xref: /linux/net/mptcp/protocol.c (revision e3b9626f09d429788d929c9b9000a069fcfc056e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include "protocol.h"
25 #include "mib.h"
26 
27 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
28 struct mptcp6_sock {
29 	struct mptcp_sock msk;
30 	struct ipv6_pinfo np;
31 };
32 #endif
33 
34 struct mptcp_skb_cb {
35 	u32 offset;
36 };
37 
38 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
39 
40 static struct percpu_counter mptcp_sockets_allocated;
41 
42 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
43  * completed yet or has failed, return the subflow socket.
44  * Otherwise return NULL.
45  */
46 static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
47 {
48 	if (!msk->subflow || READ_ONCE(msk->can_ack))
49 		return NULL;
50 
51 	return msk->subflow;
52 }
53 
54 static bool mptcp_is_tcpsk(struct sock *sk)
55 {
56 	struct socket *sock = sk->sk_socket;
57 
58 	if (unlikely(sk->sk_prot == &tcp_prot)) {
59 		/* we are being invoked after mptcp_accept() has
60 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
61 		 * not an mptcp one.
62 		 *
63 		 * Hand the socket over to tcp so all further socket ops
64 		 * bypass mptcp.
65 		 */
66 		sock->ops = &inet_stream_ops;
67 		return true;
68 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
69 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
70 		sock->ops = &inet6_stream_ops;
71 		return true;
72 #endif
73 	}
74 
75 	return false;
76 }
77 
78 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
79 {
80 	sock_owned_by_me((const struct sock *)msk);
81 
82 	if (likely(!__mptcp_check_fallback(msk)))
83 		return NULL;
84 
85 	return msk->first;
86 }
87 
88 static int __mptcp_socket_create(struct mptcp_sock *msk)
89 {
90 	struct mptcp_subflow_context *subflow;
91 	struct sock *sk = (struct sock *)msk;
92 	struct socket *ssock;
93 	int err;
94 
95 	err = mptcp_subflow_create_socket(sk, &ssock);
96 	if (err)
97 		return err;
98 
99 	msk->first = ssock->sk;
100 	msk->subflow = ssock;
101 	subflow = mptcp_subflow_ctx(ssock->sk);
102 	list_add(&subflow->node, &msk->conn_list);
103 	subflow->request_mptcp = 1;
104 
105 	/* accept() will wait on first subflow sk_wq, and we always wakes up
106 	 * via msk->sk_socket
107 	 */
108 	RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq);
109 
110 	return 0;
111 }
112 
113 static void __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
114 			     struct sk_buff *skb,
115 			     unsigned int offset, size_t copy_len)
116 {
117 	struct sock *sk = (struct sock *)msk;
118 	struct sk_buff *tail;
119 
120 	__skb_unlink(skb, &ssk->sk_receive_queue);
121 
122 	skb_ext_reset(skb);
123 	skb_orphan(skb);
124 	msk->ack_seq += copy_len;
125 
126 	tail = skb_peek_tail(&sk->sk_receive_queue);
127 	if (offset == 0 && tail) {
128 		bool fragstolen;
129 		int delta;
130 
131 		if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
132 			kfree_skb_partial(skb, fragstolen);
133 			atomic_add(delta, &sk->sk_rmem_alloc);
134 			sk_mem_charge(sk, delta);
135 			return;
136 		}
137 	}
138 
139 	skb_set_owner_r(skb, sk);
140 	__skb_queue_tail(&sk->sk_receive_queue, skb);
141 	MPTCP_SKB_CB(skb)->offset = offset;
142 }
143 
144 static void mptcp_stop_timer(struct sock *sk)
145 {
146 	struct inet_connection_sock *icsk = inet_csk(sk);
147 
148 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
149 	mptcp_sk(sk)->timer_ival = 0;
150 }
151 
152 /* both sockets must be locked */
153 static bool mptcp_subflow_dsn_valid(const struct mptcp_sock *msk,
154 				    struct sock *ssk)
155 {
156 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
157 	u64 dsn = mptcp_subflow_get_mapped_dsn(subflow);
158 
159 	/* revalidate data sequence number.
160 	 *
161 	 * mptcp_subflow_data_available() is usually called
162 	 * without msk lock.  Its unlikely (but possible)
163 	 * that msk->ack_seq has been advanced since the last
164 	 * call found in-sequence data.
165 	 */
166 	if (likely(dsn == msk->ack_seq))
167 		return true;
168 
169 	subflow->data_avail = 0;
170 	return mptcp_subflow_data_available(ssk);
171 }
172 
173 static void mptcp_check_data_fin_ack(struct sock *sk)
174 {
175 	struct mptcp_sock *msk = mptcp_sk(sk);
176 
177 	if (__mptcp_check_fallback(msk))
178 		return;
179 
180 	/* Look for an acknowledged DATA_FIN */
181 	if (((1 << sk->sk_state) &
182 	     (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
183 	    msk->write_seq == atomic64_read(&msk->snd_una)) {
184 		mptcp_stop_timer(sk);
185 
186 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
187 
188 		switch (sk->sk_state) {
189 		case TCP_FIN_WAIT1:
190 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
191 			sk->sk_state_change(sk);
192 			break;
193 		case TCP_CLOSING:
194 			fallthrough;
195 		case TCP_LAST_ACK:
196 			inet_sk_state_store(sk, TCP_CLOSE);
197 			sk->sk_state_change(sk);
198 			break;
199 		}
200 
201 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
202 		    sk->sk_state == TCP_CLOSE)
203 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
204 		else
205 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
206 	}
207 }
208 
209 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
210 {
211 	struct mptcp_sock *msk = mptcp_sk(sk);
212 
213 	if (READ_ONCE(msk->rcv_data_fin) &&
214 	    ((1 << sk->sk_state) &
215 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
216 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
217 
218 		if (msk->ack_seq == rcv_data_fin_seq) {
219 			if (seq)
220 				*seq = rcv_data_fin_seq;
221 
222 			return true;
223 		}
224 	}
225 
226 	return false;
227 }
228 
229 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
230 {
231 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
232 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
233 
234 	if (tout <= 0)
235 		tout = mptcp_sk(sk)->timer_ival;
236 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
237 }
238 
239 static void mptcp_check_data_fin(struct sock *sk)
240 {
241 	struct mptcp_sock *msk = mptcp_sk(sk);
242 	u64 rcv_data_fin_seq;
243 
244 	if (__mptcp_check_fallback(msk) || !msk->first)
245 		return;
246 
247 	/* Need to ack a DATA_FIN received from a peer while this side
248 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
249 	 * msk->rcv_data_fin was set when parsing the incoming options
250 	 * at the subflow level and the msk lock was not held, so this
251 	 * is the first opportunity to act on the DATA_FIN and change
252 	 * the msk state.
253 	 *
254 	 * If we are caught up to the sequence number of the incoming
255 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
256 	 * not caught up, do nothing and let the recv code send DATA_ACK
257 	 * when catching up.
258 	 */
259 
260 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
261 		struct mptcp_subflow_context *subflow;
262 
263 		msk->ack_seq++;
264 		WRITE_ONCE(msk->rcv_data_fin, 0);
265 
266 		sk->sk_shutdown |= RCV_SHUTDOWN;
267 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
268 		set_bit(MPTCP_DATA_READY, &msk->flags);
269 
270 		switch (sk->sk_state) {
271 		case TCP_ESTABLISHED:
272 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
273 			break;
274 		case TCP_FIN_WAIT1:
275 			inet_sk_state_store(sk, TCP_CLOSING);
276 			break;
277 		case TCP_FIN_WAIT2:
278 			inet_sk_state_store(sk, TCP_CLOSE);
279 			// @@ Close subflows now?
280 			break;
281 		default:
282 			/* Other states not expected */
283 			WARN_ON_ONCE(1);
284 			break;
285 		}
286 
287 		mptcp_set_timeout(sk, NULL);
288 		mptcp_for_each_subflow(msk, subflow) {
289 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
290 
291 			lock_sock(ssk);
292 			tcp_send_ack(ssk);
293 			release_sock(ssk);
294 		}
295 
296 		sk->sk_state_change(sk);
297 
298 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
299 		    sk->sk_state == TCP_CLOSE)
300 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
301 		else
302 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
303 	}
304 }
305 
306 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
307 					   struct sock *ssk,
308 					   unsigned int *bytes)
309 {
310 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
311 	struct sock *sk = (struct sock *)msk;
312 	unsigned int moved = 0;
313 	bool more_data_avail;
314 	struct tcp_sock *tp;
315 	bool done = false;
316 
317 	if (!mptcp_subflow_dsn_valid(msk, ssk)) {
318 		*bytes = 0;
319 		return false;
320 	}
321 
322 	tp = tcp_sk(ssk);
323 	do {
324 		u32 map_remaining, offset;
325 		u32 seq = tp->copied_seq;
326 		struct sk_buff *skb;
327 		bool fin;
328 
329 		/* try to move as much data as available */
330 		map_remaining = subflow->map_data_len -
331 				mptcp_subflow_get_map_offset(subflow);
332 
333 		skb = skb_peek(&ssk->sk_receive_queue);
334 		if (!skb)
335 			break;
336 
337 		if (__mptcp_check_fallback(msk)) {
338 			/* if we are running under the workqueue, TCP could have
339 			 * collapsed skbs between dummy map creation and now
340 			 * be sure to adjust the size
341 			 */
342 			map_remaining = skb->len;
343 			subflow->map_data_len = skb->len;
344 		}
345 
346 		offset = seq - TCP_SKB_CB(skb)->seq;
347 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
348 		if (fin) {
349 			done = true;
350 			seq++;
351 		}
352 
353 		if (offset < skb->len) {
354 			size_t len = skb->len - offset;
355 
356 			if (tp->urg_data)
357 				done = true;
358 
359 			__mptcp_move_skb(msk, ssk, skb, offset, len);
360 			seq += len;
361 			moved += len;
362 
363 			if (WARN_ON_ONCE(map_remaining < len))
364 				break;
365 		} else {
366 			WARN_ON_ONCE(!fin);
367 			sk_eat_skb(ssk, skb);
368 			done = true;
369 		}
370 
371 		WRITE_ONCE(tp->copied_seq, seq);
372 		more_data_avail = mptcp_subflow_data_available(ssk);
373 
374 		if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) {
375 			done = true;
376 			break;
377 		}
378 	} while (more_data_avail);
379 
380 	*bytes = moved;
381 
382 	/* If the moves have caught up with the DATA_FIN sequence number
383 	 * it's time to ack the DATA_FIN and change socket state, but
384 	 * this is not a good place to change state. Let the workqueue
385 	 * do it.
