xref: /linux/net/netlink/af_netlink.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@redhat.com>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  *
7  *		This program is free software; you can redistribute it and/or
8  *		modify it under the terms of the GNU General Public License
9  *		as published by the Free Software Foundation; either version
10  *		2 of the License, or (at your option) any later version.
11  *
12  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
13  *                               added netlink_proto_exit
14  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
15  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
16  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
17  * 				 - inc module use count of module that owns
18  * 				   the kernel socket in case userspace opens
19  * 				   socket of same protocol
20  * 				 - remove all module support, since netlink is
21  * 				   mandatory if CONFIG_NET=y these days
22  */
23 
24 #include <linux/module.h>
25 
26 #include <linux/capability.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/signal.h>
30 #include <linux/sched.h>
31 #include <linux/errno.h>
32 #include <linux/string.h>
33 #include <linux/stat.h>
34 #include <linux/socket.h>
35 #include <linux/un.h>
36 #include <linux/fcntl.h>
37 #include <linux/termios.h>
38 #include <linux/sockios.h>
39 #include <linux/net.h>
40 #include <linux/fs.h>
41 #include <linux/slab.h>
42 #include <asm/uaccess.h>
43 #include <linux/skbuff.h>
44 #include <linux/netdevice.h>
45 #include <linux/rtnetlink.h>
46 #include <linux/proc_fs.h>
47 #include <linux/seq_file.h>
48 #include <linux/smp_lock.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/selinux.h>
59 
60 #include <net/sock.h>
61 #include <net/scm.h>
62 #include <net/netlink.h>
63 
64 #define NLGRPSZ(x)	(ALIGN(x, sizeof(unsigned long) * 8) / 8)
65 
66 struct netlink_sock {
67 	/* struct sock has to be the first member of netlink_sock */
68 	struct sock		sk;
69 	u32			pid;
70 	u32			dst_pid;
71 	u32			dst_group;
72 	u32			flags;
73 	u32			subscriptions;
74 	u32			ngroups;
75 	unsigned long		*groups;
76 	unsigned long		state;
77 	wait_queue_head_t	wait;
78 	struct netlink_callback	*cb;
79 	spinlock_t		cb_lock;
80 	void			(*data_ready)(struct sock *sk, int bytes);
81 	struct module		*module;
82 };
83 
84 #define NETLINK_KERNEL_SOCKET	0x1
85 #define NETLINK_RECV_PKTINFO	0x2
86 
87 static inline struct netlink_sock *nlk_sk(struct sock *sk)
88 {
89 	return (struct netlink_sock *)sk;
90 }
91 
92 struct nl_pid_hash {
93 	struct hlist_head *table;
94 	unsigned long rehash_time;
95 
96 	unsigned int mask;
97 	unsigned int shift;
98 
99 	unsigned int entries;
100 	unsigned int max_shift;
101 
102 	u32 rnd;
103 };
104 
105 struct netlink_table {
106 	struct nl_pid_hash hash;
107 	struct hlist_head mc_list;
108 	unsigned long *listeners;
109 	unsigned int nl_nonroot;
110 	unsigned int groups;
111 	struct module *module;
112 	int registered;
113 };
114 
115 static struct netlink_table *nl_table;
116 
117 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
118 
119 static int netlink_dump(struct sock *sk);
120 static void netlink_destroy_callback(struct netlink_callback *cb);
121 
122 static DEFINE_RWLOCK(nl_table_lock);
123 static atomic_t nl_table_users = ATOMIC_INIT(0);
124 
125 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
126 
127 static u32 netlink_group_mask(u32 group)
128 {
129 	return group ? 1 << (group - 1) : 0;
130 }
131 
132 static struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
133 {
134 	return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
135 }
136 
137 static void netlink_sock_destruct(struct sock *sk)
138 {
139 	skb_queue_purge(&sk->sk_receive_queue);
140 
141 	if (!sock_flag(sk, SOCK_DEAD)) {
142 		printk("Freeing alive netlink socket %p\n", sk);
143 		return;
144 	}
145 	BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
146 	BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
147 	BUG_TRAP(!nlk_sk(sk)->cb);
148 	BUG_TRAP(!nlk_sk(sk)->groups);
149 }
150 
151 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on SMP.
152  * Look, when several writers sleep and reader wakes them up, all but one
153  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
154  * this, _but_ remember, it adds useless work on UP machines.
155  */
156 
157 static void netlink_table_grab(void)
158 {
159 	write_lock_irq(&nl_table_lock);
160 
161 	if (atomic_read(&nl_table_users)) {
162 		DECLARE_WAITQUEUE(wait, current);
163 
164 		add_wait_queue_exclusive(&nl_table_wait, &wait);
165 		for(;;) {
166 			set_current_state(TASK_UNINTERRUPTIBLE);
167 			if (atomic_read(&nl_table_users) == 0)
168 				break;
169 			write_unlock_irq(&nl_table_lock);
170 			schedule();
171 			write_lock_irq(&nl_table_lock);
172 		}
173 
174 		__set_current_state(TASK_RUNNING);
175 		remove_wait_queue(&nl_table_wait, &wait);
176 	}
177 }
178 
179 static __inline__ void netlink_table_ungrab(void)
180 {
181 	write_unlock_irq(&nl_table_lock);
182 	wake_up(&nl_table_wait);
183 }
184 
185 static __inline__ void
186 netlink_lock_table(void)
187 {
188 	/* read_lock() synchronizes us to netlink_table_grab */
189 
190 	read_lock(&nl_table_lock);
191 	atomic_inc(&nl_table_users);
192 	read_unlock(&nl_table_lock);
193 }
194 
195 static __inline__ void
196 netlink_unlock_table(void)
197 {
198 	if (atomic_dec_and_test(&nl_table_users))
199 		wake_up(&nl_table_wait);
200 }
201 
202 static __inline__ struct sock *netlink_lookup(int protocol, u32 pid)
203 {
204 	struct nl_pid_hash *hash = &nl_table[protocol].hash;
205 	struct hlist_head *head;
206 	struct sock *sk;
207 	struct hlist_node *node;
208 
209 	read_lock(&nl_table_lock);
210 	head = nl_pid_hashfn(hash, pid);
211 	sk_for_each(sk, node, head) {
212 		if (nlk_sk(sk)->pid == pid) {
213 			sock_hold(sk);
214 			goto found;
215 		}
216 	}
217 	sk = NULL;
218 found:
219 	read_unlock(&nl_table_lock);
220 	return sk;
221 }
222 
223 static inline struct hlist_head *nl_pid_hash_alloc(size_t size)
224 {
225 	if (size <= PAGE_SIZE)
226 		return kmalloc(size, GFP_ATOMIC);
227 	else
228 		return (struct hlist_head *)
229 			__get_free_pages(GFP_ATOMIC, get_order(size));
230 }
231 
232 static inline void nl_pid_hash_free(struct hlist_head *table, size_t size)
