xref: /linux/net/mptcp/protocol.c (revision f94c1a114ac209977bdf5ca841b98424295ab1f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
65 	if (sk->sk_prot == &tcpv6_prot)
66 		return &inet6_stream_ops;
67 #endif
68 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69 	return &inet_stream_ops;
70 }
71 
72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73 {
74 	struct net *net = sock_net((struct sock *)msk);
75 
76 	if (__mptcp_check_fallback(msk))
77 		return true;
78 
79 	spin_lock_bh(&msk->fallback_lock);
80 	if (!msk->allow_infinite_fallback) {
81 		spin_unlock_bh(&msk->fallback_lock);
82 		return false;
83 	}
84 
85 	msk->allow_subflows = false;
86 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87 	__MPTCP_INC_STATS(net, fb_mib);
88 	spin_unlock_bh(&msk->fallback_lock);
89 	return true;
90 }
91 
92 static int __mptcp_socket_create(struct mptcp_sock *msk)
93 {
94 	struct mptcp_subflow_context *subflow;
95 	struct sock *sk = (struct sock *)msk;
96 	struct socket *ssock;
97 	int err;
98 
99 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100 	if (err)
101 		return err;
102 
103 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104 	WRITE_ONCE(msk->first, ssock->sk);
105 	subflow = mptcp_subflow_ctx(ssock->sk);
106 	list_add(&subflow->node, &msk->conn_list);
107 	sock_hold(ssock->sk);
108 	subflow->request_mptcp = 1;
109 	subflow->subflow_id = msk->subflow_id++;
110 
111 	/* This is the first subflow, always with id 0 */
112 	WRITE_ONCE(subflow->local_id, 0);
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 	iput(SOCK_INODE(ssock));
115 
116 	return 0;
117 }
118 
119 /* If the MPC handshake is not started, returns the first subflow,
120  * eventually allocating it.
121  */
122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123 {
124 	struct sock *sk = (struct sock *)msk;
125 	int ret;
126 
127 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128 		return ERR_PTR(-EINVAL);
129 
130 	if (!msk->first) {
131 		ret = __mptcp_socket_create(msk);
132 		if (ret)
133 			return ERR_PTR(ret);
134 	}
135 
136 	return msk->first;
137 }
138 
139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140 {
141 	sk_drops_skbadd(sk, skb);
142 	__kfree_skb(skb);
143 }
144 
145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 				 struct sk_buff *from, bool *fragstolen,
147 				 int *delta)
148 {
149 	int limit = READ_ONCE(sk->sk_rcvbuf);
150 
151 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152 	    MPTCP_SKB_CB(from)->offset ||
153 	    ((to->len + from->len) > (limit >> 3)) ||
154 	    !skb_try_coalesce(to, from, fragstolen, delta))
155 		return false;
156 
157 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159 		 to->len, MPTCP_SKB_CB(from)->end_seq);
160 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161 	return true;
162 }
163 
164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
165 			       struct sk_buff *from)
166 {
167 	bool fragstolen;
168 	int delta;
169 
170 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
171 		return false;
172 
173 	/* note the fwd memory can reach a negative value after accounting
174 	 * for the delta, but the later skb free will restore a non
175 	 * negative one
176 	 */
177 	atomic_add(delta, &sk->sk_rmem_alloc);
178 	sk_mem_charge(sk, delta);
179 	kfree_skb_partial(from, fragstolen);
180 
181 	return true;
182 }
183 
184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
185 				   struct sk_buff *from)
186 {
187 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
188 		return false;
189 
190 	return mptcp_try_coalesce((struct sock *)msk, to, from);
191 }
192 
193 /* "inspired" by tcp_rcvbuf_grow(), main difference:
194  * - mptcp does not maintain a msk-level window clamp
195  * - returns true when  the receive buffer is actually updated
196  */
197 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
198 {
199 	struct mptcp_sock *msk = mptcp_sk(sk);
200 	const struct net *net = sock_net(sk);
201 	u32 rcvwin, rcvbuf, cap, oldval;
202 	u64 grow;
203 
204 	oldval = msk->rcvq_space.space;
205 	msk->rcvq_space.space = newval;
206 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
207 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
208 		return false;
209 
210 	/* DRS is always one RTT late. */
211 	rcvwin = newval << 1;
212 
213 	/* slow start: allow the sender to double its rate. */
214 	grow = (u64)rcvwin * (newval - oldval);
215 	do_div(grow, oldval);
216 	rcvwin += grow << 1;
217 
218 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
219 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
220 
221 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
222 
223 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
224 	if (rcvbuf > sk->sk_rcvbuf) {
225 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
226 		return true;
227 	}
228 	return false;
229 }
230 
231 /* "inspired" by tcp_data_queue_ofo(), main differences:
232  * - use mptcp seqs
233  * - don't cope with sacks
234  */
235 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
236 {
237 	struct sock *sk = (struct sock *)msk;
238 	struct rb_node **p, *parent;
239 	u64 seq, end_seq, max_seq;
240 	struct sk_buff *skb1;
241 
242 	seq = MPTCP_SKB_CB(skb)->map_seq;
243 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
244 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
245 
246 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
247 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
248 	if (after64(end_seq, max_seq)) {
249 		/* out of window */
250 		mptcp_drop(sk, skb);
251 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
252 			 (unsigned long long)end_seq - (unsigned long)max_seq,
253 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
254 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
255 		return;
256 	}
257 
258 	p = &msk->out_of_order_queue.rb_node;
259 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
260 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
261 		rb_link_node(&skb->rbnode, NULL, p);
262 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
263 		msk->ooo_last_skb = skb;
264 		goto end;
265 	}
266 
267 	/* with 2 subflows, adding at end of ooo queue is quite likely
268 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
269 	 */
270 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
271 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
272 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
273 		return;
274 	}
275 
276 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
277 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
278 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
279 		parent = &msk->ooo_last_skb->rbnode;
280 		p = &parent->rb_right;
281 		goto insert;
282 	}
283 
284 	/* Find place to insert this segment. Handle overlaps on the way. */
285 	parent = NULL;
286 	while (*p) {
287 		parent = *p;
288 		skb1 = rb_to_skb(parent);
289 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
290 			p = &parent->rb_left;
291 			continue;
292 		}
293 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
294 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
295 				/* All the bits are present. Drop. */
296 				mptcp_drop(sk, skb);
297 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
298 				return;
299 			}
300 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
301 				/* partial overlap:
302 				 *     |     skb      |
303 				 *  |     skb1    |
304 				 * continue traversing
305 				 */
306 			} else {
307 				/* skb's seq == skb1's seq and skb covers skb1.
308 				 * Replace skb1 with skb.
309 				 */
310 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
311 						&msk->out_of_order_queue);
312 				mptcp_drop(sk, skb1);
313 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
314 				goto merge_right;
315 			}
316 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
317 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
318 			return;
319 		}
320 		p = &parent->rb_right;
321 	}
322 
323 insert:
324 	/* Insert segment into RB tree. */
325 	rb_link_node(&skb->rbnode, parent, p);
326 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
327 
328 merge_right:
329 	/* Remove other segments covered by skb. */
330 	while ((skb1 = skb_rb_next(skb)) != NULL) {
331 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
332 			break;
333 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
334 		mptcp_drop(sk, skb1);
335 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
336 	}
337 	/* If there is no skb after us, we are the last_skb ! */
338 	if (!skb1)
339 		msk->ooo_last_skb = skb;
340 
341 end:
342 	skb_condense(skb);
343 	skb_set_owner_r(skb, sk);
344 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
345 	if (sk->sk_socket)
346 		mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
347 }
348 
349 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
350 			   int copy_len)
351 {
352 	const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
353 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
354 
355 	/* the skb map_seq accounts for the skb offset:
356 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
357 	 * value
358 	 */
359 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
360 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
361 	MPTCP_SKB_CB(skb)->offset = offset;
362 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
363 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
364 
365 	__skb_unlink(skb, &ssk->sk_receive_queue);
366 
367 	skb_ext_reset(skb);
368 	skb_dst_drop(skb);
369 }
370 
371 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
372 {
373 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
374 	struct mptcp_sock *msk = mptcp_sk(sk);
375 	struct sk_buff *tail;
376 
377 	/* try to fetch required memory from subflow */
378 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
379 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
380 		goto drop;
381 	}
382 
383 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
384 		/* in sequence */
385 		msk->bytes_received += copy_len;
386 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
387 		tail = skb_peek_tail(&sk->sk_receive_queue);
388 		if (tail && mptcp_try_coalesce(sk, tail, skb))
389 			return true;
390 
391 		skb_set_owner_r(skb, sk);
392 		__skb_queue_tail(&sk->sk_receive_queue, skb);
393 		return true;
394 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
395 		mptcp_data_queue_ofo(msk, skb);
396 		return false;
397 	}
398 
399 	/* old data, keep it simple and drop the whole pkt, sender
400 	 * will retransmit as needed, if needed.
401 	 */
402 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
403 drop:
404 	mptcp_drop(sk, skb);
405 	return false;
406 }
407 
408 static void mptcp_stop_rtx_timer(struct sock *sk)
409 {
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 
412 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
413 	mptcp_sk(sk)->timer_ival = 0;
414 }
415 
416 static void mptcp_close_wake_up(struct sock *sk)
417 {
418 	if (sock_flag(sk, SOCK_DEAD))
419 		return;
420 
421 	sk->sk_state_change(sk);
422 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
423 	    sk->sk_state == TCP_CLOSE)
424 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
425 	else
426 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
427 }
428 
429 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
430 {
431 	struct mptcp_subflow_context *subflow;
432 
433 	mptcp_for_each_subflow(msk, subflow) {
434 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
435 		bool slow;
436 
437 		slow = lock_sock_fast(ssk);
438 		tcp_shutdown(ssk, SEND_SHUTDOWN);
439 		unlock_sock_fast(ssk, slow);
440 	}
441 }
442 
443 /* called under the msk socket lock */
444 static bool mptcp_pending_data_fin_ack(struct sock *sk)
445 {
446 	struct mptcp_sock *msk = mptcp_sk(sk);
447 
448 	return ((1 << sk->sk_state) &
449 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
450 	       msk->write_seq == READ_ONCE(msk->snd_una);
451 }
452 
453 static void mptcp_check_data_fin_ack(struct sock *sk)
454 {
455 	struct mptcp_sock *msk = mptcp_sk(sk);
456 
457 	/* Look for an acknowledged DATA_FIN */
458 	if (mptcp_pending_data_fin_ack(sk)) {
459 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
460 
461 		switch (sk->sk_state) {
462 		case TCP_FIN_WAIT1:
463 			mptcp_set_state(sk, TCP_FIN_WAIT2);
464 			break;
465 		case TCP_CLOSING:
466 		case TCP_LAST_ACK:
467 			mptcp_shutdown_subflows(msk);
468 			mptcp_set_state(sk, TCP_CLOSE);
469 			break;
470 		}
471 
472 		mptcp_close_wake_up(sk);
473 	}
474 }
475 
476 /* can be called with no lock acquired */
477 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
478 {
479 	struct mptcp_sock *msk = mptcp_sk(sk);
480 
481 	if (READ_ONCE(msk->rcv_data_fin) &&
482 	    ((1 << inet_sk_state_load(sk)) &
483 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
484 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
485 
486 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
487 			if (seq)
488 				*seq = rcv_data_fin_seq;
489 
490 			return true;
491 		}
492 	}
493 
494 	return false;
495 }
496 
497 static void mptcp_set_datafin_timeout(struct sock *sk)
498 {
499 	struct inet_connection_sock *icsk = inet_csk(sk);
500 	u32 retransmits;
501 
502 	retransmits = min_t(u32, icsk->icsk_retransmits,
503 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
504 
505 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
506 }
507 
508 static void __mptcp_set_timeout(struct sock *sk, long tout)
509 {
510 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
511 }
512 
513 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
514 {
515 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
516 
517 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
518 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
519 }
520 
521 static void mptcp_set_timeout(struct sock *sk)
522 {
523 	struct mptcp_subflow_context *subflow;
524 	long tout = 0;
525 
526 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
527 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
528 	__mptcp_set_timeout(sk, tout);
529 }
530 
531 static inline bool tcp_can_send_ack(const struct sock *ssk)
532 {
533 	return !((1 << inet_sk_state_load(ssk)) &
534 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
535 }
536 
537 void __mptcp_subflow_send_ack(struct sock *ssk)
538 {
539 	if (tcp_can_send_ack(ssk))
540 		tcp_send_ack(ssk);
541 }
542 
543 static void mptcp_subflow_send_ack(struct sock *ssk)
544 {
545 	bool slow;
546 
547 	slow = lock_sock_fast(ssk);
548 	__mptcp_subflow_send_ack(ssk);
549 	unlock_sock_fast(ssk, slow);
550 }
551 
552 static void mptcp_send_ack(struct mptcp_sock *msk)
553 {
554 	struct mptcp_subflow_context *subflow;
555 
556 	mptcp_for_each_subflow(msk, subflow)
557 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
558 }
559 
560 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
561 {
562 	bool slow;
563 
564 	slow = lock_sock_fast(ssk);
565 	if (tcp_can_send_ack(ssk))
566 		tcp_cleanup_rbuf(ssk, copied);
567 	unlock_sock_fast(ssk, slow);
568 }
569 
570 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
571 {
572 	const struct inet_connection_sock *icsk = inet_csk(ssk);
573 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
574 	const struct tcp_sock *tp = tcp_sk(ssk);
575 
576 	return (ack_pending & ICSK_ACK_SCHED) &&
577 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
578 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
579 		 (rx_empty && ack_pending &
580 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
581 }
582 
583 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
584 {
585 	int old_space = READ_ONCE(msk->old_wspace);
586 	struct mptcp_subflow_context *subflow;
587 	struct sock *sk = (struct sock *)msk;
588 	int space =  __mptcp_space(sk);
589 	bool cleanup, rx_empty;
590 
591 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
592 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
593 
594 	mptcp_for_each_subflow(msk, subflow) {
595 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
596 
597 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
598 			mptcp_subflow_cleanup_rbuf(ssk, copied);
599 	}
600 }
601 
602 static void mptcp_check_data_fin(struct sock *sk)
603 {
604 	struct mptcp_sock *msk = mptcp_sk(sk);
605 	u64 rcv_data_fin_seq;
606 
607 	/* Need to ack a DATA_FIN received from a peer while this side
608 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
609 	 * msk->rcv_data_fin was set when parsing the incoming options
610 	 * at the subflow level and the msk lock was not held, so this
611 	 * is the first opportunity to act on the DATA_FIN and change
612 	 * the msk state.
613 	 *
614 	 * If we are caught up to the sequence number of the incoming
615 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
616 	 * not caught up, do nothing and let the recv code send DATA_ACK
617 	 * when catching up.
618 	 */
619 
620 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
621 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
622 		WRITE_ONCE(msk->rcv_data_fin, 0);
623 
624 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
625 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
626 
627 		switch (sk->sk_state) {
628 		case TCP_ESTABLISHED:
629 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
630 			break;
631 		case TCP_FIN_WAIT1:
632 			mptcp_set_state(sk, TCP_CLOSING);
633 			break;
634 		case TCP_FIN_WAIT2:
635 			mptcp_shutdown_subflows(msk);
636 			mptcp_set_state(sk, TCP_CLOSE);
637 			break;
638 		default:
639 			/* Other states not expected */
640 			WARN_ON_ONCE(1);
641 			break;
642 		}
643 
644 		if (!__mptcp_check_fallback(msk))
645 			mptcp_send_ack(msk);
646 		mptcp_close_wake_up(sk);
647 	}
648 }
649 
650 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
651 {
652 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
653 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
654 		mptcp_subflow_reset(ssk);
655 	}
656 }
657 
658 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
659 					   struct sock *ssk)
660 {
661 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
662 	struct sock *sk = (struct sock *)msk;
663 	bool more_data_avail;
664 	struct tcp_sock *tp;
665 	bool ret = false;
666 
667 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
668 	tp = tcp_sk(ssk);
669 	do {
670 		u32 map_remaining, offset;
671 		u32 seq = tp->copied_seq;
672 		struct sk_buff *skb;
673 		bool fin;
674 
675 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
676 			break;
677 
678 		/* try to move as much data as available */
679 		map_remaining = subflow->map_data_len -
680 				mptcp_subflow_get_map_offset(subflow);
681 
682 		skb = skb_peek(&ssk->sk_receive_queue);
683 		if (unlikely(!skb))
684 			break;
685 
686 		if (__mptcp_check_fallback(msk)) {
687 			/* Under fallback skbs have no MPTCP extension and TCP could
688 			 * collapse them between the dummy map creation and the
689 			 * current dequeue. Be sure to adjust the map size.
