1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 subflow->local_id_valid = 1; 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 } 111 112 return msk->first; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 122 { 123 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 124 mptcp_sk(sk)->rmem_fwd_alloc + size); 125 } 126 127 static void mptcp_rmem_charge(struct sock *sk, int size) 128 { 129 mptcp_rmem_fwd_alloc_add(sk, -size); 130 } 131 132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 133 struct sk_buff *from) 134 { 135 bool fragstolen; 136 int delta; 137 138 if (MPTCP_SKB_CB(from)->offset || 139 !skb_try_coalesce(to, from, &fragstolen, &delta)) 140 return false; 141 142 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 143 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 144 to->len, MPTCP_SKB_CB(from)->end_seq); 145 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 146 147 /* note the fwd memory can reach a negative value after accounting 148 * for the delta, but the later skb free will restore a non 149 * negative one 150 */ 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 kfree_skb_partial(from, fragstolen); 154 155 return true; 156 } 157 158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 159 struct sk_buff *from) 160 { 161 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 162 return false; 163 164 return mptcp_try_coalesce((struct sock *)msk, to, from); 165 } 166 167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 168 { 169 amount >>= PAGE_SHIFT; 170 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 171 __sk_mem_reduce_allocated(sk, amount); 172 } 173 174 static void mptcp_rmem_uncharge(struct sock *sk, int size) 175 { 176 struct mptcp_sock *msk = mptcp_sk(sk); 177 int reclaimable; 178 179 mptcp_rmem_fwd_alloc_add(sk, size); 180 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 181 182 /* see sk_mem_uncharge() for the rationale behind the following schema */ 183 if (unlikely(reclaimable >= PAGE_SIZE)) 184 __mptcp_rmem_reclaim(sk, reclaimable); 185 } 186 187 static void mptcp_rfree(struct sk_buff *skb) 188 { 189 unsigned int len = skb->truesize; 190 struct sock *sk = skb->sk; 191 192 atomic_sub(len, &sk->sk_rmem_alloc); 193 mptcp_rmem_uncharge(sk, len); 194 } 195 196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 197 { 198 skb_orphan(skb); 199 skb->sk = sk; 200 skb->destructor = mptcp_rfree; 201 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 202 mptcp_rmem_charge(sk, skb->truesize); 203 } 204 205 /* "inspired" by tcp_data_queue_ofo(), main differences: 206 * - use mptcp seqs 207 * - don't cope with sacks 208 */ 209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 210 { 211 struct sock *sk = (struct sock *)msk; 212 struct rb_node **p, *parent; 213 u64 seq, end_seq, max_seq; 214 struct sk_buff *skb1; 215 216 seq = MPTCP_SKB_CB(skb)->map_seq; 217 end_seq = MPTCP_SKB_CB(skb)->end_seq; 218 max_seq = atomic64_read(&msk->rcv_wnd_sent); 219 220 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 221 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 222 if (after64(end_seq, max_seq)) { 223 /* out of window */ 224 mptcp_drop(sk, skb); 225 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 226 (unsigned long long)end_seq - (unsigned long)max_seq, 227 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 229 return; 230 } 231 232 p = &msk->out_of_order_queue.rb_node; 233 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 234 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 235 rb_link_node(&skb->rbnode, NULL, p); 236 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 237 msk->ooo_last_skb = skb; 238 goto end; 239 } 240 241 /* with 2 subflows, adding at end of ooo queue is quite likely 242 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 243 */ 244 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 247 return; 248 } 249 250 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 251 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 253 parent = &msk->ooo_last_skb->rbnode; 254 p = &parent->rb_right; 255 goto insert; 256 } 257 258 /* Find place to insert this segment. Handle overlaps on the way. */ 259 parent = NULL; 260 while (*p) { 261 parent = *p; 262 skb1 = rb_to_skb(parent); 263 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 264 p = &parent->rb_left; 265 continue; 266 } 267 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 /* All the bits are present. Drop. */ 270 mptcp_drop(sk, skb); 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 272 return; 273 } 274 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 275 /* partial overlap: 276 * | skb | 277 * | skb1 | 278 * continue traversing 279 */ 280 } else { 281 /* skb's seq == skb1's seq and skb covers skb1. 282 * Replace skb1 with skb. 283 */ 284 rb_replace_node(&skb1->rbnode, &skb->rbnode, 285 &msk->out_of_order_queue); 286 mptcp_drop(sk, skb1); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 goto merge_right; 289 } 290 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 292 return; 293 } 294 p = &parent->rb_right; 295 } 296 297 insert: 298 /* Insert segment into RB tree. */ 299 rb_link_node(&skb->rbnode, parent, p); 300 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 301 302 merge_right: 303 /* Remove other segments covered by skb. */ 304 while ((skb1 = skb_rb_next(skb)) != NULL) { 305 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 306 break; 307 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 308 mptcp_drop(sk, skb1); 309 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 310 } 311 /* If there is no skb after us, we are the last_skb ! */ 312 if (!skb1) 313 msk->ooo_last_skb = skb; 314 315 end: 316 skb_condense(skb); 317 mptcp_set_owner_r(skb, sk); 318 } 319 320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 321 { 322 struct mptcp_sock *msk = mptcp_sk(sk); 323 int amt, amount; 324 325 if (size <= msk->rmem_fwd_alloc) 326 return true; 327 328 size -= msk->rmem_fwd_alloc; 329 amt = sk_mem_pages(size); 330 amount = amt << PAGE_SHIFT; 331 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 332 return false; 333 334 mptcp_rmem_fwd_alloc_add(sk, amount); 335 return true; 336 } 337 338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 339 struct sk_buff *skb, unsigned int offset, 340 size_t copy_len) 341 { 342 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 343 struct sock *sk = (struct sock *)msk; 344 struct sk_buff *tail; 345 bool has_rxtstamp; 346 347 __skb_unlink(skb, &ssk->sk_receive_queue); 348 349 skb_ext_reset(skb); 350 skb_orphan(skb); 351 352 /* try to fetch required memory from subflow */ 353 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 354 goto drop; 355 356 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 357 358 /* the skb map_seq accounts for the skb offset: 359 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 360 * value 361 */ 362 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 363 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 364 MPTCP_SKB_CB(skb)->offset = offset; 365 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 366 367 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 368 /* in sequence */ 369 msk->bytes_received += copy_len; 370 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 371 tail = skb_peek_tail(&sk->sk_receive_queue); 372 if (tail && mptcp_try_coalesce(sk, tail, skb)) 373 return true; 374 375 mptcp_set_owner_r(skb, sk); 376 __skb_queue_tail(&sk->sk_receive_queue, skb); 377 return true; 378 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 379 mptcp_data_queue_ofo(msk, skb); 380 return false; 381 } 382 383 /* old data, keep it simple and drop the whole pkt, sender 384 * will retransmit as needed, if needed. 385 */ 386 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 387 drop: 388 mptcp_drop(sk, skb); 389 return false; 390 } 391 392 static void mptcp_stop_rtx_timer(struct sock *sk) 393 { 394 struct inet_connection_sock *icsk = inet_csk(sk); 395 396 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 397 mptcp_sk(sk)->timer_ival = 0; 398 } 399 400 static void mptcp_close_wake_up(struct sock *sk) 401 { 402 if (sock_flag(sk, SOCK_DEAD)) 403 return; 404 405 sk->sk_state_change(sk); 406 if (sk->sk_shutdown == SHUTDOWN_MASK || 407 sk->sk_state == TCP_CLOSE) 408 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 409 else 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 411 } 412 413 /* called under the msk socket lock */ 414 static bool mptcp_pending_data_fin_ack(struct sock *sk) 415 { 416 struct mptcp_sock *msk = mptcp_sk(sk); 417 418 return ((1 << sk->sk_state) & 419 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 420 msk->write_seq == READ_ONCE(msk->snd_una); 421 } 422 423 static void mptcp_check_data_fin_ack(struct sock *sk) 424 { 425 struct mptcp_sock *msk = mptcp_sk(sk); 426 427 /* Look for an acknowledged DATA_FIN */ 428 if (mptcp_pending_data_fin_ack(sk)) { 429 WRITE_ONCE(msk->snd_data_fin_enable, 0); 430 431 switch (sk->sk_state) { 432 case TCP_FIN_WAIT1: 433 mptcp_set_state(sk, TCP_FIN_WAIT2); 434 break; 435 case TCP_CLOSING: 436 case TCP_LAST_ACK: 437 mptcp_set_state(sk, TCP_CLOSE); 438 break; 439 } 440 441 mptcp_close_wake_up(sk); 442 } 443 } 444 445 /* can be called with no lock acquired */ 446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 if (READ_ONCE(msk->rcv_data_fin) && 451 ((1 << inet_sk_state_load(sk)) & 452 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 453 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 454 455 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 456 if (seq) 457 *seq = rcv_data_fin_seq; 458 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 static void mptcp_set_datafin_timeout(struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 u32 retransmits; 470 471 retransmits = min_t(u32, icsk->icsk_retransmits, 472 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 473 474 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 475 } 476 477 static void __mptcp_set_timeout(struct sock *sk, long tout) 478 { 479 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 480 } 481 482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 483 { 484 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 485 486 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 487 inet_csk(ssk)->icsk_timeout - jiffies : 0; 488 } 489 490 static void mptcp_set_timeout(struct sock *sk) 491 { 492 struct mptcp_subflow_context *subflow; 493 long tout = 0; 494 495 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 496 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 497 __mptcp_set_timeout(sk, tout); 498 } 499 500 static inline bool tcp_can_send_ack(const struct sock *ssk) 501 { 502 return !((1 << inet_sk_state_load(ssk)) & 503 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 504 } 505 506 void __mptcp_subflow_send_ack(struct sock *ssk) 507 { 508 if (tcp_can_send_ack(ssk)) 509 tcp_send_ack(ssk); 510 } 511 512 static void mptcp_subflow_send_ack(struct sock *ssk) 513 { 514 bool slow; 515 516 slow = lock_sock_fast(ssk); 517 __mptcp_subflow_send_ack(ssk); 518 unlock_sock_fast(ssk, slow); 519 } 520 521 static void mptcp_send_ack(struct mptcp_sock *msk) 522 { 523 struct mptcp_subflow_context *subflow; 524 525 mptcp_for_each_subflow(msk, subflow) 526 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 527 } 528 529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 530 { 531 bool slow; 532 533 slow = lock_sock_fast(ssk); 534 if (tcp_can_send_ack(ssk)) 535 tcp_cleanup_rbuf(ssk, 1); 536 unlock_sock_fast(ssk, slow); 537 } 538 539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 540 { 541 const struct inet_connection_sock *icsk = inet_csk(ssk); 542 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 543 const struct tcp_sock *tp = tcp_sk(ssk); 544 545 return (ack_pending & ICSK_ACK_SCHED) && 546 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 547 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 548 (rx_empty && ack_pending & 549 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 550 } 551 552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 553 { 554 int old_space = READ_ONCE(msk->old_wspace); 555 struct mptcp_subflow_context *subflow; 556 struct sock *sk = (struct sock *)msk; 557 int space = __mptcp_space(sk); 558 bool cleanup, rx_empty; 559 560 cleanup = (space > 0) && (space >= (old_space << 1)); 561 rx_empty = !__mptcp_rmem(sk); 562 563 mptcp_for_each_subflow(msk, subflow) { 564 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 565 566 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 567 mptcp_subflow_cleanup_rbuf(ssk); 568 } 569 } 570 571 static bool mptcp_check_data_fin(struct sock *sk) 572 { 573 struct mptcp_sock *msk = mptcp_sk(sk); 574 u64 rcv_data_fin_seq; 575 bool ret = false; 576 577 /* Need to ack a DATA_FIN received from a peer while this side 578 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 579 * msk->rcv_data_fin was set when parsing the incoming options 580 * at the subflow level and the msk lock was not held, so this 581 * is the first opportunity to act on the DATA_FIN and change 582 * the msk state. 583 * 584 * If we are caught up to the sequence number of the incoming 585 * DATA_FIN, send the DATA_ACK now and do state transition. If 586 * not caught up, do nothing and let the recv code send DATA_ACK 587 * when catching up. 588 */ 589 590 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 591 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 592 WRITE_ONCE(msk->rcv_data_fin, 0); 593 594 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 595 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 596 597 switch (sk->sk_state) { 598 case TCP_ESTABLISHED: 599 mptcp_set_state(sk, TCP_CLOSE_WAIT); 600 break; 601 case TCP_FIN_WAIT1: 602 mptcp_set_state(sk, TCP_CLOSING); 603 break; 604 case TCP_FIN_WAIT2: 605 mptcp_set_state(sk, TCP_CLOSE); 606 break; 607 default: 608 /* Other states not expected */ 609 WARN_ON_ONCE(1); 610 break; 611 } 612 613 ret = true; 614 if (!