1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 WRITE_ONCE(sock->ops, &inet_stream_ops); 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 WRITE_ONCE(sock->ops, &inet6_stream_ops); 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 94 WRITE_ONCE(msk->first, ssock->sk); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 subflow->local_id_valid = 1; 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 iput(SOCK_INODE(ssock)); 105 106 return 0; 107 } 108 109 /* If the MPC handshake is not started, returns the first subflow, 110 * eventually allocating it. 111 */ 112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 113 { 114 struct sock *sk = (struct sock *)msk; 115 int ret; 116 117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 118 return ERR_PTR(-EINVAL); 119 120 if (!msk->first) { 121 ret = __mptcp_socket_create(msk); 122 if (ret) 123 return ERR_PTR(ret); 124 125 mptcp_sockopt_sync(msk, msk->first); 126 } 127 128 return msk->first; 129 } 130 131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 132 { 133 sk_drops_add(sk, skb); 134 __kfree_skb(skb); 135 } 136 137 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 138 { 139 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 140 mptcp_sk(sk)->rmem_fwd_alloc + size); 141 } 142 143 static void mptcp_rmem_charge(struct sock *sk, int size) 144 { 145 mptcp_rmem_fwd_alloc_add(sk, -size); 146 } 147 148 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 149 struct sk_buff *from) 150 { 151 bool fragstolen; 152 int delta; 153 154 if (MPTCP_SKB_CB(from)->offset || 155 !skb_try_coalesce(to, from, &fragstolen, &delta)) 156 return false; 157 158 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 159 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 160 to->len, MPTCP_SKB_CB(from)->end_seq); 161 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 162 163 /* note the fwd memory can reach a negative value after accounting 164 * for the delta, but the later skb free will restore a non 165 * negative one 166 */ 167 atomic_add(delta, &sk->sk_rmem_alloc); 168 mptcp_rmem_charge(sk, delta); 169 kfree_skb_partial(from, fragstolen); 170 171 return true; 172 } 173 174 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 175 struct sk_buff *from) 176 { 177 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 178 return false; 179 180 return mptcp_try_coalesce((struct sock *)msk, to, from); 181 } 182 183 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 184 { 185 amount >>= PAGE_SHIFT; 186 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 187 __sk_mem_reduce_allocated(sk, amount); 188 } 189 190 static void mptcp_rmem_uncharge(struct sock *sk, int size) 191 { 192 struct mptcp_sock *msk = mptcp_sk(sk); 193 int reclaimable; 194 195 mptcp_rmem_fwd_alloc_add(sk, size); 196 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 197 198 /* see sk_mem_uncharge() for the rationale behind the following schema */ 199 if (unlikely(reclaimable >= PAGE_SIZE)) 200 __mptcp_rmem_reclaim(sk, reclaimable); 201 } 202 203 static void mptcp_rfree(struct sk_buff *skb) 204 { 205 unsigned int len = skb->truesize; 206 struct sock *sk = skb->sk; 207 208 atomic_sub(len, &sk->sk_rmem_alloc); 209 mptcp_rmem_uncharge(sk, len); 210 } 211 212 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 213 { 214 skb_orphan(skb); 215 skb->sk = sk; 216 skb->destructor = mptcp_rfree; 217 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 218 mptcp_rmem_charge(sk, skb->truesize); 219 } 220 221 /* "inspired" by tcp_data_queue_ofo(), main differences: 222 * - use mptcp seqs 223 * - don't cope with sacks 224 */ 225 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 226 { 227 struct sock *sk = (struct sock *)msk; 228 struct rb_node **p, *parent; 229 u64 seq, end_seq, max_seq; 230 struct sk_buff *skb1; 231 232 seq = MPTCP_SKB_CB(skb)->map_seq; 233 end_seq = MPTCP_SKB_CB(skb)->end_seq; 234 max_seq = atomic64_read(&msk->rcv_wnd_sent); 235 236 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 237 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 238 if (after64(end_seq, max_seq)) { 239 /* out of window */ 240 mptcp_drop(sk, skb); 241 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 242 (unsigned long long)end_seq - (unsigned long)max_seq, 243 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 245 return; 246 } 247 248 p = &msk->out_of_order_queue.rb_node; 249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 250 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 251 rb_link_node(&skb->rbnode, NULL, p); 252 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 253 msk->ooo_last_skb = skb; 254 goto end; 255 } 256 257 /* with 2 subflows, adding at end of ooo queue is quite likely 258 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 259 */ 260 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 261 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 263 return; 264 } 265 266 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 267 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 269 parent = &msk->ooo_last_skb->rbnode; 270 p = &parent->rb_right; 271 goto insert; 272 } 273 274 /* Find place to insert this segment. Handle overlaps on the way. */ 275 parent = NULL; 276 while (*p) { 277 parent = *p; 278 skb1 = rb_to_skb(parent); 279 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 280 p = &parent->rb_left; 281 continue; 282 } 283 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 284 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 285 /* All the bits are present. Drop. */ 286 mptcp_drop(sk, skb); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 return; 289 } 290 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 291 /* partial overlap: 292 * | skb | 293 * | skb1 | 294 * continue traversing 295 */ 296 } else { 297 /* skb's seq == skb1's seq and skb covers skb1. 298 * Replace skb1 with skb. 299 */ 300 rb_replace_node(&skb1->rbnode, &skb->rbnode, 301 &msk->out_of_order_queue); 302 mptcp_drop(sk, skb1); 303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 304 goto merge_right; 305 } 306 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 308 return; 309 } 310 p = &parent->rb_right; 311 } 312 313 insert: 314 /* Insert segment into RB tree. */ 315 rb_link_node(&skb->rbnode, parent, p); 316 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 317 318 merge_right: 319 /* Remove other segments covered by skb. */ 320 while ((skb1 = skb_rb_next(skb)) != NULL) { 321 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 322 break; 323 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 324 mptcp_drop(sk, skb1); 325 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 326 } 327 /* If there is no skb after us, we are the last_skb ! */ 328 if (!skb1) 329 msk->ooo_last_skb = skb; 330 331 end: 332 skb_condense(skb); 333 mptcp_set_owner_r(skb, sk); 334 } 335 336 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 337 { 338 struct mptcp_sock *msk = mptcp_sk(sk); 339 int amt, amount; 340 341 if (size <= msk->rmem_fwd_alloc) 342 return true; 343 344 size -= msk->rmem_fwd_alloc; 345 amt = sk_mem_pages(size); 346 amount = amt << PAGE_SHIFT; 347 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 348 return false; 349 350 mptcp_rmem_fwd_alloc_add(sk, amount); 351 return true; 352 } 353 354 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 355 struct sk_buff *skb, unsigned int offset, 356 size_t copy_len) 357 { 358 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 359 struct sock *sk = (struct sock *)msk; 360 struct sk_buff *tail; 361 bool has_rxtstamp; 362 363 __skb_unlink(skb, &ssk->sk_receive_queue); 364 365 skb_ext_reset(skb); 366 skb_orphan(skb); 367 368 /* try to fetch required memory from subflow */ 369 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 370 goto drop; 371 372 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 373 374 /* the skb map_seq accounts for the skb offset: 375 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 376 * value 377 */ 378 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 379 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 380 MPTCP_SKB_CB(skb)->offset = offset; 381 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 382 383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 384 /* in sequence */ 385 msk->bytes_received += copy_len; 386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 387 tail = skb_peek_tail(&sk->sk_receive_queue); 388 if (tail && mptcp_try_coalesce(sk, tail, skb)) 389 return true; 390 391 mptcp_set_owner_r(skb, sk); 392 __skb_queue_tail(&sk->sk_receive_queue, skb); 393 return true; 394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 395 mptcp_data_queue_ofo(msk, skb); 396 return false; 397 } 398 399 /* old data, keep it simple and drop the whole pkt, sender 400 * will retransmit as needed, if needed. 401 */ 402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 403 drop: 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_timer(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 413 mptcp_sk(sk)->timer_ival = 0; 414 } 415 416 static void mptcp_close_wake_up(struct sock *sk) 417 { 418 if (sock_flag(sk, SOCK_DEAD)) 419 return; 420 421 sk->sk_state_change(sk); 422 if (sk->sk_shutdown == SHUTDOWN_MASK || 423 sk->sk_state == TCP_CLOSE) 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 425 else 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 427 } 428 429 static bool mptcp_pending_data_fin_ack(struct sock *sk) 430 { 431 struct mptcp_sock *msk = mptcp_sk(sk); 432 433 return ((1 << sk->sk_state) & 434 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 435 msk->write_seq == READ_ONCE(msk->snd_una); 436 } 437 438 static void mptcp_check_data_fin_ack(struct sock *sk) 439 { 440 struct mptcp_sock *msk = mptcp_sk(sk); 441 442 /* Look for an acknowledged DATA_FIN */ 443 if (mptcp_pending_data_fin_ack(sk)) { 444 WRITE_ONCE(msk->snd_data_fin_enable, 0); 445 446 switch (sk->sk_state) { 447 case TCP_FIN_WAIT1: 448 inet_sk_state_store(sk, TCP_FIN_WAIT2); 449 break; 450 case TCP_CLOSING: 451 case TCP_LAST_ACK: 452 inet_sk_state_store(sk, TCP_CLOSE); 453 break; 454 } 455 456 mptcp_close_wake_up(sk); 457 } 458 } 459 460 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 461 { 462 struct mptcp_sock *msk = mptcp_sk(sk); 463 464 if (READ_ONCE(msk->rcv_data_fin) && 465 ((1 << sk->sk_state) & 466 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 467 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 468 469 if (msk->ack_seq == rcv_data_fin_seq) { 470 if (seq) 471 *seq = rcv_data_fin_seq; 472 473 return true; 474 } 475 } 476 477 return false; 478 } 479 480 static void mptcp_set_datafin_timeout(struct sock *sk) 481 { 482 struct inet_connection_sock *icsk = inet_csk(sk); 483 u32 retransmits; 484 485 retransmits = min_t(u32, icsk->icsk_retransmits, 486 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 487 488 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 489 } 490 491 static void __mptcp_set_timeout(struct sock *sk, long tout) 492 { 493 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 494 } 495 496 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 497 { 498 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 499 500 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 501 inet_csk(ssk)->icsk_timeout - jiffies : 0; 502 } 503 504 static void mptcp_set_timeout(struct sock *sk) 505 { 506 struct mptcp_subflow_context *subflow; 507 long tout = 0; 508 509 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 510 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 511 __mptcp_set_timeout(sk, tout); 512 } 513 514 static inline bool tcp_can_send_ack(const struct sock *ssk) 515 { 516 return !((1 << inet_sk_state_load(ssk)) & 517 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 518 } 519 520 void __mptcp_subflow_send_ack(struct sock *ssk) 521 { 522 if (tcp_can_send_ack(ssk)) 523 tcp_send_ack(ssk); 524 } 525 526 static void mptcp_subflow_send_ack(struct sock *ssk) 527 { 528 bool slow; 529 530 slow = lock_sock_fast(ssk); 531 __mptcp_subflow_send_ack(ssk); 532 unlock_sock_fast(ssk, slow); 533 } 534 535 static void mptcp_send_ack(struct mptcp_sock *msk) 536 { 537 struct mptcp_subflow_context *subflow; 538 539 mptcp_for_each_subflow(msk, subflow) 540 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 541 } 542 543 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 544 { 545 bool slow; 546 547 slow = lock_sock_fast(ssk); 548 if (tcp_can_send_ack(ssk)) 549 tcp_cleanup_rbuf(ssk, 1); 550 unlock_sock_fast(ssk, slow); 551 } 552 553 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 554 { 555 const struct inet_connection_sock *icsk = inet_csk(ssk); 556 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 557 const struct tcp_sock *tp = tcp_sk(ssk); 558 559 return (ack_pending & ICSK_ACK_SCHED) && 560 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 561 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 562 (rx_empty && ack_pending & 563 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 564 } 565 566 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 567 { 568 int old_space = READ_ONCE(msk->old_wspace); 569 struct mptcp_subflow_context *subflow; 570 struct sock *sk = (struct sock *)msk; 571 int space = __mptcp_space(sk); 572 bool cleanup, rx_empty; 573 574 cleanup = (space > 0) && (space >= (old_space << 1)); 575 rx_empty = !__mptcp_rmem(sk); 576 577 mptcp_for_each_subflow(msk, subflow) { 578 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 579 580 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 581 mptcp_subflow_cleanup_rbuf(ssk); 582 } 583 } 584 585 static bool mptcp_check_data_fin(struct sock *sk) 586 { 587 struct mptcp_sock *msk = mptcp_sk(sk); 588 u64 rcv_data_fin_seq; 589 bool ret = false; 590 591 /* Need to ack a DATA_FIN received from a peer while this side 592 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 593 * msk->rcv_data_fin was set when parsing the incoming options 594 * at the subflow level and the msk lock was not held, so this 595 * is the first opportunity to act on the DATA_FIN and change 596 * the msk state. 