1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 65 if (sk->sk_prot == &tcpv6_prot) 66 return &inet6_stream_ops; 67 #endif 68 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 69 return &inet_stream_ops; 70 } 71 72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 73 { 74 struct net *net = sock_net((struct sock *)msk); 75 76 if (__mptcp_check_fallback(msk)) 77 return true; 78 79 spin_lock_bh(&msk->fallback_lock); 80 if (!msk->allow_infinite_fallback) { 81 spin_unlock_bh(&msk->fallback_lock); 82 return false; 83 } 84 85 msk->allow_subflows = false; 86 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 87 __MPTCP_INC_STATS(net, fb_mib); 88 spin_unlock_bh(&msk->fallback_lock); 89 return true; 90 } 91 92 static int __mptcp_socket_create(struct mptcp_sock *msk) 93 { 94 struct mptcp_subflow_context *subflow; 95 struct sock *sk = (struct sock *)msk; 96 struct socket *ssock; 97 int err; 98 99 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 100 if (err) 101 return err; 102 103 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 104 WRITE_ONCE(msk->first, ssock->sk); 105 subflow = mptcp_subflow_ctx(ssock->sk); 106 list_add(&subflow->node, &msk->conn_list); 107 sock_hold(ssock->sk); 108 subflow->request_mptcp = 1; 109 subflow->subflow_id = msk->subflow_id++; 110 111 /* This is the first subflow, always with id 0 */ 112 WRITE_ONCE(subflow->local_id, 0); 113 mptcp_sock_graft(msk->first, sk->sk_socket); 114 iput(SOCK_INODE(ssock)); 115 116 return 0; 117 } 118 119 /* If the MPC handshake is not started, returns the first subflow, 120 * eventually allocating it. 121 */ 122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 123 { 124 struct sock *sk = (struct sock *)msk; 125 int ret; 126 127 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 128 return ERR_PTR(-EINVAL); 129 130 if (!msk->first) { 131 ret = __mptcp_socket_create(msk); 132 if (ret) 133 return ERR_PTR(ret); 134 } 135 136 return msk->first; 137 } 138 139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 140 { 141 sk_drops_skbadd(sk, skb); 142 __kfree_skb(skb); 143 } 144 145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 146 struct sk_buff *from, bool *fragstolen, 147 int *delta) 148 { 149 int limit = READ_ONCE(sk->sk_rcvbuf); 150 151 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 152 MPTCP_SKB_CB(from)->offset || 153 ((to->len + from->len) > (limit >> 3)) || 154 !skb_try_coalesce(to, from, fragstolen, delta)) 155 return false; 156 157 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 158 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 159 to->len, MPTCP_SKB_CB(from)->end_seq); 160 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 161 return true; 162 } 163 164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 165 struct sk_buff *from) 166 { 167 bool fragstolen; 168 int delta; 169 170 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 171 return false; 172 173 /* note the fwd memory can reach a negative value after accounting 174 * for the delta, but the later skb free will restore a non 175 * negative one 176 */ 177 atomic_add(delta, &sk->sk_rmem_alloc); 178 sk_mem_charge(sk, delta); 179 kfree_skb_partial(from, fragstolen); 180 181 return true; 182 } 183 184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 185 struct sk_buff *from) 186 { 187 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 188 return false; 189 190 return mptcp_try_coalesce((struct sock *)msk, to, from); 191 } 192 193 /* "inspired" by tcp_rcvbuf_grow(), main difference: 194 * - mptcp does not maintain a msk-level window clamp 195 * - returns true when the receive buffer is actually updated 196 */ 197 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 198 { 199 struct mptcp_sock *msk = mptcp_sk(sk); 200 const struct net *net = sock_net(sk); 201 u32 rcvwin, rcvbuf, cap, oldval; 202 u64 grow; 203 204 oldval = msk->rcvq_space.space; 205 msk->rcvq_space.space = newval; 206 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 207 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 208 return false; 209 210 /* DRS is always one RTT late. */ 211 rcvwin = newval << 1; 212 213 /* slow start: allow the sender to double its rate. */ 214 grow = (u64)rcvwin * (newval - oldval); 215 do_div(grow, oldval); 216 rcvwin += grow << 1; 217 218 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 219 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 220 221 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 222 223 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 224 if (rcvbuf > sk->sk_rcvbuf) { 225 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 226 return true; 227 } 228 return false; 229 } 230 231 /* "inspired" by tcp_data_queue_ofo(), main differences: 232 * - use mptcp seqs 233 * - don't cope with sacks 234 */ 235 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 236 { 237 struct sock *sk = (struct sock *)msk; 238 struct rb_node **p, *parent; 239 u64 seq, end_seq, max_seq; 240 struct sk_buff *skb1; 241 242 seq = MPTCP_SKB_CB(skb)->map_seq; 243 end_seq = MPTCP_SKB_CB(skb)->end_seq; 244 max_seq = atomic64_read(&msk->rcv_wnd_sent); 245 246 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 247 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 248 if (after64(end_seq, max_seq)) { 249 /* out of window */ 250 mptcp_drop(sk, skb); 251 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 252 (unsigned long long)end_seq - (unsigned long)max_seq, 253 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 255 return; 256 } 257 258 p = &msk->out_of_order_queue.rb_node; 259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 260 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 261 rb_link_node(&skb->rbnode, NULL, p); 262 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 263 msk->ooo_last_skb = skb; 264 goto end; 265 } 266 267 /* with 2 subflows, adding at end of ooo queue is quite likely 268 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 269 */ 270 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 273 return; 274 } 275 276 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 277 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 279 parent = &msk->ooo_last_skb->rbnode; 280 p = &parent->rb_right; 281 goto insert; 282 } 283 284 /* Find place to insert this segment. Handle overlaps on the way. */ 285 parent = NULL; 286 while (*p) { 287 parent = *p; 288 skb1 = rb_to_skb(parent); 289 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 290 p = &parent->rb_left; 291 continue; 292 } 293 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 294 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 295 /* All the bits are present. Drop. */ 296 mptcp_drop(sk, skb); 297 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 298 return; 299 } 300 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 301 /* partial overlap: 302 * | skb | 303 * | skb1 | 304 * continue traversing 305 */ 306 } else { 307 /* skb's seq == skb1's seq and skb covers skb1. 308 * Replace skb1 with skb. 309 */ 310 rb_replace_node(&skb1->rbnode, &skb->rbnode, 311 &msk->out_of_order_queue); 312 mptcp_drop(sk, skb1); 313 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 314 goto merge_right; 315 } 316 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 317 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 318 return; 319 } 320 p = &parent->rb_right; 321 } 322 323 insert: 324 /* Insert segment into RB tree. */ 325 rb_link_node(&skb->rbnode, parent, p); 326 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 327 328 merge_right: 329 /* Remove other segments covered by skb. */ 330 while ((skb1 = skb_rb_next(skb)) != NULL) { 331 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 332 break; 333 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 334 mptcp_drop(sk, skb1); 335 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 336 } 337 /* If there is no skb after us, we are the last_skb ! */ 338 if (!skb1) 339 msk->ooo_last_skb = skb; 340 341 end: 342 skb_condense(skb); 343 skb_set_owner_r(skb, sk); 344 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 345 if (sk->sk_socket) 346 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 347 } 348 349 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 350 int copy_len) 351 { 352 const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 353 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 354 355 /* the skb map_seq accounts for the skb offset: 356 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 357 * value 358 */ 359 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 360 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 361 MPTCP_SKB_CB(skb)->offset = offset; 362 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 363 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 364 365 __skb_unlink(skb, &ssk->sk_receive_queue); 366 367 skb_ext_reset(skb); 368 skb_dst_drop(skb); 369 } 370 371 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 372 { 373 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 374 struct mptcp_sock *msk = mptcp_sk(sk); 375 struct sk_buff *tail; 376 377 /* try to fetch required memory from subflow */ 378 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 379 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 380 goto drop; 381 } 382 383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 384 /* in sequence */ 385 msk->bytes_received += copy_len; 386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 387 tail = skb_peek_tail(&sk->sk_receive_queue); 388 if (tail && mptcp_try_coalesce(sk, tail, skb)) 389 return true; 390 391 skb_set_owner_r(skb, sk); 392 __skb_queue_tail(&sk->sk_receive_queue, skb); 393 return true; 394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 395 mptcp_data_queue_ofo(msk, skb); 396 return false; 397 } 398 399 /* old data, keep it simple and drop the whole pkt, sender 400 * will retransmit as needed, if needed. 401 */ 402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 403 drop: 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_rtx_timer(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 413 mptcp_sk(sk)->timer_ival = 0; 414 } 415 416 static void mptcp_close_wake_up(struct sock *sk) 417 { 418 if (sock_flag(sk, SOCK_DEAD)) 419 return; 420 421 sk->sk_state_change(sk); 422 if (sk->sk_shutdown == SHUTDOWN_MASK || 423 sk->sk_state == TCP_CLOSE) 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 425 else 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 427 } 428 429 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 430 { 431 struct mptcp_subflow_context *subflow; 432 433 mptcp_for_each_subflow(msk, subflow) { 434 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 435 bool slow; 436 437 slow = lock_sock_fast(ssk); 438 tcp_shutdown(ssk, SEND_SHUTDOWN); 439 unlock_sock_fast(ssk, slow); 440 } 441 } 442 443 /* called under the msk socket lock */ 444 static bool mptcp_pending_data_fin_ack(struct sock *sk) 445 { 446 struct mptcp_sock *msk = mptcp_sk(sk); 447 448 return ((1 << sk->sk_state) & 449 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 450 msk->write_seq == READ_ONCE(msk->snd_una); 451 } 452 453 static void mptcp_check_data_fin_ack(struct sock *sk) 454 { 455 struct mptcp_sock *msk = mptcp_sk(sk); 456 457 /* Look for an acknowledged DATA_FIN */ 458 if (mptcp_pending_data_fin_ack(sk)) { 459 WRITE_ONCE(msk->snd_data_fin_enable, 0); 460 461 switch (sk->sk_state) { 462 case TCP_FIN_WAIT1: 463 mptcp_set_state(sk, TCP_FIN_WAIT2); 464 break; 465 case TCP_CLOSING: 466 case TCP_LAST_ACK: 467 mptcp_shutdown_subflows(msk); 468 mptcp_set_state(sk, TCP_CLOSE); 469 break; 470 } 471 472 mptcp_close_wake_up(sk); 473 } 474 } 475 476 /* can be called with no lock acquired */ 477 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 478 { 479 struct mptcp_sock *msk = mptcp_sk(sk); 480 481 if (READ_ONCE(msk->rcv_data_fin) && 482 ((1 << inet_sk_state_load(sk)) & 483 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 484 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 485 486 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 487 if (seq) 488 *seq = rcv_data_fin_seq; 489 490 return true; 491 } 492 } 493 494 return false; 495 } 496 497 static void mptcp_set_datafin_timeout(struct sock *sk) 498 { 499 struct inet_connection_sock *icsk = inet_csk(sk); 500 u32 retransmits; 501 502 retransmits = min_t(u32, icsk->icsk_retransmits, 503 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 504 505 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 506 } 507 508 static void __mptcp_set_timeout(struct sock *sk, long tout) 509 { 510 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 511 } 512 513 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 514 { 515 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 516 517 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 518 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 519 } 520 521 static void mptcp_set_timeout(struct sock *sk) 522 { 523 struct mptcp_subflow_context *subflow; 524 long tout = 0; 525 526 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 527 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 528 __mptcp_set_timeout(sk, tout); 529 } 530 531 static inline bool tcp_can_send_ack(const struct sock *ssk) 532 { 533 return !((1 << inet_sk_state_load(ssk)) & 534 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 535 } 536 537 void __mptcp_subflow_send_ack(struct sock *ssk) 538 { 539 if (tcp_can_send_ack(ssk)) 540 tcp_send_ack(ssk); 541 } 542 543 static void mptcp_subflow_send_ack(struct sock *ssk) 544 { 545 bool slow; 546 547 slow = lock_sock_fast(ssk); 548 __mptcp_subflow_send_ack(ssk); 549 unlock_sock_fast(ssk, slow); 550 } 551 552 static void mptcp_send_ack(struct mptcp_sock *msk) 553 { 554 struct mptcp_subflow_context *subflow; 555 556 mptcp_for_each_subflow(msk, subflow) 557 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 558 } 559 560 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 561 { 562 bool slow; 563 564 slow = lock_sock_fast(ssk); 565 if (tcp_can_send_ack(ssk)) 566 tcp_cleanup_rbuf(ssk, copied); 567 unlock_sock_fast(ssk, slow); 568 } 569 570 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 571 { 572 const struct inet_connection_sock *icsk = inet_csk(ssk); 573 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 574 const struct tcp_sock *tp = tcp_sk(ssk); 575 576 return (ack_pending & ICSK_ACK_SCHED) && 577 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 578 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 579 (rx_empty && ack_pending & 580 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 581 } 582 583 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 584 { 585 int old_space = READ_ONCE(msk->old_wspace); 586 struct mptcp_subflow_context *subflow; 587 struct sock *sk = (struct sock *)msk; 588 int space = __mptcp_space(sk); 589 bool cleanup, rx_empty; 590 591 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 592 rx_empty = !sk_rmem_alloc_get(sk) && copied; 593 594 mptcp_for_each_subflow(msk, subflow) { 595 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 596 597 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 598 mptcp_subflow_cleanup_rbuf(ssk, copied); 599 } 600 } 601 602 static void mptcp_check_data_fin(struct sock *sk) 603 { 604 struct mptcp_sock *msk = mptcp_sk(sk); 605 u64 rcv_data_fin_seq; 606 607 /* Need to ack a DATA_FIN received from a peer while this side 608 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 609 * msk->rcv_data_fin was set when parsing the incoming options 610 * at the subflow level and the msk lock was not held, so this 611 * is the first opportunity to act on the DATA_FIN and change 612 * the msk state. 