->sk; 1643 struct netlink_sock *nlk = nlk_sk(sk); 1644 unsigned int val = 0; 1645 int nr = -1; 1646 1647 if (level != SOL_NETLINK) 1648 return -ENOPROTOOPT; 1649 1650 if (optlen >= sizeof(int) && 1651 copy_from_sockptr(&val, optval, sizeof(val))) 1652 return -EFAULT; 1653 1654 switch (optname) { 1655 case NETLINK_PKTINFO: 1656 nr = NETLINK_F_RECV_PKTINFO; 1657 break; 1658 case NETLINK_ADD_MEMBERSHIP: 1659 case NETLINK_DROP_MEMBERSHIP: { 1660 int err; 1661 1662 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1663 return -EPERM; 1664 err = netlink_realloc_groups(sk); 1665 if (err) 1666 return err; 1667 if (!val || val - 1 >= nlk->ngroups) 1668 return -EINVAL; 1669 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 1670 err = nlk->netlink_bind(sock_net(sk), val); 1671 if (err) 1672 return err; 1673 } 1674 netlink_table_grab(); 1675 netlink_update_socket_mc(nlk, val, 1676 optname == NETLINK_ADD_MEMBERSHIP); 1677 netlink_table_ungrab(); 1678 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 1679 nlk->netlink_unbind(sock_net(sk), val); 1680 1681 break; 1682 } 1683 case NETLINK_BROADCAST_ERROR: 1684 nr = NETLINK_F_BROADCAST_SEND_ERROR; 1685 break; 1686 case NETLINK_NO_ENOBUFS: 1687 assign_bit(NETLINK_F_RECV_NO_ENOBUFS, &nlk->flags, val); 1688 if (val) { 1689 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 1690 wake_up_interruptible(&nlk->wait); 1691 } 1692 break; 1693 case NETLINK_LISTEN_ALL_NSID: 1694 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 1695 return -EPERM; 1696 nr = NETLINK_F_LISTEN_ALL_NSID; 1697 break; 1698 case NETLINK_CAP_ACK: 1699 nr = NETLINK_F_CAP_ACK; 1700 break; 1701 case NETLINK_EXT_ACK: 1702 nr = NETLINK_F_EXT_ACK; 1703 break; 1704 case NETLINK_GET_STRICT_CHK: 1705 nr = NETLINK_F_STRICT_CHK; 1706 break; 1707 default: 1708 return -ENOPROTOOPT; 1709 } 1710 if (nr >= 0) 1711 assign_bit(nr, &nlk->flags, val); 1712 return 0; 1713 } 1714 1715 static int netlink_getsockopt(struct socket *sock, int level, int optname, 1716 char __user *optval, int __user *optlen) 1717 { 1718 struct sock *sk = sock->sk; 1719 struct netlink_sock *nlk = nlk_sk(sk); 1720 unsigned int flag; 1721 int len, val; 1722 1723 if (level != SOL_NETLINK) 1724 return -ENOPROTOOPT; 1725 1726 if (get_user(len, optlen)) 1727 return -EFAULT; 1728 if (len < 0) 1729 return -EINVAL; 1730 1731 switch (optname) { 1732 case NETLINK_PKTINFO: 1733 flag = NETLINK_F_RECV_PKTINFO; 1734 break; 1735 case NETLINK_BROADCAST_ERROR: 1736 flag = NETLINK_F_BROADCAST_SEND_ERROR; 1737 break; 1738 case NETLINK_NO_ENOBUFS: 1739 flag = NETLINK_F_RECV_NO_ENOBUFS; 1740 break; 1741 case NETLINK_LIST_MEMBERSHIPS: { 1742 int pos, idx, shift, err = 0; 1743 1744 netlink_lock_table(); 1745 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 1746 if (len - pos < sizeof(u32)) 1747 break; 1748 1749 idx = pos / sizeof(unsigned long); 1750 shift = (pos % sizeof(unsigned long)) * 8; 1751 if (put_user((u32)(nlk->groups[idx] >> shift), 1752 (u32 __user *)(optval + pos))) { 1753 err = -EFAULT; 1754 break; 1755 } 1756 } 1757 if (put_user(ALIGN(BITS_TO_BYTES(nlk->ngroups), sizeof(u32)), optlen)) 1758 err = -EFAULT; 1759 netlink_unlock_table(); 1760 return err; 1761 } 1762 case NETLINK_LISTEN_ALL_NSID: 1763 flag = NETLINK_F_LISTEN_ALL_NSID; 1764 break; 1765 case NETLINK_CAP_ACK: 1766 flag = NETLINK_F_CAP_ACK; 1767 break; 1768 case NETLINK_EXT_ACK: 1769 flag = NETLINK_F_EXT_ACK; 1770 break; 1771 case NETLINK_GET_STRICT_CHK: 1772 flag = NETLINK_F_STRICT_CHK; 1773 break; 1774 default: 1775 return -ENOPROTOOPT; 1776 } 1777 1778 if (len < sizeof(int)) 1779 return -EINVAL; 1780 1781 len = sizeof(int); 1782 val = test_bit(flag, &nlk->flags); 1783 1784 if (put_user(len, optlen) || 1785 copy_to_user(optval, &val, len)) 1786 return -EFAULT; 1787 1788 return 0; 1789 } 1790 1791 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 1792 { 1793 struct nl_pktinfo info; 1794 1795 info.group = NETLINK_CB(skb).dst_group; 1796 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 1797 } 1798 1799 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 1800 struct sk_buff *skb) 1801 { 1802 if (!NETLINK_CB(skb).nsid_is_set) 1803 return; 1804 1805 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 1806 &NETLINK_CB(skb).nsid); 1807 } 1808 1809 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 1810 { 1811 struct sock *sk = sock->sk; 1812 struct netlink_sock *nlk = nlk_sk(sk); 1813 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1814 