386 	 */
387 	if (mptcp_pending_data_fin(sk, NULL) &&
388 	    schedule_work(&msk->work))
389 		sock_hold(sk);
390 
391 	return done;
392 }
393 
394 /* In most cases we will be able to lock the mptcp socket.  If its already
395  * owned, we need to defer to the work queue to avoid ABBA deadlock.
396  */
397 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
398 {
399 	struct sock *sk = (struct sock *)msk;
400 	unsigned int moved = 0;
401 
402 	if (READ_ONCE(sk->sk_lock.owned))
403 		return false;
404 
405 	if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock)))
406 		return false;
407 
408 	/* must re-check after taking the lock */
409 	if (!READ_ONCE(sk->sk_lock.owned))
410 		__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
411 
412 	spin_unlock_bh(&sk->sk_lock.slock);
413 
414 	return moved > 0;
415 }
416 
417 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
418 {
419 	struct mptcp_sock *msk = mptcp_sk(sk);
420 
421 	set_bit(MPTCP_DATA_READY, &msk->flags);
422 
423 	if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) &&
424 	    move_skbs_to_msk(msk, ssk))
425 		goto wake;
426 
427 	/* don't schedule if mptcp sk is (still) over limit */
428 	if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf))
429 		goto wake;
430 
431 	/* mptcp socket is owned, release_cb should retry */
432 	if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED,
433 			      &sk->sk_tsq_flags)) {
434 		sock_hold(sk);
435 
436 		/* need to try again, its possible release_cb() has already
437 		 * been called after the test_and_set_bit() above.
438 		 */
439 		move_skbs_to_msk(msk, ssk);
440 	}
441 wake:
442 	sk->sk_data_ready(sk);
443 }
444 
445 static void __mptcp_flush_join_list(struct mptcp_sock *msk)
446 {
447 	if (likely(list_empty(&msk->join_list)))
448 		return;
449 
450 	spin_lock_bh(&msk->join_list_lock);
451 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
452 	spin_unlock_bh(&msk->join_list_lock);
453 }
454 
455 static bool mptcp_timer_pending(struct sock *sk)
456 {
457 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
458 }
459 
460 static void mptcp_reset_timer(struct sock *sk)
461 {
462 	struct inet_connection_sock *icsk = inet_csk(sk);
463 	unsigned long tout;
464 
465 	/* should never be called with mptcp level timer cleared */
466 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
467 	if (WARN_ON_ONCE(!tout))
468 		tout = TCP_RTO_MIN;
469 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
470 }
471 
472 void mptcp_data_acked(struct sock *sk)
473 {
474 	mptcp_reset_timer(sk);
475 
476 	if ((!sk_stream_is_writeable(sk) ||
477 	     (inet_sk_state_load(sk) != TCP_ESTABLISHED)) &&
478 	    schedule_work(&mptcp_sk(sk)->work))
479 		sock_hold(sk);
480 }
481 
482 void mptcp_subflow_eof(struct sock *sk)
483 {
484 	struct mptcp_sock *msk = mptcp_sk(sk);
485 
486 	if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) &&
487 	    schedule_work(&msk->work))
488 		sock_hold(sk);
489 }
490 
491 static void mptcp_check_for_eof(struct mptcp_sock *msk)
492 {
493 	struct mptcp_subflow_context *subflow;
494 	struct sock *sk = (struct sock *)msk;
495 	int receivers = 0;
496 
497 	mptcp_for_each_subflow(msk, subflow)
498 		receivers += !subflow->rx_eof;
499 
500 	if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
501 		/* hopefully temporary hack: propagate shutdown status
502 		 * to msk, when all subflows agree on it
503 		 */
504 		sk->sk_shutdown |= RCV_SHUTDOWN;
505 
506 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
507 		set_bit(MPTCP_DATA_READY, &msk->flags);
508 		sk->sk_data_ready(sk);
509 	}
510 }
511 
512 static bool mptcp_ext_cache_refill(struct mptcp_sock *msk)
513 {
514 	const struct sock *sk = (const struct sock *)msk;
515 
516 	if (!msk->cached_ext)
517 		msk->cached_ext = __skb_ext_alloc(sk->sk_allocation);
518 
519 	return !!msk->cached_ext;
520 }
521 
522 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
523 {
524 	struct mptcp_subflow_context *subflow;
525 	struct sock *sk = (struct sock *)msk;
526 
527 	sock_owned_by_me(sk);
528 
529 	mptcp_for_each_subflow(msk, subflow) {
530 		if (subflow->data_avail)
531 			return mptcp_subflow_tcp_sock(subflow);
532 	}
533 
534 	return NULL;
535 }
536 
537 static bool mptcp_skb_can_collapse_to(u64 write_seq,
538 				      const struct sk_buff *skb,
539 				      const struct mptcp_ext *mpext)
540 {
541 	if (!tcp_skb_can_collapse_to(skb))
542 		return false;
543 
544 	/* can collapse only if MPTCP level sequence is in order */
545 	return mpext && mpext->data_seq + mpext->data_len == write_seq;
546 }
547 
548 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
549 				       const struct page_frag *pfrag,
550 				       const struct mptcp_data_frag *df)
551 {
552 	return df && pfrag->page == df->page &&
553 		df->data_seq + df->data_len == msk->write_seq;
554 }
555 
556 static void dfrag_uncharge(struct sock *sk, int len)
557 {
558 	sk_mem_uncharge(sk, len);
559 	sk_wmem_queued_add(sk, -len);
560 }
561 
562 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
563 {
564 	int len = dfrag->data_len + dfrag->overhead;
565 
566 	list_del(&dfrag->list);
567 	dfrag_uncharge(sk, len);
568 	put_page(dfrag->page);
569 }
570 
571 static void mptcp_clean_una(struct sock *sk)
572 {
573 	struct mptcp_sock *msk = mptcp_sk(sk);
574 	struct mptcp_data_frag *dtmp, *dfrag;
575 	bool cleaned = false;
576 	u64 snd_una;
577 
578 	/* on fallback we just need to ignore snd_una, as this is really
579 	 * plain TCP
580 	 */
581 	if (__mptcp_check_fallback(msk))
582 		atomic64_set(&msk->snd_una, msk->write_seq);
583 	snd_una = atomic64_read(&msk->snd_una);
584 
585 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
586 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
587 			break;
588 
589 		dfrag_clear(sk, dfrag);
590 		cleaned = true;
591 	}
592 
593 	dfrag = mptcp_rtx_head(sk);
594 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
595 		u64 delta = snd_una - dfrag->data_seq;
596 
597 		if (WARN_ON_ONCE(delta > dfrag->data_len))
598 			goto out;
599 
600 		dfrag->data_seq += delta;
601 		dfrag->offset += delta;
602 		dfrag->data_len -= delta;
603 
604 		dfrag_uncharge(sk, delta);
605 		cleaned = true;
606 	}
607 
608 out:
609 	if (cleaned) {
610 		sk_mem_reclaim_partial(sk);
611 
612 		/* Only wake up writers if a subflow is ready */
613 		if (test_bit(MPTCP_SEND_SPACE, &msk->flags))
614 			sk_stream_write_space(sk);
615 	}
616 }
617 
618 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
619  * data
620  */
621 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
622 {
623 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
624 					pfrag, sk->sk_allocation)))
625 		return true;
626 
627 	sk->sk_prot->enter_memory_pressure(sk);
628 	sk_stream_moderate_sndbuf(sk);
629 	return false;
630 }
631 
632 static struct mptcp_data_frag *
633 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
634 		      int orig_offset)
635 {
636 	int offset = ALIGN(orig_offset, sizeof(long));
637 	struct mptcp_data_frag *dfrag;
638 
639 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
640 	dfrag->data_len = 0;
641 	dfrag->data_seq = msk->write_seq;
642 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
643 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
644 	dfrag->page = pfrag->page;
645 
646 	return dfrag;
647 }
648 
649 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
650 			      struct msghdr *msg, struct mptcp_data_frag *dfrag,
651 			      long *timeo, int *pmss_now,
652 			      int *ps_goal)
653 {
654 	int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0;
655 	bool dfrag_collapsed, can_collapse = false;
656 	struct mptcp_sock *msk = mptcp_sk(sk);
657 	struct mptcp_ext *mpext = NULL;
658 	bool retransmission = !!dfrag;
659 	struct sk_buff *skb, *tail;
660 	struct page_frag *pfrag;
661 	struct page *page;
662 	u64 *write_seq;
663 	size_t psize;
664 
665 	/* use the mptcp page cache so that we can easily move the data
666 	 * from one substream to another, but do per subflow memory accounting
667 	 * Note: pfrag is used only !retransmission, but the compiler if
668 	 * fooled into a warning if we don't init here
669 	 */
670 	pfrag = sk_page_frag(sk);
671 	if (!retransmission) {
672 		write_seq = &msk->write_seq;
673 		page = pfrag->page;
674 	} else {
675 		write_seq = &dfrag->data_seq;
676 		page = dfrag->page;
677 	}
678 
679 	/* compute copy limit */
680 	mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags);
681 	*pmss_now = mss_now;
682 	*ps_goal = size_goal;
683 	avail_size = size_goal;
684 	skb = tcp_write_queue_tail(ssk);
685 	if (skb) {
686 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
687 
688 		/* Limit the write to the size available in the
689 		 * current skb, if any, so that we create at most a new skb.
