1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 WRITE_ONCE(sock->ops, &inet_stream_ops); 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 WRITE_ONCE(sock->ops, &inet6_stream_ops); 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 94 WRITE_ONCE(msk->first, ssock->sk); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 subflow->local_id_valid = 1; 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 iput(SOCK_INODE(ssock)); 105 106 return 0; 107 } 108 109 /* If the MPC handshake is not started, returns the first subflow, 110 * eventually allocating it. 111 */ 112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 113 { 114 struct sock *sk = (struct sock *)msk; 115 int ret; 116 117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 118 return ERR_PTR(-EINVAL); 119 120 if (!msk->first) { 121 ret = __mptcp_socket_create(msk); 122 if (ret) 123 return ERR_PTR(ret); 124 125 mptcp_sockopt_sync(msk, msk->first); 126 } 127 128 return msk->first; 129 } 130 131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 132 { 133 sk_drops_add(sk, skb); 134 __kfree_skb(skb); 135 } 136 137 static void mptcp_rmem_charge(struct sock *sk, int size) 138 { 139 mptcp_sk(sk)->rmem_fwd_alloc -= size; 140 } 141 142 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 143 struct sk_buff *from) 144 { 145 bool fragstolen; 146 int delta; 147 148 if (MPTCP_SKB_CB(from)->offset || 149 !skb_try_coalesce(to, from, &fragstolen, &delta)) 150 return false; 151 152 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 153 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 154 to->len, MPTCP_SKB_CB(from)->end_seq); 155 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 156 157 /* note the fwd memory can reach a negative value after accounting 158 * for the delta, but the later skb free will restore a non 159 * negative one 160 */ 161 atomic_add(delta, &sk->sk_rmem_alloc); 162 mptcp_rmem_charge(sk, delta); 163 kfree_skb_partial(from, fragstolen); 164 165 return true; 166 } 167 168 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 169 struct sk_buff *from) 170 { 171 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 172 return false; 173 174 return mptcp_try_coalesce((struct sock *)msk, to, from); 175 } 176 177 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 178 { 179 amount >>= PAGE_SHIFT; 180 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 181 __sk_mem_reduce_allocated(sk, amount); 182 } 183 184 static void mptcp_rmem_uncharge(struct sock *sk, int size) 185 { 186 struct mptcp_sock *msk = mptcp_sk(sk); 187 int reclaimable; 188 189 msk->rmem_fwd_alloc += size; 190 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 191 192 /* see sk_mem_uncharge() for the rationale behind the following schema */ 193 if (unlikely(reclaimable >= PAGE_SIZE)) 194 __mptcp_rmem_reclaim(sk, reclaimable); 195 } 196 197 static void mptcp_rfree(struct sk_buff *skb) 198 { 199 unsigned int len = skb->truesize; 200 struct sock *sk = skb->sk; 201 202 atomic_sub(len, &sk->sk_rmem_alloc); 203 mptcp_rmem_uncharge(sk, len); 204 } 205 206 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 207 { 208 skb_orphan(skb); 209 skb->sk = sk; 210 skb->destructor = mptcp_rfree; 211 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 212 mptcp_rmem_charge(sk, skb->truesize); 213 } 214 215 /* "inspired" by tcp_data_queue_ofo(), main differences: 216 * - use mptcp seqs 217 * - don't cope with sacks 218 */ 219 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 220 { 221 struct sock *sk = (struct sock *)msk; 222 struct rb_node **p, *parent; 223 u64 seq, end_seq, max_seq; 224 struct sk_buff *skb1; 225 226 seq = MPTCP_SKB_CB(skb)->map_seq; 227 end_seq = MPTCP_SKB_CB(skb)->end_seq; 228 max_seq = atomic64_read(&msk->rcv_wnd_sent); 229 230 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 231 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 232 if (after64(end_seq, max_seq)) { 233 /* out of window */ 234 mptcp_drop(sk, skb); 235 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 236 (unsigned long long)end_seq - (unsigned long)max_seq, 237 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 238 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 239 return; 240 } 241 242 p = &msk->out_of_order_queue.rb_node; 243 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 244 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 245 rb_link_node(&skb->rbnode, NULL, p); 246 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 247 msk->ooo_last_skb = skb; 248 goto end; 249 } 250 251 /* with 2 subflows, adding at end of ooo queue is quite likely 252 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 253 */ 254 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 255 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 256 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 257 return; 258 } 259 260 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 261 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 263 parent = &msk->ooo_last_skb->rbnode; 264 p = &parent->rb_right; 265 goto insert; 266 } 267 268 /* Find place to insert this segment. Handle overlaps on the way. */ 269 parent = NULL; 270 while (*p) { 271 parent = *p; 272 skb1 = rb_to_skb(parent); 273 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 274 p = &parent->rb_left; 275 continue; 276 } 277 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 278 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 279 /* All the bits are present. Drop. */ 280 mptcp_drop(sk, skb); 281 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 282 return; 283 } 284 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 285 /* partial overlap: 286 * | skb | 287 * | skb1 | 288 * continue traversing 289 */ 290 } else { 291 /* skb's seq == skb1's seq and skb covers skb1. 292 * Replace skb1 with skb. 293 */ 294 rb_replace_node(&skb1->rbnode, &skb->rbnode, 295 &msk->out_of_order_queue); 296 mptcp_drop(sk, skb1); 297 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 298 goto merge_right; 299 } 300 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 301 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 302 return; 303 } 304 p = &parent->rb_right; 305 } 306 307 insert: 308 /* Insert segment into RB tree. */ 309 rb_link_node(&skb->rbnode, parent, p); 310 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 311 312 merge_right: 313 /* Remove other segments covered by skb. */ 314 while ((skb1 = skb_rb_next(skb)) != NULL) { 315 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 316 break; 317 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 318 mptcp_drop(sk, skb1); 319 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 320 } 321 /* If there is no skb after us, we are the last_skb ! */ 322 if (!skb1) 323 msk->ooo_last_skb = skb; 324 325 end: 326 skb_condense(skb); 327 mptcp_set_owner_r(skb, sk); 328 } 329 330 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 331 { 332 struct mptcp_sock *msk = mptcp_sk(sk); 333 int amt, amount; 334 335 if (size <= msk->rmem_fwd_alloc) 336 return true; 337 338 size -= msk->rmem_fwd_alloc; 339 amt = sk_mem_pages(size); 340 amount = amt << PAGE_SHIFT; 341 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 342 return false; 343 344 msk->rmem_fwd_alloc += amount; 345 return true; 346 } 347 348 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 349 struct sk_buff *skb, unsigned int offset, 350 size_t copy_len) 351 { 352 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 353 struct sock *sk = (struct sock *)msk; 354 struct sk_buff *tail; 355 bool has_rxtstamp; 356 357 __skb_unlink(skb, &ssk->sk_receive_queue); 358 359 skb_ext_reset(skb); 360 skb_orphan(skb); 361 362 /* try to fetch required memory from subflow */ 363 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 364 goto drop; 365 366 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 367 368 /* the skb map_seq accounts for the skb offset: 369 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 370 * value 371 */ 372 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 373 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 374 MPTCP_SKB_CB(skb)->offset = offset; 375 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 376 377 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 378 /* in sequence */ 379 msk->bytes_received += copy_len; 380 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 381 tail = skb_peek_tail(&sk->sk_receive_queue); 382 if (tail && mptcp_try_coalesce(sk, tail, skb)) 383 return true; 384 385 mptcp_set_owner_r(skb, sk); 386 __skb_queue_tail(&sk->sk_receive_queue, skb); 387 return true; 388 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 389 mptcp_data_queue_ofo(msk, skb); 390 return false; 391 } 392 393 /* old data, keep it simple and drop the whole pkt, sender 394 * will retransmit as needed, if needed. 395 */ 396 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 397 drop: 398 mptcp_drop(sk, skb); 399 return false; 400 } 401 402 static void mptcp_stop_timer(struct sock *sk) 403 { 404 struct inet_connection_sock *icsk = inet_csk(sk); 405 406 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 407 mptcp_sk(sk)->timer_ival = 0; 408 } 409 410 static void mptcp_close_wake_up(struct sock *sk) 411 { 412 if (sock_flag(sk, SOCK_DEAD)) 413 return; 414 415 sk->sk_state_change(sk); 416 if (sk->sk_shutdown == SHUTDOWN_MASK || 417 sk->sk_state == TCP_CLOSE) 418 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 419 else 420 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 421 } 422 423 static bool mptcp_pending_data_fin_ack(struct sock *sk) 424 { 425 struct mptcp_sock *msk = mptcp_sk(sk); 426 427 return ((1 << sk->sk_state) & 428 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 429 msk->write_seq == READ_ONCE(msk->snd_una); 430 } 431 432 static void mptcp_check_data_fin_ack(struct sock *sk) 433 { 434 struct mptcp_sock *msk = mptcp_sk(sk); 435 436 /* Look for an acknowledged DATA_FIN */ 437 if (mptcp_pending_data_fin_ack(sk)) { 438 WRITE_ONCE(msk->snd_data_fin_enable, 0); 439 440 switch (sk->sk_state) { 441 case TCP_FIN_WAIT1: 442 inet_sk_state_store(sk, TCP_FIN_WAIT2); 443 break; 444 case TCP_CLOSING: 445 case TCP_LAST_ACK: 446 inet_sk_state_store(sk, TCP_CLOSE); 447 break; 448 } 449 450 mptcp_close_wake_up(sk); 451 } 452 } 453 454 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 455 { 456 struct mptcp_sock *msk = mptcp_sk(sk); 457 458 if (READ_ONCE(msk->rcv_data_fin) && 459 ((1 << sk->sk_state) & 460 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 461 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 462 463 if (msk->ack_seq == rcv_data_fin_seq) { 464 if (seq) 465 *seq = rcv_data_fin_seq; 466 467 return true; 468 } 469 } 470 471 return false; 472 } 473 474 static void mptcp_set_datafin_timeout(struct sock *sk) 475 { 476 struct inet_connection_sock *icsk = inet_csk(sk); 477 u32 retransmits; 478 479 retransmits = min_t(u32, icsk->icsk_retransmits, 480 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 481 482 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 483 } 484 485 static void __mptcp_set_timeout(struct sock *sk, long tout) 486 { 487 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 488 } 489 490 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 491 { 492 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 493 494 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 495 inet_csk(ssk)->icsk_timeout - jiffies : 0; 496 } 497 498 static void mptcp_set_timeout(struct sock *sk) 499 { 500 struct mptcp_subflow_context *subflow; 501 long tout = 0; 502 503 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 504 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 505 __mptcp_set_timeout(sk, tout); 506 } 507 508 static inline bool tcp_can_send_ack(const struct sock *ssk) 509 { 510 return !((1 << inet_sk_state_load(ssk)) & 511 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 512 } 513 514 void __mptcp_subflow_send_ack(struct sock *ssk) 515 { 516 if (tcp_can_send_ack(ssk)) 517 tcp_send_ack(ssk); 518 } 519 520 static void mptcp_subflow_send_ack(struct sock *ssk) 521 { 522 bool slow; 523 524 slow = lock_sock_fast(ssk); 525 __mptcp_subflow_send_ack(ssk); 526 unlock_sock_fast(ssk, slow); 527 } 528 529 static void mptcp_send_ack(struct mptcp_sock *msk) 530 { 531 struct mptcp_subflow_context *subflow; 532 533 mptcp_for_each_subflow(msk, subflow) 534 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 535 } 536 537 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 538 { 539 bool slow; 540 541 slow = lock_sock_fast(ssk); 542 if (tcp_can_send_ack(ssk)) 543 tcp_cleanup_rbuf(ssk, 1); 544 unlock_sock_fast(ssk, slow); 545 } 546 547 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 548 { 549 const struct inet_connection_sock *icsk = inet_csk(ssk); 550 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 551 const struct tcp_sock *tp = tcp_sk(ssk); 552 553 return (ack_pending & ICSK_ACK_SCHED) && 554 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 555 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 556 (rx_empty && ack_pending & 557 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 558 } 559 560 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 561 { 562 int old_space = READ_ONCE(msk->old_wspace); 563 struct mptcp_subflow_context *subflow; 564 struct sock *sk = (struct sock *)msk; 565 int space = __mptcp_space(sk); 566 bool cleanup, rx_empty; 567 568 cleanup = (space > 0) && (space >= (old_space << 1)); 569 rx_empty = !__mptcp_rmem(sk); 570 571 mptcp_for_each_subflow(msk, subflow) { 572 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 573 574 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 575 mptcp_subflow_cleanup_rbuf(ssk); 576 } 577 } 578 579 static bool mptcp_check_data_fin(struct sock *sk) 580 { 581 struct mptcp_sock *msk = mptcp_sk(sk); 582 u64 rcv_data_fin_seq; 583 bool ret = false; 584 585 /* Need to ack a DATA_FIN received from a peer while this side 586 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 587 * msk->rcv_data_fin was set when parsing the incoming options 588 * at the subflow level and the msk lock was not held, so this 589 * is the first opportunity to act on the DATA_FIN and change 590 * the msk state. 