233 {
234 	if (size <= PAGE_SIZE)
235 		kfree(table);
236 	else
237 		free_pages((unsigned long)table, get_order(size));
238 }
239 
240 static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
241 {
242 	unsigned int omask, mask, shift;
243 	size_t osize, size;
244 	struct hlist_head *otable, *table;
245 	int i;
246 
247 	omask = mask = hash->mask;
248 	osize = size = (mask + 1) * sizeof(*table);
249 	shift = hash->shift;
250 
251 	if (grow) {
252 		if (++shift > hash->max_shift)
253 			return 0;
254 		mask = mask * 2 + 1;
255 		size *= 2;
256 	}
257 
258 	table = nl_pid_hash_alloc(size);
259 	if (!table)
260 		return 0;
261 
262 	memset(table, 0, size);
263 	otable = hash->table;
264 	hash->table = table;
265 	hash->mask = mask;
266 	hash->shift = shift;
267 	get_random_bytes(&hash->rnd, sizeof(hash->rnd));
268 
269 	for (i = 0; i <= omask; i++) {
270 		struct sock *sk;
271 		struct hlist_node *node, *tmp;
272 
273 		sk_for_each_safe(sk, node, tmp, &otable[i])
274 			__sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
275 	}
276 
277 	nl_pid_hash_free(otable, osize);
278 	hash->rehash_time = jiffies + 10 * 60 * HZ;
279 	return 1;
280 }
281 
282 static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
283 {
284 	int avg = hash->entries >> hash->shift;
285 
286 	if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
287 		return 1;
288 
289 	if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
290 		nl_pid_hash_rehash(hash, 0);
291 		return 1;
292 	}
293 
294 	return 0;
295 }
296 
297 static const struct proto_ops netlink_ops;
298 
299 static void
300 netlink_update_listeners(struct sock *sk)
301 {
302 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
303 	struct hlist_node *node;
304 	unsigned long mask;
305 	unsigned int i;
306 
307 	for (i = 0; i < NLGRPSZ(tbl->groups)/sizeof(unsigned long); i++) {
308 		mask = 0;
309 		sk_for_each_bound(sk, node, &tbl->mc_list)
310 			mask |= nlk_sk(sk)->groups[i];
311 		tbl->listeners[i] = mask;
312 	}
313 	/* this function is only called with the netlink table "grabbed", which
314 	 * makes sure updates are visible before bind or setsockopt return. */
315 }
316 
317 static int netlink_insert(struct sock *sk, u32 pid)
318 {
319 	struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
320 	struct hlist_head *head;
321 	int err = -EADDRINUSE;
322 	struct sock *osk;
323 	struct hlist_node *node;
324 	int len;
325 
326 	netlink_table_grab();
327 	head = nl_pid_hashfn(hash, pid);
328 	len = 0;
329 	sk_for_each(osk, node, head) {
330 		if (nlk_sk(osk)->pid == pid)
331 			break;
332 		len++;
333 	}
334 	if (node)
335 		goto err;
336 
337 	err = -EBUSY;
338 	if (nlk_sk(sk)->pid)
339 		goto err;
340 
341 	err = -ENOMEM;
342 	if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
343 		goto err;
344 
345 	if (len && nl_pid_hash_dilute(hash, len))
346 		head = nl_pid_hashfn(hash, pid);
347 	hash->entries++;
348 	nlk_sk(sk)->pid = pid;
349 	sk_add_node(sk, head);
350 	err = 0;
351 
352 err:
353 	netlink_table_ungrab();
354 	return err;
355 }
356 
357 static void netlink_remove(struct sock *sk)
358 {
359 	netlink_table_grab();
360 	if (sk_del_node_init(sk))
361 		nl_table[sk->sk_protocol].hash.entries--;
362 	if (nlk_sk(sk)->subscriptions)
363 		__sk_del_bind_node(sk);
364 	netlink_table_ungrab();
365 }
366 
367 static struct proto netlink_proto = {
368 	.name	  = "NETLINK",
369 	.owner	  = THIS_MODULE,
370 	.obj_size = sizeof(struct netlink_sock),
371 };
372 
373 static int __netlink_create(struct socket *sock, int protocol)
374 {
375 	struct sock *sk;
376 	struct netlink_sock *nlk;
377 
378 	sock->ops = &netlink_ops;
379 
380 	sk = sk_alloc(PF_NETLINK, GFP_KERNEL, &netlink_proto, 1);
381 	if (!sk)
382 		return -ENOMEM;
383 
384 	sock_init_data(sock, sk);
385 
386 	nlk = nlk_sk(sk);
387 	spin_lock_init(&nlk->cb_lock);
388 	init_waitqueue_head(&nlk->wait);
389 
390 	sk->sk_destruct = netlink_sock_destruct;
391 	sk->sk_protocol = protocol;
392 	return 0;
393 }
394 
395 static int netlink_create(struct socket *sock, int protocol)
396 {
397 	struct module *module = NULL;
398 	struct netlink_sock *nlk;
399 	unsigned int groups;
400 	int err = 0;
401 
402 	sock->state = SS_UNCONNECTED;
403 
404 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
405 		return -ESOCKTNOSUPPORT;
406 
407 	if (protocol<0 || protocol >= MAX_LINKS)
408 		return -EPROTONOSUPPORT;
409 
410 	netlink_lock_table();
411 #ifdef CONFIG_KMOD
412 	if (!nl_table[protocol].registered) {
413 		netlink_unlock_table();
414 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
415 		netlink_lock_table();
416 	}
417 #endif
418 	if (nl_table[protocol].registered &&
419 	    try_module_get(nl_table[protocol].module))
420 		module = nl_table[protocol].module;
421 	groups = nl_table[protocol].groups;
422 	netlink_unlock_table();
423 
424 	if ((err = __netlink_create(sock, protocol)) < 0)
425 		goto out_module;
426 
427 	nlk = nlk_sk(sock->sk);
428 	nlk->module = module;
429 out:
430 	return err;
431 
432 out_module:
433 	module_put(module);
434 	goto out;
435 }
436 
437 static int netlink_release(struct socket *sock)
438 {
439 	struct sock *sk = sock->sk;
440 	struct netlink_sock *nlk;
441 
442 	if (!sk)
443 		return 0;
444 
445 	netlink_remove(sk);
446 	nlk = nlk_sk(sk);
447 
448 	spin_lock(&nlk->cb_lock);
449 	if (nlk->cb) {
450 		if (nlk->cb->done)
451 			nlk->cb->done(nlk->cb);
452 		netlink_destroy_callback(nlk->cb);
453 		nlk->cb = NULL;
454 	}
455 	spin_unlock(&nlk->cb_lock);
456 
457 	/* OK. Socket is unlinked, and, therefore,
458 	   no new packets will arrive */
459 
460 	sock_orphan(sk);
461 	sock->sk = NULL;
462 	wake_up_interruptible_all(&nlk->wait);
463 
464 	skb_queue_purge(&sk->sk_write_queue);
465 
466 	if (nlk->pid && !nlk->subscriptions) {
467 		struct netlink_notify n = {
468 						.protocol = sk->sk_protocol,
469 						.pid = nlk->pid,
470 					  };
471 		atomic_notifier_call_chain(&netlink_chain,
472 				NETLINK_URELEASE, &n);
473 	}
474 
475 	if (nlk->module)
476 		module_put(nlk->module);
477 
478 	netlink_table_grab();
479 	if (nlk->flags & NETLINK_KERNEL_SOCKET) {
480 		kfree(nl_table[sk->sk_protocol].listeners);
481 		nl_table[sk->sk_protocol].module = NULL;
482 		nl_table[sk->sk_protocol].registered = 0;