690 		 * Explicitly tells TCP internals to avoid collapsing on later
691 		 * queue management operation, to avoid breaking the ext <->
692 		 * SSN association set here
693 		 */
694 		can_collapse = (size_goal - skb->len > 0) &&
695 			      mptcp_skb_can_collapse_to(*write_seq, skb, mpext);
696 		if (!can_collapse)
697 			TCP_SKB_CB(skb)->eor = 1;
698 		else
699 			avail_size = size_goal - skb->len;
700 	}
701 
702 	if (!retransmission) {
703 		/* reuse tail pfrag, if possible, or carve a new one from the
704 		 * page allocator
705 		 */
706 		dfrag = mptcp_rtx_tail(sk);
707 		offset = pfrag->offset;
708 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
709 		if (!dfrag_collapsed) {
710 			dfrag = mptcp_carve_data_frag(msk, pfrag, offset);
711 			offset = dfrag->offset;
712 			frag_truesize = dfrag->overhead;
713 		}
714 		psize = min_t(size_t, pfrag->size - offset, avail_size);
715 
716 		/* Copy to page */
717 		pr_debug("left=%zu", msg_data_left(msg));
718 		psize = copy_page_from_iter(pfrag->page, offset,
719 					    min_t(size_t, msg_data_left(msg),
720 						  psize),
721 					    &msg->msg_iter);
722 		pr_debug("left=%zu", msg_data_left(msg));
723 		if (!psize)
724 			return -EINVAL;
725 
726 		if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) {
727 			iov_iter_revert(&msg->msg_iter, psize);
728 			return -ENOMEM;
729 		}
730 	} else {
731 		offset = dfrag->offset;
732 		psize = min_t(size_t, dfrag->data_len, avail_size);
733 	}
734 
735 	/* tell the TCP stack to delay the push so that we can safely
736 	 * access the skb after the sendpages call
737 	 */
738 	ret = do_tcp_sendpages(ssk, page, offset, psize,
739 			       msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT);
740 	if (ret <= 0) {
741 		if (!retransmission)
742 			iov_iter_revert(&msg->msg_iter, psize);
743 		return ret;
744 	}
745 
746 	frag_truesize += ret;
747 	if (!retransmission) {
748 		if (unlikely(ret < psize))
749 			iov_iter_revert(&msg->msg_iter, psize - ret);
750 
751 		/* send successful, keep track of sent data for mptcp-level
752 		 * retransmission
753 		 */
754 		dfrag->data_len += ret;
755 		if (!dfrag_collapsed) {
756 			get_page(dfrag->page);
757 			list_add_tail(&dfrag->list, &msk->rtx_queue);
758 			sk_wmem_queued_add(sk, frag_truesize);
759 		} else {
760 			sk_wmem_queued_add(sk, ret);
761 		}
762 
763 		/* charge data on mptcp rtx queue to the master socket
764 		 * Note: we charge such data both to sk and ssk
765 		 */
766 		sk->sk_forward_alloc -= frag_truesize;
767 	}
768 
769 	/* if the tail skb extension is still the cached one, collapsing
770 	 * really happened. Note: we can't check for 'same skb' as the sk_buff
771 	 * hdr on tail can be transmitted, freed and re-allocated by the
772 	 * do_tcp_sendpages() call
773 	 */
774 	tail = tcp_write_queue_tail(ssk);
775 	if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) {
776 		WARN_ON_ONCE(!can_collapse);
777 		mpext->data_len += ret;
778 		goto out;
779 	}
780 
781 	skb = tcp_write_queue_tail(ssk);
782 	mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext);
783 	msk->cached_ext = NULL;
784 
785 	memset(mpext, 0, sizeof(*mpext));
786 	mpext->data_seq = *write_seq;
787 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
788 	mpext->data_len = ret;
789 	mpext->use_map = 1;
790 	mpext->dsn64 = 1;
791 
792 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
793 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
794 		 mpext->dsn64);
795 
796 out:
797 	if (!retransmission)
798 		pfrag->offset += frag_truesize;
799 	WRITE_ONCE(*write_seq, *write_seq + ret);
800 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
801 
802 	return ret;
803 }
804 
805 static void mptcp_nospace(struct mptcp_sock *msk, struct socket *sock)
806 {
807 	clear_bit(MPTCP_SEND_SPACE, &msk->flags);
808 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
809 
810 	/* enables sk->write_space() callbacks */
811 	set_bit(SOCK_NOSPACE, &sock->flags);
812 }
813 
814 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
815 {
816 	struct mptcp_subflow_context *subflow;
817 	struct sock *backup = NULL;
818 
819 	sock_owned_by_me((const struct sock *)msk);
820 
821 	if (!mptcp_ext_cache_refill(msk))
822 		return NULL;
823 
824 	mptcp_for_each_subflow(msk, subflow) {
825 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
826 
827 		if (!sk_stream_memory_free(ssk)) {
828 			struct socket *sock = ssk->sk_socket;
829 
830 			if (sock)
831 				mptcp_nospace(msk, sock);
832 
833 			return NULL;
834 		}
835 
836 		if (subflow->backup) {
837 			if (!backup)
838 				backup = ssk;
839 
840 			continue;
841 		}
842 
843 		return ssk;
844 	}
845 
846 	return backup;
847 }
848 
849 static void ssk_check_wmem(struct mptcp_sock *msk, struct sock *ssk)
850 {
851 	struct socket *sock;
852 
853 	if (likely(sk_stream_is_writeable(ssk)))
854 		return;
855 
856 	sock = READ_ONCE(ssk->sk_socket);
857 	if (sock)
858 		mptcp_nospace(msk, sock);
859 }
860 
861 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
862 {
863 	int mss_now = 0, size_goal = 0, ret = 0;
864 	struct mptcp_sock *msk = mptcp_sk(sk);
865 	struct page_frag *pfrag;
866 	size_t copied = 0;
867 	struct sock *ssk;
868 	bool tx_ok;
869 	long timeo;
870 
871 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
872 		return -EOPNOTSUPP;
873 
874 	lock_sock(sk);
875 
876 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
877 
878 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
879 		ret = sk_stream_wait_connect(sk, &timeo);
880 		if (ret)
881 			goto out;
882 	}
883 
884 	pfrag = sk_page_frag(sk);
885 restart:
886 	mptcp_clean_una(sk);
887 
888 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
889 		ret = -EPIPE;
890 		goto out;
891 	}
892 
893 wait_for_sndbuf:
894 	__mptcp_flush_join_list(msk);
895 	ssk = mptcp_subflow_get_send(msk);
896 	while (!sk_stream_memory_free(sk) ||
897 	       !ssk ||
898 	       !mptcp_page_frag_refill(ssk, pfrag)) {
899 		if (ssk) {
900 			/* make sure retransmit timer is
901 			 * running before we wait for memory.
902 			 *
903 			 * The retransmit timer might be needed
904 			 * to make the peer send an up-to-date
905 			 * MPTCP Ack.
906 			 */
907 			mptcp_set_timeout(sk, ssk);
908 			if (!mptcp_timer_pending(sk))
909 				mptcp_reset_timer(sk);
910 		}
911 
912 		ret = sk_stream_wait_memory(sk, &timeo);
913 		if (ret)
914 			goto out;
915 
916 		mptcp_clean_una(sk);
917 
918 		ssk = mptcp_subflow_get_send(msk);
919 		if (list_empty(&msk->conn_list)) {
920 			ret = -ENOTCONN;
921 			goto out;
922 		}
923 	}
924 
925 	pr_debug("conn_list->subflow=%p", ssk);
926 
927 	lock_sock(ssk);
928 	tx_ok = msg_data_left(msg);
929 	while (tx_ok) {
930 		ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now,
931 					 &size_goal);
932 		if (ret < 0) {
933 			if (ret == -EAGAIN && timeo > 0) {
934 				mptcp_set_timeout(sk, ssk);
935 				release_sock(ssk);
936 				goto restart;
937 			}
938 			break;
939 		}
940 
941 		copied += ret;
942 
943 		tx_ok = msg_data_left(msg);
944 		if (!tx_ok)
945 			break;
946 
947 		if (!sk_stream_memory_free(ssk) ||
948 		    !mptcp_page_frag_refill(ssk, pfrag) ||
949 		    !mptcp_ext_cache_refill(msk)) {
950 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
951 			tcp_push(ssk, msg->msg_flags, mss_now,
952 				 tcp_sk(ssk)->nonagle, size_goal);
953 			mptcp_set_timeout(sk, ssk);
954 			release_sock(ssk);
955 			goto restart;
956 		}
957 
958 		/* memory is charged to mptcp level socket as well, i.e.
959 		 * if msg is very large, mptcp socket may run out of buffer
960 		 * space.  mptcp_clean_una() will release data that has
961 		 * been acked at mptcp level in the mean time, so there is
962 		 * a good chance we can continue sending data right away.
963 		 *
964 		 * Normally, when the tcp subflow can accept more data, then
965 		 * so can the MPTCP socket.  However, we need to cope with
966 		 * peers that might lag behind in their MPTCP-level
967 		 * acknowledgements, i.e.  data might have been acked at
968 		 * tcp level only.  So, we must also check the MPTCP socket
969 		 * limits before we send more data.