__mptcp_check_fallback(msk)) 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 659 * a different CPU can have already processed the pending 660 * data, stop here or we can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* Under fallback skbs have no MPTCP extension and TCP could 669 * collapse them between the dummy map creation and the 670 * current dequeue. Be sure to adjust the map size. 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->bytes_received += end_seq - msk->ack_seq; 753 WRITE_ONCE(msk->ack_seq, end_seq); 754 moved = true; 755 } 756 return moved; 757 } 758 759 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 760 { 761 int err = sock_error(ssk); 762 int ssk_state; 763 764 if (!err) 765 return false; 766 767 /* only propagate errors on fallen-back sockets or 768 * on MPC connect 769 */ 770 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 771 return false; 772 773 /* We need to propagate only transition to CLOSE state. 774 * Orphaned socket will see such state change via 775 * subflow_sched_work_if_closed() and that path will properly 776 * destroy the msk as needed. 777 */ 778 ssk_state = inet_sk_state_load(ssk); 779 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 780 mptcp_set_state(sk, ssk_state); 781 WRITE_ONCE(sk->sk_err, -err); 782 783 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 784 smp_wmb(); 785 sk_error_report(sk); 786 return true; 787 } 788 789 void __mptcp_error_report(struct sock *sk) 790 { 791 struct mptcp_subflow_context *subflow; 792 struct mptcp_sock *msk = mptcp_sk(sk); 793 794 mptcp_for_each_subflow(msk, subflow) 795 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 796 break; 797 } 798 799 /* In most cases we will be able to lock the mptcp socket. If its already 800 * owned, we need to defer to the work queue to avoid ABBA deadlock. 801 */ 802 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 803 { 804 struct sock *sk = (struct sock *)msk; 805 unsigned int moved = 0; 806 807 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 808 __mptcp_ofo_queue(msk); 809 if (unlikely(ssk->sk_err)) { 810 if (!sock_owned_by_user(sk)) 811 __mptcp_error_report(sk); 812 else 813 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 814 } 815 816 /* If the moves have caught up with the DATA_FIN sequence number 817 * it's time to ack the DATA_FIN and change socket state, but 818 * this is not a good place to change state. Let the workqueue 819 * do it. 820 */ 821 if (mptcp_pending_data_fin(sk, NULL)) 822 mptcp_schedule_work(sk); 823 return moved > 0; 824 } 825 826 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 827 { 828 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 829 struct mptcp_sock *msk = mptcp_sk(sk); 830 int sk_rbuf, ssk_rbuf; 831 832 /* The peer can send data while we are shutting down this 833 * subflow at msk destruction time, but we must avoid enqueuing 834 * more data to the msk receive queue 835 */ 836 if (unlikely(subflow->disposable)) 837 return; 838 839 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 840 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 841 if (unlikely(ssk_rbuf > sk_rbuf)) 842 sk_rbuf = ssk_rbuf; 843 844 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 845 if (__mptcp_rmem(sk) > sk_rbuf) { 846 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 847 return; 848 } 849 850 /* Wake-up the reader only for in-sequence data */ 851 mptcp_data_lock(sk); 852 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 853 sk->sk_data_ready(sk); 854 mptcp_data_unlock(sk); 855 } 856 857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 858 { 859 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 860 WRITE_ONCE(msk->allow_infinite_fallback, false); 861 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 862 } 863 864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 865 { 866 struct sock *sk = (struct sock *)msk; 867 868 if (sk->sk_state != TCP_ESTABLISHED) 869 return false; 870 871 /* attach to msk socket only after we are sure we will deal with it 872 * at close time 873 */ 874 if (sk->sk_socket && !ssk->sk_socket) 875 mptcp_sock_graft(ssk, sk->sk_socket); 876 877 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 878 mptcp_sockopt_sync_locked(msk, ssk); 879 mptcp_subflow_joined(msk, ssk); 880 mptcp_stop_tout_timer(sk); 881 __mptcp_propagate_sndbuf(sk, ssk); 882 return true; 883 } 884 885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 886 { 887 struct mptcp_subflow_context *tmp, *subflow; 888 struct mptcp_sock *msk = mptcp_sk(sk); 889 890 list_for_each_entry_safe(subflow, tmp, join_list, node) { 891 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 892 bool slow = lock_sock_fast(ssk); 893 894 list_move_tail(&subflow->node, &msk->conn_list); 895 if (!__mptcp_finish_join(msk, ssk)) 896 mptcp_subflow_reset(ssk); 897 unlock_sock_fast(ssk, slow); 898 } 899 } 900 901 static bool mptcp_rtx_timer_pending(struct sock *sk) 902 { 903 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 904 } 905 906 static void mptcp_reset_rtx_timer(struct sock *sk) 907 { 908 struct inet_connection_sock *icsk = inet_csk(sk); 909 unsigned long tout; 910 911 /* prevent rescheduling on close */ 912 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 913 return; 914 915 tout = mptcp_sk(sk)->timer_ival; 916 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 917 } 918 919 bool mptcp_schedule_work(struct sock *sk) 920 { 921 if (inet_sk_state_load(sk) != TCP_CLOSE && 922 schedule_work(&mptcp_sk(sk)->work)) { 923 /* each subflow already holds a reference to the sk, and the 924 * workqueue is invoked by a subflow, so sk can't go away here. 925 */ 926 sock_hold(sk); 927 return true; 928 } 929 return false; 930 } 931 932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 933 { 934 struct mptcp_subflow_context *subflow; 935 936 msk_owned_by_me(msk); 937 938 mptcp_for_each_subflow(msk, subflow) { 939 if (READ_ONCE(subflow->data_avail)) 940 return mptcp_subflow_tcp_sock(subflow); 941 } 942 943 return NULL; 944 } 945 946 static bool mptcp_skb_can_collapse_to(u64 write_seq, 947 const struct sk_buff *skb, 948 const struct mptcp_ext *mpext) 949 { 950 if (!tcp_skb_can_collapse_to(skb)) 951 return false; 952 953 /* can collapse only if MPTCP level sequence is in order and this 954 * mapping has not been xmitted yet 955 */ 956 return mpext && mpext->data_seq + mpext->data_len == write_seq && 957 !mpext->frozen; 958 } 959 960 /* we can append data to the given data frag if: 961 * - there is space available in the backing page_frag 962 * - the data frag tail matches the current page_frag free offset 963 * - the data frag end sequence number matches the current write seq 964 */ 965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 966 const struct page_frag *pfrag, 967 const struct mptcp_data_frag *df) 968 { 969 return df && pfrag->page == df->page && 970 pfrag->size - pfrag->offset > 0 && 971 pfrag->offset == (df->offset + df->data_len) && 972 df->data_seq + df->data_len == msk->write_seq; 973 } 974 975 static void dfrag_uncharge(struct sock *sk, int len) 976 { 977 sk_mem_uncharge(sk, len); 978 sk_wmem_queued_add(sk, -len); 979 } 980 981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 982 { 983 int len = dfrag->data_len + dfrag->overhead; 984 985 list_del(&dfrag->list); 986 dfrag_uncharge(sk, len); 987 put_page(dfrag->page); 988 } 989 990 /* called under both the msk socket lock and the data lock */ 991 static void __mptcp_clean_una(struct sock *sk) 992 { 993 struct mptcp_sock *msk = mptcp_sk(sk); 994 struct mptcp_data_frag *dtmp, *dfrag; 995 u64 snd_una; 996 997 snd_una = msk->snd_una; 998 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 999 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1000 break; 1001 1002 if (unlikely(dfrag == msk->first_pending)) { 1003 /* in recovery mode can see ack after the current snd head */ 1004 if (WARN_ON_ONCE(!msk->recovery)) 1005 break; 1006 1007 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1008 } 1009 1010 dfrag_clear(sk, dfrag); 1011 } 1012 1013 dfrag = mptcp_rtx_head(sk); 1014 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1015 u64 delta = snd_una - dfrag->data_seq; 1016 1017 /* prevent wrap around in recovery mode */ 1018 if (unlikely(delta > dfrag->already_sent)) { 1019 if (WARN_ON_ONCE(!msk->recovery)) 1020 goto out; 1021 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1022 goto out; 1023 dfrag->already_sent += delta - dfrag->already_sent; 1024 } 1025 1026 dfrag->data_seq += delta; 1027 dfrag->offset += delta; 1028 dfrag->data_len -= delta; 1029 dfrag->already_sent -= delta; 1030 1031 dfrag_uncharge(sk, delta); 1032 } 1033 1034 /* all retransmitted data acked, recovery completed */ 1035 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1036 msk->recovery = false; 1037 1038 out: 1039 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1040 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1041 mptcp_stop_rtx_timer(sk); 1042 } else { 1043 mptcp_reset_rtx_timer(sk); 1044 } 1045 1046 if (mptcp_pending_data_fin_ack(sk)) 1047 mptcp_schedule_work(sk); 1048 } 1049 1050 static void __mptcp_clean_una_wakeup(struct sock *sk) 1051 { 1052 lockdep_assert_held_once(&sk->sk_lock.slock); 1053 1054 __mptcp_clean_una(sk); 1055 mptcp_write_space(sk); 1056 } 1057 1058 static void mptcp_clean_una_wakeup(struct sock *sk) 1059 { 1060 mptcp_data_lock(sk); 1061 __mptcp_clean_una_wakeup(sk); 1062 mptcp_data_unlock(sk); 1063 } 1064 1065 static void mptcp_enter_memory_pressure(struct sock *sk) 1066 { 1067 struct mptcp_subflow_context *subflow; 1068 struct mptcp_sock *msk = mptcp_sk(sk); 1069 bool first = true; 1070 1071 mptcp_for_each_subflow(msk, subflow) { 1072 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1073 1074 if (first) 1075 tcp_enter_memory_pressure(ssk); 1076 sk_stream_moderate_sndbuf(ssk); 1077 1078 first = false; 1079 } 1080 __mptcp_sync_sndbuf(sk); 1081 } 1082 1083 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1084 * data 1085 */ 1086 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1087 { 1088 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1089 pfrag, sk->sk_allocation))) 1090 return true; 1091 1092 mptcp_enter_memory_pressure(sk); 1093 return false; 1094 } 1095 1096 static struct mptcp_data_frag * 1097 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1098 int orig_offset) 1099 { 1100 int offset = ALIGN(orig_offset, sizeof(long)); 1101 struct mptcp_data_frag *dfrag; 1102 1103 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1104 dfrag->data_len = 0; 1105 dfrag->data_seq = msk->write_seq; 1106 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1107 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1108 dfrag->already_sent = 0; 1109 dfrag->page = pfrag->page; 1110 1111 return dfrag; 1112 } 1113 1114 struct mptcp_sendmsg_info { 1115 int mss_now; 1116 int size_goal; 1117 u16 limit; 1118 u16 sent; 1119 unsigned int flags; 1120 bool data_lock_held; 1121 }; 1122 1123 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1124 u64 data_seq, int avail_size) 1125 { 1126 u64 window_end = mptcp_wnd_end(msk); 1127 u64 mptcp_snd_wnd; 1128 1129 if (__mptcp_check_fallback(msk)) 1130 return avail_size; 1131 1132 mptcp_snd_wnd = window_end - data_seq; 1133 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1134 1135 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1136 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1137 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1138 } 1139 1140 return avail_size; 1141 } 1142 1143 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1144 { 1145 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1146 1147 if (!mpext) 1148 return false; 1149 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1150 return true; 1151 } 1152 1153 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1154 { 1155 struct sk_buff *skb; 1156 1157 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1158 if (likely(skb)) { 1159 if (likely(__mptcp_add_ext(skb, gfp))) { 1160 skb_reserve(skb, MAX_TCP_HEADER); 1161 skb->ip_summed = CHECKSUM_PARTIAL; 1162 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1163 return skb; 1164 } 1165 __kfree_skb(skb); 1166 } else { 1167 mptcp_enter_memory_pressure(sk); 1168 } 1169 return NULL; 1170 } 1171 1172 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1173 { 1174 struct sk_buff *skb; 1175 1176 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1177 if (!skb) 1178 return NULL; 1179 1180 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1181 tcp_skb_entail(ssk, skb); 1182 return skb; 1183 } 1184 tcp_skb_tsorted_anchor_cleanup(skb); 1185 kfree_skb(skb); 1186 return NULL; 1187 } 1188 1189 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1190 { 1191 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1192 1193 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1194 } 1195 1196 /* note: this always recompute the csum on the whole skb, even 1197 * if we just appended a single frag. More status info needed 1198 */ 1199 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1200 { 1201 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1202 __wsum csum = ~csum_unfold(mpext->csum); 1203 int offset = skb->len - added; 1204 1205 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1206 } 1207 1208 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1209 struct sock *ssk, 1210 struct mptcp_ext *mpext) 1211 { 1212 if (!mpext) 1213 return; 1214 1215 mpext->infinite_map = 1; 1216 mpext->data_len = 0; 1217 1218 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1219 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1220 pr_fallback(msk); 1221 mptcp_do_fallback(ssk); 1222 } 1223 1224 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1225 1226 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1227 struct mptcp_data_frag *dfrag, 1228 struct mptcp_sendmsg_info *info) 1229 { 1230 u64 data_seq = dfrag->data_seq + info->sent; 1231 int offset = dfrag->offset + info->sent; 1232 struct mptcp_sock *msk = mptcp_sk(sk); 1233 bool zero_window_probe = false; 1234 struct mptcp_ext *mpext = NULL; 1235 bool can_coalesce = false; 1236 bool reuse_skb = true; 1237 struct sk_buff *skb; 1238 size_t copy; 1239 int i; 1240 1241 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1242 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1243 1244 if (WARN_ON_ONCE(info->sent > info->limit || 1245 info->limit > dfrag->data_len)) 1246 return 0; 1247 1248 if (unlikely(!