613 * 614 * If we are caught up to the sequence number of the incoming 615 * DATA_FIN, send the DATA_ACK now and do state transition. If 616 * not caught up, do nothing and let the recv code send DATA_ACK 617 * when catching up. 618 */ 619 620 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 621 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 622 WRITE_ONCE(msk->rcv_data_fin, 0); 623 624 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 625 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 626 627 switch (sk->sk_state) { 628 case TCP_ESTABLISHED: 629 mptcp_set_state(sk, TCP_CLOSE_WAIT); 630 break; 631 case TCP_FIN_WAIT1: 632 mptcp_set_state(sk, TCP_CLOSING); 633 break; 634 case TCP_FIN_WAIT2: 635 mptcp_shutdown_subflows(msk); 636 mptcp_set_state(sk, TCP_CLOSE); 637 break; 638 default: 639 /* Other states not expected */ 640 WARN_ON_ONCE(1); 641 break; 642 } 643 644 if (!__mptcp_check_fallback(msk)) 645 mptcp_send_ack(msk); 646 mptcp_close_wake_up(sk); 647 } 648 } 649 650 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 651 { 652 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 653 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 654 mptcp_subflow_reset(ssk); 655 } 656 } 657 658 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 659 struct sock *ssk) 660 { 661 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 662 struct sock *sk = (struct sock *)msk; 663 bool more_data_avail; 664 struct tcp_sock *tp; 665 bool ret = false; 666 667 pr_debug("msk=%p ssk=%p\n", msk, ssk); 668 tp = tcp_sk(ssk); 669 do { 670 u32 map_remaining, offset; 671 u32 seq = tp->copied_seq; 672 struct sk_buff *skb; 673 bool fin; 674 675 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 676 break; 677 678 /* try to move as much data as available */ 679 map_remaining = subflow->map_data_len - 680 mptcp_subflow_get_map_offset(subflow); 681 682 skb = skb_peek(&ssk->sk_receive_queue); 683 if (unlikely(!skb)) 684 break; 685 686 if (__mptcp_check_fallback(msk)) { 687 /* Under fallback skbs have no MPTCP extension and TCP could 688 * collapse them between the dummy map creation and the 689 * current dequeue. Be sure to adjust the map size. 690 */ 691 map_remaining = skb->len; 692 subflow->map_data_len = skb->len; 693 } 694 695 offset = seq - TCP_SKB_CB(skb)->seq; 696 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 697 if (fin) 698 seq++; 699 700 if (offset < skb->len) { 701 size_t len = skb->len - offset; 702 703 mptcp_init_skb(ssk, skb, offset, len); 704 skb_orphan(skb); 705 ret = __mptcp_move_skb(sk, skb) || ret; 706 seq += len; 707 708 if (unlikely(map_remaining < len)) { 709 DEBUG_NET_WARN_ON_ONCE(1); 710 mptcp_dss_corruption(msk, ssk); 711 } 712 } else { 713 if (unlikely(!fin)) { 714 DEBUG_NET_WARN_ON_ONCE(1); 715 mptcp_dss_corruption(msk, ssk); 716 } 717 718 sk_eat_skb(ssk, skb); 719 } 720 721 WRITE_ONCE(tp->copied_seq, seq); 722 more_data_avail = mptcp_subflow_data_available(ssk); 723 724 } while (more_data_avail); 725 726 if (ret) 727 msk->last_data_recv = tcp_jiffies32; 728 return ret; 729 } 730 731 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 732 { 733 struct sock *sk = (struct sock *)msk; 734 struct sk_buff *skb, *tail; 735 bool moved = false; 736 struct rb_node *p; 737 u64 end_seq; 738 739 p = rb_first(&msk->out_of_order_queue); 740 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 741 while (p) { 742 skb = rb_to_skb(p); 743 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 744 break; 745 746 p = rb_next(p); 747 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 748 749 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 750 msk->ack_seq))) { 751 mptcp_drop(sk, skb); 752 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 753 continue; 754 } 755 756 end_seq = MPTCP_SKB_CB(skb)->end_seq; 757 tail = skb_peek_tail(&sk->sk_receive_queue); 758 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 759 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 760 761 /* skip overlapping data, if any */ 762 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 763 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 764 delta); 765 MPTCP_SKB_CB(skb)->offset += delta; 766 MPTCP_SKB_CB(skb)->map_seq += delta; 767 __skb_queue_tail(&sk->sk_receive_queue, skb); 768 } 769 msk->bytes_received += end_seq - msk->ack_seq; 770 WRITE_ONCE(msk->ack_seq, end_seq); 771 moved = true; 772 } 773 return moved; 774 } 775 776 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 777 { 778 int err = sock_error(ssk); 779 int ssk_state; 780 781 if (!err) 782 return false; 783 784 /* only propagate errors on fallen-back sockets or 785 * on MPC connect 786 */ 787 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 788 return false; 789 790 /* We need to propagate only transition to CLOSE state. 791 * Orphaned socket will see such state change via 792 * subflow_sched_work_if_closed() and that path will properly 793 * destroy the msk as needed. 794 */ 795 ssk_state = inet_sk_state_load(ssk); 796 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 797 mptcp_set_state(sk, ssk_state); 798 WRITE_ONCE(sk->sk_err, -err); 799 800 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 801 smp_wmb(); 802 sk_error_report(sk); 803 return true; 804 } 805 806 void __mptcp_error_report(struct sock *sk) 807 { 808 struct mptcp_subflow_context *subflow; 809 struct mptcp_sock *msk = mptcp_sk(sk); 810 811 mptcp_for_each_subflow(msk, subflow) 812 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 813 break; 814 } 815 816 /* In most cases we will be able to lock the mptcp socket. If its already 817 * owned, we need to defer to the work queue to avoid ABBA deadlock. 818 */ 819 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 820 { 821 struct sock *sk = (struct sock *)msk; 822 bool moved; 823 824 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 825 __mptcp_ofo_queue(msk); 826 if (unlikely(ssk->sk_err)) 827 __mptcp_subflow_error_report(sk, ssk); 828 829 /* If the moves have caught up with the DATA_FIN sequence number 830 * it's time to ack the DATA_FIN and change socket state, but 831 * this is not a good place to change state. Let the workqueue 832 * do it. 833 */ 834 if (mptcp_pending_data_fin(sk, NULL)) 835 mptcp_schedule_work(sk); 836 return moved; 837 } 838 839 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 840 { 841 struct mptcp_sock *msk = mptcp_sk(sk); 842 843 /* Wake-up the reader only for in-sequence data */ 844 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 845 sk->sk_data_ready(sk); 846 } 847 848 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 849 { 850 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 851 852 /* The peer can send data while we are shutting down this 853 * subflow at msk destruction time, but we must avoid enqueuing 854 * more data to the msk receive queue 855 */ 856 if (unlikely(subflow->disposable)) 857 return; 858 859 mptcp_data_lock(sk); 860 if (!sock_owned_by_user(sk)) 861 __mptcp_data_ready(sk, ssk); 862 else 863 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 864 mptcp_data_unlock(sk); 865 } 866 867 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 868 { 869 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 870 msk->allow_infinite_fallback = false; 871 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 872 } 873 874 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 875 { 876 struct sock *sk = (struct sock *)msk; 877 878 if (sk->sk_state != TCP_ESTABLISHED) 879 return false; 880 881 spin_lock_bh(&msk->fallback_lock); 882 if (!msk->allow_subflows) { 883 spin_unlock_bh(&msk->fallback_lock); 884 return false; 885 } 886 mptcp_subflow_joined(msk, ssk); 887 spin_unlock_bh(&msk->fallback_lock); 888 889 /* attach to msk socket only after we are sure we will deal with it 890 * at close time 891 */ 892 if (sk->sk_socket && !ssk->sk_socket) 893 mptcp_sock_graft(ssk, sk->sk_socket); 894 895 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 896 mptcp_sockopt_sync_locked(msk, ssk); 897 mptcp_stop_tout_timer(sk); 898 __mptcp_propagate_sndbuf(sk, ssk); 899 return true; 900 } 901 902 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 903 { 904 struct mptcp_subflow_context *tmp, *subflow; 905 struct mptcp_sock *msk = mptcp_sk(sk); 906 907 list_for_each_entry_safe(subflow, tmp, join_list, node) { 908 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 909 bool slow = lock_sock_fast(ssk); 910 911 list_move_tail(&subflow->node, &msk->conn_list); 912 if (!__mptcp_finish_join(msk, ssk)) 913 mptcp_subflow_reset(ssk); 914 unlock_sock_fast(ssk, slow); 915 } 916 } 917 918 static bool mptcp_rtx_timer_pending(struct sock *sk) 919 { 920 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 921 } 922 923 static void mptcp_reset_rtx_timer(struct sock *sk) 924 { 925 struct inet_connection_sock *icsk = inet_csk(sk); 926 unsigned long tout; 927 928 /* prevent rescheduling on close */ 929 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 930 return; 931 932 tout = mptcp_sk(sk)->timer_ival; 933 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 934 } 935 936 bool mptcp_schedule_work(struct sock *sk) 937 { 938 if (inet_sk_state_load(sk) == TCP_CLOSE) 939 return false; 940 941 /* Get a reference on this socket, mptcp_worker() will release it. 942 * As mptcp_worker() might complete before us, we can not avoid 943 * a sock_hold()/sock_put() if schedule_work() returns false. 944 */ 945 sock_hold(sk); 946 947 if (schedule_work(&mptcp_sk(sk)->work)) 948 return true; 949 950 sock_put(sk); 951 return false; 952 } 953 954 static bool mptcp_skb_can_collapse_to(u64 write_seq, 955 const struct sk_buff *skb, 956 const struct mptcp_ext *mpext) 957 { 958 if (!tcp_skb_can_collapse_to(skb)) 959 return false; 960 961 /* can collapse only if MPTCP level sequence is in order and this 962 * mapping has not been xmitted yet 963 */ 964 return mpext && mpext->data_seq + mpext->data_len == write_seq && 965 !mpext->frozen; 966 } 967 968 /* we can append data to the given data frag if: 969 * - there is space available in the backing page_frag 970 * - the data frag tail matches the current page_frag free offset 971 * - the data frag end sequence number matches the current write seq 972 */ 973 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 974 const struct page_frag *pfrag, 975 const struct mptcp_data_frag *df) 976 { 977 return df && pfrag->page == df->page && 978 pfrag->size - pfrag->offset > 0 && 979 pfrag->offset == (df->offset + df->data_len) && 980 df->data_seq + df->data_len == msk->write_seq; 981 } 982 983 static void dfrag_uncharge(struct sock *sk, int len) 984 { 985 sk_mem_uncharge(sk, len); 986 sk_wmem_queued_add(sk, -len); 987 } 988 989 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 990 { 991 int len = dfrag->data_len + dfrag->overhead; 992 993 list_del(&dfrag->list); 994 dfrag_uncharge(sk, len); 995 put_page(dfrag->page); 996 } 997 998 /* called under both the msk socket lock and the data lock */ 999 static void __mptcp_clean_una(struct sock *sk) 1000 { 1001 struct mptcp_sock *msk = mptcp_sk(sk); 1002 struct mptcp_data_frag *dtmp, *dfrag; 1003 u64 snd_una; 1004 1005 snd_una = msk->snd_una; 1006 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1007 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1008 break; 1009 1010 if (unlikely(dfrag == msk->first_pending)) { 1011 /* in recovery mode can see ack after the current snd head */ 1012 if (WARN_ON_ONCE(!msk->recovery)) 1013 break; 1014 1015 msk->first_pending = mptcp_send_next(sk); 1016 } 1017 1018 dfrag_clear(sk, dfrag); 1019 } 1020 1021 dfrag = mptcp_rtx_head(sk); 1022 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1023 u64 delta = snd_una - dfrag->data_seq; 1024 1025 /* prevent wrap around in recovery mode */ 1026 if (unlikely(delta > dfrag->already_sent)) { 1027 if (WARN_ON_ONCE(!msk->recovery)) 1028 goto out; 1029 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1030 goto out; 1031 dfrag->already_sent += delta - dfrag->already_sent; 1032 } 1033 1034 dfrag->data_seq += delta; 1035 dfrag->offset += delta; 1036 dfrag->data_len -= delta; 1037 dfrag->already_sent -= delta; 1038 1039 dfrag_uncharge(sk, delta); 1040 } 1041 1042 /* all retransmitted data acked, recovery completed */ 1043 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1044 msk->recovery = false; 1045 1046 out: 1047 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1048 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1049 mptcp_stop_rtx_timer(sk); 1050 } else { 1051 mptcp_reset_rtx_timer(sk); 1052 } 1053 1054 if (mptcp_pending_data_fin_ack(sk)) 1055 mptcp_schedule_work(sk); 1056 } 1057 1058 static void __mptcp_clean_una_wakeup(struct sock *sk) 1059 { 1060 lockdep_assert_held_once(&sk->sk_lock.slock); 1061 1062 __mptcp_clean_una(sk); 1063 mptcp_write_space(sk); 1064 } 1065 1066 static void mptcp_clean_una_wakeup(struct sock *sk) 1067 { 1068 mptcp_data_lock(sk); 1069 __mptcp_clean_una_wakeup(sk); 1070 mptcp_data_unlock(sk); 1071 } 1072 1073 static void mptcp_enter_memory_pressure(struct sock *sk) 1074 { 1075 struct mptcp_subflow_context *subflow; 1076 struct mptcp_sock *msk = mptcp_sk(sk); 1077 bool first = true; 1078 1079 mptcp_for_each_subflow(msk, subflow) { 1080 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1081 1082 if (first) 1083 tcp_enter_memory_pressure(ssk); 1084 sk_stream_moderate_sndbuf(ssk); 1085 1086 first = false; 1087 } 1088 __mptcp_sync_sndbuf(sk); 1089 } 1090 1091 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1092 * data 1093 */ 1094 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1095 { 1096 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1097 pfrag, sk->sk_allocation))) 1098 return true; 1099 1100 mptcp_enter_memory_pressure(sk); 1101 return false; 1102 } 1103 1104 static struct mptcp_data_frag * 1105 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1106 int orig_offset) 1107 { 1108 int offset = ALIGN(orig_offset, sizeof(long)); 1109 struct mptcp_data_frag *dfrag; 1110 1111 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1112 dfrag->data_len = 0; 1113 dfrag->data_seq = msk->write_seq; 1114 