483 	} else if (nlk->subscriptions)
484 		netlink_update_listeners(sk);
485 	netlink_table_ungrab();
486 
487 	kfree(nlk->groups);
488 	nlk->groups = NULL;
489 
490 	sock_put(sk);
491 	return 0;
492 }
493 
494 static int netlink_autobind(struct socket *sock)
495 {
496 	struct sock *sk = sock->sk;
497 	struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
498 	struct hlist_head *head;
499 	struct sock *osk;
500 	struct hlist_node *node;
501 	s32 pid = current->tgid;
502 	int err;
503 	static s32 rover = -4097;
504 
505 retry:
506 	cond_resched();
507 	netlink_table_grab();
508 	head = nl_pid_hashfn(hash, pid);
509 	sk_for_each(osk, node, head) {
510 		if (nlk_sk(osk)->pid == pid) {
511 			/* Bind collision, search negative pid values. */
512 			pid = rover--;
513 			if (rover > -4097)
514 				rover = -4097;
515 			netlink_table_ungrab();
516 			goto retry;
517 		}
518 	}
519 	netlink_table_ungrab();
520 
521 	err = netlink_insert(sk, pid);
522 	if (err == -EADDRINUSE)
523 		goto retry;
524 
525 	/* If 2 threads race to autobind, that is fine.  */
526 	if (err == -EBUSY)
527 		err = 0;
528 
529 	return err;
530 }
531 
532 static inline int netlink_capable(struct socket *sock, unsigned int flag)
533 {
534 	return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
535 	       capable(CAP_NET_ADMIN);
536 }
537 
538 static void
539 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
540 {
541 	struct netlink_sock *nlk = nlk_sk(sk);
542 
543 	if (nlk->subscriptions && !subscriptions)
544 		__sk_del_bind_node(sk);
545 	else if (!nlk->subscriptions && subscriptions)
546 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
547 	nlk->subscriptions = subscriptions;
548 }
549 
550 static int netlink_alloc_groups(struct sock *sk)
551 {
552 	struct netlink_sock *nlk = nlk_sk(sk);
553 	unsigned int groups;
554 	int err = 0;
555 
556 	netlink_lock_table();
557 	groups = nl_table[sk->sk_protocol].groups;
558 	if (!nl_table[sk->sk_protocol].registered)
559 		err = -ENOENT;
560 	netlink_unlock_table();
561 
562 	if (err)
563 		return err;
564 
565 	nlk->groups = kmalloc(NLGRPSZ(groups), GFP_KERNEL);
566 	if (nlk->groups == NULL)
567 		return -ENOMEM;
568 	memset(nlk->groups, 0, NLGRPSZ(groups));
569 	nlk->ngroups = groups;
570 	return 0;
571 }
572 
573 static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
574 {
575 	struct sock *sk = sock->sk;
576 	struct netlink_sock *nlk = nlk_sk(sk);
577 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
578 	int err;
579 
580 	if (nladdr->nl_family != AF_NETLINK)
581 		return -EINVAL;
582 
583 	/* Only superuser is allowed to listen multicasts */
584 	if (nladdr->nl_groups) {
585 		if (!netlink_capable(sock, NL_NONROOT_RECV))
586 			return -EPERM;
587 		if (nlk->groups == NULL) {
588 			err = netlink_alloc_groups(sk);
589 			if (err)
590 				return err;
591 		}
592 	}
593 
594 	if (nlk->pid) {
595 		if (nladdr->nl_pid != nlk->pid)
596 			return -EINVAL;
597 	} else {
598 		err = nladdr->nl_pid ?
599 			netlink_insert(sk, nladdr->nl_pid) :
600 			netlink_autobind(sock);
601 		if (err)
602 			return err;
603 	}
604 
605 	if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
606 		return 0;
607 
608 	netlink_table_grab();
609 	netlink_update_subscriptions(sk, nlk->subscriptions +
610 	                                 hweight32(nladdr->nl_groups) -
611 	                                 hweight32(nlk->groups[0]));
612 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
613 	netlink_update_listeners(sk);
614 	netlink_table_ungrab();
615 
616 	return 0;
617 }
618 
619 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
620 			   int alen, int flags)
621 {
622 	int err = 0;
623 	struct sock *sk = sock->sk;
624 	struct netlink_sock *nlk = nlk_sk(sk);
625 	struct sockaddr_nl *nladdr=(struct sockaddr_nl*)addr;
626 
627 	if (addr->sa_family == AF_UNSPEC) {
628 		sk->sk_state	= NETLINK_UNCONNECTED;
629 		nlk->dst_pid	= 0;
630 		nlk->dst_group  = 0;
631 		return 0;
632 	}
633 	if (addr->sa_family != AF_NETLINK)
634 		return -EINVAL;
635 
636 	/* Only superuser is allowed to send multicasts */
637 	if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
638 		return -EPERM;
639 
640 	if (!nlk->pid)
641 		err = netlink_autobind(sock);
642 
643 	if (err == 0) {
644 		sk->sk_state	= NETLINK_CONNECTED;
645 		nlk->dst_pid 	= nladdr->nl_pid;
646 		nlk->dst_group  = ffs(nladdr->nl_groups);
647 	}
648 
649 	return err;
650 }
651 
652 static int netlink_getname(struct socket *sock, struct sockaddr *addr, int *addr_len, int peer)
653 {
654 	struct sock *sk = sock->sk;
655 	struct netlink_sock *nlk = nlk_sk(sk);
656 	struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr;
657 
658 	nladdr->nl_family = AF_NETLINK;
659 	nladdr->nl_pad = 0;
660 	*addr_len = sizeof(*nladdr);
661 
662 	if (peer) {
663 		nladdr->nl_pid = nlk->dst_pid;
664 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
665 	} else {
666 		nladdr->nl_pid = nlk->pid;
667 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
668 	}
669 	return 0;
670 }
671 
672 static void netlink_overrun(struct sock *sk)
673 {
674 	if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
675 		sk->sk_err = ENOBUFS;
676 		sk->sk_error_report(sk);
677 	}
678 }
679 
680 static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
681 {
682 	int protocol = ssk->sk_protocol;
683 	struct sock *sock;
684 	struct netlink_sock *nlk;
685 
686 	sock = netlink_lookup(protocol, pid);
687 	if (!sock)
688 		return ERR_PTR(-ECONNREFUSED);
689 
690 	/* Don't bother queuing skb if kernel socket has no input function */
691 	nlk = nlk_sk(sock);
692 	if ((nlk->pid == 0 && !nlk->data_ready) ||
693 	    (sock->sk_state == NETLINK_CONNECTED &&
694 	     nlk->dst_pid != nlk_sk(ssk)->pid)) {
695 		sock_put(sock);
696 		return ERR_PTR(-ECONNREFUSED);
697 	}
698 	return sock;
699 }
700 
701 struct sock *netlink_getsockbyfilp(struct file *filp)
702 {
703 	struct inode *inode = filp->f_dentry->d_inode;
704 	struct sock *sock;
705 
706 	if (!S_ISSOCK(inode->i_mode))
707 		return ERR_PTR(-ENOTSOCK);
708 
709 	sock = SOCKET_I(inode)->sk;
710 	if (sock->sk_family != AF_NETLINK)
711 		return ERR_PTR(-EINVAL);
712 
713 	sock_hold(sock);
714 	return sock;
715 }
716 
717 /*
718  * Attach a skb to a netlink socket.