970 		 */
971 		if (unlikely(!sk_stream_memory_free(sk))) {
972 			tcp_push(ssk, msg->msg_flags, mss_now,
973 				 tcp_sk(ssk)->nonagle, size_goal);
974 			mptcp_clean_una(sk);
975 			if (!sk_stream_memory_free(sk)) {
976 				/* can't send more for now, need to wait for
977 				 * MPTCP-level ACKs from peer.
978 				 *
979 				 * Wakeup will happen via mptcp_clean_una().
980 				 */
981 				mptcp_set_timeout(sk, ssk);
982 				release_sock(ssk);
983 				goto wait_for_sndbuf;
984 			}
985 		}
986 	}
987 
988 	mptcp_set_timeout(sk, ssk);
989 	if (copied) {
990 		tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle,
991 			 size_goal);
992 
993 		/* start the timer, if it's not pending */
994 		if (!mptcp_timer_pending(sk))
995 			mptcp_reset_timer(sk);
996 	}
997 
998 	ssk_check_wmem(msk, ssk);
999 	release_sock(ssk);
1000 out:
1001 	release_sock(sk);
1002 	return copied ? : ret;
1003 }
1004 
1005 static void mptcp_wait_data(struct sock *sk, long *timeo)
1006 {
1007 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1008 	struct mptcp_sock *msk = mptcp_sk(sk);
1009 
1010 	add_wait_queue(sk_sleep(sk), &wait);
1011 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1012 
1013 	sk_wait_event(sk, timeo,
1014 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1015 
1016 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1017 	remove_wait_queue(sk_sleep(sk), &wait);
1018 }
1019 
1020 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1021 				struct msghdr *msg,
1022 				size_t len)
1023 {
1024 	struct sock *sk = (struct sock *)msk;
1025 	struct sk_buff *skb;
1026 	int copied = 0;
1027 
1028 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1029 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1030 		u32 data_len = skb->len - offset;
1031 		u32 count = min_t(size_t, len - copied, data_len);
1032 		int err;
1033 
1034 		err = skb_copy_datagram_msg(skb, offset, msg, count);
1035 		if (unlikely(err < 0)) {
1036 			if (!copied)
1037 				return err;
1038 			break;
1039 		}
1040 
1041 		copied += count;
1042 
1043 		if (count < data_len) {
1044 			MPTCP_SKB_CB(skb)->offset += count;
1045 			break;
1046 		}
1047 
1048 		__skb_unlink(skb, &sk->sk_receive_queue);
1049 		__kfree_skb(skb);
1050 
1051 		if (copied >= len)
1052 			break;
1053 	}
1054 
1055 	return copied;
1056 }
1057 
1058 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1059  *
1060  * Only difference: Use highest rtt estimate of the subflows in use.
1061  */
1062 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1063 {
1064 	struct mptcp_subflow_context *subflow;
1065 	struct sock *sk = (struct sock *)msk;
1066 	u32 time, advmss = 1;
1067 	u64 rtt_us, mstamp;
1068 
1069 	sock_owned_by_me(sk);
1070 
1071 	if (copied <= 0)
1072 		return;
1073 
1074 	msk->rcvq_space.copied += copied;
1075 
1076 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1077 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1078 
1079 	rtt_us = msk->rcvq_space.rtt_us;
1080 	if (rtt_us && time < (rtt_us >> 3))
1081 		return;
1082 
1083 	rtt_us = 0;
1084 	mptcp_for_each_subflow(msk, subflow) {
1085 		const struct tcp_sock *tp;
1086 		u64 sf_rtt_us;
1087 		u32 sf_advmss;
1088 
1089 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1090 
1091 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1092 		sf_advmss = READ_ONCE(tp->advmss);
1093 
1094 		rtt_us = max(sf_rtt_us, rtt_us);
1095 		advmss = max(sf_advmss, advmss);
1096 	}
1097 
1098 	msk->rcvq_space.rtt_us = rtt_us;
1099 	if (time < (rtt_us >> 3) || rtt_us == 0)
1100 		return;
1101 
1102 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1103 		goto new_measure;
1104 
1105 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1106 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1107 		int rcvmem, rcvbuf;
1108 		u64 rcvwin, grow;
1109 
1110 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1111 
1112 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1113 
1114 		do_div(grow, msk->rcvq_space.space);
1115 		rcvwin += (grow << 1);
1116 
1117 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1118 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1119 			rcvmem += 128;
1120 
1121 		do_div(rcvwin, advmss);
1122 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1123 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1124 
1125 		if (rcvbuf > sk->sk_rcvbuf) {
1126 			u32 window_clamp;
1127 
1128 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1129 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1130 
1131 			/* Make subflows follow along.  If we do not do this, we
1132 			 * get drops at subflow level if skbs can't be moved to
1133 			 * the mptcp rx queue fast enough (announced rcv_win can
1134 			 * exceed ssk->sk_rcvbuf).
1135 			 */
1136 			mptcp_for_each_subflow(msk, subflow) {
1137 				struct sock *ssk;
1138 
1139 				ssk = mptcp_subflow_tcp_sock(subflow);
1140 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1141 				tcp_sk(ssk)->window_clamp = window_clamp;
1142 			}
1143 		}
1144 	}
1145 
1146 	msk->rcvq_space.space = msk->rcvq_space.copied;
1147 new_measure:
1148 	msk->rcvq_space.copied = 0;
1149 	msk->rcvq_space.time = mstamp;
1150 }
1151 
1152 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1153 {
1154 	unsigned int moved = 0;
1155 	bool done;
1156 
1157 	do {
1158 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1159 
1160 		if (!ssk)
1161 			break;
1162 
1163 		lock_sock(ssk);
1164 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1165 		release_sock(ssk);
1166 	} while (!done);
1167 
1168 	return moved > 0;
1169 }
1170 
1171 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1172 			 int nonblock, int flags, int *addr_len)
1173 {
1174 	struct mptcp_sock *msk = mptcp_sk(sk);
1175 	int copied = 0;
1176 	int target;
1177 	long timeo;
1178 
1179 	if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT))
1180 		return -EOPNOTSUPP;
1181 
1182 	lock_sock(sk);
1183 	timeo = sock_rcvtimeo(sk, nonblock);
1184 
1185 	len = min_t(size_t, len, INT_MAX);
1186 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1187 	__mptcp_flush_join_list(msk);
1188 
1189 	while (len > (size_t)copied) {
1190 		int bytes_read;
1191 
1192 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied);
1193 		if (unlikely(bytes_read < 0)) {
1194 			if (!copied)
1195 				copied = bytes_read;
1196 			goto out_err;
1197 		}
1198 
1199 		copied += bytes_read;
1200 
1201 		if (skb_queue_empty(&sk->sk_receive_queue) &&
1202 		    __mptcp_move_skbs(msk))
1203 			continue;
1204 
1205 		/* only the master socket status is relevant here. The exit
1206 		 * conditions mirror closely tcp_recvmsg()
1207 		 */
1208 		if (copied >= target)
1209 			break;
1210 
1211 		if (copied) {
1212 			if (sk->sk_err ||
1213 			    sk->sk_state == TCP_CLOSE ||
1214 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1215 			    !timeo ||
1216 			    signal_pending(current))
1217 				break;
1218 		} else {
1219 			if (sk->sk_err) {
1220 				copied = sock_error(sk);
1221 				break;
1222 			}
1223 
1224 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1225 				mptcp_check_for_eof(msk);
1226 
1227 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1228 				break;
1229 
1230 			if (sk->sk_state == TCP_CLOSE) {
1231 				copied = -ENOTCONN;
1232 				break;
1233 			}
1234 
1235 			if (!timeo) {
1236 				copied = -EAGAIN;
1237 				break;
1238 			}
1239 
1240 			if (signal_pending(current)) {
1241 				copied = sock_intr_errno(timeo);
1242 				break;
1243 			}
1244 		}
1245 
1246 		pr_debug("block timeout %ld", timeo);
1247 		mptcp_wait_data(sk, &timeo);
1248 	}
1249 
1250 	if (skb_queue_empty(&sk->sk_receive_queue)) {
1251 		/* entire backlog drained, clear DATA_READY. */
1252 		clear_bit(MPTCP_DATA_READY, &msk->flags);
1253 
1254 		/* .. race-breaker: ssk might have gotten new data
1255 		 * after last __mptcp_move_skbs() returned false.
1256 		 */
1257 		if (unlikely(__mptcp_move_skbs(msk)))
1258 			set_bit(MPTCP_DATA_READY, &msk->flags);
1259 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
1260 		/* data to read but mptcp_wait_data() cleared DATA_READY */
1261 		set_bit(MPTCP_DATA_READY, &msk->flags);
1262 	}
1263 out_err:
1264 	mptcp_rcv_space_adjust(msk, copied);
1265 
1266 	release_sock(sk);
1267 	return copied;
1268 }
1269 
1270 static void mptcp_retransmit_handler(struct sock *sk)
1271 {
1272 	struct mptcp_sock *msk = mptcp_sk(sk);
1273 
1274 	if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) {
1275 		mptcp_stop_timer(sk);
1276 	} else {
1277 		set_bit(MPTCP_WORK_RTX, &msk->flags);
1278 		if (schedule_work(&msk->work))
1279 			sock_hold(sk);
1280 	}
1281 }
1282 
1283 static void mptcp_retransmit_timer(struct timer_list *t)
1284 {
1285 	struct inet_connection_sock *icsk = from_timer(icsk, t,
1286 						       icsk_retransmit_timer);
1287 	struct sock *sk = &icsk->icsk_inet.sk;
1288 
1289 	bh_lock_sock(sk);
1290 	if (!sock_owned_by_user(sk)) {
1291 		mptcp_retransmit_handler(sk);
1292 	} else {
1293 		/* delegate our work to tcp_release_cb() */
1294 		if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED,
1295 				      &sk->sk_tsq_flags))
1296 			sock_hold(sk);
1297 	}
1298 	bh_unlock_sock(sk);
1299 	sock_put(sk);
1300 }
1301 
1302 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
1303  * level.