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1115 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1116 dfrag->already_sent = 0; 1117 dfrag->page = pfrag->page; 1118 1119 return dfrag; 1120 } 1121 1122 struct mptcp_sendmsg_info { 1123 int mss_now; 1124 int size_goal; 1125 u16 limit; 1126 u16 sent; 1127 unsigned int flags; 1128 bool data_lock_held; 1129 }; 1130 1131 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1132 u64 data_seq, int avail_size) 1133 { 1134 u64 window_end = mptcp_wnd_end(msk); 1135 u64 mptcp_snd_wnd; 1136 1137 if (__mptcp_check_fallback(msk)) 1138 return avail_size; 1139 1140 mptcp_snd_wnd = window_end - data_seq; 1141 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1142 1143 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1144 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1145 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1146 } 1147 1148 return avail_size; 1149 } 1150 1151 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1152 { 1153 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1154 1155 if (!mpext) 1156 return false; 1157 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1158 return true; 1159 } 1160 1161 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1162 { 1163 struct sk_buff *skb; 1164 1165 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1166 if (likely(skb)) { 1167 if (likely(__mptcp_add_ext(skb, gfp))) { 1168 skb_reserve(skb, MAX_TCP_HEADER); 1169 skb->ip_summed = CHECKSUM_PARTIAL; 1170 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1171 return skb; 1172 } 1173 __kfree_skb(skb); 1174 } else { 1175 mptcp_enter_memory_pressure(sk); 1176 } 1177 return NULL; 1178 } 1179 1180 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1181 { 1182 struct sk_buff *skb; 1183 1184 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1185 if (!skb) 1186 return NULL; 1187 1188 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1189 tcp_skb_entail(ssk, skb); 1190 return skb; 1191 } 1192 tcp_skb_tsorted_anchor_cleanup(skb); 1193 kfree_skb(skb); 1194 return NULL; 1195 } 1196 1197 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1198 { 1199 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1200 1201 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1202 } 1203 1204 /* note: this always recompute the csum on the whole skb, even 1205 * if we just appended a single frag. More status info needed 1206 */ 1207 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1208 { 1209 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1210 __wsum csum = ~csum_unfold(mpext->csum); 1211 int offset = skb->len - added; 1212 1213 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1214 } 1215 1216 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1217 struct sock *ssk, 1218 struct mptcp_ext *mpext) 1219 { 1220 if (!mpext) 1221 return; 1222 1223 mpext->infinite_map = 1; 1224 mpext->data_len = 0; 1225 1226 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1227 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1228 mptcp_subflow_reset(ssk); 1229 return; 1230 } 1231 1232 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1233 } 1234 1235 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1236 1237 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1238 struct mptcp_data_frag *dfrag, 1239 struct mptcp_sendmsg_info *info) 1240 { 1241 u64 data_seq = dfrag->data_seq + info->sent; 1242 int offset = dfrag->offset + info->sent; 1243 struct mptcp_sock *msk = mptcp_sk(sk); 1244 bool zero_window_probe = false; 1245 struct mptcp_ext *mpext = NULL; 1246 bool can_coalesce = false; 1247 bool reuse_skb = true; 1248 struct sk_buff *skb; 1249 size_t copy; 1250 int i; 1251 1252 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1253 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1254 1255 if (WARN_ON_ONCE(info->sent > info->limit || 1256 info->limit > dfrag->data_len)) 1257 return 0; 1258 1259 if (unlikely(!__tcp_can_send(ssk))) 1260 return -EAGAIN; 1261 1262 /* compute send limit */ 1263 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1264 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1265 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1266 copy = info->size_goal; 1267 1268 skb = tcp_write_queue_tail(ssk); 1269 if (skb && copy > skb->len) { 1270 /* Limit the write to the size available in the 1271 * current skb, if any, so that we create at most a new skb. 1272 * Explicitly tells TCP internals to avoid collapsing on later 1273 * queue management operation, to avoid breaking the ext <-> 1274 * SSN association set here 1275 */ 1276 mpext = mptcp_get_ext(skb); 1277 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1278 TCP_SKB_CB(skb)->eor = 1; 1279 tcp_mark_push(tcp_sk(ssk), skb); 1280 goto alloc_skb; 1281 } 1282 1283 i = skb_shinfo(skb)->nr_frags; 1284 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1285 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1286 tcp_mark_push(tcp_sk(ssk), skb); 1287 goto alloc_skb; 1288 } 1289 1290 copy -= skb->len; 1291 } else { 1292 alloc_skb: 1293 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1294 if (!skb) 1295 return -ENOMEM; 1296 1297 i = skb_shinfo(skb)->nr_frags; 1298 reuse_skb = false; 1299 mpext = mptcp_get_ext(skb); 1300 } 1301 1302 /* Zero window and all data acked? Probe. */ 1303 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1304 if (copy == 0) { 1305 u64 snd_una = READ_ONCE(msk->snd_una); 1306 1307 /* No need for zero probe if there are any data pending 1308 * either at the msk or ssk level; skb is the current write 1309 * queue tail and can be empty at this point. 1310 */ 1311 if (snd_una != msk->snd_nxt || skb->len || 1312 skb != tcp_send_head(ssk)) { 1313 tcp_remove_empty_skb(ssk); 1314 return 0; 1315 } 1316 1317 zero_window_probe = true; 1318 data_seq = snd_una - 1; 1319 copy = 1; 1320 } 1321 1322 copy = min_t(size_t, copy, info->limit - info->sent); 1323 if (!sk_wmem_schedule(ssk, copy)) { 1324 tcp_remove_empty_skb(ssk); 1325 return -ENOMEM; 1326 } 1327 1328 if (can_coalesce) { 1329 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1330 } else { 1331 get_page(dfrag->page); 1332 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1333 } 1334 1335 skb->len += copy; 1336 skb->data_len += copy; 1337 skb->truesize += copy; 1338 sk_wmem_queued_add(ssk, copy); 1339 sk_mem_charge(ssk, copy); 1340 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1341 TCP_SKB_CB(skb)->end_seq += copy; 1342 tcp_skb_pcount_set(skb, 0); 1343 1344 /* on skb reuse we just need to update the DSS len */ 1345 if (reuse_skb) { 1346 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1347 mpext->data_len += copy; 1348 goto out; 1349 } 1350 1351 memset(mpext, 0, sizeof(*mpext)); 1352 mpext->data_seq = data_seq; 1353 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1354 mpext->data_len = copy; 1355 mpext->use_map = 1; 1356 mpext->dsn64 = 1; 1357 1358 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1359 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1360 mpext->dsn64); 1361 1362 if (zero_window_probe) { 1363 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1364 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1365 mpext->frozen = 1; 1366 if (READ_ONCE(msk->csum_enabled)) 1367 mptcp_update_data_checksum(skb, copy); 1368 tcp_push_pending_frames(ssk); 1369 return 0; 1370 } 1371 out: 1372 if (READ_ONCE(msk->csum_enabled)) 1373 mptcp_update_data_checksum(skb, copy); 1374 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1375 mptcp_update_infinite_map(msk, ssk, mpext); 1376 trace_mptcp_sendmsg_frag(mpext); 1377 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1378 return copy; 1379 } 1380 1381 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1382 sizeof(struct tcphdr) - \ 1383 MAX_TCP_OPTION_SPACE - \ 1384 sizeof(struct ipv6hdr) - \ 1385 sizeof(struct frag_hdr)) 1386 1387 struct subflow_send_info { 1388 struct sock *ssk; 1389 u64 linger_time; 1390 }; 1391 1392 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1393 { 1394 if (!subflow->stale) 1395 return; 1396 1397 subflow->stale = 0; 1398 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1399 } 1400 1401 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1402 { 1403 if (unlikely(subflow->stale)) { 1404 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1405 1406 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1407 return false; 1408 1409 mptcp_subflow_set_active(subflow); 1410 } 1411 return __mptcp_subflow_active(subflow); 1412 } 1413 1414 #define SSK_MODE_ACTIVE 0 1415 #define SSK_MODE_BACKUP 1 1416 #define SSK_MODE_MAX 2 1417 1418 /* implement the mptcp packet scheduler; 1419 * returns the subflow that will transmit the next DSS 1420 * additionally updates the rtx timeout 1421 */ 1422 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1423 { 1424 struct subflow_send_info send_info[SSK_MODE_MAX]; 1425 struct mptcp_subflow_context *subflow; 1426 struct sock *sk = (struct sock *)msk; 1427 u32 pace, burst, wmem; 1428 int i, nr_active = 0; 1429 struct sock *ssk; 1430 u64 linger_time; 1431 long tout = 0; 1432 1433 /* pick the subflow with the lower wmem/wspace ratio */ 1434 for (i = 0; i < SSK_MODE_MAX; ++i) { 1435 send_info[i].ssk = NULL; 1436 send_info[i].linger_time = -1; 1437 } 1438 1439 mptcp_for_each_subflow(msk, subflow) { 1440 bool backup = subflow->backup || subflow->request_bkup; 1441 1442 trace_mptcp_subflow_get_send(subflow); 1443 ssk = mptcp_subflow_tcp_sock(subflow); 1444 if (!mptcp_subflow_active(subflow)) 1445 continue; 1446 1447 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1448 nr_active += !backup; 1449 pace = subflow->avg_pacing_rate; 1450 if (unlikely(!pace)) { 1451 /* init pacing rate from socket */ 1452 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1453 pace = subflow->avg_pacing_rate; 1454 if (!pace) 1455 continue; 1456 } 1457 1458 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1459 if (linger_time < send_info[backup].linger_time) { 1460 send_info[backup].ssk = ssk; 1461 send_info[backup].linger_time = linger_time; 1462 } 1463 } 1464 __mptcp_set_timeout(sk, tout); 1465 1466 /* pick the best backup if no other subflow is active */ 1467 if (!nr_active) 1468 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1469 1470 /* According to the blest algorithm, to avoid HoL blocking for the 1471 * faster flow, we need to: 1472 * - estimate the faster flow linger time 1473 * - use the above to estimate the amount of byte transferred 1474 * by the faster flow 1475 * - check that the amount of queued data is greater than the above, 1476 * otherwise do not use the picked, slower, subflow 1477 * We select the subflow with the shorter estimated time to flush 1478 * the queued mem, which basically ensure the above. We just need 1479 * to check that subflow has a non empty cwin. 1480 */ 1481 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1482 if (!ssk || !sk_stream_memory_free(ssk)) 1483 return NULL; 1484 1485 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1486 wmem = READ_ONCE(ssk->sk_wmem_queued); 1487 if (!burst) 1488 return ssk; 1489 1490 subflow = mptcp_subflow_ctx(ssk); 1491 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1492 READ_ONCE(ssk->sk_pacing_rate) * burst, 1493 burst + wmem); 1494 msk->snd_burst = burst; 1495 return ssk; 1496 } 1497 1498 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1499 { 1500 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1501 release_sock(ssk); 1502 } 1503 1504 static void mptcp_update_post_push(struct mptcp_sock *msk, 1505 struct mptcp_data_frag *dfrag, 1506 u32 sent) 1507 { 1508 u64 snd_nxt_new = dfrag->data_seq; 1509 1510 dfrag->already_sent += sent; 1511 1512 msk->snd_burst -= sent; 1513 1514 snd_nxt_new += dfrag->already_sent; 1515 1516 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1517 * is recovering after a failover. In that event, this re-sends 1518 * old segments. 1519 * 1520 * Thus compute snd_nxt_new candidate based on 1521 * the dfrag->data_seq that was sent and the data 1522 * that has been handed to the subflow for transmission 1523 * and skip update in case it was old dfrag. 1524 */ 1525 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1526 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1527 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1528 } 1529 } 1530 1531 void mptcp_check_and_set_pending(struct sock *sk) 1532 { 1533 if (mptcp_send_head(sk)) { 1534 mptcp_data_lock(sk); 1535 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1536 mptcp_data_unlock(sk); 1537 } 1538 } 1539 1540 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1541 struct mptcp_sendmsg_info *info) 1542 { 1543 struct mptcp_sock *msk = mptcp_sk(sk); 1544 struct mptcp_data_frag *dfrag; 1545 int len, copied = 0, err = 0; 1546 1547 while ((dfrag = mptcp_send_head(sk))) { 1548 info->sent = dfrag->already_sent; 1549 info->limit = dfrag->data_len; 1550 len = dfrag->data_len - dfrag->already_sent; 1551 while (len > 0) { 1552 int ret = 0; 1553 1554 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1555 if (ret <= 0) { 1556 err = copied ? : ret; 1557 goto out; 1558 } 1559 1560 info->sent += ret; 1561 copied += ret; 1562 len -= ret; 1563 1564 mptcp_update_post_push(msk, dfrag, ret); 1565 } 1566 msk->first_pending = mptcp_send_next(sk); 1567 1568 if (msk->snd_burst <= 0 || 1569 !sk_stream_memory_free(ssk) || 1570 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1571 err = copied; 1572 goto out; 1573 } 1574 mptcp_set_timeout(sk); 1575 } 1576 err = copied; 1577 1578 out: 1579 if (err > 0) 1580 msk->last_data_sent = tcp_jiffies32; 1581 return err; 1582 } 1583 1584 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1585 { 1586 struct sock *prev_ssk = NULL, *ssk = NULL; 1587 struct mptcp_sock *msk = mptcp_sk(sk); 1588 struct mptcp_sendmsg_info info = { 1589 .flags = flags, 1590 }; 1591 bool do_check_data_fin = false; 1592 int push_count = 1; 1593 1594 while (mptcp_send_head(sk) && (push_count > 0)) { 1595 struct mptcp_subflow_context *subflow; 1596 int ret = 0; 1597 1598 if (mptcp_sched_get_send(msk)) 1599 break; 1600 1601 push_count = 0; 1602 1603 mptcp_for_each_subflow(msk, subflow) { 1604 if (READ_ONCE(subflow->scheduled)) { 1605 mptcp_subflow_set_scheduled(subflow, false); 1606 1607 prev_ssk = ssk; 1608 ssk = mptcp_subflow_tcp_sock(subflow); 1609 if (ssk != prev_ssk) { 1610 /* First check. If the ssk has changed since 1611 * the last round, release prev_ssk 1612 */ 1613 if (prev_ssk) 1614 mptcp_push_release(prev_ssk, &info); 1615 1616 /* Need to lock the new subflow only if different 1617 * from the previous one, otherwise we are still 1618 * helding the relevant lock 1619 */ 1620 lock_sock(ssk); 1621 } 1622 1623 push_count++; 1624 1625 ret = __subflow_push_pending(sk, ssk, &info); 1626 if (ret <= 0) { 1627 if (ret != -EAGAIN || 1628 (1 << ssk->sk_state) & 1629 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1630 