1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 unsigned short family = READ_ONCE(sk->sk_family); 65 66 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 67 if (family == AF_INET6) 68 return &inet6_stream_ops; 69 #endif 70 WARN_ON_ONCE(family != AF_INET); 71 return &inet_stream_ops; 72 } 73 74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 75 { 76 struct net *net = sock_net((struct sock *)msk); 77 78 if (__mptcp_check_fallback(msk)) 79 return true; 80 81 spin_lock_bh(&msk->fallback_lock); 82 if (!msk->allow_infinite_fallback) { 83 spin_unlock_bh(&msk->fallback_lock); 84 return false; 85 } 86 87 msk->allow_subflows = false; 88 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 89 __MPTCP_INC_STATS(net, fb_mib); 90 spin_unlock_bh(&msk->fallback_lock); 91 return true; 92 } 93 94 static int __mptcp_socket_create(struct mptcp_sock *msk) 95 { 96 struct mptcp_subflow_context *subflow; 97 struct sock *sk = (struct sock *)msk; 98 struct socket *ssock; 99 int err; 100 101 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 102 if (err) 103 return err; 104 105 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 106 WRITE_ONCE(msk->first, ssock->sk); 107 subflow = mptcp_subflow_ctx(ssock->sk); 108 list_add(&subflow->node, &msk->conn_list); 109 sock_hold(ssock->sk); 110 subflow->request_mptcp = 1; 111 subflow->subflow_id = msk->subflow_id++; 112 113 /* This is the first subflow, always with id 0 */ 114 WRITE_ONCE(subflow->local_id, 0); 115 mptcp_sock_graft(msk->first, sk->sk_socket); 116 iput(SOCK_INODE(ssock)); 117 118 return 0; 119 } 120 121 /* If the MPC handshake is not started, returns the first subflow, 122 * eventually allocating it. 123 */ 124 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 125 { 126 struct sock *sk = (struct sock *)msk; 127 int ret; 128 129 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 130 return ERR_PTR(-EINVAL); 131 132 if (!msk->first) { 133 ret = __mptcp_socket_create(msk); 134 if (ret) 135 return ERR_PTR(ret); 136 } 137 138 return msk->first; 139 } 140 141 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 142 { 143 sk_drops_skbadd(sk, skb); 144 __kfree_skb(skb); 145 } 146 147 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 148 struct sk_buff *from, bool *fragstolen, 149 int *delta) 150 { 151 int limit = READ_ONCE(sk->sk_rcvbuf); 152 153 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 154 MPTCP_SKB_CB(from)->offset || 155 ((to->len + from->len) > (limit >> 3)) || 156 !skb_try_coalesce(to, from, fragstolen, delta)) 157 return false; 158 159 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 160 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 161 to->len, MPTCP_SKB_CB(from)->end_seq); 162 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 163 return true; 164 } 165 166 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 167 struct sk_buff *from) 168 { 169 bool fragstolen; 170 int delta; 171 172 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 173 return false; 174 175 /* note the fwd memory can reach a negative value after accounting 176 * for the delta, but the later skb free will restore a non 177 * negative one 178 */ 179 atomic_add(delta, &sk->sk_rmem_alloc); 180 sk_mem_charge(sk, delta); 181 kfree_skb_partial(from, fragstolen); 182 183 return true; 184 } 185 186 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 187 struct sk_buff *from) 188 { 189 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 190 return false; 191 192 return mptcp_try_coalesce((struct sock *)msk, to, from); 193 } 194 195 /* "inspired" by tcp_rcvbuf_grow(), main difference: 196 * - mptcp does not maintain a msk-level window clamp 197 * - returns true when the receive buffer is actually updated 198 */ 199 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 200 { 201 struct mptcp_sock *msk = mptcp_sk(sk); 202 const struct net *net = sock_net(sk); 203 u32 rcvwin, rcvbuf, cap, oldval; 204 u64 grow; 205 206 oldval = msk->rcvq_space.space; 207 msk->rcvq_space.space = newval; 208 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 209 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 210 return false; 211 212 /* DRS is always one RTT late. */ 213 rcvwin = newval << 1; 214 215 /* slow start: allow the sender to double its rate. */ 216 grow = (u64)rcvwin * (newval - oldval); 217 do_div(grow, oldval); 218 rcvwin += grow << 1; 219 220 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 221 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 222 223 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 224 225 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 226 if (rcvbuf > sk->sk_rcvbuf) { 227 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 228 return true; 229 } 230 return false; 231 } 232 233 /* "inspired" by tcp_data_queue_ofo(), main differences: 234 * - use mptcp seqs 235 * - don't cope with sacks 236 */ 237 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 238 { 239 struct sock *sk = (struct sock *)msk; 240 struct rb_node **p, *parent; 241 u64 seq, end_seq, max_seq; 242 struct sk_buff *skb1; 243 244 seq = MPTCP_SKB_CB(skb)->map_seq; 245 end_seq = MPTCP_SKB_CB(skb)->end_seq; 246 max_seq = atomic64_read(&msk->rcv_wnd_sent); 247 248 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 249 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 250 if (after64(end_seq, max_seq)) { 251 /* out of window */ 252 mptcp_drop(sk, skb); 253 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 254 (unsigned long long)end_seq - (unsigned long)max_seq, 255 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 256 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 257 return; 258 } 259 260 p = &msk->out_of_order_queue.rb_node; 261 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 262 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 263 rb_link_node(&skb->rbnode, NULL, p); 264 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 265 msk->ooo_last_skb = skb; 266 goto end; 267 } 268 269 /* with 2 subflows, adding at end of ooo queue is quite likely 270 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 271 */ 272 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 273 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 274 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 275 return; 276 } 277 278 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 279 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 280 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 281 parent = &msk->ooo_last_skb->rbnode; 282 p = &parent->rb_right; 283 goto insert; 284 } 285 286 /* Find place to insert this segment. Handle overlaps on the way. */ 287 parent = NULL; 288 while (*p) { 289 parent = *p; 290 skb1 = rb_to_skb(parent); 291 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 292 p = &parent->rb_left; 293 continue; 294 } 295 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 296 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 297 /* All the bits are present. Drop. */ 298 mptcp_drop(sk, skb); 299 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 300 return; 301 } 302 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 303 /* partial overlap: 304 * | skb | 305 * | skb1 | 306 * continue traversing 307 */ 308 } else { 309 /* skb's seq == skb1's seq and skb covers skb1. 310 * Replace skb1 with skb. 311 */ 312 rb_replace_node(&skb1->rbnode, &skb->rbnode, 313 &msk->out_of_order_queue); 314 mptcp_drop(sk, skb1); 315 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 316 goto merge_right; 317 } 318 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 319 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 320 return; 321 } 322 p = &parent->rb_right; 323 } 324 325 insert: 326 /* Insert segment into RB tree. */ 327 rb_link_node(&skb->rbnode, parent, p); 328 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 329 330 merge_right: 331 /* Remove other segments covered by skb. */ 332 while ((skb1 = skb_rb_next(skb)) != NULL) { 333 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 334 break; 335 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 336 mptcp_drop(sk, skb1); 337 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 338 } 339 /* If there is no skb after us, we are the last_skb ! */ 340 if (!skb1) 341 msk->ooo_last_skb = skb; 342 343 end: 344 skb_condense(skb); 345 skb_set_owner_r(skb, sk); 346 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 347 if (sk->sk_socket) 348 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 349 } 350 351 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 352 int copy_len) 353 { 354 const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 355 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 356 357 /* the skb map_seq accounts for the skb offset: 358 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 359 * value 360 */ 361 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 362 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 363 MPTCP_SKB_CB(skb)->offset = offset; 364 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 365 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 366 367 __skb_unlink(skb, &ssk->sk_receive_queue); 368 369 skb_ext_reset(skb); 370 skb_dst_drop(skb); 371 } 372 373 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 374 { 375 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 376 struct mptcp_sock *msk = mptcp_sk(sk); 377 struct sk_buff *tail; 378 379 /* try to fetch required memory from subflow */ 380 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 381 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 382 goto drop; 383 } 384 385 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 386 /* in sequence */ 387 msk->bytes_received += copy_len; 388 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 389 tail = skb_peek_tail(&sk->sk_receive_queue); 390 if (tail && mptcp_try_coalesce(sk, tail, skb)) 391 return true; 392 393 skb_set_owner_r(skb, sk); 394 __skb_queue_tail(&sk->sk_receive_queue, skb); 395 return true; 396 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 397 mptcp_data_queue_ofo(msk, skb); 398 return false; 399 } 400 401 /* old data, keep it simple and drop the whole pkt, sender 402 * will retransmit as needed, if needed. 