__tcp_can_send(ssk))) 1249 return -EAGAIN; 1250 1251 /* compute send limit */ 1252 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1253 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1254 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1255 copy = info->size_goal; 1256 1257 skb = tcp_write_queue_tail(ssk); 1258 if (skb && copy > skb->len) { 1259 /* Limit the write to the size available in the 1260 * current skb, if any, so that we create at most a new skb. 1261 * Explicitly tells TCP internals to avoid collapsing on later 1262 * queue management operation, to avoid breaking the ext <-> 1263 * SSN association set here 1264 */ 1265 mpext = mptcp_get_ext(skb); 1266 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1267 TCP_SKB_CB(skb)->eor = 1; 1268 goto alloc_skb; 1269 } 1270 1271 i = skb_shinfo(skb)->nr_frags; 1272 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1273 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1274 tcp_mark_push(tcp_sk(ssk), skb); 1275 goto alloc_skb; 1276 } 1277 1278 copy -= skb->len; 1279 } else { 1280 alloc_skb: 1281 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1282 if (!skb) 1283 return -ENOMEM; 1284 1285 i = skb_shinfo(skb)->nr_frags; 1286 reuse_skb = false; 1287 mpext = mptcp_get_ext(skb); 1288 } 1289 1290 /* Zero window and all data acked? Probe. */ 1291 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1292 if (copy == 0) { 1293 u64 snd_una = READ_ONCE(msk->snd_una); 1294 1295 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1296 tcp_remove_empty_skb(ssk); 1297 return 0; 1298 } 1299 1300 zero_window_probe = true; 1301 data_seq = snd_una - 1; 1302 copy = 1; 1303 } 1304 1305 copy = min_t(size_t, copy, info->limit - info->sent); 1306 if (!sk_wmem_schedule(ssk, copy)) { 1307 tcp_remove_empty_skb(ssk); 1308 return -ENOMEM; 1309 } 1310 1311 if (can_coalesce) { 1312 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1313 } else { 1314 get_page(dfrag->page); 1315 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1316 } 1317 1318 skb->len += copy; 1319 skb->data_len += copy; 1320 skb->truesize += copy; 1321 sk_wmem_queued_add(ssk, copy); 1322 sk_mem_charge(ssk, copy); 1323 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1324 TCP_SKB_CB(skb)->end_seq += copy; 1325 tcp_skb_pcount_set(skb, 0); 1326 1327 /* on skb reuse we just need to update the DSS len */ 1328 if (reuse_skb) { 1329 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1330 mpext->data_len += copy; 1331 goto out; 1332 } 1333 1334 memset(mpext, 0, sizeof(*mpext)); 1335 mpext->data_seq = data_seq; 1336 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1337 mpext->data_len = copy; 1338 mpext->use_map = 1; 1339 mpext->dsn64 = 1; 1340 1341 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1342 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1343 mpext->dsn64); 1344 1345 if (zero_window_probe) { 1346 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1347 mpext->frozen = 1; 1348 if (READ_ONCE(msk->csum_enabled)) 1349 mptcp_update_data_checksum(skb, copy); 1350 tcp_push_pending_frames(ssk); 1351 return 0; 1352 } 1353 out: 1354 if (READ_ONCE(msk->csum_enabled)) 1355 mptcp_update_data_checksum(skb, copy); 1356 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1357 mptcp_update_infinite_map(msk, ssk, mpext); 1358 trace_mptcp_sendmsg_frag(mpext); 1359 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1360 return copy; 1361 } 1362 1363 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1364 sizeof(struct tcphdr) - \ 1365 MAX_TCP_OPTION_SPACE - \ 1366 sizeof(struct ipv6hdr) - \ 1367 sizeof(struct frag_hdr)) 1368 1369 struct subflow_send_info { 1370 struct sock *ssk; 1371 u64 linger_time; 1372 }; 1373 1374 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1375 { 1376 if (!subflow->stale) 1377 return; 1378 1379 subflow->stale = 0; 1380 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1381 } 1382 1383 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1384 { 1385 if (unlikely(subflow->stale)) { 1386 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1387 1388 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1389 return false; 1390 1391 mptcp_subflow_set_active(subflow); 1392 } 1393 return __mptcp_subflow_active(subflow); 1394 } 1395 1396 #define SSK_MODE_ACTIVE 0 1397 #define SSK_MODE_BACKUP 1 1398 #define SSK_MODE_MAX 2 1399 1400 /* implement the mptcp packet scheduler; 1401 * returns the subflow that will transmit the next DSS 1402 * additionally updates the rtx timeout 1403 */ 1404 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1405 { 1406 struct subflow_send_info send_info[SSK_MODE_MAX]; 1407 struct mptcp_subflow_context *subflow; 1408 struct sock *sk = (struct sock *)msk; 1409 u32 pace, burst, wmem; 1410 int i, nr_active = 0; 1411 struct sock *ssk; 1412 u64 linger_time; 1413 long tout = 0; 1414 1415 /* pick the subflow with the lower wmem/wspace ratio */ 1416 for (i = 0; i < SSK_MODE_MAX; ++i) { 1417 send_info[i].ssk = NULL; 1418 send_info[i].linger_time = -1; 1419 } 1420 1421 mptcp_for_each_subflow(msk, subflow) { 1422 trace_mptcp_subflow_get_send(subflow); 1423 ssk = mptcp_subflow_tcp_sock(subflow); 1424 if (!mptcp_subflow_active(subflow)) 1425 continue; 1426 1427 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1428 nr_active += !subflow->backup; 1429 pace = subflow->avg_pacing_rate; 1430 if (unlikely(!pace)) { 1431 /* init pacing rate from socket */ 1432 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1433 pace = subflow->avg_pacing_rate; 1434 if (!pace) 1435 continue; 1436 } 1437 1438 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1439 if (linger_time < send_info[subflow->backup].linger_time) { 1440 send_info[subflow->backup].ssk = ssk; 1441 send_info[subflow->backup].linger_time = linger_time; 1442 } 1443 } 1444 __mptcp_set_timeout(sk, tout); 1445 1446 /* pick the best backup if no other subflow is active */ 1447 if (!nr_active) 1448 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1449 1450 /* According to the blest algorithm, to avoid HoL blocking for the 1451 * faster flow, we need to: 1452 * - estimate the faster flow linger time 1453 * - use the above to estimate the amount of byte transferred 1454 * by the faster flow 1455 * - check that the amount of queued data is greter than the above, 1456 * otherwise do not use the picked, slower, subflow 1457 * We select the subflow with the shorter estimated time to flush 1458 * the queued mem, which basically ensure the above. We just need 1459 * to check that subflow has a non empty cwin. 1460 */ 1461 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1462 if (!ssk || !sk_stream_memory_free(ssk)) 1463 return NULL; 1464 1465 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1466 wmem = READ_ONCE(ssk->sk_wmem_queued); 1467 if (!burst) 1468 return ssk; 1469 1470 subflow = mptcp_subflow_ctx(ssk); 1471 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1472 READ_ONCE(ssk->sk_pacing_rate) * burst, 1473 burst + wmem); 1474 msk->snd_burst = burst; 1475 return ssk; 1476 } 1477 1478 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1479 { 1480 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1481 release_sock(ssk); 1482 } 1483 1484 static void mptcp_update_post_push(struct mptcp_sock *msk, 1485 struct mptcp_data_frag *dfrag, 1486 u32 sent) 1487 { 1488 u64 snd_nxt_new = dfrag->data_seq; 1489 1490 dfrag->already_sent += sent; 1491 1492 msk->snd_burst -= sent; 1493 1494 snd_nxt_new += dfrag->already_sent; 1495 1496 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1497 * is recovering after a failover. In that event, this re-sends 1498 * old segments. 1499 * 1500 * Thus compute snd_nxt_new candidate based on 1501 * the dfrag->data_seq that was sent and the data 1502 * that has been handed to the subflow for transmission 1503 * and skip update in case it was old dfrag. 1504 */ 1505 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1506 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1507 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1508 } 1509 } 1510 1511 void mptcp_check_and_set_pending(struct sock *sk) 1512 { 1513 if (mptcp_send_head(sk)) { 1514 mptcp_data_lock(sk); 1515 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1516 mptcp_data_unlock(sk); 1517 } 1518 } 1519 1520 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1521 struct mptcp_sendmsg_info *info) 1522 { 1523 struct mptcp_sock *msk = mptcp_sk(sk); 1524 struct mptcp_data_frag *dfrag; 1525 int len, copied = 0, err = 0; 1526 1527 while ((dfrag = mptcp_send_head(sk))) { 1528 info->sent = dfrag->already_sent; 1529 info->limit = dfrag->data_len; 1530 len = dfrag->data_len - dfrag->already_sent; 1531 while (len > 0) { 1532 int ret = 0; 1533 1534 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1535 if (ret <= 0) { 1536 err = copied ? : ret; 1537 goto out; 1538 } 1539 1540 info->sent += ret; 1541 copied += ret; 1542 len -= ret; 1543 1544 mptcp_update_post_push(msk, dfrag, ret); 1545 } 1546 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1547 1548 if (msk->snd_burst <= 0 || 1549 !sk_stream_memory_free(ssk) || 1550 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1551 err = copied; 1552 goto out; 1553 } 1554 mptcp_set_timeout(sk); 1555 } 1556 err = copied; 1557 1558 out: 1559 return err; 1560 } 1561 1562 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1563 { 1564 struct sock *prev_ssk = NULL, *ssk = NULL; 1565 struct mptcp_sock *msk = mptcp_sk(sk); 1566 struct mptcp_sendmsg_info info = { 1567 .flags = flags, 1568 }; 1569 bool do_check_data_fin = false; 1570 int push_count = 1; 1571 1572 while (mptcp_send_head(sk) && (push_count > 0)) { 1573 struct mptcp_subflow_context *subflow; 1574 int ret = 0; 1575 1576 if (mptcp_sched_get_send(msk)) 1577 break; 1578 1579 push_count = 0; 1580 1581 mptcp_for_each_subflow(msk, subflow) { 1582 if (READ_ONCE(subflow->scheduled)) { 1583 mptcp_subflow_set_scheduled(subflow, false); 1584 1585 prev_ssk = ssk; 1586 ssk = mptcp_subflow_tcp_sock(subflow); 1587 if (ssk != prev_ssk) { 1588 /* First check. If the ssk has changed since 1589 * the last round, release prev_ssk 1590 */ 1591 if (prev_ssk) 1592 mptcp_push_release(prev_ssk, &info); 1593 1594 /* Need to lock the new subflow only if different 1595 * from the previous one, otherwise we are still 1596 * helding the relevant lock 1597 */ 1598 lock_sock(ssk); 1599 } 1600 1601 push_count++; 1602 1603 ret = __subflow_push_pending(sk, ssk, &info); 1604 if (ret <= 0) { 1605 if (ret != -EAGAIN || 1606 (1 << ssk->sk_state) & 1607 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1608 push_count--; 1609 continue; 1610 } 1611 do_check_data_fin = true; 1612 } 1613 } 1614 } 1615 1616 /* at this point we held the socket lock for the last subflow we used */ 1617 if (ssk) 1618 mptcp_push_release(ssk, &info); 1619 1620 /* ensure the rtx timer is running */ 1621 if (!mptcp_rtx_timer_pending(sk)) 1622 mptcp_reset_rtx_timer(sk); 1623 if (do_check_data_fin) 1624 mptcp_check_send_data_fin(sk); 1625 } 1626 1627 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1628 { 1629 struct mptcp_sock *msk = mptcp_sk(sk); 1630 struct mptcp_sendmsg_info info = { 1631 .data_lock_held = true, 1632 }; 1633 bool keep_pushing = true; 1634 struct sock *xmit_ssk; 1635 int copied = 0; 1636 1637 info.flags = 0; 1638 while (mptcp_send_head(sk) && keep_pushing) { 1639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1640 int ret = 0; 1641 1642 /* check for a different subflow usage only after 1643 * spooling the first chunk of data 1644 */ 1645 if (first) { 1646 mptcp_subflow_set_scheduled(subflow, false); 1647 ret = __subflow_push_pending(sk, ssk, &info); 1648 first = false; 1649 if (ret <= 0) 1650 break; 1651 copied += ret; 1652 continue; 1653 } 1654 1655 if (mptcp_sched_get_send(msk)) 1656 goto out; 1657 1658 if (READ_ONCE(subflow->scheduled)) { 1659 mptcp_subflow_set_scheduled(subflow, false); 1660 ret = __subflow_push_pending(sk, ssk, &info); 1661 if (ret <= 0) 1662 keep_pushing = false; 1663 copied += ret; 1664 } 1665 1666 mptcp_for_each_subflow(msk, subflow) { 1667 if (READ_ONCE(subflow->scheduled)) { 1668 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1669 if (xmit_ssk != ssk) { 1670 mptcp_subflow_delegate(subflow, 1671 MPTCP_DELEGATE_SEND); 1672 keep_pushing = false; 1673 } 1674 } 1675 } 1676 } 1677 1678 out: 1679 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1680 * not going to flush it via release_sock() 1681 */ 1682 if (copied) { 1683 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1684 info.size_goal); 1685 if (!mptcp_rtx_timer_pending(sk)) 1686 mptcp_reset_rtx_timer(sk); 1687 1688 if (msk->snd_data_fin_enable && 1689 msk->snd_nxt + 1 == msk->write_seq) 1690 mptcp_schedule_work(sk); 1691 } 1692 } 1693 1694 static void mptcp_set_nospace(struct sock *sk) 1695 { 1696 /* enable autotune */ 1697 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1698 1699 /* will be cleared on avail space */ 1700 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1701 } 1702 1703 static int mptcp_disconnect(struct sock *sk, int flags); 1704 1705 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1706 size_t len, int *copied_syn) 1707 { 1708 unsigned int saved_flags = msg->msg_flags; 1709 struct mptcp_sock *msk = mptcp_sk(sk); 1710 struct sock *ssk; 1711 int ret; 1712 1713 /* on flags based fastopen the mptcp is supposed to create the 1714 * first subflow right now. Otherwise we are in the defer_connect 1715 * path, and the first subflow must be already present. 