push_count--; 1631 continue; 1632 } 1633 do_check_data_fin = true; 1634 } 1635 } 1636 } 1637 1638 /* at this point we held the socket lock for the last subflow we used */ 1639 if (ssk) 1640 mptcp_push_release(ssk, &info); 1641 1642 /* ensure the rtx timer is running */ 1643 if (!mptcp_rtx_timer_pending(sk)) 1644 mptcp_reset_rtx_timer(sk); 1645 if (do_check_data_fin) 1646 mptcp_check_send_data_fin(sk); 1647 } 1648 1649 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1650 { 1651 struct mptcp_sock *msk = mptcp_sk(sk); 1652 struct mptcp_sendmsg_info info = { 1653 .data_lock_held = true, 1654 }; 1655 bool keep_pushing = true; 1656 struct sock *xmit_ssk; 1657 int copied = 0; 1658 1659 info.flags = 0; 1660 while (mptcp_send_head(sk) && keep_pushing) { 1661 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1662 int ret = 0; 1663 1664 /* check for a different subflow usage only after 1665 * spooling the first chunk of data 1666 */ 1667 if (first) { 1668 mptcp_subflow_set_scheduled(subflow, false); 1669 ret = __subflow_push_pending(sk, ssk, &info); 1670 first = false; 1671 if (ret <= 0) 1672 break; 1673 copied += ret; 1674 continue; 1675 } 1676 1677 if (mptcp_sched_get_send(msk)) 1678 goto out; 1679 1680 if (READ_ONCE(subflow->scheduled)) { 1681 mptcp_subflow_set_scheduled(subflow, false); 1682 ret = __subflow_push_pending(sk, ssk, &info); 1683 if (ret <= 0) 1684 keep_pushing = false; 1685 copied += ret; 1686 } 1687 1688 mptcp_for_each_subflow(msk, subflow) { 1689 if (READ_ONCE(subflow->scheduled)) { 1690 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1691 if (xmit_ssk != ssk) { 1692 mptcp_subflow_delegate(subflow, 1693 MPTCP_DELEGATE_SEND); 1694 keep_pushing = false; 1695 } 1696 } 1697 } 1698 } 1699 1700 out: 1701 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1702 * not going to flush it via release_sock() 1703 */ 1704 if (copied) { 1705 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1706 info.size_goal); 1707 if (!mptcp_rtx_timer_pending(sk)) 1708 mptcp_reset_rtx_timer(sk); 1709 1710 if (msk->snd_data_fin_enable && 1711 msk->snd_nxt + 1 == msk->write_seq) 1712 mptcp_schedule_work(sk); 1713 } 1714 } 1715 1716 static int mptcp_disconnect(struct sock *sk, int flags); 1717 1718 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1719 size_t len, int *copied_syn) 1720 { 1721 unsigned int saved_flags = msg->msg_flags; 1722 struct mptcp_sock *msk = mptcp_sk(sk); 1723 struct sock *ssk; 1724 int ret; 1725 1726 /* on flags based fastopen the mptcp is supposed to create the 1727 * first subflow right now. Otherwise we are in the defer_connect 1728 * path, and the first subflow must be already present. 1729 * Since the defer_connect flag is cleared after the first succsful 1730 * fastopen attempt, no need to check for additional subflow status. 1731 */ 1732 if (msg->msg_flags & MSG_FASTOPEN) { 1733 ssk = __mptcp_nmpc_sk(msk); 1734 if (IS_ERR(ssk)) 1735 return PTR_ERR(ssk); 1736 } 1737 if (!msk->first) 1738 return -EINVAL; 1739 1740 ssk = msk->first; 1741 1742 lock_sock(ssk); 1743 msg->msg_flags |= MSG_DONTWAIT; 1744 msk->fastopening = 1; 1745 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1746 msk->fastopening = 0; 1747 msg->msg_flags = saved_flags; 1748 release_sock(ssk); 1749 1750 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1751 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1752 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1753 msg->msg_namelen, msg->msg_flags, 1); 1754 1755 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1756 * case of any error, except timeout or signal 1757 */ 1758 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1759 *copied_syn = 0; 1760 } else if (ret && ret != -EINPROGRESS) { 1761 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1762 * __inet_stream_connect() can fail, due to looking check, 1763 * see mptcp_disconnect(). 1764 * Attempt it again outside the problematic scope. 1765 */ 1766 if (!mptcp_disconnect(sk, 0)) { 1767 sk->sk_disconnects++; 1768 sk->sk_socket->state = SS_UNCONNECTED; 1769 } 1770 } 1771 inet_clear_bit(DEFER_CONNECT, sk); 1772 1773 return ret; 1774 } 1775 1776 static int do_copy_data_nocache(struct sock *sk, int copy, 1777 struct iov_iter *from, char *to) 1778 { 1779 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1780 if (!copy_from_iter_full_nocache(to, copy, from)) 1781 return -EFAULT; 1782 } else if (!copy_from_iter_full(to, copy, from)) { 1783 return -EFAULT; 1784 } 1785 return 0; 1786 } 1787 1788 /* open-code sk_stream_memory_free() plus sent limit computation to 1789 * avoid indirect calls in fast-path. 1790 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1791 * annotations. 1792 */ 1793 static u32 mptcp_send_limit(const struct sock *sk) 1794 { 1795 const struct mptcp_sock *msk = mptcp_sk(sk); 1796 u32 limit, not_sent; 1797 1798 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1799 return 0; 1800 1801 limit = mptcp_notsent_lowat(sk); 1802 if (limit == UINT_MAX) 1803 return UINT_MAX; 1804 1805 not_sent = msk->write_seq - msk->snd_nxt; 1806 if (not_sent >= limit) 1807 return 0; 1808 1809 return limit - not_sent; 1810 } 1811 1812 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1813 { 1814 struct mptcp_subflow_context *subflow; 1815 1816 if (!rfs_is_needed()) 1817 return; 1818 1819 mptcp_for_each_subflow(msk, subflow) { 1820 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1821 1822 sock_rps_record_flow(ssk); 1823 } 1824 } 1825 1826 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1827 { 1828 struct mptcp_sock *msk = mptcp_sk(sk); 1829 struct page_frag *pfrag; 1830 size_t copied = 0; 1831 int ret = 0; 1832 long timeo; 1833 1834 /* silently ignore everything else */ 1835 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1836 1837 lock_sock(sk); 1838 1839 mptcp_rps_record_subflows(msk); 1840 1841 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1842 msg->msg_flags & MSG_FASTOPEN)) { 1843 int copied_syn = 0; 1844 1845 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1846 copied += copied_syn; 1847 if (ret == -EINPROGRESS && copied_syn > 0) 1848 goto out; 1849 else if (ret) 1850 goto do_error; 1851 } 1852 1853 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1854 1855 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1856 ret = sk_stream_wait_connect(sk, &timeo); 1857 if (ret) 1858 goto do_error; 1859 } 1860 1861 ret = -EPIPE; 1862 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1863 goto do_error; 1864 1865 pfrag = sk_page_frag(sk); 1866 1867 while (msg_data_left(msg)) { 1868 int total_ts, frag_truesize = 0; 1869 struct mptcp_data_frag *dfrag; 1870 bool dfrag_collapsed; 1871 size_t psize, offset; 1872 u32 copy_limit; 1873 1874 /* ensure fitting the notsent_lowat() constraint */ 1875 copy_limit = mptcp_send_limit(sk); 1876 if (!copy_limit) 1877 goto wait_for_memory; 1878 1879 /* reuse tail pfrag, if possible, or carve a new one from the 1880 * page allocator 1881 */ 1882 dfrag = mptcp_pending_tail(sk); 1883 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1884 if (!dfrag_collapsed) { 1885 if (!mptcp_page_frag_refill(sk, pfrag)) 1886 goto wait_for_memory; 1887 1888 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1889 frag_truesize = dfrag->overhead; 1890 } 1891 1892 /* we do not bound vs wspace, to allow a single packet. 1893 * memory accounting will prevent execessive memory usage 1894 * anyway 1895 */ 1896 offset = dfrag->offset + dfrag->data_len; 1897 psize = pfrag->size - offset; 1898 psize = min_t(size_t, psize, msg_data_left(msg)); 1899 psize = min_t(size_t, psize, copy_limit); 1900 total_ts = psize + frag_truesize; 1901 1902 if (!sk_wmem_schedule(sk, total_ts)) 1903 goto wait_for_memory; 1904 1905 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1906 page_address(dfrag->page) + offset); 1907 if (ret) 1908 goto do_error; 1909 1910 /* data successfully copied into the write queue */ 1911 sk_forward_alloc_add(sk, -total_ts); 1912 copied += psize; 1913 dfrag->data_len += psize; 1914 frag_truesize += psize; 1915 pfrag->offset += frag_truesize; 1916 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1917 1918 /* charge data on mptcp pending queue to the msk socket 1919 * Note: we charge such data both to sk and ssk 1920 */ 1921 sk_wmem_queued_add(sk, frag_truesize); 1922 if (!dfrag_collapsed) { 1923 get_page(dfrag->page); 1924 list_add_tail(&dfrag->list, &msk->rtx_queue); 1925 if (!msk->first_pending) 1926 msk->first_pending = dfrag; 1927 } 1928 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1929 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1930 !dfrag_collapsed); 1931 1932 continue; 1933 1934 wait_for_memory: 1935 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1936 __mptcp_push_pending(sk, msg->msg_flags); 1937 ret = sk_stream_wait_memory(sk, &timeo); 1938 if (ret) 1939 goto do_error; 1940 } 1941 1942 if (copied) 1943 __mptcp_push_pending(sk, msg->msg_flags); 1944 1945 out: 1946 release_sock(sk); 1947 return copied; 1948 1949 do_error: 1950 if (copied) 1951 goto out; 1952 1953 copied = sk_stream_error(sk, msg->msg_flags, ret); 1954 goto out; 1955 } 1956 1957 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1958 1959 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1960 size_t len, int flags, int copied_total, 1961 struct scm_timestamping_internal *tss, 1962 int *cmsg_flags) 1963 { 1964 struct mptcp_sock *msk = mptcp_sk(sk); 1965 struct sk_buff *skb, *tmp; 1966 int total_data_len = 0; 1967 int copied = 0; 1968 1969 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1970 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 1971 u32 data_len = skb->len - offset; 1972 u32 count; 1973 int err; 1974 1975 if (flags & MSG_PEEK) { 1976 /* skip already peeked skbs */ 1977 if (total_data_len + data_len <= copied_total) { 1978 total_data_len += data_len; 1979 continue; 1980 } 1981 1982 /* skip the already peeked data in the current skb */ 1983 delta = copied_total - total_data_len; 1984 offset += delta; 1985 data_len -= delta; 1986 } 1987 1988 count = min_t(size_t, len - copied, data_len); 1989 if (!(flags & MSG_TRUNC)) { 1990 err = skb_copy_datagram_msg(skb, offset, msg, count); 1991 if (unlikely(err < 0)) { 1992 if (!copied) 1993 return err; 1994 break; 1995 } 1996 } 1997 1998 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1999 tcp_update_recv_tstamps(skb, tss); 2000 *cmsg_flags |= MPTCP_CMSG_TS; 2001 } 2002 2003 copied += count; 2004 2005 if (!(flags & MSG_PEEK)) { 2006 msk->bytes_consumed += count; 2007 if (count < data_len) { 2008 MPTCP_SKB_CB(skb)->offset += count; 2009 MPTCP_SKB_CB(skb)->map_seq += count; 2010 break; 2011 } 2012 2013 /* avoid the indirect call, we know the destructor is sock_rfree */ 2014 skb->destructor = NULL; 2015 skb->sk = NULL; 2016 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2017 sk_mem_uncharge(sk, skb->truesize); 2018 __skb_unlink(skb, &sk->sk_receive_queue); 2019 skb_attempt_defer_free(skb); 2020 } 2021 2022 if (copied >= len) 2023 break; 2024 } 2025 2026 mptcp_rcv_space_adjust(msk, copied); 2027 return copied; 2028 } 2029 2030 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2031 * 2032 * Only difference: Use highest rtt estimate of the subflows in use. 2033 */ 2034 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2035 { 2036 struct mptcp_subflow_context *subflow; 2037 struct sock *sk = (struct sock *)msk; 2038 u8 scaling_ratio = U8_MAX; 2039 u32 time, advmss = 1; 2040 u64 rtt_us, mstamp; 2041 2042 msk_owned_by_me(msk); 2043 2044 if (copied <= 0) 2045 return; 2046 2047 if (!msk->rcvspace_init) 2048 mptcp_rcv_space_init(msk, msk->first); 2049 2050 msk->rcvq_space.copied += copied; 2051 2052 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2053 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2054 2055 rtt_us = msk->rcvq_space.rtt_us; 2056 if (rtt_us && time < (rtt_us >> 3)) 2057 return; 2058 2059 rtt_us = 0; 2060 mptcp_for_each_subflow(msk, subflow) { 2061 const struct tcp_sock *tp; 2062 u64 sf_rtt_us; 2063 u32 sf_advmss; 2064 2065 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2066 2067 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2068 sf_advmss = READ_ONCE(tp->advmss); 2069 2070 rtt_us = max(sf_rtt_us, rtt_us); 2071 advmss = max(sf_advmss, advmss); 2072 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2073 } 2074 2075 msk->rcvq_space.rtt_us = rtt_us; 2076 msk->scaling_ratio = scaling_ratio; 2077 if (time < (rtt_us >> 3) || rtt_us == 0) 2078 return; 2079 2080 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2081 goto new_measure; 2082 2083 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2084 /* Make subflows follow along. If we do not do this, we 2085 * get drops at subflow level if skbs can't be moved to 2086 * the mptcp rx queue fast enough (announced rcv_win can 2087 * exceed ssk->sk_rcvbuf). 