591 * 592 * If we are caught up to the sequence number of the incoming 593 * DATA_FIN, send the DATA_ACK now and do state transition. If 594 * not caught up, do nothing and let the recv code send DATA_ACK 595 * when catching up. 596 */ 597 598 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 599 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 600 WRITE_ONCE(msk->rcv_data_fin, 0); 601 602 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 603 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 604 605 switch (sk->sk_state) { 606 case TCP_ESTABLISHED: 607 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 608 break; 609 case TCP_FIN_WAIT1: 610 inet_sk_state_store(sk, TCP_CLOSING); 611 break; 612 case TCP_FIN_WAIT2: 613 inet_sk_state_store(sk, TCP_CLOSE); 614 break; 615 default: 616 /* Other states not expected */ 617 WARN_ON_ONCE(1); 618 break; 619 } 620 621 ret = true; 622 if (!__mptcp_check_fallback(msk)) 623 mptcp_send_ack(msk); 624 mptcp_close_wake_up(sk); 625 } 626 return ret; 627 } 628 629 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 630 struct sock *ssk, 631 unsigned int *bytes) 632 { 633 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 634 struct sock *sk = (struct sock *)msk; 635 unsigned int moved = 0; 636 bool more_data_avail; 637 struct tcp_sock *tp; 638 bool done = false; 639 int sk_rbuf; 640 641 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 642 643 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 644 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 645 646 if (unlikely(ssk_rbuf > sk_rbuf)) { 647 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 648 sk_rbuf = ssk_rbuf; 649 } 650 } 651 652 pr_debug("msk=%p ssk=%p", msk, ssk); 653 tp = tcp_sk(ssk); 654 do { 655 u32 map_remaining, offset; 656 u32 seq = tp->copied_seq; 657 struct sk_buff *skb; 658 bool fin; 659 660 /* try to move as much data as available */ 661 map_remaining = subflow->map_data_len - 662 mptcp_subflow_get_map_offset(subflow); 663 664 skb = skb_peek(&ssk->sk_receive_queue); 665 if (!skb) { 666 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 667 * a different CPU can have already processed the pending 668 * data, stop here or we can enter an infinite loop 669 */ 670 if (!moved) 671 done = true; 672 break; 673 } 674 675 if (__mptcp_check_fallback(msk)) { 676 /* Under fallback skbs have no MPTCP extension and TCP could 677 * collapse them between the dummy map creation and the 678 * current dequeue. Be sure to adjust the map size. 679 */ 680 map_remaining = skb->len; 681 subflow->map_data_len = skb->len; 682 } 683 684 offset = seq - TCP_SKB_CB(skb)->seq; 685 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 686 if (fin) { 687 done = true; 688 seq++; 689 } 690 691 if (offset < skb->len) { 692 size_t len = skb->len - offset; 693 694 if (tp->urg_data) 695 done = true; 696 697 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 698 moved += len; 699 seq += len; 700 701 if (WARN_ON_ONCE(map_remaining < len)) 702 break; 703 } else { 704 WARN_ON_ONCE(!fin); 705 sk_eat_skb(ssk, skb); 706 done = true; 707 } 708 709 WRITE_ONCE(tp->copied_seq, seq); 710 more_data_avail = mptcp_subflow_data_available(ssk); 711 712 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 713 done = true; 714 break; 715 } 716 } while (more_data_avail); 717 718 *bytes += moved; 719 return done; 720 } 721 722 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 723 { 724 struct sock *sk = (struct sock *)msk; 725 struct sk_buff *skb, *tail; 726 bool moved = false; 727 struct rb_node *p; 728 u64 end_seq; 729 730 p = rb_first(&msk->out_of_order_queue); 731 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 732 while (p) { 733 skb = rb_to_skb(p); 734 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 735 break; 736 737 p = rb_next(p); 738 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 739 740 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 741 msk->ack_seq))) { 742 mptcp_drop(sk, skb); 743 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 744 continue; 745 } 746 747 end_seq = MPTCP_SKB_CB(skb)->end_seq; 748 tail = skb_peek_tail(&sk->sk_receive_queue); 749 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 750 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 751 752 /* skip overlapping data, if any */ 753 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 754 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 755 delta); 756 MPTCP_SKB_CB(skb)->offset += delta; 757 MPTCP_SKB_CB(skb)->map_seq += delta; 758 __skb_queue_tail(&sk->sk_receive_queue, skb); 759 } 760 msk->bytes_received += end_seq - msk->ack_seq; 761 msk->ack_seq = end_seq; 762 moved = true; 763 } 764 return moved; 765 } 766 767 /* In most cases we will be able to lock the mptcp socket. If its already 768 * owned, we need to defer to the work queue to avoid ABBA deadlock. 769 */ 770 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 771 { 772 struct sock *sk = (struct sock *)msk; 773 unsigned int moved = 0; 774 775 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 776 __mptcp_ofo_queue(msk); 777 if (unlikely(ssk->sk_err)) { 778 if (!sock_owned_by_user(sk)) 779 __mptcp_error_report(sk); 780 else 781 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 782 } 783 784 /* If the moves have caught up with the DATA_FIN sequence number 785 * it's time to ack the DATA_FIN and change socket state, but 786 * this is not a good place to change state. Let the workqueue 787 * do it. 788 */ 789 if (mptcp_pending_data_fin(sk, NULL)) 790 mptcp_schedule_work(sk); 791 return moved > 0; 792 } 793 794 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 795 { 796 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 797 struct mptcp_sock *msk = mptcp_sk(sk); 798 int sk_rbuf, ssk_rbuf; 799 800 /* The peer can send data while we are shutting down this 801 * subflow at msk destruction time, but we must avoid enqueuing 802 * more data to the msk receive queue 803 */ 804 if (unlikely(subflow->disposable)) 805 return; 806 807 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 808 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 809 if (unlikely(ssk_rbuf > sk_rbuf)) 810 sk_rbuf = ssk_rbuf; 811 812 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 813 if (__mptcp_rmem(sk) > sk_rbuf) { 814 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 815 return; 816 } 817 818 /* Wake-up the reader only for in-sequence data */ 819 mptcp_data_lock(sk); 820 if (move_skbs_to_msk(msk, ssk)) 821 sk->sk_data_ready(sk); 822 823 mptcp_data_unlock(sk); 824 } 825 826 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 827 { 828 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 829 WRITE_ONCE(msk->allow_infinite_fallback, false); 830 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 831 } 832 833 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 834 { 835 struct sock *sk = (struct sock *)msk; 836 837 if (sk->sk_state != TCP_ESTABLISHED) 838 return false; 839 840 /* attach to msk socket only after we are sure we will deal with it 841 * at close time 842 */ 843 if (sk->sk_socket && !ssk->sk_socket) 844 mptcp_sock_graft(ssk, sk->sk_socket); 845 846 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 847 mptcp_sockopt_sync_locked(msk, ssk); 848 mptcp_subflow_joined(msk, ssk); 849 return true; 850 } 851 852 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 853 { 854 struct mptcp_subflow_context *tmp, *subflow; 855 struct mptcp_sock *msk = mptcp_sk(sk); 856 857 list_for_each_entry_safe(subflow, tmp, join_list, node) { 858 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 859 bool slow = lock_sock_fast(ssk); 860 861 list_move_tail(&subflow->node, &msk->conn_list); 862 if (!__mptcp_finish_join(msk, ssk)) 863 mptcp_subflow_reset(ssk); 864 unlock_sock_fast(ssk, slow); 865 } 866 } 867 868 static bool mptcp_timer_pending(struct sock *sk) 869 { 870 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 871 } 872 873 static void mptcp_reset_timer(struct sock *sk) 874 { 875 struct inet_connection_sock *icsk = inet_csk(sk); 876 unsigned long tout; 877 878 /* prevent rescheduling on close */ 879 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 880 return; 881 882 tout = mptcp_sk(sk)->timer_ival; 883 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 884 } 885 886 bool mptcp_schedule_work(struct sock *sk) 887 { 888 if (inet_sk_state_load(sk) != TCP_CLOSE && 889 schedule_work(&mptcp_sk(sk)->work)) { 890 /* each subflow already holds a reference to the sk, and the 891 * workqueue is invoked by a subflow, so sk can't go away here. 892 */ 893 sock_hold(sk); 894 return true; 895 } 896 return false; 897 } 898 899 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 900 { 901 struct mptcp_subflow_context *subflow; 902 903 msk_owned_by_me(msk); 904 905 mptcp_for_each_subflow(msk, subflow) { 906 if (READ_ONCE(subflow->data_avail)) 907 return mptcp_subflow_tcp_sock(subflow); 908 } 909 910 return NULL; 911 } 912 913 static bool mptcp_skb_can_collapse_to(u64 write_seq, 914 const struct sk_buff *skb, 915 const struct mptcp_ext *mpext) 916 { 917 if (!tcp_skb_can_collapse_to(skb)) 918 return false; 919 920 /* can collapse only if MPTCP level sequence is in order and this 921 * mapping has not been xmitted yet 922 */ 923 return mpext && mpext->data_seq + mpext->data_len == write_seq && 924 !mpext->frozen; 925 } 926 927 /* we can append data to the given data frag if: 928 * - there is space available in the backing page_frag 929 * - the data frag tail matches the current page_frag free offset 930 * - the data frag end sequence number matches the current write seq 931 */ 932 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 933 const struct page_frag *pfrag, 934 const struct mptcp_data_frag *df) 935 { 936 return df && pfrag->page == df->page && 937 pfrag->size - pfrag->offset > 0 && 938 pfrag->offset == (df->offset + df->data_len) && 939 df->data_seq + df->data_len == msk->write_seq; 940 } 941 942 static void dfrag_uncharge(struct sock *sk, int len) 943 { 944 sk_mem_uncharge(sk, len); 945 sk_wmem_queued_add(sk, -len); 946 } 947 948 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 949 { 950 int len = dfrag->data_len + dfrag->overhead; 951 952 list_del(&dfrag->list); 953 dfrag_uncharge(sk, len); 954 put_page(dfrag->page); 955 } 956 957 static void __mptcp_clean_una(struct sock *sk) 958 { 959 struct mptcp_sock *msk = mptcp_sk(sk); 960 struct mptcp_data_frag *dtmp, *dfrag; 961 u64 snd_una; 962 963 snd_una = msk->snd_una; 964 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 965 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 966 break; 967 968 if (unlikely(dfrag == msk->first_pending)) { 969 /* in recovery mode can see ack after the current snd head */ 970 if (WARN_ON_ONCE(!msk->recovery)) 971 break; 972 973 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 974 } 975 976 dfrag_clear(sk, dfrag); 977 } 978 979 dfrag = mptcp_rtx_head(sk); 980 if (dfrag && after64(snd_una, dfrag->data_seq)) { 981 u64 delta = snd_una - dfrag->data_seq; 982 983 /* prevent wrap around in recovery mode */ 984 if (unlikely(delta > dfrag->already_sent)) { 985 if (WARN_ON_ONCE(!msk->recovery)) 986 goto out; 987 if (WARN_ON_ONCE(delta > dfrag->data_len)) 988 goto out; 989 dfrag->already_sent += delta - dfrag->already_sent; 990 } 991 992 dfrag->data_seq += delta; 993 dfrag->offset += delta; 994 dfrag->data_len -= delta; 995 dfrag->already_sent -= delta; 996 997 dfrag_uncharge(sk, delta); 998 } 999 1000 /* all retransmitted data acked, recovery completed */ 1001 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1002 msk->recovery = false; 1003 1004 out: 1005 if (snd_una == READ_ONCE(msk->snd_nxt) && 1006 snd_una == READ_ONCE(msk->write_seq)) { 1007 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1008 mptcp_stop_timer(sk); 1009 } else { 1010 mptcp_reset_timer(sk); 1011 } 1012 } 1013 1014 static void __mptcp_clean_una_wakeup(struct sock *sk) 1015 { 1016 lockdep_assert_held_once(&sk->sk_lock.slock); 1017 1018 __mptcp_clean_una(sk); 1019 mptcp_write_space(sk); 1020 } 1021 1022 static void mptcp_clean_una_wakeup(struct sock *sk) 1023 { 1024 mptcp_data_lock(sk); 1025 __mptcp_clean_una_wakeup(sk); 1026 mptcp_data_unlock(sk); 1027 } 1028 1029 static void mptcp_enter_memory_pressure(struct sock *sk) 1030 { 1031 struct mptcp_subflow_context *subflow; 1032 struct mptcp_sock *msk = mptcp_sk(sk); 1033 bool first = true; 1034 1035 sk_stream_moderate_sndbuf(sk); 1036 mptcp_for_each_subflow(msk, subflow) { 1037 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1038 1039 if (first) 1040 tcp_enter_memory_pressure(ssk); 1041 sk_stream_moderate_sndbuf(ssk); 1042 first = false; 1043 } 1044 } 1045 1046 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1047 * data 1048 */ 1049 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1050 { 1051 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1052 pfrag, sk->sk_allocation))) 1053 return true; 1054 1055 mptcp_enter_memory_pressure(sk); 1056 return false; 1057 } 1058 1059 static struct mptcp_data_frag * 1060 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1061 int orig_offset) 1062 { 1063 int offset = ALIGN(orig_offset, sizeof(long)); 1064 struct mptcp_data_frag *dfrag; 1065 1066 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1067 dfrag->data_len = 0; 1068 dfrag->data_seq = msk->write_seq; 1069 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1070 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1071 dfrag->already_sent = 0; 1072 dfrag->page = pfrag->page; 1073 1074 return