1716 * Since the defer_connect flag is cleared after the first succsful 1717 * fastopen attempt, no need to check for additional subflow status. 1718 */ 1719 if (msg->msg_flags & MSG_FASTOPEN) { 1720 ssk = __mptcp_nmpc_sk(msk); 1721 if (IS_ERR(ssk)) 1722 return PTR_ERR(ssk); 1723 } 1724 if (!msk->first) 1725 return -EINVAL; 1726 1727 ssk = msk->first; 1728 1729 lock_sock(ssk); 1730 msg->msg_flags |= MSG_DONTWAIT; 1731 msk->fastopening = 1; 1732 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1733 msk->fastopening = 0; 1734 msg->msg_flags = saved_flags; 1735 release_sock(ssk); 1736 1737 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1738 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1739 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1740 msg->msg_namelen, msg->msg_flags, 1); 1741 1742 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1743 * case of any error, except timeout or signal 1744 */ 1745 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1746 *copied_syn = 0; 1747 } else if (ret && ret != -EINPROGRESS) { 1748 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1749 * __inet_stream_connect() can fail, due to looking check, 1750 * see mptcp_disconnect(). 1751 * Attempt it again outside the problematic scope. 1752 */ 1753 if (!mptcp_disconnect(sk, 0)) 1754 sk->sk_socket->state = SS_UNCONNECTED; 1755 } 1756 inet_clear_bit(DEFER_CONNECT, sk); 1757 1758 return ret; 1759 } 1760 1761 static int do_copy_data_nocache(struct sock *sk, int copy, 1762 struct iov_iter *from, char *to) 1763 { 1764 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1765 if (!copy_from_iter_full_nocache(to, copy, from)) 1766 return -EFAULT; 1767 } else if (!copy_from_iter_full(to, copy, from)) { 1768 return -EFAULT; 1769 } 1770 return 0; 1771 } 1772 1773 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1774 { 1775 struct mptcp_sock *msk = mptcp_sk(sk); 1776 struct page_frag *pfrag; 1777 size_t copied = 0; 1778 int ret = 0; 1779 long timeo; 1780 1781 /* silently ignore everything else */ 1782 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1783 1784 lock_sock(sk); 1785 1786 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1787 msg->msg_flags & MSG_FASTOPEN)) { 1788 int copied_syn = 0; 1789 1790 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1791 copied += copied_syn; 1792 if (ret == -EINPROGRESS && copied_syn > 0) 1793 goto out; 1794 else if (ret) 1795 goto do_error; 1796 } 1797 1798 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1799 1800 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1801 ret = sk_stream_wait_connect(sk, &timeo); 1802 if (ret) 1803 goto do_error; 1804 } 1805 1806 ret = -EPIPE; 1807 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1808 goto do_error; 1809 1810 pfrag = sk_page_frag(sk); 1811 1812 while (msg_data_left(msg)) { 1813 int total_ts, frag_truesize = 0; 1814 struct mptcp_data_frag *dfrag; 1815 bool dfrag_collapsed; 1816 size_t psize, offset; 1817 1818 /* reuse tail pfrag, if possible, or carve a new one from the 1819 * page allocator 1820 */ 1821 dfrag = mptcp_pending_tail(sk); 1822 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1823 if (!dfrag_collapsed) { 1824 if (!sk_stream_memory_free(sk)) 1825 goto wait_for_memory; 1826 1827 if (!mptcp_page_frag_refill(sk, pfrag)) 1828 goto wait_for_memory; 1829 1830 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1831 frag_truesize = dfrag->overhead; 1832 } 1833 1834 /* we do not bound vs wspace, to allow a single packet. 1835 * memory accounting will prevent execessive memory usage 1836 * anyway 1837 */ 1838 offset = dfrag->offset + dfrag->data_len; 1839 psize = pfrag->size - offset; 1840 psize = min_t(size_t, psize, msg_data_left(msg)); 1841 total_ts = psize + frag_truesize; 1842 1843 if (!sk_wmem_schedule(sk, total_ts)) 1844 goto wait_for_memory; 1845 1846 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1847 page_address(dfrag->page) + offset); 1848 if (ret) 1849 goto do_error; 1850 1851 /* data successfully copied into the write queue */ 1852 sk_forward_alloc_add(sk, -total_ts); 1853 copied += psize; 1854 dfrag->data_len += psize; 1855 frag_truesize += psize; 1856 pfrag->offset += frag_truesize; 1857 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1858 1859 /* charge data on mptcp pending queue to the msk socket 1860 * Note: we charge such data both to sk and ssk 1861 */ 1862 sk_wmem_queued_add(sk, frag_truesize); 1863 if (!dfrag_collapsed) { 1864 get_page(dfrag->page); 1865 list_add_tail(&dfrag->list, &msk->rtx_queue); 1866 if (!msk->first_pending) 1867 WRITE_ONCE(msk->first_pending, dfrag); 1868 } 1869 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1870 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1871 !dfrag_collapsed); 1872 1873 continue; 1874 1875 wait_for_memory: 1876 mptcp_set_nospace(sk); 1877 __mptcp_push_pending(sk, msg->msg_flags); 1878 ret = sk_stream_wait_memory(sk, &timeo); 1879 if (ret) 1880 goto do_error; 1881 } 1882 1883 if (copied) 1884 __mptcp_push_pending(sk, msg->msg_flags); 1885 1886 out: 1887 release_sock(sk); 1888 return copied; 1889 1890 do_error: 1891 if (copied) 1892 goto out; 1893 1894 copied = sk_stream_error(sk, msg->msg_flags, ret); 1895 goto out; 1896 } 1897 1898 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1899 struct msghdr *msg, 1900 size_t len, int flags, 1901 struct scm_timestamping_internal *tss, 1902 int *cmsg_flags) 1903 { 1904 struct sk_buff *skb, *tmp; 1905 int copied = 0; 1906 1907 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1908 u32 offset = MPTCP_SKB_CB(skb)->offset; 1909 u32 data_len = skb->len - offset; 1910 u32 count = min_t(size_t, len - copied, data_len); 1911 int err; 1912 1913 if (!(flags & MSG_TRUNC)) { 1914 err = skb_copy_datagram_msg(skb, offset, msg, count); 1915 if (unlikely(err < 0)) { 1916 if (!copied) 1917 return err; 1918 break; 1919 } 1920 } 1921 1922 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1923 tcp_update_recv_tstamps(skb, tss); 1924 *cmsg_flags |= MPTCP_CMSG_TS; 1925 } 1926 1927 copied += count; 1928 1929 if (count < data_len) { 1930 if (!(flags & MSG_PEEK)) { 1931 MPTCP_SKB_CB(skb)->offset += count; 1932 MPTCP_SKB_CB(skb)->map_seq += count; 1933 msk->bytes_consumed += count; 1934 } 1935 break; 1936 } 1937 1938 if (!(flags & MSG_PEEK)) { 1939 /* we will bulk release the skb memory later */ 1940 skb->destructor = NULL; 1941 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1942 __skb_unlink(skb, &msk->receive_queue); 1943 __kfree_skb(skb); 1944 msk->bytes_consumed += count; 1945 } 1946 1947 if (copied >= len) 1948 break; 1949 } 1950 1951 return copied; 1952 } 1953 1954 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1955 * 1956 * Only difference: Use highest rtt estimate of the subflows in use. 1957 */ 1958 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1959 { 1960 struct mptcp_subflow_context *subflow; 1961 struct sock *sk = (struct sock *)msk; 1962 u8 scaling_ratio = U8_MAX; 1963 u32 time, advmss = 1; 1964 u64 rtt_us, mstamp; 1965 1966 msk_owned_by_me(msk); 1967 1968 if (copied <= 0) 1969 return; 1970 1971 if (!msk->rcvspace_init) 1972 mptcp_rcv_space_init(msk, msk->first); 1973 1974 msk->rcvq_space.copied += copied; 1975 1976 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1977 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1978 1979 rtt_us = msk->rcvq_space.rtt_us; 1980 if (rtt_us && time < (rtt_us >> 3)) 1981 return; 1982 1983 rtt_us = 0; 1984 mptcp_for_each_subflow(msk, subflow) { 1985 const struct tcp_sock *tp; 1986 u64 sf_rtt_us; 1987 u32 sf_advmss; 1988 1989 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1990 1991 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1992 sf_advmss = READ_ONCE(tp->advmss); 1993 1994 rtt_us = max(sf_rtt_us, rtt_us); 1995 advmss = max(sf_advmss, advmss); 1996 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1997 } 1998 1999 msk->rcvq_space.rtt_us = rtt_us; 2000 msk->scaling_ratio = scaling_ratio; 2001 if (time < (rtt_us >> 3) || rtt_us == 0) 2002 return; 2003 2004 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2005 goto new_measure; 2006 2007 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2008 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2009 u64 rcvwin, grow; 2010 int rcvbuf; 2011 2012 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2013 2014 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2015 2016 do_div(grow, msk->rcvq_space.space); 2017 rcvwin += (grow << 1); 2018 2019 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2020 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2021 2022 if (rcvbuf > sk->sk_rcvbuf) { 2023 u32 window_clamp; 2024 2025 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2026 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2027 2028 /* Make subflows follow along. If we do not do this, we 2029 * get drops at subflow level if skbs can't be moved to 2030 * the mptcp rx queue fast enough (announced rcv_win can 2031 * exceed ssk->sk_rcvbuf). 2032 */ 2033 mptcp_for_each_subflow(msk, subflow) { 2034 struct sock *ssk; 2035 bool slow; 2036 2037 ssk = mptcp_subflow_tcp_sock(subflow); 2038 slow = lock_sock_fast(ssk); 2039 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2040 tcp_sk(ssk)->window_clamp = window_clamp; 2041 tcp_cleanup_rbuf(ssk, 1); 2042 unlock_sock_fast(ssk, slow); 2043 } 2044 } 2045 } 2046 2047 msk->rcvq_space.space = msk->rcvq_space.copied; 2048 new_measure: 2049 msk->rcvq_space.copied = 0; 2050 msk->rcvq_space.time = mstamp; 2051 } 2052 2053 static void __mptcp_update_rmem(struct sock *sk) 2054 { 2055 struct mptcp_sock *msk = mptcp_sk(sk); 2056 2057 if (!msk->rmem_released) 2058 return; 2059 2060 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2061 mptcp_rmem_uncharge(sk, msk->rmem_released); 2062 WRITE_ONCE(msk->rmem_released, 0); 2063 } 2064 2065 static void __mptcp_splice_receive_queue(struct sock *sk) 2066 { 2067 struct mptcp_sock *msk = mptcp_sk(sk); 2068 2069 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2070 } 2071 2072 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2073 { 2074 struct sock *sk = (struct sock *)msk; 2075 unsigned int moved = 0; 2076 bool ret, done; 2077 2078 do { 2079 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2080 bool slowpath; 2081 2082 /* we can have data pending in the subflows only if the msk 2083 * receive buffer was full at subflow_data_ready() time, 2084 * that is an unlikely slow path. 2085 */ 2086 if (likely(!ssk)) 2087 break; 2088 2089 slowpath = lock_sock_fast(ssk); 2090 mptcp_data_lock(sk); 2091 __mptcp_update_rmem(sk); 2092 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2093 mptcp_data_unlock(sk); 2094 2095 if (unlikely(ssk->sk_err)) 2096 __mptcp_error_report(sk); 2097 unlock_sock_fast(ssk, slowpath); 2098 } while (!done); 2099 2100 /* acquire the data lock only if some input data is pending */ 2101 ret = moved > 0; 2102 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2103 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2104 mptcp_data_lock(sk); 2105 __mptcp_update_rmem(sk); 2106 ret |= __mptcp_ofo_queue(msk); 2107 __mptcp_splice_receive_queue(sk); 2108 mptcp_data_unlock(sk); 2109 } 2110 if (ret) 2111 mptcp_check_data_fin((struct sock *)msk); 2112 return !skb_queue_empty(&msk->receive_queue); 2113 } 2114 2115 static unsigned int mptcp_inq_hint(const struct sock *sk) 2116 { 2117 const struct mptcp_sock *msk = mptcp_sk(sk); 2118 const struct sk_buff *skb; 2119 2120 skb = skb_peek(&msk->receive_queue); 2121 if (skb) { 2122 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2123 2124 if (hint_val >= INT_MAX) 2125 return INT_MAX; 2126 2127 return (unsigned int)hint_val; 2128 } 2129 2130 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2131 return 1; 2132 2133 return 0; 2134 } 2135 2136 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2137 int flags, int *addr_len) 2138 { 2139 struct mptcp_sock *msk = mptcp_sk(sk); 2140 struct scm_timestamping_internal tss; 2141 int copied = 0, cmsg_flags = 0; 2142 int target; 2143 long timeo; 2144 2145 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2146 if (unlikely(flags & MSG_ERRQUEUE)) 2147 return inet_recv_error(sk, msg, len, addr_len); 2148 2149 lock_sock(sk); 2150 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2151 copied = -ENOTCONN; 2152 goto out_err; 2153 } 2154 2155 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2156 2157 len = min_t(size_t, len, INT_MAX); 2158 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2159 2160 if (unlikely(msk->recvmsg_inq)) 2161 cmsg_flags = MPTCP_CMSG_INQ; 2162 2163 while (copied < len) { 2164 int bytes_read; 2165 2166 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2167 if (unlikely(bytes_read < 0)) { 2168 if (!copied) 2169 copied = bytes_read; 2170 goto out_err; 2171 } 2172 2173 copied += bytes_read; 2174 2175 /* be sure to advertise window change */ 2176 mptcp_cleanup_rbuf(msk); 2177 2178 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2179 continue; 2180 2181 /* only the master socket status is relevant here. The exit 2182 * conditions mirror closely tcp_recvmsg() 2183 */ 2184 if (copied >= target) 2185 break; 2186 2187 if (copied) { 2188 if (sk->sk_err || 2189 sk->sk_state == TCP_CLOSE || 2190 (sk->sk_shutdown & RCV_SHUTDOWN) || 2191 !timeo || 2192 signal_pending(current)) 2193 break; 2194 } else { 2195 if (sk->sk_err) { 2196 copied = sock_error(sk); 2197 break; 2198 } 2199 2200 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2201 /* race breaker: the shutdown could be after the 2202 * previous receive queue check 2203 */ 2204 if (__mptcp_move_skbs(msk)) 2205 continue; 2206 break; 2207 } 2208 2209 if (sk->sk_state == TCP_CLOSE) { 2210 copied = -ENOTCONN; 2211 break; 2212 } 2213 2214 if (!timeo) { 2215 copied = -EAGAIN; 2216 break; 2217 } 2218 2219 if (signal_pending(current)) { 2220 copied = sock_intr_errno(timeo); 2221 break; 2222 } 2223 } 2224 2225 pr_debug("block timeout %ld", timeo); 2226 sk_wait_data(sk, &timeo, NULL); 2227 } 2228 2229 out_err: 2230 if (cmsg_flags && copied >= 0) { 2231 if (cmsg_flags & MPTCP_CMSG_TS) 2232 tcp_recv_timestamp(msg, sk, &tss); 2233 2234 if (cmsg_flags & MPTCP_CMSG_INQ) { 2235 unsigned int inq = mptcp_inq_hint(sk); 2236 2237 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2238 } 2239 } 2240 2241 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2242 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2243 skb_queue_empty(&msk->receive_queue), copied); 2244 if (!