1304  *
1305  * A backup subflow is returned only if that is the only kind available.
1306  */
1307 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
1308 {
1309 	struct mptcp_subflow_context *subflow;
1310 	struct sock *backup = NULL;
1311 
1312 	sock_owned_by_me((const struct sock *)msk);
1313 
1314 	mptcp_for_each_subflow(msk, subflow) {
1315 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1316 
1317 		/* still data outstanding at TCP level?  Don't retransmit. */
1318 		if (!tcp_write_queue_empty(ssk))
1319 			return NULL;
1320 
1321 		if (subflow->backup) {
1322 			if (!backup)
1323 				backup = ssk;
1324 			continue;
1325 		}
1326 
1327 		return ssk;
1328 	}
1329 
1330 	return backup;
1331 }
1332 
1333 /* subflow sockets can be either outgoing (connect) or incoming
1334  * (accept).
1335  *
1336  * Outgoing subflows use in-kernel sockets.
1337  * Incoming subflows do not have their own 'struct socket' allocated,
1338  * so we need to use tcp_close() after detaching them from the mptcp
1339  * parent socket.
1340  */
1341 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
1342 			      struct mptcp_subflow_context *subflow,
1343 			      long timeout)
1344 {
1345 	struct socket *sock = READ_ONCE(ssk->sk_socket);
1346 
1347 	list_del(&subflow->node);
1348 
1349 	if (sock && sock != sk->sk_socket) {
1350 		/* outgoing subflow */
1351 		sock_release(sock);
1352 	} else {
1353 		/* incoming subflow */
1354 		tcp_close(ssk, timeout);
1355 	}
1356 }
1357 
1358 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
1359 {
1360 	return 0;
1361 }
1362 
1363 static void pm_work(struct mptcp_sock *msk)
1364 {
1365 	struct mptcp_pm_data *pm = &msk->pm;
1366 
1367 	spin_lock_bh(&msk->pm.lock);
1368 
1369 	pr_debug("msk=%p status=%x", msk, pm->status);
1370 	if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) {
1371 		pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED);
1372 		mptcp_pm_nl_add_addr_received(msk);
1373 	}
1374 	if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) {
1375 		pm->status &= ~BIT(MPTCP_PM_ESTABLISHED);
1376 		mptcp_pm_nl_fully_established(msk);
1377 	}
1378 	if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) {
1379 		pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED);
1380 		mptcp_pm_nl_subflow_established(msk);
1381 	}
1382 
1383 	spin_unlock_bh(&msk->pm.lock);
1384 }
1385 
1386 static void mptcp_worker(struct work_struct *work)
1387 {
1388 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
1389 	struct sock *ssk, *sk = &msk->sk.icsk_inet.sk;
1390 	int orig_len, orig_offset, mss_now = 0, size_goal = 0;
1391 	struct mptcp_data_frag *dfrag;
1392 	u64 orig_write_seq;
1393 	size_t copied = 0;
1394 	struct msghdr msg = {
1395 		.msg_flags = MSG_DONTWAIT,
1396 	};
1397 	long timeo = 0;
1398 
1399 	lock_sock(sk);
1400 	mptcp_clean_una(sk);
1401 	mptcp_check_data_fin_ack(sk);
1402 	__mptcp_flush_join_list(msk);
1403 	__mptcp_move_skbs(msk);
1404 
1405 	if (msk->pm.status)
1406 		pm_work(msk);
1407 
1408 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1409 		mptcp_check_for_eof(msk);
1410 
1411 	mptcp_check_data_fin(sk);
1412 
1413 	if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
1414 		goto unlock;
1415 
1416 	dfrag = mptcp_rtx_head(sk);
1417 	if (!dfrag)
1418 		goto unlock;
1419 
1420 	if (!mptcp_ext_cache_refill(msk))
1421 		goto reset_unlock;
1422 
1423 	ssk = mptcp_subflow_get_retrans(msk);
1424 	if (!ssk)
1425 		goto reset_unlock;
1426 
1427 	lock_sock(ssk);
1428 
1429 	orig_len = dfrag->data_len;
1430 	orig_offset = dfrag->offset;
1431 	orig_write_seq = dfrag->data_seq;
1432 	while (dfrag->data_len > 0) {
1433 		int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo,
1434 					     &mss_now, &size_goal);
1435 		if (ret < 0)
1436 			break;
1437 
1438 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
1439 		copied += ret;
1440 		dfrag->data_len -= ret;
1441 		dfrag->offset += ret;
1442 
1443 		if (!mptcp_ext_cache_refill(msk))
1444 			break;
1445 	}
1446 	if (copied)
1447 		tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle,
1448 			 size_goal);
1449 
1450 	dfrag->data_seq = orig_write_seq;
1451 	dfrag->offset = orig_offset;
1452 	dfrag->data_len = orig_len;
1453 
1454 	mptcp_set_timeout(sk, ssk);
1455 	release_sock(ssk);
1456 
1457 reset_unlock:
1458 	if (!mptcp_timer_pending(sk))
1459 		mptcp_reset_timer(sk);
1460 
1461 unlock:
1462 	release_sock(sk);
1463 	sock_put(sk);
1464 }
1465 
1466 static int __mptcp_init_sock(struct sock *sk)
1467 {
1468 	struct mptcp_sock *msk = mptcp_sk(sk);
1469 
1470 	spin_lock_init(&msk->join_list_lock);
1471 
1472 	INIT_LIST_HEAD(&msk->conn_list);
1473 	INIT_LIST_HEAD(&msk->join_list);
1474 	INIT_LIST_HEAD(&msk->rtx_queue);
1475 	__set_bit(MPTCP_SEND_SPACE, &msk->flags);
1476 	INIT_WORK(&msk->work, mptcp_worker);
1477 
1478 	msk->first = NULL;
1479 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
1480 
1481 	mptcp_pm_data_init(msk);
1482 
1483 	/* re-use the csk retrans timer for MPTCP-level retrans */
1484 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
1485 
1486 	return 0;
1487 }
1488 
1489 static int mptcp_init_sock(struct sock *sk)
1490 {
1491 	struct net *net = sock_net(sk);
1492 	int ret;
1493 
1494 	if (!mptcp_is_enabled(net))
1495 		return -ENOPROTOOPT;
1496 
1497 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
1498 		return -ENOMEM;
1499 
1500 	ret = __mptcp_init_sock(sk);
1501 	if (ret)
1502 		return ret;
1503 
1504 	ret = __mptcp_socket_create(mptcp_sk(sk));
1505 	if (ret)
1506 		return ret;
1507 
1508 	sk_sockets_allocated_inc(sk);
1509 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
1510 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[2];
1511 
1512 	return 0;
1513 }
1514 
1515 static void __mptcp_clear_xmit(struct sock *sk)
1516 {
1517 	struct mptcp_sock *msk = mptcp_sk(sk);
1518 	struct mptcp_data_frag *dtmp, *dfrag;
1519 
1520 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
1521 
1522 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
1523 		dfrag_clear(sk, dfrag);
1524 }
1525 
1526 static void mptcp_cancel_work(struct sock *sk)
1527 {
1528 	struct mptcp_sock *msk = mptcp_sk(sk);
1529 
1530 	if (cancel_work_sync(&msk->work))
1531 		sock_put(sk);
1532 }
1533 
1534 static void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
1535 {
1536 	lock_sock(ssk);
1537 
1538 	switch (ssk->sk_state) {
1539 	case TCP_LISTEN:
1540 		if (!(how & RCV_SHUTDOWN))
1541 			break;
1542 		/* fall through */
1543 	case TCP_SYN_SENT:
1544 		tcp_disconnect(ssk, O_NONBLOCK);
1545 		break;
1546 	default:
1547 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
1548 			pr_debug("Fallback");
1549 			ssk->sk_shutdown |= how;
1550 			tcp_shutdown(ssk, how);
1551 		} else {
1552 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
1553 			mptcp_set_timeout(sk, ssk);
1554 			tcp_send_ack(ssk);
1555 		}
1556 		break;
1557 	}
1558 
1559 	release_sock(ssk);
1560 }
1561 
1562 static const unsigned char new_state[16] = {
1563 	/* current state:     new state:      action:	*/
1564 	[0 /* (Invalid) */] = TCP_CLOSE,
1565 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1566 	[TCP_SYN_SENT]      = TCP_CLOSE,
1567 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1568 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
1569 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
1570 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
1571 	[TCP_CLOSE]         = TCP_CLOSE,
1572 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
1573 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
1574 	[TCP_LISTEN]        = TCP_CLOSE,
1575 	[TCP_CLOSING]       = TCP_CLOSING,
1576 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
1577 };
1578 
1579 static int mptcp_close_state(struct sock *sk)
1580 {
1581 	int next = (int)new_state[sk->sk_state];
1582 	int ns = next & TCP_STATE_MASK;
1583 
1584 	inet_sk_state_store(sk, ns);
1585 
1586 	return next & TCP_ACTION_FIN;
1587 }
1588 
1589 static void mptcp_close(struct sock *sk, long timeout)
1590 {
1591 	struct mptcp_subflow_context *subflow, *tmp;
1592 	struct mptcp_sock *msk = mptcp_sk(sk);
1593 	LIST_HEAD(conn_list);
1594 
1595 	lock_sock(sk);
1596 	sk->sk_shutdown = SHUTDOWN_MASK;
1597 
1598 	if (sk->sk_state == TCP_LISTEN) {
1599 		inet_sk_state_store(sk, TCP_CLOSE);
1600 		goto cleanup;
1601 	} else if (sk->sk_state == TCP_CLOSE) {
1602 		goto cleanup;
1603 	}
1604 
1605 	if (__mptcp_check_fallback(msk)) {
1606 		goto update_state;
1607 	} else if (mptcp_close_state(sk)) {
1608 		pr_debug("Sending DATA_FIN sk=%p", sk);
1609 		WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
1610 		WRITE_ONCE(msk->snd_data_fin_enable, 1);
1611 
1612 		mptcp_for_each_subflow(msk, subflow) {
1613 			struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
1614 
1615 			mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK);
1616 		}
1617 	}
1618 
1619 	sk_stream_wait_close(sk, timeout);
1620 
1621 update_state:
1622 	inet_sk_state_store(sk, TCP_CLOSE);
1623 
1624 cleanup:
1625 	/* be sure to always acquire the join list lock, to sync vs
1626 	 * mptcp_finish_join().