dfrag; 1075 } 1076 1077 struct mptcp_sendmsg_info { 1078 int mss_now; 1079 int size_goal; 1080 u16 limit; 1081 u16 sent; 1082 unsigned int flags; 1083 bool data_lock_held; 1084 }; 1085 1086 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1087 u64 data_seq, int avail_size) 1088 { 1089 u64 window_end = mptcp_wnd_end(msk); 1090 u64 mptcp_snd_wnd; 1091 1092 if (__mptcp_check_fallback(msk)) 1093 return avail_size; 1094 1095 mptcp_snd_wnd = window_end - data_seq; 1096 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1097 1098 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1099 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1100 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1101 } 1102 1103 return avail_size; 1104 } 1105 1106 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1107 { 1108 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1109 1110 if (!mpext) 1111 return false; 1112 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1113 return true; 1114 } 1115 1116 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1117 { 1118 struct sk_buff *skb; 1119 1120 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1121 if (likely(skb)) { 1122 if (likely(__mptcp_add_ext(skb, gfp))) { 1123 skb_reserve(skb, MAX_TCP_HEADER); 1124 skb->ip_summed = CHECKSUM_PARTIAL; 1125 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1126 return skb; 1127 } 1128 __kfree_skb(skb); 1129 } else { 1130 mptcp_enter_memory_pressure(sk); 1131 } 1132 return NULL; 1133 } 1134 1135 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1136 { 1137 struct sk_buff *skb; 1138 1139 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1140 if (!skb) 1141 return NULL; 1142 1143 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1144 tcp_skb_entail(ssk, skb); 1145 return skb; 1146 } 1147 tcp_skb_tsorted_anchor_cleanup(skb); 1148 kfree_skb(skb); 1149 return NULL; 1150 } 1151 1152 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1153 { 1154 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1155 1156 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1157 } 1158 1159 /* note: this always recompute the csum on the whole skb, even 1160 * if we just appended a single frag. More status info needed 1161 */ 1162 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1163 { 1164 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1165 __wsum csum = ~csum_unfold(mpext->csum); 1166 int offset = skb->len - added; 1167 1168 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1169 } 1170 1171 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1172 struct sock *ssk, 1173 struct mptcp_ext *mpext) 1174 { 1175 if (!mpext) 1176 return; 1177 1178 mpext->infinite_map = 1; 1179 mpext->data_len = 0; 1180 1181 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1182 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1183 pr_fallback(msk); 1184 mptcp_do_fallback(ssk); 1185 } 1186 1187 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1188 struct mptcp_data_frag *dfrag, 1189 struct mptcp_sendmsg_info *info) 1190 { 1191 u64 data_seq = dfrag->data_seq + info->sent; 1192 int offset = dfrag->offset + info->sent; 1193 struct mptcp_sock *msk = mptcp_sk(sk); 1194 bool zero_window_probe = false; 1195 struct mptcp_ext *mpext = NULL; 1196 bool can_coalesce = false; 1197 bool reuse_skb = true; 1198 struct sk_buff *skb; 1199 size_t copy; 1200 int i; 1201 1202 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1203 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1204 1205 if (WARN_ON_ONCE(info->sent > info->limit || 1206 info->limit > dfrag->data_len)) 1207 return 0; 1208 1209 if (unlikely(!__tcp_can_send(ssk))) 1210 return -EAGAIN; 1211 1212 /* compute send limit */ 1213 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1214 copy = info->size_goal; 1215 1216 skb = tcp_write_queue_tail(ssk); 1217 if (skb && copy > skb->len) { 1218 /* Limit the write to the size available in the 1219 * current skb, if any, so that we create at most a new skb. 1220 * Explicitly tells TCP internals to avoid collapsing on later 1221 * queue management operation, to avoid breaking the ext <-> 1222 * SSN association set here 1223 */ 1224 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1225 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1226 TCP_SKB_CB(skb)->eor = 1; 1227 goto alloc_skb; 1228 } 1229 1230 i = skb_shinfo(skb)->nr_frags; 1231 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1232 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1233 tcp_mark_push(tcp_sk(ssk), skb); 1234 goto alloc_skb; 1235 } 1236 1237 copy -= skb->len; 1238 } else { 1239 alloc_skb: 1240 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1241 if (!skb) 1242 return -ENOMEM; 1243 1244 i = skb_shinfo(skb)->nr_frags; 1245 reuse_skb = false; 1246 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1247 } 1248 1249 /* Zero window and all data acked? Probe. */ 1250 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1251 if (copy == 0) { 1252 u64 snd_una = READ_ONCE(msk->snd_una); 1253 1254 if (snd_una != msk->snd_nxt) { 1255 tcp_remove_empty_skb(ssk); 1256 return 0; 1257 } 1258 1259 zero_window_probe = true; 1260 data_seq = snd_una - 1; 1261 copy = 1; 1262 1263 /* all mptcp-level data is acked, no skbs should be present into the 1264 * ssk write queue 1265 */ 1266 WARN_ON_ONCE(reuse_skb); 1267 } 1268 1269 copy = min_t(size_t, copy, info->limit - info->sent); 1270 if (!sk_wmem_schedule(ssk, copy)) { 1271 tcp_remove_empty_skb(ssk); 1272 return -ENOMEM; 1273 } 1274 1275 if (can_coalesce) { 1276 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1277 } else { 1278 get_page(dfrag->page); 1279 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1280 } 1281 1282 skb->len += copy; 1283 skb->data_len += copy; 1284 skb->truesize += copy; 1285 sk_wmem_queued_add(ssk, copy); 1286 sk_mem_charge(ssk, copy); 1287 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1288 TCP_SKB_CB(skb)->end_seq += copy; 1289 tcp_skb_pcount_set(skb, 0); 1290 1291 /* on skb reuse we just need to update the DSS len */ 1292 if (reuse_skb) { 1293 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1294 mpext->data_len += copy; 1295 WARN_ON_ONCE(zero_window_probe); 1296 goto out; 1297 } 1298 1299 memset(mpext, 0, sizeof(*mpext)); 1300 mpext->data_seq = data_seq; 1301 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1302 mpext->data_len = copy; 1303 mpext->use_map = 1; 1304 mpext->dsn64 = 1; 1305 1306 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1307 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1308 mpext->dsn64); 1309 1310 if (zero_window_probe) { 1311 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1312 mpext->frozen = 1; 1313 if (READ_ONCE(msk->csum_enabled)) 1314 mptcp_update_data_checksum(skb, copy); 1315 tcp_push_pending_frames(ssk); 1316 return 0; 1317 } 1318 out: 1319 if (READ_ONCE(msk->csum_enabled)) 1320 mptcp_update_data_checksum(skb, copy); 1321 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1322 mptcp_update_infinite_map(msk, ssk, mpext); 1323 trace_mptcp_sendmsg_frag(mpext); 1324 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1325 return copy; 1326 } 1327 1328 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1329 sizeof(struct tcphdr) - \ 1330 MAX_TCP_OPTION_SPACE - \ 1331 sizeof(struct ipv6hdr) - \ 1332 sizeof(struct frag_hdr)) 1333 1334 struct subflow_send_info { 1335 struct sock *ssk; 1336 u64 linger_time; 1337 }; 1338 1339 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1340 { 1341 if (!subflow->stale) 1342 return; 1343 1344 subflow->stale = 0; 1345 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1346 } 1347 1348 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1349 { 1350 if (unlikely(subflow->stale)) { 1351 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1352 1353 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1354 return false; 1355 1356 mptcp_subflow_set_active(subflow); 1357 } 1358 return __mptcp_subflow_active(subflow); 1359 } 1360 1361 #define SSK_MODE_ACTIVE 0 1362 #define SSK_MODE_BACKUP 1 1363 #define SSK_MODE_MAX 2 1364 1365 /* implement the mptcp packet scheduler; 1366 * returns the subflow that will transmit the next DSS 1367 * additionally updates the rtx timeout 1368 */ 1369 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1370 { 1371 struct subflow_send_info send_info[SSK_MODE_MAX]; 1372 struct mptcp_subflow_context *subflow; 1373 struct sock *sk = (struct sock *)msk; 1374 u32 pace, burst, wmem; 1375 int i, nr_active = 0; 1376 struct sock *ssk; 1377 u64 linger_time; 1378 long tout = 0; 1379 1380 msk_owned_by_me(msk); 1381 1382 if (__mptcp_check_fallback(msk)) { 1383 if (!msk->first) 1384 return NULL; 1385 return __tcp_can_send(msk->first) && 1386 sk_stream_memory_free(msk->first) ? msk->first : NULL; 1387 } 1388 1389 /* re-use last subflow, if the burst allow that */ 1390 if (msk->last_snd && msk->snd_burst > 0 && 1391 sk_stream_memory_free(msk->last_snd) && 1392 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1393 mptcp_set_timeout(sk); 1394 return msk->last_snd; 1395 } 1396 1397 /* pick the subflow with the lower wmem/wspace ratio */ 1398 for (i = 0; i < SSK_MODE_MAX; ++i) { 1399 send_info[i].ssk = NULL; 1400 send_info[i].linger_time = -1; 1401 } 1402 1403 mptcp_for_each_subflow(msk, subflow) { 1404 trace_mptcp_subflow_get_send(subflow); 1405 ssk = mptcp_subflow_tcp_sock(subflow); 1406 if (!mptcp_subflow_active(subflow)) 1407 continue; 1408 1409 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1410 nr_active += !subflow->backup; 1411 pace = subflow->avg_pacing_rate; 1412 if (unlikely(!pace)) { 1413 /* init pacing rate from socket */ 1414 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1415 pace = subflow->avg_pacing_rate; 1416 if (!pace) 1417 continue; 1418 } 1419 1420 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1421 if (linger_time < send_info[subflow->backup].linger_time) { 1422 send_info[subflow->backup].ssk = ssk; 1423 send_info[subflow->backup].linger_time = linger_time; 1424 } 1425 } 1426 __mptcp_set_timeout(sk, tout); 1427 1428 /* pick the best backup if no other subflow is active */ 1429 if (!nr_active) 1430 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1431 1432 /* According to the blest algorithm, to avoid HoL blocking for the 1433 * faster flow, we need to: 1434 * - estimate the faster flow linger time 1435 * - use the above to estimate the amount of byte transferred 1436 * by the faster flow 1437 * - check that the amount of queued data is greter than the above, 1438 * otherwise do not use the picked, slower, subflow 1439 * We select the subflow with the shorter estimated time to flush 1440 * the queued mem, which basically ensure the above. We just need 1441 * to check that subflow has a non empty cwin. 1442 */ 1443 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1444 if (!ssk || !sk_stream_memory_free(ssk)) 1445 return NULL; 1446 1447 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1448 wmem = READ_ONCE(ssk->sk_wmem_queued); 1449 if (!burst) { 1450 msk->last_snd = NULL; 1451 return ssk; 1452 } 1453 1454 subflow = mptcp_subflow_ctx(ssk); 1455 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1456 READ_ONCE(ssk->sk_pacing_rate) * burst, 1457 burst + wmem); 1458 msk->last_snd = ssk; 1459 msk->snd_burst = burst; 1460 return ssk; 1461 } 1462 1463 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1464 { 1465 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1466 release_sock(ssk); 1467 } 1468 1469 static void mptcp_update_post_push(struct mptcp_sock *msk, 1470 struct mptcp_data_frag *dfrag, 1471 u32 sent) 1472 { 1473 u64 snd_nxt_new = dfrag->data_seq; 1474 1475 dfrag->already_sent += sent; 1476 1477 msk->snd_burst -= sent; 1478 1479 snd_nxt_new += dfrag->already_sent; 1480 1481 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1482 * is recovering after a failover. In that event, this re-sends 1483 * old segments. 1484 * 1485 * Thus compute snd_nxt_new candidate based on 1486 * the dfrag->data_seq that was sent and the data 1487 * that has been handed to the subflow for transmission 1488 * and skip update in case it was old dfrag. 