690 			 */
691 			map_remaining = skb->len;
692 			subflow->map_data_len = skb->len;
693 		}
694 
695 		offset = seq - TCP_SKB_CB(skb)->seq;
696 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
697 		if (fin)
698 			seq++;
699 
700 		if (offset < skb->len) {
701 			size_t len = skb->len - offset;
702 
703 			mptcp_init_skb(ssk, skb, offset, len);
704 			skb_orphan(skb);
705 			ret = __mptcp_move_skb(sk, skb) || ret;
706 			seq += len;
707 
708 			if (unlikely(map_remaining < len)) {
709 				DEBUG_NET_WARN_ON_ONCE(1);
710 				mptcp_dss_corruption(msk, ssk);
711 			}
712 		} else {
713 			if (unlikely(!fin)) {
714 				DEBUG_NET_WARN_ON_ONCE(1);
715 				mptcp_dss_corruption(msk, ssk);
716 			}
717 
718 			sk_eat_skb(ssk, skb);
719 		}
720 
721 		WRITE_ONCE(tp->copied_seq, seq);
722 		more_data_avail = mptcp_subflow_data_available(ssk);
723 
724 	} while (more_data_avail);
725 
726 	if (ret)
727 		msk->last_data_recv = tcp_jiffies32;
728 	return ret;
729 }
730 
731 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
732 {
733 	struct sock *sk = (struct sock *)msk;
734 	struct sk_buff *skb, *tail;
735 	bool moved = false;
736 	struct rb_node *p;
737 	u64 end_seq;
738 
739 	p = rb_first(&msk->out_of_order_queue);
740 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
741 	while (p) {
742 		skb = rb_to_skb(p);
743 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
744 			break;
745 
746 		p = rb_next(p);
747 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
748 
749 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
750 				      msk->ack_seq))) {
751 			mptcp_drop(sk, skb);
752 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
753 			continue;
754 		}
755 
756 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
757 		tail = skb_peek_tail(&sk->sk_receive_queue);
758 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
759 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
760 
761 			/* skip overlapping data, if any */
762 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
763 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
764 				 delta);
765 			MPTCP_SKB_CB(skb)->offset += delta;
766 			MPTCP_SKB_CB(skb)->map_seq += delta;
767 			__skb_queue_tail(&sk->sk_receive_queue, skb);
768 		}
769 		msk->bytes_received += end_seq - msk->ack_seq;
770 		WRITE_ONCE(msk->ack_seq, end_seq);
771 		moved = true;
772 	}
773 	return moved;
774 }
775 
776 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
777 {
778 	int err = sock_error(ssk);
779 	int ssk_state;
780 
781 	if (!err)
782 		return false;
783 
784 	/* only propagate errors on fallen-back sockets or
785 	 * on MPC connect
786 	 */
787 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
788 		return false;
789 
790 	/* We need to propagate only transition to CLOSE state.
791 	 * Orphaned socket will see such state change via
792 	 * subflow_sched_work_if_closed() and that path will properly
793 	 * destroy the msk as needed.
794 	 */
795 	ssk_state = inet_sk_state_load(ssk);
796 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
797 		mptcp_set_state(sk, ssk_state);
798 	WRITE_ONCE(sk->sk_err, -err);
799 
800 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
801 	smp_wmb();
802 	sk_error_report(sk);
803 	return true;
804 }
805 
806 void __mptcp_error_report(struct sock *sk)
807 {
808 	struct mptcp_subflow_context *subflow;
809 	struct mptcp_sock *msk = mptcp_sk(sk);
810 
811 	mptcp_for_each_subflow(msk, subflow)
812 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
813 			break;
814 }
815 
816 /* In most cases we will be able to lock the mptcp socket.  If its already
817  * owned, we need to defer to the work queue to avoid ABBA deadlock.
818  */
819 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
820 {
821 	struct sock *sk = (struct sock *)msk;
822 	bool moved;
823 
824 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
825 	__mptcp_ofo_queue(msk);
826 	if (unlikely(ssk->sk_err))
827 		__mptcp_subflow_error_report(sk, ssk);
828 
829 	/* If the moves have caught up with the DATA_FIN sequence number
830 	 * it's time to ack the DATA_FIN and change socket state, but
831 	 * this is not a good place to change state. Let the workqueue
832 	 * do it.
833 	 */
834 	if (mptcp_pending_data_fin(sk, NULL))
835 		mptcp_schedule_work(sk);
836 	return moved;
837 }
838 
839 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
840 {
841 	struct mptcp_sock *msk = mptcp_sk(sk);
842 
843 	/* Wake-up the reader only for in-sequence data */
844 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
845 		sk->sk_data_ready(sk);
846 }
847 
848 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
849 {
850 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
851 
852 	/* The peer can send data while we are shutting down this
853 	 * subflow at msk destruction time, but we must avoid enqueuing
854 	 * more data to the msk receive queue
855 	 */
856 	if (unlikely(subflow->disposable))
857 		return;
858 
859 	mptcp_data_lock(sk);
860 	if (!sock_owned_by_user(sk))
861 		__mptcp_data_ready(sk, ssk);
862 	else
863 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
864 	mptcp_data_unlock(sk);
865 }
866 
867 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
868 {
869 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
870 	msk->allow_infinite_fallback = false;
871 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
872 }
873 
874 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
875 {
876 	struct sock *sk = (struct sock *)msk;
877 
878 	if (sk->sk_state != TCP_ESTABLISHED)
879 		return false;
880 
881 	spin_lock_bh(&msk->fallback_lock);
882 	if (!msk->allow_subflows) {
883 		spin_unlock_bh(&msk->fallback_lock);
884 		return false;
885 	}
886 	mptcp_subflow_joined(msk, ssk);
887 	spin_unlock_bh(&msk->fallback_lock);
888 
889 	/* attach to msk socket only after we are sure we will deal with it
890 	 * at close time
891 	 */
892 	if (sk->sk_socket && !ssk->sk_socket)
893 		mptcp_sock_graft(ssk, sk->sk_socket);
894 
895 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
896 	mptcp_sockopt_sync_locked(msk, ssk);
897 	mptcp_stop_tout_timer(sk);
898 	__mptcp_propagate_sndbuf(sk, ssk);
899 	return true;
900 }
901 
902 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
903 {
904 	struct mptcp_subflow_context *tmp, *subflow;
905 	struct mptcp_sock *msk = mptcp_sk(sk);
906 
907 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
908 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
909 		bool slow = lock_sock_fast(ssk);
910 
911 		list_move_tail(&subflow->node, &msk->conn_list);
912 		if (!__mptcp_finish_join(msk, ssk))
913 			mptcp_subflow_reset(ssk);
914 		unlock_sock_fast(ssk, slow);
915 	}
916 }
917 
918 static bool mptcp_rtx_timer_pending(struct sock *sk)
919 {
920 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
921 }
922 
923 static void mptcp_reset_rtx_timer(struct sock *sk)
924 {
925 	struct inet_connection_sock *icsk = inet_csk(sk);
926 	unsigned long tout;
927 
928 	/* prevent rescheduling on close */
929 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
930 		return;
931 
932 	tout = mptcp_sk(sk)->timer_ival;
933 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
934 }
935 
936 bool mptcp_schedule_work(struct sock *sk)
937 {
938 	if (inet_sk_state_load(sk) == TCP_CLOSE)
939 		return false;
940 
941 	/* Get a reference on this socket, mptcp_worker() will release it.
942 	 * As mptcp_worker() might complete before us, we can not avoid
943 	 * a sock_hold()/sock_put() if schedule_work() returns false.
944 	 */
945 	sock_hold(sk);
946 
947 	if (schedule_work(&mptcp_sk(sk)->work))
948 		return true;
949 
950 	sock_put(sk);
951 	return false;
952 }
953 
954 static bool mptcp_skb_can_collapse_to(u64 write_seq,
955 				      const struct sk_buff *skb,
956 				      const struct mptcp_ext *mpext)
957 {
958 	if (!tcp_skb_can_collapse_to(skb))
959 		return false;
960 
961 	/* can collapse only if MPTCP level sequence is in order and this
962 	 * mapping has not been xmitted yet
963 	 */
964 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
965 	       !mpext->frozen;
966 }
967 
968 /* we can append data to the given data frag if:
969  * - there is space available in the backing page_frag
970  * - the data frag tail matches the current page_frag free offset
971  * - the data frag end sequence number matches the current write seq
972  */
973 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
974 				       const struct page_frag *pfrag,
975 				       const struct mptcp_data_frag *df)
976 {
977 	return df && pfrag->page == df->page &&
978 		pfrag->size - pfrag->offset > 0 &&
979 		pfrag->offset == (df->offset + df->data_len) &&
980 		df->data_seq + df->data_len == msk->write_seq;
981 }
982 
983 static void dfrag_uncharge(struct sock *sk, int len)
984 {
985 	sk_mem_uncharge(sk, len);
986 	sk_wmem_queued_add(sk, -len);
987 }
988 
989 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
990 {
991 	int len = dfrag->data_len + dfrag->overhead;
992 
993 	list_del(&dfrag->list);
994 	dfrag_uncharge(sk, len);
995 	put_page(dfrag->page);
996 }
997 
998 /* called under both the msk socket lock and the data lock */
999 static void __mptcp_clean_una(struct sock *sk)
1000 {
1001 	struct mptcp_sock *msk = mptcp_sk(sk);
1002 	struct mptcp_data_frag *dtmp, *dfrag;
1003 	u64 snd_una;
1004 
1005 	snd_una = msk->snd_una;
1006 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1007 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1008 			break;
1009 
1010 		if (unlikely(dfrag == msk->first_pending)) {
1011 			/* in recovery mode can see ack after the current snd head */
1012 			if (WARN_ON_ONCE(!msk->recovery))
1013 				break;
1014 
1015 			msk->first_pending = mptcp_send_next(sk);
1016 		}
1017 
1018 		dfrag_clear(sk, dfrag);
1019 	}
1020 
1021 	dfrag = mptcp_rtx_head(sk);
1022 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1023 		u64 delta = snd_una - dfrag->data_seq;
1024 
1025 		/* prevent wrap around in recovery mode */
1026 		if (unlikely(delta > dfrag->already_sent)) {
1027 			if (WARN_ON_ONCE(!msk->recovery))
1028 				goto out;
1029 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1030 				goto out;
1031 			dfrag->already_sent += delta - dfrag->already_sent;
1032 		}
1033 
1034 		dfrag->data_seq += delta;
1035 		dfrag->offset += delta;
1036 		dfrag->data_len -= delta;
1037 		dfrag->already_sent -= delta;
1038 
1039 		dfrag_uncharge(sk, delta);
1040 	}
1041 
1042 	/* all retransmitted data acked, recovery completed */
1043 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1044 		msk->recovery = false;
1045 
1046 out:
1047 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1048 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1049 			mptcp_stop_rtx_timer(sk);
1050 	} else {
1051 		mptcp_reset_rtx_timer(sk);
1052 	}
1053 
1054 	if (mptcp_pending_data_fin_ack(sk))
1055 		mptcp_schedule_work(sk);
1056 }
1057 
1058 static void __mptcp_clean_una_wakeup(struct sock *sk)
1059 {
1060 	lockdep_assert_held_once(&sk->sk_lock.slock);
1061 
1062 	__mptcp_clean_una(sk);
1063 	mptcp_write_space(sk);
1064 }
1065 
1066 static void mptcp_clean_una_wakeup(struct sock *sk)
1067 {
1068 	mptcp_data_lock(sk);
1069 	__mptcp_clean_una_wakeup(sk);
1070 	mptcp_data_unlock(sk);
1071 }
1072 
1073 static void mptcp_enter_memory_pressure(struct sock *sk)
1074 {
1075 	struct mptcp_subflow_context *subflow;
1076 	struct mptcp_sock *msk = mptcp_sk(sk);
1077 	bool first = true;
1078 
1079 	mptcp_for_each_subflow(msk, subflow) {
1080 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1081 
1082 		if (first)
1083 			tcp_enter_memory_pressure(ssk);
1084 		sk_stream_moderate_sndbuf(ssk);
1085 
1086 		first = false;
1087 	}
1088 	__mptcp_sync_sndbuf(sk);
1089 }
1090 
1091 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1092  * data
1093  */
1094 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1095 {
1096 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1097 					pfrag, sk->sk_allocation)))
1098 		return true;
1099 
1100 	mptcp_enter_memory_pressure(sk);
1101 	return false;
1102 }
1103 
1104 static struct mptcp_data_frag *
1105 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1106 		      int orig_offset)
1107 {
1108 	int offset = ALIGN(orig_offset, sizeof(long));
1109 	struct mptcp_data_frag *dfrag;
1110 
1111 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1112 	dfrag->data_len = 0;
1113 	dfrag->data_seq = msk->write_seq;
1114 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1115 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1116 	dfrag->already_sent = 0;
1117 	dfrag->page = pfrag->page;
1118 
1119 	return dfrag;
1120 }
1121 
1122 struct mptcp_sendmsg_info {
1123 	int mss_now;
1124 	int size_goal;
1125 	u16 limit;
1126 	u16 sent;
1127 	unsigned int flags;
1128 	bool data_lock_held;
1129 };
1130 
1131 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1132 				    u64 data_seq, int avail_size)
1133 {
1134 	u64 window_end = mptcp_wnd_end(msk);
1135 	u64 mptcp_snd_wnd;
1136 
1137 	if (__mptcp_check_fallback(msk))
1138 		return avail_size;
1139 
1140 	mptcp_snd_wnd = window_end - data_seq;
1141 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1142 
1143 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1144 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1145 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1146 	}
1147 
1148 	return avail_size;
1149 }
1150 
1151 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1152 {
1153 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1154 
1155 	if (!mpext)
1156 		return false;
1157 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1158 	return true;
1159 }
1160 
1161 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1162 {
1163 	struct sk_buff *skb;
1164 
1165 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1166 	if (likely(skb)) {
1167 		if (likely(__mptcp_add_ext(skb, gfp))) {
1168 			skb_reserve(skb, MAX_TCP_HEADER);
1169 			skb->ip_summed = CHECKSUM_PARTIAL;
1170 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1171 			return skb;
1172 		}
1173 		__kfree_skb(skb);
1174 	} else {
1175 		mptcp_enter_memory_pressure(sk);
1176 	}
1177 	return NULL;
1178 }
1179 
1180 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1181 {
1182 	struct sk_buff *skb;
1183 
1184 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1185 	if (!skb)
1186 		return NULL;
1187 
1188 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1189 		tcp_skb_entail(ssk, skb);
1190 		return skb;
1191 	}
1192 	tcp_skb_tsorted_anchor_cleanup(skb);
1193 	kfree_skb(skb);
1194 	return NULL;
1195 }
1196 
1197 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1198 {
1199 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1200 
1201 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1202 }
1203 
1204 /* note: this always recompute the csum on the whole skb, even
1205  * if we just appended a single frag. More status info needed
1206  */
1207 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1208 {
1209 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1210 	__wsum csum = ~csum_unfold(mpext->csum);
1211 	int offset = skb->len - added;
1212 
1213 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1214 }
1215 
1216 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1217 				      struct sock *ssk,
1218 				      struct mptcp_ext *mpext)
1219 {
1220 	if (!mpext)
1221 		return;
1222 
1223 	mpext->infinite_map = 1;
1224 	mpext->data_len = 0;
1225 
1226 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1227 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1228 		mptcp_subflow_reset(ssk);
1229 		return;
1230 	}
1231 
1232 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1233 }
1234 
1235 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1236 
1237 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1238 			      struct mptcp_data_frag *dfrag,
1239 			      struct mptcp_sendmsg_info *info)
1240 {
1241 	u64 data_seq = dfrag->data_seq + info->sent;
1242 	int offset = dfrag->offset + info->sent;
1243 	struct mptcp_sock *msk = mptcp_sk(sk);
1244 	bool zero_window_probe = false;
1245 	struct mptcp_ext *mpext = NULL;
1246 	bool can_coalesce = false;
1247 	bool reuse_skb = true;
1248 	struct sk_buff *skb;
1249 	size_t copy;
1250 	int i;
1251 
1252 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1253 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1254 
1255 	if (WARN_ON_ONCE(info->sent > info->limit ||
1256 			 info->limit > dfrag->data_len))
1257 		return 0;
1258 
1259 	if (unlikely(!__tcp_can_send(ssk)))
1260 		return -EAGAIN;
1261 
1262 	/* compute send limit */
1263 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1264 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1265 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1266 	copy = info->size_goal;
1267 
1268 	skb = tcp_write_queue_tail(ssk);
1269 	if (skb && copy > skb->len) {
1270 		/* Limit the write to the size available in the
1271 		 * current skb, if any, so that we create at most a new skb.