(flags & MSG_PEEK)) 2245 mptcp_rcv_space_adjust(msk, copied); 2246 2247 release_sock(sk); 2248 return copied; 2249 } 2250 2251 static void mptcp_retransmit_timer(struct timer_list *t) 2252 { 2253 struct inet_connection_sock *icsk = from_timer(icsk, t, 2254 icsk_retransmit_timer); 2255 struct sock *sk = &icsk->icsk_inet.sk; 2256 struct mptcp_sock *msk = mptcp_sk(sk); 2257 2258 bh_lock_sock(sk); 2259 if (!sock_owned_by_user(sk)) { 2260 /* we need a process context to retransmit */ 2261 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2262 mptcp_schedule_work(sk); 2263 } else { 2264 /* delegate our work to tcp_release_cb() */ 2265 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2266 } 2267 bh_unlock_sock(sk); 2268 sock_put(sk); 2269 } 2270 2271 static void mptcp_tout_timer(struct timer_list *t) 2272 { 2273 struct sock *sk = from_timer(sk, t, sk_timer); 2274 2275 mptcp_schedule_work(sk); 2276 sock_put(sk); 2277 } 2278 2279 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2280 * level. 2281 * 2282 * A backup subflow is returned only if that is the only kind available. 2283 */ 2284 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2285 { 2286 struct sock *backup = NULL, *pick = NULL; 2287 struct mptcp_subflow_context *subflow; 2288 int min_stale_count = INT_MAX; 2289 2290 mptcp_for_each_subflow(msk, subflow) { 2291 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2292 2293 if (!__mptcp_subflow_active(subflow)) 2294 continue; 2295 2296 /* still data outstanding at TCP level? skip this */ 2297 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2298 mptcp_pm_subflow_chk_stale(msk, ssk); 2299 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2300 continue; 2301 } 2302 2303 if (subflow->backup) { 2304 if (!backup) 2305 backup = ssk; 2306 continue; 2307 } 2308 2309 if (!pick) 2310 pick = ssk; 2311 } 2312 2313 if (pick) 2314 return pick; 2315 2316 /* use backup only if there are no progresses anywhere */ 2317 return min_stale_count > 1 ? backup : NULL; 2318 } 2319 2320 bool __mptcp_retransmit_pending_data(struct sock *sk) 2321 { 2322 struct mptcp_data_frag *cur, *rtx_head; 2323 struct mptcp_sock *msk = mptcp_sk(sk); 2324 2325 if (__mptcp_check_fallback(msk)) 2326 return false; 2327 2328 /* the closing socket has some data untransmitted and/or unacked: 2329 * some data in the mptcp rtx queue has not really xmitted yet. 2330 * keep it simple and re-inject the whole mptcp level rtx queue 2331 */ 2332 mptcp_data_lock(sk); 2333 __mptcp_clean_una_wakeup(sk); 2334 rtx_head = mptcp_rtx_head(sk); 2335 if (!rtx_head) { 2336 mptcp_data_unlock(sk); 2337 return false; 2338 } 2339 2340 msk->recovery_snd_nxt = msk->snd_nxt; 2341 msk->recovery = true; 2342 mptcp_data_unlock(sk); 2343 2344 msk->first_pending = rtx_head; 2345 msk->snd_burst = 0; 2346 2347 /* be sure to clear the "sent status" on all re-injected fragments */ 2348 list_for_each_entry(cur, &msk->rtx_queue, list) { 2349 if (!cur->already_sent) 2350 break; 2351 cur->already_sent = 0; 2352 } 2353 2354 return true; 2355 } 2356 2357 /* flags for __mptcp_close_ssk() */ 2358 #define MPTCP_CF_PUSH BIT(1) 2359 #define MPTCP_CF_FASTCLOSE BIT(2) 2360 2361 /* be sure to send a reset only if the caller asked for it, also 2362 * clean completely the subflow status when the subflow reaches 2363 * TCP_CLOSE state 2364 */ 2365 static void __mptcp_subflow_disconnect(struct sock *ssk, 2366 struct mptcp_subflow_context *subflow, 2367 unsigned int flags) 2368 { 2369 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2370 (flags & MPTCP_CF_FASTCLOSE)) { 2371 /* The MPTCP code never wait on the subflow sockets, TCP-level 2372 * disconnect should never fail 2373 */ 2374 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2375 mptcp_subflow_ctx_reset(subflow); 2376 } else { 2377 tcp_shutdown(ssk, SEND_SHUTDOWN); 2378 } 2379 } 2380 2381 /* subflow sockets can be either outgoing (connect) or incoming 2382 * (accept). 2383 * 2384 * Outgoing subflows use in-kernel sockets. 2385 * Incoming subflows do not have their own 'struct socket' allocated, 2386 * so we need to use tcp_close() after detaching them from the mptcp 2387 * parent socket. 2388 */ 2389 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2390 struct mptcp_subflow_context *subflow, 2391 unsigned int flags) 2392 { 2393 struct mptcp_sock *msk = mptcp_sk(sk); 2394 bool dispose_it, need_push = false; 2395 2396 /* If the first subflow moved to a close state before accept, e.g. due 2397 * to an incoming reset or listener shutdown, the subflow socket is 2398 * already deleted by inet_child_forget() and the mptcp socket can't 2399 * survive too. 2400 */ 2401 if (msk->in_accept_queue && msk->first == ssk && 2402 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2403 /* ensure later check in mptcp_worker() will dispose the msk */ 2404 sock_set_flag(sk, SOCK_DEAD); 2405 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2406 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2407 mptcp_subflow_drop_ctx(ssk); 2408 goto out_release; 2409 } 2410 2411 dispose_it = msk->free_first || ssk != msk->first; 2412 if (dispose_it) 2413 list_del(&subflow->node); 2414 2415 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2416 2417 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2418 /* be sure to force the tcp_close path 2419 * to generate the egress reset 2420 */ 2421 ssk->sk_lingertime = 0; 2422 sock_set_flag(ssk, SOCK_LINGER); 2423 subflow->send_fastclose = 1; 2424 } 2425 2426 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2427 if (!dispose_it) { 2428 __mptcp_subflow_disconnect(ssk, subflow, flags); 2429 release_sock(ssk); 2430 2431 goto out; 2432 } 2433 2434 subflow->disposable = 1; 2435 2436 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2437 * the ssk has been already destroyed, we just need to release the 2438 * reference owned by msk; 2439 */ 2440 if (!inet_csk(ssk)->icsk_ulp_ops) { 2441 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2442 kfree_rcu(subflow, rcu); 2443 } else { 2444 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2445 __tcp_close(ssk, 0); 2446 2447 /* close acquired an extra ref */ 2448 __sock_put(ssk); 2449 } 2450 2451 out_release: 2452 __mptcp_subflow_error_report(sk, ssk); 2453 release_sock(ssk); 2454 2455 sock_put(ssk); 2456 2457 if (ssk == msk->first) 2458 WRITE_ONCE(msk->first, NULL); 2459 2460 out: 2461 __mptcp_sync_sndbuf(sk); 2462 if (need_push) 2463 __mptcp_push_pending(sk, 0); 2464 2465 /* Catch every 'all subflows closed' scenario, including peers silently 2466 * closing them, e.g. due to timeout. 2467 * For established sockets, allow an additional timeout before closing, 2468 * as the protocol can still create more subflows. 2469 */ 2470 if (list_is_singular(&msk->conn_list) && msk->first && 2471 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2472 if (sk->sk_state != TCP_ESTABLISHED || 2473 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2474 mptcp_set_state(sk, TCP_CLOSE); 2475 mptcp_close_wake_up(sk); 2476 } else { 2477 mptcp_start_tout_timer(sk); 2478 } 2479 } 2480 } 2481 2482 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2483 struct mptcp_subflow_context *subflow) 2484 { 2485 if (sk->sk_state == TCP_ESTABLISHED) 2486 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2487 2488 /* subflow aborted before reaching the fully_established status 2489 * attempt the creation of the next subflow 2490 */ 2491 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2492 2493 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2494 } 2495 2496 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2497 { 2498 return 0; 2499 } 2500 2501 static void __mptcp_close_subflow(struct sock *sk) 2502 { 2503 struct mptcp_subflow_context *subflow, *tmp; 2504 struct mptcp_sock *msk = mptcp_sk(sk); 2505 2506 might_sleep(); 2507 2508 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2509 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2510 2511 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2512 continue; 2513 2514 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2515 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2516 continue; 2517 2518 mptcp_close_ssk(sk, ssk, subflow); 2519 } 2520 2521 } 2522 2523 static bool mptcp_close_tout_expired(const struct sock *sk) 2524 { 2525 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2526 sk->sk_state == TCP_CLOSE) 2527 return false; 2528 2529 return time_after32(tcp_jiffies32, 2530 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2531 } 2532 2533 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2534 { 2535 struct mptcp_subflow_context *subflow, *tmp; 2536 struct sock *sk = (struct sock *)msk; 2537 2538 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2539 return; 2540 2541 mptcp_token_destroy(msk); 2542 2543 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2544 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2545 bool slow; 2546 2547 slow = lock_sock_fast(tcp_sk); 2548 if (tcp_sk->sk_state != TCP_CLOSE) { 2549 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2550 tcp_set_state(tcp_sk, TCP_CLOSE); 2551 } 2552 unlock_sock_fast(tcp_sk, slow); 2553 } 2554 2555 /* Mirror the tcp_reset() error propagation */ 2556 switch (sk->sk_state) { 2557 case TCP_SYN_SENT: 2558 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2559 break; 2560 case TCP_CLOSE_WAIT: 2561 WRITE_ONCE(sk->sk_err, EPIPE); 2562 break; 2563 case TCP_CLOSE: 2564 return; 2565 default: 2566 WRITE_ONCE(sk->sk_err, ECONNRESET); 2567 } 2568 2569 mptcp_set_state(sk, TCP_CLOSE); 2570 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2571 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2572 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2573 2574 /* the calling mptcp_worker will properly destroy the socket */ 2575 if (sock_flag(sk, SOCK_DEAD)) 2576 return; 2577 2578 sk->sk_state_change(sk); 2579 sk_error_report(sk); 2580 } 2581 2582 static void __mptcp_retrans(struct sock *sk) 2583 { 2584 struct mptcp_sock *msk = mptcp_sk(sk); 2585 struct mptcp_subflow_context *subflow; 2586 struct mptcp_sendmsg_info info = {}; 2587 struct mptcp_data_frag *dfrag; 2588 struct sock *ssk; 2589 int ret, err; 2590 u16 len = 0; 2591 2592 mptcp_clean_una_wakeup(sk); 2593 2594 /* first check ssk: need to kick "stale" logic */ 2595 err = mptcp_sched_get_retrans(msk); 2596 dfrag = mptcp_rtx_head(sk); 2597 if (!dfrag) { 2598 if (mptcp_data_fin_enabled(msk)) { 2599 struct inet_connection_sock *icsk = inet_csk(sk); 2600 2601 icsk->icsk_retransmits++; 2602 mptcp_set_datafin_timeout(sk); 2603 mptcp_send_ack(msk); 2604 2605 goto reset_timer; 2606 } 2607 2608 if (!mptcp_send_head(sk)) 2609 return; 2610 2611 goto reset_timer; 2612 } 2613 2614 if (err) 2615 goto reset_timer; 2616 2617 mptcp_for_each_subflow(msk, subflow) { 2618 if (READ_ONCE(subflow->scheduled)) { 2619 u16 copied = 0; 2620 2621 mptcp_subflow_set_scheduled(subflow, false); 2622 2623 ssk = mptcp_subflow_tcp_sock(subflow); 2624 2625 lock_sock(ssk); 2626 2627 /* limit retransmission to the bytes already sent on some subflows */ 2628 info.sent = 0; 2629 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2630 dfrag->already_sent; 2631 while (info.sent < info.limit) { 2632 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2633 if (ret <= 0) 2634 break; 2635 2636 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2637 copied += ret; 2638 info.sent += ret; 2639 } 2640 if (copied) { 2641 len = max(copied, len); 2642 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2643 info.size_goal); 2644 WRITE_ONCE(msk->allow_infinite_fallback, false); 2645 } 2646 2647 release_sock(ssk); 2648 } 2649 } 2650 2651 msk->bytes_retrans += len; 2652 dfrag->already_sent = max(dfrag->already_sent, len); 2653 2654 reset_timer: 2655 mptcp_check_and_set_pending(sk); 2656 2657 if (!mptcp_rtx_timer_pending(sk)) 2658 mptcp_reset_rtx_timer(sk); 2659 } 2660 2661 /* schedule the timeout timer for the relevant event: either close timeout 2662 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2663 */ 2664 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2665 { 2666 struct sock *sk = (struct sock *)msk; 2667 unsigned long timeout, close_timeout; 2668 2669 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2670 return; 2671 2672 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2673 mptcp_close_timeout(sk); 2674 2675 /* the close timeout takes precedence on the fail one, and here at least one of 2676 * them is active 2677 */ 2678 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2679 2680 sk_reset_timer(sk, &sk->sk_timer, timeout); 2681 } 2682 2683 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2684 { 2685 struct sock *ssk = msk->first; 