1489 */ 1490 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1491 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1492 msk->snd_nxt = snd_nxt_new; 1493 } 1494 } 1495 1496 void mptcp_check_and_set_pending(struct sock *sk) 1497 { 1498 if (mptcp_send_head(sk)) 1499 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1500 } 1501 1502 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1503 { 1504 struct sock *prev_ssk = NULL, *ssk = NULL; 1505 struct mptcp_sock *msk = mptcp_sk(sk); 1506 struct mptcp_sendmsg_info info = { 1507 .flags = flags, 1508 }; 1509 bool do_check_data_fin = false; 1510 struct mptcp_data_frag *dfrag; 1511 int len; 1512 1513 while ((dfrag = mptcp_send_head(sk))) { 1514 info.sent = dfrag->already_sent; 1515 info.limit = dfrag->data_len; 1516 len = dfrag->data_len - dfrag->already_sent; 1517 while (len > 0) { 1518 int ret = 0; 1519 1520 prev_ssk = ssk; 1521 ssk = mptcp_subflow_get_send(msk); 1522 1523 /* First check. If the ssk has changed since 1524 * the last round, release prev_ssk 1525 */ 1526 if (ssk != prev_ssk && prev_ssk) 1527 mptcp_push_release(prev_ssk, &info); 1528 if (!ssk) 1529 goto out; 1530 1531 /* Need to lock the new subflow only if different 1532 * from the previous one, otherwise we are still 1533 * helding the relevant lock 1534 */ 1535 if (ssk != prev_ssk) 1536 lock_sock(ssk); 1537 1538 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1539 if (ret <= 0) { 1540 if (ret == -EAGAIN) 1541 continue; 1542 mptcp_push_release(ssk, &info); 1543 goto out; 1544 } 1545 1546 do_check_data_fin = true; 1547 info.sent += ret; 1548 len -= ret; 1549 1550 mptcp_update_post_push(msk, dfrag, ret); 1551 } 1552 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1553 } 1554 1555 /* at this point we held the socket lock for the last subflow we used */ 1556 if (ssk) 1557 mptcp_push_release(ssk, &info); 1558 1559 out: 1560 /* ensure the rtx timer is running */ 1561 if (!mptcp_timer_pending(sk)) 1562 mptcp_reset_timer(sk); 1563 if (do_check_data_fin) 1564 mptcp_check_send_data_fin(sk); 1565 } 1566 1567 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1568 { 1569 struct mptcp_sock *msk = mptcp_sk(sk); 1570 struct mptcp_sendmsg_info info = { 1571 .data_lock_held = true, 1572 }; 1573 struct mptcp_data_frag *dfrag; 1574 struct sock *xmit_ssk; 1575 int len, copied = 0; 1576 1577 info.flags = 0; 1578 while ((dfrag = mptcp_send_head(sk))) { 1579 info.sent = dfrag->already_sent; 1580 info.limit = dfrag->data_len; 1581 len = dfrag->data_len - dfrag->already_sent; 1582 while (len > 0) { 1583 int ret = 0; 1584 1585 /* check for a different subflow usage only after 1586 * spooling the first chunk of data 1587 */ 1588 xmit_ssk = first ? ssk : mptcp_subflow_get_send(msk); 1589 if (!xmit_ssk) 1590 goto out; 1591 if (xmit_ssk != ssk) { 1592 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1593 MPTCP_DELEGATE_SEND); 1594 goto out; 1595 } 1596 1597 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1598 if (ret <= 0) 1599 goto out; 1600 1601 info.sent += ret; 1602 copied += ret; 1603 len -= ret; 1604 first = false; 1605 1606 mptcp_update_post_push(msk, dfrag, ret); 1607 } 1608 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1609 } 1610 1611 out: 1612 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1613 * not going to flush it via release_sock() 1614 */ 1615 if (copied) { 1616 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1617 info.size_goal); 1618 if (!mptcp_timer_pending(sk)) 1619 mptcp_reset_timer(sk); 1620 1621 if (msk->snd_data_fin_enable && 1622 msk->snd_nxt + 1 == msk->write_seq) 1623 mptcp_schedule_work(sk); 1624 } 1625 } 1626 1627 static void mptcp_set_nospace(struct sock *sk) 1628 { 1629 /* enable autotune */ 1630 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1631 1632 /* will be cleared on avail space */ 1633 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1634 } 1635 1636 static int mptcp_disconnect(struct sock *sk, int flags); 1637 1638 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1639 size_t len, int *copied_syn) 1640 { 1641 unsigned int saved_flags = msg->msg_flags; 1642 struct mptcp_sock *msk = mptcp_sk(sk); 1643 struct sock *ssk; 1644 int ret; 1645 1646 /* on flags based fastopen the mptcp is supposed to create the 1647 * first subflow right now. Otherwise we are in the defer_connect 1648 * path, and the first subflow must be already present. 1649 * Since the defer_connect flag is cleared after the first succsful 1650 * fastopen attempt, no need to check for additional subflow status. 1651 */ 1652 if (msg->msg_flags & MSG_FASTOPEN) { 1653 ssk = __mptcp_nmpc_sk(msk); 1654 if (IS_ERR(ssk)) 1655 return PTR_ERR(ssk); 1656 } 1657 if (!msk->first) 1658 return -EINVAL; 1659 1660 ssk = msk->first; 1661 1662 lock_sock(ssk); 1663 msg->msg_flags |= MSG_DONTWAIT; 1664 msk->fastopening = 1; 1665 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1666 msk->fastopening = 0; 1667 msg->msg_flags = saved_flags; 1668 release_sock(ssk); 1669 1670 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1671 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1672 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1673 msg->msg_namelen, msg->msg_flags, 1); 1674 1675 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1676 * case of any error, except timeout or signal 1677 */ 1678 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1679 *copied_syn = 0; 1680 } else if (ret && ret != -EINPROGRESS) { 1681 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1682 * __inet_stream_connect() can fail, due to looking check, 1683 * see mptcp_disconnect(). 1684 * Attempt it again outside the problematic scope. 1685 */ 1686 if (!mptcp_disconnect(sk, 0)) 1687 sk->sk_socket->state = SS_UNCONNECTED; 1688 } 1689 inet_clear_bit(DEFER_CONNECT, sk); 1690 1691 return ret; 1692 } 1693 1694 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1695 { 1696 struct mptcp_sock *msk = mptcp_sk(sk); 1697 struct page_frag *pfrag; 1698 size_t copied = 0; 1699 int ret = 0; 1700 long timeo; 1701 1702 /* silently ignore everything else */ 1703 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1704 1705 lock_sock(sk); 1706 1707 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1708 msg->msg_flags & MSG_FASTOPEN)) { 1709 int copied_syn = 0; 1710 1711 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1712 copied += copied_syn; 1713 if (ret == -EINPROGRESS && copied_syn > 0) 1714 goto out; 1715 else if (ret) 1716 goto do_error; 1717 } 1718 1719 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1720 1721 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1722 ret = sk_stream_wait_connect(sk, &timeo); 1723 if (ret) 1724 goto do_error; 1725 } 1726 1727 ret = -EPIPE; 1728 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1729 goto do_error; 1730 1731 pfrag = sk_page_frag(sk); 1732 1733 while (msg_data_left(msg)) { 1734 int total_ts, frag_truesize = 0; 1735 struct mptcp_data_frag *dfrag; 1736 bool dfrag_collapsed; 1737 size_t psize, offset; 1738 1739 /* reuse tail pfrag, if possible, or carve a new one from the 1740 * page allocator 1741 */ 1742 dfrag = mptcp_pending_tail(sk); 1743 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1744 if (!dfrag_collapsed) { 1745 if (!sk_stream_memory_free(sk)) 1746 goto wait_for_memory; 1747 1748 if (!mptcp_page_frag_refill(sk, pfrag)) 1749 goto wait_for_memory; 1750 1751 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1752 frag_truesize = dfrag->overhead; 1753 } 1754 1755 /* we do not bound vs wspace, to allow a single packet. 1756 * memory accounting will prevent execessive memory usage 1757 * anyway 1758 */ 1759 offset = dfrag->offset + dfrag->data_len; 1760 psize = pfrag->size - offset; 1761 psize = min_t(size_t, psize, msg_data_left(msg)); 1762 total_ts = psize + frag_truesize; 1763 1764 if (!sk_wmem_schedule(sk, total_ts)) 1765 goto wait_for_memory; 1766 1767 if (copy_page_from_iter(dfrag->page, offset, psize, 1768 &msg->msg_iter) != psize) { 1769 ret = -EFAULT; 1770 goto do_error; 1771 } 1772 1773 /* data successfully copied into the write queue */ 1774 sk->sk_forward_alloc -= total_ts; 1775 copied += psize; 1776 dfrag->data_len += psize; 1777 frag_truesize += psize; 1778 pfrag->offset += frag_truesize; 1779 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1780 1781 /* charge data on mptcp pending queue to the msk socket 1782 * Note: we charge such data both to sk and ssk 1783 */ 1784 sk_wmem_queued_add(sk, frag_truesize); 1785 if (!dfrag_collapsed) { 1786 get_page(dfrag->page); 1787 list_add_tail(&dfrag->list, &msk->rtx_queue); 1788 if (!msk->first_pending) 1789 WRITE_ONCE(msk->first_pending, dfrag); 1790 } 1791 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1792 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1793 !dfrag_collapsed); 1794 1795 continue; 1796 1797 wait_for_memory: 1798 mptcp_set_nospace(sk); 1799 __mptcp_push_pending(sk, msg->msg_flags); 1800 ret = sk_stream_wait_memory(sk, &timeo); 1801 if (ret) 1802 goto do_error; 1803 } 1804 1805 if (copied) 1806 __mptcp_push_pending(sk, msg->msg_flags); 1807 1808 out: 1809 release_sock(sk); 1810 return copied; 1811 1812 do_error: 1813 if (copied) 1814 goto out; 1815 1816 copied = sk_stream_error(sk, msg->msg_flags, ret); 1817 goto out; 1818 } 1819 1820 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1821 struct msghdr *msg, 1822 size_t len, int flags, 1823 struct scm_timestamping_internal *tss, 1824 int *cmsg_flags) 1825 { 1826 struct sk_buff *skb, *tmp; 1827 int copied = 0; 1828 1829 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1830 u32 offset = MPTCP_SKB_CB(skb)->offset; 1831 u32 data_len = skb->len - offset; 1832 u32 count = min_t(size_t, len - copied, data_len); 1833 int err; 1834 1835 if (!(flags & MSG_TRUNC)) { 1836 err = skb_copy_datagram_msg(skb, offset, msg, count); 1837 if (unlikely(err < 0)) { 1838 if (!copied) 1839 return err; 1840 break; 1841 } 1842 } 1843 1844 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1845 tcp_update_recv_tstamps(skb, tss); 1846 *cmsg_flags |= MPTCP_CMSG_TS; 1847 } 1848 1849 copied += count; 1850 1851 if (count < data_len) { 1852 if (!(flags & MSG_PEEK)) { 1853 MPTCP_SKB_CB(skb)->offset += count; 1854 MPTCP_SKB_CB(skb)->map_seq += count; 1855 } 1856 break; 1857 } 1858 1859 if (!(flags & MSG_PEEK)) { 1860 /* we will bulk release the skb memory later */ 1861 skb->destructor = NULL; 1862 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1863 __skb_unlink(skb, &msk->receive_queue); 1864 __kfree_skb(skb); 1865 } 1866 1867 if (copied >= len) 1868 break; 1869 } 1870 1871 return copied; 1872 } 1873 1874 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1875 * 1876 * Only difference: Use highest rtt estimate of the subflows in use. 1877 */ 1878 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1879 { 1880 struct mptcp_subflow_context *subflow; 1881 struct sock *sk = (struct sock *)msk; 1882 u8 scaling_ratio = U8_MAX; 1883 u32 time, advmss = 1; 1884 u64 rtt_us, mstamp; 1885 1886 msk_owned_by_me(msk); 1887 1888 if (copied <= 0) 1889 return; 1890 1891 msk->rcvq_space.copied += copied; 1892 1893 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1894 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1895 1896 rtt_us = msk->rcvq_space.rtt_us; 1897 if (rtt_us && time < (rtt_us >> 3)) 1898 return; 1899 1900 rtt_us = 0; 1901 mptcp_for_each_subflow(msk, subflow) { 1902 const struct tcp_sock *tp; 1903 u64 sf_rtt_us; 1904 u32 sf_advmss; 1905 1906 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1907 1908 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1909 sf_advmss = READ_ONCE(tp->advmss); 1910 1911 rtt_us = max(sf_rtt_us, rtt_us); 1912 advmss = max(sf_advmss, advmss); 1913 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1914 } 1915 1916 msk->rcvq_space.rtt_us = rtt_us; 1917 msk->scaling_ratio = scaling_ratio; 1918 if (time < (rtt_us >> 3) || rtt_us == 0) 1919 return; 1920 1921 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1922 goto new_measure; 1923 1924 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1925 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1926 u64 rcvwin, grow; 1927 int rcvbuf; 1928 1929 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1930 1931 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1932 1933 do_div(grow, msk->rcvq_space.space); 1934 rcvwin += (grow << 1); 1935 1936 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 1937 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1938 1939 if (rcvbuf > sk->sk_rcvbuf) { 1940 u32 window_clamp; 1941 1942 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 1943 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1944 1945 /* Make subflows follow along. If we do not do this, we 1946 * get drops at subflow level if skbs can't be moved to 1947 * the mptcp rx queue fast enough (announced rcv_win can 1948 * exceed ssk->sk_rcvbuf). 1949 */ 1950 mptcp_for_each_subflow(msk, subflow) { 1951 struct sock *ssk; 1952 bool slow; 1953 1954 ssk = mptcp_subflow_tcp_sock(subflow); 1955 slow = lock_sock_fast(ssk); 1956 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1957 tcp_sk(ssk)->window_clamp = window_clamp; 1958 tcp_cleanup_rbuf(ssk, 1); 1959 unlock_sock_fast(ssk, slow); 1960 } 1961 } 1962 } 1963 1964 msk->rcvq_space.space = msk->rcvq_space.copied; 1965 new_measure: 1966 msk->rcvq_space.copied = 0; 1967 msk->rcvq_space.time = mstamp; 1968 } 1969 1970 static void __mptcp_update_rmem(struct sock *sk) 1971 { 1972 struct mptcp_sock *msk = mptcp_sk(sk); 1973 1974 if (!msk->rmem_released) 1975 return; 1976 1977 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1978 mptcp_rmem_uncharge(sk, msk->rmem_released); 1979 WRITE_ONCE(msk->rmem_released, 0); 1980 } 1981 1982 static void __mptcp_splice_receive_queue(struct sock *sk) 1983 { 1984 struct mptcp_sock *msk = mptcp_sk(sk); 1985 1986 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1987 } 1988 1989 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1990 { 1991 struct sock *sk = (struct sock *)msk; 1992 unsigned int moved = 0; 1993 bool ret, done; 1994 1995 do { 1996 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1997 bool slowpath; 1998 1999 /* we can have data pending in the subflows only if the msk 2000 * receive buffer was full at subflow_data_ready() time, 2001 * that is an unlikely slow path. 2002 */ 2003 if (likely(!ssk)) 2004 break; 2005 2006 slowpath = lock_sock_fast(ssk); 2007 mptcp_data_lock(sk); 2008 __mptcp_update_rmem(sk); 2009 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2010 mptcp_data_unlock(sk); 2011 2012 if (unlikely(ssk->sk_err)) 2013 __mptcp_error_report(sk); 2014 unlock_sock_fast(ssk, slowpath); 2015 } while (!done); 2016 2017 /* acquire the data lock only if some input data is pending */ 2018 ret = moved > 0; 2019 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2020 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2021 mptcp_data_lock(sk); 2022 __mptcp_update_rmem(sk); 2023 ret |= __mptcp_ofo_queue(msk); 2024 __mptcp_splice_receive_queue(sk); 2025 mptcp_data_unlock(sk); 2026 } 2027 if (ret) 2028 mptcp_check_data_fin((struct sock *)msk); 2029 return !skb_queue_empty(&msk->receive_queue); 2030 } 2031 2032 static unsigned int mptcp_inq_hint(const struct sock *sk) 2033 { 2034 const struct mptcp_sock *msk = mptcp_sk(sk); 2035 const struct sk_buff *skb; 2036 2037 skb = skb_peek(&msk->receive_queue); 2038 if (skb) { 2039 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2040 2041 if (hint_val >= INT_MAX) 2042 return INT_MAX; 2043 2044 return (unsigned int)hint_val; 2045 } 2046 2047 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2048 