1272 		 * Explicitly tells TCP internals to avoid collapsing on later
1273 		 * queue management operation, to avoid breaking the ext <->
1274 		 * SSN association set here
1275 		 */
1276 		mpext = mptcp_get_ext(skb);
1277 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1278 			TCP_SKB_CB(skb)->eor = 1;
1279 			tcp_mark_push(tcp_sk(ssk), skb);
1280 			goto alloc_skb;
1281 		}
1282 
1283 		i = skb_shinfo(skb)->nr_frags;
1284 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1285 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1286 			tcp_mark_push(tcp_sk(ssk), skb);
1287 			goto alloc_skb;
1288 		}
1289 
1290 		copy -= skb->len;
1291 	} else {
1292 alloc_skb:
1293 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1294 		if (!skb)
1295 			return -ENOMEM;
1296 
1297 		i = skb_shinfo(skb)->nr_frags;
1298 		reuse_skb = false;
1299 		mpext = mptcp_get_ext(skb);
1300 	}
1301 
1302 	/* Zero window and all data acked? Probe. */
1303 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1304 	if (copy == 0) {
1305 		u64 snd_una = READ_ONCE(msk->snd_una);
1306 
1307 		/* No need for zero probe if there are any data pending
1308 		 * either at the msk or ssk level; skb is the current write
1309 		 * queue tail and can be empty at this point.
1310 		 */
1311 		if (snd_una != msk->snd_nxt || skb->len ||
1312 		    skb != tcp_send_head(ssk)) {
1313 			tcp_remove_empty_skb(ssk);
1314 			return 0;
1315 		}
1316 
1317 		zero_window_probe = true;
1318 		data_seq = snd_una - 1;
1319 		copy = 1;
1320 	}
1321 
1322 	copy = min_t(size_t, copy, info->limit - info->sent);
1323 	if (!sk_wmem_schedule(ssk, copy)) {
1324 		tcp_remove_empty_skb(ssk);
1325 		return -ENOMEM;
1326 	}
1327 
1328 	if (can_coalesce) {
1329 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1330 	} else {
1331 		get_page(dfrag->page);
1332 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1333 	}
1334 
1335 	skb->len += copy;
1336 	skb->data_len += copy;
1337 	skb->truesize += copy;
1338 	sk_wmem_queued_add(ssk, copy);
1339 	sk_mem_charge(ssk, copy);
1340 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1341 	TCP_SKB_CB(skb)->end_seq += copy;
1342 	tcp_skb_pcount_set(skb, 0);
1343 
1344 	/* on skb reuse we just need to update the DSS len */
1345 	if (reuse_skb) {
1346 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1347 		mpext->data_len += copy;
1348 		goto out;
1349 	}
1350 
1351 	memset(mpext, 0, sizeof(*mpext));
1352 	mpext->data_seq = data_seq;
1353 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1354 	mpext->data_len = copy;
1355 	mpext->use_map = 1;
1356 	mpext->dsn64 = 1;
1357 
1358 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1359 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1360 		 mpext->dsn64);
1361 
1362 	if (zero_window_probe) {
1363 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1364 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1365 		mpext->frozen = 1;
1366 		if (READ_ONCE(msk->csum_enabled))
1367 			mptcp_update_data_checksum(skb, copy);
1368 		tcp_push_pending_frames(ssk);
1369 		return 0;
1370 	}
1371 out:
1372 	if (READ_ONCE(msk->csum_enabled))
1373 		mptcp_update_data_checksum(skb, copy);
1374 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1375 		mptcp_update_infinite_map(msk, ssk, mpext);
1376 	trace_mptcp_sendmsg_frag(mpext);
1377 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1378 	return copy;
1379 }
1380 
1381 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1382 					 sizeof(struct tcphdr) - \
1383 					 MAX_TCP_OPTION_SPACE - \
1384 					 sizeof(struct ipv6hdr) - \
1385 					 sizeof(struct frag_hdr))
1386 
1387 struct subflow_send_info {
1388 	struct sock *ssk;
1389 	u64 linger_time;
1390 };
1391 
1392 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1393 {
1394 	if (!subflow->stale)
1395 		return;
1396 
1397 	subflow->stale = 0;
1398 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1399 }
1400 
1401 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1402 {
1403 	if (unlikely(subflow->stale)) {
1404 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1405 
1406 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1407 			return false;
1408 
1409 		mptcp_subflow_set_active(subflow);
1410 	}
1411 	return __mptcp_subflow_active(subflow);
1412 }
1413 
1414 #define SSK_MODE_ACTIVE	0
1415 #define SSK_MODE_BACKUP	1
1416 #define SSK_MODE_MAX	2
1417 
1418 /* implement the mptcp packet scheduler;
1419  * returns the subflow that will transmit the next DSS
1420  * additionally updates the rtx timeout
1421  */
1422 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1423 {
1424 	struct subflow_send_info send_info[SSK_MODE_MAX];
1425 	struct mptcp_subflow_context *subflow;
1426 	struct sock *sk = (struct sock *)msk;
1427 	u32 pace, burst, wmem;
1428 	int i, nr_active = 0;
1429 	struct sock *ssk;
1430 	u64 linger_time;
1431 	long tout = 0;
1432 
1433 	/* pick the subflow with the lower wmem/wspace ratio */
1434 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1435 		send_info[i].ssk = NULL;
1436 		send_info[i].linger_time = -1;
1437 	}
1438 
1439 	mptcp_for_each_subflow(msk, subflow) {
1440 		bool backup = subflow->backup || subflow->request_bkup;
1441 
1442 		trace_mptcp_subflow_get_send(subflow);
1443 		ssk =  mptcp_subflow_tcp_sock(subflow);
1444 		if (!mptcp_subflow_active(subflow))
1445 			continue;
1446 
1447 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1448 		nr_active += !backup;
1449 		pace = subflow->avg_pacing_rate;
1450 		if (unlikely(!pace)) {
1451 			/* init pacing rate from socket */
1452 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1453 			pace = subflow->avg_pacing_rate;
1454 			if (!pace)
1455 				continue;
1456 		}
1457 
1458 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1459 		if (linger_time < send_info[backup].linger_time) {
1460 			send_info[backup].ssk = ssk;
1461 			send_info[backup].linger_time = linger_time;
1462 		}
1463 	}
1464 	__mptcp_set_timeout(sk, tout);
1465 
1466 	/* pick the best backup if no other subflow is active */
1467 	if (!nr_active)
1468 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1469 
1470 	/* According to the blest algorithm, to avoid HoL blocking for the
1471 	 * faster flow, we need to:
1472 	 * - estimate the faster flow linger time
1473 	 * - use the above to estimate the amount of byte transferred
1474 	 *   by the faster flow
1475 	 * - check that the amount of queued data is greater than the above,
1476 	 *   otherwise do not use the picked, slower, subflow
1477 	 * We select the subflow with the shorter estimated time to flush
1478 	 * the queued mem, which basically ensure the above. We just need
1479 	 * to check that subflow has a non empty cwin.
1480 	 */
1481 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1482 	if (!ssk || !sk_stream_memory_free(ssk))
1483 		return NULL;
1484 
1485 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1486 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1487 	if (!burst)
1488 		return ssk;
1489 
1490 	subflow = mptcp_subflow_ctx(ssk);
1491 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1492 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1493 					   burst + wmem);
1494 	msk->snd_burst = burst;
1495 	return ssk;
1496 }
1497 
1498 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1499 {
1500 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1501 	release_sock(ssk);
1502 }
1503 
1504 static void mptcp_update_post_push(struct mptcp_sock *msk,
1505 				   struct mptcp_data_frag *dfrag,
1506 				   u32 sent)
1507 {
1508 	u64 snd_nxt_new = dfrag->data_seq;
1509 
1510 	dfrag->already_sent += sent;
1511 
1512 	msk->snd_burst -= sent;
1513 
1514 	snd_nxt_new += dfrag->already_sent;
1515 
1516 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1517 	 * is recovering after a failover. In that event, this re-sends
1518 	 * old segments.
1519 	 *
1520 	 * Thus compute snd_nxt_new candidate based on
1521 	 * the dfrag->data_seq that was sent and the data
1522 	 * that has been handed to the subflow for transmission
1523 	 * and skip update in case it was old dfrag.
1524 	 */
1525 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1526 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1527 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1528 	}
1529 }
1530 
1531 void mptcp_check_and_set_pending(struct sock *sk)
1532 {
1533 	if (mptcp_send_head(sk)) {
1534 		mptcp_data_lock(sk);
1535 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1536 		mptcp_data_unlock(sk);
1537 	}
1538 }
1539 
1540 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1541 				  struct mptcp_sendmsg_info *info)
1542 {
1543 	struct mptcp_sock *msk = mptcp_sk(sk);
1544 	struct mptcp_data_frag *dfrag;
1545 	int len, copied = 0, err = 0;
1546 
1547 	while ((dfrag = mptcp_send_head(sk))) {
1548 		info->sent = dfrag->already_sent;
1549 		info->limit = dfrag->data_len;
1550 		len = dfrag->data_len - dfrag->already_sent;
1551 		while (len > 0) {
1552 			int ret = 0;
1553 
1554 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1555 			if (ret <= 0) {
1556 				err = copied ? : ret;
1557 				goto out;
1558 			}
1559 
1560 			info->sent += ret;
1561 			copied += ret;
1562 			len -= ret;
1563 
1564 			mptcp_update_post_push(msk, dfrag, ret);
1565 		}
1566 		msk->first_pending = mptcp_send_next(sk);
1567 
1568 		if (msk->snd_burst <= 0 ||
1569 		    !sk_stream_memory_free(ssk) ||
1570 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1571 			err = copied;
1572 			goto out;
1573 		}
1574 		mptcp_set_timeout(sk);
1575 	}
1576 	err = copied;
1577 
1578 out:
1579 	if (err > 0)
1580 		msk->last_data_sent = tcp_jiffies32;
1581 	return err;
1582 }
1583 
1584 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1585 {
1586 	struct sock *prev_ssk = NULL, *ssk = NULL;
1587 	struct mptcp_sock *msk = mptcp_sk(sk);
1588 	struct mptcp_sendmsg_info info = {
1589 				.flags = flags,
1590 	};
1591 	bool do_check_data_fin = false;
1592 	int push_count = 1;
1593 
1594 	while (mptcp_send_head(sk) && (push_count > 0)) {
1595 		struct mptcp_subflow_context *subflow;
1596 		int ret = 0;
1597 
1598 		if (mptcp_sched_get_send(msk))
1599 			break;
1600 
1601 		push_count = 0;
1602 
1603 		mptcp_for_each_subflow(msk, subflow) {
1604 			if (READ_ONCE(subflow->scheduled)) {
1605 				mptcp_subflow_set_scheduled(subflow, false);
1606 
1607 				prev_ssk = ssk;
1608 				ssk = mptcp_subflow_tcp_sock(subflow);
1609 				if (ssk != prev_ssk) {
1610 					/* First check. If the ssk has changed since
1611 					 * the last round, release prev_ssk
1612 					 */
1613 					if (prev_ssk)
1614 						mptcp_push_release(prev_ssk, &info);
1615 
1616 					/* Need to lock the new subflow only if different
1617 					 * from the previous one, otherwise we are still
1618 					 * helding the relevant lock
1619 					 */
1620 					lock_sock(ssk);
1621 				}
1622 
1623 				push_count++;
1624 
1625 				ret = __subflow_push_pending(sk, ssk, &info);
1626 				if (ret <= 0) {
1627 					if (ret != -EAGAIN ||
1628 					    (1 << ssk->sk_state) &
1629 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1630 						push_count--;
1631 					continue;
1632 				}
1633 				do_check_data_fin = true;
1634 			}
1635 		}
1636 	}
1637 
1638 	/* at this point we held the socket lock for the last subflow we used */
1639 	if (ssk)
1640 		mptcp_push_release(ssk, &info);
1641 
1642 	/* ensure the rtx timer is running */
1643 	if (!mptcp_rtx_timer_pending(sk))
1644 		mptcp_reset_rtx_timer(sk);
1645 	if (do_check_data_fin)
1646 		mptcp_check_send_data_fin(sk);
1647 }
1648 
1649 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1650 {
1651 	struct mptcp_sock *msk = mptcp_sk(sk);
1652 	struct mptcp_sendmsg_info info = {
1653 		.data_lock_held = true,
1654 	};
1655 	bool keep_pushing = true;
1656 	struct sock *xmit_ssk;
1657 	int copied = 0;
1658 
1659 	info.flags = 0;
1660 	while (mptcp_send_head(sk) && keep_pushing) {
1661 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1662 		int ret = 0;
1663 
1664 		/* check for a different subflow usage only after
1665 		 * spooling the first chunk of data
1666 		 */
1667 		if (first) {
1668 			mptcp_subflow_set_scheduled(subflow, false);
1669 			ret = __subflow_push_pending(sk, ssk, &info);
1670 			first = false;
1671 			if (ret <= 0)
1672 				break;
1673 			copied += ret;
1674 			continue;
1675 		}
1676 
1677 		if (mptcp_sched_get_send(msk))
1678 			goto out;
1679 
1680 		if (READ_ONCE(subflow->scheduled)) {
1681 			mptcp_subflow_set_scheduled(subflow, false);
1682 			ret = __subflow_push_pending(sk, ssk, &info);
1683 			if (ret <= 0)
1684 				keep_pushing = false;
1685 			copied += ret;
1686 		}
1687 
1688 		mptcp_for_each_subflow(msk, subflow) {
1689 			if (READ_ONCE(subflow->scheduled)) {
1690 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1691 				if (xmit_ssk != ssk) {
1692 					mptcp_subflow_delegate(subflow,
1693 							       MPTCP_DELEGATE_SEND);
1694 					keep_pushing = false;
1695 				}
1696 			}
1697 		}
1698 	}
1699 
1700 out:
1701 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1702 	 * not going to flush it via release_sock()
1703 	 */
1704 	if (copied) {
1705 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1706 			 info.size_goal);
1707 		if (!mptcp_rtx_timer_pending(sk))
1708 			mptcp_reset_rtx_timer(sk);
1709 
1710 		if (msk->snd_data_fin_enable &&
1711 		    msk->snd_nxt + 1 == msk->write_seq)
1712 			mptcp_schedule_work(sk);
1713 	}
1714 }
1715 
1716 static int mptcp_disconnect(struct sock *sk, int flags);
1717 
1718 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1719 				  size_t len, int *copied_syn)
1720 {
1721 	unsigned int saved_flags = msg->msg_flags;
1722 	struct mptcp_sock *msk = mptcp_sk(sk);
1723 	struct sock *ssk;
1724 	int ret;
1725 
1726 	/* on flags based fastopen the mptcp is supposed to create the
1727 	 * first subflow right now. Otherwise we are in the defer_connect
1728 	 * path, and the first subflow must be already present.