2088 */ 2089 mptcp_for_each_subflow(msk, subflow) { 2090 struct sock *ssk; 2091 bool slow; 2092 2093 ssk = mptcp_subflow_tcp_sock(subflow); 2094 slow = lock_sock_fast(ssk); 2095 /* subflows can be added before tcp_init_transfer() */ 2096 if (tcp_sk(ssk)->rcvq_space.space) 2097 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2098 unlock_sock_fast(ssk, slow); 2099 } 2100 } 2101 2102 new_measure: 2103 msk->rcvq_space.copied = 0; 2104 msk->rcvq_space.time = mstamp; 2105 } 2106 2107 static struct mptcp_subflow_context * 2108 __mptcp_first_ready_from(struct mptcp_sock *msk, 2109 struct mptcp_subflow_context *subflow) 2110 { 2111 struct mptcp_subflow_context *start_subflow = subflow; 2112 2113 while (!READ_ONCE(subflow->data_avail)) { 2114 subflow = mptcp_next_subflow(msk, subflow); 2115 if (subflow == start_subflow) 2116 return NULL; 2117 } 2118 return subflow; 2119 } 2120 2121 static bool __mptcp_move_skbs(struct sock *sk) 2122 { 2123 struct mptcp_subflow_context *subflow; 2124 struct mptcp_sock *msk = mptcp_sk(sk); 2125 bool ret = false; 2126 2127 if (list_empty(&msk->conn_list)) 2128 return false; 2129 2130 subflow = list_first_entry(&msk->conn_list, 2131 struct mptcp_subflow_context, node); 2132 for (;;) { 2133 struct sock *ssk; 2134 bool slowpath; 2135 2136 /* 2137 * As an optimization avoid traversing the subflows list 2138 * and ev. acquiring the subflow socket lock before baling out 2139 */ 2140 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2141 break; 2142 2143 subflow = __mptcp_first_ready_from(msk, subflow); 2144 if (!subflow) 2145 break; 2146 2147 ssk = mptcp_subflow_tcp_sock(subflow); 2148 slowpath = lock_sock_fast(ssk); 2149 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2150 if (unlikely(ssk->sk_err)) 2151 __mptcp_error_report(sk); 2152 unlock_sock_fast(ssk, slowpath); 2153 2154 subflow = mptcp_next_subflow(msk, subflow); 2155 } 2156 2157 __mptcp_ofo_queue(msk); 2158 if (ret) 2159 mptcp_check_data_fin((struct sock *)msk); 2160 return ret; 2161 } 2162 2163 static unsigned int mptcp_inq_hint(const struct sock *sk) 2164 { 2165 const struct mptcp_sock *msk = mptcp_sk(sk); 2166 const struct sk_buff *skb; 2167 2168 skb = skb_peek(&sk->sk_receive_queue); 2169 if (skb) { 2170 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2171 2172 if (hint_val >= INT_MAX) 2173 return INT_MAX; 2174 2175 return (unsigned int)hint_val; 2176 } 2177 2178 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2179 return 1; 2180 2181 return 0; 2182 } 2183 2184 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2185 int flags, int *addr_len) 2186 { 2187 struct mptcp_sock *msk = mptcp_sk(sk); 2188 struct scm_timestamping_internal tss; 2189 int copied = 0, cmsg_flags = 0; 2190 int target; 2191 long timeo; 2192 2193 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2194 if (unlikely(flags & MSG_ERRQUEUE)) 2195 return inet_recv_error(sk, msg, len, addr_len); 2196 2197 lock_sock(sk); 2198 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2199 copied = -ENOTCONN; 2200 goto out_err; 2201 } 2202 2203 mptcp_rps_record_subflows(msk); 2204 2205 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2206 2207 len = min_t(size_t, len, INT_MAX); 2208 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2209 2210 if (unlikely(msk->recvmsg_inq)) 2211 cmsg_flags = MPTCP_CMSG_INQ; 2212 2213 while (copied < len) { 2214 int err, bytes_read; 2215 2216 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2217 copied, &tss, &cmsg_flags); 2218 if (unlikely(bytes_read < 0)) { 2219 if (!copied) 2220 copied = bytes_read; 2221 goto out_err; 2222 } 2223 2224 copied += bytes_read; 2225 2226 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2227 continue; 2228 2229 /* only the MPTCP socket status is relevant here. The exit 2230 * conditions mirror closely tcp_recvmsg() 2231 */ 2232 if (copied >= target) 2233 break; 2234 2235 if (copied) { 2236 if (sk->sk_err || 2237 sk->sk_state == TCP_CLOSE || 2238 (sk->sk_shutdown & RCV_SHUTDOWN) || 2239 !timeo || 2240 signal_pending(current)) 2241 break; 2242 } else { 2243 if (sk->sk_err) { 2244 copied = sock_error(sk); 2245 break; 2246 } 2247 2248 if (sk->sk_shutdown & RCV_SHUTDOWN) 2249 break; 2250 2251 if (sk->sk_state == TCP_CLOSE) { 2252 copied = -ENOTCONN; 2253 break; 2254 } 2255 2256 if (!timeo) { 2257 copied = -EAGAIN; 2258 break; 2259 } 2260 2261 if (signal_pending(current)) { 2262 copied = sock_intr_errno(timeo); 2263 break; 2264 } 2265 } 2266 2267 pr_debug("block timeout %ld\n", timeo); 2268 mptcp_cleanup_rbuf(msk, copied); 2269 err = sk_wait_data(sk, &timeo, NULL); 2270 if (err < 0) { 2271 err = copied ? : err; 2272 goto out_err; 2273 } 2274 } 2275 2276 mptcp_cleanup_rbuf(msk, copied); 2277 2278 out_err: 2279 if (cmsg_flags && copied >= 0) { 2280 if (cmsg_flags & MPTCP_CMSG_TS) 2281 tcp_recv_timestamp(msg, sk, &tss); 2282 2283 if (cmsg_flags & MPTCP_CMSG_INQ) { 2284 unsigned int inq = mptcp_inq_hint(sk); 2285 2286 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2287 } 2288 } 2289 2290 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2291 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2292 2293 release_sock(sk); 2294 return copied; 2295 } 2296 2297 static void mptcp_retransmit_timer(struct timer_list *t) 2298 { 2299 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2300 icsk_retransmit_timer); 2301 struct sock *sk = &icsk->icsk_inet.sk; 2302 struct mptcp_sock *msk = mptcp_sk(sk); 2303 2304 bh_lock_sock(sk); 2305 if (!sock_owned_by_user(sk)) { 2306 /* we need a process context to retransmit */ 2307 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2308 mptcp_schedule_work(sk); 2309 } else { 2310 /* delegate our work to tcp_release_cb() */ 2311 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2312 } 2313 bh_unlock_sock(sk); 2314 sock_put(sk); 2315 } 2316 2317 static void mptcp_tout_timer(struct timer_list *t) 2318 { 2319 struct sock *sk = timer_container_of(sk, t, sk_timer); 2320 2321 mptcp_schedule_work(sk); 2322 sock_put(sk); 2323 } 2324 2325 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2326 * level. 2327 * 2328 * A backup subflow is returned only if that is the only kind available. 2329 */ 2330 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2331 { 2332 struct sock *backup = NULL, *pick = NULL; 2333 struct mptcp_subflow_context *subflow; 2334 int min_stale_count = INT_MAX; 2335 2336 mptcp_for_each_subflow(msk, subflow) { 2337 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2338 2339 if (!__mptcp_subflow_active(subflow)) 2340 continue; 2341 2342 /* still data outstanding at TCP level? skip this */ 2343 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2344 mptcp_pm_subflow_chk_stale(msk, ssk); 2345 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2346 continue; 2347 } 2348 2349 if (subflow->backup || subflow->request_bkup) { 2350 if (!backup) 2351 backup = ssk; 2352 continue; 2353 } 2354 2355 if (!pick) 2356 pick = ssk; 2357 } 2358 2359 if (pick) 2360 return pick; 2361 2362 /* use backup only if there are no progresses anywhere */ 2363 return min_stale_count > 1 ? backup : NULL; 2364 } 2365 2366 bool __mptcp_retransmit_pending_data(struct sock *sk) 2367 { 2368 struct mptcp_data_frag *cur, *rtx_head; 2369 struct mptcp_sock *msk = mptcp_sk(sk); 2370 2371 if (__mptcp_check_fallback(msk)) 2372 return false; 2373 2374 /* the closing socket has some data untransmitted and/or unacked: 2375 * some data in the mptcp rtx queue has not really xmitted yet. 2376 * keep it simple and re-inject the whole mptcp level rtx queue 2377 */ 2378 mptcp_data_lock(sk); 2379 __mptcp_clean_una_wakeup(sk); 2380 rtx_head = mptcp_rtx_head(sk); 2381 if (!rtx_head) { 2382 mptcp_data_unlock(sk); 2383 return false; 2384 } 2385 2386 msk->recovery_snd_nxt = msk->snd_nxt; 2387 msk->recovery = true; 2388 mptcp_data_unlock(sk); 2389 2390 msk->first_pending = rtx_head; 2391 msk->snd_burst = 0; 2392 2393 /* be sure to clear the "sent status" on all re-injected fragments */ 2394 list_for_each_entry(cur, &msk->rtx_queue, list) { 2395 if (!cur->already_sent) 2396 break; 2397 cur->already_sent = 0; 2398 } 2399 2400 return true; 2401 } 2402 2403 /* flags for __mptcp_close_ssk() */ 2404 #define MPTCP_CF_PUSH BIT(1) 2405 #define MPTCP_CF_FASTCLOSE BIT(2) 2406 2407 /* be sure to send a reset only if the caller asked for it, also 2408 * clean completely the subflow status when the subflow reaches 2409 * TCP_CLOSE state 2410 */ 2411 static void __mptcp_subflow_disconnect(struct sock *ssk, 2412 struct mptcp_subflow_context *subflow, 2413 unsigned int flags) 2414 { 2415 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2416 (flags & MPTCP_CF_FASTCLOSE)) { 2417 /* The MPTCP code never wait on the subflow sockets, TCP-level 2418 * disconnect should never fail 2419 */ 2420 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2421 mptcp_subflow_ctx_reset(subflow); 2422 } else { 2423 tcp_shutdown(ssk, SEND_SHUTDOWN); 2424 } 2425 } 2426 2427 /* subflow sockets can be either outgoing (connect) or incoming 2428 * (accept). 2429 * 2430 * Outgoing subflows use in-kernel sockets. 2431 * Incoming subflows do not have their own 'struct socket' allocated, 2432 * so we need to use tcp_close() after detaching them from the mptcp 2433 * parent socket. 2434 */ 2435 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2436 struct mptcp_subflow_context *subflow, 2437 unsigned int flags) 2438 { 2439 struct mptcp_sock *msk = mptcp_sk(sk); 2440 bool dispose_it, need_push = false; 2441 2442 /* If the first subflow moved to a close state before accept, e.g. due 2443 * to an incoming reset or listener shutdown, the subflow socket is 2444 * already deleted by inet_child_forget() and the mptcp socket can't 2445 * survive too. 2446 */ 2447 if (msk->in_accept_queue && msk->first == ssk && 2448 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2449 /* ensure later check in mptcp_worker() will dispose the msk */ 2450 sock_set_flag(sk, SOCK_DEAD); 2451 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2452 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2453 mptcp_subflow_drop_ctx(ssk); 2454 goto out_release; 2455 } 2456 2457 dispose_it = msk->free_first || ssk != msk->first; 2458 if (dispose_it) 2459 list_del(&subflow->node); 2460 2461 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2462 2463 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2464 /* be sure to force the tcp_close path 2465 * to generate the egress reset 2466 */ 2467 ssk->sk_lingertime = 0; 2468 sock_set_flag(ssk, SOCK_LINGER); 2469 subflow->send_fastclose = 1; 2470 } 2471 2472 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2473 if (!dispose_it) { 2474 __mptcp_subflow_disconnect(ssk, subflow, flags); 2475 release_sock(ssk); 2476 2477 goto out; 2478 } 2479 2480 subflow->disposable = 1; 2481 2482 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2483 * the ssk has been already destroyed, we just need to release the 2484 * reference owned by msk; 2485 */ 2486 if (!inet_csk(ssk)->icsk_ulp_ops) { 2487 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2488 kfree_rcu(subflow, rcu); 2489 } else { 2490 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2491 __tcp_close(ssk, 0); 2492 2493 /* close acquired an extra ref */ 2494 __sock_put(ssk); 2495 } 2496 2497 out_release: 2498 __mptcp_subflow_error_report(sk, ssk); 2499 release_sock(ssk); 2500 2501 sock_put(ssk); 2502 2503 if (ssk == msk->first) 2504 WRITE_ONCE(msk->first, NULL); 2505 2506 out: 2507 __mptcp_sync_sndbuf(sk); 2508 if (need_push) 2509 __mptcp_push_pending(sk, 0); 2510 2511 /* Catch every 'all subflows closed' scenario, including peers silently 2512 * closing them, e.g. due to timeout. 2513 * For established sockets, allow an additional timeout before closing, 2514 * as the protocol can still create more subflows. 2515 */ 2516 if (list_is_singular(&msk->conn_list) && msk->first && 2517 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2518 if (sk->sk_state != TCP_ESTABLISHED || 2519 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2520 mptcp_set_state(sk, TCP_CLOSE); 2521 mptcp_close_wake_up(sk); 2522 } else { 2523 mptcp_start_tout_timer(sk); 2524 } 2525 } 2526 } 2527 2528 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2529 struct mptcp_subflow_context *subflow) 2530 { 2531 /* The first subflow can already be closed and still in the list */ 2532 if (subflow->close_event_done) 2533 return; 2534 2535 subflow->close_event_done = true; 2536 2537 if (sk->sk_state == TCP_ESTABLISHED) 2538 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2539 2540 /* subflow aborted before reaching the fully_established status 2541 * attempt the creation of the next subflow 2542 */ 2543 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2544 2545 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2546 } 2547 2548 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2549 { 2550 return 0; 2551 } 2552 2553 static void __mptcp_close_subflow(struct sock *sk) 2554 { 2555 struct mptcp_subflow_context *subflow, *tmp; 2556 struct mptcp_sock *msk = mptcp_sk(sk); 2557 2558 might_sleep(); 2559 2560 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2561 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2562 int ssk_state = inet_sk_state_load(ssk); 2563 2564 if (ssk_state != TCP_CLOSE && 2565 (ssk_state != TCP_CLOSE_WAIT || 2566 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2567 continue; 2568 2569 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2570 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2571 continue; 2572 2573 mptcp_close_ssk(sk, ssk, subflow); 2574 } 2575 2576 } 2577 2578 static bool mptcp_close_tout_expired(const struct sock *sk) 2579 { 2580 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2581 sk->sk_state == TCP_CLOSE) 2582 return false; 2583 2584 return time_after32(tcp_jiffies32, 2585 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2586 } 2587 2588 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2589 { 2590 struct mptcp_subflow_context *subflow, *tmp; 2591 struct sock *sk = (struct sock *)msk; 2592 2593 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2594 return; 2595 2596 mptcp_token_destroy(msk); 2597 2598 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2599 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2600 bool slow; 2601 2602 slow = lock_sock_fast(tcp_sk); 2603 if (tcp_sk->sk_state != TCP_CLOSE) { 2604 mptcp_send_active_reset_reason(tcp_sk); 2605 tcp_set_state(tcp_sk, TCP_CLOSE); 2606 } 2607 unlock_sock_fast(tcp_sk, slow); 2608 } 2609 2610 /* Mirror the tcp_reset() error propagation */ 2611 switch (sk->sk_state) { 2612 case TCP_SYN_SENT: 2613 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2614 break; 2615 case TCP_CLOSE_WAIT: 2616 WRITE_ONCE(sk->sk_err, EPIPE); 2617 break; 2618 case TCP_CLOSE: 2619 return; 2620 default: 2621 WRITE_ONCE(sk->sk_err, ECONNRESET); 2622 } 2623 2624 mptcp_set_state(sk, TCP_CLOSE); 2625 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2626 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2627 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2628 2629 /* the calling mptcp_worker will properly destroy the socket */ 2630 if (sock_flag(sk, SOCK_DEAD)) 2631 return; 2632 2633 sk->sk_state_change(sk); 2634 sk_error_report(sk); 2635 } 2636 2637 static void __mptcp_retrans(struct sock *sk) 2638 { 2639 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2640 struct mptcp_sock *msk = mptcp_sk(sk); 2641 struct mptcp_subflow_context *subflow; 2642 struct mptcp_data_frag *dfrag; 2643 struct sock *ssk; 2644 int ret, err; 2645 u16 len = 0; 2646 2647 mptcp_clean_una_wakeup(sk); 2648 2649 /* first check ssk: need to kick "stale" logic */ 2650 err = mptcp_sched_get_retrans(msk); 2651 dfrag = mptcp_rtx_head(sk); 2652 if (!dfrag) { 2653 if (mptcp_data_fin_enabled(msk)) { 2654 struct inet_connection_sock *icsk = inet_csk(sk); 2655 2656 WRITE_ONCE(icsk->icsk_retransmits, 2657 icsk->icsk_retransmits + 1); 2658 mptcp_set_datafin_timeout(sk); 2659 mptcp_send_ack(msk); 2660 2661 goto reset_timer; 2662 } 2663 2664 if (!mptcp_send_head(sk)) 2665 return; 2666 2667 goto reset_timer; 2668 } 2669 2670 if (err) 2671 goto reset_timer; 2672 2673 mptcp_for_each_subflow(msk, subflow) { 2674 if (READ_ONCE(subflow->scheduled)) { 2675 u16 copied = 0; 2676 2677 mptcp_subflow_set_scheduled(subflow, false); 2678 2679 ssk = mptcp_subflow_tcp_sock(subflow); 2680 2681 lock_sock(ssk); 2682 2683 /* limit retransmission to the bytes already sent on some subflows */ 2684 info.sent = 0; 2685 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2686 dfrag->already_sent; 2687 2688 /* 2689 * make the whole retrans decision, xmit, disallow 2690 * fallback atomic 2691 */ 2692 spin_lock_bh(&msk->fallback_lock); 2693 if (__mptcp_check_fallback(msk)) { 2694 spin_unlock_bh(&msk->fallback_lock); 2695 release_sock(ssk); 2696 return; 2697 } 2698 2699 while (info.sent < info.limit) { 2700 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2701 if (ret <= 0) 2702 break; 2703 