u32 dst_portid; 1815 u32 dst_group; 1816 struct sk_buff *skb; 1817 int err; 1818 struct scm_cookie scm; 1819 u32 netlink_skb_flags = 0; 1820 1821 if (msg->msg_flags & MSG_OOB) 1822 return -EOPNOTSUPP; 1823 1824 if (len == 0) { 1825 pr_warn_once("Zero length message leads to an empty skb\n"); 1826 return -ENODATA; 1827 } 1828 1829 err = scm_send(sock, msg, &scm, true); 1830 if (err < 0) 1831 return err; 1832 1833 if (msg->msg_namelen) { 1834 err = -EINVAL; 1835 if (msg->msg_namelen < sizeof(struct sockaddr_nl)) 1836 goto out; 1837 if (addr->nl_family != AF_NETLINK) 1838 goto out; 1839 dst_portid = addr->nl_pid; 1840 dst_group = ffs(addr->nl_groups); 1841 err = -EPERM; 1842 if ((dst_group || dst_portid) && 1843 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1844 goto out; 1845 netlink_skb_flags |= NETLINK_SKB_DST; 1846 } else { 1847 /* Paired with WRITE_ONCE() in netlink_connect() */ 1848 dst_portid = READ_ONCE(nlk->dst_portid); 1849 dst_group = READ_ONCE(nlk->dst_group); 1850 } 1851 1852 /* Paired with WRITE_ONCE() in netlink_insert() */ 1853 if (!READ_ONCE(nlk->bound)) { 1854 err = netlink_autobind(sock); 1855 if (err) 1856 goto out; 1857 } else { 1858 /* Ensure nlk is hashed and visible. */ 1859 smp_rmb(); 1860 } 1861 1862 err = -EMSGSIZE; 1863 if (len > sk->sk_sndbuf - 32) 1864 goto out; 1865 err = -ENOBUFS; 1866 skb = netlink_alloc_large_skb(len, dst_group); 1867 if (skb == NULL) 1868 goto out; 1869 1870 NETLINK_CB(skb).portid = nlk->portid; 1871 NETLINK_CB(skb).dst_group = dst_group; 1872 NETLINK_CB(skb).creds = scm.creds; 1873 NETLINK_CB(skb).flags = netlink_skb_flags; 1874 1875 err = -EFAULT; 1876 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1877 kfree_skb(skb); 1878 goto out; 1879 } 1880 1881 err = security_netlink_send(sk, skb); 1882 if (err) { 1883 kfree_skb(skb); 1884 goto out; 1885 } 1886 1887 if (dst_group) { 1888 refcount_inc(&skb->users); 1889 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 1890 } 1891 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags & MSG_DONTWAIT); 1892 1893 out: 1894 scm_destroy(&scm); 1895 return err; 1896 } 1897 1898 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 1899 int flags) 1900 { 1901 struct scm_cookie scm; 1902 struct sock *sk = sock->sk; 1903 struct netlink_sock *nlk = nlk_sk(sk); 1904 size_t copied, max_recvmsg_len; 1905 struct sk_buff *skb, *data_skb; 1906 int err, ret; 1907 1908 if (flags & MSG_OOB) 1909 return -EOPNOTSUPP; 1910 1911 copied = 0; 1912 1913 skb = skb_recv_datagram(sk, flags, &err); 1914 if (skb == NULL) 1915 goto out; 1916 1917 data_skb = skb; 1918 1919 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 1920 if (unlikely(skb_shinfo(skb)->frag_list)) { 1921 /* 1922 * If this skb has a frag_list, then here that means that we 1923 * will have to use the frag_list skb's data for compat tasks 1924 * and the regular skb's data for normal (non-compat) tasks. 1925 * 1926 * If we need to send the compat skb, assign it to the 1927 * 'data_skb' variable so that it will be used below for data 1928 * copying. We keep 'skb' for everything else, including 1929 * freeing both later. 1930 */ 1931 if (flags & MSG_CMSG_COMPAT) 1932 data_skb = skb_shinfo(skb)->frag_list; 1933 } 1934 #endif 1935 1936 /* Record the max length of recvmsg() calls for future allocations */ 1937 max_recvmsg_len = max(READ_ONCE(nlk->max_recvmsg_len), len); 1938 max_recvmsg_len = min_t(size_t, max_recvmsg_len, 1939 SKB_WITH_OVERHEAD(32768)); 1940 WRITE_ONCE(nlk->max_recvmsg_len, max_recvmsg_len); 1941 1942 copied = data_skb->len; 1943 if (len < copied) { 1944 msg->msg_flags |= MSG_TRUNC; 1945 copied = len; 1946 } 1947 1948 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 1949 1950 if (msg->msg_name) { 1951 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 1952 addr->nl_family = AF_NETLINK; 1953 addr->nl_pad = 0; 1954 addr->nl_pid = NETLINK_CB(skb).portid; 1955 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 1956 msg->msg_namelen = sizeof(*addr); 1957 } 1958 1959 if (nlk_test_bit(RECV_PKTINFO, sk)) 1960 netlink_cmsg_recv_pktinfo(msg, skb); 1961 if (nlk_test_bit(LISTEN_ALL_NSID, sk)) 1962 netlink_cmsg_listen_all_nsid(sk, msg, skb); 1963 1964 memset(&scm, 0, sizeof(scm)); 1965 scm.creds = *NETLINK_CREDS(skb); 1966 if (flags & MSG_TRUNC) 1967 copied = data_skb->len; 1968 1969 skb_free_datagram(sk, skb); 1970 1971 if (READ_ONCE(nlk->cb_running) && 1972 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 1973 ret = netlink_dump(sk, false); 1974 if (ret) { 1975 WRITE_ONCE(sk->sk_err, -ret); 1976 sk_error_report(sk); 1977 } 1978 } 1979 1980 scm_recv(sock, msg, &scm, flags); 1981 out: 1982 netlink_rcv_wake(sk); 1983 return err ? : copied; 1984 } 1985 1986 static void netlink_data_ready(struct sock *sk) 1987 { 1988 BUG(); 1989 } 1990 1991 /* 1992 * We export these functions to other modules. They provide a 1993 * complete set of kernel non-blocking support for message 1994 * queueing. 