2686 bool slow; 2687 2688 if (!ssk) 2689 return; 2690 2691 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2692 2693 slow = lock_sock_fast(ssk); 2694 mptcp_subflow_reset(ssk); 2695 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2696 unlock_sock_fast(ssk, slow); 2697 } 2698 2699 static void mptcp_do_fastclose(struct sock *sk) 2700 { 2701 struct mptcp_subflow_context *subflow, *tmp; 2702 struct mptcp_sock *msk = mptcp_sk(sk); 2703 2704 mptcp_set_state(sk, TCP_CLOSE); 2705 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2706 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2707 subflow, MPTCP_CF_FASTCLOSE); 2708 } 2709 2710 static void mptcp_worker(struct work_struct *work) 2711 { 2712 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2713 struct sock *sk = (struct sock *)msk; 2714 unsigned long fail_tout; 2715 int state; 2716 2717 lock_sock(sk); 2718 state = sk->sk_state; 2719 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2720 goto unlock; 2721 2722 mptcp_check_fastclose(msk); 2723 2724 mptcp_pm_nl_work(msk); 2725 2726 mptcp_check_send_data_fin(sk); 2727 mptcp_check_data_fin_ack(sk); 2728 mptcp_check_data_fin(sk); 2729 2730 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2731 __mptcp_close_subflow(sk); 2732 2733 if (mptcp_close_tout_expired(sk)) { 2734 mptcp_do_fastclose(sk); 2735 mptcp_close_wake_up(sk); 2736 } 2737 2738 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2739 __mptcp_destroy_sock(sk); 2740 goto unlock; 2741 } 2742 2743 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2744 __mptcp_retrans(sk); 2745 2746 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2747 if (fail_tout && time_after(jiffies, fail_tout)) 2748 mptcp_mp_fail_no_response(msk); 2749 2750 unlock: 2751 release_sock(sk); 2752 sock_put(sk); 2753 } 2754 2755 static void __mptcp_init_sock(struct sock *sk) 2756 { 2757 struct mptcp_sock *msk = mptcp_sk(sk); 2758 2759 INIT_LIST_HEAD(&msk->conn_list); 2760 INIT_LIST_HEAD(&msk->join_list); 2761 INIT_LIST_HEAD(&msk->rtx_queue); 2762 INIT_WORK(&msk->work, mptcp_worker); 2763 __skb_queue_head_init(&msk->receive_queue); 2764 msk->out_of_order_queue = RB_ROOT; 2765 msk->first_pending = NULL; 2766 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 2767 WRITE_ONCE(msk->rmem_released, 0); 2768 msk->timer_ival = TCP_RTO_MIN; 2769 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2770 2771 WRITE_ONCE(msk->first, NULL); 2772 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2773 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2774 WRITE_ONCE(msk->allow_infinite_fallback, true); 2775 msk->recovery = false; 2776 msk->subflow_id = 1; 2777 2778 mptcp_pm_data_init(msk); 2779 2780 /* re-use the csk retrans timer for MPTCP-level retrans */ 2781 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2782 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2783 } 2784 2785 static void mptcp_ca_reset(struct sock *sk) 2786 { 2787 struct inet_connection_sock *icsk = inet_csk(sk); 2788 2789 tcp_assign_congestion_control(sk); 2790 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2791 2792 /* no need to keep a reference to the ops, the name will suffice */ 2793 tcp_cleanup_congestion_control(sk); 2794 icsk->icsk_ca_ops = NULL; 2795 } 2796 2797 static int mptcp_init_sock(struct sock *sk) 2798 { 2799 struct net *net = sock_net(sk); 2800 int ret; 2801 2802 __mptcp_init_sock(sk); 2803 2804 if (!mptcp_is_enabled(net)) 2805 return -ENOPROTOOPT; 2806 2807 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2808 return -ENOMEM; 2809 2810 ret = mptcp_init_sched(mptcp_sk(sk), 2811 mptcp_sched_find(mptcp_get_scheduler(net))); 2812 if (ret) 2813 return ret; 2814 2815 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2816 2817 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2818 * propagate the correct value 2819 */ 2820 mptcp_ca_reset(sk); 2821 2822 sk_sockets_allocated_inc(sk); 2823 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2824 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2825 2826 return 0; 2827 } 2828 2829 static void __mptcp_clear_xmit(struct sock *sk) 2830 { 2831 struct mptcp_sock *msk = mptcp_sk(sk); 2832 struct mptcp_data_frag *dtmp, *dfrag; 2833 2834 WRITE_ONCE(msk->first_pending, NULL); 2835 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2836 dfrag_clear(sk, dfrag); 2837 } 2838 2839 void mptcp_cancel_work(struct sock *sk) 2840 { 2841 struct mptcp_sock *msk = mptcp_sk(sk); 2842 2843 if (cancel_work_sync(&msk->work)) 2844 __sock_put(sk); 2845 } 2846 2847 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2848 { 2849 lock_sock(ssk); 2850 2851 switch (ssk->sk_state) { 2852 case TCP_LISTEN: 2853 if (!(how & RCV_SHUTDOWN)) 2854 break; 2855 fallthrough; 2856 case TCP_SYN_SENT: 2857 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2858 break; 2859 default: 2860 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2861 pr_debug("Fallback"); 2862 ssk->sk_shutdown |= how; 2863 tcp_shutdown(ssk, how); 2864 2865 /* simulate the data_fin ack reception to let the state 2866 * machine move forward 2867 */ 2868 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2869 mptcp_schedule_work(sk); 2870 } else { 2871 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2872 tcp_send_ack(ssk); 2873 if (!mptcp_rtx_timer_pending(sk)) 2874 mptcp_reset_rtx_timer(sk); 2875 } 2876 break; 2877 } 2878 2879 release_sock(ssk); 2880 } 2881 2882 void mptcp_set_state(struct sock *sk, int state) 2883 { 2884 int oldstate = sk->sk_state; 2885 2886 switch (state) { 2887 case TCP_ESTABLISHED: 2888 if (oldstate != TCP_ESTABLISHED) 2889 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2890 break; 2891 2892 default: 2893 if (oldstate == TCP_ESTABLISHED) 2894 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2895 } 2896 2897 inet_sk_state_store(sk, state); 2898 } 2899 2900 static const unsigned char new_state[16] = { 2901 /* current state: new state: action: */ 2902 [0 /* (Invalid) */] = TCP_CLOSE, 2903 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2904 [TCP_SYN_SENT] = TCP_CLOSE, 2905 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2906 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2907 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2908 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2909 [TCP_CLOSE] = TCP_CLOSE, 2910 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2911 [TCP_LAST_ACK] = TCP_LAST_ACK, 2912 [TCP_LISTEN] = TCP_CLOSE, 2913 [TCP_CLOSING] = TCP_CLOSING, 2914 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2915 }; 2916 2917 static int mptcp_close_state(struct sock *sk) 2918 { 2919 int next = (int)new_state[sk->sk_state]; 2920 int ns = next & TCP_STATE_MASK; 2921 2922 mptcp_set_state(sk, ns); 2923 2924 return next & TCP_ACTION_FIN; 2925 } 2926 2927 static void mptcp_check_send_data_fin(struct sock *sk) 2928 { 2929 struct mptcp_subflow_context *subflow; 2930 struct mptcp_sock *msk = mptcp_sk(sk); 2931 2932 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2933 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2934 msk->snd_nxt, msk->write_seq); 2935 2936 /* we still need to enqueue subflows or not really shutting down, 2937 * skip this 2938 */ 2939 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2940 mptcp_send_head(sk)) 2941 return; 2942 2943 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2944 2945 mptcp_for_each_subflow(msk, subflow) { 2946 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2947 2948 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2949 } 2950 } 2951 2952 static void __mptcp_wr_shutdown(struct sock *sk) 2953 { 2954 struct mptcp_sock *msk = mptcp_sk(sk); 2955 2956 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2957 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2958 !!mptcp_send_head(sk)); 2959 2960 /* will be ignored by fallback sockets */ 2961 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2962 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2963 2964 mptcp_check_send_data_fin(sk); 2965 } 2966 2967 static void __mptcp_destroy_sock(struct sock *sk) 2968 { 2969 struct mptcp_sock *msk = mptcp_sk(sk); 2970 2971 pr_debug("msk=%p", msk); 2972 2973 might_sleep(); 2974 2975 mptcp_stop_rtx_timer(sk); 2976 sk_stop_timer(sk, &sk->sk_timer); 2977 msk->pm.status = 0; 2978 mptcp_release_sched(msk); 2979 2980 sk->sk_prot->destroy(sk); 2981 2982 WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc)); 2983 WARN_ON_ONCE(msk->rmem_released); 2984 sk_stream_kill_queues(sk); 2985 xfrm_sk_free_policy(sk); 2986 2987 sock_put(sk); 2988 } 2989 2990 void __mptcp_unaccepted_force_close(struct sock *sk) 2991 { 2992 sock_set_flag(sk, SOCK_DEAD); 2993 mptcp_do_fastclose(sk); 2994 __mptcp_destroy_sock(sk); 2995 } 2996 2997 static __poll_t mptcp_check_readable(struct sock *sk) 2998 { 2999 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3000 } 3001 3002 static void mptcp_check_listen_stop(struct sock *sk) 3003 { 3004 struct sock *ssk; 3005 3006 if (inet_sk_state_load(sk) != TCP_LISTEN) 3007 return; 3008 3009 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3010 ssk = mptcp_sk(sk)->first; 3011 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3012 return; 3013 3014 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3015 tcp_set_state(ssk, TCP_CLOSE); 3016 mptcp_subflow_queue_clean(sk, ssk); 3017 inet_csk_listen_stop(ssk); 3018 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3019 release_sock(ssk); 3020 } 3021 3022 bool __mptcp_close(struct sock *sk, long timeout) 3023 { 3024 struct mptcp_subflow_context *subflow; 3025 struct mptcp_sock *msk = mptcp_sk(sk); 3026 bool do_cancel_work = false; 3027 int subflows_alive = 0; 3028 3029 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3030 3031 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3032 mptcp_check_listen_stop(sk); 3033 mptcp_set_state(sk, TCP_CLOSE); 3034 goto cleanup; 3035 } 3036 3037 if (mptcp_data_avail(msk) || timeout < 0) { 3038 /* If the msk has read data, or the caller explicitly ask it, 3039 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3040 */ 3041 mptcp_do_fastclose(sk); 3042 timeout = 0; 3043 } else if (mptcp_close_state(sk)) { 3044 __mptcp_wr_shutdown(sk); 3045 } 3046 3047 sk_stream_wait_close(sk, timeout); 3048 3049 cleanup: 3050 /* orphan all the subflows */ 3051 mptcp_for_each_subflow(msk, subflow) { 3052 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3053 bool slow = lock_sock_fast_nested(ssk); 3054 3055 subflows_alive += ssk->sk_state != TCP_CLOSE; 3056 3057 /* since the close timeout takes precedence on the fail one, 3058 * cancel the latter 3059 */ 3060 if (ssk == msk->first) 3061 subflow->fail_tout = 0; 3062 3063 /* detach from the parent socket, but allow data_ready to 3064 * push incoming data into the mptcp stack, to properly ack it 3065 */ 3066 ssk->sk_socket = NULL; 3067 ssk->sk_wq = NULL; 3068 unlock_sock_fast(ssk, slow); 3069 } 3070 sock_orphan(sk); 3071 3072 /* all the subflows are closed, only timeout can change the msk 3073 * state, let's not keep resources busy for no reasons 3074 */ 3075 if (subflows_alive == 0) 3076 mptcp_set_state(sk, TCP_CLOSE); 3077 3078 sock_hold(sk); 3079 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3080 if (msk->token) 3081 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3082 3083 if (sk->sk_state == TCP_CLOSE) { 3084 __mptcp_destroy_sock(sk); 3085 do_cancel_work = true; 3086 } else { 3087 mptcp_start_tout_timer(sk); 3088 } 3089 3090 return do_cancel_work; 3091 } 3092 3093 static void mptcp_close(struct sock *sk, long timeout) 3094 { 3095 bool do_cancel_work; 3096 3097 lock_sock(sk); 3098 3099 do_cancel_work = __mptcp_close(sk, timeout); 3100 release_sock(sk); 3101 if (do_cancel_work) 3102 mptcp_cancel_work(sk); 3103 3104 sock_put(sk); 3105 } 3106 3107 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3108 { 3109 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3110 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3111 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3112 3113 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3114 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3115 3116 if (msk6 && ssk6) { 3117 msk6->saddr = ssk6->saddr; 3118 msk6->flow_label = ssk6->flow_label; 3119 } 3120 #endif 3121 3122 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3123 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3124 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3125 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3126 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3127 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3128 } 3129 3130 static int mptcp_disconnect(struct sock *sk, int flags) 3131 { 3132 struct mptcp_sock *msk = mptcp_sk(sk); 3133 3134 /* We are on the fastopen error path. We can't call straight into the 3135 * subflows cleanup code due to lock nesting (we are already under 3136 * msk->firstsocket lock). 