1627 	 */
1628 	spin_lock_bh(&msk->join_list_lock);
1629 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
1630 	spin_unlock_bh(&msk->join_list_lock);
1631 	list_splice_init(&msk->conn_list, &conn_list);
1632 
1633 	__mptcp_clear_xmit(sk);
1634 
1635 	release_sock(sk);
1636 
1637 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
1638 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1639 		__mptcp_close_ssk(sk, ssk, subflow, timeout);
1640 	}
1641 
1642 	mptcp_cancel_work(sk);
1643 
1644 	__skb_queue_purge(&sk->sk_receive_queue);
1645 
1646 	sk_common_release(sk);
1647 }
1648 
1649 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
1650 {
1651 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1652 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
1653 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
1654 
1655 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
1656 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
1657 
1658 	if (msk6 && ssk6) {
1659 		msk6->saddr = ssk6->saddr;
1660 		msk6->flow_label = ssk6->flow_label;
1661 	}
1662 #endif
1663 
1664 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
1665 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
1666 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
1667 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
1668 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
1669 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
1670 }
1671 
1672 static int mptcp_disconnect(struct sock *sk, int flags)
1673 {
1674 	/* Should never be called.
1675 	 * inet_stream_connect() calls ->disconnect, but that
1676 	 * refers to the subflow socket, not the mptcp one.
1677 	 */
1678 	WARN_ON_ONCE(1);
1679 	return 0;
1680 }
1681 
1682 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1683 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
1684 {
1685 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
1686 
1687 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
1688 }
1689 #endif
1690 
1691 struct sock *mptcp_sk_clone(const struct sock *sk,
1692 			    const struct mptcp_options_received *mp_opt,
1693 			    struct request_sock *req)
1694 {
1695 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
1696 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
1697 	struct mptcp_sock *msk;
1698 	u64 ack_seq;
1699 
1700 	if (!nsk)
1701 		return NULL;
1702 
1703 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1704 	if (nsk->sk_family == AF_INET6)
1705 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
1706 #endif
1707 
1708 	__mptcp_init_sock(nsk);
1709 
1710 	msk = mptcp_sk(nsk);
1711 	msk->local_key = subflow_req->local_key;
1712 	msk->token = subflow_req->token;
1713 	msk->subflow = NULL;
1714 	WRITE_ONCE(msk->fully_established, false);
1715 
1716 	msk->write_seq = subflow_req->idsn + 1;
1717 	atomic64_set(&msk->snd_una, msk->write_seq);
1718 	if (mp_opt->mp_capable) {
1719 		msk->can_ack = true;
1720 		msk->remote_key = mp_opt->sndr_key;
1721 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
1722 		ack_seq++;
1723 		msk->ack_seq = ack_seq;
1724 	}
1725 
1726 	sock_reset_flag(nsk, SOCK_RCU_FREE);
1727 	/* will be fully established after successful MPC subflow creation */
1728 	inet_sk_state_store(nsk, TCP_SYN_RECV);
1729 	bh_unlock_sock(nsk);
1730 
1731 	/* keep a single reference */
1732 	__sock_put(nsk);
1733 	return nsk;
1734 }
1735 
1736 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
1737 {
1738 	const struct tcp_sock *tp = tcp_sk(ssk);
1739 
1740 	msk->rcvq_space.copied = 0;
1741 	msk->rcvq_space.rtt_us = 0;
1742 
1743 	msk->rcvq_space.time = tp->tcp_mstamp;
1744 
1745 	/* initial rcv_space offering made to peer */
1746 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
1747 				      TCP_INIT_CWND * tp->advmss);
1748 	if (msk->rcvq_space.space == 0)
1749 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
1750 }
1751 
1752 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
1753 				 bool kern)
1754 {
1755 	struct mptcp_sock *msk = mptcp_sk(sk);
1756 	struct socket *listener;
1757 	struct sock *newsk;
1758 
1759 	listener = __mptcp_nmpc_socket(msk);
1760 	if (WARN_ON_ONCE(!listener)) {
1761 		*err = -EINVAL;
1762 		return NULL;
1763 	}
1764 
1765 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
1766 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
1767 	if (!newsk)
1768 		return NULL;
1769 
1770 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
1771 	if (sk_is_mptcp(newsk)) {
1772 		struct mptcp_subflow_context *subflow;
1773 		struct sock *new_mptcp_sock;
1774 		struct sock *ssk = newsk;
1775 
1776 		subflow = mptcp_subflow_ctx(newsk);
1777 		new_mptcp_sock = subflow->conn;
1778 
1779 		/* is_mptcp should be false if subflow->conn is missing, see
1780 		 * subflow_syn_recv_sock()
1781 		 */
1782 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
1783 			tcp_sk(newsk)->is_mptcp = 0;
1784 			return newsk;
1785 		}
1786 
1787 		/* acquire the 2nd reference for the owning socket */
1788 		sock_hold(new_mptcp_sock);
1789 
1790 		local_bh_disable();
1791 		bh_lock_sock(new_mptcp_sock);
1792 		msk = mptcp_sk(new_mptcp_sock);
1793 		msk->first = newsk;
1794 
1795 		newsk = new_mptcp_sock;
1796 		mptcp_copy_inaddrs(newsk, ssk);
1797 		list_add(&subflow->node, &msk->conn_list);
1798 
1799 		mptcp_rcv_space_init(msk, ssk);
1800 		bh_unlock_sock(new_mptcp_sock);
1801 
1802 		__MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
1803 		local_bh_enable();
1804 	} else {
1805 		MPTCP_INC_STATS(sock_net(sk),
1806 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
1807 	}
1808 
1809 	return newsk;
1810 }
1811 
1812 static void mptcp_destroy(struct sock *sk)
1813 {
1814 	struct mptcp_sock *msk = mptcp_sk(sk);
1815 
1816 	mptcp_token_destroy(msk);
1817 	if (msk->cached_ext)
1818 		__skb_ext_put(msk->cached_ext);
1819 
1820 	sk_sockets_allocated_dec(sk);
1821 }
1822 
1823 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
1824 				       sockptr_t optval, unsigned int optlen)
1825 {
1826 	struct sock *sk = (struct sock *)msk;
1827 	struct socket *ssock;
1828 	int ret;
1829 
1830 	switch (optname) {
1831 	case SO_REUSEPORT:
1832 	case SO_REUSEADDR:
1833 		lock_sock(sk);
1834 		ssock = __mptcp_nmpc_socket(msk);
1835 		if (!ssock) {
1836 			release_sock(sk);
1837 			return -EINVAL;
1838 		}
1839 
1840 		ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen);
1841 		if (ret == 0) {
1842 			if (optname == SO_REUSEPORT)
1843 				sk->sk_reuseport = ssock->sk->sk_reuseport;
1844 			else if (optname == SO_REUSEADDR)
1845 				sk->sk_reuse = ssock->sk->sk_reuse;
1846 		}
1847 		release_sock(sk);
1848 		return ret;
1849 	}
1850 
1851 	return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
1852 }
1853 
1854 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
1855 			       sockptr_t optval, unsigned int optlen)
1856 {
1857 	struct sock *sk = (struct sock *)msk;
1858 	int ret = -EOPNOTSUPP;
1859 	struct socket *ssock;
1860 
1861 	switch (optname) {
1862 	case IPV6_V6ONLY:
1863 		lock_sock(sk);
1864 		ssock = __mptcp_nmpc_socket(msk);
1865 		if (!ssock) {
1866 			release_sock(sk);
1867 			return -EINVAL;
1868 		}
1869 
1870 		ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen);
1871 		if (ret == 0)
1872 			sk->sk_ipv6only = ssock->sk->sk_ipv6only;
1873 
1874 		release_sock(sk);
1875 		break;
1876 	}
1877 
1878 	return ret;
1879 }
1880 
1881 static int mptcp_setsockopt(struct sock *sk, int level, int optname,
1882 			    sockptr_t optval, unsigned int optlen)
1883 {
1884 	struct mptcp_sock *msk = mptcp_sk(sk);
1885 	struct sock *ssk;
1886 
1887 	pr_debug("msk=%p", msk);
1888 
1889 	if (level == SOL_SOCKET)
1890 		return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
1891 
1892 	/* @@ the meaning of setsockopt() when the socket is connected and
1893 	 * there are multiple subflows is not yet defined. It is up to the
1894 	 * MPTCP-level socket to configure the subflows until the subflow
1895 	 * is in TCP fallback, when TCP socket options are passed through
1896 	 * to the one remaining subflow.