return 1; 2049 2050 return 0; 2051 } 2052 2053 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2054 int flags, int *addr_len) 2055 { 2056 struct mptcp_sock *msk = mptcp_sk(sk); 2057 struct scm_timestamping_internal tss; 2058 int copied = 0, cmsg_flags = 0; 2059 int target; 2060 long timeo; 2061 2062 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2063 if (unlikely(flags & MSG_ERRQUEUE)) 2064 return inet_recv_error(sk, msg, len, addr_len); 2065 2066 lock_sock(sk); 2067 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2068 copied = -ENOTCONN; 2069 goto out_err; 2070 } 2071 2072 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2073 2074 len = min_t(size_t, len, INT_MAX); 2075 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2076 2077 if (unlikely(msk->recvmsg_inq)) 2078 cmsg_flags = MPTCP_CMSG_INQ; 2079 2080 while (copied < len) { 2081 int bytes_read; 2082 2083 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2084 if (unlikely(bytes_read < 0)) { 2085 if (!copied) 2086 copied = bytes_read; 2087 goto out_err; 2088 } 2089 2090 copied += bytes_read; 2091 2092 /* be sure to advertise window change */ 2093 mptcp_cleanup_rbuf(msk); 2094 2095 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2096 continue; 2097 2098 /* only the master socket status is relevant here. The exit 2099 * conditions mirror closely tcp_recvmsg() 2100 */ 2101 if (copied >= target) 2102 break; 2103 2104 if (copied) { 2105 if (sk->sk_err || 2106 sk->sk_state == TCP_CLOSE || 2107 (sk->sk_shutdown & RCV_SHUTDOWN) || 2108 !timeo || 2109 signal_pending(current)) 2110 break; 2111 } else { 2112 if (sk->sk_err) { 2113 copied = sock_error(sk); 2114 break; 2115 } 2116 2117 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2118 /* race breaker: the shutdown could be after the 2119 * previous receive queue check 2120 */ 2121 if (__mptcp_move_skbs(msk)) 2122 continue; 2123 break; 2124 } 2125 2126 if (sk->sk_state == TCP_CLOSE) { 2127 copied = -ENOTCONN; 2128 break; 2129 } 2130 2131 if (!timeo) { 2132 copied = -EAGAIN; 2133 break; 2134 } 2135 2136 if (signal_pending(current)) { 2137 copied = sock_intr_errno(timeo); 2138 break; 2139 } 2140 } 2141 2142 pr_debug("block timeout %ld", timeo); 2143 sk_wait_data(sk, &timeo, NULL); 2144 } 2145 2146 out_err: 2147 if (cmsg_flags && copied >= 0) { 2148 if (cmsg_flags & MPTCP_CMSG_TS) 2149 tcp_recv_timestamp(msg, sk, &tss); 2150 2151 if (cmsg_flags & MPTCP_CMSG_INQ) { 2152 unsigned int inq = mptcp_inq_hint(sk); 2153 2154 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2155 } 2156 } 2157 2158 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2159 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2160 skb_queue_empty(&msk->receive_queue), copied); 2161 if (!(flags & MSG_PEEK)) 2162 mptcp_rcv_space_adjust(msk, copied); 2163 2164 release_sock(sk); 2165 return copied; 2166 } 2167 2168 static void mptcp_retransmit_timer(struct timer_list *t) 2169 { 2170 struct inet_connection_sock *icsk = from_timer(icsk, t, 2171 icsk_retransmit_timer); 2172 struct sock *sk = &icsk->icsk_inet.sk; 2173 struct mptcp_sock *msk = mptcp_sk(sk); 2174 2175 bh_lock_sock(sk); 2176 if (!sock_owned_by_user(sk)) { 2177 /* we need a process context to retransmit */ 2178 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2179 mptcp_schedule_work(sk); 2180 } else { 2181 /* delegate our work to tcp_release_cb() */ 2182 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2183 } 2184 bh_unlock_sock(sk); 2185 sock_put(sk); 2186 } 2187 2188 static void mptcp_timeout_timer(struct timer_list *t) 2189 { 2190 struct sock *sk = from_timer(sk, t, sk_timer); 2191 2192 mptcp_schedule_work(sk); 2193 sock_put(sk); 2194 } 2195 2196 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2197 * level. 2198 * 2199 * A backup subflow is returned only if that is the only kind available. 2200 */ 2201 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2202 { 2203 struct sock *backup = NULL, *pick = NULL; 2204 struct mptcp_subflow_context *subflow; 2205 int min_stale_count = INT_MAX; 2206 2207 msk_owned_by_me(msk); 2208 2209 if (__mptcp_check_fallback(msk)) 2210 return NULL; 2211 2212 mptcp_for_each_subflow(msk, subflow) { 2213 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2214 2215 if (!__mptcp_subflow_active(subflow)) 2216 continue; 2217 2218 /* still data outstanding at TCP level? skip this */ 2219 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2220 mptcp_pm_subflow_chk_stale(msk, ssk); 2221 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2222 continue; 2223 } 2224 2225 if (subflow->backup) { 2226 if (!backup) 2227 backup = ssk; 2228 continue; 2229 } 2230 2231 if (!pick) 2232 pick = ssk; 2233 } 2234 2235 if (pick) 2236 return pick; 2237 2238 /* use backup only if there are no progresses anywhere */ 2239 return min_stale_count > 1 ? backup : NULL; 2240 } 2241 2242 bool __mptcp_retransmit_pending_data(struct sock *sk) 2243 { 2244 struct mptcp_data_frag *cur, *rtx_head; 2245 struct mptcp_sock *msk = mptcp_sk(sk); 2246 2247 if (__mptcp_check_fallback(msk)) 2248 return false; 2249 2250 if (tcp_rtx_and_write_queues_empty(sk)) 2251 return false; 2252 2253 /* the closing socket has some data untransmitted and/or unacked: 2254 * some data in the mptcp rtx queue has not really xmitted yet. 2255 * keep it simple and re-inject the whole mptcp level rtx queue 2256 */ 2257 mptcp_data_lock(sk); 2258 __mptcp_clean_una_wakeup(sk); 2259 rtx_head = mptcp_rtx_head(sk); 2260 if (!rtx_head) { 2261 mptcp_data_unlock(sk); 2262 return false; 2263 } 2264 2265 msk->recovery_snd_nxt = msk->snd_nxt; 2266 msk->recovery = true; 2267 mptcp_data_unlock(sk); 2268 2269 msk->first_pending = rtx_head; 2270 msk->snd_burst = 0; 2271 2272 /* be sure to clear the "sent status" on all re-injected fragments */ 2273 list_for_each_entry(cur, &msk->rtx_queue, list) { 2274 if (!cur->already_sent) 2275 break; 2276 cur->already_sent = 0; 2277 } 2278 2279 return true; 2280 } 2281 2282 /* flags for __mptcp_close_ssk() */ 2283 #define MPTCP_CF_PUSH BIT(1) 2284 #define MPTCP_CF_FASTCLOSE BIT(2) 2285 2286 /* subflow sockets can be either outgoing (connect) or incoming 2287 * (accept). 2288 * 2289 * Outgoing subflows use in-kernel sockets. 2290 * Incoming subflows do not have their own 'struct socket' allocated, 2291 * so we need to use tcp_close() after detaching them from the mptcp 2292 * parent socket. 2293 */ 2294 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2295 struct mptcp_subflow_context *subflow, 2296 unsigned int flags) 2297 { 2298 struct mptcp_sock *msk = mptcp_sk(sk); 2299 bool dispose_it, need_push = false; 2300 2301 /* If the first subflow moved to a close state before accept, e.g. due 2302 * to an incoming reset, mptcp either: 2303 * - if either the subflow or the msk are dead, destroy the context 2304 * (the subflow socket is deleted by inet_child_forget) and the msk 2305 * - otherwise do nothing at the moment and take action at accept and/or 2306 * listener shutdown - user-space must be able to accept() the closed 2307 * socket. 2308 */ 2309 if (msk->in_accept_queue && msk->first == ssk) { 2310 if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD)) 2311 return; 2312 2313 /* ensure later check in mptcp_worker() will dispose the msk */ 2314 sock_set_flag(sk, SOCK_DEAD); 2315 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2316 mptcp_subflow_drop_ctx(ssk); 2317 goto out_release; 2318 } 2319 2320 dispose_it = msk->free_first || ssk != msk->first; 2321 if (dispose_it) 2322 list_del(&subflow->node); 2323 2324 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2325 2326 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2327 /* be sure to force the tcp_disconnect() path, 2328 * to generate the egress reset 2329 */ 2330 ssk->sk_lingertime = 0; 2331 sock_set_flag(ssk, SOCK_LINGER); 2332 subflow->send_fastclose = 1; 2333 } 2334 2335 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2336 if (!dispose_it) { 2337 /* The MPTCP code never wait on the subflow sockets, TCP-level 2338 * disconnect should never fail 2339 */ 2340 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2341 mptcp_subflow_ctx_reset(subflow); 2342 release_sock(ssk); 2343 2344 goto out; 2345 } 2346 2347 subflow->disposable = 1; 2348 2349 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2350 * the ssk has been already destroyed, we just need to release the 2351 * reference owned by msk; 2352 */ 2353 if (!inet_csk(ssk)->icsk_ulp_ops) { 2354 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2355 kfree_rcu(subflow, rcu); 2356 } else { 2357 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2358 __tcp_close(ssk, 0); 2359 2360 /* close acquired an extra ref */ 2361 __sock_put(ssk); 2362 } 2363 2364 out_release: 2365 release_sock(ssk); 2366 2367 sock_put(ssk); 2368 2369 if (ssk == msk->first) 2370 WRITE_ONCE(msk->first, NULL); 2371 2372 out: 2373 if (ssk == msk->last_snd) 2374 msk->last_snd = NULL; 2375 2376 if (need_push) 2377 __mptcp_push_pending(sk, 0); 2378 } 2379 2380 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2381 struct mptcp_subflow_context *subflow) 2382 { 2383 if (sk->sk_state == TCP_ESTABLISHED) 2384 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2385 2386 /* subflow aborted before reaching the fully_established status 2387 * attempt the creation of the next subflow 2388 */ 2389 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2390 2391 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2392 } 2393 2394 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2395 { 2396 return 0; 2397 } 2398 2399 static void __mptcp_close_subflow(struct sock *sk) 2400 { 2401 struct mptcp_subflow_context *subflow, *tmp; 2402 struct mptcp_sock *msk = mptcp_sk(sk); 2403 2404 might_sleep(); 2405 2406 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2407 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2408 2409 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2410 continue; 2411 2412 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2413 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2414 continue; 2415 2416 mptcp_close_ssk(sk, ssk, subflow); 2417 } 2418 2419 } 2420 2421 static bool mptcp_should_close(const struct sock *sk) 2422 { 2423 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2424 struct mptcp_subflow_context *subflow; 2425 2426 if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue) 2427 return true; 2428 2429 /* if all subflows are in closed status don't bother with additional 2430 * timeout 2431 */ 2432 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2433 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2434 TCP_CLOSE) 2435 return false; 2436 } 2437 return true; 2438 } 2439 2440 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2441 { 2442 struct mptcp_subflow_context *subflow, *tmp; 2443 struct sock *sk = (struct sock *)msk; 2444 2445 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2446 return; 2447 2448 mptcp_token_destroy(msk); 2449 2450 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2451 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2452 bool slow; 2453 2454 slow = lock_sock_fast(tcp_sk); 2455 if (tcp_sk->sk_state != TCP_CLOSE) { 2456 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2457 tcp_set_state(tcp_sk, TCP_CLOSE); 2458 } 2459 unlock_sock_fast(tcp_sk, slow); 2460 } 2461 2462 /* Mirror the tcp_reset() error propagation */ 2463 switch (sk->sk_state) { 2464 case TCP_SYN_SENT: 2465 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2466 break; 2467 case TCP_CLOSE_WAIT: 2468 WRITE_ONCE(sk->sk_err, EPIPE); 2469 break; 2470 case TCP_CLOSE: 2471 return; 2472 default: 2473 WRITE_ONCE(sk->sk_err, ECONNRESET); 2474 } 2475 2476 inet_sk_state_store(sk, TCP_CLOSE); 2477 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2478 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2479 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2480 2481 /* the calling mptcp_worker will properly destroy the socket */ 2482 if (sock_flag(sk, SOCK_DEAD)) 2483 return; 2484 2485 sk->sk_state_change(sk); 2486 sk_error_report(sk); 2487 } 2488 2489 static void __mptcp_retrans(struct sock *sk) 2490 { 2491 struct mptcp_sock *msk = mptcp_sk(sk); 2492 struct mptcp_sendmsg_info info = {}; 2493 struct mptcp_data_frag *dfrag; 2494 size_t copied = 0; 2495 struct sock *ssk; 2496 int ret; 2497 2498 mptcp_clean_una_wakeup(sk); 2499 2500 /* first check ssk: need to kick "stale" logic */ 2501 ssk = mptcp_subflow_get_retrans(msk); 2502 dfrag = mptcp_rtx_head(sk); 2503 if (!dfrag) { 2504 if (mptcp_data_fin_enabled(msk)) { 2505 struct inet_connection_sock *icsk = inet_csk(sk); 2506 2507 icsk->icsk_retransmits++; 2508 mptcp_set_datafin_timeout(sk); 2509 mptcp_send_ack(msk); 2510 2511 goto reset_timer; 2512 } 2513 2514 if (!mptcp_send_head(sk)) 2515 return; 2516 2517 goto reset_timer; 2518 } 2519 2520 if (!ssk) 2521 goto reset_timer; 2522 2523 lock_sock(ssk); 2524 2525 /* limit retransmission to the bytes already sent on some subflows */ 2526 info.sent = 0; 2527 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2528 while (info.sent < info.limit) { 2529 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2530 if (ret <= 0) 2531 break; 2532 2533 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2534 copied += ret; 2535 info.sent += ret; 2536 } 2537 if (copied) { 2538 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2539 msk->bytes_retrans += copied; 2540 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2541 info.size_goal); 2542 WRITE_ONCE(msk->allow_infinite_fallback, false); 2543 } 2544 2545 release_sock(ssk); 2546 2547 reset_timer: 2548 mptcp_check_and_set_pending(sk); 2549 2550 if (!mptcp_timer_pending(sk)) 2551 mptcp_reset_timer(sk); 2552 } 2553 2554 /* schedule the timeout timer for the relevant event: either close timeout 2555 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2556 */ 2557 