719  * The caller must hold a reference to the destination socket. On error, the
720  * reference is dropped. The skb is not send to the destination, just all
721  * all error checks are performed and memory in the queue is reserved.
722  * Return values:
723  * < 0: error. skb freed, reference to sock dropped.
724  * 0: continue
725  * 1: repeat lookup - reference dropped while waiting for socket memory.
726  */
727 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, int nonblock,
728 		long timeo, struct sock *ssk)
729 {
730 	struct netlink_sock *nlk;
731 
732 	nlk = nlk_sk(sk);
733 
734 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
735 	    test_bit(0, &nlk->state)) {
736 		DECLARE_WAITQUEUE(wait, current);
737 		if (!timeo) {
738 			if (!ssk || nlk_sk(ssk)->pid == 0)
739 				netlink_overrun(sk);
740 			sock_put(sk);
741 			kfree_skb(skb);
742 			return -EAGAIN;
743 		}
744 
745 		__set_current_state(TASK_INTERRUPTIBLE);
746 		add_wait_queue(&nlk->wait, &wait);
747 
748 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
749 		     test_bit(0, &nlk->state)) &&
750 		    !sock_flag(sk, SOCK_DEAD))
751 			timeo = schedule_timeout(timeo);
752 
753 		__set_current_state(TASK_RUNNING);
754 		remove_wait_queue(&nlk->wait, &wait);
755 		sock_put(sk);
756 
757 		if (signal_pending(current)) {
758 			kfree_skb(skb);
759 			return sock_intr_errno(timeo);
760 		}
761 		return 1;
762 	}
763 	skb_set_owner_r(skb, sk);
764 	return 0;
765 }
766 
767 int netlink_sendskb(struct sock *sk, struct sk_buff *skb, int protocol)
768 {
769 	int len = skb->len;
770 
771 	skb_queue_tail(&sk->sk_receive_queue, skb);
772 	sk->sk_data_ready(sk, len);
773 	sock_put(sk);
774 	return len;
775 }
776 
777 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
778 {
779 	kfree_skb(skb);
780 	sock_put(sk);
781 }
782 
783 static inline struct sk_buff *netlink_trim(struct sk_buff *skb,
784 					   gfp_t allocation)
785 {
786 	int delta;
787 
788 	skb_orphan(skb);
789 
790 	delta = skb->end - skb->tail;
791 	if (delta * 2 < skb->truesize)
792 		return skb;
793 
794 	if (skb_shared(skb)) {
795 		struct sk_buff *nskb = skb_clone(skb, allocation);
796 		if (!nskb)
797 			return skb;
798 		kfree_skb(skb);
799 		skb = nskb;
800 	}
801 
802 	if (!pskb_expand_head(skb, 0, -delta, allocation))
803 		skb->truesize -= delta;
804 
805 	return skb;
806 }
807 
808 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 pid, int nonblock)
809 {
810 	struct sock *sk;
811 	int err;
812 	long timeo;
813 
814 	skb = netlink_trim(skb, gfp_any());
815 
816 	timeo = sock_sndtimeo(ssk, nonblock);
817 retry:
818 	sk = netlink_getsockbypid(ssk, pid);
819 	if (IS_ERR(sk)) {
820 		kfree_skb(skb);
821 		return PTR_ERR(sk);
822 	}
823 	err = netlink_attachskb(sk, skb, nonblock, timeo, ssk);
824 	if (err == 1)
825 		goto retry;
826 	if (err)
827 		return err;
828 
829 	return netlink_sendskb(sk, skb, ssk->sk_protocol);
830 }
831 
832 int netlink_has_listeners(struct sock *sk, unsigned int group)
833 {
834 	int res = 0;
835 
836 	BUG_ON(!(nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET));
837 	if (group - 1 < nl_table[sk->sk_protocol].groups)
838 		res = test_bit(group - 1, nl_table[sk->sk_protocol].listeners);
839 	return res;
840 }
841 EXPORT_SYMBOL_GPL(netlink_has_listeners);
842 
843 static __inline__ int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
844 {
845 	struct netlink_sock *nlk = nlk_sk(sk);
846 
847 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
848 	    !test_bit(0, &nlk->state)) {
849 		skb_set_owner_r(skb, sk);
850 		skb_queue_tail(&sk->sk_receive_queue, skb);
851 		sk->sk_data_ready(sk, skb->len);
852 		return atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf;
853 	}
854 	return -1;
855 }
856 
857 struct netlink_broadcast_data {
858 	struct sock *exclude_sk;
859 	u32 pid;
860 	u32 group;
861 	int failure;
862 	int congested;
863 	int delivered;
864 	gfp_t allocation;
865 	struct sk_buff *skb, *skb2;
866 };
867 
868 static inline int do_one_broadcast(struct sock *sk,
869 				   struct netlink_broadcast_data *p)
870 {
871 	struct netlink_sock *nlk = nlk_sk(sk);
872 	int val;
873 
874 	if (p->exclude_sk == sk)
875 		goto out;
876 
877 	if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
878 	    !test_bit(p->group - 1, nlk->groups))
879 		goto out;
880 
881 	if (p->failure) {
882 		netlink_overrun(sk);
883 		goto out;
884 	}
885 
886 	sock_hold(sk);
887 	if (p->skb2 == NULL) {
888 		if (skb_shared(p->skb)) {
889 			p->skb2 = skb_clone(p->skb, p->allocation);
890 		} else {
891 			p->skb2 = skb_get(p->skb);
892 			/*
893 			 * skb ownership may have been set when
894 			 * delivered to a previous socket.