1995 */ 1996 1997 struct sock * 1998 __netlink_kernel_create(struct net *net, int unit, struct module *module, 1999 struct netlink_kernel_cfg *cfg) 2000 { 2001 struct socket *sock; 2002 struct sock *sk; 2003 struct netlink_sock *nlk; 2004 struct listeners *listeners = NULL; 2005 unsigned int groups; 2006 2007 BUG_ON(!nl_table); 2008 2009 if (unit < 0 || unit >= MAX_LINKS) 2010 return NULL; 2011 2012 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2013 return NULL; 2014 2015 if (__netlink_create(net, sock, unit, 1) < 0) 2016 goto out_sock_release_nosk; 2017 2018 sk = sock->sk; 2019 2020 if (!cfg || cfg->groups < 32) 2021 groups = 32; 2022 else 2023 groups = cfg->groups; 2024 2025 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2026 if (!listeners) 2027 goto out_sock_release; 2028 2029 sk->sk_data_ready = netlink_data_ready; 2030 if (cfg && cfg->input) 2031 nlk_sk(sk)->netlink_rcv = cfg->input; 2032 2033 if (netlink_insert(sk, 0)) 2034 goto out_sock_release; 2035 2036 nlk = nlk_sk(sk); 2037 set_bit(NETLINK_F_KERNEL_SOCKET, &nlk->flags); 2038 2039 netlink_table_grab(); 2040 if (!nl_table[unit].registered) { 2041 nl_table[unit].groups = groups; 2042 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2043 nl_table[unit].module = module; 2044 if (cfg) { 2045 nl_table[unit].bind = cfg->bind; 2046 nl_table[unit].unbind = cfg->unbind; 2047 nl_table[unit].release = cfg->release; 2048 nl_table[unit].flags = cfg->flags; 2049 } 2050 nl_table[unit].registered = 1; 2051 } else { 2052 kfree(listeners); 2053 nl_table[unit].registered++; 2054 } 2055 netlink_table_ungrab(); 2056 return sk; 2057 2058 out_sock_release: 2059 kfree(listeners); 2060 netlink_kernel_release(sk); 2061 return NULL; 2062 2063 out_sock_release_nosk: 2064 sock_release(sock); 2065 return NULL; 2066 } 2067 EXPORT_SYMBOL(__netlink_kernel_create); 2068 2069 void 2070 netlink_kernel_release(struct sock *sk) 2071 { 2072 if (sk == NULL || sk->sk_socket == NULL) 2073 return; 2074 2075 sock_release(sk->sk_socket); 2076 } 2077 EXPORT_SYMBOL(netlink_kernel_release); 2078 2079 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2080 { 2081 struct listeners *new, *old; 2082 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2083 2084 if (groups < 32) 2085 groups = 32; 2086 2087 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2088 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2089 if (!new) 2090 return -ENOMEM; 2091 old = nl_deref_protected(tbl->listeners); 2092 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2093 rcu_assign_pointer(tbl->listeners, new); 2094 2095 kfree_rcu(old, rcu); 2096 } 2097 tbl->groups = groups; 2098 2099 return 0; 2100 } 2101 2102 /** 2103 * netlink_change_ngroups - change number of multicast groups 2104 * 2105 * This changes the number of multicast groups that are available 2106 * on a certain netlink family. Note that it is not possible to 2107 * change the number of groups to below 32. Also note that it does 2108 * not implicitly call netlink_clear_multicast_users() when the 2109 * number of groups is reduced. 2110 * 2111 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2112 * @groups: The new number of groups. 2113 */ 2114 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2115 { 2116 int err; 2117 2118 netlink_table_grab(); 2119 err = __netlink_change_ngroups(sk, groups); 2120 netlink_table_ungrab(); 2121 2122 return err; 2123 } 2124 2125 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2126 { 2127 struct sock *sk; 2128 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2129 struct hlist_node *tmp; 2130 2131 sk_for_each_bound_safe(sk, tmp, &tbl->mc_list) 2132 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2133 } 2134 2135 struct nlmsghdr * 2136 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2137 { 2138 struct nlmsghdr *nlh; 2139 int size = nlmsg_msg_size(len); 2140 2141 nlh = skb_put(skb, NLMSG_ALIGN(size)); 2142 nlh->nlmsg_type = type; 2143 nlh->nlmsg_len = size; 2144 nlh->nlmsg_flags = flags; 2145 nlh->nlmsg_pid = portid; 2146 nlh->nlmsg_seq = seq; 2147 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2148 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2149 return nlh; 2150 } 2151 EXPORT_SYMBOL(__nlmsg_put); 2152 2153 static size_t 2154 netlink_ack_tlv_len(struct netlink_sock *nlk, int err, 2155 const struct netlink_ext_ack *extack) 2156 { 2157 size_t tlvlen; 2158 2159 if (!extack || !test_bit(NETLINK_F_EXT_ACK, &nlk->flags)) 2160 return 0; 2161 2162 tlvlen = 0; 2163 if (extack->_msg) 2164 tlvlen += nla_total_size(strlen(extack->_msg) + 1); 2165 if (extack->cookie_len) 2166 tlvlen += nla_total_size(extack->cookie_len); 2167 2168 /* Following attributes are only reported as error (not warning) */ 2169 if (!err) 2170 return tlvlen; 2171 2172 if (extack->bad_attr) 2173 tlvlen += nla_total_size(sizeof(u32)); 2174 if (extack->policy) 2175 tlvlen += netlink_policy_dump_attr_size_estimate(extack->policy); 2176 if (extack->miss_type) 2177 tlvlen += nla_total_size(sizeof(u32)); 2178 if (extack->miss_nest) 2179 tlvlen += nla_total_size(sizeof(u32)); 2180 2181 return tlvlen; 2182 } 2183 2184 static void 2185 netlink_ack_tlv_fill(struct sk_buff *in_skb, struct sk_buff *skb, 2186 const struct nlmsghdr *nlh, int err, 2187 const struct netlink_ext_ack *extack) 2188 { 2189 if (extack->_msg) 2190 WARN_ON(nla_put_string(skb, NLMSGERR_ATTR_MSG, extack->_msg)); 2191 if (extack->cookie_len) 2192 WARN_ON(nla_put(skb, NLMSGERR_ATTR_COOKIE, 2193 extack->cookie_len, extack->cookie)); 2194 2195 if (!err) 2196 return; 2197 2198 if (extack->bad_attr && 2199 !WARN_ON((u8 *)extack->bad_attr < in_skb->data || 2200 (u8 *)extack->bad_attr >= in_skb->data + in_skb->len)) 2201 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_OFFS, 2202 (u8 *)extack->bad_attr - (const u8 *)nlh)); 2203 if (extack->policy) 2204 netlink_policy_dump_write_attr(skb, extack->policy, 2205 NLMSGERR_ATTR_POLICY); 2206 if (extack->miss_type) 2207 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_TYPE, 2208 extack->miss_type)); 2209 if (extack->miss_nest && 2210 !WARN_ON((u8 *)extack->miss_nest < in_skb->data || 2211 (u8 *)extack->miss_nest > in_skb->data + in_skb->len)) 2212 WARN_ON(nla_put_u32(skb, NLMSGERR_ATTR_MISS_NEST, 2213 (u8 *)extack->miss_nest - (const u8 *)nlh)); 2214 } 2215 2216 /* 2217 * It looks a bit ugly. 2218 * It would be better to create kernel thread. 2219 */ 2220 2221 static int netlink_dump_done(struct netlink_sock *nlk, struct sk_buff *skb, 2222 struct netlink_callback *cb, 2223 struct netlink_ext_ack *extack) 2224 { 2225 struct nlmsghdr *nlh; 2226 size_t extack_len; 2227 2228 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(nlk->dump_done_errno), 2229 NLM_F_MULTI | cb->answer_flags); 2230 if (WARN_ON(!nlh)) 2231 return -ENOBUFS; 2232 2233 nl_dump_check_consistent(cb, nlh); 2234 memcpy(nlmsg_data(nlh), &nlk->dump_done_errno, sizeof(nlk->dump_done_errno)); 2235 2236 extack_len = netlink_ack_tlv_len(nlk, nlk->dump_done_errno, extack); 2237 if (extack_len) { 2238 nlh->nlmsg_flags |= NLM_F_ACK_TLVS; 2239 if (skb_tailroom(skb) >= extack_len) { 2240 netlink_ack_tlv_fill(cb->skb, skb, cb->nlh, 2241 nlk->dump_done_errno, extack); 2242 nlmsg_end(skb, nlh); 2243 } 2244 } 2245 2246 return 0; 2247 } 2248 2249 static int netlink_dump(struct sock *sk, bool lock_taken) 2250 { 2251 struct netlink_sock *nlk = nlk_sk(sk); 2252 struct netlink_ext_ack extack = {}; 2253 struct netlink_callback *cb; 2254 struct sk_buff *skb = NULL; 2255 size_t max_recvmsg_len; 2256 struct module *module; 2257 int err = -ENOBUFS; 2258 int alloc_min_size; 2259 int alloc_size; 2260 2261 if (!lock_taken) 2262 mutex_lock(&nlk->nl_cb_mutex); 2263 if (!nlk->cb_running) { 2264 err = -EINVAL; 2265 goto errout_skb; 2266 } 2267 2268 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2269 goto errout_skb; 2270 2271 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2272 * required, but it makes sense to _attempt_ a 16K bytes allocation 2273 * to reduce number of system calls on dump operations, if user 2274 * ever provided a big enough buffer. 