597 * 598 * If we are caught up to the sequence number of the incoming 599 * DATA_FIN, send the DATA_ACK now and do state transition. If 600 * not caught up, do nothing and let the recv code send DATA_ACK 601 * when catching up. 602 */ 603 604 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 605 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 606 WRITE_ONCE(msk->rcv_data_fin, 0); 607 608 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 609 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 610 611 switch (sk->sk_state) { 612 case TCP_ESTABLISHED: 613 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 614 break; 615 case TCP_FIN_WAIT1: 616 inet_sk_state_store(sk, TCP_CLOSING); 617 break; 618 case TCP_FIN_WAIT2: 619 inet_sk_state_store(sk, TCP_CLOSE); 620 break; 621 default: 622 /* Other states not expected */ 623 WARN_ON_ONCE(1); 624 break; 625 } 626 627 ret = true; 628 if (!__mptcp_check_fallback(msk)) 629 mptcp_send_ack(msk); 630 mptcp_close_wake_up(sk); 631 } 632 return ret; 633 } 634 635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 636 struct sock *ssk, 637 unsigned int *bytes) 638 { 639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 640 struct sock *sk = (struct sock *)msk; 641 unsigned int moved = 0; 642 bool more_data_avail; 643 struct tcp_sock *tp; 644 bool done = false; 645 int sk_rbuf; 646 647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 648 649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 651 652 if (unlikely(ssk_rbuf > sk_rbuf)) { 653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 654 sk_rbuf = ssk_rbuf; 655 } 656 } 657 658 pr_debug("msk=%p ssk=%p", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 /* try to move as much data as available */ 667 map_remaining = subflow->map_data_len - 668 mptcp_subflow_get_map_offset(subflow); 669 670 skb = skb_peek(&ssk->sk_receive_queue); 671 if (!skb) { 672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 673 * a different CPU can have already processed the pending 674 * data, stop here or we can enter an infinite loop 675 */ 676 if (!moved) 677 done = true; 678 break; 679 } 680 681 if (__mptcp_check_fallback(msk)) { 682 /* Under fallback skbs have no MPTCP extension and TCP could 683 * collapse them between the dummy map creation and the 684 * current dequeue. Be sure to adjust the map size. 685 */ 686 map_remaining = skb->len; 687 subflow->map_data_len = skb->len; 688 } 689 690 offset = seq - TCP_SKB_CB(skb)->seq; 691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 692 if (fin) { 693 done = true; 694 seq++; 695 } 696 697 if (offset < skb->len) { 698 size_t len = skb->len - offset; 699 700 if (tp->urg_data) 701 done = true; 702 703 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 704 moved += len; 705 seq += len; 706 707 if (WARN_ON_ONCE(map_remaining < len)) 708 break; 709 } else { 710 WARN_ON_ONCE(!fin); 711 sk_eat_skb(ssk, skb); 712 done = true; 713 } 714 715 WRITE_ONCE(tp->copied_seq, seq); 716 more_data_avail = mptcp_subflow_data_available(ssk); 717 718 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 719 done = true; 720 break; 721 } 722 } while (more_data_avail); 723 724 *bytes += moved; 725 return done; 726 } 727 728 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 729 { 730 struct sock *sk = (struct sock *)msk; 731 struct sk_buff *skb, *tail; 732 bool moved = false; 733 struct rb_node *p; 734 u64 end_seq; 735 736 p = rb_first(&msk->out_of_order_queue); 737 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 738 while (p) { 739 skb = rb_to_skb(p); 740 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 741 break; 742 743 p = rb_next(p); 744 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 745 746 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 747 msk->ack_seq))) { 748 mptcp_drop(sk, skb); 749 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 750 continue; 751 } 752 753 end_seq = MPTCP_SKB_CB(skb)->end_seq; 754 tail = skb_peek_tail(&sk->sk_receive_queue); 755 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 756 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 757 758 /* skip overlapping data, if any */ 759 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 760 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 761 delta); 762 MPTCP_SKB_CB(skb)->offset += delta; 763 MPTCP_SKB_CB(skb)->map_seq += delta; 764 __skb_queue_tail(&sk->sk_receive_queue, skb); 765 } 766 msk->bytes_received += end_seq - msk->ack_seq; 767 msk->ack_seq = end_seq; 768 moved = true; 769 } 770 return moved; 771 } 772 773 /* In most cases we will be able to lock the mptcp socket. If its already 774 * owned, we need to defer to the work queue to avoid ABBA deadlock. 775 */ 776 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 777 { 778 struct sock *sk = (struct sock *)msk; 779 unsigned int moved = 0; 780 781 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 782 __mptcp_ofo_queue(msk); 783 if (unlikely(ssk->sk_err)) { 784 if (!sock_owned_by_user(sk)) 785 __mptcp_error_report(sk); 786 else 787 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 788 } 789 790 /* If the moves have caught up with the DATA_FIN sequence number 791 * it's time to ack the DATA_FIN and change socket state, but 792 * this is not a good place to change state. Let the workqueue 793 * do it. 794 */ 795 if (mptcp_pending_data_fin(sk, NULL)) 796 mptcp_schedule_work(sk); 797 return moved > 0; 798 } 799 800 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 801 { 802 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 803 struct mptcp_sock *msk = mptcp_sk(sk); 804 int sk_rbuf, ssk_rbuf; 805 806 /* The peer can send data while we are shutting down this 807 * subflow at msk destruction time, but we must avoid enqueuing 808 * more data to the msk receive queue 809 */ 810 if (unlikely(subflow->disposable)) 811 return; 812 813 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 814 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 815 if (unlikely(ssk_rbuf > sk_rbuf)) 816 sk_rbuf = ssk_rbuf; 817 818 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 819 if (__mptcp_rmem(sk) > sk_rbuf) { 820 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 821 return; 822 } 823 824 /* Wake-up the reader only for in-sequence data */ 825 mptcp_data_lock(sk); 826 if (move_skbs_to_msk(msk, ssk)) 827 sk->sk_data_ready(sk); 828 829 mptcp_data_unlock(sk); 830 } 831 832 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 833 { 834 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 835 WRITE_ONCE(msk->allow_infinite_fallback, false); 836 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 837 } 838 839 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 840 { 841 struct sock *sk = (struct sock *)msk; 842 843 if (sk->sk_state != TCP_ESTABLISHED) 844 return false; 845 846 /* attach to msk socket only after we are sure we will deal with it 847 * at close time 848 */ 849 if (sk->sk_socket && !ssk->sk_socket) 850 mptcp_sock_graft(ssk, sk->sk_socket); 851 852 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 853 mptcp_sockopt_sync_locked(msk, ssk); 854 mptcp_subflow_joined(msk, ssk); 855 return true; 856 } 857 858 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 859 { 860 struct mptcp_subflow_context *tmp, *subflow; 861 struct mptcp_sock *msk = mptcp_sk(sk); 862 863 list_for_each_entry_safe(subflow, tmp, join_list, node) { 864 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 865 bool slow = lock_sock_fast(ssk); 866 867 list_move_tail(&subflow->node, &msk->conn_list); 868 if (!__mptcp_finish_join(msk, ssk)) 869 mptcp_subflow_reset(ssk); 870 unlock_sock_fast(ssk, slow); 871 } 872 } 873 874 static bool mptcp_timer_pending(struct sock *sk) 875 { 876 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 877 } 878 879 static void mptcp_reset_timer(struct sock *sk) 880 { 881 struct inet_connection_sock *icsk = inet_csk(sk); 882 unsigned long tout; 883 884 /* prevent rescheduling on close */ 885 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 886 return; 887 888 tout = mptcp_sk(sk)->timer_ival; 889 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 890 } 891 892 bool mptcp_schedule_work(struct sock *sk) 893 { 894 if (inet_sk_state_load(sk) != TCP_CLOSE && 895 schedule_work(&mptcp_sk(sk)->work)) { 896 /* each subflow already holds a reference to the sk, and the 897 * workqueue is invoked by a subflow, so sk can't go away here. 898 */ 899 sock_hold(sk); 900 return true; 901 } 902 return false; 903 } 904 905 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 906 { 907 struct mptcp_subflow_context *subflow; 908 909 msk_owned_by_me(msk); 910 911 mptcp_for_each_subflow(msk, subflow) { 912 if (READ_ONCE(subflow->data_avail)) 913 return mptcp_subflow_tcp_sock(subflow); 914 } 915 916 return NULL; 917 } 918 919 static bool mptcp_skb_can_collapse_to(u64 write_seq, 920 const struct sk_buff *skb, 921 const struct mptcp_ext *mpext) 922 { 923 if (!tcp_skb_can_collapse_to(skb)) 924 return false; 925 926 /* can collapse only if MPTCP level sequence is in order and this 927 * mapping has not been xmitted yet 928 */ 929 return mpext && mpext->data_seq + mpext->data_len == write_seq && 930 !mpext->frozen; 931 } 932 933 /* we can append data to the given data frag if: 934 * - there is space available in the backing page_frag 935 * - the data frag tail matches the current page_frag free offset 936 * - the data frag end sequence number matches the current write seq 937 */ 938 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 939 const struct page_frag *pfrag, 940 const struct mptcp_data_frag *df) 941 { 942 return df && pfrag->page == df->page && 943 pfrag->size - pfrag->offset > 0 && 944 pfrag->offset == (df->offset + df->data_len) && 945 df->data_seq + df->data_len == msk->write_seq; 946 } 947 948 static void dfrag_uncharge(struct sock *sk, int len) 949 { 950 sk_mem_uncharge(sk, len); 951 sk_wmem_queued_add(sk, -len); 952 } 953 954 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 955 { 956 int len = dfrag->data_len + dfrag->overhead; 957 958 list_del(&dfrag->list); 959 dfrag_uncharge(sk, len); 960 put_page(dfrag->page); 961 } 962 963 static void __mptcp_clean_una(struct sock *sk) 964 { 965 struct mptcp_sock *msk = mptcp_sk(sk); 966 struct mptcp_data_frag *dtmp, *dfrag; 967 u64 snd_una; 968 969 snd_una = msk->snd_una; 970 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 971 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 972 break; 973 974 if (unlikely(dfrag == msk->first_pending)) { 975 /* in recovery mode can see ack after the current snd head */ 976 if (WARN_ON_ONCE(!msk->recovery)) 977 break; 978 979 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 980 } 981 982 dfrag_clear(sk, dfrag); 983 } 984 985 dfrag = mptcp_rtx_head(sk); 986 if (dfrag && after64(snd_una, dfrag->data_seq)) { 987 u64 delta = snd_una - dfrag->data_seq; 988 989 /* prevent wrap around in recovery mode */ 990 if (unlikely(delta > dfrag->already_sent)) { 991 if (WARN_ON_ONCE(!msk->recovery)) 992 goto out; 993 if (WARN_ON_ONCE(delta > dfrag->data_len)) 994 goto out; 995 dfrag->already_sent += delta - dfrag->already_sent; 996 } 997 998 dfrag->data_seq += delta; 999 dfrag->offset += delta; 1000 dfrag->data_len -= delta; 1001 dfrag->already_sent -= delta; 1002 1003 dfrag_uncharge(sk, delta); 1004 } 1005 1006 /* all retransmitted data acked, recovery completed */ 1007 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1008 msk->recovery = false; 1009 1010 out: 1011 if (snd_una == READ_ONCE(msk->snd_nxt) && 1012 snd_una == READ_ONCE(msk->write_seq)) { 1013 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1014 mptcp_stop_timer(sk); 1015 } else { 1016 mptcp_reset_timer(sk); 1017 } 1018 } 1019 1020 static void __mptcp_clean_una_wakeup(struct sock *sk) 1021 { 1022 lockdep_assert_held_once(&sk->sk_lock.slock); 1023 1024 __mptcp_clean_una(sk); 1025 mptcp_write_space(sk); 1026 } 1027 1028 static void mptcp_clean_una_wakeup(struct sock *sk) 1029 { 1030 mptcp_data_lock(sk); 1031 __mptcp_clean_una_wakeup(sk); 1032 mptcp_data_unlock(sk); 1033 } 1034 1035 static void mptcp_enter_memory_pressure(struct sock *sk) 1036 { 1037 struct mptcp_subflow_context *subflow; 1038 struct mptcp_sock *msk = mptcp_sk(sk); 1039 bool first = true; 1040 1041 sk_stream_moderate_sndbuf(sk); 1042 mptcp_for_each_subflow(msk, subflow) { 1043 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1044 1045 if (first) 1046 tcp_enter_memory_pressure(ssk); 1047 sk_stream_moderate_sndbuf(ssk); 1048 first = false; 1049 } 1050 } 1051 1052 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1053 * data 1054 */ 1055 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1056 { 1057 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1058 pfrag, sk->sk_allocation))) 1059 return true; 1060 1061 mptcp_enter_memory_pressure(sk); 1062 return false; 1063 } 1064 1065 static struct mptcp_data_frag * 1066 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1067 int orig_offset) 1068 { 1069 int offset = ALIGN(orig_offset, sizeof(long)); 1070 struct mptcp_data_frag *dfrag; 1071 1072 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1073 dfrag->data_len = 0; 1074 dfrag->data_seq = msk->write_seq; 1075 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1076 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1077 dfrag->already_sent = 0; 1078 dfrag->page = pfrag->page; 1079 1080 return dfrag; 1081 } 1082 1083 struct mptcp_sendmsg_info { 1084 int mss_now; 1085 int size_goal; 1086 u16 limit; 1087 u16 sent; 1088 unsigned int flags; 1089 bool data_lock_held; 1090 }; 1091 1092 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1093 u64 data_seq, int avail_size) 1094 { 1095 u64 window_end = mptcp_wnd_end(msk); 1096 u64 mptcp_snd_wnd; 1097 1098 if (__mptcp_check_fallback(msk)) 1099 return avail_size; 1100 1101 mptcp_snd_wnd = window_end - data_seq; 1102 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1103 1104 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1105 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1106 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1107 } 1108 1109 return avail_size; 1110 } 1111 1112 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1113 { 1114 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1115 1116 if (!mpext) 1117 return false; 1118 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1119 return true; 1120 } 1121 1122 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1123 { 1124 struct sk_buff *skb; 1125 1126 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1127 if (likely(skb)) { 1128 if (likely(__mptcp_add_ext(skb, gfp))) { 1129 skb_reserve(skb, MAX_TCP_HEADER); 1130 skb->ip_summed = CHECKSUM_PARTIAL; 1131 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1132 return skb; 1133 } 1134 __kfree_skb(skb); 1135 } else { 1136 mptcp_enter_memory_pressure(sk); 1137 } 1138 return NULL; 1139 } 1140 1141 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1142 { 1143 struct sk_buff *skb; 1144 1145 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1146 if (!skb) 1147 return NULL; 1148 1149 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1150 tcp_skb_entail(ssk, skb); 1151 return skb; 1152 } 1153 tcp_skb_tsorted_anchor_cleanup(skb); 1154 kfree_skb(skb); 1155 return NULL; 1156 } 1157 1158 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1159 { 1160 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1161 1162 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1163 } 1164 1165 /* note: this always recompute the csum on the whole skb, even 1166 * if we just appended a single frag. More status info needed 1167 */ 1168 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1169 { 1170 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1171 __wsum csum = ~csum_unfold(mpext->csum); 1172 int offset = skb->len - added; 1173 1174 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1175 } 1176 1177 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1178 struct sock *ssk, 1179 struct mptcp_ext *mpext) 1180 { 1181 if (!mpext) 1182 return; 1183 1184 mpext->infinite_map = 1; 1185 mpext->data_len = 0; 1186 1187 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1188 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1189 pr_fallback(msk); 1190 mptcp_do_fallback(ssk); 1191 } 1192 1193 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1194 struct mptcp_data_frag *dfrag, 1195 struct mptcp_sendmsg_info *info) 1196 { 1197 u64 data_seq = dfrag->data_seq + info->sent; 1198 int offset = dfrag->offset + info->sent; 1199 struct mptcp_sock *msk = mptcp_sk(sk); 1200 bool zero_window_probe = false; 1201 struct mptcp_ext *mpext = NULL; 1202 bool can_coalesce = false; 1203 bool reuse_skb = true; 1204 struct sk_buff *skb; 1205 size_t copy; 1206 int i; 1207 1208 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1209 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1210 1211 if (WARN_ON_ONCE(info->sent > info->limit || 1212 info->limit > dfrag->data_len)) 1213 return 0; 1214 1215 if (unlikely(!__tcp_can_send(ssk))) 1216 return -EAGAIN; 1217 1218 /* compute send limit */ 1219 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1220 copy = info->size_goal; 1221 1222 skb = tcp_write_queue_tail(ssk); 1223 if (skb && copy > skb->len) { 1224 /* Limit the write to the size available in the 1225 * current skb, if any, so that we create at most a new skb. 1226 * Explicitly tells TCP internals to avoid collapsing on later 1227 * queue management operation, to avoid breaking the ext <-> 1228 * SSN association set here 1229 */ 1230 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1231 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1232 TCP_SKB_CB(skb)->eor = 1; 1233 goto alloc_skb; 1234 } 1235 1236 i = skb_shinfo(skb)->nr_frags; 1237 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1238 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1239 tcp_mark_push(tcp_sk(ssk), skb); 1240 goto alloc_skb; 1241 } 1242 1243 copy -= skb->len; 1244 } else { 1245 alloc_skb: 1246 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1247 if (!skb) 1248 return -ENOMEM; 1249 1250 i = skb_shinfo(skb)->nr_frags; 1251 reuse_skb = false; 1252 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1253 } 1254 1255 /* Zero window and all data acked? Probe. */ 1256 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1257 if (copy == 0) { 1258 u64 snd_una = READ_ONCE(msk->snd_una); 1259 1260 if (snd_una != msk->snd_nxt) { 1261 tcp_remove_empty_skb(ssk); 1262 return 0; 1263 } 1264 1265 zero_window_probe = true; 1266 data_seq = snd_una - 1; 1267 copy = 1; 1268 1269 /* all mptcp-level data is acked, no skbs should be present into the 1270 * ssk write queue 1271 */ 1272 WARN_ON_ONCE(reuse_skb); 1273 } 1274 1275 copy = min_t(size_t, copy, info->limit - info->sent); 1276 if (!sk_wmem_schedule(ssk, copy)) { 1277 tcp_remove_empty_skb(ssk); 1278 return -ENOMEM; 1279 } 1280 1281 if (can_coalesce) { 1282 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1283 } else { 1284 get_page(dfrag->page); 1285 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1286 } 1287 1288 skb->len += copy; 1289 skb->data_len += copy; 1290 skb->truesize += copy; 1291 sk_wmem_queued_add(ssk, copy); 1292 sk_mem_charge(ssk, copy); 1293 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1294 TCP_SKB_CB(skb)->end_seq += copy; 1295 tcp_skb_pcount_set(skb, 0); 1296 1297 /* on skb reuse we just need to update the DSS len */ 1298 if (reuse_skb) { 1299 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1300 mpext->data_len += copy; 1301 WARN_ON_ONCE(zero_window_probe); 1302 goto out; 1303 } 1304 1305 memset(mpext, 0, sizeof(*mpext)); 1306 mpext->data_seq = data_seq; 1307 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1308 mpext->data_len = copy; 1309 mpext->use_map = 1; 1310 mpext->dsn64 = 1; 1311 1312 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1313 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1314 mpext->dsn64); 1315 1316 if (zero_window_probe) { 1317 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1318 mpext->frozen = 1; 1319 if (READ_ONCE(msk->csum_enabled)) 1320 mptcp_update_data_checksum(skb, copy); 1321 tcp_push_pending_frames(ssk); 1322 return 0; 1323 } 1324 out: 1325 if (READ_ONCE(msk->csum_enabled)) 1326 mptcp_update_data_checksum(skb, copy); 1327 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1328 mptcp_update_infinite_map(msk, ssk, mpext); 1329 trace_mptcp_sendmsg_frag(mpext); 1330 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1331 return copy; 1332 } 1333 1334 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1335 sizeof(struct tcphdr) - \ 1336 MAX_TCP_OPTION_SPACE - \ 1337 sizeof(struct ipv6hdr) - \ 1338 sizeof(struct frag_hdr)) 1339 1340 struct subflow_send_info { 1341 struct sock *ssk; 1342 u64 linger_time; 1343 }; 1344 1345 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1346 { 1347 if (!subflow->stale) 1348 return; 1349 1350 subflow->stale = 0; 1351 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1352 } 1353 1354 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1355 { 1356 if (unlikely(subflow->stale)) { 1357 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1358 1359 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1360 return false; 1361 1362 mptcp_subflow_set_active(subflow); 1363 } 1364 return __mptcp_subflow_active(subflow); 1365 } 1366 1367 #define SSK_MODE_ACTIVE 0 1368 #define SSK_MODE_BACKUP 1 1369 #define SSK_MODE_MAX 2 1370 1371 /* implement the mptcp packet scheduler; 1372 * returns the subflow that will transmit the next DSS 1373 * additionally updates the rtx timeout 1374 */ 1375 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1376 { 1377 struct subflow_send_info send_info[SSK_MODE_MAX]; 1378 struct mptcp_subflow_context *subflow; 1379 struct sock *sk = (struct sock *)msk; 1380 u32 pace, burst, wmem; 1381 int i, nr_active = 0; 1382 struct sock *ssk; 1383 u64 linger_time; 1384 long tout = 0; 1385 1386 /* pick the subflow with the lower wmem/wspace ratio */ 1387 for (i = 0; i < SSK_MODE_MAX; ++i) { 1388 send_info[i].ssk = NULL; 1389 send_info[i].linger_time = -1; 1390 } 1391 1392 mptcp_for_each_subflow(msk, subflow) { 1393 trace_mptcp_subflow_get_send(subflow); 1394 ssk = mptcp_subflow_tcp_sock(subflow); 1395 if (!mptcp_subflow_active(subflow)) 1396 continue; 1397 1398 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1399 nr_active += !subflow->backup; 1400 pace = subflow->avg_pacing_rate; 1401 if (unlikely(!pace)) { 1402 /* init pacing rate from socket */ 1403 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1404 pace = subflow->avg_pacing_rate; 1405 if (!pace) 1406 continue; 1407 } 1408 1409 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1410 if (linger_time < send_info[subflow->backup].linger_time) { 1411 send_info[subflow->backup].ssk = ssk; 1412 send_info[subflow->backup].linger_time = linger_time; 1413 } 1414 } 1415 __mptcp_set_timeout(sk, tout); 1416 1417 /* pick the best backup if no other subflow is active */ 1418 if (!nr_active) 1419 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1420 1421 /* According to the blest algorithm, to avoid HoL blocking for the 1422 * faster flow, we need to: 1423 * - estimate the faster flow linger time 1424 * - use the above to estimate the amount of byte transferred 1425 * by the faster flow 1426 * - check that the amount of queued data is greter than the above, 1427 * otherwise do not use the picked, slower, subflow 1428 * We select the subflow with the shorter estimated time to flush 1429 * the queued mem, which basically ensure the above. We just need 1430 * to check that subflow has a non empty cwin. 1431 */ 1432 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1433 if (!ssk || !sk_stream_memory_free(ssk)) 1434 return NULL; 1435 1436 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1437 wmem = READ_ONCE(ssk->sk_wmem_queued); 1438 if (!burst) 1439 return ssk; 1440 1441 subflow = mptcp_subflow_ctx(ssk); 1442 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1443 READ_ONCE(ssk->sk_pacing_rate) * burst, 1444 burst + wmem); 1445 msk->snd_burst = burst; 1446 return ssk; 1447 } 1448 1449 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1450 { 1451 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1452 release_sock(ssk); 1453 } 1454 1455 static void mptcp_update_post_push(struct mptcp_sock *msk, 1456 struct mptcp_data_frag *dfrag, 1457 u32 sent) 1458 { 1459 u64 snd_nxt_new = dfrag->data_seq; 1460 1461 dfrag->already_sent += sent; 1462 1463 msk->snd_burst -= sent; 1464 1465 snd_nxt_new += dfrag->already_sent; 1466 1467 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1468 * is recovering after a failover. In that event, this re-sends 1469 * old segments. 1470 * 1471 * Thus compute snd_nxt_new candidate based on 1472 * the dfrag->data_seq that was sent and the data 1473 * that has been handed to the subflow for transmission 1474 * and skip update in case it was old dfrag. 1475 */ 1476 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1477 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1478 msk->snd_nxt = snd_nxt_new; 1479 } 1480 } 1481 1482 void mptcp_check_and_set_pending(struct sock *sk) 1483 { 1484 if (mptcp_send_head(sk)) 1485 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1486 } 1487 1488 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1489 struct mptcp_sendmsg_info *info) 1490 { 1491 struct mptcp_sock *msk = mptcp_sk(sk); 1492 struct mptcp_data_frag *dfrag; 1493 int len, copied = 0, err = 0; 1494 1495 while ((dfrag = mptcp_send_head(sk))) { 1496 info->sent = dfrag->already_sent; 1497 info->limit = dfrag->data_len; 1498 len = dfrag->data_len - dfrag->already_sent; 1499 while (len > 0) { 1500 int ret = 0; 1501 1502 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1503 if (ret <= 0) { 1504 err = copied ? : ret; 1505 goto out; 1506 } 1507 1508 info->sent += ret; 1509 copied += ret; 1510 len -= ret; 1511 1512 mptcp_update_post_push(msk, dfrag, ret); 1513 } 1514 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1515 1516 if (msk->snd_burst <= 0 || 1517 !sk_stream_memory_free(ssk) || 1518 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1519 err = copied; 1520 goto out; 1521 } 1522 mptcp_set_timeout(sk); 1523 } 1524 err = copied; 1525 1526 out: 1527 return err; 1528 } 1529 1530 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1531 { 1532 struct sock *prev_ssk = NULL, *ssk = NULL; 1533 struct mptcp_sock *msk = mptcp_sk(sk); 1534 struct mptcp_sendmsg_info info = { 1535 .flags = flags, 1536 }; 1537 bool do_check_data_fin = false; 1538 int push_count = 1; 1539 1540 while (mptcp_send_head(sk) && (push_count > 0)) { 1541 struct mptcp_subflow_context *subflow; 1542 int ret = 0; 1543 1544 if (mptcp_sched_get_send(msk)) 1545 break; 1546 1547 push_count = 0; 1548 1549 mptcp_for_each_subflow(msk, subflow) { 1550 if (READ_ONCE(subflow->scheduled)) { 1551 mptcp_subflow_set_scheduled(subflow, false); 1552 1553 prev_ssk = ssk; 1554 ssk = mptcp_subflow_tcp_sock(subflow); 1555 if (ssk != prev_ssk) { 1556 /* First check. If the ssk has changed since 1557 * the last round, release prev_ssk 1558 */ 1559 if (prev_ssk) 1560 mptcp_push_release(prev_ssk, &info); 1561 1562 /* Need to lock the new subflow only if different 1563 * from the previous one, otherwise we are still 1564 * helding the relevant lock 1565 */ 1566 lock_sock(ssk); 1567 } 1568 1569 push_count++; 1570 1571 ret = __subflow_push_pending(sk, ssk, &info); 1572 if (ret <= 0) { 1573 if (ret != -EAGAIN || 1574 (1 << ssk->sk_state) & 1575 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1576 push_count--; 1577 continue; 1578 } 1579 do_check_data_fin = true; 1580 } 1581 } 1582 } 1583 1584 /* at this point we held the socket lock for the last subflow we used */ 1585 if (ssk) 1586 