1897 	 */
1898 	lock_sock(sk);
1899 	ssk = __mptcp_tcp_fallback(msk);
1900 	release_sock(sk);
1901 	if (ssk)
1902 		return tcp_setsockopt(ssk, level, optname, optval, optlen);
1903 
1904 	if (level == SOL_IPV6)
1905 		return mptcp_setsockopt_v6(msk, optname, optval, optlen);
1906 
1907 	return -EOPNOTSUPP;
1908 }
1909 
1910 static int mptcp_getsockopt(struct sock *sk, int level, int optname,
1911 			    char __user *optval, int __user *option)
1912 {
1913 	struct mptcp_sock *msk = mptcp_sk(sk);
1914 	struct sock *ssk;
1915 
1916 	pr_debug("msk=%p", msk);
1917 
1918 	/* @@ the meaning of setsockopt() when the socket is connected and
1919 	 * there are multiple subflows is not yet defined. It is up to the
1920 	 * MPTCP-level socket to configure the subflows until the subflow
1921 	 * is in TCP fallback, when socket options are passed through
1922 	 * to the one remaining subflow.
1923 	 */
1924 	lock_sock(sk);
1925 	ssk = __mptcp_tcp_fallback(msk);
1926 	release_sock(sk);
1927 	if (ssk)
1928 		return tcp_getsockopt(ssk, level, optname, optval, option);
1929 
1930 	return -EOPNOTSUPP;
1931 }
1932 
1933 #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \
1934 			    TCPF_WRITE_TIMER_DEFERRED)
1935 
1936 /* this is very alike tcp_release_cb() but we must handle differently a
1937  * different set of events
1938  */
1939 static void mptcp_release_cb(struct sock *sk)
1940 {
1941 	unsigned long flags, nflags;
1942 
1943 	do {
1944 		flags = sk->sk_tsq_flags;
1945 		if (!(flags & MPTCP_DEFERRED_ALL))
1946 			return;
1947 		nflags = flags & ~MPTCP_DEFERRED_ALL;
1948 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1949 
1950 	sock_release_ownership(sk);
1951 
1952 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1953 		struct mptcp_sock *msk = mptcp_sk(sk);
1954 		struct sock *ssk;
1955 
1956 		ssk = mptcp_subflow_recv_lookup(msk);
1957 		if (!ssk || !schedule_work(&msk->work))
1958 			__sock_put(sk);
1959 	}
1960 
1961 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1962 		mptcp_retransmit_handler(sk);
1963 		__sock_put(sk);
1964 	}
1965 }
1966 
1967 static int mptcp_hash(struct sock *sk)
1968 {
1969 	/* should never be called,
1970 	 * we hash the TCP subflows not the master socket
1971 	 */
1972 	WARN_ON_ONCE(1);
1973 	return 0;
1974 }
1975 
1976 static void mptcp_unhash(struct sock *sk)
1977 {
1978 	/* called from sk_common_release(), but nothing to do here */
1979 }
1980 
1981 static int mptcp_get_port(struct sock *sk, unsigned short snum)
1982 {
1983 	struct mptcp_sock *msk = mptcp_sk(sk);
1984 	struct socket *ssock;
1985 
1986 	ssock = __mptcp_nmpc_socket(msk);
1987 	pr_debug("msk=%p, subflow=%p", msk, ssock);
1988 	if (WARN_ON_ONCE(!ssock))
1989 		return -EINVAL;
1990 
1991 	return inet_csk_get_port(ssock->sk, snum);
1992 }
1993 
1994 void mptcp_finish_connect(struct sock *ssk)
1995 {
1996 	struct mptcp_subflow_context *subflow;
1997 	struct mptcp_sock *msk;
1998 	struct sock *sk;
1999 	u64 ack_seq;
2000 
2001 	subflow = mptcp_subflow_ctx(ssk);
2002 	sk = subflow->conn;
2003 	msk = mptcp_sk(sk);
2004 
2005 	pr_debug("msk=%p, token=%u", sk, subflow->token);
2006 
2007 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
2008 	ack_seq++;
2009 	subflow->map_seq = ack_seq;
2010 	subflow->map_subflow_seq = 1;
2011 
2012 	/* the socket is not connected yet, no msk/subflow ops can access/race
2013 	 * accessing the field below
2014 	 */
2015 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
2016 	WRITE_ONCE(msk->local_key, subflow->local_key);
2017 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
2018 	WRITE_ONCE(msk->ack_seq, ack_seq);
2019 	WRITE_ONCE(msk->can_ack, 1);
2020 	atomic64_set(&msk->snd_una, msk->write_seq);
2021 
2022 	mptcp_pm_new_connection(msk, 0);
2023 
2024 	mptcp_rcv_space_init(msk, ssk);
2025 }
2026 
2027 static void mptcp_sock_graft(struct sock *sk, struct socket *parent)
2028 {
2029 	write_lock_bh(&sk->sk_callback_lock);
2030 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2031 	sk_set_socket(sk, parent);
2032 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2033 	write_unlock_bh(&sk->sk_callback_lock);
2034 }
2035 
2036 bool mptcp_finish_join(struct sock *sk)
2037 {
2038 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
2039 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
2040 	struct sock *parent = (void *)msk;
2041 	struct socket *parent_sock;
2042 	bool ret;
2043 
2044 	pr_debug("msk=%p, subflow=%p", msk, subflow);
2045 
2046 	/* mptcp socket already closing? */
2047 	if (!mptcp_is_fully_established(parent))
2048 		return false;
2049 
2050 	if (!msk->pm.server_side)
2051 		return true;
2052 
2053 	if (!mptcp_pm_allow_new_subflow(msk))
2054 		return false;
2055 
2056 	/* active connections are already on conn_list, and we can't acquire
2057 	 * msk lock here.
2058 	 * use the join list lock as synchronization point and double-check
2059 	 * msk status to avoid racing with mptcp_close()
2060 	 */
2061 	spin_lock_bh(&msk->join_list_lock);
2062 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
2063 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node)))
2064 		list_add_tail(&subflow->node, &msk->join_list);
2065 	spin_unlock_bh(&msk->join_list_lock);
2066 	if (!ret)
2067 		return false;
2068 
2069 	/* attach to msk socket only after we are sure he will deal with us
2070 	 * at close time
2071 	 */
2072 	parent_sock = READ_ONCE(parent->sk_socket);
2073 	if (parent_sock && !sk->sk_socket)
2074 		mptcp_sock_graft(sk, parent_sock);
2075 	subflow->map_seq = msk->ack_seq;
2076 	return true;
2077 }
2078 
2079 static bool mptcp_memory_free(const struct sock *sk, int wake)
2080 {
2081 	struct mptcp_sock *msk = mptcp_sk(sk);
2082 
2083 	return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true;
2084 }
2085 
2086 static struct proto mptcp_prot = {
2087 	.name		= "MPTCP",
2088 	.owner		= THIS_MODULE,
2089 	.init		= mptcp_init_sock,
2090 	.disconnect	= mptcp_disconnect,
2091 	.close		= mptcp_close,
2092 	.accept		= mptcp_accept,
2093 	.setsockopt	= mptcp_setsockopt,
2094 	.getsockopt	= mptcp_getsockopt,
2095 	.shutdown	= tcp_shutdown,
2096 	.destroy	= mptcp_destroy,
2097 	.sendmsg	= mptcp_sendmsg,
2098 	.recvmsg	= mptcp_recvmsg,
2099 	.release_cb	= mptcp_release_cb,
2100 	.hash		= mptcp_hash,
2101 	.unhash		= mptcp_unhash,
2102 	.get_port	= mptcp_get_port,
2103 	.sockets_allocated	= &mptcp_sockets_allocated,
2104 	.memory_allocated	= &tcp_memory_allocated,
2105 	.memory_pressure	= &tcp_memory_pressure,
2106 	.stream_memory_free	= mptcp_memory_free,
2107 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
2108 	.sysctl_mem	= sysctl_tcp_mem,
2109 	.obj_size	= sizeof(struct mptcp_sock),
2110 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
2111 	.no_autobind	= true,
2112 };
2113 
2114 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2115 {
2116 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2117 	struct socket *ssock;
2118 	int err;
2119 
2120 	lock_sock(sock->sk);
2121 	ssock = __mptcp_nmpc_socket(msk);
2122 	if (!ssock) {
2123 		err = -EINVAL;
2124 		goto unlock;
2125 	}
2126 
2127 	err = ssock->ops->bind(ssock, uaddr, addr_len);
2128 	if (!err)
2129 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
2130 
2131 unlock:
2132 	release_sock(sock->sk);
2133 	return err;
2134 }
2135 
2136 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
2137 					 struct mptcp_subflow_context *subflow)
2138 {
2139 	subflow->request_mptcp = 0;
2140 	__mptcp_do_fallback(msk);
2141 }
2142 
2143 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
2144 				int addr_len, int flags)
2145 {
2146 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2147 	struct mptcp_subflow_context *subflow;
2148 	struct socket *ssock;
2149 	int err;
2150 
2151 	lock_sock(sock->sk);
2152 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
2153 		/* pending connection or invalid state, let existing subflow
2154 		 * cope with that
2155 		 */
2156 		ssock = msk->subflow;
2157 		goto do_connect;
2158 	}
2159 
2160 	ssock = __mptcp_nmpc_socket(msk);
2161 	if (!ssock) {
2162 		err = -EINVAL;
2163 		goto unlock;
2164 	}
2165 
2166 	mptcp_token_destroy(msk);
2167 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
2168 	subflow = mptcp_subflow_ctx(ssock->sk);
2169 #ifdef CONFIG_TCP_MD5SIG
2170 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
2171 	 * TCP option space.