895 			 */
896 			skb_orphan(p->skb2);
897 		}
898 	}
899 	if (p->skb2 == NULL) {
900 		netlink_overrun(sk);
901 		/* Clone failed. Notify ALL listeners. */
902 		p->failure = 1;
903 	} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
904 		netlink_overrun(sk);
905 	} else {
906 		p->congested |= val;
907 		p->delivered = 1;
908 		p->skb2 = NULL;
909 	}
910 	sock_put(sk);
911 
912 out:
913 	return 0;
914 }
915 
916 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
917 		      u32 group, gfp_t allocation)
918 {
919 	struct netlink_broadcast_data info;
920 	struct hlist_node *node;
921 	struct sock *sk;
922 
923 	skb = netlink_trim(skb, allocation);
924 
925 	info.exclude_sk = ssk;
926 	info.pid = pid;
927 	info.group = group;
928 	info.failure = 0;
929 	info.congested = 0;
930 	info.delivered = 0;
931 	info.allocation = allocation;
932 	info.skb = skb;
933 	info.skb2 = NULL;
934 
935 	/* While we sleep in clone, do not allow to change socket list */
936 
937 	netlink_lock_table();
938 
939 	sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
940 		do_one_broadcast(sk, &info);
941 
942 	kfree_skb(skb);
943 
944 	netlink_unlock_table();
945 
946 	if (info.skb2)
947 		kfree_skb(info.skb2);
948 
949 	if (info.delivered) {
950 		if (info.congested && (allocation & __GFP_WAIT))
951 			yield();
952 		return 0;
953 	}
954 	if (info.failure)
955 		return -ENOBUFS;
956 	return -ESRCH;
957 }
958 
959 struct netlink_set_err_data {
960 	struct sock *exclude_sk;
961 	u32 pid;
962 	u32 group;
963 	int code;
964 };
965 
966 static inline int do_one_set_err(struct sock *sk,
967 				 struct netlink_set_err_data *p)
968 {
969 	struct netlink_sock *nlk = nlk_sk(sk);
970 
971 	if (sk == p->exclude_sk)
972 		goto out;
973 
974 	if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
975 	    !test_bit(p->group - 1, nlk->groups))
976 		goto out;
977 
978 	sk->sk_err = p->code;
979 	sk->sk_error_report(sk);
980 out:
981 	return 0;
982 }
983 
984 void netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
985 {
986 	struct netlink_set_err_data info;
987 	struct hlist_node *node;
988 	struct sock *sk;
989 
990 	info.exclude_sk = ssk;
991 	info.pid = pid;
992 	info.group = group;
993 	info.code = code;
994 
995 	read_lock(&nl_table_lock);
996 
997 	sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
998 		do_one_set_err(sk, &info);
999 
1000 	read_unlock(&nl_table_lock);
1001 }
1002 
1003 static int netlink_setsockopt(struct socket *sock, int level, int optname,
1004                               char __user *optval, int optlen)
1005 {
1006 	struct sock *sk = sock->sk;
1007 	struct netlink_sock *nlk = nlk_sk(sk);
1008 	int val = 0, err;
1009 
1010 	if (level != SOL_NETLINK)
1011 		return -ENOPROTOOPT;
1012 
1013 	if (optlen >= sizeof(int) &&
1014 	    get_user(val, (int __user *)optval))
1015 		return -EFAULT;
1016 
1017 	switch (optname) {
1018 	case NETLINK_PKTINFO:
1019 		if (val)
1020 			nlk->flags |= NETLINK_RECV_PKTINFO;
1021 		else
1022 			nlk->flags &= ~NETLINK_RECV_PKTINFO;
1023 		err = 0;
1024 		break;
1025 	case NETLINK_ADD_MEMBERSHIP:
1026 	case NETLINK_DROP_MEMBERSHIP: {
1027 		unsigned int subscriptions;
1028 		int old, new = optname == NETLINK_ADD_MEMBERSHIP ? 1 : 0;
1029 
1030 		if (!netlink_capable(sock, NL_NONROOT_RECV))
1031 			return -EPERM;
1032 		if (nlk->groups == NULL) {
1033 			err = netlink_alloc_groups(sk);
1034 			if (err)
1035 				return err;
1036 		}
1037 		if (!val || val - 1 >= nlk->ngroups)
1038 			return -EINVAL;
1039 		netlink_table_grab();
1040 		old = test_bit(val - 1, nlk->groups);
1041 		subscriptions = nlk->subscriptions - old + new;
1042 		if (new)
1043 			__set_bit(val - 1, nlk->groups);
1044 		else
1045 			__clear_bit(val - 1, nlk->groups);
1046 		netlink_update_subscriptions(sk, subscriptions);
1047 		netlink_update_listeners(sk);
1048 		netlink_table_ungrab();
1049 		err = 0;
1050 		break;
1051 	}
1052 	default:
1053 		err = -ENOPROTOOPT;
1054 	}
1055 	return err;
1056 }
1057 
1058 static int netlink_getsockopt(struct socket *sock, int level, int optname,
1059                               char __user *optval, int __user *optlen)
1060 {
1061 	struct sock *sk = sock->sk;
1062 	struct netlink_sock *nlk = nlk_sk(sk);
1063 	int len, val, err;
1064 
1065 	if (level != SOL_NETLINK)
1066 		return -ENOPROTOOPT;
1067 
1068 	if (get_user(len, optlen))
1069 		return -EFAULT;
1070 	if (len < 0)
1071 		return -EINVAL;
1072 
1073 	switch (optname) {
1074 	case NETLINK_PKTINFO:
1075 		if (len < sizeof(int))
1076 			return -EINVAL;
1077 		len = sizeof(int);
1078 		val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
1079 		put_user(len, optlen);
1080 		put_user(val, optval);
1081 		err = 0;
1082 		break;
1083 	default:
1084 		err = -ENOPROTOOPT;
1085 	}
1086 	return err;
1087 }
1088 
1089 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
1090 {
1091 	struct nl_pktinfo info;
1092 
1093 	info.group = NETLINK_CB(skb).dst_group;
1094 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
1095 }
1096 
1097 static inline void netlink_rcv_wake(struct sock *sk)
1098 {
1099 	struct netlink_sock *nlk = nlk_sk(sk);
1100 
1101 	if (skb_queue_empty(&sk->sk_receive_queue))
1102 		clear_bit(0, &nlk->state);
1103 	if (!test_bit(0, &nlk->state))
1104 		wake_up_interruptible(&nlk->wait);
1105 }
1106 
1107 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
1108 			   struct msghdr *msg, size_t len)
1109 {
1110 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
1111 	struct sock *sk = sock->sk;
1112 	struct netlink_sock *nlk = nlk_sk(sk);
1113 	struct sockaddr_nl *addr=msg->msg_name;
1114 	u32 dst_pid;
1115 	u32 dst_group;
1116 	struct sk_buff *skb;
1117 	int err;
1118 	struct scm_cookie scm;
1119 
1120 	if (msg->msg_flags&MSG_OOB)
1121 		return -EOPNOTSUPP;
1122 
1123 	if (NULL == siocb->scm)
1124 		siocb->scm = &scm;
1125 	err = scm_send(sock, msg, siocb->scm);
1126 	if (err < 0)
1127 		return err;
1128 
1129 	if (msg->msg_namelen) {
1130 		if (addr->nl_family != AF_NETLINK)
1131 			return -EINVAL;
1132 		dst_pid = addr->nl_pid;
1133 		dst_group = ffs(addr->nl_groups);