1729 	 * Since the defer_connect flag is cleared after the first succsful
1730 	 * fastopen attempt, no need to check for additional subflow status.
1731 	 */
1732 	if (msg->msg_flags & MSG_FASTOPEN) {
1733 		ssk = __mptcp_nmpc_sk(msk);
1734 		if (IS_ERR(ssk))
1735 			return PTR_ERR(ssk);
1736 	}
1737 	if (!msk->first)
1738 		return -EINVAL;
1739 
1740 	ssk = msk->first;
1741 
1742 	lock_sock(ssk);
1743 	msg->msg_flags |= MSG_DONTWAIT;
1744 	msk->fastopening = 1;
1745 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1746 	msk->fastopening = 0;
1747 	msg->msg_flags = saved_flags;
1748 	release_sock(ssk);
1749 
1750 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1751 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1752 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1753 					    msg->msg_namelen, msg->msg_flags, 1);
1754 
1755 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1756 		 * case of any error, except timeout or signal
1757 		 */
1758 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1759 			*copied_syn = 0;
1760 	} else if (ret && ret != -EINPROGRESS) {
1761 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1762 		 * __inet_stream_connect() can fail, due to looking check,
1763 		 * see mptcp_disconnect().
1764 		 * Attempt it again outside the problematic scope.
1765 		 */
1766 		if (!mptcp_disconnect(sk, 0)) {
1767 			sk->sk_disconnects++;
1768 			sk->sk_socket->state = SS_UNCONNECTED;
1769 		}
1770 	}
1771 	inet_clear_bit(DEFER_CONNECT, sk);
1772 
1773 	return ret;
1774 }
1775 
1776 static int do_copy_data_nocache(struct sock *sk, int copy,
1777 				struct iov_iter *from, char *to)
1778 {
1779 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1780 		if (!copy_from_iter_full_nocache(to, copy, from))
1781 			return -EFAULT;
1782 	} else if (!copy_from_iter_full(to, copy, from)) {
1783 		return -EFAULT;
1784 	}
1785 	return 0;
1786 }
1787 
1788 /* open-code sk_stream_memory_free() plus sent limit computation to
1789  * avoid indirect calls in fast-path.
1790  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1791  * annotations.
1792  */
1793 static u32 mptcp_send_limit(const struct sock *sk)
1794 {
1795 	const struct mptcp_sock *msk = mptcp_sk(sk);
1796 	u32 limit, not_sent;
1797 
1798 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1799 		return 0;
1800 
1801 	limit = mptcp_notsent_lowat(sk);
1802 	if (limit == UINT_MAX)
1803 		return UINT_MAX;
1804 
1805 	not_sent = msk->write_seq - msk->snd_nxt;
1806 	if (not_sent >= limit)
1807 		return 0;
1808 
1809 	return limit - not_sent;
1810 }
1811 
1812 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1813 {
1814 	struct mptcp_subflow_context *subflow;
1815 
1816 	if (!rfs_is_needed())
1817 		return;
1818 
1819 	mptcp_for_each_subflow(msk, subflow) {
1820 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1821 
1822 		sock_rps_record_flow(ssk);
1823 	}
1824 }
1825 
1826 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1827 {
1828 	struct mptcp_sock *msk = mptcp_sk(sk);
1829 	struct page_frag *pfrag;
1830 	size_t copied = 0;
1831 	int ret = 0;
1832 	long timeo;
1833 
1834 	/* silently ignore everything else */
1835 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1836 
1837 	lock_sock(sk);
1838 
1839 	mptcp_rps_record_subflows(msk);
1840 
1841 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1842 		     msg->msg_flags & MSG_FASTOPEN)) {
1843 		int copied_syn = 0;
1844 
1845 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1846 		copied += copied_syn;
1847 		if (ret == -EINPROGRESS && copied_syn > 0)
1848 			goto out;
1849 		else if (ret)
1850 			goto do_error;
1851 	}
1852 
1853 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1854 
1855 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1856 		ret = sk_stream_wait_connect(sk, &timeo);
1857 		if (ret)
1858 			goto do_error;
1859 	}
1860 
1861 	ret = -EPIPE;
1862 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1863 		goto do_error;
1864 
1865 	pfrag = sk_page_frag(sk);
1866 
1867 	while (msg_data_left(msg)) {
1868 		int total_ts, frag_truesize = 0;
1869 		struct mptcp_data_frag *dfrag;
1870 		bool dfrag_collapsed;
1871 		size_t psize, offset;
1872 		u32 copy_limit;
1873 
1874 		/* ensure fitting the notsent_lowat() constraint */
1875 		copy_limit = mptcp_send_limit(sk);
1876 		if (!copy_limit)
1877 			goto wait_for_memory;
1878 
1879 		/* reuse tail pfrag, if possible, or carve a new one from the
1880 		 * page allocator
1881 		 */
1882 		dfrag = mptcp_pending_tail(sk);
1883 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1884 		if (!dfrag_collapsed) {
1885 			if (!mptcp_page_frag_refill(sk, pfrag))
1886 				goto wait_for_memory;
1887 
1888 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1889 			frag_truesize = dfrag->overhead;
1890 		}
1891 
1892 		/* we do not bound vs wspace, to allow a single packet.
1893 		 * memory accounting will prevent execessive memory usage
1894 		 * anyway
1895 		 */
1896 		offset = dfrag->offset + dfrag->data_len;
1897 		psize = pfrag->size - offset;
1898 		psize = min_t(size_t, psize, msg_data_left(msg));
1899 		psize = min_t(size_t, psize, copy_limit);
1900 		total_ts = psize + frag_truesize;
1901 
1902 		if (!sk_wmem_schedule(sk, total_ts))
1903 			goto wait_for_memory;
1904 
1905 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1906 					   page_address(dfrag->page) + offset);
1907 		if (ret)
1908 			goto do_error;
1909 
1910 		/* data successfully copied into the write queue */
1911 		sk_forward_alloc_add(sk, -total_ts);
1912 		copied += psize;
1913 		dfrag->data_len += psize;
1914 		frag_truesize += psize;
1915 		pfrag->offset += frag_truesize;
1916 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1917 
1918 		/* charge data on mptcp pending queue to the msk socket
1919 		 * Note: we charge such data both to sk and ssk
1920 		 */
1921 		sk_wmem_queued_add(sk, frag_truesize);
1922 		if (!dfrag_collapsed) {
1923 			get_page(dfrag->page);
1924 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1925 			if (!msk->first_pending)
1926 				msk->first_pending = dfrag;
1927 		}
1928 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1929 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1930 			 !dfrag_collapsed);
1931 
1932 		continue;
1933 
1934 wait_for_memory:
1935 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1936 		__mptcp_push_pending(sk, msg->msg_flags);
1937 		ret = sk_stream_wait_memory(sk, &timeo);
1938 		if (ret)
1939 			goto do_error;
1940 	}
1941 
1942 	if (copied)
1943 		__mptcp_push_pending(sk, msg->msg_flags);
1944 
1945 out:
1946 	release_sock(sk);
1947 	return copied;
1948 
1949 do_error:
1950 	if (copied)
1951 		goto out;
1952 
1953 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1954 	goto out;
1955 }
1956 
1957 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1958 
1959 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1960 				size_t len, int flags, int copied_total,
1961 				struct scm_timestamping_internal *tss,
1962 				int *cmsg_flags)
1963 {
1964 	struct mptcp_sock *msk = mptcp_sk(sk);
1965 	struct sk_buff *skb, *tmp;
1966 	int total_data_len = 0;
1967 	int copied = 0;
1968 
1969 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1970 		u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
1971 		u32 data_len = skb->len - offset;
1972 		u32 count;
1973 		int err;
1974 
1975 		if (flags & MSG_PEEK) {
1976 			/* skip already peeked skbs */
1977 			if (total_data_len + data_len <= copied_total) {
1978 				total_data_len += data_len;
1979 				continue;
1980 			}
1981 
1982 			/* skip the already peeked data in the current skb */
1983 			delta = copied_total - total_data_len;
1984 			offset += delta;
1985 			data_len -= delta;
1986 		}
1987 
1988 		count = min_t(size_t, len - copied, data_len);
1989 		if (!(flags & MSG_TRUNC)) {
1990 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1991 			if (unlikely(err < 0)) {
1992 				if (!copied)
1993 					return err;
1994 				break;
1995 			}
1996 		}
1997 
1998 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1999 			tcp_update_recv_tstamps(skb, tss);
2000 			*cmsg_flags |= MPTCP_CMSG_TS;
2001 		}
2002 
2003 		copied += count;
2004 
2005 		if (!(flags & MSG_PEEK)) {
2006 			msk->bytes_consumed += count;
2007 			if (count < data_len) {
2008 				MPTCP_SKB_CB(skb)->offset += count;
2009 				MPTCP_SKB_CB(skb)->map_seq += count;
2010 				break;
2011 			}
2012 
2013 			/* avoid the indirect call, we know the destructor is sock_rfree */
2014 			skb->destructor = NULL;
2015 			skb->sk = NULL;
2016 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2017 			sk_mem_uncharge(sk, skb->truesize);
2018 			__skb_unlink(skb, &sk->sk_receive_queue);
2019 			skb_attempt_defer_free(skb);
2020 		}
2021 
2022 		if (copied >= len)
2023 			break;
2024 	}
2025 
2026 	mptcp_rcv_space_adjust(msk, copied);
2027 	return copied;
2028 }
2029 
2030 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2031  *
2032  * Only difference: Use highest rtt estimate of the subflows in use.
2033  */
2034 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2035 {
2036 	struct mptcp_subflow_context *subflow;
2037 	struct sock *sk = (struct sock *)msk;
2038 	u8 scaling_ratio = U8_MAX;
2039 	u32 time, advmss = 1;
2040 	u64 rtt_us, mstamp;
2041 
2042 	msk_owned_by_me(msk);
2043 
2044 	if (copied <= 0)
2045 		return;
2046 
2047 	if (!msk->rcvspace_init)
2048 		mptcp_rcv_space_init(msk, msk->first);
2049 
2050 	msk->rcvq_space.copied += copied;
2051 
2052 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2053 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2054 
2055 	rtt_us = msk->rcvq_space.rtt_us;
2056 	if (rtt_us && time < (rtt_us >> 3))
2057 		return;
2058 
2059 	rtt_us = 0;
2060 	mptcp_for_each_subflow(msk, subflow) {
2061 		const struct tcp_sock *tp;
2062 		u64 sf_rtt_us;
2063 		u32 sf_advmss;
2064 
2065 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2066 
2067 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2068 		sf_advmss = READ_ONCE(tp->advmss);
2069 
2070 		rtt_us = max(sf_rtt_us, rtt_us);
2071 		advmss = max(sf_advmss, advmss);
2072 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2073 	}
2074 
2075 	msk->rcvq_space.rtt_us = rtt_us;
2076 	msk->scaling_ratio = scaling_ratio;
2077 	if (time < (rtt_us >> 3) || rtt_us == 0)
2078 		return;
2079 
2080 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2081 		goto new_measure;
2082 
2083 	if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2084 		/* Make subflows follow along.  If we do not do this, we
2085 		 * get drops at subflow level if skbs can't be moved to
2086 		 * the mptcp rx queue fast enough (announced rcv_win can
2087 		 * exceed ssk->sk_rcvbuf).
2088 		 */
2089 		mptcp_for_each_subflow(msk, subflow) {
2090 			struct sock *ssk;
2091 			bool slow;
2092 
2093 			ssk = mptcp_subflow_tcp_sock(subflow);
2094 			slow = lock_sock_fast(ssk);
2095 			/* subflows can be added before tcp_init_transfer() */
2096 			if (tcp_sk(ssk)->rcvq_space.space)
2097 				tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2098 			unlock_sock_fast(ssk, slow);
2099 		}
2100 	}
2101 
2102 new_measure:
2103 	msk->rcvq_space.copied = 0;
2104 	msk->rcvq_space.time = mstamp;
2105 }
2106 
2107 static struct mptcp_subflow_context *
2108 __mptcp_first_ready_from(struct mptcp_sock *msk,
2109 			 struct mptcp_subflow_context *subflow)
2110 {
2111 	struct mptcp_subflow_context *start_subflow = subflow;
2112 
2113 	while (!READ_ONCE(subflow->data_avail)) {
2114 		subflow = mptcp_next_subflow(msk, subflow);
2115 		if (subflow == start_subflow)
2116 			return NULL;
2117 	}
2118 	return subflow;
2119 }
2120 
2121 static bool __mptcp_move_skbs(struct sock *sk)
2122 {
2123 	struct mptcp_subflow_context *subflow;
2124 	struct mptcp_sock *msk = mptcp_sk(sk);
2125 	bool ret = false;
2126 
2127 	if (list_empty(&msk->conn_list))
2128 		return false;
2129 
2130 	subflow = list_first_entry(&msk->conn_list,
2131 				   struct mptcp_subflow_context, node);
2132 	for (;;) {
2133 		struct sock *ssk;
2134 		bool slowpath;
2135 
2136 		/*
2137 		 * As an optimization avoid traversing the subflows list
2138 		 * and ev. acquiring the subflow socket lock before baling out
2139 		 */
2140 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2141 			break;
2142 
2143 		subflow = __mptcp_first_ready_from(msk, subflow);
2144 		if (!subflow)
2145 			break;
2146 
2147 		ssk = mptcp_subflow_tcp_sock(subflow);
2148 		slowpath = lock_sock_fast(ssk);
2149 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2150 		if (unlikely(ssk->sk_err))
2151 			__mptcp_error_report(sk);
2152 		unlock_sock_fast(ssk, slowpath);
2153 
2154 		subflow = mptcp_next_subflow(msk, subflow);
2155 	}
2156 
2157 	__mptcp_ofo_queue(msk);
2158 	if (ret)
2159 		mptcp_check_data_fin((struct sock *)msk);
2160 	return ret;
2161 }
2162 
2163 static unsigned int mptcp_inq_hint(const struct sock *sk)
2164 {
2165 	const struct mptcp_sock *msk = mptcp_sk(sk);
2166 	const struct sk_buff *skb;
2167 
2168 	skb = skb_peek(&sk->sk_receive_queue);
2169 	if (skb) {
2170 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2171 
2172 		if (hint_val >= INT_MAX)
2173 			return INT_MAX;
2174 
2175 		return (unsigned int)hint_val;
2176 	}
2177 
2178 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2179 		return 1;
2180 
2181 	return 0;
2182 }
2183 
2184 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2185 			 int flags, int *addr_len)
2186 {
2187 	struct mptcp_sock *msk = mptcp_sk(sk);
2188 	struct scm_timestamping_internal tss;
2189 	int copied = 0, cmsg_flags = 0;
2190 	int target;
2191 	long timeo;
2192 
2193 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2194 	if (unlikely(flags & MSG_ERRQUEUE))
2195 		return inet_recv_error(sk, msg, len, addr_len);
2196 
2197 	lock_sock(sk);
2198 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2199 		copied = -ENOTCONN;
2200 		goto out_err;
2201 	}
2202 
2203 	mptcp_rps_record_subflows(msk);
2204 
2205 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2206 
2207 	len = min_t(size_t, len, INT_MAX);
2208 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2209 
2210 	if (unlikely(msk->recvmsg_inq))
2211 		cmsg_flags = MPTCP_CMSG_INQ;
2212 
2213 	while (copied < len) {
2214 		int err, bytes_read;
2215 
2216 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2217 						  copied, &tss, &cmsg_flags);
2218 		if (unlikely(bytes_read < 0)) {
2219 			if (!copied)
2220 				copied = bytes_read;
2221 			goto out_err;
2222 		}
2223 
2224 		copied += bytes_read;
2225 
2226 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2227 			continue;
2228 
2229 		/* only the MPTCP socket status is relevant here. The exit
2230 		 * conditions mirror closely tcp_recvmsg()
2231 		 */
2232 		if (copied >= target)
2233 			break;
2234 
2235 		if (copied) {
2236 			if (sk->sk_err ||
2237 			    sk->sk_state == TCP_CLOSE ||
2238 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2239 			    !timeo ||
2240 			    signal_pending(current))
2241 				break;
2242 		} else {
2243 			if (sk->sk_err) {
2244 				copied = sock_error(sk);
2245 				break;
2246 			}
2247 
2248 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2249 				break;
2250 
2251 			if (sk->sk_state == TCP_CLOSE) {
2252 				copied = -ENOTCONN;
2253 				break;
2254 			}
2255 
2256 			if (!timeo) {
2257 				copied = -EAGAIN;
2258 				break;
2259 			}
2260 
2261 			if (signal_pending(current)) {
2262 				copied = sock_intr_errno(timeo);
2263 				break;
2264 			}
2265 		}
2266 
2267 		pr_debug("block timeout %ld\n", timeo);
2268 		mptcp_cleanup_rbuf(msk, copied);
2269 		err = sk_wait_data(sk, &timeo, NULL);
2270 		if (err < 0) {
2271 			err = copied ? : err;
2272 			goto out_err;
2273 		}
2274 	}
2275 
2276 	mptcp_cleanup_rbuf(msk, copied);
2277 
2278 out_err:
2279 	if (cmsg_flags && copied >= 0) {
2280 		if (cmsg_flags & MPTCP_CMSG_TS)
2281 			tcp_recv_timestamp(msg, sk, &tss);
2282 
2283 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2284 			unsigned int inq = mptcp_inq_hint(sk);
2285 
2286 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2287 		}
2288 	}
2289 
2290 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2291 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2292 
2293 	release_sock(sk);
2294 	return copied;
2295 }
2296 
2297 static void mptcp_retransmit_timer(struct timer_list *t)
2298 {
2299 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2300 							       icsk_retransmit_timer);
2301 	struct sock *sk = &icsk->icsk_inet.sk;
2302 	struct mptcp_sock *msk = mptcp_sk(sk);
2303 
2304 	bh_lock_sock(sk);
2305 	if (!sock_owned_by_user(sk)) {
2306 		/* we need a process context to retransmit */
2307 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2308 			mptcp_schedule_work(sk);
2309 	} else {
2310 		/* delegate our work to tcp_release_cb() */
2311 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2312 	}
2313 	bh_unlock_sock(sk);
2314 	sock_put(sk);
2315 }
2316 
2317 static void mptcp_tout_timer(struct timer_list *t)
2318 {
2319 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2320 
2321 	mptcp_schedule_work(sk);
2322 	sock_put(sk);
2323 }
2324 
2325 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2326  * level.