2275 */ 2276 cb = &nlk->cb; 2277 alloc_min_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2278 2279 max_recvmsg_len = READ_ONCE(nlk->max_recvmsg_len); 2280 if (alloc_min_size < max_recvmsg_len) { 2281 alloc_size = max_recvmsg_len; 2282 skb = alloc_skb(alloc_size, 2283 (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) | 2284 __GFP_NOWARN | __GFP_NORETRY); 2285 } 2286 if (!skb) { 2287 alloc_size = alloc_min_size; 2288 skb = alloc_skb(alloc_size, GFP_KERNEL); 2289 } 2290 if (!skb) 2291 goto errout_skb; 2292 2293 /* Trim skb to allocated size. User is expected to provide buffer as 2294 * large as max(min_dump_alloc, 16KiB (mac_recvmsg_len capped at 2295 * netlink_recvmsg())). dump will pack as many smaller messages as 2296 * could fit within the allocated skb. skb is typically allocated 2297 * with larger space than required (could be as much as near 2x the 2298 * requested size with align to next power of 2 approach). Allowing 2299 * dump to use the excess space makes it difficult for a user to have a 2300 * reasonable static buffer based on the expected largest dump of a 2301 * single netdev. The outcome is MSG_TRUNC error. 2302 */ 2303 skb_reserve(skb, skb_tailroom(skb) - alloc_size); 2304 2305 /* Make sure malicious BPF programs can not read unitialized memory 2306 * from skb->head -> skb->data 2307 */ 2308 skb_reset_network_header(skb); 2309 skb_reset_mac_header(skb); 2310 2311 netlink_skb_set_owner_r(skb, sk); 2312 2313 if (nlk->dump_done_errno > 0) { 2314 cb->extack = &extack; 2315 2316 nlk->dump_done_errno = cb->dump(skb, cb); 2317 2318 /* EMSGSIZE plus something already in the skb means 2319 * that there's more to dump but current skb has filled up. 2320 * If the callback really wants to return EMSGSIZE to user space 2321 * it needs to do so again, on the next cb->dump() call, 2322 * without putting data in the skb. 2323 */ 2324 if (nlk->dump_done_errno == -EMSGSIZE && skb->len) 2325 nlk->dump_done_errno = skb->len; 2326 2327 cb->extack = NULL; 2328 } 2329 2330 if (nlk->dump_done_errno > 0 || 2331 skb_tailroom(skb) < nlmsg_total_size(sizeof(nlk->dump_done_errno))) { 2332 mutex_unlock(&nlk->nl_cb_mutex); 2333 2334 if (sk_filter(sk, skb)) 2335 kfree_skb(skb); 2336 else 2337 __netlink_sendskb(sk, skb); 2338 return 0; 2339 } 2340 2341 if (netlink_dump_done(nlk, skb, cb, &extack)) 2342 goto errout_skb; 2343 2344 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2345 /* frag_list skb's data is used for compat tasks 2346 * and the regular skb's data for normal (non-compat) tasks. 2347 * See netlink_recvmsg(). 2348 */ 2349 if (unlikely(skb_shinfo(skb)->frag_list)) { 2350 if (netlink_dump_done(nlk, skb_shinfo(skb)->frag_list, cb, &extack)) 2351 goto errout_skb; 2352 } 2353 #endif 2354 2355 if (sk_filter(sk, skb)) 2356 kfree_skb(skb); 2357 else 2358 __netlink_sendskb(sk, skb); 2359 2360 if (cb->done) 2361 cb->done(cb); 2362 2363 WRITE_ONCE(nlk->cb_running, false); 2364 module = cb->module; 2365 skb = cb->skb; 2366 mutex_unlock(&nlk->nl_cb_mutex); 2367 module_put(module); 2368 consume_skb(skb); 2369 return 0; 2370 2371 errout_skb: 2372 mutex_unlock(&nlk->nl_cb_mutex); 2373 kfree_skb(skb); 2374 return err; 2375 } 2376 2377 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2378 const struct nlmsghdr *nlh, 2379 struct netlink_dump_control *control) 2380 { 2381 struct netlink_callback *cb; 2382 struct netlink_sock *nlk; 2383 struct sock *sk; 2384 int ret; 2385 2386 refcount_inc(&skb->users); 2387 2388 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2389 if (sk == NULL) { 2390 ret = -ECONNREFUSED; 2391 goto error_free; 2392 } 2393 2394 nlk = nlk_sk(sk); 2395 mutex_lock(&nlk->nl_cb_mutex); 2396 /* A dump is in progress... */ 2397 if (nlk->cb_running) { 2398 ret = -EBUSY; 2399 goto error_unlock; 2400 } 2401 /* add reference of module which cb->dump belongs to */ 2402 if (!try_module_get(control->module)) { 2403 ret = -EPROTONOSUPPORT; 2404 goto error_unlock; 2405 } 2406 2407 cb = &nlk->cb; 2408 memset(cb, 0, sizeof(*cb)); 2409 cb->dump = control->dump; 2410 cb->done = control->done; 2411 cb->nlh = nlh; 2412 cb->data = control->data; 2413 cb->module = control->module; 2414 cb->min_dump_alloc = control->min_dump_alloc; 2415 cb->flags = control->flags; 2416 cb->skb = skb; 2417 2418 cb->strict_check = nlk_test_bit(STRICT_CHK, NETLINK_CB(skb).sk); 2419 2420 if (control->start) { 2421 cb->extack = control->extack; 2422 ret = control->start(cb); 2423 cb->extack = NULL; 2424 if (ret) 2425 goto error_put; 2426 } 2427 2428 WRITE_ONCE(nlk->cb_running, true); 2429 nlk->dump_done_errno = INT_MAX; 2430 2431 ret = netlink_dump(sk, true); 2432 2433 sock_put(sk); 2434 2435 if (ret) 2436 return ret; 2437 2438 /* We successfully started a dump, by returning -EINTR we 2439 * signal not to send ACK even if it was requested. 