1134 		if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
1135 			return -EPERM;
1136 	} else {
1137 		dst_pid = nlk->dst_pid;
1138 		dst_group = nlk->dst_group;
1139 	}
1140 
1141 	if (!nlk->pid) {
1142 		err = netlink_autobind(sock);
1143 		if (err)
1144 			goto out;
1145 	}
1146 
1147 	err = -EMSGSIZE;
1148 	if (len > sk->sk_sndbuf - 32)
1149 		goto out;
1150 	err = -ENOBUFS;
1151 	skb = alloc_skb(len, GFP_KERNEL);
1152 	if (skb==NULL)
1153 		goto out;
1154 
1155 	NETLINK_CB(skb).pid	= nlk->pid;
1156 	NETLINK_CB(skb).dst_pid = dst_pid;
1157 	NETLINK_CB(skb).dst_group = dst_group;
1158 	NETLINK_CB(skb).loginuid = audit_get_loginuid(current->audit_context);
1159 	selinux_get_task_sid(current, &(NETLINK_CB(skb).sid));
1160 	memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
1161 
1162 	/* What can I do? Netlink is asynchronous, so that
1163 	   we will have to save current capabilities to
1164 	   check them, when this message will be delivered
1165 	   to corresponding kernel module.   --ANK (980802)
1166 	 */
1167 
1168 	err = -EFAULT;
1169 	if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) {
1170 		kfree_skb(skb);
1171 		goto out;
1172 	}
1173 
1174 	err = security_netlink_send(sk, skb);
1175 	if (err) {
1176 		kfree_skb(skb);
1177 		goto out;
1178 	}
1179 
1180 	if (dst_group) {
1181 		atomic_inc(&skb->users);
1182 		netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
1183 	}
1184 	err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
1185 
1186 out:
1187 	return err;
1188 }
1189 
1190 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
1191 			   struct msghdr *msg, size_t len,
1192 			   int flags)
1193 {
1194 	struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
1195 	struct scm_cookie scm;
1196 	struct sock *sk = sock->sk;
1197 	struct netlink_sock *nlk = nlk_sk(sk);
1198 	int noblock = flags&MSG_DONTWAIT;
1199 	size_t copied;
1200 	struct sk_buff *skb;
1201 	int err;
1202 
1203 	if (flags&MSG_OOB)
1204 		return -EOPNOTSUPP;
1205 
1206 	copied = 0;
1207 
1208 	skb = skb_recv_datagram(sk,flags,noblock,&err);
1209 	if (skb==NULL)
1210 		goto out;
1211 
1212 	msg->msg_namelen = 0;
1213 
1214 	copied = skb->len;
1215 	if (len < copied) {
1216 		msg->msg_flags |= MSG_TRUNC;
1217 		copied = len;
1218 	}
1219 
1220 	skb->h.raw = skb->data;
1221 	err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1222 
1223 	if (msg->msg_name) {
1224 		struct sockaddr_nl *addr = (struct sockaddr_nl*)msg->msg_name;
1225 		addr->nl_family = AF_NETLINK;
1226 		addr->nl_pad    = 0;
1227 		addr->nl_pid	= NETLINK_CB(skb).pid;
1228 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
1229 		msg->msg_namelen = sizeof(*addr);
1230 	}
1231 
1232 	if (nlk->flags & NETLINK_RECV_PKTINFO)
1233 		netlink_cmsg_recv_pktinfo(msg, skb);
1234 
1235 	if (NULL == siocb->scm) {
1236 		memset(&scm, 0, sizeof(scm));
1237 		siocb->scm = &scm;
1238 	}
1239 	siocb->scm->creds = *NETLINK_CREDS(skb);
1240 	skb_free_datagram(sk, skb);
1241 
1242 	if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2)
1243 		netlink_dump(sk);
1244 
1245 	scm_recv(sock, msg, siocb->scm, flags);
1246 
1247 out:
1248 	netlink_rcv_wake(sk);
1249 	return err ? : copied;
1250 }
1251 
1252 static void netlink_data_ready(struct sock *sk, int len)
1253 {
1254 	struct netlink_sock *nlk = nlk_sk(sk);
1255 
1256 	if (nlk->data_ready)
1257 		nlk->data_ready(sk, len);
1258 	netlink_rcv_wake(sk);
1259 }
1260 
1261 /*
1262  *	We export these functions to other modules. They provide a
1263  *	complete set of kernel non-blocking support for message
1264  *	queueing.
1265  */
1266 
1267 struct sock *
1268 netlink_kernel_create(int unit, unsigned int groups,
1269                       void (*input)(struct sock *sk, int len),
1270                       struct module *module)
1271 {
1272 	struct socket *sock;
1273 	struct sock *sk;
1274 	struct netlink_sock *nlk;
1275 	unsigned long *listeners = NULL;
1276 
1277 	if (!nl_table)
1278 		return NULL;
1279 
1280 	if (unit<0 || unit>=MAX_LINKS)
1281 		return NULL;
1282 
1283 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
1284 		return NULL;
1285 
1286 	if (__netlink_create(sock, unit) < 0)
1287 		goto out_sock_release;
1288 
1289 	if (groups < 32)
1290 		groups = 32;
1291 
1292 	listeners = kzalloc(NLGRPSZ(groups), GFP_KERNEL);
1293 	if (!listeners)
1294 		goto out_sock_release;
1295 
1296 	sk = sock->sk;
1297 	sk->sk_data_ready = netlink_data_ready;
1298 	if (input)
1299 		nlk_sk(sk)->data_ready = input;
1300 
1301 	if (netlink_insert(sk, 0))
1302 		goto out_sock_release;
1303 
1304 	nlk = nlk_sk(sk);
1305 	nlk->flags |= NETLINK_KERNEL_SOCKET;
1306 
1307 	netlink_table_grab();
1308 	nl_table[unit].groups = groups;
1309 	nl_table[unit].listeners = listeners;
1310 	nl_table[unit].module = module;
1311 	nl_table[unit].registered = 1;
1312 	netlink_table_ungrab();
1313 
1314 	return sk;
1315 
1316 out_sock_release:
1317 	kfree(listeners);
1318 	sock_release(sock);
1319 	return NULL;
1320 }
1321 
1322 void netlink_set_nonroot(int protocol, unsigned int flags)
1323 {
1324 	if ((unsigned int)protocol < MAX_LINKS)
1325 		nl_table[protocol].nl_nonroot = flags;
1326 }
1327 
1328 static void netlink_destroy_callback(struct netlink_callback *cb)
1329 {
1330 	if (cb->skb)
1331 		kfree_skb(cb->skb);
1332 	kfree(cb);
1333 }
1334 
1335 /*
1336  * It looks a bit ugly.
1337  * It would be better to create kernel thread.
1338  */
1339 
1340 static int netlink_dump(struct sock *sk)
1341 {
1342 	struct netlink_sock *nlk = nlk_sk(sk);
1343 	struct netlink_callback *cb;
1344 	struct sk_buff *skb;
1345 	struct nlmsghdr *nlh;
1346 	int len;
1347 
1348 	skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL);
1349 	if (!skb)
1350 		return -ENOBUFS;
1351 
1352 	spin_lock(&nlk->cb_lock);
1353 
1354 	cb = nlk->cb;
1355 	if (cb == NULL) {
1356 		spin_unlock(&nlk->cb_lock);
1357 		kfree_skb(skb);
1358 		return -EINVAL;
1359 	}
1360 
1361 	len = cb->dump(skb, cb);
1362 
1363 	if (len > 0) {
1364 		spin_unlock(&nlk->cb_lock);
1365 		skb_queue_tail(&sk->sk_receive_queue, skb);
1366 		sk->sk_data_ready(sk, len);
1367 		return 0;
1368 	}
1369 