mptcp_push_release(ssk, &info); 1587 1588 /* ensure the rtx timer is running */ 1589 if (!mptcp_timer_pending(sk)) 1590 mptcp_reset_timer(sk); 1591 if (do_check_data_fin) 1592 mptcp_check_send_data_fin(sk); 1593 } 1594 1595 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1596 { 1597 struct mptcp_sock *msk = mptcp_sk(sk); 1598 struct mptcp_sendmsg_info info = { 1599 .data_lock_held = true, 1600 }; 1601 bool keep_pushing = true; 1602 struct sock *xmit_ssk; 1603 int copied = 0; 1604 1605 info.flags = 0; 1606 while (mptcp_send_head(sk) && keep_pushing) { 1607 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1608 int ret = 0; 1609 1610 /* check for a different subflow usage only after 1611 * spooling the first chunk of data 1612 */ 1613 if (first) { 1614 mptcp_subflow_set_scheduled(subflow, false); 1615 ret = __subflow_push_pending(sk, ssk, &info); 1616 first = false; 1617 if (ret <= 0) 1618 break; 1619 copied += ret; 1620 continue; 1621 } 1622 1623 if (mptcp_sched_get_send(msk)) 1624 goto out; 1625 1626 if (READ_ONCE(subflow->scheduled)) { 1627 mptcp_subflow_set_scheduled(subflow, false); 1628 ret = __subflow_push_pending(sk, ssk, &info); 1629 if (ret <= 0) 1630 keep_pushing = false; 1631 copied += ret; 1632 } 1633 1634 mptcp_for_each_subflow(msk, subflow) { 1635 if (READ_ONCE(subflow->scheduled)) { 1636 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1637 if (xmit_ssk != ssk) { 1638 mptcp_subflow_delegate(subflow, 1639 MPTCP_DELEGATE_SEND); 1640 keep_pushing = false; 1641 } 1642 } 1643 } 1644 } 1645 1646 out: 1647 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1648 * not going to flush it via release_sock() 1649 */ 1650 if (copied) { 1651 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1652 info.size_goal); 1653 if (!mptcp_timer_pending(sk)) 1654 mptcp_reset_timer(sk); 1655 1656 if (msk->snd_data_fin_enable && 1657 msk->snd_nxt + 1 == msk->write_seq) 1658 mptcp_schedule_work(sk); 1659 } 1660 } 1661 1662 static void mptcp_set_nospace(struct sock *sk) 1663 { 1664 /* enable autotune */ 1665 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1666 1667 /* will be cleared on avail space */ 1668 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1669 } 1670 1671 static int mptcp_disconnect(struct sock *sk, int flags); 1672 1673 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1674 size_t len, int *copied_syn) 1675 { 1676 unsigned int saved_flags = msg->msg_flags; 1677 struct mptcp_sock *msk = mptcp_sk(sk); 1678 struct sock *ssk; 1679 int ret; 1680 1681 /* on flags based fastopen the mptcp is supposed to create the 1682 * first subflow right now. Otherwise we are in the defer_connect 1683 * path, and the first subflow must be already present. 1684 * Since the defer_connect flag is cleared after the first succsful 1685 * fastopen attempt, no need to check for additional subflow status. 1686 */ 1687 if (msg->msg_flags & MSG_FASTOPEN) { 1688 ssk = __mptcp_nmpc_sk(msk); 1689 if (IS_ERR(ssk)) 1690 return PTR_ERR(ssk); 1691 } 1692 if (!msk->first) 1693 return -EINVAL; 1694 1695 ssk = msk->first; 1696 1697 lock_sock(ssk); 1698 msg->msg_flags |= MSG_DONTWAIT; 1699 msk->fastopening = 1; 1700 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1701 msk->fastopening = 0; 1702 msg->msg_flags = saved_flags; 1703 release_sock(ssk); 1704 1705 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1706 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1707 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1708 msg->msg_namelen, msg->msg_flags, 1); 1709 1710 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1711 * case of any error, except timeout or signal 1712 */ 1713 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1714 *copied_syn = 0; 1715 } else if (ret && ret != -EINPROGRESS) { 1716 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1717 * __inet_stream_connect() can fail, due to looking check, 1718 * see mptcp_disconnect(). 1719 * Attempt it again outside the problematic scope. 1720 */ 1721 if (!mptcp_disconnect(sk, 0)) 1722 sk->sk_socket->state = SS_UNCONNECTED; 1723 } 1724 inet_clear_bit(DEFER_CONNECT, sk); 1725 1726 return ret; 1727 } 1728 1729 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1730 { 1731 struct mptcp_sock *msk = mptcp_sk(sk); 1732 struct page_frag *pfrag; 1733 size_t copied = 0; 1734 int ret = 0; 1735 long timeo; 1736 1737 /* silently ignore everything else */ 1738 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1739 1740 lock_sock(sk); 1741 1742 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1743 msg->msg_flags & MSG_FASTOPEN)) { 1744 int copied_syn = 0; 1745 1746 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1747 copied += copied_syn; 1748 if (ret == -EINPROGRESS && copied_syn > 0) 1749 goto out; 1750 else if (ret) 1751 goto do_error; 1752 } 1753 1754 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1755 1756 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1757 ret = sk_stream_wait_connect(sk, &timeo); 1758 if (ret) 1759 goto do_error; 1760 } 1761 1762 ret = -EPIPE; 1763 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1764 goto do_error; 1765 1766 pfrag = sk_page_frag(sk); 1767 1768 while (msg_data_left(msg)) { 1769 int total_ts, frag_truesize = 0; 1770 struct mptcp_data_frag *dfrag; 1771 bool dfrag_collapsed; 1772 size_t psize, offset; 1773 1774 /* reuse tail pfrag, if possible, or carve a new one from the 1775 * page allocator 1776 */ 1777 dfrag = mptcp_pending_tail(sk); 1778 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1779 if (!dfrag_collapsed) { 1780 if (!sk_stream_memory_free(sk)) 1781 goto wait_for_memory; 1782 1783 if (!mptcp_page_frag_refill(sk, pfrag)) 1784 goto wait_for_memory; 1785 1786 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1787 frag_truesize = dfrag->overhead; 1788 } 1789 1790 /* we do not bound vs wspace, to allow a single packet. 1791 * memory accounting will prevent execessive memory usage 1792 * anyway 1793 */ 1794 offset = dfrag->offset + dfrag->data_len; 1795 psize = pfrag->size - offset; 1796 psize = min_t(size_t, psize, msg_data_left(msg)); 1797 total_ts = psize + frag_truesize; 1798 1799 if (!sk_wmem_schedule(sk, total_ts)) 1800 goto wait_for_memory; 1801 1802 if (copy_page_from_iter(dfrag->page, offset, psize, 1803 &msg->msg_iter) != psize) { 1804 ret = -EFAULT; 1805 goto do_error; 1806 } 1807 1808 /* data successfully copied into the write queue */ 1809 sk_forward_alloc_add(sk, -total_ts); 1810 copied += psize; 1811 dfrag->data_len += psize; 1812 frag_truesize += psize; 1813 pfrag->offset += frag_truesize; 1814 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1815 1816 /* charge data on mptcp pending queue to the msk socket 1817 * Note: we charge such data both to sk and ssk 1818 */ 1819 sk_wmem_queued_add(sk, frag_truesize); 1820 if (!dfrag_collapsed) { 1821 get_page(dfrag->page); 1822 list_add_tail(&dfrag->list, &msk->rtx_queue); 1823 if (!msk->first_pending) 1824 WRITE_ONCE(msk->first_pending, dfrag); 1825 } 1826 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1827 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1828 !dfrag_collapsed); 1829 1830 continue; 1831 1832 wait_for_memory: 1833 mptcp_set_nospace(sk); 1834 __mptcp_push_pending(sk, msg->msg_flags); 1835 ret = sk_stream_wait_memory(sk, &timeo); 1836 if (ret) 1837 goto do_error; 1838 } 1839 1840 if (copied) 1841 __mptcp_push_pending(sk, msg->msg_flags); 1842 1843 out: 1844 release_sock(sk); 1845 return copied; 1846 1847 do_error: 1848 if (copied) 1849 goto out; 1850 1851 copied = sk_stream_error(sk, msg->msg_flags, ret); 1852 goto out; 1853 } 1854 1855 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1856 struct msghdr *msg, 1857 size_t len, int flags, 1858 struct scm_timestamping_internal *tss, 1859 int *cmsg_flags) 1860 { 1861 struct sk_buff *skb, *tmp; 1862 int copied = 0; 1863 1864 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1865 u32 offset = MPTCP_SKB_CB(skb)->offset; 1866 u32 data_len = skb->len - offset; 1867 u32 count = min_t(size_t, len - copied, data_len); 1868 int err; 1869 1870 if (!(flags & MSG_TRUNC)) { 1871 err = skb_copy_datagram_msg(skb, offset, msg, count); 1872 if (unlikely(err < 0)) { 1873 if (!copied) 1874 return err; 1875 break; 1876 } 1877 } 1878 1879 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1880 tcp_update_recv_tstamps(skb, tss); 1881 *cmsg_flags |= MPTCP_CMSG_TS; 1882 } 1883 1884 copied += count; 1885 1886 if (count < data_len) { 1887 if (!(flags & MSG_PEEK)) { 1888 MPTCP_SKB_CB(skb)->offset += count; 1889 MPTCP_SKB_CB(skb)->map_seq += count; 1890 } 1891 break; 1892 } 1893 1894 if (!(flags & MSG_PEEK)) { 1895 /* we will bulk release the skb memory later */ 1896 skb->destructor = NULL; 1897 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1898 __skb_unlink(skb, &msk->receive_queue); 1899 __kfree_skb(skb); 1900 } 1901 1902 if (copied >= len) 1903 break; 1904 } 1905 1906 return copied; 1907 } 1908 1909 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1910 * 1911 * Only difference: Use highest rtt estimate of the subflows in use. 1912 */ 1913 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1914 { 1915 struct mptcp_subflow_context *subflow; 1916 struct sock *sk = (struct sock *)msk; 1917 u8 scaling_ratio = U8_MAX; 1918 u32 time, advmss = 1; 1919 u64 rtt_us, mstamp; 1920 1921 msk_owned_by_me(msk); 1922 1923 if (copied <= 0) 1924 return; 1925 1926 msk->rcvq_space.copied += copied; 1927 1928 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1929 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1930 1931 rtt_us = msk->rcvq_space.rtt_us; 1932 if (rtt_us && time < (rtt_us >> 3)) 1933 return; 1934 1935 rtt_us = 0; 1936 mptcp_for_each_subflow(msk, subflow) { 1937 const struct tcp_sock *tp; 1938 u64 sf_rtt_us; 1939 u32 sf_advmss; 1940 1941 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1942 1943 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1944 sf_advmss = READ_ONCE(tp->advmss); 1945 1946 rtt_us = max(sf_rtt_us, rtt_us); 1947 advmss = max(sf_advmss, advmss); 1948 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1949 } 1950 1951 msk->rcvq_space.rtt_us = rtt_us; 1952 msk->scaling_ratio = scaling_ratio; 1953 if (time < (rtt_us >> 3) || rtt_us == 0) 1954 return; 1955 1956 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1957 goto new_measure; 1958 1959 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1960 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1961 u64 rcvwin, grow; 1962 int rcvbuf; 1963 1964 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1965 1966 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1967 1968 do_div(grow, msk->rcvq_space.space); 1969 rcvwin += (grow << 1); 1970 1971 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 1972 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1973 1974 if (rcvbuf > sk->sk_rcvbuf) { 1975 u32 window_clamp; 1976 1977 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 1978 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1979 1980 /* Make subflows follow along. If we do not do this, we 1981 * get drops at subflow level if skbs can't be moved to 1982 * the mptcp rx queue fast enough (announced rcv_win can 1983 * exceed ssk->sk_rcvbuf). 1984 */ 1985 mptcp_for_each_subflow(msk, subflow) { 1986 struct sock *ssk; 1987 bool slow; 1988 1989 ssk = mptcp_subflow_tcp_sock(subflow); 1990 slow = lock_sock_fast(ssk); 1991 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1992 tcp_sk(ssk)->window_clamp = window_clamp; 1993 tcp_cleanup_rbuf(ssk, 1); 1994 unlock_sock_fast(ssk, slow); 1995 } 1996 } 1997 } 1998 1999 msk->rcvq_space.space = msk->rcvq_space.copied; 2000 new_measure: 2001 msk->rcvq_space.copied = 0; 2002 msk->rcvq_space.time = mstamp; 2003 } 2004 2005 static void __mptcp_update_rmem(struct sock *sk) 2006 { 2007 struct mptcp_sock *msk = mptcp_sk(sk); 2008 2009 if (!msk->rmem_released) 2010 return; 2011 2012 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2013 mptcp_rmem_uncharge(sk, msk->rmem_released); 2014 WRITE_ONCE(msk->rmem_released, 0); 2015 } 2016 2017 static void __mptcp_splice_receive_queue(struct sock *sk) 2018 { 2019 struct mptcp_sock *msk = mptcp_sk(sk); 2020 2021 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2022 } 2023 2024 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2025 { 2026 struct sock *sk = (struct sock *)msk; 2027 unsigned int moved = 0; 2028 bool ret, done; 2029 2030 do { 2031 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2032 bool slowpath; 2033 2034 /* we can have data pending in the subflows only if the msk 2035 * receive buffer was full at subflow_data_ready() time, 2036 * that is an unlikely slow path. 2037 */ 2038 if (likely(!ssk)) 2039 break; 2040 2041 slowpath = lock_sock_fast(ssk); 2042 mptcp_data_lock(sk); 2043 __mptcp_update_rmem(sk); 2044 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2045 mptcp_data_unlock(sk); 2046 2047 if (unlikely(ssk->sk_err)) 2048 __mptcp_error_report(sk); 2049 unlock_sock_fast(ssk, slowpath); 2050 } while (!done); 2051 2052 /* acquire the data lock only if some input data is pending */ 2053 ret = moved > 0; 2054 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2055 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2056 mptcp_data_lock(sk); 2057 __mptcp_update_rmem(sk); 2058 ret |= __mptcp_ofo_queue(msk); 2059 __mptcp_splice_receive_queue(sk); 2060 mptcp_data_unlock(sk); 2061 } 2062 if (ret) 2063 mptcp_check_data_fin((struct sock *)msk); 2064 return !skb_queue_empty(&msk->receive_queue); 2065 } 2066 2067 static unsigned int mptcp_inq_hint(const struct sock *sk) 2068 { 2069 const struct mptcp_sock *msk = mptcp_sk(sk); 2070 const struct sk_buff *skb; 2071 2072 skb = skb_peek(&msk->receive_queue); 2073 if (skb) { 2074 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2075 2076 if (hint_val >= INT_MAX) 2077 return INT_MAX; 2078 2079 return (unsigned int)hint_val; 2080 } 2081 2082 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2083 return 1; 2084 2085 return 0; 2086 } 2087 2088 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2089 int flags, int *addr_len) 2090 { 2091 struct mptcp_sock *msk = mptcp_sk(sk); 2092 struct scm_timestamping_internal tss; 2093 int copied = 0, cmsg_flags = 0; 2094 int target; 2095 long timeo; 2096 2097 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2098 if (unlikely(flags & MSG_ERRQUEUE)) 2099 return inet_recv_error(sk, msg, len, addr_len); 2100 2101 lock_sock(sk); 2102 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2103 copied = -ENOTCONN; 2104 goto out_err; 2105 } 2106 2107 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2108 2109 len = min_t(size_t, len, INT_MAX); 2110 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2111 2112 if (unlikely(msk->recvmsg_inq)) 2113 cmsg_flags = MPTCP_CMSG_INQ; 2114 2115 while (copied < len) { 2116 int bytes_read; 2117 2118 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2119 if (unlikely(bytes_read < 0)) { 2120 if (!copied) 2121 copied = bytes_read; 2122 goto out_err; 2123 } 2124 2125 copied += bytes_read; 2126 2127 /* be sure to advertise window change */ 2128 mptcp_cleanup_rbuf(msk); 2129 2130 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2131 continue; 2132 2133 /* only the master socket status is relevant here. The exit 2134 * conditions mirror closely tcp_recvmsg() 2135 */ 2136 if (copied >= target) 2137 break; 2138 2139 if (copied) { 2140 if (sk->sk_err || 2141 sk->sk_state == TCP_CLOSE || 2142 (sk->sk_shutdown & RCV_SHUTDOWN) || 2143 !timeo || 2144 signal_pending(current)) 2145 break; 2146 } else { 2147 if (sk->sk_err) { 2148 copied = sock_error(sk); 2149 break; 2150 } 2151 2152 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2153 /* race breaker: the shutdown could be after the 2154 * previous receive queue check 2155 */ 2156 if (__mptcp_move_skbs(msk)) 2157 continue; 2158 break; 2159 } 2160 2161 if (sk->sk_state == TCP_CLOSE) { 2162 copied = -ENOTCONN; 2163 break; 2164 } 2165 2166 if (!timeo) { 2167 copied = -EAGAIN; 2168 break; 2169 } 2170 2171 if (signal_pending(current)) { 2172 copied = sock_intr_errno(timeo); 2173 break; 2174 } 2175 } 2176 2177 pr_debug("block timeout %ld", timeo); 2178 sk_wait_data(sk, &timeo, NULL); 2179 } 2180 2181 out_err: 2182 if (cmsg_flags && copied >= 0) { 2183 if (cmsg_flags & MPTCP_CMSG_TS) 2184 tcp_recv_timestamp(msg, sk, &tss); 2185 2186 if (cmsg_flags & MPTCP_CMSG_INQ) { 2187 unsigned int inq = mptcp_inq_hint(sk); 2188 2189 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2190 } 2191 } 2192 2193 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2194 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2195 skb_queue_empty(&msk->receive_queue), copied); 2196 if (!(flags & MSG_PEEK)) 2197 mptcp_rcv_space_adjust(msk, copied); 2198 2199 release_sock(sk); 2200 return copied; 2201 } 2202 2203 static void mptcp_retransmit_timer(struct timer_list *t) 2204 { 2205 struct inet_connection_sock *icsk = from_timer(icsk, t, 2206 icsk_retransmit_timer); 2207 struct sock *sk = &icsk->icsk_inet.sk; 2208 struct mptcp_sock *msk = mptcp_sk(sk); 2209 2210 bh_lock_sock(sk); 2211 if (!sock_owned_by_user(sk)) { 2212 /* we need a process context to retransmit */ 2213 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2214 mptcp_schedule_work(sk); 2215 } else { 2216 /* delegate our work to tcp_release_cb() */ 2217 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2218 } 2219 bh_unlock_sock(sk); 2220 sock_put(sk); 2221 } 2222 2223 static void mptcp_timeout_timer(struct timer_list *t) 2224 { 2225 struct sock *sk = from_timer(sk, t, sk_timer); 2226 2227 mptcp_schedule_work(sk); 2228 sock_put(sk); 2229 } 2230 2231 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2232 * level. 2233 * 2234 * A backup subflow is returned only if that is the only kind available. 2235 */ 2236 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2237 { 2238 struct sock *backup = NULL, *pick = NULL; 2239 struct mptcp_subflow_context *subflow; 2240 int min_stale_count = INT_MAX; 2241 2242 mptcp_for_each_subflow(msk, subflow) { 2243 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2244 2245 if (!__mptcp_subflow_active(subflow)) 2246 continue; 2247 2248 /* still data outstanding at TCP level? skip this */ 2249 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2250 mptcp_pm_subflow_chk_stale(msk, ssk); 2251 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2252 continue; 2253 } 2254 2255 if (subflow->backup) { 2256 if (!backup) 2257 backup = ssk; 2258 continue; 2259 } 2260 2261 if (!pick) 2262 pick = ssk; 2263 } 2264 2265 if (pick) 2266 return pick; 2267 2268 /* use backup only if there are no progresses anywhere */ 2269 return min_stale_count > 1 ? backup : NULL; 2270 } 2271 2272 bool __mptcp_retransmit_pending_data(struct sock *sk) 2273 { 2274 struct mptcp_data_frag *cur, *rtx_head; 2275 struct mptcp_sock *msk = mptcp_sk(sk); 2276 2277 if (__mptcp_check_fallback(msk)) 2278 return false; 2279 2280 if (tcp_rtx_and_write_queues_empty(sk)) 2281 return false; 2282 2283 /* the closing socket has some data untransmitted and/or unacked: 2284 * some data in the mptcp rtx queue has not really xmitted yet. 2285 * keep it simple and re-inject the whole mptcp level rtx queue 2286 */ 2287 mptcp_data_lock(sk); 2288 __mptcp_clean_una_wakeup(sk); 2289 rtx_head = mptcp_rtx_head(sk); 2290 if (!rtx_head) { 2291 mptcp_data_unlock(sk); 2292 return false; 2293 } 2294 2295 msk->recovery_snd_nxt = msk->snd_nxt; 2296 msk->recovery = true; 2297 mptcp_data_unlock(sk); 2298 2299 msk->first_pending = rtx_head; 2300 msk->snd_burst = 0; 2301 2302 /* be sure to clear the "sent status" on all re-injected fragments */ 2303 list_for_each_entry(cur, &msk->rtx_queue, list) { 2304 if (!cur->already_sent) 2305 break; 2306 cur->already_sent = 0; 2307 } 2308 2309 return true; 2310 } 2311 2312 /* flags for __mptcp_close_ssk() */ 2313 #define MPTCP_CF_PUSH BIT(1) 2314 #define MPTCP_CF_FASTCLOSE BIT(2) 2315 2316 /* subflow sockets can be either outgoing (connect) or incoming 2317 * (accept). 2318 * 2319 * Outgoing subflows use in-kernel sockets. 2320 * Incoming subflows do not have their own 'struct socket' allocated, 2321 * so we need to use tcp_close() after detaching them from the mptcp 2322 * parent socket. 2323 */ 2324 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2325 struct mptcp_subflow_context *subflow, 2326 unsigned int flags) 2327 { 2328 struct mptcp_sock *msk = mptcp_sk(sk); 2329 bool dispose_it, need_push = false; 2330 2331 /* If the first subflow moved to a close state before accept, e.g. due 2332 * to an incoming reset, mptcp either: 2333 * - if either the subflow or the msk are dead, destroy the context 2334 * (the subflow socket is deleted by inet_child_forget) and the msk 2335 * - otherwise do nothing at the moment and take action at accept and/or 2336 * listener shutdown - user-space must be able to accept() the closed 2337 * socket. 2338 */ 2339 if (msk->in_accept_queue && msk->first == ssk) { 2340 if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD)) 2341 return; 2342 2343 /* ensure later check in mptcp_worker() will dispose the msk */ 2344 sock_set_flag(sk, SOCK_DEAD); 2345 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2346 mptcp_subflow_drop_ctx(ssk); 2347 goto out_release; 2348 } 2349 2350 dispose_it = msk->free_first || ssk != msk->first; 2351 if (dispose_it) 2352 list_del(&subflow->node); 2353 2354 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2355 2356 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2357 /* be sure to force the tcp_disconnect() path, 2358 * to generate the egress reset 2359 */ 2360 ssk->sk_lingertime = 0; 2361 sock_set_flag(ssk, SOCK_LINGER); 2362 subflow->send_fastclose = 1; 2363 } 2364 2365 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2366 if (!dispose_it) { 2367 /* The MPTCP code never wait on the subflow sockets, TCP-level 2368 * disconnect should never fail 2369 */ 2370 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2371 mptcp_subflow_ctx_reset(subflow); 2372 release_sock(ssk); 2373 2374 goto out; 2375 } 2376 2377 subflow->disposable = 1; 2378 2379 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2380 * the ssk has been already destroyed, we just need to release the 2381 * reference owned by msk; 2382 */ 2383 if (!inet_csk(ssk)->icsk_ulp_ops) { 2384 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2385 kfree_rcu(subflow, rcu); 2386 } else { 2387 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2388 __tcp_close(ssk, 0); 2389 2390 /* close acquired an extra ref */ 2391 __sock_put(ssk); 2392 } 2393 2394 out_release: 2395 release_sock(ssk); 2396 2397 sock_put(ssk); 2398 2399 if (ssk == msk->first) 2400 WRITE_ONCE(msk->first, NULL); 2401 2402 out: 2403 if (need_push) 2404 __mptcp_push_pending(sk, 0); 2405 } 2406 2407 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2408 struct mptcp_subflow_context *subflow) 2409 { 2410 if (sk->sk_state == TCP_ESTABLISHED) 2411 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2412 2413 /* subflow aborted before reaching the fully_established status 2414 * attempt the creation of the next subflow 2415 */ 2416 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2417 2418 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2419 } 2420 2421 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2422 { 2423 return 0; 2424 } 2425 2426 static void __mptcp_close_subflow(struct sock *sk) 2427 { 2428 struct mptcp_subflow_context *subflow, *tmp; 2429 struct mptcp_sock *msk = mptcp_sk(sk); 2430 2431 might_sleep(); 2432 2433 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2434 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2435 2436 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2437 continue; 2438 2439 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2440 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2441 continue; 2442 2443 mptcp_close_ssk(sk, ssk, subflow); 2444 } 2445 2446 } 2447 2448 static bool mptcp_should_close(const struct sock *sk) 2449 { 2450 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2451 struct mptcp_subflow_context *subflow; 2452 2453 if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue) 2454 return true; 2455 2456 /* if all subflows are in closed status don't bother with additional 2457 * timeout 2458 */ 2459 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2460 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2461 TCP_CLOSE) 2462 return false; 2463 } 2464 return true; 2465 } 2466 2467 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2468 { 2469 struct mptcp_subflow_context *subflow, *tmp; 2470 struct sock *sk = (struct sock *)msk; 2471 2472 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2473 return; 2474 2475 mptcp_token_destroy(msk); 2476 2477 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2478 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2479 bool slow; 2480 2481 slow = lock_sock_fast(tcp_sk); 2482 if (tcp_sk->sk_state != TCP_CLOSE) { 2483 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2484 tcp_set_state(tcp_sk, TCP_CLOSE); 2485 } 2486 unlock_sock_fast(tcp_sk, slow); 2487 } 2488 2489 /* Mirror the tcp_reset() error propagation */ 2490 switch (sk->sk_state) { 2491 case TCP_SYN_SENT: 2492 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2493 break; 2494 case TCP_CLOSE_WAIT: 2495 WRITE_ONCE(sk->sk_err, EPIPE); 2496 break; 2497 case TCP_CLOSE: 2498 return; 2499 default: 2500 WRITE_ONCE(sk->sk_err, ECONNRESET); 2501 } 2502 2503 inet_sk_state_store(sk, TCP_CLOSE); 2504 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2505 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2506 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2507 2508 /* the calling mptcp_worker will properly destroy the socket */ 2509 if (sock_flag(sk, SOCK_DEAD)) 2510 return; 2511 2512 sk->sk_state_change(sk); 2513 sk_error_report(sk); 2514 } 2515 2516 static void __mptcp_retrans(struct sock *sk) 2517 { 2518 struct mptcp_sock *msk = mptcp_sk(sk); 2519 struct mptcp_subflow_context *subflow; 2520 struct mptcp_sendmsg_info info = {}; 2521 struct mptcp_data_frag *dfrag; 2522 struct sock *ssk; 2523 int ret, err; 2524 u16 len = 0; 2525 2526 mptcp_clean_una_wakeup(sk); 2527 2528 /* first check ssk: need to kick "stale" logic */ 2529 err = mptcp_sched_get_retrans(msk); 2530 dfrag = mptcp_rtx_head(sk); 2531 if (!dfrag) { 2532 if (mptcp_data_fin_enabled(msk)) { 2533 struct inet_connection_sock *icsk = inet_csk(sk); 2534 2535 icsk->icsk_retransmits++; 2536 mptcp_set_datafin_timeout(sk); 2537 mptcp_send_ack(msk); 2538 2539 goto reset_timer; 2540 } 2541 2542 if (!mptcp_send_head(sk)) 2543 return; 2544 2545 goto reset_timer; 2546 } 2547 2548 if (err) 2549 goto reset_timer; 2550 2551 mptcp_for_each_subflow(msk, subflow) { 2552 if (READ_ONCE(subflow->scheduled)) { 2553 u16 copied = 0; 2554 2555 mptcp_subflow_set_scheduled(subflow, false); 2556 2557 ssk = mptcp_subflow_tcp_sock(subflow); 2558 2559 lock_sock(ssk); 2560 2561 /* limit retransmission to the bytes already sent on some subflows */ 2562 info.sent = 0; 2563 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2564 dfrag->already_sent; 2565 while (info.sent < info.limit) { 2566 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2567 if (ret <= 0) 2568 break; 2569 2570 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2571 copied += ret; 2572 info.sent += ret; 2573 } 2574 if (copied) { 2575 len = max(copied, len); 2576 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2577 info.size_goal); 2578 WRITE_ONCE(msk->allow_infinite_fallback, false); 2579 } 2580 2581 release_sock(ssk); 2582 } 2583 } 2584 2585 msk->bytes_retrans += len; 2586 dfrag->already_sent = max(dfrag->already_sent, len); 2587 2588 reset_timer: 2589 mptcp_check_and_set_pending(sk); 2590 2591 if (!mptcp_timer_pending(sk)) 2592 mptcp_reset_timer(sk); 2593 } 2594 2595 /* schedule the timeout timer for the relevant event: either close timeout 2596 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2597 */ 2598 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2599 { 2600 struct sock *sk = (struct sock *)msk; 2601 unsigned long timeout, close_timeout; 2602 2603 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2604 return; 2605 2606 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2607 2608 /* the close timeout takes precedence on the fail one, and here at least one of 2609 * them is active 2610 */ 2611 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2612 2613 sk_reset_timer(sk, &sk->sk_timer, timeout); 2614 } 2615 2616 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2617 { 2618 struct sock *ssk = msk->first; 2619 bool slow; 2620 2621 if (!ssk) 2622 return; 2623 2624 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2625 2626 slow = lock_sock_fast(ssk); 2627 mptcp_subflow_reset(ssk); 2628 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2629 unlock_sock_fast(ssk, slow); 2630 2631 mptcp_reset_timeout(msk, 0); 2632 } 2633 2634 static void mptcp_do_fastclose(struct sock *sk) 2635 { 2636 struct mptcp_subflow_context *subflow, *tmp; 2637 struct mptcp_sock *msk = mptcp_sk(sk); 2638 2639 inet_sk_state_store(sk, TCP_CLOSE); 2640 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2641 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2642 subflow, MPTCP_CF_FASTCLOSE); 2643 } 2644 2645 static void mptcp_worker(struct work_struct *work) 2646 { 2647 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2648 struct sock *sk = (struct sock *)msk; 2649 unsigned long fail_tout; 2650 int state; 2651 2652 lock_sock(sk); 2653 state = sk->sk_state; 2654 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2655 goto unlock; 2656 2657 mptcp_check_fastclose(msk); 2658 2659 mptcp_pm_nl_work(msk); 2660 2661 mptcp_check_send_data_fin(sk); 2662 mptcp_check_data_fin_ack(sk); 2663 mptcp_check_data_fin(sk); 2664 2665 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2666 __mptcp_close_subflow(sk); 2667 2668 /* There is no point in keeping around an orphaned sk timedout or 2669 * closed, but we need the msk around to reply to incoming DATA_FIN, 2670 * even if it is orphaned and in FIN_WAIT2 state 2671 */ 2672 if (sock_flag(sk, SOCK_DEAD)) { 2673 if (mptcp_should_close(sk)) 2674 mptcp_do_fastclose(sk); 2675 2676 if (sk->sk_state == TCP_CLOSE) { 2677 __mptcp_destroy_sock(sk); 2678 goto unlock; 2679 } 2680 } 2681 2682 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2683 __mptcp_retrans(sk); 2684 2685 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2686 if (fail_tout && time_after(jiffies, fail_tout)) 2687 mptcp_mp_fail_no_response(msk); 2688 2689 unlock: 2690 release_sock(sk); 2691 sock_put(sk); 2692 } 2693 2694 static void __mptcp_init_sock(struct sock *sk) 2695 { 2696 struct mptcp_sock *msk = mptcp_sk(sk); 2697 2698 INIT_LIST_HEAD(&msk->conn_list); 2699 INIT_LIST_HEAD(&msk->join_list); 2700 INIT_LIST_HEAD(&msk->rtx_queue); 2701 INIT_WORK(&msk->work, mptcp_worker); 2702 __skb_queue_head_init(&msk->receive_queue); 2703 msk->out_of_order_queue = RB_ROOT; 2704 msk->first_pending = NULL; 2705 msk->rmem_fwd_alloc = 0; 2706 WRITE_ONCE(msk->rmem_released, 0); 2707 msk->timer_ival = TCP_RTO_MIN; 2708 2709 WRITE_ONCE(msk->first, NULL); 2710 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2711 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2712 WRITE_ONCE(msk->allow_infinite_fallback, true); 2713 msk->recovery = false; 2714 msk->subflow_id = 1; 2715 2716 mptcp_pm_data_init(msk); 2717 2718 /* re-use the csk retrans timer for MPTCP-level retrans */ 2719 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2720 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2721 } 2722 2723 static void mptcp_ca_reset(struct sock *sk) 2724 { 2725 struct inet_connection_sock *icsk = inet_csk(sk); 2726 2727 tcp_assign_congestion_control(sk); 2728 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2729 2730 /* no need to keep a reference to the ops, the name will suffice */ 2731 tcp_cleanup_congestion_control(sk); 2732 icsk->icsk_ca_ops = NULL; 2733 } 2734 2735 static int mptcp_init_sock(struct sock *sk) 2736 { 2737 struct net *net = sock_net(sk); 2738 int ret; 2739 2740 __mptcp_init_sock(sk); 2741 2742 if (!mptcp_is_enabled(net)) 2743 return -ENOPROTOOPT; 2744 2745 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2746 return -ENOMEM; 2747 2748 ret = mptcp_init_sched(mptcp_sk(sk), 2749 mptcp_sched_find(mptcp_get_scheduler(net))); 2750 if (ret) 2751 return ret; 2752 2753 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2754 2755 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2756 * propagate the correct value 2757 */ 2758 mptcp_ca_reset(sk); 2759 2760 sk_sockets_allocated_inc(sk); 2761 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2762 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2763 2764 return 0; 2765 } 2766 2767 static void __mptcp_clear_xmit(struct sock *sk) 2768 { 2769 struct mptcp_sock *msk = mptcp_sk(sk); 2770 struct mptcp_data_frag *dtmp, *dfrag; 2771 2772 WRITE_ONCE(msk->first_pending, NULL); 2773 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2774 dfrag_clear(sk, dfrag); 2775 } 2776 2777 void mptcp_cancel_work(struct sock *sk) 2778 { 2779 struct mptcp_sock *msk = mptcp_sk(sk); 2780 2781 if (cancel_work_sync(&msk->work)) 2782 __sock_put(sk); 2783 } 2784 2785 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2786 { 2787 lock_sock(ssk); 2788 2789 switch (ssk->sk_state) { 2790 case TCP_LISTEN: 2791 if (!(how & RCV_SHUTDOWN)) 2792 break; 2793 fallthrough; 2794 case TCP_SYN_SENT: 2795 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2796 break; 2797 default: 2798 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2799 pr_debug("Fallback"); 2800 ssk->sk_shutdown |= how; 2801 tcp_shutdown(ssk, how); 2802 2803 /* simulate the data_fin ack reception to let the state 2804 * machine move forward 2805 */ 2806 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2807 mptcp_schedule_work(sk); 2808 } else { 2809 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2810 tcp_send_ack(ssk); 2811 if (!mptcp_timer_pending(sk)) 2812 mptcp_reset_timer(sk); 2813 } 2814 break; 2815 } 2816 2817 release_sock(ssk); 2818 } 2819 2820 static const unsigned char new_state[16] = { 2821 /* current state: new state: action: */ 2822 [0 /* (Invalid) */] = TCP_CLOSE, 2823 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2824 [TCP_SYN_SENT] = TCP_CLOSE, 2825 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2826 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2827 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2828 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2829 [TCP_CLOSE] = TCP_CLOSE, 2830 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2831 [TCP_LAST_ACK] = TCP_LAST_ACK, 2832 [TCP_LISTEN] = TCP_CLOSE, 2833 [TCP_CLOSING] = TCP_CLOSING, 2834 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2835 }; 2836 2837 static int mptcp_close_state(struct sock *sk) 2838 { 2839 int next = (int)new_state[sk->sk_state]; 2840 int ns = next & TCP_STATE_MASK; 2841 2842 inet_sk_state_store(sk, ns); 2843 2844 return next & TCP_ACTION_FIN; 2845 } 2846 2847 static void mptcp_check_send_data_fin(struct sock *sk) 2848 { 2849 struct mptcp_subflow_context *subflow; 2850 struct mptcp_sock *msk = mptcp_sk(sk); 2851 2852 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2853 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2854 msk->snd_nxt, msk->write_seq); 2855 2856 /* we still need to enqueue subflows or not really shutting down, 2857 * skip this 2858 */ 2859 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2860 mptcp_send_head(sk)) 2861 return; 2862 2863 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2864 2865 mptcp_for_each_subflow(msk, subflow) { 2866 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2867 2868 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2869 } 2870 } 2871 2872 static void __mptcp_wr_shutdown(struct sock *sk) 2873 { 2874 struct mptcp_sock *msk = mptcp_sk(sk); 2875 2876 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2877 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2878 !!mptcp_send_head(sk)); 2879 2880 /* will be ignored by fallback sockets */ 2881 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2882 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2883 2884 mptcp_check_send_data_fin(sk); 2885 } 2886 2887 static void __mptcp_destroy_sock(struct sock *sk) 2888 { 2889 struct mptcp_sock *msk = mptcp_sk(sk); 2890 2891 pr_debug("msk=%p", msk); 2892 2893 might_sleep(); 2894 2895 mptcp_stop_timer(sk); 2896 sk_stop_timer(sk, &sk->sk_timer); 2897 msk->pm.status = 0; 2898 mptcp_release_sched(msk); 2899 2900 sk->sk_prot->destroy(sk); 2901 2902 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2903 WARN_ON_ONCE(msk->rmem_released); 2904 sk_stream_kill_queues(sk); 2905 xfrm_sk_free_policy(sk); 2906 2907 sock_put(sk); 2908 } 2909 2910 void __mptcp_unaccepted_force_close(struct sock *sk) 2911 { 2912 sock_set_flag(sk, SOCK_DEAD); 2913 mptcp_do_fastclose(sk); 2914 __mptcp_destroy_sock(sk); 2915 } 2916 2917 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2918 { 2919 /* Concurrent splices from sk_receive_queue into receive_queue will 2920 * always show at least one non-empty queue when checked in this order. 2921 */ 2922 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2923 skb_queue_empty_lockless(&msk->receive_queue)) 2924 return 0; 2925 2926 return EPOLLIN | EPOLLRDNORM; 2927 } 2928 2929 static void mptcp_check_listen_stop(struct sock *sk) 2930 { 2931 struct sock *ssk; 2932 2933 if (inet_sk_state_load(sk) != TCP_LISTEN) 2934 return; 2935 2936 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2937 ssk = mptcp_sk(sk)->first; 2938 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2939 return; 2940 2941 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2942 tcp_set_state(ssk, TCP_CLOSE); 2943 mptcp_subflow_queue_clean(sk, ssk); 2944 inet_csk_listen_stop(ssk); 2945 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 2946 release_sock(ssk); 2947 } 2948 2949 bool __mptcp_close(struct sock *sk, long timeout) 2950 { 2951 struct mptcp_subflow_context *subflow; 2952 struct mptcp_sock *msk = mptcp_sk(sk); 2953 bool do_cancel_work = false; 2954 int subflows_alive = 0; 2955 2956 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2957 2958 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2959 mptcp_check_listen_stop(sk); 2960 inet_sk_state_store(sk, TCP_CLOSE); 2961 goto cleanup; 2962 } 2963 2964 if (mptcp_check_readable(msk) || timeout < 0) { 2965 /* If the msk has read data, or the caller explicitly ask it, 2966 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 2967 */ 2968 mptcp_do_fastclose(sk); 2969 timeout = 0; 2970 } else if (mptcp_close_state(sk)) { 2971 __mptcp_wr_shutdown(sk); 2972 } 2973 2974 sk_stream_wait_close(sk, timeout); 2975 2976 cleanup: 2977 /* orphan all the subflows */ 2978 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2979 mptcp_for_each_subflow(msk, subflow) { 2980 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2981 bool slow = lock_sock_fast_nested(ssk); 2982 2983 subflows_alive += ssk->sk_state != TCP_CLOSE; 2984 2985 /* since the close timeout takes precedence on the fail one, 2986 * cancel the latter 2987 */ 2988 if (ssk == msk->first) 2989 subflow->fail_tout = 0; 2990 2991 /* detach from the parent socket, but allow data_ready to 2992 * push incoming data into the mptcp stack, to properly ack it 2993 */ 2994 ssk->sk_socket = NULL; 2995 ssk->sk_wq = NULL; 2996 unlock_sock_fast(ssk, slow); 2997 } 2998 sock_orphan(sk); 2999 3000 /* all the subflows are closed, only timeout can change the msk 3001 * state, let's not keep resources busy for no reasons 3002 */ 3003 if (subflows_alive == 0) 3004 inet_sk_state_store(sk, TCP_CLOSE); 3005 3006 sock_hold(sk); 3007 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3008 if (msk->token) 3009 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3010 3011 if (sk->sk_state == TCP_CLOSE) { 3012 __mptcp_destroy_sock(sk); 3013 do_cancel_work = true; 3014 } else { 3015 mptcp_reset_timeout(msk, 0); 3016 } 3017 3018 return do_cancel_work; 3019 } 3020 3021 static void mptcp_close(struct sock *sk, long timeout) 3022 { 3023 bool do_cancel_work; 3024 3025 lock_sock(sk); 3026 3027 do_cancel_work = __mptcp_close(sk, timeout); 3028 release_sock(sk); 3029 if (do_cancel_work) 3030 mptcp_cancel_work(sk); 3031 3032 sock_put(sk); 3033 } 3034 3035 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3036 { 3037 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3038 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3039 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3040 3041 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3042 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3043 3044 if (msk6 && ssk6) { 3045 msk6->saddr = ssk6->saddr; 3046 msk6->flow_label = ssk6->flow_label; 3047 } 3048 #endif 3049 3050 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3051 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3052 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3053 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3054 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3055 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3056 } 3057 3058 static int mptcp_disconnect(struct sock *sk, int flags) 3059 { 3060 struct mptcp_sock *msk = mptcp_sk(sk); 3061 3062 /* Deny disconnect if other threads are blocked in sk_wait_event() 3063 * or inet_wait_for_connect(). 3064 */ 3065 if (sk->sk_wait_pending) 3066 return -EBUSY; 3067 3068 /* We are on the fastopen error path. We can't call straight into the 3069 * subflows cleanup code due to lock nesting (we are already under 3070 * msk->firstsocket lock). 