403 */ 404 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 405 drop: 406 mptcp_drop(sk, skb); 407 return false; 408 } 409 410 static void mptcp_stop_rtx_timer(struct sock *sk) 411 { 412 struct inet_connection_sock *icsk = inet_csk(sk); 413 414 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 415 mptcp_sk(sk)->timer_ival = 0; 416 } 417 418 static void mptcp_close_wake_up(struct sock *sk) 419 { 420 if (sock_flag(sk, SOCK_DEAD)) 421 return; 422 423 sk->sk_state_change(sk); 424 if (sk->sk_shutdown == SHUTDOWN_MASK || 425 sk->sk_state == TCP_CLOSE) 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 427 else 428 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 429 } 430 431 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 432 { 433 struct mptcp_subflow_context *subflow; 434 435 mptcp_for_each_subflow(msk, subflow) { 436 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 437 bool slow; 438 439 slow = lock_sock_fast(ssk); 440 tcp_shutdown(ssk, SEND_SHUTDOWN); 441 unlock_sock_fast(ssk, slow); 442 } 443 } 444 445 /* called under the msk socket lock */ 446 static bool mptcp_pending_data_fin_ack(struct sock *sk) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 return ((1 << sk->sk_state) & 451 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 452 msk->write_seq == READ_ONCE(msk->snd_una); 453 } 454 455 static void mptcp_check_data_fin_ack(struct sock *sk) 456 { 457 struct mptcp_sock *msk = mptcp_sk(sk); 458 459 /* Look for an acknowledged DATA_FIN */ 460 if (mptcp_pending_data_fin_ack(sk)) { 461 WRITE_ONCE(msk->snd_data_fin_enable, 0); 462 463 switch (sk->sk_state) { 464 case TCP_FIN_WAIT1: 465 mptcp_set_state(sk, TCP_FIN_WAIT2); 466 break; 467 case TCP_CLOSING: 468 case TCP_LAST_ACK: 469 mptcp_shutdown_subflows(msk); 470 mptcp_set_state(sk, TCP_CLOSE); 471 break; 472 } 473 474 mptcp_close_wake_up(sk); 475 } 476 } 477 478 /* can be called with no lock acquired */ 479 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 480 { 481 struct mptcp_sock *msk = mptcp_sk(sk); 482 483 if (READ_ONCE(msk->rcv_data_fin) && 484 ((1 << inet_sk_state_load(sk)) & 485 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 486 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 487 488 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 489 if (seq) 490 *seq = rcv_data_fin_seq; 491 492 return true; 493 } 494 } 495 496 return false; 497 } 498 499 static void mptcp_set_datafin_timeout(struct sock *sk) 500 { 501 struct inet_connection_sock *icsk = inet_csk(sk); 502 u32 retransmits; 503 504 retransmits = min_t(u32, icsk->icsk_retransmits, 505 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 506 507 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 508 } 509 510 static void __mptcp_set_timeout(struct sock *sk, long tout) 511 { 512 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 513 } 514 515 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 516 { 517 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 518 519 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 520 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 521 } 522 523 static void mptcp_set_timeout(struct sock *sk) 524 { 525 struct mptcp_subflow_context *subflow; 526 long tout = 0; 527 528 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 529 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 530 __mptcp_set_timeout(sk, tout); 531 } 532 533 static inline bool tcp_can_send_ack(const struct sock *ssk) 534 { 535 return !((1 << inet_sk_state_load(ssk)) & 536 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 537 } 538 539 void __mptcp_subflow_send_ack(struct sock *ssk) 540 { 541 if (tcp_can_send_ack(ssk)) 542 tcp_send_ack(ssk); 543 } 544 545 static void mptcp_subflow_send_ack(struct sock *ssk) 546 { 547 bool slow; 548 549 slow = lock_sock_fast(ssk); 550 __mptcp_subflow_send_ack(ssk); 551 unlock_sock_fast(ssk, slow); 552 } 553 554 static void mptcp_send_ack(struct mptcp_sock *msk) 555 { 556 struct mptcp_subflow_context *subflow; 557 558 mptcp_for_each_subflow(msk, subflow) 559 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 560 } 561 562 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 563 { 564 bool slow; 565 566 slow = lock_sock_fast(ssk); 567 if (tcp_can_send_ack(ssk)) 568 tcp_cleanup_rbuf(ssk, copied); 569 unlock_sock_fast(ssk, slow); 570 } 571 572 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 573 { 574 const struct inet_connection_sock *icsk = inet_csk(ssk); 575 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 576 const struct tcp_sock *tp = tcp_sk(ssk); 577 578 return (ack_pending & ICSK_ACK_SCHED) && 579 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 580 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 581 (rx_empty && ack_pending & 582 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 583 } 584 585 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 586 { 587 int old_space = READ_ONCE(msk->old_wspace); 588 struct mptcp_subflow_context *subflow; 589 struct sock *sk = (struct sock *)msk; 590 int space = __mptcp_space(sk); 591 bool cleanup, rx_empty; 592 593 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 594 rx_empty = !sk_rmem_alloc_get(sk) && copied; 595 596 mptcp_for_each_subflow(msk, subflow) { 597 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 598 599 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 600 mptcp_subflow_cleanup_rbuf(ssk, copied); 601 } 602 } 603 604 static void mptcp_check_data_fin(struct sock *sk) 605 { 606 struct mptcp_sock *msk = mptcp_sk(sk); 607 u64 rcv_data_fin_seq; 608 609 /* Need to ack a DATA_FIN received from a peer while this side 610 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 611 * msk->rcv_data_fin was set when parsing the incoming options 612 * at the subflow level and the msk lock was not held, so this 613 * is the first opportunity to act on the DATA_FIN and change 614 * the msk state. 615 * 616 * If we are caught up to the sequence number of the incoming 617 * DATA_FIN, send the DATA_ACK now and do state transition. If 618 * not caught up, do nothing and let the recv code send DATA_ACK 619 * when catching up. 620 */ 621 622 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 623 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 624 WRITE_ONCE(msk->rcv_data_fin, 0); 625 626 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 627 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 628 629 switch (sk->sk_state) { 630 case TCP_ESTABLISHED: 631 mptcp_set_state(sk, TCP_CLOSE_WAIT); 632 break; 633 case TCP_FIN_WAIT1: 634 mptcp_set_state(sk, TCP_CLOSING); 635 break; 636 case TCP_FIN_WAIT2: 637 mptcp_shutdown_subflows(msk); 638 mptcp_set_state(sk, TCP_CLOSE); 639 break; 640 default: 641 /* Other states not expected */ 642 WARN_ON_ONCE(1); 643 break; 644 } 645 646 if (!__mptcp_check_fallback(msk)) 647 mptcp_send_ack(msk); 648 mptcp_close_wake_up(sk); 649 } 650 } 651 652 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 653 { 654 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 655 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 656 mptcp_subflow_reset(ssk); 657 } 658 } 659 660 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 661 struct sock *ssk) 662 { 663 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 664 struct sock *sk = (struct sock *)msk; 665 bool more_data_avail; 666 struct tcp_sock *tp; 667 bool ret = false; 668 669 pr_debug("msk=%p ssk=%p\n", msk, ssk); 670 tp = tcp_sk(ssk); 671 do { 672 u32 map_remaining, offset; 673 u32 seq = tp->copied_seq; 674 struct sk_buff *skb; 675 bool fin; 676 677 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 678 break; 679 680 /* try to move as much data as available */ 681 map_remaining = subflow->map_data_len - 682 mptcp_subflow_get_map_offset(subflow); 683 684 skb = skb_peek(&ssk->sk_receive_queue); 685 if (unlikely(!skb)) 686 break; 687 688 if (__mptcp_check_fallback(msk)) { 689 /* Under fallback skbs have no MPTCP extension and TCP could 690 * collapse them between the dummy map creation and the 691 * current dequeue. Be sure to adjust the map size. 692 */ 693 map_remaining = skb->len; 694 subflow->map_data_len = skb->len; 695 } 696 697 offset = seq - TCP_SKB_CB(skb)->seq; 698 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 699 if (fin) 700 seq++; 701 702 if (offset < skb->len) { 703 size_t len = skb->len - offset; 704 705 mptcp_init_skb(ssk, skb, offset, len); 706 skb_orphan(skb); 707 ret = __mptcp_move_skb(sk, skb) || ret; 708 seq += len; 709 710 if (unlikely(map_remaining < len)) { 711 DEBUG_NET_WARN_ON_ONCE(1); 712 mptcp_dss_corruption(msk, ssk); 713 } 714 } else { 715 if (unlikely(!fin)) { 716 DEBUG_NET_WARN_ON_ONCE(1); 717 mptcp_dss_corruption(msk, ssk); 718 } 719 720 sk_eat_skb(ssk, skb); 721 } 722 723 WRITE_ONCE(tp->copied_seq, seq); 724 more_data_avail = mptcp_subflow_data_available(ssk); 725 726 } while (more_data_avail); 727 728 if (ret) 729 msk->last_data_recv = tcp_jiffies32; 730 return ret; 731 } 732 733 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 734 { 735 struct sock *sk = (struct sock *)msk; 736 struct sk_buff *skb, *tail; 737 bool moved = false; 738 struct rb_node *p; 739 u64 end_seq; 740 741 p = rb_first(&msk->out_of_order_queue); 742 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 743 while (p) { 744 skb = rb_to_skb(p); 745 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 746 break; 747 748 p = rb_next(p); 749 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 750 751 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 752 msk->ack_seq))) { 753 mptcp_drop(sk, skb); 754 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 755 continue; 756 } 757 758 end_seq = MPTCP_SKB_CB(skb)->end_seq; 759 tail = skb_peek_tail(&sk->sk_receive_queue); 760 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 761 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 762 763 /* skip overlapping data, if any */ 764 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 765 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 766 delta); 767 MPTCP_SKB_CB(skb)->offset += delta; 768 MPTCP_SKB_CB(skb)->map_seq += delta; 769 __skb_queue_tail(&sk->sk_receive_queue, skb); 770 } 771 msk->bytes_received += end_seq - msk->ack_seq; 772 WRITE_ONCE(msk->ack_seq, end_seq); 773 moved = true; 774 } 775 return moved; 776 } 777 778 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 779 { 780 int err = sock_error(ssk); 781 int ssk_state; 782 783 if (!err) 784 return false; 785 786 /* only propagate errors on fallen-back sockets or 787 * on MPC connect 788 */ 789 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 790 return false; 791 792 /* We need to propagate only transition to CLOSE state. 