1370 	nlh = NLMSG_NEW_ANSWER(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
1371 	memcpy(NLMSG_DATA(nlh), &len, sizeof(len));
1372 	skb_queue_tail(&sk->sk_receive_queue, skb);
1373 	sk->sk_data_ready(sk, skb->len);
1374 
1375 	if (cb->done)
1376 		cb->done(cb);
1377 	nlk->cb = NULL;
1378 	spin_unlock(&nlk->cb_lock);
1379 
1380 	netlink_destroy_callback(cb);
1381 	return 0;
1382 
1383 nlmsg_failure:
1384 	return -ENOBUFS;
1385 }
1386 
1387 int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
1388 		       struct nlmsghdr *nlh,
1389 		       int (*dump)(struct sk_buff *skb, struct netlink_callback*),
1390 		       int (*done)(struct netlink_callback*))
1391 {
1392 	struct netlink_callback *cb;
1393 	struct sock *sk;
1394 	struct netlink_sock *nlk;
1395 
1396 	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
1397 	if (cb == NULL)
1398 		return -ENOBUFS;
1399 
1400 	memset(cb, 0, sizeof(*cb));
1401 	cb->dump = dump;
1402 	cb->done = done;
1403 	cb->nlh = nlh;
1404 	atomic_inc(&skb->users);
1405 	cb->skb = skb;
1406 
1407 	sk = netlink_lookup(ssk->sk_protocol, NETLINK_CB(skb).pid);
1408 	if (sk == NULL) {
1409 		netlink_destroy_callback(cb);
1410 		return -ECONNREFUSED;
1411 	}
1412 	nlk = nlk_sk(sk);
1413 	/* A dump is in progress... */
1414 	spin_lock(&nlk->cb_lock);
1415 	if (nlk->cb) {
1416 		spin_unlock(&nlk->cb_lock);
1417 		netlink_destroy_callback(cb);
1418 		sock_put(sk);
1419 		return -EBUSY;
1420 	}
1421 	nlk->cb = cb;
1422 	spin_unlock(&nlk->cb_lock);
1423 
1424 	netlink_dump(sk);
1425 	sock_put(sk);
1426 	return 0;
1427 }
1428 
1429 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
1430 {
1431 	struct sk_buff *skb;
1432 	struct nlmsghdr *rep;
1433 	struct nlmsgerr *errmsg;
1434 	int size;
1435 
1436 	if (err == 0)
1437 		size = NLMSG_SPACE(sizeof(struct nlmsgerr));
1438 	else
1439 		size = NLMSG_SPACE(4 + NLMSG_ALIGN(nlh->nlmsg_len));
1440 
1441 	skb = alloc_skb(size, GFP_KERNEL);
1442 	if (!skb) {
1443 		struct sock *sk;
1444 
1445 		sk = netlink_lookup(in_skb->sk->sk_protocol,
1446 				    NETLINK_CB(in_skb).pid);
1447 		if (sk) {
1448 			sk->sk_err = ENOBUFS;
1449 			sk->sk_error_report(sk);
1450 			sock_put(sk);
1451 		}
1452 		return;
1453 	}
1454 
1455 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
1456 			  NLMSG_ERROR, sizeof(struct nlmsgerr), 0);
1457 	errmsg = NLMSG_DATA(rep);
1458 	errmsg->error = err;
1459 	memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(struct nlmsghdr));
1460 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
1461 }
1462 
1463 static int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
1464 						     struct nlmsghdr *, int *))
1465 {
1466 	unsigned int total_len;
1467 	struct nlmsghdr *nlh;
1468 	int err;
1469 
1470 	while (skb->len >= nlmsg_total_size(0)) {
1471 		nlh = (struct nlmsghdr *) skb->data;
1472 
1473 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
1474 			return 0;
1475 
1476 		total_len = min(NLMSG_ALIGN(nlh->nlmsg_len), skb->len);
1477 
1478 		if (cb(skb, nlh, &err) < 0) {
1479 			/* Not an error, but we have to interrupt processing
1480 			 * here. Note: that in this case we do not pull
1481 			 * message from skb, it will be processed later.
1482 			 */
1483 			if (err == 0)
1484 				return -1;
1485 			netlink_ack(skb, nlh, err);
1486 		} else if (nlh->nlmsg_flags & NLM_F_ACK)
1487 			netlink_ack(skb, nlh, 0);
1488 
1489 		skb_pull(skb, total_len);
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 /**
1496  * nelink_run_queue - Process netlink receive queue.
1497  * @sk: Netlink socket containing the queue
1498  * @qlen: Place to store queue length upon entry
1499  * @cb: Callback function invoked for each netlink message found
1500  *
1501  * Processes as much as there was in the queue upon entry and invokes
1502  * a callback function for each netlink message found. The callback
1503  * function may refuse a message by returning a negative error code
1504  * but setting the error pointer to 0 in which case this function
1505  * returns with a qlen != 0.
1506  *
1507  * qlen must be initialized to 0 before the initial entry, afterwards
1508  * the function may be called repeatedly until qlen reaches 0.
1509  */
1510 void netlink_run_queue(struct sock *sk, unsigned int *qlen,
1511 		       int (*cb)(struct sk_buff *, struct nlmsghdr *, int *))
1512 {
1513 	struct sk_buff *skb;
1514 
1515 	if (!*qlen || *qlen > skb_queue_len(&sk->sk_receive_queue))
1516 		*qlen = skb_queue_len(&sk->sk_receive_queue);
1517 
1518 	for (; *qlen; (*qlen)--) {
1519 		skb = skb_dequeue(&sk->sk_receive_queue);
1520 		if (netlink_rcv_skb(skb, cb)) {
1521 			if (skb->len)
1522 				skb_queue_head(&sk->sk_receive_queue, skb);
1523 			else {
1524 				kfree_skb(skb);
1525 				(*qlen)--;
1526 			}
1527 			break;
1528 		}
1529 
1530 		kfree_skb(skb);
1531 	}
1532 }
1533 
1534 /**
1535  * netlink_queue_skip - Skip netlink message while processing queue.
1536  * @nlh: Netlink message to be skipped
1537  * @skb: Socket buffer containing the netlink messages.
1538  *
1539  * Pulls the given netlink message off the socket buffer so the next
1540  * call to netlink_queue_run() will not reconsider the message.
1541  */
1542 void netlink_queue_skip(struct nlmsghdr *nlh, struct sk_buff *skb)
1543 {
1544 	int msglen = NLMSG_ALIGN(nlh->nlmsg_len);
1545 
1546 	if (msglen > skb->len)
1547 		msglen = skb->len;
1548 
1549 	skb_pull(skb, msglen);
1550 }
1551 
1552 #ifdef CONFIG_PROC_FS
1553 struct nl_seq_iter {
1554 	int link;
1555 	int hash_idx;
1556 };
1557 
1558 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
1559 {
1560 	struct nl_seq_iter *iter = seq->private;
1561 	int i, j;
1562 	struct sock *s;
1563 	struct hlist_node *node;
1564 	loff_t off = 0;
1565 
1566 	for (i=0; i<MAX_LINKS; i++) {
1567 		struct nl_pid_hash *hash = &nl_table[i].hash;
1568 
1569 		for (j = 0; j <= hash->mask; j++) {
1570 			sk_for_each(s, node, &hash->table[j]) {
1571 				if (off == pos) {
1572 					iter->link = i;
1573 					iter->hash_idx = j;
1574 					return s;
1575 				}
1576 				++off;
1577 			}
1578 		}
1579 	}
1580 	return NULL;
1581 }
1582 
1583 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