3071 */ 3072 if (msk->fastopening) 3073 return -EBUSY; 3074 3075 mptcp_check_listen_stop(sk); 3076 inet_sk_state_store(sk, TCP_CLOSE); 3077 3078 mptcp_stop_timer(sk); 3079 sk_stop_timer(sk, &sk->sk_timer); 3080 3081 if (msk->token) 3082 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3083 3084 /* msk->subflow is still intact, the following will not free the first 3085 * subflow 3086 */ 3087 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3088 WRITE_ONCE(msk->flags, 0); 3089 msk->cb_flags = 0; 3090 msk->push_pending = 0; 3091 msk->recovery = false; 3092 msk->can_ack = false; 3093 msk->fully_established = false; 3094 msk->rcv_data_fin = false; 3095 msk->snd_data_fin_enable = false; 3096 msk->rcv_fastclose = false; 3097 msk->use_64bit_ack = false; 3098 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3099 mptcp_pm_data_reset(msk); 3100 mptcp_ca_reset(sk); 3101 msk->bytes_acked = 0; 3102 msk->bytes_received = 0; 3103 msk->bytes_sent = 0; 3104 msk->bytes_retrans = 0; 3105 3106 WRITE_ONCE(sk->sk_shutdown, 0); 3107 sk_error_report(sk); 3108 return 0; 3109 } 3110 3111 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3112 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3113 { 3114 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3115 3116 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3117 } 3118 #endif 3119 3120 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3121 const struct mptcp_options_received *mp_opt, 3122 struct sock *ssk, 3123 struct request_sock *req) 3124 { 3125 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3126 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3127 struct mptcp_sock *msk; 3128 3129 if (!nsk) 3130 return NULL; 3131 3132 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3133 if (nsk->sk_family == AF_INET6) 3134 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3135 #endif 3136 3137 nsk->sk_wait_pending = 0; 3138 __mptcp_init_sock(nsk); 3139 3140 msk = mptcp_sk(nsk); 3141 msk->local_key = subflow_req->local_key; 3142 msk->token = subflow_req->token; 3143 msk->in_accept_queue = 1; 3144 WRITE_ONCE(msk->fully_established, false); 3145 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3146 WRITE_ONCE(msk->csum_enabled, true); 3147 3148 msk->write_seq = subflow_req->idsn + 1; 3149 msk->snd_nxt = msk->write_seq; 3150 msk->snd_una = msk->write_seq; 3151 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3152 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3153 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3154 3155 /* passive msk is created after the first/MPC subflow */ 3156 msk->subflow_id = 2; 3157 3158 sock_reset_flag(nsk, SOCK_RCU_FREE); 3159 security_inet_csk_clone(nsk, req); 3160 3161 /* this can't race with mptcp_close(), as the msk is 3162 * not yet exposted to user-space 3163 */ 3164 inet_sk_state_store(nsk, TCP_ESTABLISHED); 3165 3166 /* The msk maintain a ref to each subflow in the connections list */ 3167 WRITE_ONCE(msk->first, ssk); 3168 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3169 sock_hold(ssk); 3170 3171 /* new mpc subflow takes ownership of the newly 3172 * created mptcp socket 3173 */ 3174 mptcp_token_accept(subflow_req, msk); 3175 3176 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3177 * uses the correct data 3178 */ 3179 mptcp_copy_inaddrs(nsk, ssk); 3180 mptcp_propagate_sndbuf(nsk, ssk); 3181 3182 mptcp_rcv_space_init(msk, ssk); 3183 bh_unlock_sock(nsk); 3184 3185 /* note: the newly allocated socket refcount is 2 now */ 3186 return nsk; 3187 } 3188 3189 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3190 { 3191 const struct tcp_sock *tp = tcp_sk(ssk); 3192 3193 msk->rcvq_space.copied = 0; 3194 msk->rcvq_space.rtt_us = 0; 3195 3196 msk->rcvq_space.time = tp->tcp_mstamp; 3197 3198 /* initial rcv_space offering made to peer */ 3199 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3200 TCP_INIT_CWND * tp->advmss); 3201 if (msk->rcvq_space.space == 0) 3202 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3203 3204 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3205 } 3206 3207 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err, 3208 bool kern) 3209 { 3210 struct sock *newsk; 3211 3212 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3213 newsk = inet_csk_accept(ssk, flags, err, kern); 3214 if (!newsk) 3215 return NULL; 3216 3217 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3218 if (sk_is_mptcp(newsk)) { 3219 struct mptcp_subflow_context *subflow; 3220 struct sock *new_mptcp_sock; 3221 3222 subflow = mptcp_subflow_ctx(newsk); 3223 new_mptcp_sock = subflow->conn; 3224 3225 /* is_mptcp should be false if subflow->conn is missing, see 3226 * subflow_syn_recv_sock() 3227 */ 3228 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3229 tcp_sk(newsk)->is_mptcp = 0; 3230 goto out; 3231 } 3232 3233 newsk = new_mptcp_sock; 3234 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3235 } else { 3236 MPTCP_INC_STATS(sock_net(ssk), 3237 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3238 } 3239 3240 out: 3241 newsk->sk_kern_sock = kern; 3242 return newsk; 3243 } 3244 3245 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3246 { 3247 struct mptcp_subflow_context *subflow, *tmp; 3248 struct sock *sk = (struct sock *)msk; 3249 3250 __mptcp_clear_xmit(sk); 3251 3252 /* join list will be eventually flushed (with rst) at sock lock release time */ 3253 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3254 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3255 3256 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3257 mptcp_data_lock(sk); 3258 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3259 __skb_queue_purge(&sk->sk_receive_queue); 3260 skb_rbtree_purge(&msk->out_of_order_queue); 3261 mptcp_data_unlock(sk); 3262 3263 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3264 * inet_sock_destruct() will dispose it 3265 */ 3266 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3267 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3268 mptcp_token_destroy(msk); 3269 mptcp_pm_free_anno_list(msk); 3270 mptcp_free_local_addr_list(msk); 3271 } 3272 3273 static void mptcp_destroy(struct sock *sk) 3274 { 3275 struct mptcp_sock *msk = mptcp_sk(sk); 3276 3277 /* allow the following to close even the initial subflow */ 3278 msk->free_first = 1; 3279 mptcp_destroy_common(msk, 0); 3280 sk_sockets_allocated_dec(sk); 3281 } 3282 3283 void __mptcp_data_acked(struct sock *sk) 3284 { 3285 if (!sock_owned_by_user(sk)) 3286 __mptcp_clean_una(sk); 3287 else 3288 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3289 3290 if (mptcp_pending_data_fin_ack(sk)) 3291 mptcp_schedule_work(sk); 3292 } 3293 3294 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3295 { 3296 if (!mptcp_send_head(sk)) 3297 return; 3298 3299 if (!sock_owned_by_user(sk)) 3300 __mptcp_subflow_push_pending(sk, ssk, false); 3301 else 3302 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3303 } 3304 3305 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3306 BIT(MPTCP_RETRANSMIT) | \ 3307 BIT(MPTCP_FLUSH_JOIN_LIST)) 3308 3309 /* processes deferred events and flush wmem */ 3310 static void mptcp_release_cb(struct sock *sk) 3311 __must_hold(&sk->sk_lock.slock) 3312 { 3313 struct mptcp_sock *msk = mptcp_sk(sk); 3314 3315 for (;;) { 3316 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3317 msk->push_pending; 3318 struct list_head join_list; 3319 3320 if (!flags) 3321 break; 3322 3323 INIT_LIST_HEAD(&join_list); 3324 list_splice_init(&msk->join_list, &join_list); 3325 3326 /* the following actions acquire the subflow socket lock 3327 * 3328 * 1) can't be invoked in atomic scope 3329 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3330 * datapath acquires the msk socket spinlock while helding 3331 * the subflow socket lock 3332 */ 3333 msk->push_pending = 0; 3334 msk->cb_flags &= ~flags; 3335 spin_unlock_bh(&sk->sk_lock.slock); 3336 3337 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3338 __mptcp_flush_join_list(sk, &join_list); 3339 if (flags & BIT(MPTCP_PUSH_PENDING)) 3340 __mptcp_push_pending(sk, 0); 3341 if (flags & BIT(MPTCP_RETRANSMIT)) 3342 __mptcp_retrans(sk); 3343 3344 cond_resched(); 3345 spin_lock_bh(&sk->sk_lock.slock); 3346 } 3347 3348 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3349 __mptcp_clean_una_wakeup(sk); 3350 if (unlikely(msk->cb_flags)) { 3351 /* be sure to set the current sk state before tacking actions 3352 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3353 */ 3354 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3355 __mptcp_set_connected(sk); 3356 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3357 __mptcp_error_report(sk); 3358 } 3359 3360 __mptcp_update_rmem(sk); 3361 } 3362 3363 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3364 * TCP can't schedule delack timer before the subflow is fully established. 3365 * MPTCP uses the delack timer to do 3rd ack retransmissions 3366 */ 3367 static void schedule_3rdack_retransmission(struct sock *ssk) 3368 { 3369 struct inet_connection_sock *icsk = inet_csk(ssk); 3370 struct tcp_sock *tp = tcp_sk(ssk); 3371 unsigned long timeout; 3372 3373 if (mptcp_subflow_ctx(ssk)->fully_established) 3374 return; 3375 3376 /* reschedule with a timeout above RTT, as we must look only for drop */ 3377 if (tp->srtt_us) 3378 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3379 else 3380 timeout = TCP_TIMEOUT_INIT; 3381 timeout += jiffies; 3382 3383 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3384 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3385 icsk->icsk_ack.timeout = timeout; 3386 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3387 } 3388 3389 void mptcp_subflow_process_delegated(struct sock *ssk) 3390 { 3391 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3392 struct sock *sk = subflow->conn; 3393 3394 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3395 mptcp_data_lock(sk); 3396 if (!sock_owned_by_user(sk)) 3397 __mptcp_subflow_push_pending(sk, ssk, true); 3398 else 3399 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3400 mptcp_data_unlock(sk); 3401 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3402 } 3403 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3404 schedule_3rdack_retransmission(ssk); 3405 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3406 } 3407 } 3408 3409 static int mptcp_hash(struct sock *sk) 3410 { 3411 /* should never be called, 3412 * we hash the TCP subflows not the master socket 3413 */ 3414 WARN_ON_ONCE(1); 3415 return 0; 3416 } 3417 3418 static void mptcp_unhash(struct sock *sk) 3419 { 3420 /* called from sk_common_release(), but nothing to do here */ 3421 } 3422 3423 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3424 { 3425 struct mptcp_sock *msk = mptcp_sk(sk); 3426 3427 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3428 if (WARN_ON_ONCE(!msk->first)) 3429 return -EINVAL; 3430 3431 return inet_csk_get_port(msk->first, snum); 3432 } 3433 3434 void mptcp_finish_connect(struct sock *ssk) 3435 { 3436 struct mptcp_subflow_context *subflow; 3437 struct mptcp_sock *msk; 3438 struct sock *sk; 3439 3440 subflow = mptcp_subflow_ctx(ssk); 3441 sk = subflow->conn; 3442 msk = mptcp_sk(sk); 3443 3444 pr_debug("msk=%p, token=%u", sk, subflow->token); 3445 3446 subflow->map_seq = subflow->iasn; 3447 subflow->map_subflow_seq = 1; 3448 3449 /* the socket is not connected yet, no msk/subflow ops can access/race 3450 * accessing the field below 3451 */ 3452 WRITE_ONCE(msk->local_key, subflow->local_key); 3453 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3454 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3455 WRITE_ONCE(msk->snd_una, msk->write_seq); 3456 3457 mptcp_pm_new_connection(msk, ssk, 0); 3458 3459 mptcp_rcv_space_init(msk, ssk); 3460 } 3461 3462 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3463 { 3464 write_lock_bh(&sk->sk_callback_lock); 3465 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3466 sk_set_socket(sk, parent); 3467 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3468 write_unlock_bh(&sk->sk_callback_lock); 3469 } 3470 3471 bool mptcp_finish_join(struct sock *ssk) 3472 { 3473 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3474 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3475 struct sock *parent = (void *)msk; 3476 bool ret = true; 3477 3478 pr_debug("msk=%p, subflow=%p", msk, subflow); 3479 3480 /* mptcp socket already closing? */ 3481 if (!mptcp_is_fully_established(parent)) { 3482 subflow->reset_reason = MPTCP_RST_EMPTCP; 3483 return false; 3484 } 3485 3486 /* active subflow, already present inside the conn_list */ 3487 if (!list_empty(&subflow->node)) { 3488 mptcp_subflow_joined(msk, ssk); 3489 return true; 3490 } 3491 3492 if (!mptcp_pm_allow_new_subflow(msk)) 3493 goto err_prohibited; 3494 3495 /* If we can't acquire msk socket lock here, let the release callback 3496 * handle it 3497 */ 3498 mptcp_data_lock(parent); 3499 if (!sock_owned_by_user(parent)) { 3500 ret = __mptcp_finish_join(msk, ssk); 3501 if (ret) { 3502 sock_hold(ssk); 3503 list_add_tail(&subflow->node, &msk->conn_list); 3504 } 3505 } else { 3506 sock_hold(ssk); 3507 list_add_tail(&subflow->node, &msk->join_list); 3508 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3509 } 3510 mptcp_data_unlock(parent); 3511 3512 if (!ret) { 3513 err_prohibited: 3514 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3515 return false; 3516 } 3517 3518 return true; 3519 } 3520 3521 static void mptcp_shutdown(struct sock *sk, int how) 3522 { 3523 pr_debug("sk=%p, how=%d", sk, how); 3524 3525 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3526 __mptcp_wr_shutdown(sk); 3527 } 3528 3529 static int mptcp_forward_alloc_get(const struct sock *sk) 3530 { 3531 return READ_ONCE(sk->sk_forward_alloc) + 3532 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3533 } 3534 3535 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3536 { 3537 const struct sock *sk = (void *)msk; 3538 u64 delta; 3539 3540 if (sk->sk_state == TCP_LISTEN) 3541 return -EINVAL; 3542 3543 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3544 return 0; 3545 3546 delta = msk->write_seq - v; 3547 if (__mptcp_check_fallback(msk) && msk->first) { 3548 struct tcp_sock *tp = tcp_sk(msk->first); 3549 3550 /* the first subflow is disconnected after close - see 3551 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3552 * so ignore that status, too. 3553 */ 3554 if (!