793 * Orphaned socket will see such state change via 794 * subflow_sched_work_if_closed() and that path will properly 795 * destroy the msk as needed. 796 */ 797 ssk_state = inet_sk_state_load(ssk); 798 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 799 mptcp_set_state(sk, ssk_state); 800 WRITE_ONCE(sk->sk_err, -err); 801 802 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 803 smp_wmb(); 804 sk_error_report(sk); 805 return true; 806 } 807 808 void __mptcp_error_report(struct sock *sk) 809 { 810 struct mptcp_subflow_context *subflow; 811 struct mptcp_sock *msk = mptcp_sk(sk); 812 813 mptcp_for_each_subflow(msk, subflow) 814 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 815 break; 816 } 817 818 /* In most cases we will be able to lock the mptcp socket. If its already 819 * owned, we need to defer to the work queue to avoid ABBA deadlock. 820 */ 821 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 822 { 823 struct sock *sk = (struct sock *)msk; 824 bool moved; 825 826 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 827 __mptcp_ofo_queue(msk); 828 if (unlikely(ssk->sk_err)) 829 __mptcp_subflow_error_report(sk, ssk); 830 831 /* If the moves have caught up with the DATA_FIN sequence number 832 * it's time to ack the DATA_FIN and change socket state, but 833 * this is not a good place to change state. Let the workqueue 834 * do it. 835 */ 836 if (mptcp_pending_data_fin(sk, NULL)) 837 mptcp_schedule_work(sk); 838 return moved; 839 } 840 841 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 842 { 843 struct mptcp_sock *msk = mptcp_sk(sk); 844 845 /* Wake-up the reader only for in-sequence data */ 846 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 847 sk->sk_data_ready(sk); 848 } 849 850 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 851 { 852 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 853 854 /* The peer can send data while we are shutting down this 855 * subflow at msk destruction time, but we must avoid enqueuing 856 * more data to the msk receive queue 857 */ 858 if (unlikely(subflow->disposable)) 859 return; 860 861 mptcp_data_lock(sk); 862 if (!sock_owned_by_user(sk)) 863 __mptcp_data_ready(sk, ssk); 864 else 865 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 866 mptcp_data_unlock(sk); 867 } 868 869 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 870 { 871 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 872 msk->allow_infinite_fallback = false; 873 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 874 } 875 876 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 877 { 878 struct sock *sk = (struct sock *)msk; 879 880 if (sk->sk_state != TCP_ESTABLISHED) 881 return false; 882 883 spin_lock_bh(&msk->fallback_lock); 884 if (!msk->allow_subflows) { 885 spin_unlock_bh(&msk->fallback_lock); 886 return false; 887 } 888 mptcp_subflow_joined(msk, ssk); 889 spin_unlock_bh(&msk->fallback_lock); 890 891 /* attach to msk socket only after we are sure we will deal with it 892 * at close time 893 */ 894 if (sk->sk_socket && !ssk->sk_socket) 895 mptcp_sock_graft(ssk, sk->sk_socket); 896 897 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 898 mptcp_sockopt_sync_locked(msk, ssk); 899 mptcp_stop_tout_timer(sk); 900 __mptcp_propagate_sndbuf(sk, ssk); 901 return true; 902 } 903 904 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 905 { 906 struct mptcp_subflow_context *tmp, *subflow; 907 struct mptcp_sock *msk = mptcp_sk(sk); 908 909 list_for_each_entry_safe(subflow, tmp, join_list, node) { 910 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 911 bool slow = lock_sock_fast(ssk); 912 913 list_move_tail(&subflow->node, &msk->conn_list); 914 if (!__mptcp_finish_join(msk, ssk)) 915 mptcp_subflow_reset(ssk); 916 unlock_sock_fast(ssk, slow); 917 } 918 } 919 920 static bool mptcp_rtx_timer_pending(struct sock *sk) 921 { 922 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 923 } 924 925 static void mptcp_reset_rtx_timer(struct sock *sk) 926 { 927 struct inet_connection_sock *icsk = inet_csk(sk); 928 unsigned long tout; 929 930 /* prevent rescheduling on close */ 931 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 932 return; 933 934 tout = mptcp_sk(sk)->timer_ival; 935 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 936 } 937 938 bool mptcp_schedule_work(struct sock *sk) 939 { 940 if (inet_sk_state_load(sk) != TCP_CLOSE && 941 schedule_work(&mptcp_sk(sk)->work)) { 942 /* each subflow already holds a reference to the sk, and the 943 * workqueue is invoked by a subflow, so sk can't go away here. 944 */ 945 sock_hold(sk); 946 return true; 947 } 948 return false; 949 } 950 951 static bool mptcp_skb_can_collapse_to(u64 write_seq, 952 const struct sk_buff *skb, 953 const struct mptcp_ext *mpext) 954 { 955 if (!tcp_skb_can_collapse_to(skb)) 956 return false; 957 958 /* can collapse only if MPTCP level sequence is in order and this 959 * mapping has not been xmitted yet 960 */ 961 return mpext && mpext->data_seq + mpext->data_len == write_seq && 962 !mpext->frozen; 963 } 964 965 /* we can append data to the given data frag if: 966 * - there is space available in the backing page_frag 967 * - the data frag tail matches the current page_frag free offset 968 * - the data frag end sequence number matches the current write seq 969 */ 970 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 971 const struct page_frag *pfrag, 972 const struct mptcp_data_frag *df) 973 { 974 return df && pfrag->page == df->page && 975 pfrag->size - pfrag->offset > 0 && 976 pfrag->offset == (df->offset + df->data_len) && 977 df->data_seq + df->data_len == msk->write_seq; 978 } 979 980 static void dfrag_uncharge(struct sock *sk, int len) 981 { 982 sk_mem_uncharge(sk, len); 983 sk_wmem_queued_add(sk, -len); 984 } 985 986 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 987 { 988 int len = dfrag->data_len + dfrag->overhead; 989 990 list_del(&dfrag->list); 991 dfrag_uncharge(sk, len); 992 put_page(dfrag->page); 993 } 994 995 /* called under both the msk socket lock and the data lock */ 996 static void __mptcp_clean_una(struct sock *sk) 997 { 998 struct mptcp_sock *msk = mptcp_sk(sk); 999 struct mptcp_data_frag *dtmp, *dfrag; 1000 u64 snd_una; 1001 1002 snd_una = msk->snd_una; 1003 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1004 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1005 break; 1006 1007 if (unlikely(dfrag == msk->first_pending)) { 1008 /* in recovery mode can see ack after the current snd head */ 1009 if (WARN_ON_ONCE(!msk->recovery)) 1010 break; 1011 1012 msk->first_pending = mptcp_send_next(sk); 1013 } 1014 1015 dfrag_clear(sk, dfrag); 1016 } 1017 1018 dfrag = mptcp_rtx_head(sk); 1019 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1020 u64 delta = snd_una - dfrag->data_seq; 1021 1022 /* prevent wrap around in recovery mode */ 1023 if (unlikely(delta > dfrag->already_sent)) { 1024 if (WARN_ON_ONCE(!msk->recovery)) 1025 goto out; 1026 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1027 goto out; 1028 dfrag->already_sent += delta - dfrag->already_sent; 1029 } 1030 1031 dfrag->data_seq += delta; 1032 dfrag->offset += delta; 1033 dfrag->data_len -= delta; 1034 dfrag->already_sent -= delta; 1035 1036 dfrag_uncharge(sk, delta); 1037 } 1038 1039 /* all retransmitted data acked, recovery completed */ 1040 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1041 msk->recovery = false; 1042 1043 out: 1044 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1045 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1046 mptcp_stop_rtx_timer(sk); 1047 } else { 1048 mptcp_reset_rtx_timer(sk); 1049 } 1050 1051 if (mptcp_pending_data_fin_ack(sk)) 1052 mptcp_schedule_work(sk); 1053 } 1054 1055 static void __mptcp_clean_una_wakeup(struct sock *sk) 1056 { 1057 lockdep_assert_held_once(&sk->sk_lock.slock); 1058 1059 __mptcp_clean_una(sk); 1060 mptcp_write_space(sk); 1061 } 1062 1063 static void mptcp_clean_una_wakeup(struct sock *sk) 1064 { 1065 mptcp_data_lock(sk); 1066 __mptcp_clean_una_wakeup(sk); 1067 mptcp_data_unlock(sk); 1068 } 1069 1070 static void mptcp_enter_memory_pressure(struct sock *sk) 1071 { 1072 struct mptcp_subflow_context *subflow; 1073 struct mptcp_sock *msk = mptcp_sk(sk); 1074 bool first = true; 1075 1076 mptcp_for_each_subflow(msk, subflow) { 1077 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1078 1079 if (first) 1080 tcp_enter_memory_pressure(ssk); 1081 sk_stream_moderate_sndbuf(ssk); 1082 1083 first = false; 1084 } 1085 __mptcp_sync_sndbuf(sk); 1086 } 1087 1088 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1089 * data 1090 */ 1091 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1092 { 1093 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1094 pfrag, sk->sk_allocation))) 1095 return true; 1096 1097 mptcp_enter_memory_pressure(sk); 1098 return false; 1099 } 1100 1101 static struct mptcp_data_frag * 1102 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1103 int orig_offset) 1104 { 1105 int offset = ALIGN(orig_offset, sizeof(long)); 1106 struct mptcp_data_frag *dfrag; 1107 1108 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1109 dfrag->data_len = 0; 1110 dfrag->data_seq = msk->write_seq; 1111 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1112 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1113 dfrag->already_sent = 0; 1114 dfrag->page = pfrag->page; 1115 1116 return dfrag; 1117 } 1118 1119 struct mptcp_sendmsg_info { 1120 int mss_now; 1121 int size_goal; 1122 u16 limit; 1123 u16 sent; 1124 unsigned int flags; 1125 bool data_lock_held; 1126 }; 1127 1128 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1129 u64 data_seq, int avail_size) 1130 { 1131 u64 window_end = mptcp_wnd_end(msk); 1132 u64 mptcp_snd_wnd; 1133 1134 if (__mptcp_check_fallback(msk)) 1135 return avail_size; 1136 1137 mptcp_snd_wnd = window_end - data_seq; 1138 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1139 1140 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1141 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1142 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1143 } 1144 1145 return avail_size; 1146 } 1147 1148 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1149 { 1150 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1151 1152 if (!mpext) 1153 return false; 1154 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1155 return true; 1156 } 1157 1158 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1159 { 1160 struct sk_buff *skb; 1161 1162 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1163 if (likely(skb)) { 1164 if (likely(__mptcp_add_ext(skb, gfp))) { 1165 skb_reserve(skb, MAX_TCP_HEADER); 1166 skb->ip_summed = CHECKSUM_PARTIAL; 1167 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1168 return skb; 1169 } 1170 __kfree_skb(skb); 1171 } else { 1172 mptcp_enter_memory_pressure(sk); 1173 } 1174 return NULL; 1175 } 1176 1177 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1178 { 1179 struct sk_buff *skb; 1180 1181 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1182 if (!skb) 1183 return NULL; 1184 1185 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1186 tcp_skb_entail(ssk, skb); 1187 return skb; 1188 } 1189 tcp_skb_tsorted_anchor_cleanup(skb); 1190 kfree_skb(skb); 1191 return NULL; 1192 } 1193 1194 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1195 { 1196 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1197 1198 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1199 } 1200 1201 /* note: this always recompute the csum on the whole skb, even 1202 * if we just appended a single frag. More status info needed 1203 */ 1204 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1205 { 1206 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1207 __wsum csum = ~csum_unfold(mpext->csum); 1208 int offset = skb->len - added; 1209 1210 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1211 } 1212 1213 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1214 struct sock *ssk, 1215 struct mptcp_ext *mpext) 1216 { 1217 if (!mpext) 1218 return; 1219 1220 mpext->infinite_map = 1; 1221 mpext->data_len = 0; 1222 1223 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1224 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1225 mptcp_subflow_reset(ssk); 1226 return; 1227 } 1228 1229 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1230 } 1231 1232 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1233 1234 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1235 struct mptcp_data_frag *dfrag, 1236 struct mptcp_sendmsg_info *info) 1237 { 1238 u64 data_seq = dfrag->data_seq + info->sent; 1239 int offset = dfrag->offset + info->sent; 1240 struct mptcp_sock *msk = mptcp_sk(sk); 1241 bool zero_window_probe = false; 1242 struct mptcp_ext *mpext = NULL; 1243 bool can_coalesce = false; 1244 bool reuse_skb = true; 1245 struct sk_buff *skb; 1246 size_t copy; 1247 int i; 1248 1249 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1250 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1251 1252 if (WARN_ON_ONCE(info->sent > info->limit || 1253 info->limit > dfrag->data_len)) 1254 return 0; 1255 1256 if (unlikely(!__tcp_can_send(ssk))) 1257 return -EAGAIN; 1258 1259 /* compute send limit */ 1260 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1261 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1262 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1263 copy = info->size_goal; 1264 1265 skb = tcp_write_queue_tail(ssk); 1266 if (skb && copy > skb->len) { 1267 /* Limit the write to the size available in the 1268 * current skb, if any, so that we create at most a new skb. 1269 * Explicitly tells TCP internals to avoid collapsing on later 1270 * queue management operation, to avoid breaking the ext <-> 1271 * SSN association set here 1272 */ 1273 mpext = mptcp_get_ext(skb); 1274 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1275 TCP_SKB_CB(skb)->eor = 1; 1276 tcp_mark_push(tcp_sk(ssk), skb); 1277 goto alloc_skb; 1278 } 1279 1280 i = skb_shinfo(skb)->nr_frags; 1281 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1282 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1283 tcp_mark_push(tcp_sk(ssk), skb); 1284 goto alloc_skb; 1285 } 1286 1287 copy -= skb->len; 1288 } else { 1289 alloc_skb: 1290 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1291 if (!skb) 1292 return -ENOMEM; 1293 1294 i = skb_shinfo(skb)->nr_frags; 1295 reuse_skb = false; 1296 mpext = mptcp_get_ext(skb); 1297 } 1298 1299 /* Zero window and all data acked? Probe. */ 1300 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1301 if (copy == 0) { 1302 u64 snd_una = READ_ONCE(msk->snd_una); 1303 1304 /* No need for zero probe if there are any data pending 1305 * either at the msk or ssk level; skb is the current write 1306 * queue tail and can be empty at this point. 1307 */ 1308 if (snd_una != msk->snd_nxt || skb->len || 1309 skb != tcp_send_head(ssk)) { 1310 tcp_remove_empty_skb(ssk); 1311 return 0; 1312 } 1313 1314 zero_window_probe = true; 1315 data_seq = snd_una - 1; 1316 copy = 1; 1317 } 1318 1319 copy = min_t(size_t, copy, info->limit - info->sent); 1320 if (!sk_wmem_schedule(ssk, copy)) { 1321 tcp_remove_empty_skb(ssk); 1322 return -ENOMEM; 1323 } 1324 1325 if (can_coalesce) { 1326 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1327 } else { 1328 get_page(dfrag->page); 1329 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1330 } 1331 1332 skb->len += copy; 1333 skb->data_len += copy; 1334 skb->truesize += copy; 1335 sk_wmem_queued_add(ssk, copy); 1336 sk_mem_charge(ssk, copy); 1337 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1338 TCP_SKB_CB(skb)->end_seq += copy; 1339 tcp_skb_pcount_set(skb, 0); 1340 1341 /* on skb reuse we just need to update the DSS len */ 1342 if (reuse_skb) { 1343 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1344 mpext->data_len += copy; 1345 goto out; 1346 } 1347 1348 memset(mpext, 0, sizeof(*mpext)); 1349 mpext->data_seq = data_seq; 1350 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1351 mpext->data_len = copy; 1352 mpext->use_map = 1; 1353 mpext->dsn64 = 1; 1354 1355 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1356 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1357 mpext->dsn64); 1358 1359 if (zero_window_probe) { 1360 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1361 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1362 mpext->frozen = 1; 1363 if (READ_ONCE(msk->csum_enabled)) 1364 mptcp_update_data_checksum(skb, copy); 1365 tcp_push_pending_frames(ssk); 1366 return 0; 1367 } 1368 out: 1369 if (READ_ONCE(msk->csum_enabled)) 1370 mptcp_update_data_checksum(skb, copy); 1371 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1372 mptcp_update_infinite_map(msk, ssk, mpext); 1373 trace_mptcp_sendmsg_frag(mpext); 1374 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1375 return copy; 1376 } 1377 1378 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1379 sizeof(struct tcphdr) - \ 1380 MAX_TCP_OPTION_SPACE - \ 1381 sizeof(struct ipv6hdr) - \ 1382 sizeof(struct frag_hdr)) 1383 1384 struct subflow_send_info { 1385 struct sock *ssk; 1386 u64 linger_time; 1387 }; 1388 1389 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1390 { 1391 if (!subflow->stale) 1392 return; 1393 1394 subflow->stale = 0; 1395 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1396 } 1397 1398 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1399 { 1400 if (unlikely(subflow->stale)) { 1401 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1402 1403 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1404 return false; 1405 1406 mptcp_subflow_set_active(subflow); 1407 } 1408 return __mptcp_subflow_active(subflow); 1409 } 1410 1411 #define SSK_MODE_ACTIVE 0 1412 #define SSK_MODE_BACKUP 1 1413 #define SSK_MODE_MAX 2 1414 1415 /* implement the mptcp packet scheduler; 1416 * returns the subflow that will transmit the next DSS 1417 * additionally updates the rtx timeout 1418 */ 1419 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1420 { 1421 struct subflow_send_info send_info[SSK_MODE_MAX]; 1422 struct mptcp_subflow_context *subflow; 1423 struct sock *sk = (struct sock *)msk; 1424 u32 pace, burst, wmem; 1425 int i, nr_active = 0; 1426 struct sock *ssk; 1427 u64 linger_time; 1428 long tout = 0; 1429 1430 /* pick the subflow with the lower wmem/wspace ratio */ 1431 for (i = 0; i < SSK_MODE_MAX; ++i) { 1432 send_info[i].ssk = NULL; 1433 send_info[i].linger_time = -1; 1434 } 1435 1436 mptcp_for_each_subflow(msk, subflow) { 1437 bool backup = subflow->backup || subflow->request_bkup; 1438 1439 trace_mptcp_subflow_get_send(subflow); 1440 ssk = mptcp_subflow_tcp_sock(subflow); 1441 if (!mptcp_subflow_active(subflow)) 1442 continue; 1443 1444 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1445 nr_active += !backup; 1446 pace = subflow->avg_pacing_rate; 1447 if (unlikely(!pace)) { 1448 /* init pacing rate from socket */ 1449 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1450 pace = subflow->avg_pacing_rate; 1451 if (!pace) 1452 continue; 1453 } 1454 1455 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1456 if (linger_time < send_info[backup].linger_time) { 1457 send_info[backup].ssk = ssk; 1458 send_info[backup].linger_time = linger_time; 1459 } 1460 } 1461 __mptcp_set_timeout(sk, tout); 1462 1463 /* pick the best backup if no other subflow is active */ 1464 if (!nr_active) 1465 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1466 1467 /* According to the blest algorithm, to avoid HoL blocking for the 1468 * faster flow, we need to: 1469 * - estimate the faster flow linger time 1470 * - use the above to estimate the amount of byte transferred 1471 * by the faster flow 1472 * - check that the amount of queued data is greater than the above, 1473 * otherwise do not use the picked, slower, subflow 1474 * We select the subflow with the shorter estimated time to flush 1475 * the queued mem, which basically ensure the above. We just need 1476 * to check that subflow has a non empty cwin. 1477 */ 1478 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1479 if (!ssk || !sk_stream_memory_free(ssk)) 1480 return NULL; 1481 1482 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1483 wmem = READ_ONCE(ssk->sk_wmem_queued); 1484 if (!burst) 1485 return ssk; 1486 1487 subflow = mptcp_subflow_ctx(ssk); 1488 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1489 READ_ONCE(ssk->sk_pacing_rate) * burst, 1490 burst + wmem); 1491 msk->snd_burst = burst; 1492 return ssk; 1493 } 1494 1495 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1496 { 1497 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1498 release_sock(ssk); 1499 } 1500 1501 static void mptcp_update_post_push(struct mptcp_sock *msk, 1502 struct mptcp_data_frag *dfrag, 1503 u32 sent) 1504 { 1505 u64 snd_nxt_new = dfrag->data_seq; 1506 1507 dfrag->already_sent += sent; 1508 1509 msk->snd_burst -= sent; 1510 1511 snd_nxt_new += dfrag->already_sent; 1512 1513 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1514 * is recovering after a failover. In that event, this re-sends 1515 * old segments. 1516 * 1517 * Thus compute snd_nxt_new candidate based on 1518 * the dfrag->data_seq that was sent and the data 1519 * that has been handed to the subflow for transmission 1520 * and skip update in case it was old dfrag. 1521 */ 1522 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1523 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1524 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1525 } 1526 } 1527 1528 void mptcp_check_and_set_pending(struct sock *sk) 1529 { 1530 if (mptcp_send_head(sk)) { 1531 mptcp_data_lock(sk); 1532 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1533 mptcp_data_unlock(sk); 1534 } 1535 } 1536 1537 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1538 struct mptcp_sendmsg_info *info) 1539 { 1540 struct mptcp_sock *msk = mptcp_sk(sk); 1541 struct mptcp_data_frag *dfrag; 1542 int len, copied = 0, err = 0; 1543 1544 while ((dfrag = mptcp_send_head(sk))) { 1545 info->sent = dfrag->already_sent; 1546 info->limit = dfrag->data_len; 1547 len = dfrag->data_len - dfrag->already_sent; 1548 while (len > 0) { 1549 int ret = 0; 1550 1551 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1552 if (ret <= 0) { 1553 err = copied ? : ret; 1554 goto out; 1555 } 1556 1557 info->sent += ret; 1558 copied += ret; 1559 len -= ret; 1560 1561 mptcp_update_post_push(msk, dfrag, ret); 1562 } 1563 msk->first_pending = mptcp_send_next(sk); 1564 1565 if (msk->snd_burst <= 0 || 1566 !sk_stream_memory_free(ssk) || 1567 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1568 err = copied; 1569 goto out; 1570 } 1571 mptcp_set_timeout(sk); 1572 } 1573 err = copied; 1574 1575 out: 1576 if (err > 0) 1577 msk->last_data_sent = tcp_jiffies32; 1578 return err; 1579 } 1580 1581 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1582 { 1583 struct sock *prev_ssk = NULL, *ssk = NULL; 1584 struct mptcp_sock *msk = mptcp_sk(sk); 1585 struct mptcp_sendmsg_info info = { 1586 .flags = flags, 1587 }; 1588 bool do_check_data_fin = false; 1589 int push_count = 1; 1590 1591 while (mptcp_send_head(sk) && (push_count > 0)) { 1592 struct mptcp_subflow_context *subflow; 1593 int ret = 0; 1594 1595 if (mptcp_sched_get_send(msk)) 1596 break; 1597 1598 push_count = 0; 1599 1600 mptcp_for_each_subflow(msk, subflow) { 1601 if (READ_ONCE(subflow->scheduled)) { 1602 mptcp_subflow_set_scheduled(subflow, false); 1603 1604 prev_ssk = ssk; 1605 ssk = mptcp_subflow_tcp_sock(subflow); 1606 if (ssk != prev_ssk) { 1607 /* First check. If the ssk has changed since 1608 * the last round, release prev_ssk 1609 */ 1610 if (prev_ssk) 1611 mptcp_push_release(prev_ssk, &info); 1612 1613 /* Need to lock the new subflow only if different 1614 * from the previous one, otherwise we are still 1615 * helding the relevant lock 1616 */ 1617 lock_sock(ssk); 1618 } 1619 1620 push_count++; 1621 1622 ret = __subflow_push_pending(sk, ssk, &info); 1623 if (ret <= 0) { 1624 if (ret != -EAGAIN || 1625 (1 << ssk->sk_state) & 1626 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1627 push_count--; 1628 continue; 1629 } 1630 do_check_data_fin = true; 1631 } 1632 } 1633 } 1634 1635 /* at this point we held the socket lock for the last subflow we used */ 1636 if (ssk) 1637 mptcp_push_release(ssk, &info); 1638 1639 /* ensure the rtx timer is running */ 1640 if (!mptcp_rtx_timer_pending(sk)) 1641 mptcp_reset_rtx_timer(sk); 1642 if (do_check_data_fin) 1643 mptcp_check_send_data_fin(sk); 1644 } 1645 1646 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1647 { 1648 struct mptcp_sock *msk = mptcp_sk(sk); 1649 struct mptcp_sendmsg_info info = { 1650 .data_lock_held = true, 1651 }; 1652 bool keep_pushing = true; 1653 struct sock *xmit_ssk; 1654 int copied = 0; 1655 1656 info.flags = 0; 1657 while (mptcp_send_head(sk) && keep_pushing) { 1658 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1659 int ret = 0; 1660 1661 /* check for a different subflow usage only after 1662 * spooling the first chunk of data 1663 */ 1664 if (first) { 1665 mptcp_subflow_set_scheduled(subflow, false); 1666 ret = __subflow_push_pending(sk, ssk, &info); 1667 first = false; 1668 if (ret <= 0) 1669 break; 1670 copied += ret; 1671 continue; 1672 } 1673 1674 if (mptcp_sched_get_send(msk)) 1675 goto out; 1676 1677 if (READ_ONCE(subflow->scheduled)) { 1678 mptcp_subflow_set_scheduled(subflow, false); 1679 ret = __subflow_push_pending(sk, ssk, &info); 1680 if (ret <= 0) 1681 keep_pushing = false; 1682 copied += ret; 1683 } 1684 1685 mptcp_for_each_subflow(msk, subflow) { 1686 if (READ_ONCE(subflow->scheduled)) { 1687 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1688 if (xmit_ssk != ssk) { 1689 mptcp_subflow_delegate(subflow, 1690 MPTCP_DELEGATE_SEND); 1691 keep_pushing = false; 1692 } 1693 } 1694 } 1695 } 1696 1697 out: 1698 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1699 * not going to flush it via release_sock() 1700 */ 1701 if (copied) { 1702 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1703 info.size_goal); 1704 if (!mptcp_rtx_timer_pending(sk)) 1705 mptcp_reset_rtx_timer(sk); 1706 1707 if (msk->snd_data_fin_enable && 1708 msk->snd_nxt + 1 == msk->write_seq) 1709 mptcp_schedule_work(sk); 1710 } 1711 } 1712 1713 static int mptcp_disconnect(struct sock *sk, int flags); 1714 1715 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1716 size_t len, int *copied_syn) 1717 { 1718 unsigned int saved_flags = msg->msg_flags; 1719 struct mptcp_sock *msk = mptcp_sk(sk); 1720 struct sock *ssk; 1721 int ret; 1722 1723 /* on flags based fastopen the mptcp is supposed to create the 1724 * first subflow right now. Otherwise we are in the defer_connect 1725 * path, and the first subflow must be already present. 1726 * Since the defer_connect flag is cleared after the first succsful 1727 * fastopen attempt, no need to check for additional subflow status. 1728 */ 1729 if (msg->msg_flags & MSG_FASTOPEN) { 1730 ssk = __mptcp_nmpc_sk(msk); 1731 if (IS_ERR(ssk)) 1732 return PTR_ERR(ssk); 1733 } 1734 if (!msk->first) 1735 return -EINVAL; 1736 1737 ssk = msk->first; 1738 1739 lock_sock(ssk); 1740 msg->msg_flags |= MSG_DONTWAIT; 1741 msk->fastopening = 1; 1742 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1743 msk->fastopening = 0; 1744 msg->msg_flags = saved_flags; 1745 release_sock(ssk); 1746 1747 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1748 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1749 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1750 msg->msg_namelen, msg->msg_flags, 1); 1751 1752 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1753 * case of any error, except timeout or signal 1754 */ 1755 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1756 *copied_syn = 0; 1757 } else if (ret && ret != -EINPROGRESS) { 1758 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1759 * __inet_stream_connect() can fail, due to looking check, 1760 * see mptcp_disconnect(). 1761 * Attempt it again outside the problematic scope. 