3137 */ 3138 if (msk->fastopening) 3139 return -EBUSY; 3140 3141 mptcp_check_listen_stop(sk); 3142 mptcp_set_state(sk, TCP_CLOSE); 3143 3144 mptcp_stop_rtx_timer(sk); 3145 mptcp_stop_tout_timer(sk); 3146 3147 if (msk->token) 3148 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3149 3150 /* msk->subflow is still intact, the following will not free the first 3151 * subflow 3152 */ 3153 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3154 WRITE_ONCE(msk->flags, 0); 3155 msk->cb_flags = 0; 3156 msk->recovery = false; 3157 WRITE_ONCE(msk->can_ack, false); 3158 WRITE_ONCE(msk->fully_established, false); 3159 WRITE_ONCE(msk->rcv_data_fin, false); 3160 WRITE_ONCE(msk->snd_data_fin_enable, false); 3161 WRITE_ONCE(msk->rcv_fastclose, false); 3162 WRITE_ONCE(msk->use_64bit_ack, false); 3163 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3164 mptcp_pm_data_reset(msk); 3165 mptcp_ca_reset(sk); 3166 msk->bytes_consumed = 0; 3167 msk->bytes_acked = 0; 3168 msk->bytes_received = 0; 3169 msk->bytes_sent = 0; 3170 msk->bytes_retrans = 0; 3171 msk->rcvspace_init = 0; 3172 3173 WRITE_ONCE(sk->sk_shutdown, 0); 3174 sk_error_report(sk); 3175 return 0; 3176 } 3177 3178 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3179 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3180 { 3181 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3182 3183 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3184 } 3185 #endif 3186 3187 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3188 const struct mptcp_options_received *mp_opt, 3189 struct sock *ssk, 3190 struct request_sock *req) 3191 { 3192 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3193 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3194 struct mptcp_subflow_context *subflow; 3195 struct mptcp_sock *msk; 3196 3197 if (!nsk) 3198 return NULL; 3199 3200 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3201 if (nsk->sk_family == AF_INET6) 3202 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3203 #endif 3204 3205 __mptcp_init_sock(nsk); 3206 3207 msk = mptcp_sk(nsk); 3208 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3209 WRITE_ONCE(msk->token, subflow_req->token); 3210 msk->in_accept_queue = 1; 3211 WRITE_ONCE(msk->fully_established, false); 3212 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3213 WRITE_ONCE(msk->csum_enabled, true); 3214 3215 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3216 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3217 WRITE_ONCE(msk->snd_una, msk->write_seq); 3218 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + req->rsk_rcv_wnd); 3219 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3220 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3221 3222 /* passive msk is created after the first/MPC subflow */ 3223 msk->subflow_id = 2; 3224 3225 sock_reset_flag(nsk, SOCK_RCU_FREE); 3226 security_inet_csk_clone(nsk, req); 3227 3228 /* this can't race with mptcp_close(), as the msk is 3229 * not yet exposted to user-space 3230 */ 3231 mptcp_set_state(nsk, TCP_ESTABLISHED); 3232 3233 /* The msk maintain a ref to each subflow in the connections list */ 3234 WRITE_ONCE(msk->first, ssk); 3235 subflow = mptcp_subflow_ctx(ssk); 3236 list_add(&subflow->node, &msk->conn_list); 3237 sock_hold(ssk); 3238 3239 /* new mpc subflow takes ownership of the newly 3240 * created mptcp socket 3241 */ 3242 mptcp_token_accept(subflow_req, msk); 3243 3244 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3245 * uses the correct data 3246 */ 3247 mptcp_copy_inaddrs(nsk, ssk); 3248 __mptcp_propagate_sndbuf(nsk, ssk); 3249 3250 mptcp_rcv_space_init(msk, ssk); 3251 3252 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3253 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3254 bh_unlock_sock(nsk); 3255 3256 /* note: the newly allocated socket refcount is 2 now */ 3257 return nsk; 3258 } 3259 3260 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3261 { 3262 const struct tcp_sock *tp = tcp_sk(ssk); 3263 3264 msk->rcvspace_init = 1; 3265 msk->rcvq_space.copied = 0; 3266 msk->rcvq_space.rtt_us = 0; 3267 3268 msk->rcvq_space.time = tp->tcp_mstamp; 3269 3270 /* initial rcv_space offering made to peer */ 3271 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3272 TCP_INIT_CWND * tp->advmss); 3273 if (msk->rcvq_space.space == 0) 3274 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3275 } 3276 3277 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3278 { 3279 struct mptcp_subflow_context *subflow, *tmp; 3280 struct sock *sk = (struct sock *)msk; 3281 3282 __mptcp_clear_xmit(sk); 3283 3284 /* join list will be eventually flushed (with rst) at sock lock release time */ 3285 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3286 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3287 3288 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3289 mptcp_data_lock(sk); 3290 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3291 __skb_queue_purge(&sk->sk_receive_queue); 3292 skb_rbtree_purge(&msk->out_of_order_queue); 3293 mptcp_data_unlock(sk); 3294 3295 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3296 * inet_sock_destruct() will dispose it 3297 */ 3298 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3299 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3300 mptcp_token_destroy(msk); 3301 mptcp_pm_free_anno_list(msk); 3302 mptcp_free_local_addr_list(msk); 3303 } 3304 3305 static void mptcp_destroy(struct sock *sk) 3306 { 3307 struct mptcp_sock *msk = mptcp_sk(sk); 3308 3309 /* allow the following to close even the initial subflow */ 3310 msk->free_first = 1; 3311 mptcp_destroy_common(msk, 0); 3312 sk_sockets_allocated_dec(sk); 3313 } 3314 3315 void __mptcp_data_acked(struct sock *sk) 3316 { 3317 if (!sock_owned_by_user(sk)) 3318 __mptcp_clean_una(sk); 3319 else 3320 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3321 } 3322 3323 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3324 { 3325 if (!mptcp_send_head(sk)) 3326 return; 3327 3328 if (!sock_owned_by_user(sk)) 3329 __mptcp_subflow_push_pending(sk, ssk, false); 3330 else 3331 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3332 } 3333 3334 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3335 BIT(MPTCP_RETRANSMIT) | \ 3336 BIT(MPTCP_FLUSH_JOIN_LIST)) 3337 3338 /* processes deferred events and flush wmem */ 3339 static void mptcp_release_cb(struct sock *sk) 3340 __must_hold(&sk->sk_lock.slock) 3341 { 3342 struct mptcp_sock *msk = mptcp_sk(sk); 3343 3344 for (;;) { 3345 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3346 struct list_head join_list; 3347 3348 if (!flags) 3349 break; 3350 3351 INIT_LIST_HEAD(&join_list); 3352 list_splice_init(&msk->join_list, &join_list); 3353 3354 /* the following actions acquire the subflow socket lock 3355 * 3356 * 1) can't be invoked in atomic scope 3357 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3358 * datapath acquires the msk socket spinlock while helding 3359 * the subflow socket lock 3360 */ 3361 msk->cb_flags &= ~flags; 3362 spin_unlock_bh(&sk->sk_lock.slock); 3363 3364 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3365 __mptcp_flush_join_list(sk, &join_list); 3366 if (flags & BIT(MPTCP_PUSH_PENDING)) 3367 __mptcp_push_pending(sk, 0); 3368 if (flags & BIT(MPTCP_RETRANSMIT)) 3369 __mptcp_retrans(sk); 3370 3371 cond_resched(); 3372 spin_lock_bh(&sk->sk_lock.slock); 3373 } 3374 3375 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3376 __mptcp_clean_una_wakeup(sk); 3377 if (unlikely(msk->cb_flags)) { 3378 /* be sure to sync the msk state before taking actions 3379 * depending on sk_state (MPTCP_ERROR_REPORT) 3380 * On sk release avoid actions depending on the first subflow 3381 */ 3382 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3383 __mptcp_sync_state(sk, msk->pending_state); 3384 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3385 __mptcp_error_report(sk); 3386 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3387 __mptcp_sync_sndbuf(sk); 3388 } 3389 3390 __mptcp_update_rmem(sk); 3391 } 3392 3393 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3394 * TCP can't schedule delack timer before the subflow is fully established. 3395 * MPTCP uses the delack timer to do 3rd ack retransmissions 3396 */ 3397 static void schedule_3rdack_retransmission(struct sock *ssk) 3398 { 3399 struct inet_connection_sock *icsk = inet_csk(ssk); 3400 struct tcp_sock *tp = tcp_sk(ssk); 3401 unsigned long timeout; 3402 3403 if (mptcp_subflow_ctx(ssk)->fully_established) 3404 return; 3405 3406 /* reschedule with a timeout above RTT, as we must look only for drop */ 3407 if (tp->srtt_us) 3408 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3409 else 3410 timeout = TCP_TIMEOUT_INIT; 3411 timeout += jiffies; 3412 3413 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3414 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3415 icsk->icsk_ack.timeout = timeout; 3416 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3417 } 3418 3419 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3420 { 3421 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3422 struct sock *sk = subflow->conn; 3423 3424 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3425 mptcp_data_lock(sk); 3426 if (!sock_owned_by_user(sk)) 3427 __mptcp_subflow_push_pending(sk, ssk, true); 3428 else 3429 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3430 mptcp_data_unlock(sk); 3431 } 3432 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3433 mptcp_data_lock(sk); 3434 if (!sock_owned_by_user(sk)) 3435 __mptcp_sync_sndbuf(sk); 3436 else 3437 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3438 mptcp_data_unlock(sk); 3439 } 3440 if (status & BIT(MPTCP_DELEGATE_ACK)) 3441 schedule_3rdack_retransmission(ssk); 3442 } 3443 3444 static int mptcp_hash(struct sock *sk) 3445 { 3446 /* should never be called, 3447 * we hash the TCP subflows not the master socket 3448 */ 3449 WARN_ON_ONCE(1); 3450 return 0; 3451 } 3452 3453 static void mptcp_unhash(struct sock *sk) 3454 { 3455 /* called from sk_common_release(), but nothing to do here */ 3456 } 3457 3458 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3459 { 3460 struct mptcp_sock *msk = mptcp_sk(sk); 3461 3462 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3463 if (WARN_ON_ONCE(!msk->first)) 3464 return -EINVAL; 3465 3466 return inet_csk_get_port(msk->first, snum); 3467 } 3468 3469 void mptcp_finish_connect(struct sock *ssk) 3470 { 3471 struct mptcp_subflow_context *subflow; 3472 struct mptcp_sock *msk; 3473 struct sock *sk; 3474 3475 subflow = mptcp_subflow_ctx(ssk); 3476 sk = subflow->conn; 3477 msk = mptcp_sk(sk); 3478 3479 pr_debug("msk=%p, token=%u", sk, subflow->token); 3480 3481 subflow->map_seq = subflow->iasn; 3482 subflow->map_subflow_seq = 1; 3483 3484 /* the socket is not connected yet, no msk/subflow ops can access/race 3485 * accessing the field below 3486 */ 3487 WRITE_ONCE(msk->local_key, subflow->local_key); 3488 3489 mptcp_pm_new_connection(msk, ssk, 0); 3490 } 3491 3492 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3493 { 3494 write_lock_bh(&sk->sk_callback_lock); 3495 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3496 sk_set_socket(sk, parent); 3497 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3498 write_unlock_bh(&sk->sk_callback_lock); 3499 } 3500 3501 bool mptcp_finish_join(struct sock *ssk) 3502 { 3503 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3504 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3505 struct sock *parent = (void *)msk; 3506 bool ret = true; 3507 3508 pr_debug("msk=%p, subflow=%p", msk, subflow); 3509 3510 /* mptcp socket already closing? */ 3511 if (!mptcp_is_fully_established(parent)) { 3512 subflow->reset_reason = MPTCP_RST_EMPTCP; 3513 return false; 3514 } 3515 3516 /* active subflow, already present inside the conn_list */ 3517 if (!list_empty(&subflow->node)) { 3518 mptcp_subflow_joined(msk, ssk); 3519 mptcp_propagate_sndbuf(parent, ssk); 3520 return true; 3521 } 3522 3523 if (!mptcp_pm_allow_new_subflow(msk)) 3524 goto err_prohibited; 3525 3526 /* If we can't acquire msk socket lock here, let the release callback 3527 * handle it 3528 */ 3529 mptcp_data_lock(parent); 3530 if (!sock_owned_by_user(parent)) { 3531 ret = __mptcp_finish_join(msk, ssk); 3532 if (ret) { 3533 sock_hold(ssk); 3534 list_add_tail(&subflow->node, &msk->conn_list); 3535 } 3536 } else { 3537 sock_hold(ssk); 3538 list_add_tail(&subflow->node, &msk->join_list); 3539 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3540 } 3541 mptcp_data_unlock(parent); 3542 3543 if (!ret) { 3544 err_prohibited: 3545 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3546 return false; 3547 } 3548 3549 return true; 3550 } 3551 3552 static void mptcp_shutdown(struct sock *sk, int how) 3553 { 3554 pr_debug("sk=%p, how=%d", sk, how); 3555 3556 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3557 __mptcp_wr_shutdown(sk); 3558 } 3559 3560 static int mptcp_forward_alloc_get(const struct sock *sk) 3561 { 3562 return READ_ONCE(sk->sk_forward_alloc) + 3563 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3564 } 3565 3566 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3567 { 3568 const struct sock *sk = (void *)msk; 3569 u64 delta; 3570 3571 if (sk->sk_state == TCP_LISTEN) 3572 return -EINVAL; 3573 3574 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3575 return 0; 3576 3577 delta = msk->write_seq - v; 3578 if (__mptcp_check_fallback(msk) && msk->first) { 3579 struct tcp_sock *tp = tcp_sk(msk->first); 3580 3581 /* the first subflow is disconnected after close - see 3582 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3583 * so ignore that status, too. 3584 */ 3585 if (!((1 << msk->first->sk_state) & 3586 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3587 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3588 } 3589 if (delta > INT_MAX) 3590 delta = INT_MAX; 3591 3592 return (int)delta; 3593 } 3594 3595 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3596 { 3597 struct mptcp_sock *msk = mptcp_sk(sk); 3598 bool slow; 3599 3600 switch (cmd) { 3601 case SIOCINQ: 3602 if (sk->sk_state == TCP_LISTEN) 3603 return -EINVAL; 3604 3605 lock_sock(sk); 3606 __mptcp_move_skbs(msk); 3607 *karg = mptcp_inq_hint(sk); 3608 release_sock(sk); 3609 break; 3610 case SIOCOUTQ: 3611 slow = lock_sock_fast(sk); 3612 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3613 unlock_sock_fast(sk, slow); 3614 break; 3615 case SIOCOUTQNSD: 3616 slow = lock_sock_fast(sk); 3617 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3618 unlock_sock_fast(sk, slow); 3619 break; 3620 default: 3621 return -ENOIOCTLCMD; 3622 } 3623 3624 return 0; 3625 } 3626 3627 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3628 struct mptcp_subflow_context *subflow) 3629 { 3630 subflow->request_mptcp = 0; 3631 __mptcp_do_fallback(msk); 3632 } 3633 3634 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3635 { 3636 struct mptcp_subflow_context *subflow; 3637 struct mptcp_sock *msk = mptcp_sk(sk); 3638 int err = -EINVAL; 3639 struct sock *ssk; 3640 3641 ssk = __mptcp_nmpc_sk(msk); 3642 if (IS_ERR(ssk)) 3643 return PTR_ERR(ssk); 3644 3645 mptcp_set_state(sk, TCP_SYN_SENT); 3646 subflow = mptcp_subflow_ctx(ssk); 3647 #ifdef CONFIG_TCP_MD5SIG 3648 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3649 * TCP option space. 