((1 << msk->first->sk_state) & 3555 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3556 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3557 } 3558 if (delta > INT_MAX) 3559 delta = INT_MAX; 3560 3561 return (int)delta; 3562 } 3563 3564 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3565 { 3566 struct mptcp_sock *msk = mptcp_sk(sk); 3567 bool slow; 3568 3569 switch (cmd) { 3570 case SIOCINQ: 3571 if (sk->sk_state == TCP_LISTEN) 3572 return -EINVAL; 3573 3574 lock_sock(sk); 3575 __mptcp_move_skbs(msk); 3576 *karg = mptcp_inq_hint(sk); 3577 release_sock(sk); 3578 break; 3579 case SIOCOUTQ: 3580 slow = lock_sock_fast(sk); 3581 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3582 unlock_sock_fast(sk, slow); 3583 break; 3584 case SIOCOUTQNSD: 3585 slow = lock_sock_fast(sk); 3586 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3587 unlock_sock_fast(sk, slow); 3588 break; 3589 default: 3590 return -ENOIOCTLCMD; 3591 } 3592 3593 return 0; 3594 } 3595 3596 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3597 struct mptcp_subflow_context *subflow) 3598 { 3599 subflow->request_mptcp = 0; 3600 __mptcp_do_fallback(msk); 3601 } 3602 3603 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3604 { 3605 struct mptcp_subflow_context *subflow; 3606 struct mptcp_sock *msk = mptcp_sk(sk); 3607 int err = -EINVAL; 3608 struct sock *ssk; 3609 3610 ssk = __mptcp_nmpc_sk(msk); 3611 if (IS_ERR(ssk)) 3612 return PTR_ERR(ssk); 3613 3614 inet_sk_state_store(sk, TCP_SYN_SENT); 3615 subflow = mptcp_subflow_ctx(ssk); 3616 #ifdef CONFIG_TCP_MD5SIG 3617 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3618 * TCP option space. 3619 */ 3620 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3621 mptcp_subflow_early_fallback(msk, subflow); 3622 #endif 3623 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3624 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3625 mptcp_subflow_early_fallback(msk, subflow); 3626 } 3627 if (likely(!__mptcp_check_fallback(msk))) 3628 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3629 3630 /* if reaching here via the fastopen/sendmsg path, the caller already 3631 * acquired the subflow socket lock, too. 3632 */ 3633 if (!msk->fastopening) 3634 lock_sock(ssk); 3635 3636 /* the following mirrors closely a very small chunk of code from 3637 * __inet_stream_connect() 3638 */ 3639 if (ssk->sk_state != TCP_CLOSE) 3640 goto out; 3641 3642 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3643 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3644 if (err) 3645 goto out; 3646 } 3647 3648 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3649 if (err < 0) 3650 goto out; 3651 3652 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3653 3654 out: 3655 if (!msk->fastopening) 3656 release_sock(ssk); 3657 3658 /* on successful connect, the msk state will be moved to established by 3659 * subflow_finish_connect() 3660 */ 3661 if (unlikely(err)) { 3662 /* avoid leaving a dangling token in an unconnected socket */ 3663 mptcp_token_destroy(msk); 3664 inet_sk_state_store(sk, TCP_CLOSE); 3665 return err; 3666 } 3667 3668 mptcp_copy_inaddrs(sk, ssk); 3669 return 0; 3670 } 3671 3672 static struct proto mptcp_prot = { 3673 .name = "MPTCP", 3674 .owner = THIS_MODULE, 3675 .init = mptcp_init_sock, 3676 .connect = mptcp_connect, 3677 .disconnect = mptcp_disconnect, 3678 .close = mptcp_close, 3679 .accept = mptcp_accept, 3680 .setsockopt = mptcp_setsockopt, 3681 .getsockopt = mptcp_getsockopt, 3682 .shutdown = mptcp_shutdown, 3683 .destroy = mptcp_destroy, 3684 .sendmsg = mptcp_sendmsg, 3685 .ioctl = mptcp_ioctl, 3686 .recvmsg = mptcp_recvmsg, 3687 .release_cb = mptcp_release_cb, 3688 .hash = mptcp_hash, 3689 .unhash = mptcp_unhash, 3690 .get_port = mptcp_get_port, 3691 .forward_alloc_get = mptcp_forward_alloc_get, 3692 .sockets_allocated = &mptcp_sockets_allocated, 3693 3694 .memory_allocated = &tcp_memory_allocated, 3695 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3696 3697 .memory_pressure = &tcp_memory_pressure, 3698 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3699 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3700 .sysctl_mem = sysctl_tcp_mem, 3701 .obj_size = sizeof(struct mptcp_sock), 3702 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3703 .no_autobind = true, 3704 }; 3705 3706 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3707 { 3708 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3709 struct sock *ssk, *sk = sock->sk; 3710 int err = -EINVAL; 3711 3712 lock_sock(sk); 3713 ssk = __mptcp_nmpc_sk(msk); 3714 if (IS_ERR(ssk)) { 3715 err = PTR_ERR(ssk); 3716 goto unlock; 3717 } 3718 3719 if (sk->sk_family == AF_INET) 3720 err = inet_bind_sk(ssk, uaddr, addr_len); 3721 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3722 else if (sk->sk_family == AF_INET6) 3723 err = inet6_bind_sk(ssk, uaddr, addr_len); 3724 #endif 3725 if (!err) 3726 mptcp_copy_inaddrs(sk, ssk); 3727 3728 unlock: 3729 release_sock(sk); 3730 return err; 3731 } 3732 3733 static int mptcp_listen(struct socket *sock, int backlog) 3734 { 3735 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3736 struct sock *sk = sock->sk; 3737 struct sock *ssk; 3738 int err; 3739 3740 pr_debug("msk=%p", msk); 3741 3742 lock_sock(sk); 3743 3744 err = -EINVAL; 3745 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3746 goto unlock; 3747 3748 ssk = __mptcp_nmpc_sk(msk); 3749 if (IS_ERR(ssk)) { 3750 err = PTR_ERR(ssk); 3751 goto unlock; 3752 } 3753 3754 inet_sk_state_store(sk, TCP_LISTEN); 3755 sock_set_flag(sk, SOCK_RCU_FREE); 3756 3757 lock_sock(ssk); 3758 err = __inet_listen_sk(ssk, backlog); 3759 release_sock(ssk); 3760 inet_sk_state_store(sk, inet_sk_state_load(ssk)); 3761 3762 if (!err) { 3763 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3764 mptcp_copy_inaddrs(sk, ssk); 3765 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3766 } 3767 3768 unlock: 3769 release_sock(sk); 3770 return err; 3771 } 3772 3773 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3774 int flags, bool kern) 3775 { 3776 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3777 struct sock *ssk, *newsk; 3778 int err; 3779 3780 pr_debug("msk=%p", msk); 3781 3782 /* Buggy applications can call accept on socket states other then LISTEN 3783 * but no need to allocate the first subflow just to error out. 3784 */ 3785 ssk = READ_ONCE(msk->first); 3786 if (!ssk) 3787 return -EINVAL; 3788 3789 newsk = mptcp_accept(ssk, flags, &err, kern); 3790 if (!newsk) 3791 return err; 3792 3793 lock_sock(newsk); 3794 3795 __inet_accept(sock, newsock, newsk); 3796 if (!mptcp_is_tcpsk(newsock->sk)) { 3797 struct mptcp_sock *msk = mptcp_sk(newsk); 3798 struct mptcp_subflow_context *subflow; 3799 3800 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3801 msk->in_accept_queue = 0; 3802 3803 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3804 * This is needed so NOSPACE flag can be set from tcp stack. 3805 */ 3806 mptcp_for_each_subflow(msk, subflow) { 3807 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3808 3809 if (!ssk->sk_socket) 3810 mptcp_sock_graft(ssk, newsock); 3811 } 3812 3813 /* Do late cleanup for the first subflow as necessary. Also 3814 * deal with bad peers not doing a complete shutdown. 3815 */ 3816 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3817 __mptcp_close_ssk(newsk, msk->first, 3818 mptcp_subflow_ctx(msk->first), 0); 3819 if (unlikely(list_is_singular(&msk->conn_list))) 3820 inet_sk_state_store(newsk, TCP_CLOSE); 3821 } 3822 } 3823 release_sock(newsk); 3824 3825 return 0; 3826 } 3827 3828 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3829 { 3830 struct sock *sk = (struct sock *)msk; 3831 3832 if (sk_stream_is_writeable(sk)) 3833 return EPOLLOUT | EPOLLWRNORM; 3834 3835 mptcp_set_nospace(sk); 3836 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3837 if (sk_stream_is_writeable(sk)) 3838 return EPOLLOUT | EPOLLWRNORM; 3839 3840 return 0; 3841 } 3842 3843 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3844 struct poll_table_struct *wait) 3845 { 3846 struct sock *sk = sock->sk; 3847 struct mptcp_sock *msk; 3848 __poll_t mask = 0; 3849 u8 shutdown; 3850 int state; 3851 3852 msk = mptcp_sk(sk); 3853 sock_poll_wait(file, sock, wait); 3854 3855 state = inet_sk_state_load(sk); 3856 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3857 if (state == TCP_LISTEN) { 3858 struct sock *ssk = READ_ONCE(msk->first); 3859 3860 if (WARN_ON_ONCE(!ssk)) 3861 return 0; 3862 3863 return inet_csk_listen_poll(ssk); 3864 } 3865 3866 shutdown = READ_ONCE(sk->sk_shutdown); 3867 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3868 mask |= EPOLLHUP; 3869 if (shutdown & RCV_SHUTDOWN) 3870 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3871 3872 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3873 mask |= mptcp_check_readable(msk); 3874 if (shutdown & SEND_SHUTDOWN) 3875 mask |= EPOLLOUT | EPOLLWRNORM; 3876 else 3877 mask |= mptcp_check_writeable(msk); 3878 } else if (state == TCP_SYN_SENT && 3879 inet_test_bit(DEFER_CONNECT, sk)) { 3880 /* cf tcp_poll() note about TFO */ 3881 mask |= EPOLLOUT | EPOLLWRNORM; 3882 } 3883 3884 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3885 smp_rmb(); 3886 if (READ_ONCE(sk->sk_err)) 3887 mask |= EPOLLERR; 3888 3889 return mask; 3890 } 3891 3892 static const struct proto_ops mptcp_stream_ops = { 3893 .family = PF_INET, 3894 .owner = THIS_MODULE, 3895 .release = inet_release, 3896 .bind = mptcp_bind, 3897 .connect = inet_stream_connect, 3898 .socketpair = sock_no_socketpair, 3899 .accept = mptcp_stream_accept, 3900 .getname = inet_getname, 3901 .poll = mptcp_poll, 3902 .ioctl = inet_ioctl, 3903 .gettstamp = sock_gettstamp, 3904 .listen = mptcp_listen, 3905 .shutdown = inet_shutdown, 3906 .setsockopt = sock_common_setsockopt, 3907 .getsockopt = sock_common_getsockopt, 3908 .sendmsg = inet_sendmsg, 3909 .recvmsg = inet_recvmsg, 3910 .mmap = sock_no_mmap, 3911 }; 3912 3913 static struct inet_protosw mptcp_protosw = { 3914 .type = SOCK_STREAM, 3915 .protocol = IPPROTO_MPTCP, 3916 .prot = &mptcp_prot, 3917 .ops = &mptcp_stream_ops, 3918 .flags = INET_PROTOSW_ICSK, 3919 }; 3920 3921 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3922 { 3923 struct mptcp_delegated_action *delegated; 3924 struct mptcp_subflow_context *subflow; 3925 int work_done = 0; 3926 3927 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3928 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3929 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3930 3931 bh_lock_sock_nested(ssk); 3932 if (!sock_owned_by_user(ssk) && 3933 mptcp_subflow_has_delegated_action(subflow)) 3934 mptcp_subflow_process_delegated(ssk); 3935 /* ... elsewhere tcp_release_cb_override already processed 3936 * the action or will do at next release_sock(). 3937 * In both case must dequeue the subflow here - on the same 3938 * CPU that scheduled it. 3939 */ 3940 bh_unlock_sock(ssk); 3941 sock_put(ssk); 3942 3943 if (++work_done == budget) 3944 return budget; 3945 } 3946 3947 /* always provide a 0 'work_done' argument, so that napi_complete_done 3948 * will not try accessing the NULL napi->dev ptr 3949 */ 3950 napi_complete_done(napi, 0); 3951 return work_done; 3952 } 3953 3954 void __init mptcp_proto_init(void) 3955 { 3956 struct mptcp_delegated_action *delegated; 3957 int cpu; 3958 3959 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3960 3961 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3962 panic("Failed to allocate MPTCP pcpu counter\n"); 3963 3964 init_dummy_netdev(&mptcp_napi_dev); 3965 for_each_possible_cpu(cpu) { 3966 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3967 INIT_LIST_HEAD(&delegated->head); 3968 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3969 mptcp_napi_poll); 3970 napi_enable(&delegated->napi); 3971 } 3972 3973 mptcp_subflow_init(); 3974 mptcp_pm_init(); 3975 mptcp_sched_init(); 3976 mptcp_token_init(); 3977 3978 if (proto_register(&mptcp_prot, 1) != 0) 3979 panic("Failed to register MPTCP proto.\n"); 3980 3981 inet_register_protosw(&mptcp_protosw); 3982 3983 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3984 } 3985 3986 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3987 static const struct proto_ops mptcp_v6_stream_ops = { 3988 .family = PF_INET6, 3989 .owner = THIS_MODULE, 3990 .release = inet6_release, 3991 .bind = mptcp_bind, 3992 .connect = inet_stream_connect, 3993 .socketpair = sock_no_socketpair, 3994 .accept = mptcp_stream_accept, 3995 .getname = inet6_getname, 3996 .poll = mptcp_poll, 3997 .ioctl = inet6_ioctl, 3998 .gettstamp = sock_gettstamp, 3999 .listen = mptcp_listen, 4000 .shutdown = inet_shutdown, 4001 .setsockopt = sock_common_setsockopt, 4002 .getsockopt = sock_common_getsockopt, 4003 .sendmsg = inet6_sendmsg, 4004 .recvmsg = inet6_recvmsg, 4005 .mmap = sock_no_mmap, 4006 #ifdef CONFIG_COMPAT 4007 .compat_ioctl = inet6_compat_ioctl, 4008 #endif 4009 }; 4010 4011 static struct proto mptcp_v6_prot; 4012 4013 static struct inet_protosw mptcp_v6_protosw = { 4014 .type = SOCK_STREAM, 4015 .protocol = IPPROTO_MPTCP, 4016 .prot = &mptcp_v6_prot, 4017 .ops = &mptcp_v6_stream_ops, 4018 .flags = INET_PROTOSW_ICSK, 4019 }; 4020 4021 int __init mptcp_proto_v6_init(void) 4022 { 4023 int err; 4024 4025 mptcp_v6_prot = mptcp_prot; 4026 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4027 mptcp_v6_prot.slab = NULL; 4028 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4029 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4030 4031 err = proto_register(&mptcp_v6_prot, 1); 4032 if (err) 4033 return err; 4034 4035 err = inet6_register_protosw(&mptcp_v6_protosw); 4036 if (err) 4037 proto_unregister(&mptcp_v6_prot); 4038 4039 return err; 4040 } 4041 #endif 4042