2704 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2705 copied += ret; 2706 info.sent += ret; 2707 } 2708 if (copied) { 2709 len = max(copied, len); 2710 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2711 info.size_goal); 2712 msk->allow_infinite_fallback = false; 2713 } 2714 spin_unlock_bh(&msk->fallback_lock); 2715 2716 release_sock(ssk); 2717 } 2718 } 2719 2720 msk->bytes_retrans += len; 2721 dfrag->already_sent = max(dfrag->already_sent, len); 2722 2723 reset_timer: 2724 mptcp_check_and_set_pending(sk); 2725 2726 if (!mptcp_rtx_timer_pending(sk)) 2727 mptcp_reset_rtx_timer(sk); 2728 } 2729 2730 /* schedule the timeout timer for the relevant event: either close timeout 2731 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2732 */ 2733 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2734 { 2735 struct sock *sk = (struct sock *)msk; 2736 unsigned long timeout, close_timeout; 2737 2738 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2739 return; 2740 2741 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2742 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2743 2744 /* the close timeout takes precedence on the fail one, and here at least one of 2745 * them is active 2746 */ 2747 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2748 2749 sk_reset_timer(sk, &sk->sk_timer, timeout); 2750 } 2751 2752 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2753 { 2754 struct sock *ssk = msk->first; 2755 bool slow; 2756 2757 if (!ssk) 2758 return; 2759 2760 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2761 2762 slow = lock_sock_fast(ssk); 2763 mptcp_subflow_reset(ssk); 2764 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2765 unlock_sock_fast(ssk, slow); 2766 } 2767 2768 static void mptcp_do_fastclose(struct sock *sk) 2769 { 2770 struct mptcp_subflow_context *subflow, *tmp; 2771 struct mptcp_sock *msk = mptcp_sk(sk); 2772 2773 mptcp_set_state(sk, TCP_CLOSE); 2774 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2775 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2776 subflow, MPTCP_CF_FASTCLOSE); 2777 } 2778 2779 static void mptcp_worker(struct work_struct *work) 2780 { 2781 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2782 struct sock *sk = (struct sock *)msk; 2783 unsigned long fail_tout; 2784 int state; 2785 2786 lock_sock(sk); 2787 state = sk->sk_state; 2788 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2789 goto unlock; 2790 2791 mptcp_check_fastclose(msk); 2792 2793 mptcp_pm_worker(msk); 2794 2795 mptcp_check_send_data_fin(sk); 2796 mptcp_check_data_fin_ack(sk); 2797 mptcp_check_data_fin(sk); 2798 2799 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2800 __mptcp_close_subflow(sk); 2801 2802 if (mptcp_close_tout_expired(sk)) { 2803 mptcp_do_fastclose(sk); 2804 mptcp_close_wake_up(sk); 2805 } 2806 2807 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2808 __mptcp_destroy_sock(sk); 2809 goto unlock; 2810 } 2811 2812 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2813 __mptcp_retrans(sk); 2814 2815 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2816 if (fail_tout && time_after(jiffies, fail_tout)) 2817 mptcp_mp_fail_no_response(msk); 2818 2819 unlock: 2820 release_sock(sk); 2821 sock_put(sk); 2822 } 2823 2824 static void __mptcp_init_sock(struct sock *sk) 2825 { 2826 struct mptcp_sock *msk = mptcp_sk(sk); 2827 2828 INIT_LIST_HEAD(&msk->conn_list); 2829 INIT_LIST_HEAD(&msk->join_list); 2830 INIT_LIST_HEAD(&msk->rtx_queue); 2831 INIT_WORK(&msk->work, mptcp_worker); 2832 msk->out_of_order_queue = RB_ROOT; 2833 msk->first_pending = NULL; 2834 msk->timer_ival = TCP_RTO_MIN; 2835 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2836 2837 WRITE_ONCE(msk->first, NULL); 2838 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2839 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2840 msk->allow_infinite_fallback = true; 2841 msk->allow_subflows = true; 2842 msk->recovery = false; 2843 msk->subflow_id = 1; 2844 msk->last_data_sent = tcp_jiffies32; 2845 msk->last_data_recv = tcp_jiffies32; 2846 msk->last_ack_recv = tcp_jiffies32; 2847 2848 mptcp_pm_data_init(msk); 2849 spin_lock_init(&msk->fallback_lock); 2850 2851 /* re-use the csk retrans timer for MPTCP-level retrans */ 2852 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2853 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2854 } 2855 2856 static void mptcp_ca_reset(struct sock *sk) 2857 { 2858 struct inet_connection_sock *icsk = inet_csk(sk); 2859 2860 tcp_assign_congestion_control(sk); 2861 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2862 sizeof(mptcp_sk(sk)->ca_name)); 2863 2864 /* no need to keep a reference to the ops, the name will suffice */ 2865 tcp_cleanup_congestion_control(sk); 2866 icsk->icsk_ca_ops = NULL; 2867 } 2868 2869 static int mptcp_init_sock(struct sock *sk) 2870 { 2871 struct net *net = sock_net(sk); 2872 int ret; 2873 2874 __mptcp_init_sock(sk); 2875 2876 if (!mptcp_is_enabled(net)) 2877 return -ENOPROTOOPT; 2878 2879 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2880 return -ENOMEM; 2881 2882 rcu_read_lock(); 2883 ret = mptcp_init_sched(mptcp_sk(sk), 2884 mptcp_sched_find(mptcp_get_scheduler(net))); 2885 rcu_read_unlock(); 2886 if (ret) 2887 return ret; 2888 2889 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2890 2891 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2892 * propagate the correct value 2893 */ 2894 mptcp_ca_reset(sk); 2895 2896 sk_sockets_allocated_inc(sk); 2897 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2898 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2899 2900 return 0; 2901 } 2902 2903 static void __mptcp_clear_xmit(struct sock *sk) 2904 { 2905 struct mptcp_sock *msk = mptcp_sk(sk); 2906 struct mptcp_data_frag *dtmp, *dfrag; 2907 2908 msk->first_pending = NULL; 2909 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2910 dfrag_clear(sk, dfrag); 2911 } 2912 2913 void mptcp_cancel_work(struct sock *sk) 2914 { 2915 struct mptcp_sock *msk = mptcp_sk(sk); 2916 2917 if (cancel_work_sync(&msk->work)) 2918 __sock_put(sk); 2919 } 2920 2921 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2922 { 2923 lock_sock(ssk); 2924 2925 switch (ssk->sk_state) { 2926 case TCP_LISTEN: 2927 if (!(how & RCV_SHUTDOWN)) 2928 break; 2929 fallthrough; 2930 case TCP_SYN_SENT: 2931 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2932 break; 2933 default: 2934 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2935 pr_debug("Fallback\n"); 2936 ssk->sk_shutdown |= how; 2937 tcp_shutdown(ssk, how); 2938 2939 /* simulate the data_fin ack reception to let the state 2940 * machine move forward 2941 */ 2942 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2943 mptcp_schedule_work(sk); 2944 } else { 2945 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2946 tcp_send_ack(ssk); 2947 if (!mptcp_rtx_timer_pending(sk)) 2948 mptcp_reset_rtx_timer(sk); 2949 } 2950 break; 2951 } 2952 2953 release_sock(ssk); 2954 } 2955 2956 void mptcp_set_state(struct sock *sk, int state) 2957 { 2958 int oldstate = sk->sk_state; 2959 2960 switch (state) { 2961 case TCP_ESTABLISHED: 2962 if (oldstate != TCP_ESTABLISHED) 2963 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2964 break; 2965 case TCP_CLOSE_WAIT: 2966 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2967 * MPTCP "accepted" sockets will be created later on. So no 2968 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2969 */ 2970 break; 2971 default: 2972 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2973 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2974 } 2975 2976 inet_sk_state_store(sk, state); 2977 } 2978 2979 static const unsigned char new_state[16] = { 2980 /* current state: new state: action: */ 2981 [0 /* (Invalid) */] = TCP_CLOSE, 2982 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2983 [TCP_SYN_SENT] = TCP_CLOSE, 2984 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2985 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2986 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2987 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2988 [TCP_CLOSE] = TCP_CLOSE, 2989 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2990 [TCP_LAST_ACK] = TCP_LAST_ACK, 2991 [TCP_LISTEN] = TCP_CLOSE, 2992 [TCP_CLOSING] = TCP_CLOSING, 2993 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2994 }; 2995 2996 static int mptcp_close_state(struct sock *sk) 2997 { 2998 int next = (int)new_state[sk->sk_state]; 2999 int ns = next & TCP_STATE_MASK; 3000 3001 mptcp_set_state(sk, ns); 3002 3003 return next & TCP_ACTION_FIN; 3004 } 3005 3006 static void mptcp_check_send_data_fin(struct sock *sk) 3007 { 3008 struct mptcp_subflow_context *subflow; 3009 struct mptcp_sock *msk = mptcp_sk(sk); 3010 3011 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3012 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3013 msk->snd_nxt, msk->write_seq); 3014 3015 /* we still need to enqueue subflows or not really shutting down, 3016 * skip this 3017 */ 3018 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3019 mptcp_send_head(sk)) 3020 return; 3021 3022 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3023 3024 mptcp_for_each_subflow(msk, subflow) { 3025 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3026 3027 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3028 } 3029 } 3030 3031 static void __mptcp_wr_shutdown(struct sock *sk) 3032 { 3033 struct mptcp_sock *msk = mptcp_sk(sk); 3034 3035 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3036 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3037 !!mptcp_send_head(sk)); 3038 3039 /* will be ignored by fallback sockets */ 3040 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3041 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3042 3043 mptcp_check_send_data_fin(sk); 3044 } 3045 3046 static void __mptcp_destroy_sock(struct sock *sk) 3047 { 3048 struct mptcp_sock *msk = mptcp_sk(sk); 3049 3050 pr_debug("msk=%p\n", msk); 3051 3052 might_sleep(); 3053 3054 mptcp_stop_rtx_timer(sk); 3055 sk_stop_timer(sk, &sk->sk_timer); 3056 msk->pm.status = 0; 3057 mptcp_release_sched(msk); 3058 3059 sk->sk_prot->destroy(sk); 3060 3061 sk_stream_kill_queues(sk); 3062 xfrm_sk_free_policy(sk); 3063 3064 sock_put(sk); 3065 } 3066 3067 void __mptcp_unaccepted_force_close(struct sock *sk) 3068 { 3069 sock_set_flag(sk, SOCK_DEAD); 3070 mptcp_do_fastclose(sk); 3071 __mptcp_destroy_sock(sk); 3072 } 3073 3074 static __poll_t mptcp_check_readable(struct sock *sk) 3075 { 3076 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3077 } 3078 3079 static void mptcp_check_listen_stop(struct sock *sk) 3080 { 3081 struct sock *ssk; 3082 3083 if (inet_sk_state_load(sk) != TCP_LISTEN) 3084 return; 3085 3086 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3087 ssk = mptcp_sk(sk)->first; 3088 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3089 return; 3090 3091 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3092 tcp_set_state(ssk, TCP_CLOSE); 3093 mptcp_subflow_queue_clean(sk, ssk); 3094 inet_csk_listen_stop(ssk); 3095 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3096 release_sock(ssk); 3097 } 3098 3099 bool __mptcp_close(struct sock *sk, long timeout) 3100 { 3101 struct mptcp_subflow_context *subflow; 3102 struct mptcp_sock *msk = mptcp_sk(sk); 3103 bool do_cancel_work = false; 3104 int subflows_alive = 0; 3105 3106 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3107 3108 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3109 mptcp_check_listen_stop(sk); 3110 mptcp_set_state(sk, TCP_CLOSE); 3111 goto cleanup; 3112 } 3113 3114 if (mptcp_data_avail(msk) || timeout < 0) { 3115 /* If the msk has read data, or the caller explicitly ask it, 3116 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3117 */ 3118 mptcp_do_fastclose(sk); 3119 timeout = 0; 3120 } else if (mptcp_close_state(sk)) { 3121 __mptcp_wr_shutdown(sk); 3122 } 3123 3124 sk_stream_wait_close(sk, timeout); 3125 3126 cleanup: 3127 /* orphan all the subflows */ 3128 mptcp_for_each_subflow(msk, subflow) { 3129 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3130 bool slow = lock_sock_fast_nested(ssk); 3131 3132 subflows_alive += ssk->sk_state != TCP_CLOSE; 3133 3134 /* since the close timeout takes precedence on the fail one, 3135 * cancel the latter 3136 */ 3137 if (ssk == msk->first) 3138 subflow->fail_tout = 0; 3139 3140 /* detach from the parent socket, but allow data_ready to 3141 * push incoming data into the mptcp stack, to properly ack it 3142 */ 3143 ssk->sk_socket = NULL; 3144 ssk->sk_wq = NULL; 3145 unlock_sock_fast(ssk, slow); 3146 } 3147 sock_orphan(sk); 3148 3149 /* all the subflows are closed, only timeout can change the msk 3150 * state, let's not keep resources busy for no reasons 3151 */ 3152 if (subflows_alive == 0) 3153 mptcp_set_state(sk, TCP_CLOSE); 3154 3155 sock_hold(sk); 3156 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3157 mptcp_pm_connection_closed(msk); 3158 3159 if (sk->sk_state == TCP_CLOSE) { 3160 __mptcp_destroy_sock(sk); 3161 do_cancel_work = true; 3162 } else { 3163 mptcp_start_tout_timer(sk); 3164 } 3165 3166 return do_cancel_work; 3167 } 3168 3169 static void mptcp_close(struct sock *sk, long timeout) 3170 { 3171 bool do_cancel_work; 3172 3173 lock_sock(sk); 3174 3175 do_cancel_work = __mptcp_close(sk, timeout); 3176 release_sock(sk); 3177 if (do_cancel_work) 3178 mptcp_cancel_work(sk); 3179 3180 sock_put(sk); 3181 } 3182 3183 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3184 { 3185 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3186 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3187 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3188 3189 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3190 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3191 3192 if (msk6 && ssk6) { 3193 msk6->saddr = ssk6->saddr; 3194 msk6->flow_label = ssk6->flow_label; 3195 } 3196 #endif 3197 3198 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3199 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3200 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3201 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3202 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3203 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3204 } 3205 3206 static int mptcp_disconnect(struct sock *sk, int flags) 3207 { 3208 struct mptcp_sock *msk = mptcp_sk(sk); 3209 3210 /* We are on the fastopen error path. We can't call straight into the 3211 * subflows cleanup code due to lock nesting (we are already under 3212 * msk->firstsocket lock). 