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2558 { 2559 struct sock *sk = (struct sock *)msk; 2560 unsigned long timeout, close_timeout; 2561 2562 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2563 return; 2564 2565 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2566 2567 /* the close timeout takes precedence on the fail one, and here at least one of 2568 * them is active 2569 */ 2570 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2571 2572 sk_reset_timer(sk, &sk->sk_timer, timeout); 2573 } 2574 2575 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2576 { 2577 struct sock *ssk = msk->first; 2578 bool slow; 2579 2580 if (!ssk) 2581 return; 2582 2583 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2584 2585 slow = lock_sock_fast(ssk); 2586 mptcp_subflow_reset(ssk); 2587 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2588 unlock_sock_fast(ssk, slow); 2589 2590 mptcp_reset_timeout(msk, 0); 2591 } 2592 2593 static void mptcp_do_fastclose(struct sock *sk) 2594 { 2595 struct mptcp_subflow_context *subflow, *tmp; 2596 struct mptcp_sock *msk = mptcp_sk(sk); 2597 2598 inet_sk_state_store(sk, TCP_CLOSE); 2599 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2600 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2601 subflow, MPTCP_CF_FASTCLOSE); 2602 } 2603 2604 static void mptcp_worker(struct work_struct *work) 2605 { 2606 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2607 struct sock *sk = (struct sock *)msk; 2608 unsigned long fail_tout; 2609 int state; 2610 2611 lock_sock(sk); 2612 state = sk->sk_state; 2613 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2614 goto unlock; 2615 2616 mptcp_check_fastclose(msk); 2617 2618 mptcp_pm_nl_work(msk); 2619 2620 mptcp_check_send_data_fin(sk); 2621 mptcp_check_data_fin_ack(sk); 2622 mptcp_check_data_fin(sk); 2623 2624 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2625 __mptcp_close_subflow(sk); 2626 2627 /* There is no point in keeping around an orphaned sk timedout or 2628 * closed, but we need the msk around to reply to incoming DATA_FIN, 2629 * even if it is orphaned and in FIN_WAIT2 state 2630 */ 2631 if (sock_flag(sk, SOCK_DEAD)) { 2632 if (mptcp_should_close(sk)) 2633 mptcp_do_fastclose(sk); 2634 2635 if (sk->sk_state == TCP_CLOSE) { 2636 __mptcp_destroy_sock(sk); 2637 goto unlock; 2638 } 2639 } 2640 2641 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2642 __mptcp_retrans(sk); 2643 2644 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2645 if (fail_tout && time_after(jiffies, fail_tout)) 2646 mptcp_mp_fail_no_response(msk); 2647 2648 unlock: 2649 release_sock(sk); 2650 sock_put(sk); 2651 } 2652 2653 static void __mptcp_init_sock(struct sock *sk) 2654 { 2655 struct mptcp_sock *msk = mptcp_sk(sk); 2656 2657 INIT_LIST_HEAD(&msk->conn_list); 2658 INIT_LIST_HEAD(&msk->join_list); 2659 INIT_LIST_HEAD(&msk->rtx_queue); 2660 INIT_WORK(&msk->work, mptcp_worker); 2661 __skb_queue_head_init(&msk->receive_queue); 2662 msk->out_of_order_queue = RB_ROOT; 2663 msk->first_pending = NULL; 2664 msk->rmem_fwd_alloc = 0; 2665 WRITE_ONCE(msk->rmem_released, 0); 2666 msk->timer_ival = TCP_RTO_MIN; 2667 2668 WRITE_ONCE(msk->first, NULL); 2669 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2670 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2671 WRITE_ONCE(msk->allow_infinite_fallback, true); 2672 msk->recovery = false; 2673 msk->subflow_id = 1; 2674 2675 mptcp_pm_data_init(msk); 2676 2677 /* re-use the csk retrans timer for MPTCP-level retrans */ 2678 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2679 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2680 } 2681 2682 static void mptcp_ca_reset(struct sock *sk) 2683 { 2684 struct inet_connection_sock *icsk = inet_csk(sk); 2685 2686 tcp_assign_congestion_control(sk); 2687 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2688 2689 /* no need to keep a reference to the ops, the name will suffice */ 2690 tcp_cleanup_congestion_control(sk); 2691 icsk->icsk_ca_ops = NULL; 2692 } 2693 2694 static int mptcp_init_sock(struct sock *sk) 2695 { 2696 struct net *net = sock_net(sk); 2697 2698 __mptcp_init_sock(sk); 2699 2700 if (!mptcp_is_enabled(net)) 2701 return -ENOPROTOOPT; 2702 2703 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2704 return -ENOMEM; 2705 2706 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2707 2708 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2709 * propagate the correct value 2710 */ 2711 mptcp_ca_reset(sk); 2712 2713 sk_sockets_allocated_inc(sk); 2714 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2715 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2716 2717 return 0; 2718 } 2719 2720 static void __mptcp_clear_xmit(struct sock *sk) 2721 { 2722 struct mptcp_sock *msk = mptcp_sk(sk); 2723 struct mptcp_data_frag *dtmp, *dfrag; 2724 2725 WRITE_ONCE(msk->first_pending, NULL); 2726 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2727 dfrag_clear(sk, dfrag); 2728 } 2729 2730 void mptcp_cancel_work(struct sock *sk) 2731 { 2732 struct mptcp_sock *msk = mptcp_sk(sk); 2733 2734 if (cancel_work_sync(&msk->work)) 2735 __sock_put(sk); 2736 } 2737 2738 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2739 { 2740 lock_sock(ssk); 2741 2742 switch (ssk->sk_state) { 2743 case TCP_LISTEN: 2744 if (!(how & RCV_SHUTDOWN)) 2745 break; 2746 fallthrough; 2747 case TCP_SYN_SENT: 2748 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2749 break; 2750 default: 2751 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2752 pr_debug("Fallback"); 2753 ssk->sk_shutdown |= how; 2754 tcp_shutdown(ssk, how); 2755 2756 /* simulate the data_fin ack reception to let the state 2757 * machine move forward 2758 */ 2759 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2760 mptcp_schedule_work(sk); 2761 } else { 2762 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2763 tcp_send_ack(ssk); 2764 if (!mptcp_timer_pending(sk)) 2765 mptcp_reset_timer(sk); 2766 } 2767 break; 2768 } 2769 2770 release_sock(ssk); 2771 } 2772 2773 static const unsigned char new_state[16] = { 2774 /* current state: new state: action: */ 2775 [0 /* (Invalid) */] = TCP_CLOSE, 2776 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2777 [TCP_SYN_SENT] = TCP_CLOSE, 2778 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2779 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2780 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2781 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2782 [TCP_CLOSE] = TCP_CLOSE, 2783 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2784 [TCP_LAST_ACK] = TCP_LAST_ACK, 2785 [TCP_LISTEN] = TCP_CLOSE, 2786 [TCP_CLOSING] = TCP_CLOSING, 2787 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2788 }; 2789 2790 static int mptcp_close_state(struct sock *sk) 2791 { 2792 int next = (int)new_state[sk->sk_state]; 2793 int ns = next & TCP_STATE_MASK; 2794 2795 inet_sk_state_store(sk, ns); 2796 2797 return next & TCP_ACTION_FIN; 2798 } 2799 2800 static void mptcp_check_send_data_fin(struct sock *sk) 2801 { 2802 struct mptcp_subflow_context *subflow; 2803 struct mptcp_sock *msk = mptcp_sk(sk); 2804 2805 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2806 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2807 msk->snd_nxt, msk->write_seq); 2808 2809 /* we still need to enqueue subflows or not really shutting down, 2810 * skip this 2811 */ 2812 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2813 mptcp_send_head(sk)) 2814 return; 2815 2816 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2817 2818 mptcp_for_each_subflow(msk, subflow) { 2819 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2820 2821 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2822 } 2823 } 2824 2825 static void __mptcp_wr_shutdown(struct sock *sk) 2826 { 2827 struct mptcp_sock *msk = mptcp_sk(sk); 2828 2829 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2830 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2831 !!mptcp_send_head(sk)); 2832 2833 /* will be ignored by fallback sockets */ 2834 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2835 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2836 2837 mptcp_check_send_data_fin(sk); 2838 } 2839 2840 static void __mptcp_destroy_sock(struct sock *sk) 2841 { 2842 struct mptcp_sock *msk = mptcp_sk(sk); 2843 2844 pr_debug("msk=%p", msk); 2845 2846 might_sleep(); 2847 2848 mptcp_stop_timer(sk); 2849 sk_stop_timer(sk, &sk->sk_timer); 2850 msk->pm.status = 0; 2851 2852 sk->sk_prot->destroy(sk); 2853 2854 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2855 WARN_ON_ONCE(msk->rmem_released); 2856 sk_stream_kill_queues(sk); 2857 xfrm_sk_free_policy(sk); 2858 2859 sock_put(sk); 2860 } 2861 2862 void __mptcp_unaccepted_force_close(struct sock *sk) 2863 { 2864 sock_set_flag(sk, SOCK_DEAD); 2865 mptcp_do_fastclose(sk); 2866 __mptcp_destroy_sock(sk); 2867 } 2868 2869 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2870 { 2871 /* Concurrent splices from sk_receive_queue into receive_queue will 2872 * always show at least one non-empty queue when checked in this order. 2873 */ 2874 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2875 skb_queue_empty_lockless(&msk->receive_queue)) 2876 return 0; 2877 2878 return EPOLLIN | EPOLLRDNORM; 2879 } 2880 2881 static void mptcp_check_listen_stop(struct sock *sk) 2882 { 2883 struct sock *ssk; 2884 2885 if (inet_sk_state_load(sk) != TCP_LISTEN) 2886 return; 2887 2888 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2889 ssk = mptcp_sk(sk)->first; 2890 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2891 return; 2892 2893 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2894 tcp_set_state(ssk, TCP_CLOSE); 2895 mptcp_subflow_queue_clean(sk, ssk); 2896 inet_csk_listen_stop(ssk); 2897 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 2898 release_sock(ssk); 2899 } 2900 2901 bool __mptcp_close(struct sock *sk, long timeout) 2902 { 2903 struct mptcp_subflow_context *subflow; 2904 struct mptcp_sock *msk = mptcp_sk(sk); 2905 bool do_cancel_work = false; 2906 int subflows_alive = 0; 2907 2908 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2909 2910 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2911 mptcp_check_listen_stop(sk); 2912 inet_sk_state_store(sk, TCP_CLOSE); 2913 goto cleanup; 2914 } 2915 2916 if (mptcp_check_readable(msk) || timeout < 0) { 2917 /* If the msk has read data, or the caller explicitly ask it, 2918 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 2919 */ 2920 mptcp_do_fastclose(sk); 2921 timeout = 0; 2922 } else if (mptcp_close_state(sk)) { 2923 __mptcp_wr_shutdown(sk); 2924 } 2925 2926 sk_stream_wait_close(sk, timeout); 2927 2928 cleanup: 2929 /* orphan all the subflows */ 2930 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2931 mptcp_for_each_subflow(msk, subflow) { 2932 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2933 bool slow = lock_sock_fast_nested(ssk); 2934 2935 subflows_alive += ssk->sk_state != TCP_CLOSE; 2936 2937 /* since the close timeout takes precedence on the fail one, 2938 * cancel the latter 2939 */ 2940 if (ssk == msk->first) 2941 subflow->fail_tout = 0; 2942 2943 /* detach from the parent socket, but allow data_ready to 2944 * push incoming data into the mptcp stack, to properly ack it 2945 */ 2946 ssk->sk_socket = NULL; 2947 ssk->sk_wq = NULL; 2948 unlock_sock_fast(ssk, slow); 2949 } 2950 sock_orphan(sk); 2951 2952 /* all the subflows are closed, only timeout can change the msk 2953 * state, let's not keep resources busy for no reasons 2954 */ 2955 if (subflows_alive == 0) 2956 inet_sk_state_store(sk, TCP_CLOSE); 2957 2958 sock_hold(sk); 2959 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2960 if (msk->token) 2961 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 2962 2963 if (sk->sk_state == TCP_CLOSE) { 2964 __mptcp_destroy_sock(sk); 2965 do_cancel_work = true; 2966 } else { 2967 mptcp_reset_timeout(msk, 0); 2968 } 2969 2970 return do_cancel_work; 2971 } 2972 2973 static void mptcp_close(struct sock *sk, long timeout) 2974 { 2975 bool do_cancel_work; 2976 2977 lock_sock(sk); 2978 2979 do_cancel_work = __mptcp_close(sk, timeout); 2980 release_sock(sk); 2981 if (do_cancel_work) 2982 mptcp_cancel_work(sk); 2983 2984 sock_put(sk); 2985 } 2986 2987 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2988 { 2989 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2990 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2991 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2992 2993 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2994 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2995 2996 if (msk6 && ssk6) { 2997 msk6->saddr = ssk6->saddr; 2998 msk6->flow_label = ssk6->flow_label; 2999 } 3000 #endif 3001 3002 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3003 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3004 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3005 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3006 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3007 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3008 } 3009 3010 static int mptcp_disconnect(struct sock *sk, int flags) 3011 { 3012 struct mptcp_sock *msk = mptcp_sk(sk); 3013 3014 /* Deny disconnect if other threads are blocked in sk_wait_event() 3015 * or inet_wait_for_connect(). 3016 */ 3017 if (sk->sk_wait_pending) 3018 return -EBUSY; 3019 3020 /* We are on the fastopen error path. We can't call straight into the 3021 * subflows cleanup code due to lock nesting (we are already under 3022 * msk->firstsocket lock). 