3650 */ 3651 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3652 mptcp_subflow_early_fallback(msk, subflow); 3653 #endif 3654 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3655 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3656 mptcp_subflow_early_fallback(msk, subflow); 3657 } 3658 if (likely(!__mptcp_check_fallback(msk))) 3659 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3660 3661 /* if reaching here via the fastopen/sendmsg path, the caller already 3662 * acquired the subflow socket lock, too. 3663 */ 3664 if (!msk->fastopening) 3665 lock_sock(ssk); 3666 3667 /* the following mirrors closely a very small chunk of code from 3668 * __inet_stream_connect() 3669 */ 3670 if (ssk->sk_state != TCP_CLOSE) 3671 goto out; 3672 3673 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3674 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3675 if (err) 3676 goto out; 3677 } 3678 3679 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3680 if (err < 0) 3681 goto out; 3682 3683 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3684 3685 out: 3686 if (!msk->fastopening) 3687 release_sock(ssk); 3688 3689 /* on successful connect, the msk state will be moved to established by 3690 * subflow_finish_connect() 3691 */ 3692 if (unlikely(err)) { 3693 /* avoid leaving a dangling token in an unconnected socket */ 3694 mptcp_token_destroy(msk); 3695 mptcp_set_state(sk, TCP_CLOSE); 3696 return err; 3697 } 3698 3699 mptcp_copy_inaddrs(sk, ssk); 3700 return 0; 3701 } 3702 3703 static struct proto mptcp_prot = { 3704 .name = "MPTCP", 3705 .owner = THIS_MODULE, 3706 .init = mptcp_init_sock, 3707 .connect = mptcp_connect, 3708 .disconnect = mptcp_disconnect, 3709 .close = mptcp_close, 3710 .setsockopt = mptcp_setsockopt, 3711 .getsockopt = mptcp_getsockopt, 3712 .shutdown = mptcp_shutdown, 3713 .destroy = mptcp_destroy, 3714 .sendmsg = mptcp_sendmsg, 3715 .ioctl = mptcp_ioctl, 3716 .recvmsg = mptcp_recvmsg, 3717 .release_cb = mptcp_release_cb, 3718 .hash = mptcp_hash, 3719 .unhash = mptcp_unhash, 3720 .get_port = mptcp_get_port, 3721 .forward_alloc_get = mptcp_forward_alloc_get, 3722 .sockets_allocated = &mptcp_sockets_allocated, 3723 3724 .memory_allocated = &tcp_memory_allocated, 3725 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3726 3727 .memory_pressure = &tcp_memory_pressure, 3728 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3729 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3730 .sysctl_mem = sysctl_tcp_mem, 3731 .obj_size = sizeof(struct mptcp_sock), 3732 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3733 .no_autobind = true, 3734 }; 3735 3736 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3737 { 3738 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3739 struct sock *ssk, *sk = sock->sk; 3740 int err = -EINVAL; 3741 3742 lock_sock(sk); 3743 ssk = __mptcp_nmpc_sk(msk); 3744 if (IS_ERR(ssk)) { 3745 err = PTR_ERR(ssk); 3746 goto unlock; 3747 } 3748 3749 if (sk->sk_family == AF_INET) 3750 err = inet_bind_sk(ssk, uaddr, addr_len); 3751 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3752 else if (sk->sk_family == AF_INET6) 3753 err = inet6_bind_sk(ssk, uaddr, addr_len); 3754 #endif 3755 if (!err) 3756 mptcp_copy_inaddrs(sk, ssk); 3757 3758 unlock: 3759 release_sock(sk); 3760 return err; 3761 } 3762 3763 static int mptcp_listen(struct socket *sock, int backlog) 3764 { 3765 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3766 struct sock *sk = sock->sk; 3767 struct sock *ssk; 3768 int err; 3769 3770 pr_debug("msk=%p", msk); 3771 3772 lock_sock(sk); 3773 3774 err = -EINVAL; 3775 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3776 goto unlock; 3777 3778 ssk = __mptcp_nmpc_sk(msk); 3779 if (IS_ERR(ssk)) { 3780 err = PTR_ERR(ssk); 3781 goto unlock; 3782 } 3783 3784 mptcp_set_state(sk, TCP_LISTEN); 3785 sock_set_flag(sk, SOCK_RCU_FREE); 3786 3787 lock_sock(ssk); 3788 err = __inet_listen_sk(ssk, backlog); 3789 release_sock(ssk); 3790 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3791 3792 if (!err) { 3793 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3794 mptcp_copy_inaddrs(sk, ssk); 3795 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3796 } 3797 3798 unlock: 3799 release_sock(sk); 3800 return err; 3801 } 3802 3803 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3804 int flags, bool kern) 3805 { 3806 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3807 struct sock *ssk, *newsk; 3808 int err; 3809 3810 pr_debug("msk=%p", msk); 3811 3812 /* Buggy applications can call accept on socket states other then LISTEN 3813 * but no need to allocate the first subflow just to error out. 3814 */ 3815 ssk = READ_ONCE(msk->first); 3816 if (!ssk) 3817 return -EINVAL; 3818 3819 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3820 newsk = inet_csk_accept(ssk, flags, &err, kern); 3821 if (!newsk) 3822 return err; 3823 3824 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3825 if (sk_is_mptcp(newsk)) { 3826 struct mptcp_subflow_context *subflow; 3827 struct sock *new_mptcp_sock; 3828 3829 subflow = mptcp_subflow_ctx(newsk); 3830 new_mptcp_sock = subflow->conn; 3831 3832 /* is_mptcp should be false if subflow->conn is missing, see 3833 * subflow_syn_recv_sock() 3834 */ 3835 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3836 tcp_sk(newsk)->is_mptcp = 0; 3837 goto tcpfallback; 3838 } 3839 3840 newsk = new_mptcp_sock; 3841 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3842 3843 newsk->sk_kern_sock = kern; 3844 lock_sock(newsk); 3845 __inet_accept(sock, newsock, newsk); 3846 3847 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3848 msk = mptcp_sk(newsk); 3849 msk->in_accept_queue = 0; 3850 3851 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3852 * This is needed so NOSPACE flag can be set from tcp stack. 3853 */ 3854 mptcp_for_each_subflow(msk, subflow) { 3855 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3856 3857 if (!ssk->sk_socket) 3858 mptcp_sock_graft(ssk, newsock); 3859 } 3860 3861 /* Do late cleanup for the first subflow as necessary. Also 3862 * deal with bad peers not doing a complete shutdown. 3863 */ 3864 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3865 __mptcp_close_ssk(newsk, msk->first, 3866 mptcp_subflow_ctx(msk->first), 0); 3867 if (unlikely(list_is_singular(&msk->conn_list))) 3868 mptcp_set_state(newsk, TCP_CLOSE); 3869 } 3870 } else { 3871 MPTCP_INC_STATS(sock_net(ssk), 3872 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3873 tcpfallback: 3874 newsk->sk_kern_sock = kern; 3875 lock_sock(newsk); 3876 __inet_accept(sock, newsock, newsk); 3877 /* we are being invoked after accepting a non-mp-capable 3878 * flow: sk is a tcp_sk, not an mptcp one. 3879 * 3880 * Hand the socket over to tcp so all further socket ops 3881 * bypass mptcp. 3882 */ 3883 WRITE_ONCE(newsock->sk->sk_socket->ops, 3884 mptcp_fallback_tcp_ops(newsock->sk)); 3885 } 3886 release_sock(newsk); 3887 3888 return 0; 3889 } 3890 3891 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3892 { 3893 struct sock *sk = (struct sock *)msk; 3894 3895 if (sk_stream_is_writeable(sk)) 3896 return EPOLLOUT | EPOLLWRNORM; 3897 3898 mptcp_set_nospace(sk); 3899 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3900 if (sk_stream_is_writeable(sk)) 3901 return EPOLLOUT | EPOLLWRNORM; 3902 3903 return 0; 3904 } 3905 3906 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3907 struct poll_table_struct *wait) 3908 { 3909 struct sock *sk = sock->sk; 3910 struct mptcp_sock *msk; 3911 __poll_t mask = 0; 3912 u8 shutdown; 3913 int state; 3914 3915 msk = mptcp_sk(sk); 3916 sock_poll_wait(file, sock, wait); 3917 3918 state = inet_sk_state_load(sk); 3919 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3920 if (state == TCP_LISTEN) { 3921 struct sock *ssk = READ_ONCE(msk->first); 3922 3923 if (WARN_ON_ONCE(!ssk)) 3924 return 0; 3925 3926 return inet_csk_listen_poll(ssk); 3927 } 3928 3929 shutdown = READ_ONCE(sk->sk_shutdown); 3930 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3931 mask |= EPOLLHUP; 3932 if (shutdown & RCV_SHUTDOWN) 3933 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3934 3935 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3936 mask |= mptcp_check_readable(sk); 3937 if (shutdown & SEND_SHUTDOWN) 3938 mask |= EPOLLOUT | EPOLLWRNORM; 3939 else 3940 mask |= mptcp_check_writeable(msk); 3941 } else if (state == TCP_SYN_SENT && 3942 inet_test_bit(DEFER_CONNECT, sk)) { 3943 /* cf tcp_poll() note about TFO */ 3944 mask |= EPOLLOUT | EPOLLWRNORM; 3945 } 3946 3947 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3948 smp_rmb(); 3949 if (READ_ONCE(sk->sk_err)) 3950 mask |= EPOLLERR; 3951 3952 return mask; 3953 } 3954 3955 static const struct proto_ops mptcp_stream_ops = { 3956 .family = PF_INET, 3957 .owner = THIS_MODULE, 3958 .release = inet_release, 3959 .bind = mptcp_bind, 3960 .connect = inet_stream_connect, 3961 .socketpair = sock_no_socketpair, 3962 .accept = mptcp_stream_accept, 3963 .getname = inet_getname, 3964 .poll = mptcp_poll, 3965 .ioctl = inet_ioctl, 3966 .gettstamp = sock_gettstamp, 3967 .listen = mptcp_listen, 3968 .shutdown = inet_shutdown, 3969 .setsockopt = sock_common_setsockopt, 3970 .getsockopt = sock_common_getsockopt, 3971 .sendmsg = inet_sendmsg, 3972 .recvmsg = inet_recvmsg, 3973 .mmap = sock_no_mmap, 3974 .set_rcvlowat = mptcp_set_rcvlowat, 3975 }; 3976 3977 static struct inet_protosw mptcp_protosw = { 3978 .type = SOCK_STREAM, 3979 .protocol = IPPROTO_MPTCP, 3980 .prot = &mptcp_prot, 3981 .ops = &mptcp_stream_ops, 3982 .flags = INET_PROTOSW_ICSK, 3983 }; 3984 3985 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3986 { 3987 struct mptcp_delegated_action *delegated; 3988 struct mptcp_subflow_context *subflow; 3989 int work_done = 0; 3990 3991 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3992 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3993 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3994 3995 bh_lock_sock_nested(ssk); 3996 if (!sock_owned_by_user(ssk)) { 3997 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 3998 } else { 3999 /* tcp_release_cb_override already processed 4000 * the action or will do at next release_sock(). 4001 * In both case must dequeue the subflow here - on the same 4002 * CPU that scheduled it. 4003 */ 4004 smp_wmb(); 4005 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4006 } 4007 bh_unlock_sock(ssk); 4008 sock_put(ssk); 4009 4010 if (++work_done == budget) 4011 return budget; 4012 } 4013 4014 /* always provide a 0 'work_done' argument, so that napi_complete_done 4015 * will not try accessing the NULL napi->dev ptr 4016 */ 4017 napi_complete_done(napi, 0); 4018 return work_done; 4019 } 4020 4021 void __init mptcp_proto_init(void) 4022 { 4023 struct mptcp_delegated_action *delegated; 4024 int cpu; 4025 4026 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4027 4028 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4029 panic("Failed to allocate MPTCP pcpu counter\n"); 4030 4031 init_dummy_netdev(&mptcp_napi_dev); 4032 for_each_possible_cpu(cpu) { 4033 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4034 INIT_LIST_HEAD(&delegated->head); 4035 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4036 mptcp_napi_poll); 4037 napi_enable(&delegated->napi); 4038 } 4039 4040 mptcp_subflow_init(); 4041 mptcp_pm_init(); 4042 mptcp_sched_init(); 4043 mptcp_token_init(); 4044 4045 if (proto_register(&mptcp_prot, 1) != 0) 4046 panic("Failed to register MPTCP proto.\n"); 4047 4048 inet_register_protosw(&mptcp_protosw); 4049 4050 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4051 } 4052 4053 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4054 static const struct proto_ops mptcp_v6_stream_ops = { 4055 .family = PF_INET6, 4056 .owner = THIS_MODULE, 4057 .release = inet6_release, 4058 .bind = mptcp_bind, 4059 .connect = inet_stream_connect, 4060 .socketpair = sock_no_socketpair, 4061 .accept = mptcp_stream_accept, 4062 .getname = inet6_getname, 4063 .poll = mptcp_poll, 4064 .ioctl = inet6_ioctl, 4065 .gettstamp = sock_gettstamp, 4066 .listen = mptcp_listen, 4067 .shutdown = inet_shutdown, 4068 .setsockopt = sock_common_setsockopt, 4069 .getsockopt = sock_common_getsockopt, 4070 .sendmsg = inet6_sendmsg, 4071 .recvmsg = inet6_recvmsg, 4072 .mmap = sock_no_mmap, 4073 #ifdef CONFIG_COMPAT 4074 .compat_ioctl = inet6_compat_ioctl, 4075 #endif 4076 .set_rcvlowat = mptcp_set_rcvlowat, 4077 }; 4078 4079 static struct proto mptcp_v6_prot; 4080 4081 static struct inet_protosw mptcp_v6_protosw = { 4082 .type = SOCK_STREAM, 4083 .protocol = IPPROTO_MPTCP, 4084 .prot = &mptcp_v6_prot, 4085 .ops = &mptcp_v6_stream_ops, 4086 .flags = INET_PROTOSW_ICSK, 4087 }; 4088 4089 int __init mptcp_proto_v6_init(void) 4090 { 4091 int err; 4092 4093 mptcp_v6_prot = mptcp_prot; 4094 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4095 mptcp_v6_prot.slab = NULL; 4096 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4097 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4098 4099 err = proto_register(&mptcp_v6_prot, 1); 4100 if (err) 4101 return err; 4102 4103 err = inet6_register_protosw(&mptcp_v6_protosw); 4104 if (err) 4105 proto_unregister(&mptcp_v6_prot); 4106 4107 return err; 4108 } 4109 #endif 4110