3213 */ 3214 if (msk->fastopening) 3215 return -EBUSY; 3216 3217 mptcp_check_listen_stop(sk); 3218 mptcp_set_state(sk, TCP_CLOSE); 3219 3220 mptcp_stop_rtx_timer(sk); 3221 mptcp_stop_tout_timer(sk); 3222 3223 mptcp_pm_connection_closed(msk); 3224 3225 /* msk->subflow is still intact, the following will not free the first 3226 * subflow 3227 */ 3228 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3229 3230 /* The first subflow is already in TCP_CLOSE status, the following 3231 * can't overlap with a fallback anymore 3232 */ 3233 spin_lock_bh(&msk->fallback_lock); 3234 msk->allow_subflows = true; 3235 msk->allow_infinite_fallback = true; 3236 WRITE_ONCE(msk->flags, 0); 3237 spin_unlock_bh(&msk->fallback_lock); 3238 3239 msk->cb_flags = 0; 3240 msk->recovery = false; 3241 WRITE_ONCE(msk->can_ack, false); 3242 WRITE_ONCE(msk->fully_established, false); 3243 WRITE_ONCE(msk->rcv_data_fin, false); 3244 WRITE_ONCE(msk->snd_data_fin_enable, false); 3245 WRITE_ONCE(msk->rcv_fastclose, false); 3246 WRITE_ONCE(msk->use_64bit_ack, false); 3247 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3248 mptcp_pm_data_reset(msk); 3249 mptcp_ca_reset(sk); 3250 msk->bytes_consumed = 0; 3251 msk->bytes_acked = 0; 3252 msk->bytes_received = 0; 3253 msk->bytes_sent = 0; 3254 msk->bytes_retrans = 0; 3255 msk->rcvspace_init = 0; 3256 3257 WRITE_ONCE(sk->sk_shutdown, 0); 3258 sk_error_report(sk); 3259 return 0; 3260 } 3261 3262 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3263 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3264 { 3265 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3266 3267 return &msk6->np; 3268 } 3269 3270 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3271 { 3272 const struct ipv6_pinfo *np = inet6_sk(sk); 3273 struct ipv6_txoptions *opt; 3274 struct ipv6_pinfo *newnp; 3275 3276 newnp = inet6_sk(newsk); 3277 3278 rcu_read_lock(); 3279 opt = rcu_dereference(np->opt); 3280 if (opt) { 3281 opt = ipv6_dup_options(newsk, opt); 3282 if (!opt) 3283 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3284 } 3285 RCU_INIT_POINTER(newnp->opt, opt); 3286 rcu_read_unlock(); 3287 } 3288 #endif 3289 3290 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3291 { 3292 struct ip_options_rcu *inet_opt, *newopt = NULL; 3293 const struct inet_sock *inet = inet_sk(sk); 3294 struct inet_sock *newinet; 3295 3296 newinet = inet_sk(newsk); 3297 3298 rcu_read_lock(); 3299 inet_opt = rcu_dereference(inet->inet_opt); 3300 if (inet_opt) { 3301 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3302 inet_opt->opt.optlen, GFP_ATOMIC); 3303 if (!newopt) 3304 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3305 } 3306 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3307 rcu_read_unlock(); 3308 } 3309 3310 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3311 const struct mptcp_options_received *mp_opt, 3312 struct sock *ssk, 3313 struct request_sock *req) 3314 { 3315 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3316 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3317 struct mptcp_subflow_context *subflow; 3318 struct mptcp_sock *msk; 3319 3320 if (!nsk) 3321 return NULL; 3322 3323 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3324 if (nsk->sk_family == AF_INET6) 3325 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3326 #endif 3327 3328 __mptcp_init_sock(nsk); 3329 3330 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3331 if (nsk->sk_family == AF_INET6) 3332 mptcp_copy_ip6_options(nsk, sk); 3333 else 3334 #endif 3335 mptcp_copy_ip_options(nsk, sk); 3336 3337 msk = mptcp_sk(nsk); 3338 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3339 WRITE_ONCE(msk->token, subflow_req->token); 3340 msk->in_accept_queue = 1; 3341 WRITE_ONCE(msk->fully_established, false); 3342 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3343 WRITE_ONCE(msk->csum_enabled, true); 3344 3345 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3346 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3347 WRITE_ONCE(msk->snd_una, msk->write_seq); 3348 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3349 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3350 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3351 3352 /* passive msk is created after the first/MPC subflow */ 3353 msk->subflow_id = 2; 3354 3355 sock_reset_flag(nsk, SOCK_RCU_FREE); 3356 security_inet_csk_clone(nsk, req); 3357 3358 /* this can't race with mptcp_close(), as the msk is 3359 * not yet exposted to user-space 3360 */ 3361 mptcp_set_state(nsk, TCP_ESTABLISHED); 3362 3363 /* The msk maintain a ref to each subflow in the connections list */ 3364 WRITE_ONCE(msk->first, ssk); 3365 subflow = mptcp_subflow_ctx(ssk); 3366 list_add(&subflow->node, &msk->conn_list); 3367 sock_hold(ssk); 3368 3369 /* new mpc subflow takes ownership of the newly 3370 * created mptcp socket 3371 */ 3372 mptcp_token_accept(subflow_req, msk); 3373 3374 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3375 * uses the correct data 3376 */ 3377 mptcp_copy_inaddrs(nsk, ssk); 3378 __mptcp_propagate_sndbuf(nsk, ssk); 3379 3380 mptcp_rcv_space_init(msk, ssk); 3381 3382 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3383 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3384 bh_unlock_sock(nsk); 3385 3386 /* note: the newly allocated socket refcount is 2 now */ 3387 return nsk; 3388 } 3389 3390 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3391 { 3392 const struct tcp_sock *tp = tcp_sk(ssk); 3393 3394 msk->rcvspace_init = 1; 3395 msk->rcvq_space.copied = 0; 3396 msk->rcvq_space.rtt_us = 0; 3397 3398 msk->rcvq_space.time = tp->tcp_mstamp; 3399 3400 /* initial rcv_space offering made to peer */ 3401 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3402 TCP_INIT_CWND * tp->advmss); 3403 if (msk->rcvq_space.space == 0) 3404 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3405 } 3406 3407 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3408 { 3409 struct mptcp_subflow_context *subflow, *tmp; 3410 struct sock *sk = (struct sock *)msk; 3411 3412 __mptcp_clear_xmit(sk); 3413 3414 /* join list will be eventually flushed (with rst) at sock lock release time */ 3415 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3416 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3417 3418 __skb_queue_purge(&sk->sk_receive_queue); 3419 skb_rbtree_purge(&msk->out_of_order_queue); 3420 3421 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3422 * inet_sock_destruct() will dispose it 3423 */ 3424 mptcp_token_destroy(msk); 3425 mptcp_pm_destroy(msk); 3426 } 3427 3428 static void mptcp_destroy(struct sock *sk) 3429 { 3430 struct mptcp_sock *msk = mptcp_sk(sk); 3431 3432 /* allow the following to close even the initial subflow */ 3433 msk->free_first = 1; 3434 mptcp_destroy_common(msk, 0); 3435 sk_sockets_allocated_dec(sk); 3436 } 3437 3438 void __mptcp_data_acked(struct sock *sk) 3439 { 3440 if (!sock_owned_by_user(sk)) 3441 __mptcp_clean_una(sk); 3442 else 3443 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3444 } 3445 3446 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3447 { 3448 if (!sock_owned_by_user(sk)) 3449 __mptcp_subflow_push_pending(sk, ssk, false); 3450 else 3451 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3452 } 3453 3454 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3455 BIT(MPTCP_RETRANSMIT) | \ 3456 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3457 BIT(MPTCP_DEQUEUE)) 3458 3459 /* processes deferred events and flush wmem */ 3460 static void mptcp_release_cb(struct sock *sk) 3461 __must_hold(&sk->sk_lock.slock) 3462 { 3463 struct mptcp_sock *msk = mptcp_sk(sk); 3464 3465 for (;;) { 3466 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3467 struct list_head join_list; 3468 3469 if (!flags) 3470 break; 3471 3472 INIT_LIST_HEAD(&join_list); 3473 list_splice_init(&msk->join_list, &join_list); 3474 3475 /* the following actions acquire the subflow socket lock 3476 * 3477 * 1) can't be invoked in atomic scope 3478 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3479 * datapath acquires the msk socket spinlock while helding 3480 * the subflow socket lock 3481 */ 3482 msk->cb_flags &= ~flags; 3483 spin_unlock_bh(&sk->sk_lock.slock); 3484 3485 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3486 __mptcp_flush_join_list(sk, &join_list); 3487 if (flags & BIT(MPTCP_PUSH_PENDING)) 3488 __mptcp_push_pending(sk, 0); 3489 if (flags & BIT(MPTCP_RETRANSMIT)) 3490 __mptcp_retrans(sk); 3491 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3492 /* notify ack seq update */ 3493 mptcp_cleanup_rbuf(msk, 0); 3494 sk->sk_data_ready(sk); 3495 } 3496 3497 cond_resched(); 3498 spin_lock_bh(&sk->sk_lock.slock); 3499 } 3500 3501 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3502 __mptcp_clean_una_wakeup(sk); 3503 if (unlikely(msk->cb_flags)) { 3504 /* be sure to sync the msk state before taking actions 3505 * depending on sk_state (MPTCP_ERROR_REPORT) 3506 * On sk release avoid actions depending on the first subflow 3507 */ 3508 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3509 __mptcp_sync_state(sk, msk->pending_state); 3510 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3511 __mptcp_error_report(sk); 3512 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3513 __mptcp_sync_sndbuf(sk); 3514 } 3515 } 3516 3517 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3518 * TCP can't schedule delack timer before the subflow is fully established. 3519 * MPTCP uses the delack timer to do 3rd ack retransmissions 3520 */ 3521 static void schedule_3rdack_retransmission(struct sock *ssk) 3522 { 3523 struct inet_connection_sock *icsk = inet_csk(ssk); 3524 struct tcp_sock *tp = tcp_sk(ssk); 3525 unsigned long timeout; 3526 3527 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3528 return; 3529 3530 /* reschedule with a timeout above RTT, as we must look only for drop */ 3531 if (tp->srtt_us) 3532 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3533 else 3534 timeout = TCP_TIMEOUT_INIT; 3535 timeout += jiffies; 3536 3537 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3538 smp_store_release(&icsk->icsk_ack.pending, 3539 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3540 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3541 } 3542 3543 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3544 { 3545 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3546 struct sock *sk = subflow->conn; 3547 3548 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3549 mptcp_data_lock(sk); 3550 if (!sock_owned_by_user(sk)) 3551 __mptcp_subflow_push_pending(sk, ssk, true); 3552 else 3553 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3554 mptcp_data_unlock(sk); 3555 } 3556 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3557 mptcp_data_lock(sk); 3558 if (!sock_owned_by_user(sk)) 3559 __mptcp_sync_sndbuf(sk); 3560 else 3561 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3562 mptcp_data_unlock(sk); 3563 } 3564 if (status & BIT(MPTCP_DELEGATE_ACK)) 3565 schedule_3rdack_retransmission(ssk); 3566 } 3567 3568 static int mptcp_hash(struct sock *sk) 3569 { 3570 /* should never be called, 3571 * we hash the TCP subflows not the MPTCP socket 3572 */ 3573 WARN_ON_ONCE(1); 3574 return 0; 3575 } 3576 3577 static void mptcp_unhash(struct sock *sk) 3578 { 3579 /* called from sk_common_release(), but nothing to do here */ 3580 } 3581 3582 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3583 { 3584 struct mptcp_sock *msk = mptcp_sk(sk); 3585 3586 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3587 if (WARN_ON_ONCE(!msk->first)) 3588 return -EINVAL; 3589 3590 return inet_csk_get_port(msk->first, snum); 3591 } 3592 3593 void mptcp_finish_connect(struct sock *ssk) 3594 { 3595 struct mptcp_subflow_context *subflow; 3596 struct mptcp_sock *msk; 3597 struct sock *sk; 3598 3599 subflow = mptcp_subflow_ctx(ssk); 3600 sk = subflow->conn; 3601 msk = mptcp_sk(sk); 3602 3603 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3604 3605 subflow->map_seq = subflow->iasn; 3606 subflow->map_subflow_seq = 1; 3607 3608 /* the socket is not connected yet, no msk/subflow ops can access/race 3609 * accessing the field below 3610 */ 3611 WRITE_ONCE(msk->local_key, subflow->local_key); 3612 3613 mptcp_pm_new_connection(msk, ssk, 0); 3614 } 3615 3616 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3617 { 3618 write_lock_bh(&sk->sk_callback_lock); 3619 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3620 sk_set_socket(sk, parent); 3621 write_unlock_bh(&sk->sk_callback_lock); 3622 } 3623 3624 bool mptcp_finish_join(struct sock *ssk) 3625 { 3626 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3627 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3628 struct sock *parent = (void *)msk; 3629 bool ret = true; 3630 3631 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3632 3633 /* mptcp socket already closing? */ 3634 if (!mptcp_is_fully_established(parent)) { 3635 subflow->reset_reason = MPTCP_RST_EMPTCP; 3636 return false; 3637 } 3638 3639 /* active subflow, already present inside the conn_list */ 3640 if (!list_empty(&subflow->node)) { 3641 spin_lock_bh(&msk->fallback_lock); 3642 if (!msk->allow_subflows) { 3643 spin_unlock_bh(&msk->fallback_lock); 3644 return false; 3645 } 3646 mptcp_subflow_joined(msk, ssk); 3647 spin_unlock_bh(&msk->fallback_lock); 3648 mptcp_propagate_sndbuf(parent, ssk); 3649 return true; 3650 } 3651 3652 if (!mptcp_pm_allow_new_subflow(msk)) { 3653 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3654 goto err_prohibited; 3655 } 3656 3657 /* If we can't acquire msk socket lock here, let the release callback 3658 * handle it 3659 */ 3660 mptcp_data_lock(parent); 3661 if (!sock_owned_by_user(parent)) { 3662 ret = __mptcp_finish_join(msk, ssk); 3663 if (ret) { 3664 sock_hold(ssk); 3665 list_add_tail(&subflow->node, &msk->conn_list); 3666 } 3667 } else { 3668 sock_hold(ssk); 3669 list_add_tail(&subflow->node, &msk->join_list); 3670 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3671 } 3672 mptcp_data_unlock(parent); 3673 3674 if (!ret) { 3675 err_prohibited: 3676 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3677 return false; 3678 } 3679 3680 return true; 3681 } 3682 3683 static void mptcp_shutdown(struct sock *sk, int how) 3684 { 3685 pr_debug("sk=%p, how=%d\n", sk, how); 3686 3687 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3688 __mptcp_wr_shutdown(sk); 3689 } 3690 3691 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3692 { 3693 const struct sock *sk = (void *)msk; 3694 u64 delta; 3695 3696 if (sk->sk_state == TCP_LISTEN) 3697 return -EINVAL; 3698 3699 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3700 return 0; 3701 3702 delta = msk->write_seq - v; 3703 if (__mptcp_check_fallback(msk) && msk->first) { 3704 struct tcp_sock *tp = tcp_sk(msk->first); 3705 3706 /* the first subflow is disconnected after close - see 3707 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3708 * so ignore that status, too. 3709 */ 3710 if (!