2327  *
2328  * A backup subflow is returned only if that is the only kind available.
2329  */
2330 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2331 {
2332 	struct sock *backup = NULL, *pick = NULL;
2333 	struct mptcp_subflow_context *subflow;
2334 	int min_stale_count = INT_MAX;
2335 
2336 	mptcp_for_each_subflow(msk, subflow) {
2337 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2338 
2339 		if (!__mptcp_subflow_active(subflow))
2340 			continue;
2341 
2342 		/* still data outstanding at TCP level? skip this */
2343 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2344 			mptcp_pm_subflow_chk_stale(msk, ssk);
2345 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2346 			continue;
2347 		}
2348 
2349 		if (subflow->backup || subflow->request_bkup) {
2350 			if (!backup)
2351 				backup = ssk;
2352 			continue;
2353 		}
2354 
2355 		if (!pick)
2356 			pick = ssk;
2357 	}
2358 
2359 	if (pick)
2360 		return pick;
2361 
2362 	/* use backup only if there are no progresses anywhere */
2363 	return min_stale_count > 1 ? backup : NULL;
2364 }
2365 
2366 bool __mptcp_retransmit_pending_data(struct sock *sk)
2367 {
2368 	struct mptcp_data_frag *cur, *rtx_head;
2369 	struct mptcp_sock *msk = mptcp_sk(sk);
2370 
2371 	if (__mptcp_check_fallback(msk))
2372 		return false;
2373 
2374 	/* the closing socket has some data untransmitted and/or unacked:
2375 	 * some data in the mptcp rtx queue has not really xmitted yet.
2376 	 * keep it simple and re-inject the whole mptcp level rtx queue
2377 	 */
2378 	mptcp_data_lock(sk);
2379 	__mptcp_clean_una_wakeup(sk);
2380 	rtx_head = mptcp_rtx_head(sk);
2381 	if (!rtx_head) {
2382 		mptcp_data_unlock(sk);
2383 		return false;
2384 	}
2385 
2386 	msk->recovery_snd_nxt = msk->snd_nxt;
2387 	msk->recovery = true;
2388 	mptcp_data_unlock(sk);
2389 
2390 	msk->first_pending = rtx_head;
2391 	msk->snd_burst = 0;
2392 
2393 	/* be sure to clear the "sent status" on all re-injected fragments */
2394 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2395 		if (!cur->already_sent)
2396 			break;
2397 		cur->already_sent = 0;
2398 	}
2399 
2400 	return true;
2401 }
2402 
2403 /* flags for __mptcp_close_ssk() */
2404 #define MPTCP_CF_PUSH		BIT(1)
2405 #define MPTCP_CF_FASTCLOSE	BIT(2)
2406 
2407 /* be sure to send a reset only if the caller asked for it, also
2408  * clean completely the subflow status when the subflow reaches
2409  * TCP_CLOSE state
2410  */
2411 static void __mptcp_subflow_disconnect(struct sock *ssk,
2412 				       struct mptcp_subflow_context *subflow,
2413 				       unsigned int flags)
2414 {
2415 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2416 	    (flags & MPTCP_CF_FASTCLOSE)) {
2417 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2418 		 * disconnect should never fail
2419 		 */
2420 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2421 		mptcp_subflow_ctx_reset(subflow);
2422 	} else {
2423 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2424 	}
2425 }
2426 
2427 /* subflow sockets can be either outgoing (connect) or incoming
2428  * (accept).
2429  *
2430  * Outgoing subflows use in-kernel sockets.
2431  * Incoming subflows do not have their own 'struct socket' allocated,
2432  * so we need to use tcp_close() after detaching them from the mptcp
2433  * parent socket.
2434  */
2435 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2436 			      struct mptcp_subflow_context *subflow,
2437 			      unsigned int flags)
2438 {
2439 	struct mptcp_sock *msk = mptcp_sk(sk);
2440 	bool dispose_it, need_push = false;
2441 
2442 	/* If the first subflow moved to a close state before accept, e.g. due
2443 	 * to an incoming reset or listener shutdown, the subflow socket is
2444 	 * already deleted by inet_child_forget() and the mptcp socket can't
2445 	 * survive too.
2446 	 */
2447 	if (msk->in_accept_queue && msk->first == ssk &&
2448 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2449 		/* ensure later check in mptcp_worker() will dispose the msk */
2450 		sock_set_flag(sk, SOCK_DEAD);
2451 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2452 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2453 		mptcp_subflow_drop_ctx(ssk);
2454 		goto out_release;
2455 	}
2456 
2457 	dispose_it = msk->free_first || ssk != msk->first;
2458 	if (dispose_it)
2459 		list_del(&subflow->node);
2460 
2461 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2462 
2463 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2464 		/* be sure to force the tcp_close path
2465 		 * to generate the egress reset
2466 		 */
2467 		ssk->sk_lingertime = 0;
2468 		sock_set_flag(ssk, SOCK_LINGER);
2469 		subflow->send_fastclose = 1;
2470 	}
2471 
2472 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2473 	if (!dispose_it) {
2474 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2475 		release_sock(ssk);
2476 
2477 		goto out;
2478 	}
2479 
2480 	subflow->disposable = 1;
2481 
2482 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2483 	 * the ssk has been already destroyed, we just need to release the
2484 	 * reference owned by msk;
2485 	 */
2486 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2487 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2488 		kfree_rcu(subflow, rcu);
2489 	} else {
2490 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2491 		__tcp_close(ssk, 0);
2492 
2493 		/* close acquired an extra ref */
2494 		__sock_put(ssk);
2495 	}
2496 
2497 out_release:
2498 	__mptcp_subflow_error_report(sk, ssk);
2499 	release_sock(ssk);
2500 
2501 	sock_put(ssk);
2502 
2503 	if (ssk == msk->first)
2504 		WRITE_ONCE(msk->first, NULL);
2505 
2506 out:
2507 	__mptcp_sync_sndbuf(sk);
2508 	if (need_push)
2509 		__mptcp_push_pending(sk, 0);
2510 
2511 	/* Catch every 'all subflows closed' scenario, including peers silently
2512 	 * closing them, e.g. due to timeout.
2513 	 * For established sockets, allow an additional timeout before closing,
2514 	 * as the protocol can still create more subflows.
2515 	 */
2516 	if (list_is_singular(&msk->conn_list) && msk->first &&
2517 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2518 		if (sk->sk_state != TCP_ESTABLISHED ||
2519 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2520 			mptcp_set_state(sk, TCP_CLOSE);
2521 			mptcp_close_wake_up(sk);
2522 		} else {
2523 			mptcp_start_tout_timer(sk);
2524 		}
2525 	}
2526 }
2527 
2528 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2529 		     struct mptcp_subflow_context *subflow)
2530 {
2531 	/* The first subflow can already be closed and still in the list */
2532 	if (subflow->close_event_done)
2533 		return;
2534 
2535 	subflow->close_event_done = true;
2536 
2537 	if (sk->sk_state == TCP_ESTABLISHED)
2538 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2539 
2540 	/* subflow aborted before reaching the fully_established status
2541 	 * attempt the creation of the next subflow
2542 	 */
2543 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2544 
2545 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2546 }
2547 
2548 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2549 {
2550 	return 0;
2551 }
2552 
2553 static void __mptcp_close_subflow(struct sock *sk)
2554 {
2555 	struct mptcp_subflow_context *subflow, *tmp;
2556 	struct mptcp_sock *msk = mptcp_sk(sk);
2557 
2558 	might_sleep();
2559 
2560 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2561 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2562 		int ssk_state = inet_sk_state_load(ssk);
2563 
2564 		if (ssk_state != TCP_CLOSE &&
2565 		    (ssk_state != TCP_CLOSE_WAIT ||
2566 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2567 			continue;
2568 
2569 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2570 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2571 			continue;
2572 
2573 		mptcp_close_ssk(sk, ssk, subflow);
2574 	}
2575 
2576 }
2577 
2578 static bool mptcp_close_tout_expired(const struct sock *sk)
2579 {
2580 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2581 	    sk->sk_state == TCP_CLOSE)
2582 		return false;
2583 
2584 	return time_after32(tcp_jiffies32,
2585 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2586 }
2587 
2588 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2589 {
2590 	struct mptcp_subflow_context *subflow, *tmp;
2591 	struct sock *sk = (struct sock *)msk;
2592 
2593 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2594 		return;
2595 
2596 	mptcp_token_destroy(msk);
2597 
2598 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2599 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2600 		bool slow;
2601 
2602 		slow = lock_sock_fast(tcp_sk);
2603 		if (tcp_sk->sk_state != TCP_CLOSE) {
2604 			mptcp_send_active_reset_reason(tcp_sk);
2605 			tcp_set_state(tcp_sk, TCP_CLOSE);
2606 		}
2607 		unlock_sock_fast(tcp_sk, slow);
2608 	}
2609 
2610 	/* Mirror the tcp_reset() error propagation */
2611 	switch (sk->sk_state) {
2612 	case TCP_SYN_SENT:
2613 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2614 		break;
2615 	case TCP_CLOSE_WAIT:
2616 		WRITE_ONCE(sk->sk_err, EPIPE);
2617 		break;
2618 	case TCP_CLOSE:
2619 		return;
2620 	default:
2621 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2622 	}
2623 
2624 	mptcp_set_state(sk, TCP_CLOSE);
2625 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2626 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2627 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2628 
2629 	/* the calling mptcp_worker will properly destroy the socket */
2630 	if (sock_flag(sk, SOCK_DEAD))
2631 		return;
2632 
2633 	sk->sk_state_change(sk);
2634 	sk_error_report(sk);
2635 }
2636 
2637 static void __mptcp_retrans(struct sock *sk)
2638 {
2639 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2640 	struct mptcp_sock *msk = mptcp_sk(sk);
2641 	struct mptcp_subflow_context *subflow;
2642 	struct mptcp_data_frag *dfrag;
2643 	struct sock *ssk;
2644 	int ret, err;
2645 	u16 len = 0;
2646 
2647 	mptcp_clean_una_wakeup(sk);
2648 
2649 	/* first check ssk: need to kick "stale" logic */
2650 	err = mptcp_sched_get_retrans(msk);
2651 	dfrag = mptcp_rtx_head(sk);
2652 	if (!dfrag) {
2653 		if (mptcp_data_fin_enabled(msk)) {
2654 			struct inet_connection_sock *icsk = inet_csk(sk);
2655 
2656 			WRITE_ONCE(icsk->icsk_retransmits,
2657 				   icsk->icsk_retransmits + 1);
2658 			mptcp_set_datafin_timeout(sk);
2659 			mptcp_send_ack(msk);
2660 
2661 			goto reset_timer;
2662 		}
2663 
2664 		if (!mptcp_send_head(sk))
2665 			return;
2666 
2667 		goto reset_timer;
2668 	}
2669 
2670 	if (err)
2671 		goto reset_timer;
2672 
2673 	mptcp_for_each_subflow(msk, subflow) {
2674 		if (READ_ONCE(subflow->scheduled)) {
2675 			u16 copied = 0;
2676 
2677 			mptcp_subflow_set_scheduled(subflow, false);
2678 
2679 			ssk = mptcp_subflow_tcp_sock(subflow);
2680 
2681 			lock_sock(ssk);
2682 
2683 			/* limit retransmission to the bytes already sent on some subflows */
2684 			info.sent = 0;
2685 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2686 								    dfrag->already_sent;
2687 
2688 			/*
2689 			 * make the whole retrans decision, xmit, disallow
2690 			 * fallback atomic
2691 			 */
2692 			spin_lock_bh(&msk->fallback_lock);
2693 			if (__mptcp_check_fallback(msk)) {
2694 				spin_unlock_bh(&msk->fallback_lock);
2695 				release_sock(ssk);
2696 				return;
2697 			}
2698 
2699 			while (info.sent < info.limit) {
2700 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2701 				if (ret <= 0)
2702 					break;
2703 
2704 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2705 				copied += ret;
2706 				info.sent += ret;
2707 			}
2708 			if (copied) {
2709 				len = max(copied, len);
2710 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2711 					 info.size_goal);
2712 				msk->allow_infinite_fallback = false;
2713 			}
2714 			spin_unlock_bh(&msk->fallback_lock);
2715 
2716 			release_sock(ssk);
2717 		}
2718 	}
2719 
2720 	msk->bytes_retrans += len;
2721 	dfrag->already_sent = max(dfrag->already_sent, len);
2722 
2723 reset_timer:
2724 	mptcp_check_and_set_pending(sk);
2725 
2726 	if (!mptcp_rtx_timer_pending(sk))
2727 		mptcp_reset_rtx_timer(sk);
2728 }
2729 
2730 /* schedule the timeout timer for the relevant event: either close timeout
2731  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2732  */
2733 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2734 {
2735 	struct sock *sk = (struct sock *)msk;
2736 	unsigned long timeout, close_timeout;
2737 
2738 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2739 		return;
2740 
2741 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2742 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2743 
2744 	/* the close timeout takes precedence on the fail one, and here at least one of
2745 	 * them is active
2746 	 */
2747 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2748 
2749 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2750 }
2751 
2752 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2753 {
2754 	struct sock *ssk = msk->first;
2755 	bool slow;
2756 
2757 	if (!ssk)
2758 		return;
2759 
2760 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2761 
2762 	slow = lock_sock_fast(ssk);
2763 	mptcp_subflow_reset(ssk);
2764 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2765 	unlock_sock_fast(ssk, slow);
2766 }
2767 