2172 	 */
2173 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
2174 		mptcp_subflow_early_fallback(msk, subflow);
2175 #endif
2176 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk))
2177 		mptcp_subflow_early_fallback(msk, subflow);
2178 
2179 do_connect:
2180 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
2181 	sock->state = ssock->state;
2182 
2183 	/* on successful connect, the msk state will be moved to established by
2184 	 * subflow_finish_connect()
2185 	 */
2186 	if (!err || err == -EINPROGRESS)
2187 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
2188 	else
2189 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
2190 
2191 unlock:
2192 	release_sock(sock->sk);
2193 	return err;
2194 }
2195 
2196 static int mptcp_listen(struct socket *sock, int backlog)
2197 {
2198 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2199 	struct socket *ssock;
2200 	int err;
2201 
2202 	pr_debug("msk=%p", msk);
2203 
2204 	lock_sock(sock->sk);
2205 	ssock = __mptcp_nmpc_socket(msk);
2206 	if (!ssock) {
2207 		err = -EINVAL;
2208 		goto unlock;
2209 	}
2210 
2211 	mptcp_token_destroy(msk);
2212 	inet_sk_state_store(sock->sk, TCP_LISTEN);
2213 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
2214 
2215 	err = ssock->ops->listen(ssock, backlog);
2216 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
2217 	if (!err)
2218 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
2219 
2220 unlock:
2221 	release_sock(sock->sk);
2222 	return err;
2223 }
2224 
2225 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
2226 			       int flags, bool kern)
2227 {
2228 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2229 	struct socket *ssock;
2230 	int err;
2231 
2232 	pr_debug("msk=%p", msk);
2233 
2234 	lock_sock(sock->sk);
2235 	if (sock->sk->sk_state != TCP_LISTEN)
2236 		goto unlock_fail;
2237 
2238 	ssock = __mptcp_nmpc_socket(msk);
2239 	if (!ssock)
2240 		goto unlock_fail;
2241 
2242 	clear_bit(MPTCP_DATA_READY, &msk->flags);
2243 	sock_hold(ssock->sk);
2244 	release_sock(sock->sk);
2245 
2246 	err = ssock->ops->accept(sock, newsock, flags, kern);
2247 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
2248 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
2249 		struct mptcp_subflow_context *subflow;
2250 
2251 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
2252 		 * This is needed so NOSPACE flag can be set from tcp stack.
2253 		 */
2254 		__mptcp_flush_join_list(msk);
2255 		mptcp_for_each_subflow(msk, subflow) {
2256 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2257 
2258 			if (!ssk->sk_socket)
2259 				mptcp_sock_graft(ssk, newsock);
2260 		}
2261 	}
2262 
2263 	if (inet_csk_listen_poll(ssock->sk))
2264 		set_bit(MPTCP_DATA_READY, &msk->flags);
2265 	sock_put(ssock->sk);
2266 	return err;
2267 
2268 unlock_fail:
2269 	release_sock(sock->sk);
2270 	return -EINVAL;
2271 }
2272 
2273 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2274 {
2275 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
2276 	       0;
2277 }
2278 
2279 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
2280 			   struct poll_table_struct *wait)
2281 {
2282 	struct sock *sk = sock->sk;
2283 	struct mptcp_sock *msk;
2284 	__poll_t mask = 0;
2285 	int state;
2286 
2287 	msk = mptcp_sk(sk);
2288 	sock_poll_wait(file, sock, wait);
2289 
2290 	state = inet_sk_state_load(sk);
2291 	if (state == TCP_LISTEN)
2292 		return mptcp_check_readable(msk);
2293 
2294 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
2295 		mask |= mptcp_check_readable(msk);
2296 		if (sk_stream_is_writeable(sk) &&
2297 		    test_bit(MPTCP_SEND_SPACE, &msk->flags))
2298 			mask |= EPOLLOUT | EPOLLWRNORM;
2299 	}
2300 	if (sk->sk_shutdown & RCV_SHUTDOWN)
2301 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
2302 
2303 	return mask;
2304 }
2305 
2306 static int mptcp_shutdown(struct socket *sock, int how)
2307 {
2308 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2309 	struct mptcp_subflow_context *subflow;
2310 	int ret = 0;
2311 
2312 	pr_debug("sk=%p, how=%d", msk, how);
2313 
2314 	lock_sock(sock->sk);
2315 
2316 	how++;
2317 	if ((how & ~SHUTDOWN_MASK) || !how) {
2318 		ret = -EINVAL;
2319 		goto out_unlock;
2320 	}
2321 
2322 	if (sock->state == SS_CONNECTING) {
2323 		if ((1 << sock->sk->sk_state) &
2324 		    (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
2325 			sock->state = SS_DISCONNECTING;
2326 		else
2327 			sock->state = SS_CONNECTED;
2328 	}
2329 
2330 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2331 	if (__mptcp_check_fallback(msk)) {
2332 		if (how == SHUT_WR || how == SHUT_RDWR)
2333 			inet_sk_state_store(sock->sk, TCP_FIN_WAIT1);
2334 
2335 		mptcp_for_each_subflow(msk, subflow) {
2336 			struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2337 
2338 			mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
2339 		}
2340 	} else if ((how & SEND_SHUTDOWN) &&
2341 		   ((1 << sock->sk->sk_state) &
2342 		    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2343 		     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) &&
2344 		   mptcp_close_state(sock->sk)) {
2345 		__mptcp_flush_join_list(msk);
2346 
2347 		WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2348 		WRITE_ONCE(msk->snd_data_fin_enable, 1);
2349 
2350 		mptcp_for_each_subflow(msk, subflow) {
2351 			struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2352 
2353 			mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
2354 		}
2355 	}
2356 
2357 	/* Wake up anyone sleeping in poll. */
2358 	sock->sk->sk_state_change(sock->sk);
2359 
2360 out_unlock:
2361 	release_sock(sock->sk);
2362 
2363 	return ret;
2364 }
2365 
2366 static const struct proto_ops mptcp_stream_ops = {
2367 	.family		   = PF_INET,
2368 	.owner		   = THIS_MODULE,
2369 	.release	   = inet_release,
2370 	.bind		   = mptcp_bind,
2371 	.connect	   = mptcp_stream_connect,
2372 	.socketpair	   = sock_no_socketpair,
2373 	.accept		   = mptcp_stream_accept,
2374 	.getname	   = inet_getname,
2375 	.poll		   = mptcp_poll,
2376 	.ioctl		   = inet_ioctl,
2377 	.gettstamp	   = sock_gettstamp,
2378 	.listen		   = mptcp_listen,
2379 	.shutdown	   = mptcp_shutdown,
2380 	.setsockopt	   = sock_common_setsockopt,
2381 	.getsockopt	   = sock_common_getsockopt,
2382 	.sendmsg	   = inet_sendmsg,
2383 	.recvmsg	   = inet_recvmsg,
2384 	.mmap		   = sock_no_mmap,
2385 	.sendpage	   = inet_sendpage,
2386 };
2387 
2388 static struct inet_protosw mptcp_protosw = {
2389 	.type		= SOCK_STREAM,
2390 	.protocol	= IPPROTO_MPTCP,
2391 	.prot		= &mptcp_prot,
2392 	.ops		= &mptcp_stream_ops,
2393 	.flags		= INET_PROTOSW_ICSK,
2394 };
2395 
2396 void __init mptcp_proto_init(void)
2397 {
2398 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
2399 
2400 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
2401 		panic("Failed to allocate MPTCP pcpu counter\n");
2402 
2403 	mptcp_subflow_init();
2404 	mptcp_pm_init();
2405 	mptcp_token_init();
2406 
2407 	if (proto_register(&mptcp_prot, 1) != 0)
2408 		panic("Failed to register MPTCP proto.\n");
2409 
2410 	inet_register_protosw(&mptcp_protosw);
2411 
2412 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
2413 }
2414 
2415 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2416 static const struct proto_ops mptcp_v6_stream_ops = {
2417 	.family		   = PF_INET6,
2418 	.owner		   = THIS_MODULE,
2419 	.release	   = inet6_release,
2420 	.bind		   = mptcp_bind,
2421 	.connect	   = mptcp_stream_connect,
2422 	.socketpair	   = sock_no_socketpair,
2423 	.accept		   = mptcp_stream_accept,
2424 	.getname	   = inet6_getname,
2425 	.poll		   = mptcp_poll,
2426 	.ioctl		   = inet6_ioctl,
2427 	.gettstamp	   = sock_gettstamp,
2428 	.listen		   = mptcp_listen,
2429 	.shutdown	   = mptcp_shutdown,
2430 	.setsockopt	   = sock_common_setsockopt,
2431 	.getsockopt	   = sock_common_getsockopt,
2432 	.sendmsg	   = inet6_sendmsg,
2433 	.recvmsg	   = inet6_recvmsg,
2434 	.mmap		   = sock_no_mmap,
2435 	.sendpage	   = inet_sendpage,
2436 #ifdef CONFIG_COMPAT
2437 	.compat_ioctl	   = inet6_compat_ioctl,
2438 #endif
2439 };
2440 
2441 static struct proto mptcp_v6_prot;
2442 
2443 static void mptcp_v6_destroy(struct sock *sk)
2444 {
2445 	mptcp_destroy(sk);
2446 	inet6_destroy_sock(sk);
2447 }
2448 
2449 static struct inet_protosw mptcp_v6_protosw = {
2450 	.type		= SOCK_STREAM,
2451 	.protocol	= IPPROTO_MPTCP,
2452 	.prot		= &mptcp_v6_prot,
2453 	.ops		= &mptcp_v6_stream_ops,
2454 	.flags		= INET_PROTOSW_ICSK,
2455 };
2456 
2457 int __init mptcp_proto_v6_init(void)
2458 {
2459 	int err;
2460 
2461 	mptcp_v6_prot = mptcp_prot;
2462 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
2463 	mptcp_v6_prot.slab = NULL;
2464 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
2465 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
2466 
2467 	err = proto_register(&mptcp_v6_prot, 1);
2468 	if (err)
2469 		return err;
2470 
2471 	err = inet6_register_protosw(&mptcp_v6_protosw);
2472 	if (err)
2473 		proto_unregister(&mptcp_v6_prot);
2474 
2475 	return err;
2476 }
2477 #endif
2478