((1 << msk->first->sk_state) & 3711 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3712 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3713 } 3714 if (delta > INT_MAX) 3715 delta = INT_MAX; 3716 3717 return (int)delta; 3718 } 3719 3720 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3721 { 3722 struct mptcp_sock *msk = mptcp_sk(sk); 3723 bool slow; 3724 3725 switch (cmd) { 3726 case SIOCINQ: 3727 if (sk->sk_state == TCP_LISTEN) 3728 return -EINVAL; 3729 3730 lock_sock(sk); 3731 if (__mptcp_move_skbs(sk)) 3732 mptcp_cleanup_rbuf(msk, 0); 3733 *karg = mptcp_inq_hint(sk); 3734 release_sock(sk); 3735 break; 3736 case SIOCOUTQ: 3737 slow = lock_sock_fast(sk); 3738 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3739 unlock_sock_fast(sk, slow); 3740 break; 3741 case SIOCOUTQNSD: 3742 slow = lock_sock_fast(sk); 3743 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3744 unlock_sock_fast(sk, slow); 3745 break; 3746 default: 3747 return -ENOIOCTLCMD; 3748 } 3749 3750 return 0; 3751 } 3752 3753 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3754 { 3755 struct mptcp_subflow_context *subflow; 3756 struct mptcp_sock *msk = mptcp_sk(sk); 3757 int err = -EINVAL; 3758 struct sock *ssk; 3759 3760 ssk = __mptcp_nmpc_sk(msk); 3761 if (IS_ERR(ssk)) 3762 return PTR_ERR(ssk); 3763 3764 mptcp_set_state(sk, TCP_SYN_SENT); 3765 subflow = mptcp_subflow_ctx(ssk); 3766 #ifdef CONFIG_TCP_MD5SIG 3767 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3768 * TCP option space. 3769 */ 3770 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3771 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3772 #endif 3773 if (subflow->request_mptcp) { 3774 if (mptcp_active_should_disable(sk)) 3775 mptcp_early_fallback(msk, subflow, 3776 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3777 else if (mptcp_token_new_connect(ssk) < 0) 3778 mptcp_early_fallback(msk, subflow, 3779 MPTCP_MIB_TOKENFALLBACKINIT); 3780 } 3781 3782 WRITE_ONCE(msk->write_seq, subflow->idsn); 3783 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3784 WRITE_ONCE(msk->snd_una, subflow->idsn); 3785 if (likely(!__mptcp_check_fallback(msk))) 3786 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3787 3788 /* if reaching here via the fastopen/sendmsg path, the caller already 3789 * acquired the subflow socket lock, too. 3790 */ 3791 if (!msk->fastopening) 3792 lock_sock(ssk); 3793 3794 /* the following mirrors closely a very small chunk of code from 3795 * __inet_stream_connect() 3796 */ 3797 if (ssk->sk_state != TCP_CLOSE) 3798 goto out; 3799 3800 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3801 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3802 if (err) 3803 goto out; 3804 } 3805 3806 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3807 if (err < 0) 3808 goto out; 3809 3810 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3811 3812 out: 3813 if (!msk->fastopening) 3814 release_sock(ssk); 3815 3816 /* on successful connect, the msk state will be moved to established by 3817 * subflow_finish_connect() 3818 */ 3819 if (unlikely(err)) { 3820 /* avoid leaving a dangling token in an unconnected socket */ 3821 mptcp_token_destroy(msk); 3822 mptcp_set_state(sk, TCP_CLOSE); 3823 return err; 3824 } 3825 3826 mptcp_copy_inaddrs(sk, ssk); 3827 return 0; 3828 } 3829 3830 static struct proto mptcp_prot = { 3831 .name = "MPTCP", 3832 .owner = THIS_MODULE, 3833 .init = mptcp_init_sock, 3834 .connect = mptcp_connect, 3835 .disconnect = mptcp_disconnect, 3836 .close = mptcp_close, 3837 .setsockopt = mptcp_setsockopt, 3838 .getsockopt = mptcp_getsockopt, 3839 .shutdown = mptcp_shutdown, 3840 .destroy = mptcp_destroy, 3841 .sendmsg = mptcp_sendmsg, 3842 .ioctl = mptcp_ioctl, 3843 .recvmsg = mptcp_recvmsg, 3844 .release_cb = mptcp_release_cb, 3845 .hash = mptcp_hash, 3846 .unhash = mptcp_unhash, 3847 .get_port = mptcp_get_port, 3848 .stream_memory_free = mptcp_stream_memory_free, 3849 .sockets_allocated = &mptcp_sockets_allocated, 3850 3851 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3852 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3853 3854 .memory_pressure = &tcp_memory_pressure, 3855 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3856 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3857 .sysctl_mem = sysctl_tcp_mem, 3858 .obj_size = sizeof(struct mptcp_sock), 3859 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3860 .no_autobind = true, 3861 }; 3862 3863 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3864 { 3865 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3866 struct sock *ssk, *sk = sock->sk; 3867 int err = -EINVAL; 3868 3869 lock_sock(sk); 3870 ssk = __mptcp_nmpc_sk(msk); 3871 if (IS_ERR(ssk)) { 3872 err = PTR_ERR(ssk); 3873 goto unlock; 3874 } 3875 3876 if (sk->sk_family == AF_INET) 3877 err = inet_bind_sk(ssk, uaddr, addr_len); 3878 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3879 else if (sk->sk_family == AF_INET6) 3880 err = inet6_bind_sk(ssk, uaddr, addr_len); 3881 #endif 3882 if (!err) 3883 mptcp_copy_inaddrs(sk, ssk); 3884 3885 unlock: 3886 release_sock(sk); 3887 return err; 3888 } 3889 3890 static int mptcp_listen(struct socket *sock, int backlog) 3891 { 3892 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3893 struct sock *sk = sock->sk; 3894 struct sock *ssk; 3895 int err; 3896 3897 pr_debug("msk=%p\n", msk); 3898 3899 lock_sock(sk); 3900 3901 err = -EINVAL; 3902 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3903 goto unlock; 3904 3905 ssk = __mptcp_nmpc_sk(msk); 3906 if (IS_ERR(ssk)) { 3907 err = PTR_ERR(ssk); 3908 goto unlock; 3909 } 3910 3911 mptcp_set_state(sk, TCP_LISTEN); 3912 sock_set_flag(sk, SOCK_RCU_FREE); 3913 3914 lock_sock(ssk); 3915 err = __inet_listen_sk(ssk, backlog); 3916 release_sock(ssk); 3917 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3918 3919 if (!err) { 3920 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3921 mptcp_copy_inaddrs(sk, ssk); 3922 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3923 } 3924 3925 unlock: 3926 release_sock(sk); 3927 return err; 3928 } 3929 3930 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3931 struct proto_accept_arg *arg) 3932 { 3933 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3934 struct sock *ssk, *newsk; 3935 3936 pr_debug("msk=%p\n", msk); 3937 3938 /* Buggy applications can call accept on socket states other then LISTEN 3939 * but no need to allocate the first subflow just to error out. 3940 */ 3941 ssk = READ_ONCE(msk->first); 3942 if (!ssk) 3943 return -EINVAL; 3944 3945 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3946 newsk = inet_csk_accept(ssk, arg); 3947 if (!newsk) 3948 return arg->err; 3949 3950 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3951 if (sk_is_mptcp(newsk)) { 3952 struct mptcp_subflow_context *subflow; 3953 struct sock *new_mptcp_sock; 3954 3955 subflow = mptcp_subflow_ctx(newsk); 3956 new_mptcp_sock = subflow->conn; 3957 3958 /* is_mptcp should be false if subflow->conn is missing, see 3959 * subflow_syn_recv_sock() 3960 */ 3961 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3962 tcp_sk(newsk)->is_mptcp = 0; 3963 goto tcpfallback; 3964 } 3965 3966 newsk = new_mptcp_sock; 3967 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3968 3969 newsk->sk_kern_sock = arg->kern; 3970 lock_sock(newsk); 3971 __inet_accept(sock, newsock, newsk); 3972 3973 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3974 msk = mptcp_sk(newsk); 3975 msk->in_accept_queue = 0; 3976 3977 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3978 * This is needed so NOSPACE flag can be set from tcp stack. 3979 */ 3980 mptcp_for_each_subflow(msk, subflow) { 3981 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3982 3983 if (!ssk->sk_socket) 3984 mptcp_sock_graft(ssk, newsock); 3985 } 3986 3987 mptcp_rps_record_subflows(msk); 3988 3989 /* Do late cleanup for the first subflow as necessary. Also 3990 * deal with bad peers not doing a complete shutdown. 3991 */ 3992 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3993 __mptcp_close_ssk(newsk, msk->first, 3994 mptcp_subflow_ctx(msk->first), 0); 3995 if (unlikely(list_is_singular(&msk->conn_list))) 3996 mptcp_set_state(newsk, TCP_CLOSE); 3997 } 3998 } else { 3999 tcpfallback: 4000 newsk->sk_kern_sock = arg->kern; 4001 lock_sock(newsk); 4002 __inet_accept(sock, newsock, newsk); 4003 /* we are being invoked after accepting a non-mp-capable 4004 * flow: sk is a tcp_sk, not an mptcp one. 4005 * 4006 * Hand the socket over to tcp so all further socket ops 4007 * bypass mptcp. 4008 */ 4009 WRITE_ONCE(newsock->sk->sk_socket->ops, 4010 mptcp_fallback_tcp_ops(newsock->sk)); 4011 } 4012 release_sock(newsk); 4013 4014 return 0; 4015 } 4016 4017 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4018 { 4019 struct sock *sk = (struct sock *)msk; 4020 4021 if (__mptcp_stream_is_writeable(sk, 1)) 4022 return EPOLLOUT | EPOLLWRNORM; 4023 4024 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4025 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4026 if (__mptcp_stream_is_writeable(sk, 1)) 4027 return EPOLLOUT | EPOLLWRNORM; 4028 4029 return 0; 4030 } 4031 4032 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4033 struct poll_table_struct *wait) 4034 { 4035 struct sock *sk = sock->sk; 4036 struct mptcp_sock *msk; 4037 __poll_t mask = 0; 4038 u8 shutdown; 4039 int state; 4040 4041 msk = mptcp_sk(sk); 4042 sock_poll_wait(file, sock, wait); 4043 4044 state = inet_sk_state_load(sk); 4045 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4046 if (state == TCP_LISTEN) { 4047 struct sock *ssk = READ_ONCE(msk->first); 4048 4049 if (WARN_ON_ONCE(!ssk)) 4050 return 0; 4051 4052 return inet_csk_listen_poll(ssk); 4053 } 4054 4055 shutdown = READ_ONCE(sk->sk_shutdown); 4056 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4057 mask |= EPOLLHUP; 4058 if (shutdown & RCV_SHUTDOWN) 4059 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4060 4061 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4062 mask |= mptcp_check_readable(sk); 4063 if (shutdown & SEND_SHUTDOWN) 4064 mask |= EPOLLOUT | EPOLLWRNORM; 4065 else 4066 mask |= mptcp_check_writeable(msk); 4067 } else if (state == TCP_SYN_SENT && 4068 inet_test_bit(DEFER_CONNECT, sk)) { 4069 /* cf tcp_poll() note about TFO */ 4070 mask |= EPOLLOUT | EPOLLWRNORM; 4071 } 4072 4073 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4074 smp_rmb(); 4075 if (READ_ONCE(sk->sk_err)) 4076 mask |= EPOLLERR; 4077 4078 return mask; 4079 } 4080 4081 static const struct proto_ops mptcp_stream_ops = { 4082 .family = PF_INET, 4083 .owner = THIS_MODULE, 4084 .release = inet_release, 4085 .bind = mptcp_bind, 4086 .connect = inet_stream_connect, 4087 .socketpair = sock_no_socketpair, 4088 .accept = mptcp_stream_accept, 4089 .getname = inet_getname, 4090 .poll = mptcp_poll, 4091 .ioctl = inet_ioctl, 4092 .gettstamp = sock_gettstamp, 4093 .listen = mptcp_listen, 4094 .shutdown = inet_shutdown, 4095 .setsockopt = sock_common_setsockopt, 4096 .getsockopt = sock_common_getsockopt, 4097 .sendmsg = inet_sendmsg, 4098 .recvmsg = inet_recvmsg, 4099 .mmap = sock_no_mmap, 4100 .set_rcvlowat = mptcp_set_rcvlowat, 4101 }; 4102 4103 static struct inet_protosw mptcp_protosw = { 4104 .type = SOCK_STREAM, 4105 .protocol = IPPROTO_MPTCP, 4106 .prot = &mptcp_prot, 4107 .ops = &mptcp_stream_ops, 4108 .flags = INET_PROTOSW_ICSK, 4109 }; 4110 4111 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4112 { 4113 struct mptcp_delegated_action *delegated; 4114 struct mptcp_subflow_context *subflow; 4115 int work_done = 0; 4116 4117 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4118 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4119 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4120 4121 bh_lock_sock_nested(ssk); 4122 if (!sock_owned_by_user(ssk)) { 4123 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4124 } else { 4125 /* tcp_release_cb_override already processed 4126 * the action or will do at next release_sock(). 4127 * In both case must dequeue the subflow here - on the same 4128 * CPU that scheduled it. 4129 */ 4130 smp_wmb(); 4131 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4132 } 4133 bh_unlock_sock(ssk); 4134 sock_put(ssk); 4135 4136 if (++work_done == budget) 4137 return budget; 4138 } 4139 4140 /* always provide a 0 'work_done' argument, so that napi_complete_done 4141 * will not try accessing the NULL napi->dev ptr 4142 */ 4143 napi_complete_done(napi, 0); 4144 return work_done; 4145 } 4146 4147 void __init mptcp_proto_init(void) 4148 { 4149 struct mptcp_delegated_action *delegated; 4150 int cpu; 4151 4152 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4153 4154 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4155 panic("Failed to allocate MPTCP pcpu counter\n"); 4156 4157 mptcp_napi_dev = alloc_netdev_dummy(0); 4158 if (!mptcp_napi_dev) 4159 panic("Failed to allocate MPTCP dummy netdev\n"); 4160 for_each_possible_cpu(cpu) { 4161 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4162 INIT_LIST_HEAD(&delegated->head); 4163 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4164 mptcp_napi_poll); 4165 napi_enable(&delegated->napi); 4166 } 4167 4168 mptcp_subflow_init(); 4169 mptcp_pm_init(); 4170 mptcp_sched_init(); 4171 mptcp_token_init(); 4172 4173 if (proto_register(&mptcp_prot, 1) != 0) 4174 panic("Failed to register MPTCP proto.\n"); 4175 4176 inet_register_protosw(&mptcp_protosw); 4177 4178 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4179 } 4180 4181 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4182 static const struct proto_ops mptcp_v6_stream_ops = { 4183 .family = PF_INET6, 4184 .owner = THIS_MODULE, 4185 .release = inet6_release, 4186 .bind = mptcp_bind, 4187 .connect = inet_stream_connect, 4188 .socketpair = sock_no_socketpair, 4189 .accept = mptcp_stream_accept, 4190 .getname = inet6_getname, 4191 .poll = mptcp_poll, 4192 .ioctl = inet6_ioctl, 4193 .gettstamp = sock_gettstamp, 4194 .listen = mptcp_listen, 4195 .shutdown = inet_shutdown, 4196 .setsockopt = sock_common_setsockopt, 4197 .getsockopt = sock_common_getsockopt, 4198 .sendmsg = inet6_sendmsg, 4199 .recvmsg = inet6_recvmsg, 4200 .mmap = sock_no_mmap, 4201 #ifdef CONFIG_COMPAT 4202 .compat_ioctl = inet6_compat_ioctl, 4203 #endif 4204 .set_rcvlowat = mptcp_set_rcvlowat, 4205 }; 4206 4207 static struct proto mptcp_v6_prot; 4208 4209 static struct inet_protosw mptcp_v6_protosw = { 4210 .type = SOCK_STREAM, 4211 .protocol = IPPROTO_MPTCP, 4212 .prot = &mptcp_v6_prot, 4213 .ops = &mptcp_v6_stream_ops, 4214 .flags = INET_PROTOSW_ICSK, 4215 }; 4216 4217 int __init mptcp_proto_v6_init(void) 4218 { 4219 int err; 4220 4221 mptcp_v6_prot = mptcp_prot; 4222 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4223 mptcp_v6_prot.slab = NULL; 4224 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4225 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4226 4227 err = proto_register(&mptcp_v6_prot, 1); 4228 if (err) 4229 return err; 4230 4231 err = inet6_register_protosw(&mptcp_v6_protosw); 4232 if (err) 4233 proto_unregister(&mptcp_v6_prot); 4234 4235 return err; 4236 } 4237 #endif 4238