2768 static void mptcp_do_fastclose(struct sock *sk)
2769 {
2770 	struct mptcp_subflow_context *subflow, *tmp;
2771 	struct mptcp_sock *msk = mptcp_sk(sk);
2772 
2773 	mptcp_set_state(sk, TCP_CLOSE);
2774 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2775 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2776 				  subflow, MPTCP_CF_FASTCLOSE);
2777 }
2778 
2779 static void mptcp_worker(struct work_struct *work)
2780 {
2781 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2782 	struct sock *sk = (struct sock *)msk;
2783 	unsigned long fail_tout;
2784 	int state;
2785 
2786 	lock_sock(sk);
2787 	state = sk->sk_state;
2788 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2789 		goto unlock;
2790 
2791 	mptcp_check_fastclose(msk);
2792 
2793 	mptcp_pm_worker(msk);
2794 
2795 	mptcp_check_send_data_fin(sk);
2796 	mptcp_check_data_fin_ack(sk);
2797 	mptcp_check_data_fin(sk);
2798 
2799 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2800 		__mptcp_close_subflow(sk);
2801 
2802 	if (mptcp_close_tout_expired(sk)) {
2803 		mptcp_do_fastclose(sk);
2804 		mptcp_close_wake_up(sk);
2805 	}
2806 
2807 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2808 		__mptcp_destroy_sock(sk);
2809 		goto unlock;
2810 	}
2811 
2812 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2813 		__mptcp_retrans(sk);
2814 
2815 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2816 	if (fail_tout && time_after(jiffies, fail_tout))
2817 		mptcp_mp_fail_no_response(msk);
2818 
2819 unlock:
2820 	release_sock(sk);
2821 	sock_put(sk);
2822 }
2823 
2824 static void __mptcp_init_sock(struct sock *sk)
2825 {
2826 	struct mptcp_sock *msk = mptcp_sk(sk);
2827 
2828 	INIT_LIST_HEAD(&msk->conn_list);
2829 	INIT_LIST_HEAD(&msk->join_list);
2830 	INIT_LIST_HEAD(&msk->rtx_queue);
2831 	INIT_WORK(&msk->work, mptcp_worker);
2832 	msk->out_of_order_queue = RB_ROOT;
2833 	msk->first_pending = NULL;
2834 	msk->timer_ival = TCP_RTO_MIN;
2835 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2836 
2837 	WRITE_ONCE(msk->first, NULL);
2838 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2839 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2840 	msk->allow_infinite_fallback = true;
2841 	msk->allow_subflows = true;
2842 	msk->recovery = false;
2843 	msk->subflow_id = 1;
2844 	msk->last_data_sent = tcp_jiffies32;
2845 	msk->last_data_recv = tcp_jiffies32;
2846 	msk->last_ack_recv = tcp_jiffies32;
2847 
2848 	mptcp_pm_data_init(msk);
2849 	spin_lock_init(&msk->fallback_lock);
2850 
2851 	/* re-use the csk retrans timer for MPTCP-level retrans */
2852 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2853 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2854 }
2855 
2856 static void mptcp_ca_reset(struct sock *sk)
2857 {
2858 	struct inet_connection_sock *icsk = inet_csk(sk);
2859 
2860 	tcp_assign_congestion_control(sk);
2861 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2862 		sizeof(mptcp_sk(sk)->ca_name));
2863 
2864 	/* no need to keep a reference to the ops, the name will suffice */
2865 	tcp_cleanup_congestion_control(sk);
2866 	icsk->icsk_ca_ops = NULL;
2867 }
2868 
2869 static int mptcp_init_sock(struct sock *sk)
2870 {
2871 	struct net *net = sock_net(sk);
2872 	int ret;
2873 
2874 	__mptcp_init_sock(sk);
2875 
2876 	if (!mptcp_is_enabled(net))
2877 		return -ENOPROTOOPT;
2878 
2879 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2880 		return -ENOMEM;
2881 
2882 	rcu_read_lock();
2883 	ret = mptcp_init_sched(mptcp_sk(sk),
2884 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2885 	rcu_read_unlock();
2886 	if (ret)
2887 		return ret;
2888 
2889 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2890 
2891 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2892 	 * propagate the correct value
2893 	 */
2894 	mptcp_ca_reset(sk);
2895 
2896 	sk_sockets_allocated_inc(sk);
2897 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2898 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2899 
2900 	return 0;
2901 }
2902 
2903 static void __mptcp_clear_xmit(struct sock *sk)
2904 {
2905 	struct mptcp_sock *msk = mptcp_sk(sk);
2906 	struct mptcp_data_frag *dtmp, *dfrag;
2907 
2908 	msk->first_pending = NULL;
2909 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2910 		dfrag_clear(sk, dfrag);
2911 }
2912 
2913 void mptcp_cancel_work(struct sock *sk)
2914 {
2915 	struct mptcp_sock *msk = mptcp_sk(sk);
2916 
2917 	if (cancel_work_sync(&msk->work))
2918 		__sock_put(sk);
2919 }
2920 
2921 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2922 {
2923 	lock_sock(ssk);
2924 
2925 	switch (ssk->sk_state) {
2926 	case TCP_LISTEN:
2927 		if (!(how & RCV_SHUTDOWN))
2928 			break;
2929 		fallthrough;
2930 	case TCP_SYN_SENT:
2931 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2932 		break;
2933 	default:
2934 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2935 			pr_debug("Fallback\n");
2936 			ssk->sk_shutdown |= how;
2937 			tcp_shutdown(ssk, how);
2938 
2939 			/* simulate the data_fin ack reception to let the state
2940 			 * machine move forward
2941 			 */
2942 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2943 			mptcp_schedule_work(sk);
2944 		} else {
2945 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2946 			tcp_send_ack(ssk);
2947 			if (!mptcp_rtx_timer_pending(sk))
2948 				mptcp_reset_rtx_timer(sk);
2949 		}
2950 		break;
2951 	}
2952 
2953 	release_sock(ssk);
2954 }
2955 
2956 void mptcp_set_state(struct sock *sk, int state)
2957 {
2958 	int oldstate = sk->sk_state;
2959 
2960 	switch (state) {
2961 	case TCP_ESTABLISHED:
2962 		if (oldstate != TCP_ESTABLISHED)
2963 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2964 		break;
2965 	case TCP_CLOSE_WAIT:
2966 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2967 		 * MPTCP "accepted" sockets will be created later on. So no
2968 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2969 		 */
2970 		break;
2971 	default:
2972 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2973 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2974 	}
2975 
2976 	inet_sk_state_store(sk, state);
2977 }
2978 
2979 static const unsigned char new_state[16] = {
2980 	/* current state:     new state:      action:	*/
2981 	[0 /* (Invalid) */] = TCP_CLOSE,
2982 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2983 	[TCP_SYN_SENT]      = TCP_CLOSE,
2984 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2985 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2986 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2987 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2988 	[TCP_CLOSE]         = TCP_CLOSE,
2989 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2990 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2991 	[TCP_LISTEN]        = TCP_CLOSE,
2992 	[TCP_CLOSING]       = TCP_CLOSING,
2993 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2994 };
2995 
2996 static int mptcp_close_state(struct sock *sk)
2997 {
2998 	int next = (int)new_state[sk->sk_state];
2999 	int ns = next & TCP_STATE_MASK;
3000 
3001 	mptcp_set_state(sk, ns);
3002 
3003 	return next & TCP_ACTION_FIN;
3004 }
3005 
3006 static void mptcp_check_send_data_fin(struct sock *sk)
3007 {
3008 	struct mptcp_subflow_context *subflow;
3009 	struct mptcp_sock *msk = mptcp_sk(sk);
3010 
3011 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3012 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3013 		 msk->snd_nxt, msk->write_seq);
3014 
3015 	/* we still need to enqueue subflows or not really shutting down,
3016 	 * skip this
3017 	 */
3018 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3019 	    mptcp_send_head(sk))
3020 		return;
3021 
3022 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3023 
3024 	mptcp_for_each_subflow(msk, subflow) {
3025 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3026 
3027 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3028 	}
3029 }
3030 
3031 static void __mptcp_wr_shutdown(struct sock *sk)
3032 {
3033 	struct mptcp_sock *msk = mptcp_sk(sk);
3034 
3035 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3036 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3037 		 !!mptcp_send_head(sk));
3038 
3039 	/* will be ignored by fallback sockets */
3040 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3041 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3042 
3043 	mptcp_check_send_data_fin(sk);
3044 }
3045 
3046 static void __mptcp_destroy_sock(struct sock *sk)
3047 {
3048 	struct mptcp_sock *msk = mptcp_sk(sk);
3049 
3050 	pr_debug("msk=%p\n", msk);
3051 
3052 	might_sleep();
3053 
3054 	mptcp_stop_rtx_timer(sk);
3055 	sk_stop_timer(sk, &sk->sk_timer);
3056 	msk->pm.status = 0;
3057 	mptcp_release_sched(msk);
3058 
3059 	sk->sk_prot->destroy(sk);
3060 
3061 	sk_stream_kill_queues(sk);
3062 	xfrm_sk_free_policy(sk);
3063 
3064 	sock_put(sk);
3065 }
3066 
3067 void __mptcp_unaccepted_force_close(struct sock *sk)
3068 {
3069 	sock_set_flag(sk, SOCK_DEAD);
3070 	mptcp_do_fastclose(sk);
3071 	__mptcp_destroy_sock(sk);
3072 }
3073 
3074 static __poll_t mptcp_check_readable(struct sock *sk)
3075 {
3076 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3077 }
3078 
3079 static void mptcp_check_listen_stop(struct sock *sk)
3080 {
3081 	struct sock *ssk;
3082 
3083 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3084 		return;
3085 
3086 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3087 	ssk = mptcp_sk(sk)->first;
3088 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3089 		return;
3090 
3091 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3092 	tcp_set_state(ssk, TCP_CLOSE);
3093 	mptcp_subflow_queue_clean(sk, ssk);
3094 	inet_csk_listen_stop(ssk);
3095 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3096 	release_sock(ssk);
3097 }
3098 
3099 bool __mptcp_close(struct sock *sk, long timeout)
3100 {
3101 	struct mptcp_subflow_context *subflow;
3102 	struct mptcp_sock *msk = mptcp_sk(sk);
3103 	bool do_cancel_work = false;
3104 	int subflows_alive = 0;
3105 
3106 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3107 
3108 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3109 		mptcp_check_listen_stop(sk);
3110 		mptcp_set_state(sk, TCP_CLOSE);
3111 		goto cleanup;
3112 	}
3113 
3114 	if (mptcp_data_avail(msk) || timeout < 0) {
3115 		/* If the msk has read data, or the caller explicitly ask it,
3116 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3117 		 */
3118 		mptcp_do_fastclose(sk);
3119 		timeout = 0;
3120 	} else if (mptcp_close_state(sk)) {
3121 		__mptcp_wr_shutdown(sk);
3122 	}
3123 
3124 	sk_stream_wait_close(sk, timeout);
3125 
3126 cleanup:
3127 	/* orphan all the subflows */
3128 	mptcp_for_each_subflow(msk, subflow) {
3129 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3130 		bool slow = lock_sock_fast_nested(ssk);
3131 
3132 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3133 
3134 		/* since the close timeout takes precedence on the fail one,
3135 		 * cancel the latter
3136 		 */
3137 		if (ssk == msk->first)
3138 			subflow->fail_tout = 0;
3139 
3140 		/* detach from the parent socket, but allow data_ready to
3141 		 * push incoming data into the mptcp stack, to properly ack it
3142 		 */
3143 		ssk->sk_socket = NULL;
3144 		ssk->sk_wq = NULL;
3145 		unlock_sock_fast(ssk, slow);
3146 	}
3147 	sock_orphan(sk);
3148 
3149 	/* all the subflows are closed, only timeout can change the msk
3150 	 * state, let's not keep resources busy for no reasons
3151 	 */
3152 	if (subflows_alive == 0)
3153 		mptcp_set_state(sk, TCP_CLOSE);
3154 
3155 	sock_hold(sk);
3156 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3157 	mptcp_pm_connection_closed(msk);
3158 
3159 	if (sk->sk_state == TCP_CLOSE) {
3160 		__mptcp_destroy_sock(sk);
3161 		do_cancel_work = true;
3162 	} else {
3163 		mptcp_start_tout_timer(sk);
3164 	}
3165 
3166 	return do_cancel_work;
3167 }
3168 
3169 static void mptcp_close(struct sock *sk, long timeout)
3170 {
3171 	bool do_cancel_work;
3172 
3173 	lock_sock(sk);
3174 
3175 	do_cancel_work = __mptcp_close(sk, timeout);
3176 	release_sock(sk);
3177 	if (do_cancel_work)
3178 		mptcp_cancel_work(sk);
3179 
3180 	sock_put(sk);
3181 }
3182 
3183 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3184 {
3185 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3186 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3187 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3188 
3189 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3190 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3191 
3192 	if (msk6 && ssk6) {
3193 		msk6->saddr = ssk6->saddr;
3194 		msk6->flow_label = ssk6->flow_label;
3195 	}
3196 #endif
3197 
3198 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3199 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3200 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3201 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3202 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3203 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3204 }
3205 
3206 static int mptcp_disconnect(struct sock *sk, int flags)
3207 {
3208 	struct mptcp_sock *msk = mptcp_sk(sk);
3209 
3210 	/* We are on the fastopen error path. We can't call straight into the
3211 	 * subflows cleanup code due to lock nesting (we are already under
3212 	 * msk->firstsocket lock).