3023 */ 3024 if (msk->fastopening) 3025 return -EBUSY; 3026 3027 mptcp_check_listen_stop(sk); 3028 inet_sk_state_store(sk, TCP_CLOSE); 3029 3030 mptcp_stop_timer(sk); 3031 sk_stop_timer(sk, &sk->sk_timer); 3032 3033 if (msk->token) 3034 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3035 3036 /* msk->subflow is still intact, the following will not free the first 3037 * subflow 3038 */ 3039 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3040 msk->last_snd = NULL; 3041 WRITE_ONCE(msk->flags, 0); 3042 msk->cb_flags = 0; 3043 msk->push_pending = 0; 3044 msk->recovery = false; 3045 msk->can_ack = false; 3046 msk->fully_established = false; 3047 msk->rcv_data_fin = false; 3048 msk->snd_data_fin_enable = false; 3049 msk->rcv_fastclose = false; 3050 msk->use_64bit_ack = false; 3051 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3052 mptcp_pm_data_reset(msk); 3053 mptcp_ca_reset(sk); 3054 msk->bytes_acked = 0; 3055 msk->bytes_received = 0; 3056 msk->bytes_sent = 0; 3057 msk->bytes_retrans = 0; 3058 3059 WRITE_ONCE(sk->sk_shutdown, 0); 3060 sk_error_report(sk); 3061 return 0; 3062 } 3063 3064 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3065 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3066 { 3067 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3068 3069 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3070 } 3071 #endif 3072 3073 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3074 const struct mptcp_options_received *mp_opt, 3075 struct sock *ssk, 3076 struct request_sock *req) 3077 { 3078 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3079 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3080 struct mptcp_sock *msk; 3081 3082 if (!nsk) 3083 return NULL; 3084 3085 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3086 if (nsk->sk_family == AF_INET6) 3087 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3088 #endif 3089 3090 nsk->sk_wait_pending = 0; 3091 __mptcp_init_sock(nsk); 3092 3093 msk = mptcp_sk(nsk); 3094 msk->local_key = subflow_req->local_key; 3095 msk->token = subflow_req->token; 3096 msk->in_accept_queue = 1; 3097 WRITE_ONCE(msk->fully_established, false); 3098 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3099 WRITE_ONCE(msk->csum_enabled, true); 3100 3101 msk->write_seq = subflow_req->idsn + 1; 3102 msk->snd_nxt = msk->write_seq; 3103 msk->snd_una = msk->write_seq; 3104 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3105 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3106 3107 /* passive msk is created after the first/MPC subflow */ 3108 msk->subflow_id = 2; 3109 3110 sock_reset_flag(nsk, SOCK_RCU_FREE); 3111 security_inet_csk_clone(nsk, req); 3112 3113 /* this can't race with mptcp_close(), as the msk is 3114 * not yet exposted to user-space 3115 */ 3116 inet_sk_state_store(nsk, TCP_ESTABLISHED); 3117 3118 /* The msk maintain a ref to each subflow in the connections list */ 3119 WRITE_ONCE(msk->first, ssk); 3120 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3121 sock_hold(ssk); 3122 3123 /* new mpc subflow takes ownership of the newly 3124 * created mptcp socket 3125 */ 3126 mptcp_token_accept(subflow_req, msk); 3127 3128 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3129 * uses the correct data 3130 */ 3131 mptcp_copy_inaddrs(nsk, ssk); 3132 mptcp_propagate_sndbuf(nsk, ssk); 3133 3134 mptcp_rcv_space_init(msk, ssk); 3135 bh_unlock_sock(nsk); 3136 3137 /* note: the newly allocated socket refcount is 2 now */ 3138 return nsk; 3139 } 3140 3141 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3142 { 3143 const struct tcp_sock *tp = tcp_sk(ssk); 3144 3145 msk->rcvq_space.copied = 0; 3146 msk->rcvq_space.rtt_us = 0; 3147 3148 msk->rcvq_space.time = tp->tcp_mstamp; 3149 3150 /* initial rcv_space offering made to peer */ 3151 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3152 TCP_INIT_CWND * tp->advmss); 3153 if (msk->rcvq_space.space == 0) 3154 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3155 3156 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3157 } 3158 3159 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err, 3160 bool kern) 3161 { 3162 struct sock *newsk; 3163 3164 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3165 newsk = inet_csk_accept(ssk, flags, err, kern); 3166 if (!newsk) 3167 return NULL; 3168 3169 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3170 if (sk_is_mptcp(newsk)) { 3171 struct mptcp_subflow_context *subflow; 3172 struct sock *new_mptcp_sock; 3173 3174 subflow = mptcp_subflow_ctx(newsk); 3175 new_mptcp_sock = subflow->conn; 3176 3177 /* is_mptcp should be false if subflow->conn is missing, see 3178 * subflow_syn_recv_sock() 3179 */ 3180 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3181 tcp_sk(newsk)->is_mptcp = 0; 3182 goto out; 3183 } 3184 3185 newsk = new_mptcp_sock; 3186 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3187 } else { 3188 MPTCP_INC_STATS(sock_net(ssk), 3189 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3190 } 3191 3192 out: 3193 newsk->sk_kern_sock = kern; 3194 return newsk; 3195 } 3196 3197 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3198 { 3199 struct mptcp_subflow_context *subflow, *tmp; 3200 struct sock *sk = (struct sock *)msk; 3201 3202 __mptcp_clear_xmit(sk); 3203 3204 /* join list will be eventually flushed (with rst) at sock lock release time */ 3205 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3206 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3207 3208 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3209 mptcp_data_lock(sk); 3210 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3211 __skb_queue_purge(&sk->sk_receive_queue); 3212 skb_rbtree_purge(&msk->out_of_order_queue); 3213 mptcp_data_unlock(sk); 3214 3215 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3216 * inet_sock_destruct() will dispose it 3217 */ 3218 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3219 msk->rmem_fwd_alloc = 0; 3220 mptcp_token_destroy(msk); 3221 mptcp_pm_free_anno_list(msk); 3222 mptcp_free_local_addr_list(msk); 3223 } 3224 3225 static void mptcp_destroy(struct sock *sk) 3226 { 3227 struct mptcp_sock *msk = mptcp_sk(sk); 3228 3229 /* allow the following to close even the initial subflow */ 3230 msk->free_first = 1; 3231 mptcp_destroy_common(msk, 0); 3232 sk_sockets_allocated_dec(sk); 3233 } 3234 3235 void __mptcp_data_acked(struct sock *sk) 3236 { 3237 if (!sock_owned_by_user(sk)) 3238 __mptcp_clean_una(sk); 3239 else 3240 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3241 3242 if (mptcp_pending_data_fin_ack(sk)) 3243 mptcp_schedule_work(sk); 3244 } 3245 3246 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3247 { 3248 if (!mptcp_send_head(sk)) 3249 return; 3250 3251 if (!sock_owned_by_user(sk)) 3252 __mptcp_subflow_push_pending(sk, ssk, false); 3253 else 3254 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3255 } 3256 3257 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3258 BIT(MPTCP_RETRANSMIT) | \ 3259 BIT(MPTCP_FLUSH_JOIN_LIST)) 3260 3261 /* processes deferred events and flush wmem */ 3262 static void mptcp_release_cb(struct sock *sk) 3263 __must_hold(&sk->sk_lock.slock) 3264 { 3265 struct mptcp_sock *msk = mptcp_sk(sk); 3266 3267 for (;;) { 3268 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3269 msk->push_pending; 3270 struct list_head join_list; 3271 3272 if (!flags) 3273 break; 3274 3275 INIT_LIST_HEAD(&join_list); 3276 list_splice_init(&msk->join_list, &join_list); 3277 3278 /* the following actions acquire the subflow socket lock 3279 * 3280 * 1) can't be invoked in atomic scope 3281 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3282 * datapath acquires the msk socket spinlock while helding 3283 * the subflow socket lock 3284 */ 3285 msk->push_pending = 0; 3286 msk->cb_flags &= ~flags; 3287 spin_unlock_bh(&sk->sk_lock.slock); 3288 3289 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3290 __mptcp_flush_join_list(sk, &join_list); 3291 if (flags & BIT(MPTCP_PUSH_PENDING)) 3292 __mptcp_push_pending(sk, 0); 3293 if (flags & BIT(MPTCP_RETRANSMIT)) 3294 __mptcp_retrans(sk); 3295 3296 cond_resched(); 3297 spin_lock_bh(&sk->sk_lock.slock); 3298 } 3299 3300 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3301 __mptcp_clean_una_wakeup(sk); 3302 if (unlikely(msk->cb_flags)) { 3303 /* be sure to set the current sk state before tacking actions 3304 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3305 */ 3306 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3307 __mptcp_set_connected(sk); 3308 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3309 __mptcp_error_report(sk); 3310 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3311 msk->last_snd = NULL; 3312 } 3313 3314 __mptcp_update_rmem(sk); 3315 } 3316 3317 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3318 * TCP can't schedule delack timer before the subflow is fully established. 3319 * MPTCP uses the delack timer to do 3rd ack retransmissions 3320 */ 3321 static void schedule_3rdack_retransmission(struct sock *ssk) 3322 { 3323 struct inet_connection_sock *icsk = inet_csk(ssk); 3324 struct tcp_sock *tp = tcp_sk(ssk); 3325 unsigned long timeout; 3326 3327 if (mptcp_subflow_ctx(ssk)->fully_established) 3328 return; 3329 3330 /* reschedule with a timeout above RTT, as we must look only for drop */ 3331 if (tp->srtt_us) 3332 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3333 else 3334 timeout = TCP_TIMEOUT_INIT; 3335 timeout += jiffies; 3336 3337 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3338 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3339 icsk->icsk_ack.timeout = timeout; 3340 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3341 } 3342 3343 void mptcp_subflow_process_delegated(struct sock *ssk) 3344 { 3345 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3346 struct sock *sk = subflow->conn; 3347 3348 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3349 mptcp_data_lock(sk); 3350 if (!sock_owned_by_user(sk)) 3351 __mptcp_subflow_push_pending(sk, ssk, true); 3352 else 3353 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3354 mptcp_data_unlock(sk); 3355 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3356 } 3357 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3358 schedule_3rdack_retransmission(ssk); 3359 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3360 } 3361 } 3362 3363 static int mptcp_hash(struct sock *sk) 3364 { 3365 /* should never be called, 3366 * we hash the TCP subflows not the master socket 3367 */ 3368 WARN_ON_ONCE(1); 3369 return 0; 3370 } 3371 3372 static void mptcp_unhash(struct sock *sk) 3373 { 3374 /* called from sk_common_release(), but nothing to do here */ 3375 } 3376 3377 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3378 { 3379 struct mptcp_sock *msk = mptcp_sk(sk); 3380 3381 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3382 if (WARN_ON_ONCE(!msk->first)) 3383 return -EINVAL; 3384 3385 return inet_csk_get_port(msk->first, snum); 3386 } 3387 3388 void mptcp_finish_connect(struct sock *ssk) 3389 { 3390 struct mptcp_subflow_context *subflow; 3391 struct mptcp_sock *msk; 3392 struct sock *sk; 3393 3394 subflow = mptcp_subflow_ctx(ssk); 3395 sk = subflow->conn; 3396 msk = mptcp_sk(sk); 3397 3398 pr_debug("msk=%p, token=%u", sk, subflow->token); 3399 3400 subflow->map_seq = subflow->iasn; 3401 subflow->map_subflow_seq = 1; 3402 3403 /* the socket is not connected yet, no msk/subflow ops can access/race 3404 * accessing the field below 3405 */ 3406 WRITE_ONCE(msk->local_key, subflow->local_key); 3407 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3408 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3409 WRITE_ONCE(msk->snd_una, msk->write_seq); 3410 3411 mptcp_pm_new_connection(msk, ssk, 0); 3412 3413 mptcp_rcv_space_init(msk, ssk); 3414 } 3415 3416 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3417 { 3418 write_lock_bh(&sk->sk_callback_lock); 3419 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3420 sk_set_socket(sk, parent); 3421 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3422 write_unlock_bh(&sk->sk_callback_lock); 3423 } 3424 3425 bool mptcp_finish_join(struct sock *ssk) 3426 { 3427 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3428 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3429 struct sock *parent = (void *)msk; 3430 bool ret = true; 3431 3432 pr_debug("msk=%p, subflow=%p", msk, subflow); 3433 3434 /* mptcp socket already closing? */ 3435 if (!mptcp_is_fully_established(parent)) { 3436 subflow->reset_reason = MPTCP_RST_EMPTCP; 3437 return false; 3438 } 3439 3440 /* active subflow, already present inside the conn_list */ 3441 if (!list_empty(&subflow->node)) { 3442 mptcp_subflow_joined(msk, ssk); 3443 return true; 3444 } 3445 3446 if (!mptcp_pm_allow_new_subflow(msk)) 3447 goto err_prohibited; 3448 3449 /* If we can't acquire msk socket lock here, let the release callback 3450 * handle it 3451 */ 3452 mptcp_data_lock(parent); 3453 if (!sock_owned_by_user(parent)) { 3454 ret = __mptcp_finish_join(msk, ssk); 3455 if (ret) { 3456 sock_hold(ssk); 3457 list_add_tail(&subflow->node, &msk->conn_list); 3458 } 3459 } else { 3460 sock_hold(ssk); 3461 list_add_tail(&subflow->node, &msk->join_list); 3462 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3463 } 3464 mptcp_data_unlock(parent); 3465 3466 if (!ret) { 3467 err_prohibited: 3468 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3469 return false; 3470 } 3471 3472 return true; 3473 } 3474 3475 static void mptcp_shutdown(struct sock *sk, int how) 3476 { 3477 pr_debug("sk=%p, how=%d", sk, how); 3478 3479 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3480 __mptcp_wr_shutdown(sk); 3481 } 3482 3483 static int mptcp_forward_alloc_get(const struct sock *sk) 3484 { 3485 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3486 } 3487 3488 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3489 { 3490 const struct sock *sk = (void *)msk; 3491 u64 delta; 3492 3493 if (sk->sk_state == TCP_LISTEN) 3494 return -EINVAL; 3495 3496 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3497 return 0; 3498 3499 delta = msk->write_seq - v; 3500 if (__mptcp_check_fallback(msk) && msk->first) { 3501 struct tcp_sock *tp = tcp_sk(msk->first); 3502 3503 /* the first subflow is disconnected after close - see 3504 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3505 * so ignore that status, too. 3506 */ 3507 if (!