1762 */ 1763 if (!mptcp_disconnect(sk, 0)) { 1764 sk->sk_disconnects++; 1765 sk->sk_socket->state = SS_UNCONNECTED; 1766 } 1767 } 1768 inet_clear_bit(DEFER_CONNECT, sk); 1769 1770 return ret; 1771 } 1772 1773 static int do_copy_data_nocache(struct sock *sk, int copy, 1774 struct iov_iter *from, char *to) 1775 { 1776 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1777 if (!copy_from_iter_full_nocache(to, copy, from)) 1778 return -EFAULT; 1779 } else if (!copy_from_iter_full(to, copy, from)) { 1780 return -EFAULT; 1781 } 1782 return 0; 1783 } 1784 1785 /* open-code sk_stream_memory_free() plus sent limit computation to 1786 * avoid indirect calls in fast-path. 1787 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1788 * annotations. 1789 */ 1790 static u32 mptcp_send_limit(const struct sock *sk) 1791 { 1792 const struct mptcp_sock *msk = mptcp_sk(sk); 1793 u32 limit, not_sent; 1794 1795 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1796 return 0; 1797 1798 limit = mptcp_notsent_lowat(sk); 1799 if (limit == UINT_MAX) 1800 return UINT_MAX; 1801 1802 not_sent = msk->write_seq - msk->snd_nxt; 1803 if (not_sent >= limit) 1804 return 0; 1805 1806 return limit - not_sent; 1807 } 1808 1809 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1810 { 1811 struct mptcp_subflow_context *subflow; 1812 1813 if (!rfs_is_needed()) 1814 return; 1815 1816 mptcp_for_each_subflow(msk, subflow) { 1817 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1818 1819 sock_rps_record_flow(ssk); 1820 } 1821 } 1822 1823 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1824 { 1825 struct mptcp_sock *msk = mptcp_sk(sk); 1826 struct page_frag *pfrag; 1827 size_t copied = 0; 1828 int ret = 0; 1829 long timeo; 1830 1831 /* silently ignore everything else */ 1832 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1833 1834 lock_sock(sk); 1835 1836 mptcp_rps_record_subflows(msk); 1837 1838 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1839 msg->msg_flags & MSG_FASTOPEN)) { 1840 int copied_syn = 0; 1841 1842 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1843 copied += copied_syn; 1844 if (ret == -EINPROGRESS && copied_syn > 0) 1845 goto out; 1846 else if (ret) 1847 goto do_error; 1848 } 1849 1850 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1851 1852 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1853 ret = sk_stream_wait_connect(sk, &timeo); 1854 if (ret) 1855 goto do_error; 1856 } 1857 1858 ret = -EPIPE; 1859 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1860 goto do_error; 1861 1862 pfrag = sk_page_frag(sk); 1863 1864 while (msg_data_left(msg)) { 1865 int total_ts, frag_truesize = 0; 1866 struct mptcp_data_frag *dfrag; 1867 bool dfrag_collapsed; 1868 size_t psize, offset; 1869 u32 copy_limit; 1870 1871 /* ensure fitting the notsent_lowat() constraint */ 1872 copy_limit = mptcp_send_limit(sk); 1873 if (!copy_limit) 1874 goto wait_for_memory; 1875 1876 /* reuse tail pfrag, if possible, or carve a new one from the 1877 * page allocator 1878 */ 1879 dfrag = mptcp_pending_tail(sk); 1880 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1881 if (!dfrag_collapsed) { 1882 if (!mptcp_page_frag_refill(sk, pfrag)) 1883 goto wait_for_memory; 1884 1885 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1886 frag_truesize = dfrag->overhead; 1887 } 1888 1889 /* we do not bound vs wspace, to allow a single packet. 1890 * memory accounting will prevent execessive memory usage 1891 * anyway 1892 */ 1893 offset = dfrag->offset + dfrag->data_len; 1894 psize = pfrag->size - offset; 1895 psize = min_t(size_t, psize, msg_data_left(msg)); 1896 psize = min_t(size_t, psize, copy_limit); 1897 total_ts = psize + frag_truesize; 1898 1899 if (!sk_wmem_schedule(sk, total_ts)) 1900 goto wait_for_memory; 1901 1902 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1903 page_address(dfrag->page) + offset); 1904 if (ret) 1905 goto do_error; 1906 1907 /* data successfully copied into the write queue */ 1908 sk_forward_alloc_add(sk, -total_ts); 1909 copied += psize; 1910 dfrag->data_len += psize; 1911 frag_truesize += psize; 1912 pfrag->offset += frag_truesize; 1913 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1914 1915 /* charge data on mptcp pending queue to the msk socket 1916 * Note: we charge such data both to sk and ssk 1917 */ 1918 sk_wmem_queued_add(sk, frag_truesize); 1919 if (!dfrag_collapsed) { 1920 get_page(dfrag->page); 1921 list_add_tail(&dfrag->list, &msk->rtx_queue); 1922 if (!msk->first_pending) 1923 msk->first_pending = dfrag; 1924 } 1925 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1926 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1927 !dfrag_collapsed); 1928 1929 continue; 1930 1931 wait_for_memory: 1932 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1933 __mptcp_push_pending(sk, msg->msg_flags); 1934 ret = sk_stream_wait_memory(sk, &timeo); 1935 if (ret) 1936 goto do_error; 1937 } 1938 1939 if (copied) 1940 __mptcp_push_pending(sk, msg->msg_flags); 1941 1942 out: 1943 release_sock(sk); 1944 return copied; 1945 1946 do_error: 1947 if (copied) 1948 goto out; 1949 1950 copied = sk_stream_error(sk, msg->msg_flags, ret); 1951 goto out; 1952 } 1953 1954 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1955 1956 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1957 size_t len, int flags, int copied_total, 1958 struct scm_timestamping_internal *tss, 1959 int *cmsg_flags) 1960 { 1961 struct mptcp_sock *msk = mptcp_sk(sk); 1962 struct sk_buff *skb, *tmp; 1963 int total_data_len = 0; 1964 int copied = 0; 1965 1966 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1967 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 1968 u32 data_len = skb->len - offset; 1969 u32 count; 1970 int err; 1971 1972 if (flags & MSG_PEEK) { 1973 /* skip already peeked skbs */ 1974 if (total_data_len + data_len <= copied_total) { 1975 total_data_len += data_len; 1976 continue; 1977 } 1978 1979 /* skip the already peeked data in the current skb */ 1980 delta = copied_total - total_data_len; 1981 offset += delta; 1982 data_len -= delta; 1983 } 1984 1985 count = min_t(size_t, len - copied, data_len); 1986 if (!(flags & MSG_TRUNC)) { 1987 err = skb_copy_datagram_msg(skb, offset, msg, count); 1988 if (unlikely(err < 0)) { 1989 if (!copied) 1990 return err; 1991 break; 1992 } 1993 } 1994 1995 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1996 tcp_update_recv_tstamps(skb, tss); 1997 *cmsg_flags |= MPTCP_CMSG_TS; 1998 } 1999 2000 copied += count; 2001 2002 if (!(flags & MSG_PEEK)) { 2003 msk->bytes_consumed += count; 2004 if (count < data_len) { 2005 MPTCP_SKB_CB(skb)->offset += count; 2006 MPTCP_SKB_CB(skb)->map_seq += count; 2007 break; 2008 } 2009 2010 /* avoid the indirect call, we know the destructor is sock_rfree */ 2011 skb->destructor = NULL; 2012 skb->sk = NULL; 2013 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2014 sk_mem_uncharge(sk, skb->truesize); 2015 __skb_unlink(skb, &sk->sk_receive_queue); 2016 skb_attempt_defer_free(skb); 2017 } 2018 2019 if (copied >= len) 2020 break; 2021 } 2022 2023 mptcp_rcv_space_adjust(msk, copied); 2024 return copied; 2025 } 2026 2027 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2028 * 2029 * Only difference: Use highest rtt estimate of the subflows in use. 2030 */ 2031 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2032 { 2033 struct mptcp_subflow_context *subflow; 2034 struct sock *sk = (struct sock *)msk; 2035 u8 scaling_ratio = U8_MAX; 2036 u32 time, advmss = 1; 2037 u64 rtt_us, mstamp; 2038 2039 msk_owned_by_me(msk); 2040 2041 if (copied <= 0) 2042 return; 2043 2044 if (!msk->rcvspace_init) 2045 mptcp_rcv_space_init(msk, msk->first); 2046 2047 msk->rcvq_space.copied += copied; 2048 2049 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2050 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2051 2052 rtt_us = msk->rcvq_space.rtt_us; 2053 if (rtt_us && time < (rtt_us >> 3)) 2054 return; 2055 2056 rtt_us = 0; 2057 mptcp_for_each_subflow(msk, subflow) { 2058 const struct tcp_sock *tp; 2059 u64 sf_rtt_us; 2060 u32 sf_advmss; 2061 2062 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2063 2064 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2065 sf_advmss = READ_ONCE(tp->advmss); 2066 2067 rtt_us = max(sf_rtt_us, rtt_us); 2068 advmss = max(sf_advmss, advmss); 2069 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2070 } 2071 2072 msk->rcvq_space.rtt_us = rtt_us; 2073 msk->scaling_ratio = scaling_ratio; 2074 if (time < (rtt_us >> 3) || rtt_us == 0) 2075 return; 2076 2077 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2078 goto new_measure; 2079 2080 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2081 /* Make subflows follow along. If we do not do this, we 2082 * get drops at subflow level if skbs can't be moved to 2083 * the mptcp rx queue fast enough (announced rcv_win can 2084 * exceed ssk->sk_rcvbuf). 