2440 */ 2441 return -EINTR; 2442 2443 error_put: 2444 module_put(control->module); 2445 error_unlock: 2446 sock_put(sk); 2447 mutex_unlock(&nlk->nl_cb_mutex); 2448 error_free: 2449 kfree_skb(skb); 2450 return ret; 2451 } 2452 EXPORT_SYMBOL(__netlink_dump_start); 2453 2454 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err, 2455 const struct netlink_ext_ack *extack) 2456 { 2457 struct sk_buff *skb; 2458 struct nlmsghdr *rep; 2459 struct nlmsgerr *errmsg; 2460 size_t payload = sizeof(*errmsg); 2461 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2462 unsigned int flags = 0; 2463 size_t tlvlen; 2464 2465 /* Error messages get the original request appened, unless the user 2466 * requests to cap the error message, and get extra error data if 2467 * requested. 2468 */ 2469 if (err && !test_bit(NETLINK_F_CAP_ACK, &nlk->flags)) 2470 payload += nlmsg_len(nlh); 2471 else 2472 flags |= NLM_F_CAPPED; 2473 2474 tlvlen = netlink_ack_tlv_len(nlk, err, extack); 2475 if (tlvlen) 2476 flags |= NLM_F_ACK_TLVS; 2477 2478 skb = nlmsg_new(payload + tlvlen, GFP_KERNEL); 2479 if (!skb) 2480 goto err_skb; 2481 2482 rep = nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2483 NLMSG_ERROR, sizeof(*errmsg), flags); 2484 if (!rep) 2485 goto err_bad_put; 2486 errmsg = nlmsg_data(rep); 2487 errmsg->error = err; 2488 errmsg->msg = *nlh; 2489 2490 if (!(flags & NLM_F_CAPPED)) { 2491 if (!nlmsg_append(skb, nlmsg_len(nlh))) 2492 goto err_bad_put; 2493 2494 memcpy(nlmsg_data(&errmsg->msg), nlmsg_data(nlh), 2495 nlmsg_len(nlh)); 2496 } 2497 2498 if (tlvlen) 2499 netlink_ack_tlv_fill(in_skb, skb, nlh, err, extack); 2500 2501 nlmsg_end(skb, rep); 2502 2503 nlmsg_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid); 2504 2505 return; 2506 2507 err_bad_put: 2508 nlmsg_free(skb); 2509 err_skb: 2510 WRITE_ONCE(NETLINK_CB(in_skb).sk->sk_err, ENOBUFS); 2511 sk_error_report(NETLINK_CB(in_skb).sk); 2512 } 2513 EXPORT_SYMBOL(netlink_ack); 2514 2515 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2516 struct nlmsghdr *, 2517 struct netlink_ext_ack *)) 2518 { 2519 struct netlink_ext_ack extack; 2520 struct nlmsghdr *nlh; 2521 int err; 2522 2523 while (skb->len >= nlmsg_total_size(0)) { 2524 int msglen; 2525 2526 memset(&extack, 0, sizeof(extack)); 2527 nlh = nlmsg_hdr(skb); 2528 err = 0; 2529 2530 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2531 return 0; 2532 2533 /* Only requests are handled by the kernel */ 2534 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2535 goto ack; 2536 2537 /* Skip control messages */ 2538 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2539 goto ack; 2540 2541 err = cb(skb, nlh, &extack); 2542 if (err == -EINTR) 2543 goto skip; 2544 2545 ack: 2546 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2547 netlink_ack(skb, nlh, err, &extack); 2548 2549 skip: 2550 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2551 if (msglen > skb->len) 2552 msglen = skb->len; 2553 skb_pull(skb, msglen); 2554 } 2555 2556 return 0; 2557 } 2558 EXPORT_SYMBOL(netlink_rcv_skb); 2559 2560 /** 2561 * nlmsg_notify - send a notification netlink message 2562 * @sk: netlink socket to use 2563 * @skb: notification message 2564 * @portid: destination netlink portid for reports or 0 2565 * @group: destination multicast group or 0 2566 * @report: 1 to report back, 0 to disable 2567 * @flags: allocation flags 2568 */ 2569 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2570 unsigned int group, int report, gfp_t flags) 2571 { 2572 int err = 0; 2573 2574 if (group) { 2575 int exclude_portid = 0; 2576 2577 if (report) { 2578 refcount_inc(&skb->users); 2579 exclude_portid = portid; 2580 } 2581 2582 /* errors reported via destination sk->sk_err, but propagate 2583 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2584 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2585 if (err == -ESRCH) 2586 err = 0; 2587 } 2588 2589 if (report) { 2590 int err2; 2591 2592 err2 = nlmsg_unicast(sk, skb, portid); 2593 if (!err) 2594 err = err2; 2595 } 2596 2597 return err; 2598 } 2599 EXPORT_SYMBOL(nlmsg_notify); 2600 2601 #ifdef CONFIG_PROC_FS 2602 struct nl_seq_iter { 2603 struct seq_net_private p; 2604 struct rhashtable_iter hti; 2605 int link; 2606 }; 2607 2608 static void netlink_walk_start(struct nl_seq_iter *iter) 2609 { 2610 rhashtable_walk_enter(&nl_table[iter->link].hash, &iter->hti); 2611 rhashtable_walk_start(&iter->hti); 2612 } 2613 2614 static void