3213 	 */
3214 	if (msk->fastopening)
3215 		return -EBUSY;
3216 
3217 	mptcp_check_listen_stop(sk);
3218 	mptcp_set_state(sk, TCP_CLOSE);
3219 
3220 	mptcp_stop_rtx_timer(sk);
3221 	mptcp_stop_tout_timer(sk);
3222 
3223 	mptcp_pm_connection_closed(msk);
3224 
3225 	/* msk->subflow is still intact, the following will not free the first
3226 	 * subflow
3227 	 */
3228 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3229 
3230 	/* The first subflow is already in TCP_CLOSE status, the following
3231 	 * can't overlap with a fallback anymore
3232 	 */
3233 	spin_lock_bh(&msk->fallback_lock);
3234 	msk->allow_subflows = true;
3235 	msk->allow_infinite_fallback = true;
3236 	WRITE_ONCE(msk->flags, 0);
3237 	spin_unlock_bh(&msk->fallback_lock);
3238 
3239 	msk->cb_flags = 0;
3240 	msk->recovery = false;
3241 	WRITE_ONCE(msk->can_ack, false);
3242 	WRITE_ONCE(msk->fully_established, false);
3243 	WRITE_ONCE(msk->rcv_data_fin, false);
3244 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3245 	WRITE_ONCE(msk->rcv_fastclose, false);
3246 	WRITE_ONCE(msk->use_64bit_ack, false);
3247 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3248 	mptcp_pm_data_reset(msk);
3249 	mptcp_ca_reset(sk);
3250 	msk->bytes_consumed = 0;
3251 	msk->bytes_acked = 0;
3252 	msk->bytes_received = 0;
3253 	msk->bytes_sent = 0;
3254 	msk->bytes_retrans = 0;
3255 	msk->rcvspace_init = 0;
3256 
3257 	WRITE_ONCE(sk->sk_shutdown, 0);
3258 	sk_error_report(sk);
3259 	return 0;
3260 }
3261 
3262 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3263 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3264 {
3265 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3266 
3267 	return &msk6->np;
3268 }
3269 
3270 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3271 {
3272 	const struct ipv6_pinfo *np = inet6_sk(sk);
3273 	struct ipv6_txoptions *opt;
3274 	struct ipv6_pinfo *newnp;
3275 
3276 	newnp = inet6_sk(newsk);
3277 
3278 	rcu_read_lock();
3279 	opt = rcu_dereference(np->opt);
3280 	if (opt) {
3281 		opt = ipv6_dup_options(newsk, opt);
3282 		if (!opt)
3283 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3284 	}
3285 	RCU_INIT_POINTER(newnp->opt, opt);
3286 	rcu_read_unlock();
3287 }
3288 #endif
3289 
3290 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3291 {
3292 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3293 	const struct inet_sock *inet = inet_sk(sk);
3294 	struct inet_sock *newinet;
3295 
3296 	newinet = inet_sk(newsk);
3297 
3298 	rcu_read_lock();
3299 	inet_opt = rcu_dereference(inet->inet_opt);
3300 	if (inet_opt) {
3301 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3302 				      inet_opt->opt.optlen, GFP_ATOMIC);
3303 		if (!newopt)
3304 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3305 	}
3306 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3307 	rcu_read_unlock();
3308 }
3309 
3310 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3311 				 const struct mptcp_options_received *mp_opt,
3312 				 struct sock *ssk,
3313 				 struct request_sock *req)
3314 {
3315 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3316 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3317 	struct mptcp_subflow_context *subflow;
3318 	struct mptcp_sock *msk;
3319 
3320 	if (!nsk)
3321 		return NULL;
3322 
3323 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3324 	if (nsk->sk_family == AF_INET6)
3325 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3326 #endif
3327 
3328 	__mptcp_init_sock(nsk);
3329 
3330 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3331 	if (nsk->sk_family == AF_INET6)
3332 		mptcp_copy_ip6_options(nsk, sk);
3333 	else
3334 #endif
3335 		mptcp_copy_ip_options(nsk, sk);
3336 
3337 	msk = mptcp_sk(nsk);
3338 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3339 	WRITE_ONCE(msk->token, subflow_req->token);
3340 	msk->in_accept_queue = 1;
3341 	WRITE_ONCE(msk->fully_established, false);
3342 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3343 		WRITE_ONCE(msk->csum_enabled, true);
3344 
3345 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3346 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3347 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3348 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3349 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3350 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3351 
3352 	/* passive msk is created after the first/MPC subflow */
3353 	msk->subflow_id = 2;
3354 
3355 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3356 	security_inet_csk_clone(nsk, req);
3357 
3358 	/* this can't race with mptcp_close(), as the msk is
3359 	 * not yet exposted to user-space
3360 	 */
3361 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3362 
3363 	/* The msk maintain a ref to each subflow in the connections list */
3364 	WRITE_ONCE(msk->first, ssk);
3365 	subflow = mptcp_subflow_ctx(ssk);
3366 	list_add(&subflow->node, &msk->conn_list);
3367 	sock_hold(ssk);
3368 
3369 	/* new mpc subflow takes ownership of the newly
3370 	 * created mptcp socket
3371 	 */
3372 	mptcp_token_accept(subflow_req, msk);
3373 
3374 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3375 	 * uses the correct data
3376 	 */
3377 	mptcp_copy_inaddrs(nsk, ssk);
3378 	__mptcp_propagate_sndbuf(nsk, ssk);
3379 
3380 	mptcp_rcv_space_init(msk, ssk);
3381 
3382 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3383 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3384 	bh_unlock_sock(nsk);
3385 
3386 	/* note: the newly allocated socket refcount is 2 now */
3387 	return nsk;
3388 }
3389 
3390 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3391 {
3392 	const struct tcp_sock *tp = tcp_sk(ssk);
3393 
3394 	msk->rcvspace_init = 1;
3395 	msk->rcvq_space.copied = 0;
3396 	msk->rcvq_space.rtt_us = 0;
3397 
3398 	msk->rcvq_space.time = tp->tcp_mstamp;
3399 
3400 	/* initial rcv_space offering made to peer */
3401 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3402 				      TCP_INIT_CWND * tp->advmss);
3403 	if (msk->rcvq_space.space == 0)
3404 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3405 }
3406 
3407 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3408 {
3409 	struct mptcp_subflow_context *subflow, *tmp;
3410 	struct sock *sk = (struct sock *)msk;
3411 
3412 	__mptcp_clear_xmit(sk);
3413 
3414 	/* join list will be eventually flushed (with rst) at sock lock release time */
3415 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3416 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3417 
3418 	__skb_queue_purge(&sk->sk_receive_queue);
3419 	skb_rbtree_purge(&msk->out_of_order_queue);
3420 
3421 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3422 	 * inet_sock_destruct() will dispose it
3423 	 */
3424 	mptcp_token_destroy(msk);
3425 	mptcp_pm_destroy(msk);
3426 }
3427 
3428 static void mptcp_destroy(struct sock *sk)
3429 {
3430 	struct mptcp_sock *msk = mptcp_sk(sk);
3431 
3432 	/* allow the following to close even the initial subflow */
3433 	msk->free_first = 1;
3434 	mptcp_destroy_common(msk, 0);
3435 	sk_sockets_allocated_dec(sk);
3436 }
3437 
3438 void __mptcp_data_acked(struct sock *sk)
3439 {
3440 	if (!sock_owned_by_user(sk))
3441 		__mptcp_clean_una(sk);
3442 	else
3443 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3444 }
3445 
3446 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3447 {
3448 	if (!sock_owned_by_user(sk))
3449 		__mptcp_subflow_push_pending(sk, ssk, false);
3450 	else
3451 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3452 }
3453 
3454 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3455 				      BIT(MPTCP_RETRANSMIT) | \
3456 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3457 				      BIT(MPTCP_DEQUEUE))
3458 
3459 /* processes deferred events and flush wmem */
3460 static void mptcp_release_cb(struct sock *sk)
3461 	__must_hold(&sk->sk_lock.slock)
3462 {
3463 	struct mptcp_sock *msk = mptcp_sk(sk);
3464 
3465 	for (;;) {
3466 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3467 		struct list_head join_list;
3468 
3469 		if (!flags)
3470 			break;
3471 
3472 		INIT_LIST_HEAD(&join_list);
3473 		list_splice_init(&msk->join_list, &join_list);
3474 
3475 		/* the following actions acquire the subflow socket lock
3476 		 *
3477 		 * 1) can't be invoked in atomic scope
3478 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3479 		 *    datapath acquires the msk socket spinlock while helding
3480 		 *    the subflow socket lock
3481 		 */
3482 		msk->cb_flags &= ~flags;
3483 		spin_unlock_bh(&sk->sk_lock.slock);
3484 
3485 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3486 			__mptcp_flush_join_list(sk, &join_list);
3487 		if (flags & BIT(MPTCP_PUSH_PENDING))
3488 			__mptcp_push_pending(sk, 0);
3489 		if (flags & BIT(MPTCP_RETRANSMIT))
3490 			__mptcp_retrans(sk);
3491 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3492 			/* notify ack seq update */
3493 			mptcp_cleanup_rbuf(msk, 0);
3494 			sk->sk_data_ready(sk);
3495 		}
3496 
3497 		cond_resched();
3498 		spin_lock_bh(&sk->sk_lock.slock);
3499 	}
3500 
3501 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3502 		__mptcp_clean_una_wakeup(sk);
3503 	if (unlikely(msk->cb_flags)) {
3504 		/* be sure to sync the msk state before taking actions
3505 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3506 		 * On sk release avoid actions depending on the first subflow
3507 		 */
3508 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3509 			__mptcp_sync_state(sk, msk->pending_state);
3510 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3511 			__mptcp_error_report(sk);
3512 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3513 			__mptcp_sync_sndbuf(sk);
3514 	}
3515 }
3516 
3517 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3518  * TCP can't schedule delack timer before the subflow is fully established.
3519  * MPTCP uses the delack timer to do 3rd ack retransmissions
3520  */
3521 static void schedule_3rdack_retransmission(struct sock *ssk)
3522 {
3523 	struct inet_connection_sock *icsk = inet_csk(ssk);
3524 	struct tcp_sock *tp = tcp_sk(ssk);
3525 	unsigned long timeout;
3526 
3527 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3528 		return;
3529 
3530 	/* reschedule with a timeout above RTT, as we must look only for drop */
3531 	if (tp->srtt_us)
3532 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3533 	else
3534 		timeout = TCP_TIMEOUT_INIT;
3535 	timeout += jiffies;
3536 
3537 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3538 	smp_store_release(&icsk->icsk_ack.pending,
3539 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3540 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3541 }
3542 
3543 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3544 {
3545 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3546 	struct sock *sk = subflow->conn;
3547 
3548 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3549 		mptcp_data_lock(sk);
3550 		if (!sock_owned_by_user(sk))
3551 			__mptcp_subflow_push_pending(sk, ssk, true);
3552 		else
3553 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3554 		mptcp_data_unlock(sk);
3555 	}
3556 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3557 		mptcp_data_lock(sk);
3558 		if (!sock_owned_by_user(sk))
3559 			__mptcp_sync_sndbuf(sk);
3560 		else
3561 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3562 		mptcp_data_unlock(sk);
3563 	}
3564 	if (status & BIT(MPTCP_DELEGATE_ACK))
3565 		schedule_3rdack_retransmission(ssk);
3566 }
3567 
3568 static int mptcp_hash(struct sock *sk)
3569 {
3570 	/* should never be called,
3571 	 * we hash the TCP subflows not the MPTCP socket
3572 	 */
3573 	WARN_ON_ONCE(1);
3574 	return 0;
3575 }
3576 
3577 static void mptcp_unhash(struct sock *sk)
3578 {
3579 	/* called from sk_common_release(), but nothing to do here */
3580 }
3581 
3582 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3583 {
3584 	struct mptcp_sock *msk = mptcp_sk(sk);
3585 
3586 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3587 	if (WARN_ON_ONCE(!msk->first))
3588 		return -EINVAL;
3589 
3590 	return inet_csk_get_port(msk->first, snum);
3591 }
3592 
3593 void mptcp_finish_connect(struct sock *ssk)
3594 {
3595 	struct mptcp_subflow_context *subflow;
3596 	struct mptcp_sock *msk;
3597 	struct sock *sk;
3598 
3599 	subflow = mptcp_subflow_ctx(ssk);
3600 	sk = subflow->conn;
3601 	msk = mptcp_sk(sk);
3602 
3603 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3604 
3605 	subflow->map_seq = subflow->iasn;
3606 	subflow->map_subflow_seq = 1;
3607 
3608 	/* the socket is not connected yet, no msk/subflow ops can access/race
3609 	 * accessing the field below
3610 	 */
3611 	WRITE_ONCE(msk->local_key, subflow->local_key);
3612 
3613 	mptcp_pm_new_connection(msk, ssk, 0);
3614 }
3615 
3616 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3617 {
3618 	write_lock_bh(&sk->sk_callback_lock);
3619 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3620 	sk_set_socket(sk, parent);
3621 	write_unlock_bh(&sk->sk_callback_lock);
3622 }
3623 
3624 bool mptcp_finish_join(struct sock *ssk)
3625 {
3626 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3627 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3628 	struct sock *parent = (void *)msk;
3629 	bool ret = true;
3630 
3631 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3632 
3633 	/* mptcp socket already closing? */
3634 	if (!mptcp_is_fully_established(parent)) {
3635 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3636 		return false;
3637 	}
3638 
3639 	/* active subflow, already present inside the conn_list */
3640 	if (!list_empty(&subflow->node)) {
3641 		spin_lock_bh(&msk->fallback_lock);
3642 		if (!msk->allow_subflows) {
3643 			spin_unlock_bh(&msk->fallback_lock);
3644 			return false;
3645 		}
3646 		mptcp_subflow_joined(msk, ssk);
3647 		spin_unlock_bh(&msk->fallback_lock);
3648 		mptcp_propagate_sndbuf(parent, ssk);
3649 		return true;
3650 	}
3651 
3652 	if (!mptcp_pm_allow_new_subflow(msk)) {
3653 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3654 		goto err_prohibited;
3655 	}
3656 
3657 	/* If we can't acquire msk socket lock here, let the release callback
3658 	 * handle it
3659 	 */
3660 	mptcp_data_lock(parent);
3661 	if (!sock_owned_by_user(parent)) {
3662 		ret = __mptcp_finish_join(msk, ssk);
3663 		if (ret) {
3664 			sock_hold(ssk);
3665 			list_add_tail(&subflow->node, &msk->conn_list);
3666 		}
3667 	} else {
3668 		sock_hold(ssk);
3669 		list_add_tail(&subflow->node, &msk->join_list);
3670 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3671 	}
3672 	mptcp_data_unlock(parent);
3673 
3674 	if (!ret) {
3675 err_prohibited:
3676 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3677 		return false;
3678 	}
3679 
3680 	return true;
3681 }
3682 
3683 static void mptcp_shutdown(struct sock *sk, int how)
3684 {
3685 	pr_debug("sk=%p, how=%d\n", sk, how);
3686 
3687 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3688 		__mptcp_wr_shutdown(sk);
3689 }
3690 
3691 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3692 {
3693 	const struct sock *sk = (void *)msk;
3694 	u64 delta;
3695 
3696 	if (sk->sk_state == TCP_LISTEN)
3697 		return -EINVAL;
3698 
3699 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3700 		return 0;
3701 
3702 	delta = msk->write_seq - v;
3703 	if (__mptcp_check_fallback(msk) && msk->first) {
3704 		struct tcp_sock *tp = tcp_sk(msk->first);
3705 
3706 		/* the first subflow is disconnected after close - see
3707 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3708 		 * so ignore that status, too.
3709 		 */
3710 		if (!((1 << msk->first->sk_state) &
3711 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3712 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3713 	}
3714 	if (delta > INT_MAX)
3715 		delta = INT_MAX;
3716 
3717 	return (int)delta;
3718 }
3719 
3720 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3721 {
3722 	struct mptcp_sock *msk = mptcp_sk(sk);
3723 	bool slow;
3724 
3725 	switch (cmd) {
3726 	case SIOCINQ:
3727 		if (sk->sk_state == TCP_LISTEN)
3728 			return -EINVAL;
3729 
3730 		lock_sock(sk);
3731 		if (__mptcp_move_skbs(sk))
3732 			mptcp_cleanup_rbuf(msk, 0);
3733 		*karg = mptcp_inq_hint(sk);
3734 		release_sock(sk);
3735 		break;
3736 	case SIOCOUTQ:
3737 		slow = lock_sock_fast(sk);
3738 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3739 		unlock_sock_fast(sk, slow);
3740 		break;
3741 	case SIOCOUTQNSD:
3742 		slow = lock_sock_fast(sk);
3743 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3744 		unlock_sock_fast(sk, slow);
3745 		break;
3746 	default:
3747 		return -ENOIOCTLCMD;
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3754 {
3755 	struct mptcp_subflow_context *subflow;
3756 	struct mptcp_sock *msk = mptcp_sk(sk);
3757 	int err = -EINVAL;
3758 	struct sock *ssk;
3759 
3760 	ssk = __mptcp_nmpc_sk(msk);
3761 	if (IS_ERR(ssk))
3762 		return PTR_ERR(ssk);
3763 
3764 	mptcp_set_state(sk, TCP_SYN_SENT);
3765 	subflow = mptcp_subflow_ctx(ssk);
3766 #ifdef CONFIG_TCP_MD5SIG
3767 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3768 	 * TCP option space.