2085 */ 2086 mptcp_for_each_subflow(msk, subflow) { 2087 struct sock *ssk; 2088 bool slow; 2089 2090 ssk = mptcp_subflow_tcp_sock(subflow); 2091 slow = lock_sock_fast(ssk); 2092 /* subflows can be added before tcp_init_transfer() */ 2093 if (tcp_sk(ssk)->rcvq_space.space) 2094 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2095 unlock_sock_fast(ssk, slow); 2096 } 2097 } 2098 2099 new_measure: 2100 msk->rcvq_space.copied = 0; 2101 msk->rcvq_space.time = mstamp; 2102 } 2103 2104 static struct mptcp_subflow_context * 2105 __mptcp_first_ready_from(struct mptcp_sock *msk, 2106 struct mptcp_subflow_context *subflow) 2107 { 2108 struct mptcp_subflow_context *start_subflow = subflow; 2109 2110 while (!READ_ONCE(subflow->data_avail)) { 2111 subflow = mptcp_next_subflow(msk, subflow); 2112 if (subflow == start_subflow) 2113 return NULL; 2114 } 2115 return subflow; 2116 } 2117 2118 static bool __mptcp_move_skbs(struct sock *sk) 2119 { 2120 struct mptcp_subflow_context *subflow; 2121 struct mptcp_sock *msk = mptcp_sk(sk); 2122 bool ret = false; 2123 2124 if (list_empty(&msk->conn_list)) 2125 return false; 2126 2127 subflow = list_first_entry(&msk->conn_list, 2128 struct mptcp_subflow_context, node); 2129 for (;;) { 2130 struct sock *ssk; 2131 bool slowpath; 2132 2133 /* 2134 * As an optimization avoid traversing the subflows list 2135 * and ev. acquiring the subflow socket lock before baling out 2136 */ 2137 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2138 break; 2139 2140 subflow = __mptcp_first_ready_from(msk, subflow); 2141 if (!subflow) 2142 break; 2143 2144 ssk = mptcp_subflow_tcp_sock(subflow); 2145 slowpath = lock_sock_fast(ssk); 2146 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2147 if (unlikely(ssk->sk_err)) 2148 __mptcp_error_report(sk); 2149 unlock_sock_fast(ssk, slowpath); 2150 2151 subflow = mptcp_next_subflow(msk, subflow); 2152 } 2153 2154 __mptcp_ofo_queue(msk); 2155 if (ret) 2156 mptcp_check_data_fin((struct sock *)msk); 2157 return ret; 2158 } 2159 2160 static unsigned int mptcp_inq_hint(const struct sock *sk) 2161 { 2162 const struct mptcp_sock *msk = mptcp_sk(sk); 2163 const struct sk_buff *skb; 2164 2165 skb = skb_peek(&sk->sk_receive_queue); 2166 if (skb) { 2167 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2168 2169 if (hint_val >= INT_MAX) 2170 return INT_MAX; 2171 2172 return (unsigned int)hint_val; 2173 } 2174 2175 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2176 return 1; 2177 2178 return 0; 2179 } 2180 2181 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2182 int flags, int *addr_len) 2183 { 2184 struct mptcp_sock *msk = mptcp_sk(sk); 2185 struct scm_timestamping_internal tss; 2186 int copied = 0, cmsg_flags = 0; 2187 int target; 2188 long timeo; 2189 2190 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2191 if (unlikely(flags & MSG_ERRQUEUE)) 2192 return inet_recv_error(sk, msg, len, addr_len); 2193 2194 lock_sock(sk); 2195 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2196 copied = -ENOTCONN; 2197 goto out_err; 2198 } 2199 2200 mptcp_rps_record_subflows(msk); 2201 2202 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2203 2204 len = min_t(size_t, len, INT_MAX); 2205 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2206 2207 if (unlikely(msk->recvmsg_inq)) 2208 cmsg_flags = MPTCP_CMSG_INQ; 2209 2210 while (copied < len) { 2211 int err, bytes_read; 2212 2213 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2214 copied, &tss, &cmsg_flags); 2215 if (unlikely(bytes_read < 0)) { 2216 if (!copied) 2217 copied = bytes_read; 2218 goto out_err; 2219 } 2220 2221 copied += bytes_read; 2222 2223 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2224 continue; 2225 2226 /* only the MPTCP socket status is relevant here. The exit 2227 * conditions mirror closely tcp_recvmsg() 2228 */ 2229 if (copied >= target) 2230 break; 2231 2232 if (copied) { 2233 if (sk->sk_err || 2234 sk->sk_state == TCP_CLOSE || 2235 (sk->sk_shutdown & RCV_SHUTDOWN) || 2236 !timeo || 2237 signal_pending(current)) 2238 break; 2239 } else { 2240 if (sk->sk_err) { 2241 copied = sock_error(sk); 2242 break; 2243 } 2244 2245 if (sk->sk_shutdown & RCV_SHUTDOWN) 2246 break; 2247 2248 if (sk->sk_state == TCP_CLOSE) { 2249 copied = -ENOTCONN; 2250 break; 2251 } 2252 2253 if (!timeo) { 2254 copied = -EAGAIN; 2255 break; 2256 } 2257 2258 if (signal_pending(current)) { 2259 copied = sock_intr_errno(timeo); 2260 break; 2261 } 2262 } 2263 2264 pr_debug("block timeout %ld\n", timeo); 2265 mptcp_cleanup_rbuf(msk, copied); 2266 err = sk_wait_data(sk, &timeo, NULL); 2267 if (err < 0) { 2268 err = copied ? : err; 2269 goto out_err; 2270 } 2271 } 2272 2273 mptcp_cleanup_rbuf(msk, copied); 2274 2275 out_err: 2276 if (cmsg_flags && copied >= 0) { 2277 if (cmsg_flags & MPTCP_CMSG_TS) 2278 tcp_recv_timestamp(msg, sk, &tss); 2279 2280 if (cmsg_flags & MPTCP_CMSG_INQ) { 2281 unsigned int inq = mptcp_inq_hint(sk); 2282 2283 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2284 } 2285 } 2286 2287 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2288 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2289 2290 release_sock(sk); 2291 return copied; 2292 } 2293 2294 static void mptcp_retransmit_timer(struct timer_list *t) 2295 { 2296 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2297 icsk_retransmit_timer); 2298 struct sock *sk = &icsk->icsk_inet.sk; 2299 struct mptcp_sock *msk = mptcp_sk(sk); 2300 2301 bh_lock_sock(sk); 2302 if (!sock_owned_by_user(sk)) { 2303 /* we need a process context to retransmit */ 2304 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2305 mptcp_schedule_work(sk); 2306 } else { 2307 /* delegate our work to tcp_release_cb() */ 2308 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2309 } 2310 bh_unlock_sock(sk); 2311 sock_put(sk); 2312 } 2313 2314 static void mptcp_tout_timer(struct timer_list *t) 2315 { 2316 struct sock *sk = timer_container_of(sk, t, sk_timer); 2317 2318 mptcp_schedule_work(sk); 2319 sock_put(sk); 2320 } 2321 2322 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2323 * level. 2324 * 2325 * A backup subflow is returned only if that is the only kind available. 2326 */ 2327 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2328 { 2329 struct sock *backup = NULL, *pick = NULL; 2330 struct mptcp_subflow_context *subflow; 2331 int min_stale_count = INT_MAX; 2332 2333 mptcp_for_each_subflow(msk, subflow) { 2334 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2335 2336 if (!__mptcp_subflow_active(subflow)) 2337 continue; 2338 2339 /* still data outstanding at TCP level? skip this */ 2340 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2341 mptcp_pm_subflow_chk_stale(msk, ssk); 2342 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2343 continue; 2344 } 2345 2346 if (subflow->backup || subflow->request_bkup) { 2347 if (!backup) 2348 backup = ssk; 2349 continue; 2350 } 2351 2352 if (!pick) 2353 pick = ssk; 2354 } 2355 2356 if (pick) 2357 return pick; 2358 2359 /* use backup only if there are no progresses anywhere */ 2360 return min_stale_count > 1 ? backup : NULL; 2361 } 2362 2363 bool __mptcp_retransmit_pending_data(struct sock *sk) 2364 { 2365 struct mptcp_data_frag *cur, *rtx_head; 2366 struct mptcp_sock *msk = mptcp_sk(sk); 2367 2368 if (__mptcp_check_fallback(msk)) 2369 return false; 2370 2371 /* the closing socket has some data untransmitted and/or unacked: 2372 * some data in the mptcp rtx queue has not really xmitted yet. 2373 * keep it simple and re-inject the whole mptcp level rtx queue 2374 */ 2375 mptcp_data_lock(sk); 2376 __mptcp_clean_una_wakeup(sk); 2377 rtx_head = mptcp_rtx_head(sk); 2378 if (!rtx_head) { 2379 mptcp_data_unlock(sk); 2380 return false; 2381 } 2382 2383 msk->recovery_snd_nxt = msk->snd_nxt; 2384 msk->recovery = true; 2385 mptcp_data_unlock(sk); 2386 2387 msk->first_pending = rtx_head; 2388 msk->snd_burst = 0; 2389 2390 /* be sure to clear the "sent status" on all re-injected fragments */ 2391 list_for_each_entry(cur, &msk->rtx_queue, list) { 2392 if (!cur->already_sent) 2393 break; 2394 cur->already_sent = 0; 2395 } 2396 2397 return true; 2398 } 2399 2400 /* flags for __mptcp_close_ssk() */ 2401 #define MPTCP_CF_PUSH BIT(1) 2402 #define MPTCP_CF_FASTCLOSE BIT(2) 2403 2404 /* be sure to send a reset only if the caller asked for it, also 2405 * clean completely the subflow status when the subflow reaches 2406 * TCP_CLOSE state 2407 */ 2408 static void __mptcp_subflow_disconnect(struct sock *ssk, 2409 struct mptcp_subflow_context *subflow, 2410 unsigned int flags) 2411 { 2412 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2413 (flags & MPTCP_CF_FASTCLOSE)) { 2414 /* The MPTCP code never wait on the subflow sockets, TCP-level 2415 * disconnect should never fail 2416 */ 2417 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2418 mptcp_subflow_ctx_reset(subflow); 2419 } else { 2420 tcp_shutdown(ssk, SEND_SHUTDOWN); 2421 } 2422 } 2423 2424 /* subflow sockets can be either outgoing (connect) or incoming 2425 * (accept). 2426 * 2427 * Outgoing subflows use in-kernel sockets. 2428 * Incoming subflows do not have their own 'struct socket' allocated, 2429 * so we need to use tcp_close() after detaching them from the mptcp 2430 * parent socket. 2431 */ 2432 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2433 struct mptcp_subflow_context *subflow, 2434 unsigned int flags) 2435 { 2436 struct mptcp_sock *msk = mptcp_sk(sk); 2437 bool dispose_it, need_push = false; 2438 2439 /* If the first subflow moved to a close state before accept, e.g. due 2440 * to an incoming reset or listener shutdown, the subflow socket is 2441 * already deleted by inet_child_forget() and the mptcp socket can't 2442 * survive too. 2443 */ 2444 if (msk->in_accept_queue && msk->first == ssk && 2445 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2446 /* ensure later check in mptcp_worker() will dispose the msk */ 2447 sock_set_flag(sk, SOCK_DEAD); 2448 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2449 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2450 mptcp_subflow_drop_ctx(ssk); 2451 goto out_release; 2452 } 2453 2454 dispose_it = msk->free_first || ssk != msk->first; 2455 if (dispose_it) 2456 list_del(&subflow->node); 2457 2458 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2459 2460 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2461 /* be sure to force the tcp_close path 2462 * to generate the egress reset 2463 */ 2464 ssk->sk_lingertime = 0; 2465 sock_set_flag(ssk, SOCK_LINGER); 2466 subflow->send_fastclose = 1; 2467 } 2468 2469 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2470 if (!dispose_it) { 2471 __mptcp_subflow_disconnect(ssk, subflow, flags); 2472 release_sock(ssk); 2473 2474 goto out; 2475 } 2476 2477 subflow->disposable = 1; 2478 2479 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2480 * the ssk has been already destroyed, we just need to release the 2481 * reference owned by msk; 2482 */ 2483 if (!inet_csk(ssk)->icsk_ulp_ops) { 2484 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2485 kfree_rcu(subflow, rcu); 2486 } else { 2487 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2488 __tcp_close(ssk, 0); 2489 2490 /* close acquired an extra ref */ 2491 __sock_put(ssk); 2492 } 2493 2494 out_release: 2495 __mptcp_subflow_error_report(sk, ssk); 2496 release_sock(ssk); 2497 2498 sock_put(ssk); 2499 2500 if (ssk == msk->first) 2501 WRITE_ONCE(msk->first, NULL); 2502 2503 out: 2504 __mptcp_sync_sndbuf(sk); 2505 if (need_push) 2506 __mptcp_push_pending(sk, 0); 2507 2508 /* Catch every 'all subflows closed' scenario, including peers silently 2509 * closing them, e.g. due to timeout. 