netlink_walk_stop(struct nl_seq_iter *iter) 2615 { 2616 rhashtable_walk_stop(&iter->hti); 2617 rhashtable_walk_exit(&iter->hti); 2618 } 2619 2620 static void *__netlink_seq_next(struct seq_file *seq) 2621 { 2622 struct nl_seq_iter *iter = seq->private; 2623 struct netlink_sock *nlk; 2624 2625 do { 2626 for (;;) { 2627 nlk = rhashtable_walk_next(&iter->hti); 2628 2629 if (IS_ERR(nlk)) { 2630 if (PTR_ERR(nlk) == -EAGAIN) 2631 continue; 2632 2633 return nlk; 2634 } 2635 2636 if (nlk) 2637 break; 2638 2639 netlink_walk_stop(iter); 2640 if (++iter->link >= MAX_LINKS) 2641 return NULL; 2642 2643 netlink_walk_start(iter); 2644 } 2645 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 2646 2647 return nlk; 2648 } 2649 2650 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 2651 __acquires(RCU) 2652 { 2653 struct nl_seq_iter *iter = seq->private; 2654 void *obj = SEQ_START_TOKEN; 2655 loff_t pos; 2656 2657 iter->link = 0; 2658 2659 netlink_walk_start(iter); 2660 2661 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 2662 obj = __netlink_seq_next(seq); 2663 2664 return obj; 2665 } 2666 2667 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2668 { 2669 ++*pos; 2670 return __netlink_seq_next(seq); 2671 } 2672 2673 static void netlink_native_seq_stop(struct seq_file *seq, void *v) 2674 { 2675 struct nl_seq_iter *iter = seq->private; 2676 2677 if (iter->link >= MAX_LINKS) 2678 return; 2679 2680 netlink_walk_stop(iter); 2681 } 2682 2683 2684 static int netlink_native_seq_show(struct seq_file *seq, void *v) 2685 { 2686 if (v == SEQ_START_TOKEN) { 2687 seq_puts(seq, 2688 "sk Eth Pid Groups " 2689 "Rmem Wmem Dump Locks Drops Inode\n"); 2690 } else { 2691 struct sock *s = v; 2692 struct netlink_sock *nlk = nlk_sk(s); 2693 2694 seq_printf(seq, "%pK %-3d %-10u %08x %-8d %-8d %-5d %-8d %-8u %-8lu\n", 2695 s, 2696 s->sk_protocol, 2697 nlk->portid, 2698 nlk->groups ? (u32)nlk->groups[0] : 0, 2699 sk_rmem_alloc_get(s), 2700 sk_wmem_alloc_get(s), 2701 READ_ONCE(nlk->cb_running), 2702 refcount_read(&s->sk_refcnt), 2703 atomic_read(&s->sk_drops), 2704 sock_i_ino(s) 2705 ); 2706 2707 } 2708 return 0; 2709 } 2710 2711 #ifdef CONFIG_BPF_SYSCALL 2712 struct bpf_iter__netlink { 2713 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2714 __bpf_md_ptr(struct netlink_sock *, sk); 2715 }; 2716 2717 DEFINE_BPF_ITER_FUNC(netlink, struct bpf_iter_meta *meta, struct netlink_sock *sk) 2718 2719 static int netlink_prog_seq_show(struct bpf_prog *prog, 2720 struct bpf_iter_meta *meta, 2721 void *v) 2722 { 2723 struct bpf_iter__netlink ctx; 2724 2725 meta->seq_num--; /* skip SEQ_START_TOKEN */ 2726 ctx.meta = meta; 2727 ctx.sk = nlk_sk((struct sock *)v); 2728 return bpf_iter_run_prog(prog, &ctx); 2729 } 2730 2731 static int netlink_seq_show(struct seq_file *seq, void *v) 2732 { 2733 struct bpf_iter_meta meta; 2734 struct bpf_prog *prog; 2735 2736 meta.seq = seq; 2737 prog = bpf_iter_get_info(&meta, false); 2738 if (!prog) 2739 return netlink_native_seq_show(seq, v); 2740 2741 if (v != SEQ_START_TOKEN) 2742 return netlink_prog_seq_show(prog, &meta, v); 2743 2744 return 0; 2745 } 2746 2747 static void netlink_seq_stop(struct seq_file *seq, void *v) 2748 { 2749 struct bpf_iter_meta meta; 2750 struct bpf_prog *prog; 2751 2752 if (!v) { 2753 meta.seq = seq; 2754 prog = bpf_iter_get_info(&meta, true); 2755 if (prog) 2756 (void)netlink_prog_seq_show(prog, &meta, v); 2757 } 2758 2759 netlink_native_seq_stop(seq, v); 2760 } 2761 #else 2762 static int netlink_seq_show(struct seq_file *seq, void *v) 2763 { 2764 return netlink_native_seq_show(seq, v); 2765 } 2766 2767 static void netlink_seq_stop(struct seq_file *seq, void *v) 2768 { 2769 netlink_native_seq_stop(seq, v); 2770 } 2771 #endif 2772 2773 static const struct seq_operations netlink_seq_ops = { 2774 .start = netlink_seq_start, 2775 .next = netlink_seq_next, 2776 .stop = netlink_seq_stop, 2777 .show = netlink_seq_show, 2778 }; 2779 #endif 2780 2781 int netlink_register_notifier(struct notifier_block *nb) 2782 { 2783 return blocking_notifier_chain_register(&netlink_chain, nb); 2784 } 2785 EXPORT_SYMBOL(netlink_register_notifier); 2786 2787 int netlink_unregister_notifier(struct notifier_block *nb) 2788 { 2789 return blocking_notifier_chain_unregister(&netlink_chain, nb); 2790 } 2791 EXPORT_SYMBOL(netlink_unregister_notifier); 2792 2793 static const struct proto_ops netlink_ops = { 2794 .family = PF_NETLINK, 2795 .owner = THIS_MODULE, 2796 .release = netlink_release, 2797 .bind = netlink_bind, 2798 .connect = netlink_connect, 2799 .socketpair = sock_no_socketpair, 2800 .accept = sock_no_accept, 2801 .getname = netlink_getname, 2802 .poll = datagram_poll, 2803 .ioctl = netlink_ioctl, 2804 .listen = sock_no_listen, 2805 .shutdown = sock_no_shutdown, 2806 .setsockopt = netlink_setsockopt, 2807 .getsockopt = netlink_getsockopt, 2808 .sendmsg = netlink_sendmsg, 2809 .recvmsg = netlink_recvmsg, 2810 .mmap = sock_no_mmap, 2811 }; 2812 2813 static const struct net_proto_family netlink_family_ops = { 2814 .family = PF_NETLINK, 2815 .create = netlink_create, 2816 .owner = THIS_MODULE, /* for consistency 8) */ 2817 }; 2818 2819 static int __net_init netlink_net_init(struct net *net) 2820 { 2821 #ifdef CONFIG_PROC_FS 2822 if (!proc_create_net("netlink", 0, net->proc_net, &netlink_seq_ops, 2823 sizeof(struct nl_seq_iter))) 2824 return -ENOMEM; 2825 #endif 2826 return 0; 2827 } 2828 2829 static void __net_exit netlink_net_exit(struct net *net) 2830 { 2831 #ifdef CONFIG_PROC_FS 2832 remove_proc_entry("netlink", net->proc_net); 2833 #endif 2834 } 2835 2836 static void __init netlink_add_usersock_entry(void) 2837 { 2838 struct listeners *listeners; 2839 int groups = 32; 2840 2841 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2842 if (!listeners) 2843 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 2844 2845 netlink_table_grab(); 2846 2847 nl_table[NETLINK_USERSOCK].groups = groups; 2848 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 2849 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 2850 nl_table[NETLINK_USERSOCK].registered = 1; 2851 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 2852 2853 netlink_table_ungrab(); 2854 } 2855 2856 static struct pernet_operations __net_initdata netlink_net_ops = { 2857 .init = netlink_net_init, 2858 .exit = netlink_net_exit, 2859 }; 2860 2861 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 2862 { 2863 const struct netlink_sock *nlk = data; 2864 struct netlink_compare_arg arg; 2865 2866 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 2867 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 2868 } 2869 2870 static const struct rhashtable_params netlink_rhashtable_params = { 2871 .head_offset = offsetof(struct netlink_sock, node), 2872 .key_len = netlink_compare_arg_len, 2873 .obj_hashfn = netlink_hash, 2874 .obj_cmpfn = netlink_compare, 2875 .automatic_shrinking = true, 2876 }; 2877 2878 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2879 BTF_ID_LIST(btf_netlink_sock_id) 2880 BTF_ID(struct, netlink_sock) 2881 2882 static const struct bpf_iter_seq_info netlink_seq_info = { 2883 .seq_ops = &netlink_seq_ops, 2884 .init_seq_private = bpf_iter_init_seq_net, 2885 .fini_seq_private = bpf_iter_fini_seq_net, 2886 .seq_priv_size = sizeof(struct nl_seq_iter), 2887 }; 2888 2889 static struct bpf_iter_reg netlink_reg_info = { 2890 .target = "netlink", 2891 .ctx_arg_info_size = 1, 2892 .ctx_arg_info = { 2893 { offsetof(struct bpf_iter__netlink, sk), 2894 PTR_TO_BTF_ID_OR_NULL }, 2895 }, 2896 .seq_info = &netlink_seq_info, 2897 }; 2898 2899 static int __init bpf_iter_register(void) 2900 { 2901 netlink_reg_info.ctx_arg_info[0].btf_id = *btf_netlink_sock_id; 2902 return bpf_iter_reg_target(&netlink_reg_info); 2903 } 2904 #endif 2905 2906 static int __init netlink_proto_init(void) 2907 { 2908 int i; 2909 int err = proto_register(&netlink_proto, 0); 2910 2911 if (err != 0) 2912 goto out; 2913 2914 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) 2915 err = bpf_iter_register(); 2916 if (err) 2917 goto out; 2918 #endif 2919 2920 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof_field(struct sk_buff, cb)); 2921 2922 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 2923 if (!nl_table) 2924 goto panic; 2925 2926 for (i = 0; i < MAX_LINKS; i++) { 2927 if (rhashtable_init(&nl_table[i].hash, 2928 &netlink_rhashtable_params) < 0) { 2929 while (--i > 0) 2930 rhashtable_destroy(&nl_table[i].hash); 2931 kfree(nl_table); 2932 goto panic; 2933 } 2934 } 2935 2936 netlink_add_usersock_entry(); 2937 2938 sock_register(&netlink_family_ops); 2939 register_pernet_subsys(&netlink_net_ops); 2940 register_pernet_subsys(&netlink_tap_net_ops); 2941 /* The netlink device handler may be needed early. */ 2942 rtnetlink_init(); 2943 out: 2944 return err; 2945 panic: 2946 panic("netlink_init: Cannot allocate nl_table\n"); 2947 } 2948 2949 core_initcall(netlink_proto_init); 2950