3769 	 */
3770 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3771 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3772 #endif
3773 	if (subflow->request_mptcp) {
3774 		if (mptcp_active_should_disable(sk))
3775 			mptcp_early_fallback(msk, subflow,
3776 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3777 		else if (mptcp_token_new_connect(ssk) < 0)
3778 			mptcp_early_fallback(msk, subflow,
3779 					     MPTCP_MIB_TOKENFALLBACKINIT);
3780 	}
3781 
3782 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3783 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3784 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3785 	if (likely(!__mptcp_check_fallback(msk)))
3786 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3787 
3788 	/* if reaching here via the fastopen/sendmsg path, the caller already
3789 	 * acquired the subflow socket lock, too.
3790 	 */
3791 	if (!msk->fastopening)
3792 		lock_sock(ssk);
3793 
3794 	/* the following mirrors closely a very small chunk of code from
3795 	 * __inet_stream_connect()
3796 	 */
3797 	if (ssk->sk_state != TCP_CLOSE)
3798 		goto out;
3799 
3800 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3801 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3802 		if (err)
3803 			goto out;
3804 	}
3805 
3806 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3807 	if (err < 0)
3808 		goto out;
3809 
3810 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3811 
3812 out:
3813 	if (!msk->fastopening)
3814 		release_sock(ssk);
3815 
3816 	/* on successful connect, the msk state will be moved to established by
3817 	 * subflow_finish_connect()
3818 	 */
3819 	if (unlikely(err)) {
3820 		/* avoid leaving a dangling token in an unconnected socket */
3821 		mptcp_token_destroy(msk);
3822 		mptcp_set_state(sk, TCP_CLOSE);
3823 		return err;
3824 	}
3825 
3826 	mptcp_copy_inaddrs(sk, ssk);
3827 	return 0;
3828 }
3829 
3830 static struct proto mptcp_prot = {
3831 	.name		= "MPTCP",
3832 	.owner		= THIS_MODULE,
3833 	.init		= mptcp_init_sock,
3834 	.connect	= mptcp_connect,
3835 	.disconnect	= mptcp_disconnect,
3836 	.close		= mptcp_close,
3837 	.setsockopt	= mptcp_setsockopt,
3838 	.getsockopt	= mptcp_getsockopt,
3839 	.shutdown	= mptcp_shutdown,
3840 	.destroy	= mptcp_destroy,
3841 	.sendmsg	= mptcp_sendmsg,
3842 	.ioctl		= mptcp_ioctl,
3843 	.recvmsg	= mptcp_recvmsg,
3844 	.release_cb	= mptcp_release_cb,
3845 	.hash		= mptcp_hash,
3846 	.unhash		= mptcp_unhash,
3847 	.get_port	= mptcp_get_port,
3848 	.stream_memory_free	= mptcp_stream_memory_free,
3849 	.sockets_allocated	= &mptcp_sockets_allocated,
3850 
3851 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3852 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3853 
3854 	.memory_pressure	= &tcp_memory_pressure,
3855 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3856 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3857 	.sysctl_mem	= sysctl_tcp_mem,
3858 	.obj_size	= sizeof(struct mptcp_sock),
3859 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3860 	.no_autobind	= true,
3861 };
3862 
3863 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3864 {
3865 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3866 	struct sock *ssk, *sk = sock->sk;
3867 	int err = -EINVAL;
3868 
3869 	lock_sock(sk);
3870 	ssk = __mptcp_nmpc_sk(msk);
3871 	if (IS_ERR(ssk)) {
3872 		err = PTR_ERR(ssk);
3873 		goto unlock;
3874 	}
3875 
3876 	if (sk->sk_family == AF_INET)
3877 		err = inet_bind_sk(ssk, uaddr, addr_len);
3878 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3879 	else if (sk->sk_family == AF_INET6)
3880 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3881 #endif
3882 	if (!err)
3883 		mptcp_copy_inaddrs(sk, ssk);
3884 
3885 unlock:
3886 	release_sock(sk);
3887 	return err;
3888 }
3889 
3890 static int mptcp_listen(struct socket *sock, int backlog)
3891 {
3892 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3893 	struct sock *sk = sock->sk;
3894 	struct sock *ssk;
3895 	int err;
3896 
3897 	pr_debug("msk=%p\n", msk);
3898 
3899 	lock_sock(sk);
3900 
3901 	err = -EINVAL;
3902 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3903 		goto unlock;
3904 
3905 	ssk = __mptcp_nmpc_sk(msk);
3906 	if (IS_ERR(ssk)) {
3907 		err = PTR_ERR(ssk);
3908 		goto unlock;
3909 	}
3910 
3911 	mptcp_set_state(sk, TCP_LISTEN);
3912 	sock_set_flag(sk, SOCK_RCU_FREE);
3913 
3914 	lock_sock(ssk);
3915 	err = __inet_listen_sk(ssk, backlog);
3916 	release_sock(ssk);
3917 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3918 
3919 	if (!err) {
3920 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3921 		mptcp_copy_inaddrs(sk, ssk);
3922 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3923 	}
3924 
3925 unlock:
3926 	release_sock(sk);
3927 	return err;
3928 }
3929 
3930 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3931 			       struct proto_accept_arg *arg)
3932 {
3933 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3934 	struct sock *ssk, *newsk;
3935 
3936 	pr_debug("msk=%p\n", msk);
3937 
3938 	/* Buggy applications can call accept on socket states other then LISTEN
3939 	 * but no need to allocate the first subflow just to error out.
3940 	 */
3941 	ssk = READ_ONCE(msk->first);
3942 	if (!ssk)
3943 		return -EINVAL;
3944 
3945 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3946 	newsk = inet_csk_accept(ssk, arg);
3947 	if (!newsk)
3948 		return arg->err;
3949 
3950 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3951 	if (sk_is_mptcp(newsk)) {
3952 		struct mptcp_subflow_context *subflow;
3953 		struct sock *new_mptcp_sock;
3954 
3955 		subflow = mptcp_subflow_ctx(newsk);
3956 		new_mptcp_sock = subflow->conn;
3957 
3958 		/* is_mptcp should be false if subflow->conn is missing, see
3959 		 * subflow_syn_recv_sock()
3960 		 */
3961 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3962 			tcp_sk(newsk)->is_mptcp = 0;
3963 			goto tcpfallback;
3964 		}
3965 
3966 		newsk = new_mptcp_sock;
3967 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3968 
3969 		newsk->sk_kern_sock = arg->kern;
3970 		lock_sock(newsk);
3971 		__inet_accept(sock, newsock, newsk);
3972 
3973 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3974 		msk = mptcp_sk(newsk);
3975 		msk->in_accept_queue = 0;
3976 
3977 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3978 		 * This is needed so NOSPACE flag can be set from tcp stack.
3979 		 */
3980 		mptcp_for_each_subflow(msk, subflow) {
3981 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3982 
3983 			if (!ssk->sk_socket)
3984 				mptcp_sock_graft(ssk, newsock);
3985 		}
3986 
3987 		mptcp_rps_record_subflows(msk);
3988 
3989 		/* Do late cleanup for the first subflow as necessary. Also
3990 		 * deal with bad peers not doing a complete shutdown.
3991 		 */
3992 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3993 			__mptcp_close_ssk(newsk, msk->first,
3994 					  mptcp_subflow_ctx(msk->first), 0);
3995 			if (unlikely(list_is_singular(&msk->conn_list)))
3996 				mptcp_set_state(newsk, TCP_CLOSE);
3997 		}
3998 	} else {
3999 tcpfallback:
4000 		newsk->sk_kern_sock = arg->kern;
4001 		lock_sock(newsk);
4002 		__inet_accept(sock, newsock, newsk);
4003 		/* we are being invoked after accepting a non-mp-capable
4004 		 * flow: sk is a tcp_sk, not an mptcp one.
4005 		 *
4006 		 * Hand the socket over to tcp so all further socket ops
4007 		 * bypass mptcp.
4008 		 */
4009 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4010 			   mptcp_fallback_tcp_ops(newsock->sk));
4011 	}
4012 	release_sock(newsk);
4013 
4014 	return 0;
4015 }
4016 
4017 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4018 {
4019 	struct sock *sk = (struct sock *)msk;
4020 
4021 	if (__mptcp_stream_is_writeable(sk, 1))
4022 		return EPOLLOUT | EPOLLWRNORM;
4023 
4024 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4025 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4026 	if (__mptcp_stream_is_writeable(sk, 1))
4027 		return EPOLLOUT | EPOLLWRNORM;
4028 
4029 	return 0;
4030 }
4031 
4032 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4033 			   struct poll_table_struct *wait)
4034 {
4035 	struct sock *sk = sock->sk;
4036 	struct mptcp_sock *msk;
4037 	__poll_t mask = 0;
4038 	u8 shutdown;
4039 	int state;
4040 
4041 	msk = mptcp_sk(sk);
4042 	sock_poll_wait(file, sock, wait);
4043 
4044 	state = inet_sk_state_load(sk);
4045 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4046 	if (state == TCP_LISTEN) {
4047 		struct sock *ssk = READ_ONCE(msk->first);
4048 
4049 		if (WARN_ON_ONCE(!ssk))
4050 			return 0;
4051 
4052 		return inet_csk_listen_poll(ssk);
4053 	}
4054 
4055 	shutdown = READ_ONCE(sk->sk_shutdown);
4056 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4057 		mask |= EPOLLHUP;
4058 	if (shutdown & RCV_SHUTDOWN)
4059 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4060 
4061 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4062 		mask |= mptcp_check_readable(sk);
4063 		if (shutdown & SEND_SHUTDOWN)
4064 			mask |= EPOLLOUT | EPOLLWRNORM;
4065 		else
4066 			mask |= mptcp_check_writeable(msk);
4067 	} else if (state == TCP_SYN_SENT &&
4068 		   inet_test_bit(DEFER_CONNECT, sk)) {
4069 		/* cf tcp_poll() note about TFO */
4070 		mask |= EPOLLOUT | EPOLLWRNORM;
4071 	}
4072 
4073 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4074 	smp_rmb();
4075 	if (READ_ONCE(sk->sk_err))
4076 		mask |= EPOLLERR;
4077 
4078 	return mask;
4079 }
4080 
4081 static const struct proto_ops mptcp_stream_ops = {
4082 	.family		   = PF_INET,
4083 	.owner		   = THIS_MODULE,
4084 	.release	   = inet_release,
4085 	.bind		   = mptcp_bind,
4086 	.connect	   = inet_stream_connect,
4087 	.socketpair	   = sock_no_socketpair,
4088 	.accept		   = mptcp_stream_accept,
4089 	.getname	   = inet_getname,
4090 	.poll		   = mptcp_poll,
4091 	.ioctl		   = inet_ioctl,
4092 	.gettstamp	   = sock_gettstamp,
4093 	.listen		   = mptcp_listen,
4094 	.shutdown	   = inet_shutdown,
4095 	.setsockopt	   = sock_common_setsockopt,
4096 	.getsockopt	   = sock_common_getsockopt,
4097 	.sendmsg	   = inet_sendmsg,
4098 	.recvmsg	   = inet_recvmsg,
4099 	.mmap		   = sock_no_mmap,
4100 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4101 };
4102 
4103 static struct inet_protosw mptcp_protosw = {
4104 	.type		= SOCK_STREAM,
4105 	.protocol	= IPPROTO_MPTCP,
4106 	.prot		= &mptcp_prot,
4107 	.ops		= &mptcp_stream_ops,
4108 	.flags		= INET_PROTOSW_ICSK,
4109 };
4110 
4111 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4112 {
4113 	struct mptcp_delegated_action *delegated;
4114 	struct mptcp_subflow_context *subflow;
4115 	int work_done = 0;
4116 
4117 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4118 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4119 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4120 
4121 		bh_lock_sock_nested(ssk);
4122 		if (!sock_owned_by_user(ssk)) {
4123 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4124 		} else {
4125 			/* tcp_release_cb_override already processed
4126 			 * the action or will do at next release_sock().
4127 			 * In both case must dequeue the subflow here - on the same
4128 			 * CPU that scheduled it.
4129 			 */
4130 			smp_wmb();
4131 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4132 		}
4133 		bh_unlock_sock(ssk);
4134 		sock_put(ssk);
4135 
4136 		if (++work_done == budget)
4137 			return budget;
4138 	}
4139 
4140 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4141 	 * will not try accessing the NULL napi->dev ptr
4142 	 */
4143 	napi_complete_done(napi, 0);
4144 	return work_done;
4145 }
4146 
4147 void __init mptcp_proto_init(void)
4148 {
4149 	struct mptcp_delegated_action *delegated;
4150 	int cpu;
4151 
4152 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4153 
4154 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4155 		panic("Failed to allocate MPTCP pcpu counter\n");
4156 
4157 	mptcp_napi_dev = alloc_netdev_dummy(0);
4158 	if (!mptcp_napi_dev)
4159 		panic("Failed to allocate MPTCP dummy netdev\n");
4160 	for_each_possible_cpu(cpu) {
4161 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4162 		INIT_LIST_HEAD(&delegated->head);
4163 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4164 				  mptcp_napi_poll);
4165 		napi_enable(&delegated->napi);
4166 	}
4167 
4168 	mptcp_subflow_init();
4169 	mptcp_pm_init();
4170 	mptcp_sched_init();
4171 	mptcp_token_init();
4172 
4173 	if (proto_register(&mptcp_prot, 1) != 0)
4174 		panic("Failed to register MPTCP proto.\n");
4175 
4176 	inet_register_protosw(&mptcp_protosw);
4177 
4178 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4179 }
4180 
4181 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4182 static const struct proto_ops mptcp_v6_stream_ops = {
4183 	.family		   = PF_INET6,
4184 	.owner		   = THIS_MODULE,
4185 	.release	   = inet6_release,
4186 	.bind		   = mptcp_bind,
4187 	.connect	   = inet_stream_connect,
4188 	.socketpair	   = sock_no_socketpair,
4189 	.accept		   = mptcp_stream_accept,
4190 	.getname	   = inet6_getname,
4191 	.poll		   = mptcp_poll,
4192 	.ioctl		   = inet6_ioctl,
4193 	.gettstamp	   = sock_gettstamp,
4194 	.listen		   = mptcp_listen,
4195 	.shutdown	   = inet_shutdown,
4196 	.setsockopt	   = sock_common_setsockopt,
4197 	.getsockopt	   = sock_common_getsockopt,
4198 	.sendmsg	   = inet6_sendmsg,
4199 	.recvmsg	   = inet6_recvmsg,
4200 	.mmap		   = sock_no_mmap,
4201 #ifdef CONFIG_COMPAT
4202 	.compat_ioctl	   = inet6_compat_ioctl,
4203 #endif
4204 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4205 };
4206 
4207 static struct proto mptcp_v6_prot;
4208 
4209 static struct inet_protosw mptcp_v6_protosw = {
4210 	.type		= SOCK_STREAM,
4211 	.protocol	= IPPROTO_MPTCP,
4212 	.prot		= &mptcp_v6_prot,
4213 	.ops		= &mptcp_v6_stream_ops,
4214 	.flags		= INET_PROTOSW_ICSK,
4215 };
4216 
4217 int __init mptcp_proto_v6_init(void)
4218 {
4219 	int err;
4220 
4221 	mptcp_v6_prot = mptcp_prot;
4222 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4223 	mptcp_v6_prot.slab = NULL;
4224 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4225 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4226 
4227 	err = proto_register(&mptcp_v6_prot, 1);
4228 	if (err)
4229 		return err;
4230 
4231 	err = inet6_register_protosw(&mptcp_v6_protosw);
4232 	if (err)
4233 		proto_unregister(&mptcp_v6_prot);
4234 
4235 	return err;
4236 }
4237 #endif
4238