1584 {
1585 	read_lock(&nl_table_lock);
1586 	return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1587 }
1588 
1589 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1590 {
1591 	struct sock *s;
1592 	struct nl_seq_iter *iter;
1593 	int i, j;
1594 
1595 	++*pos;
1596 
1597 	if (v == SEQ_START_TOKEN)
1598 		return netlink_seq_socket_idx(seq, 0);
1599 
1600 	s = sk_next(v);
1601 	if (s)
1602 		return s;
1603 
1604 	iter = seq->private;
1605 	i = iter->link;
1606 	j = iter->hash_idx + 1;
1607 
1608 	do {
1609 		struct nl_pid_hash *hash = &nl_table[i].hash;
1610 
1611 		for (; j <= hash->mask; j++) {
1612 			s = sk_head(&hash->table[j]);
1613 			if (s) {
1614 				iter->link = i;
1615 				iter->hash_idx = j;
1616 				return s;
1617 			}
1618 		}
1619 
1620 		j = 0;
1621 	} while (++i < MAX_LINKS);
1622 
1623 	return NULL;
1624 }
1625 
1626 static void netlink_seq_stop(struct seq_file *seq, void *v)
1627 {
1628 	read_unlock(&nl_table_lock);
1629 }
1630 
1631 
1632 static int netlink_seq_show(struct seq_file *seq, void *v)
1633 {
1634 	if (v == SEQ_START_TOKEN)
1635 		seq_puts(seq,
1636 			 "sk       Eth Pid    Groups   "
1637 			 "Rmem     Wmem     Dump     Locks\n");
1638 	else {
1639 		struct sock *s = v;
1640 		struct netlink_sock *nlk = nlk_sk(s);
1641 
1642 		seq_printf(seq, "%p %-3d %-6d %08x %-8d %-8d %p %d\n",
1643 			   s,
1644 			   s->sk_protocol,
1645 			   nlk->pid,
1646 			   nlk->groups ? (u32)nlk->groups[0] : 0,
1647 			   atomic_read(&s->sk_rmem_alloc),
1648 			   atomic_read(&s->sk_wmem_alloc),
1649 			   nlk->cb,
1650 			   atomic_read(&s->sk_refcnt)
1651 			);
1652 
1653 	}
1654 	return 0;
1655 }
1656 
1657 static struct seq_operations netlink_seq_ops = {
1658 	.start  = netlink_seq_start,
1659 	.next   = netlink_seq_next,
1660 	.stop   = netlink_seq_stop,
1661 	.show   = netlink_seq_show,
1662 };
1663 
1664 
1665 static int netlink_seq_open(struct inode *inode, struct file *file)
1666 {
1667 	struct seq_file *seq;
1668 	struct nl_seq_iter *iter;
1669 	int err;
1670 
1671 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1672 	if (!iter)
1673 		return -ENOMEM;
1674 
1675 	err = seq_open(file, &netlink_seq_ops);
1676 	if (err) {
1677 		kfree(iter);
1678 		return err;
1679 	}
1680 
1681 	memset(iter, 0, sizeof(*iter));
1682 	seq = file->private_data;
1683 	seq->private = iter;
1684 	return 0;
1685 }
1686 
1687 static struct file_operations netlink_seq_fops = {
1688 	.owner		= THIS_MODULE,
1689 	.open		= netlink_seq_open,
1690 	.read		= seq_read,
1691 	.llseek		= seq_lseek,
1692 	.release	= seq_release_private,
1693 };
1694 
1695 #endif
1696 
1697 int netlink_register_notifier(struct notifier_block *nb)
1698 {
1699 	return atomic_notifier_chain_register(&netlink_chain, nb);
1700 }
1701 
1702 int netlink_unregister_notifier(struct notifier_block *nb)
1703 {
1704 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
1705 }
1706 
1707 static const struct proto_ops netlink_ops = {
1708 	.family =	PF_NETLINK,
1709 	.owner =	THIS_MODULE,
1710 	.release =	netlink_release,
1711 	.bind =		netlink_bind,
1712 	.connect =	netlink_connect,
1713 	.socketpair =	sock_no_socketpair,
1714 	.accept =	sock_no_accept,
1715 	.getname =	netlink_getname,
1716 	.poll =		datagram_poll,
1717 	.ioctl =	sock_no_ioctl,
1718 	.listen =	sock_no_listen,
1719 	.shutdown =	sock_no_shutdown,
1720 	.setsockopt =	netlink_setsockopt,
1721 	.getsockopt =	netlink_getsockopt,
1722 	.sendmsg =	netlink_sendmsg,
1723 	.recvmsg =	netlink_recvmsg,
1724 	.mmap =		sock_no_mmap,
1725 	.sendpage =	sock_no_sendpage,
1726 };
1727 
1728 static struct net_proto_family netlink_family_ops = {
1729 	.family = PF_NETLINK,
1730 	.create = netlink_create,
1731 	.owner	= THIS_MODULE,	/* for consistency 8) */
1732 };
1733 
1734 extern void netlink_skb_parms_too_large(void);
1735 
1736 static int __init netlink_proto_init(void)
1737 {
1738 	struct sk_buff *dummy_skb;
1739 	int i;
1740 	unsigned long max;
1741 	unsigned int order;
1742 	int err = proto_register(&netlink_proto, 0);
1743 
1744 	if (err != 0)
1745 		goto out;
1746 
1747 	if (sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb))
1748 		netlink_skb_parms_too_large();
1749 
1750 	nl_table = kmalloc(sizeof(*nl_table) * MAX_LINKS, GFP_KERNEL);
1751 	if (!nl_table) {
1752 enomem:
1753 		printk(KERN_CRIT "netlink_init: Cannot allocate nl_table\n");
1754 		return -ENOMEM;
1755 	}
1756 
1757 	memset(nl_table, 0, sizeof(*nl_table) * MAX_LINKS);
1758 
1759 	if (num_physpages >= (128 * 1024))
1760 		max = num_physpages >> (21 - PAGE_SHIFT);
1761 	else
1762 		max = num_physpages >> (23 - PAGE_SHIFT);
1763 
1764 	order = get_bitmask_order(max) - 1 + PAGE_SHIFT;
1765 	max = (1UL << order) / sizeof(struct hlist_head);
1766 	order = get_bitmask_order(max > UINT_MAX ? UINT_MAX : max) - 1;
1767 
1768 	for (i = 0; i < MAX_LINKS; i++) {
1769 		struct nl_pid_hash *hash = &nl_table[i].hash;
1770 
1771 		hash->table = nl_pid_hash_alloc(1 * sizeof(*hash->table));
1772 		if (!hash->table) {
1773 			while (i-- > 0)
1774 				nl_pid_hash_free(nl_table[i].hash.table,
1775 						 1 * sizeof(*hash->table));
1776 			kfree(nl_table);
1777 			goto enomem;
1778 		}
1779 		memset(hash->table, 0, 1 * sizeof(*hash->table));
1780 		hash->max_shift = order;
1781 		hash->shift = 0;
1782 		hash->mask = 0;
1783 		hash->rehash_time = jiffies;
1784 	}
1785 
1786 	sock_register(&netlink_family_ops);
1787 #ifdef CONFIG_PROC_FS
1788 	proc_net_fops_create("netlink", 0, &netlink_seq_fops);
1789 #endif
1790 	/* The netlink device handler may be needed early. */
1791 	rtnetlink_init();
1792 out:
1793 	return err;
1794 }
1795 
1796 core_initcall(netlink_proto_init);
1797 
1798 EXPORT_SYMBOL(netlink_ack);
1799 EXPORT_SYMBOL(netlink_run_queue);
1800 EXPORT_SYMBOL(netlink_queue_skip);
1801 EXPORT_SYMBOL(netlink_broadcast);
1802 EXPORT_SYMBOL(netlink_dump_start);
1803 EXPORT_SYMBOL(netlink_kernel_create);
1804 EXPORT_SYMBOL(netlink_register_notifier);
1805 EXPORT_SYMBOL(netlink_set_err);
1806 EXPORT_SYMBOL(netlink_set_nonroot);
1807 EXPORT_SYMBOL(netlink_unicast);
1808 EXPORT_SYMBOL(netlink_unregister_notifier);
1809 
1810