((1 << msk->first->sk_state) & 3508 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3509 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3510 } 3511 if (delta > INT_MAX) 3512 delta = INT_MAX; 3513 3514 return (int)delta; 3515 } 3516 3517 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3518 { 3519 struct mptcp_sock *msk = mptcp_sk(sk); 3520 bool slow; 3521 3522 switch (cmd) { 3523 case SIOCINQ: 3524 if (sk->sk_state == TCP_LISTEN) 3525 return -EINVAL; 3526 3527 lock_sock(sk); 3528 __mptcp_move_skbs(msk); 3529 *karg = mptcp_inq_hint(sk); 3530 release_sock(sk); 3531 break; 3532 case SIOCOUTQ: 3533 slow = lock_sock_fast(sk); 3534 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3535 unlock_sock_fast(sk, slow); 3536 break; 3537 case SIOCOUTQNSD: 3538 slow = lock_sock_fast(sk); 3539 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3540 unlock_sock_fast(sk, slow); 3541 break; 3542 default: 3543 return -ENOIOCTLCMD; 3544 } 3545 3546 return 0; 3547 } 3548 3549 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3550 struct mptcp_subflow_context *subflow) 3551 { 3552 subflow->request_mptcp = 0; 3553 __mptcp_do_fallback(msk); 3554 } 3555 3556 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3557 { 3558 struct mptcp_subflow_context *subflow; 3559 struct mptcp_sock *msk = mptcp_sk(sk); 3560 int err = -EINVAL; 3561 struct sock *ssk; 3562 3563 ssk = __mptcp_nmpc_sk(msk); 3564 if (IS_ERR(ssk)) 3565 return PTR_ERR(ssk); 3566 3567 inet_sk_state_store(sk, TCP_SYN_SENT); 3568 subflow = mptcp_subflow_ctx(ssk); 3569 #ifdef CONFIG_TCP_MD5SIG 3570 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3571 * TCP option space. 3572 */ 3573 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3574 mptcp_subflow_early_fallback(msk, subflow); 3575 #endif 3576 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3577 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3578 mptcp_subflow_early_fallback(msk, subflow); 3579 } 3580 if (likely(!__mptcp_check_fallback(msk))) 3581 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3582 3583 /* if reaching here via the fastopen/sendmsg path, the caller already 3584 * acquired the subflow socket lock, too. 3585 */ 3586 if (!msk->fastopening) 3587 lock_sock(ssk); 3588 3589 /* the following mirrors closely a very small chunk of code from 3590 * __inet_stream_connect() 3591 */ 3592 if (ssk->sk_state != TCP_CLOSE) 3593 goto out; 3594 3595 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3596 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3597 if (err) 3598 goto out; 3599 } 3600 3601 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3602 if (err < 0) 3603 goto out; 3604 3605 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3606 3607 out: 3608 if (!msk->fastopening) 3609 release_sock(ssk); 3610 3611 /* on successful connect, the msk state will be moved to established by 3612 * subflow_finish_connect() 3613 */ 3614 if (unlikely(err)) { 3615 /* avoid leaving a dangling token in an unconnected socket */ 3616 mptcp_token_destroy(msk); 3617 inet_sk_state_store(sk, TCP_CLOSE); 3618 return err; 3619 } 3620 3621 mptcp_copy_inaddrs(sk, ssk); 3622 return 0; 3623 } 3624 3625 static struct proto mptcp_prot = { 3626 .name = "MPTCP", 3627 .owner = THIS_MODULE, 3628 .init = mptcp_init_sock, 3629 .connect = mptcp_connect, 3630 .disconnect = mptcp_disconnect, 3631 .close = mptcp_close, 3632 .accept = mptcp_accept, 3633 .setsockopt = mptcp_setsockopt, 3634 .getsockopt = mptcp_getsockopt, 3635 .shutdown = mptcp_shutdown, 3636 .destroy = mptcp_destroy, 3637 .sendmsg = mptcp_sendmsg, 3638 .ioctl = mptcp_ioctl, 3639 .recvmsg = mptcp_recvmsg, 3640 .release_cb = mptcp_release_cb, 3641 .hash = mptcp_hash, 3642 .unhash = mptcp_unhash, 3643 .get_port = mptcp_get_port, 3644 .forward_alloc_get = mptcp_forward_alloc_get, 3645 .sockets_allocated = &mptcp_sockets_allocated, 3646 3647 .memory_allocated = &tcp_memory_allocated, 3648 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3649 3650 .memory_pressure = &tcp_memory_pressure, 3651 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3652 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3653 .sysctl_mem = sysctl_tcp_mem, 3654 .obj_size = sizeof(struct mptcp_sock), 3655 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3656 .no_autobind = true, 3657 }; 3658 3659 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3660 { 3661 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3662 struct sock *ssk, *sk = sock->sk; 3663 int err = -EINVAL; 3664 3665 lock_sock(sk); 3666 ssk = __mptcp_nmpc_sk(msk); 3667 if (IS_ERR(ssk)) { 3668 err = PTR_ERR(ssk); 3669 goto unlock; 3670 } 3671 3672 if (sk->sk_family == AF_INET) 3673 err = inet_bind_sk(ssk, uaddr, addr_len); 3674 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3675 else if (sk->sk_family == AF_INET6) 3676 err = inet6_bind_sk(ssk, uaddr, addr_len); 3677 #endif 3678 if (!err) 3679 mptcp_copy_inaddrs(sk, ssk); 3680 3681 unlock: 3682 release_sock(sk); 3683 return err; 3684 } 3685 3686 static int mptcp_listen(struct socket *sock, int backlog) 3687 { 3688 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3689 struct sock *sk = sock->sk; 3690 struct sock *ssk; 3691 int err; 3692 3693 pr_debug("msk=%p", msk); 3694 3695 lock_sock(sk); 3696 3697 err = -EINVAL; 3698 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3699 goto unlock; 3700 3701 ssk = __mptcp_nmpc_sk(msk); 3702 if (IS_ERR(ssk)) { 3703 err = PTR_ERR(ssk); 3704 goto unlock; 3705 } 3706 3707 inet_sk_state_store(sk, TCP_LISTEN); 3708 sock_set_flag(sk, SOCK_RCU_FREE); 3709 3710 lock_sock(ssk); 3711 err = __inet_listen_sk(ssk, backlog); 3712 release_sock(ssk); 3713 inet_sk_state_store(sk, inet_sk_state_load(ssk)); 3714 3715 if (!err) { 3716 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3717 mptcp_copy_inaddrs(sk, ssk); 3718 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3719 } 3720 3721 unlock: 3722 release_sock(sk); 3723 return err; 3724 } 3725 3726 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3727 int flags, bool kern) 3728 { 3729 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3730 struct sock *ssk, *newsk; 3731 int err; 3732 3733 pr_debug("msk=%p", msk); 3734 3735 /* Buggy applications can call accept on socket states other then LISTEN 3736 * but no need to allocate the first subflow just to error out. 3737 */ 3738 ssk = READ_ONCE(msk->first); 3739 if (!ssk) 3740 return -EINVAL; 3741 3742 newsk = mptcp_accept(ssk, flags, &err, kern); 3743 if (!newsk) 3744 return err; 3745 3746 lock_sock(newsk); 3747 3748 __inet_accept(sock, newsock, newsk); 3749 if (!mptcp_is_tcpsk(newsock->sk)) { 3750 struct mptcp_sock *msk = mptcp_sk(newsk); 3751 struct mptcp_subflow_context *subflow; 3752 3753 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3754 msk->in_accept_queue = 0; 3755 3756 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3757 * This is needed so NOSPACE flag can be set from tcp stack. 3758 */ 3759 mptcp_for_each_subflow(msk, subflow) { 3760 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3761 3762 if (!ssk->sk_socket) 3763 mptcp_sock_graft(ssk, newsock); 3764 } 3765 3766 /* Do late cleanup for the first subflow as necessary. Also 3767 * deal with bad peers not doing a complete shutdown. 3768 */ 3769 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3770 __mptcp_close_ssk(newsk, msk->first, 3771 mptcp_subflow_ctx(msk->first), 0); 3772 if (unlikely(list_is_singular(&msk->conn_list))) 3773 inet_sk_state_store(newsk, TCP_CLOSE); 3774 } 3775 } 3776 release_sock(newsk); 3777 3778 return 0; 3779 } 3780 3781 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3782 { 3783 struct sock *sk = (struct sock *)msk; 3784 3785 if (sk_stream_is_writeable(sk)) 3786 return EPOLLOUT | EPOLLWRNORM; 3787 3788 mptcp_set_nospace(sk); 3789 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3790 if (sk_stream_is_writeable(sk)) 3791 return EPOLLOUT | EPOLLWRNORM; 3792 3793 return 0; 3794 } 3795 3796 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3797 struct poll_table_struct *wait) 3798 { 3799 struct sock *sk = sock->sk; 3800 struct mptcp_sock *msk; 3801 __poll_t mask = 0; 3802 u8 shutdown; 3803 int state; 3804 3805 msk = mptcp_sk(sk); 3806 sock_poll_wait(file, sock, wait); 3807 3808 state = inet_sk_state_load(sk); 3809 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3810 if (state == TCP_LISTEN) { 3811 struct sock *ssk = READ_ONCE(msk->first); 3812 3813 if (WARN_ON_ONCE(!ssk)) 3814 return 0; 3815 3816 return inet_csk_listen_poll(ssk); 3817 } 3818 3819 shutdown = READ_ONCE(sk->sk_shutdown); 3820 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3821 mask |= EPOLLHUP; 3822 if (shutdown & RCV_SHUTDOWN) 3823 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3824 3825 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3826 mask |= mptcp_check_readable(msk); 3827 if (shutdown & SEND_SHUTDOWN) 3828 mask |= EPOLLOUT | EPOLLWRNORM; 3829 else 3830 mask |= mptcp_check_writeable(msk); 3831 } else if (state == TCP_SYN_SENT && 3832 inet_test_bit(DEFER_CONNECT, sk)) { 3833 /* cf tcp_poll() note about TFO */ 3834 mask |= EPOLLOUT | EPOLLWRNORM; 3835 } 3836 3837 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3838 smp_rmb(); 3839 if (READ_ONCE(sk->sk_err)) 3840 mask |= EPOLLERR; 3841 3842 return mask; 3843 } 3844 3845 static const struct proto_ops mptcp_stream_ops = { 3846 .family = PF_INET, 3847 .owner = THIS_MODULE, 3848 .release = inet_release, 3849 .bind = mptcp_bind, 3850 .connect = inet_stream_connect, 3851 .socketpair = sock_no_socketpair, 3852 .accept = mptcp_stream_accept, 3853 .getname = inet_getname, 3854 .poll = mptcp_poll, 3855 .ioctl = inet_ioctl, 3856 .gettstamp = sock_gettstamp, 3857 .listen = mptcp_listen, 3858 .shutdown = inet_shutdown, 3859 .setsockopt = sock_common_setsockopt, 3860 .getsockopt = sock_common_getsockopt, 3861 .sendmsg = inet_sendmsg, 3862 .recvmsg = inet_recvmsg, 3863 .mmap = sock_no_mmap, 3864 }; 3865 3866 static struct inet_protosw mptcp_protosw = { 3867 .type = SOCK_STREAM, 3868 .protocol = IPPROTO_MPTCP, 3869 .prot = &mptcp_prot, 3870 .ops = &mptcp_stream_ops, 3871 .flags = INET_PROTOSW_ICSK, 3872 }; 3873 3874 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3875 { 3876 struct mptcp_delegated_action *delegated; 3877 struct mptcp_subflow_context *subflow; 3878 int work_done = 0; 3879 3880 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3881 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3882 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3883 3884 bh_lock_sock_nested(ssk); 3885 if (!sock_owned_by_user(ssk) && 3886 mptcp_subflow_has_delegated_action(subflow)) 3887 mptcp_subflow_process_delegated(ssk); 3888 /* ... elsewhere tcp_release_cb_override already processed 3889 * the action or will do at next release_sock(). 3890 * In both case must dequeue the subflow here - on the same 3891 * CPU that scheduled it. 3892 */ 3893 bh_unlock_sock(ssk); 3894 sock_put(ssk); 3895 3896 if (++work_done == budget) 3897 return budget; 3898 } 3899 3900 /* always provide a 0 'work_done' argument, so that napi_complete_done 3901 * will not try accessing the NULL napi->dev ptr 3902 */ 3903 napi_complete_done(napi, 0); 3904 return work_done; 3905 } 3906 3907 void __init mptcp_proto_init(void) 3908 { 3909 struct mptcp_delegated_action *delegated; 3910 int cpu; 3911 3912 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3913 3914 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3915 panic("Failed to allocate MPTCP pcpu counter\n"); 3916 3917 init_dummy_netdev(&mptcp_napi_dev); 3918 for_each_possible_cpu(cpu) { 3919 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3920 INIT_LIST_HEAD(&delegated->head); 3921 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3922 mptcp_napi_poll); 3923 napi_enable(&delegated->napi); 3924 } 3925 3926 mptcp_subflow_init(); 3927 mptcp_pm_init(); 3928 mptcp_token_init(); 3929 3930 if (proto_register(&mptcp_prot, 1) != 0) 3931 panic("Failed to register MPTCP proto.\n"); 3932 3933 inet_register_protosw(&mptcp_protosw); 3934 3935 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3936 } 3937 3938 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3939 static const struct proto_ops mptcp_v6_stream_ops = { 3940 .family = PF_INET6, 3941 .owner = THIS_MODULE, 3942 .release = inet6_release, 3943 .bind = mptcp_bind, 3944 .connect = inet_stream_connect, 3945 .socketpair = sock_no_socketpair, 3946 .accept = mptcp_stream_accept, 3947 .getname = inet6_getname, 3948 .poll = mptcp_poll, 3949 .ioctl = inet6_ioctl, 3950 .gettstamp = sock_gettstamp, 3951 .listen = mptcp_listen, 3952 .shutdown = inet_shutdown, 3953 .setsockopt = sock_common_setsockopt, 3954 .getsockopt = sock_common_getsockopt, 3955 .sendmsg = inet6_sendmsg, 3956 .recvmsg = inet6_recvmsg, 3957 .mmap = sock_no_mmap, 3958 #ifdef CONFIG_COMPAT 3959 .compat_ioctl = inet6_compat_ioctl, 3960 #endif 3961 }; 3962 3963 static struct proto mptcp_v6_prot; 3964 3965 static struct inet_protosw mptcp_v6_protosw = { 3966 .type = SOCK_STREAM, 3967 .protocol = IPPROTO_MPTCP, 3968 .prot = &mptcp_v6_prot, 3969 .ops = &mptcp_v6_stream_ops, 3970 .flags = INET_PROTOSW_ICSK, 3971 }; 3972 3973 int __init mptcp_proto_v6_init(void) 3974 { 3975 int err; 3976 3977 mptcp_v6_prot = mptcp_prot; 3978 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3979 mptcp_v6_prot.slab = NULL; 3980 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3981 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 3982 3983 err = proto_register(&mptcp_v6_prot, 1); 3984 if (err) 3985 return err; 3986 3987 err = inet6_register_protosw(&mptcp_v6_protosw); 3988 if (err) 3989 proto_unregister(&mptcp_v6_prot); 3990 3991 return err; 3992 } 3993 #endif 3994