2510 * For established sockets, allow an additional timeout before closing, 2511 * as the protocol can still create more subflows. 2512 */ 2513 if (list_is_singular(&msk->conn_list) && msk->first && 2514 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2515 if (sk->sk_state != TCP_ESTABLISHED || 2516 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2517 mptcp_set_state(sk, TCP_CLOSE); 2518 mptcp_close_wake_up(sk); 2519 } else { 2520 mptcp_start_tout_timer(sk); 2521 } 2522 } 2523 } 2524 2525 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2526 struct mptcp_subflow_context *subflow) 2527 { 2528 /* The first subflow can already be closed and still in the list */ 2529 if (subflow->close_event_done) 2530 return; 2531 2532 subflow->close_event_done = true; 2533 2534 if (sk->sk_state == TCP_ESTABLISHED) 2535 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2536 2537 /* subflow aborted before reaching the fully_established status 2538 * attempt the creation of the next subflow 2539 */ 2540 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2541 2542 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2543 } 2544 2545 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2546 { 2547 return 0; 2548 } 2549 2550 static void __mptcp_close_subflow(struct sock *sk) 2551 { 2552 struct mptcp_subflow_context *subflow, *tmp; 2553 struct mptcp_sock *msk = mptcp_sk(sk); 2554 2555 might_sleep(); 2556 2557 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2558 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2559 int ssk_state = inet_sk_state_load(ssk); 2560 2561 if (ssk_state != TCP_CLOSE && 2562 (ssk_state != TCP_CLOSE_WAIT || 2563 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2564 continue; 2565 2566 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2567 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2568 continue; 2569 2570 mptcp_close_ssk(sk, ssk, subflow); 2571 } 2572 2573 } 2574 2575 static bool mptcp_close_tout_expired(const struct sock *sk) 2576 { 2577 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2578 sk->sk_state == TCP_CLOSE) 2579 return false; 2580 2581 return time_after32(tcp_jiffies32, 2582 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2583 } 2584 2585 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2586 { 2587 struct mptcp_subflow_context *subflow, *tmp; 2588 struct sock *sk = (struct sock *)msk; 2589 2590 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2591 return; 2592 2593 mptcp_token_destroy(msk); 2594 2595 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2596 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2597 bool slow; 2598 2599 slow = lock_sock_fast(tcp_sk); 2600 if (tcp_sk->sk_state != TCP_CLOSE) { 2601 mptcp_send_active_reset_reason(tcp_sk); 2602 tcp_set_state(tcp_sk, TCP_CLOSE); 2603 } 2604 unlock_sock_fast(tcp_sk, slow); 2605 } 2606 2607 /* Mirror the tcp_reset() error propagation */ 2608 switch (sk->sk_state) { 2609 case TCP_SYN_SENT: 2610 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2611 break; 2612 case TCP_CLOSE_WAIT: 2613 WRITE_ONCE(sk->sk_err, EPIPE); 2614 break; 2615 case TCP_CLOSE: 2616 return; 2617 default: 2618 WRITE_ONCE(sk->sk_err, ECONNRESET); 2619 } 2620 2621 mptcp_set_state(sk, TCP_CLOSE); 2622 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2623 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2624 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2625 2626 /* the calling mptcp_worker will properly destroy the socket */ 2627 if (sock_flag(sk, SOCK_DEAD)) 2628 return; 2629 2630 sk->sk_state_change(sk); 2631 sk_error_report(sk); 2632 } 2633 2634 static void __mptcp_retrans(struct sock *sk) 2635 { 2636 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2637 struct mptcp_sock *msk = mptcp_sk(sk); 2638 struct mptcp_subflow_context *subflow; 2639 struct mptcp_data_frag *dfrag; 2640 struct sock *ssk; 2641 int ret, err; 2642 u16 len = 0; 2643 2644 mptcp_clean_una_wakeup(sk); 2645 2646 /* first check ssk: need to kick "stale" logic */ 2647 err = mptcp_sched_get_retrans(msk); 2648 dfrag = mptcp_rtx_head(sk); 2649 if (!dfrag) { 2650 if (mptcp_data_fin_enabled(msk)) { 2651 struct inet_connection_sock *icsk = inet_csk(sk); 2652 2653 WRITE_ONCE(icsk->icsk_retransmits, 2654 icsk->icsk_retransmits + 1); 2655 mptcp_set_datafin_timeout(sk); 2656 mptcp_send_ack(msk); 2657 2658 goto reset_timer; 2659 } 2660 2661 if (!mptcp_send_head(sk)) 2662 return; 2663 2664 goto reset_timer; 2665 } 2666 2667 if (err) 2668 goto reset_timer; 2669 2670 mptcp_for_each_subflow(msk, subflow) { 2671 if (READ_ONCE(subflow->scheduled)) { 2672 u16 copied = 0; 2673 2674 mptcp_subflow_set_scheduled(subflow, false); 2675 2676 ssk = mptcp_subflow_tcp_sock(subflow); 2677 2678 lock_sock(ssk); 2679 2680 /* limit retransmission to the bytes already sent on some subflows */ 2681 info.sent = 0; 2682 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2683 dfrag->already_sent; 2684 2685 /* 2686 * make the whole retrans decision, xmit, disallow 2687 * fallback atomic 2688 */ 2689 spin_lock_bh(&msk->fallback_lock); 2690 if (__mptcp_check_fallback(msk)) { 2691 spin_unlock_bh(&msk->fallback_lock); 2692 release_sock(ssk); 2693 return; 2694 } 2695 2696 while (info.sent < info.limit) { 2697 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2698 if (ret <= 0) 2699 break; 2700 2701 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2702 copied += ret; 2703 info.sent += ret; 2704 } 2705 if (copied) { 2706 len = max(copied, len); 2707 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2708 info.size_goal); 2709 msk->allow_infinite_fallback = false; 2710 } 2711 spin_unlock_bh(&msk->fallback_lock); 2712 2713 release_sock(ssk); 2714 } 2715 } 2716 2717 msk->bytes_retrans += len; 2718 dfrag->already_sent = max(dfrag->already_sent, len); 2719 2720 reset_timer: 2721 mptcp_check_and_set_pending(sk); 2722 2723 if (!mptcp_rtx_timer_pending(sk)) 2724 mptcp_reset_rtx_timer(sk); 2725 } 2726 2727 /* schedule the timeout timer for the relevant event: either close timeout 2728 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2729 */ 2730 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2731 { 2732 struct sock *sk = (struct sock *)msk; 2733 unsigned long timeout, close_timeout; 2734 2735 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2736 return; 2737 2738 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2739 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2740 2741 /* the close timeout takes precedence on the fail one, and here at least one of 2742 * them is active 2743 */ 2744 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2745 2746 sk_reset_timer(sk, &sk->sk_timer, timeout); 2747 } 2748 2749 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2750 { 2751 struct sock *ssk = msk->first; 2752 bool slow; 2753 2754 if (!ssk) 2755 return; 2756 2757 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2758 2759 slow = lock_sock_fast(ssk); 2760 mptcp_subflow_reset(ssk); 2761 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2762 unlock_sock_fast(ssk, slow); 2763 } 2764 2765 static void mptcp_do_fastclose(struct sock *sk) 2766 { 2767 struct mptcp_subflow_context *subflow, *tmp; 2768 struct mptcp_sock *msk = mptcp_sk(sk); 2769 2770 mptcp_set_state(sk, TCP_CLOSE); 2771 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2772 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2773 subflow, MPTCP_CF_FASTCLOSE); 2774 } 2775 2776 static void mptcp_worker(struct work_struct *work) 2777 { 2778 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2779 struct sock *sk = (struct sock *)msk; 2780 unsigned long fail_tout; 2781 int state; 2782 2783 lock_sock(sk); 2784 state = sk->sk_state; 2785 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2786 goto unlock; 2787 2788 mptcp_check_fastclose(msk); 2789 2790 mptcp_pm_worker(msk); 2791 2792 mptcp_check_send_data_fin(sk); 2793 mptcp_check_data_fin_ack(sk); 2794 mptcp_check_data_fin(sk); 2795 2796 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2797 __mptcp_close_subflow(sk); 2798 2799 if (mptcp_close_tout_expired(sk)) { 2800 mptcp_do_fastclose(sk); 2801 mptcp_close_wake_up(sk); 2802 } 2803 2804 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2805 __mptcp_destroy_sock(sk); 2806 goto unlock; 2807 } 2808 2809 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2810 __mptcp_retrans(sk); 2811 2812 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2813 if (fail_tout && time_after(jiffies, fail_tout)) 2814 mptcp_mp_fail_no_response(msk); 2815 2816 unlock: 2817 release_sock(sk); 2818 sock_put(sk); 2819 } 2820 2821 static void __mptcp_init_sock(struct sock *sk) 2822 { 2823 struct mptcp_sock *msk = mptcp_sk(sk); 2824 2825 INIT_LIST_HEAD(&msk->conn_list); 2826 INIT_LIST_HEAD(&msk->join_list); 2827 INIT_LIST_HEAD(&msk->rtx_queue); 2828 INIT_WORK(&msk->work, mptcp_worker); 2829 msk->out_of_order_queue = RB_ROOT; 2830 msk->first_pending = NULL; 2831 msk->timer_ival = TCP_RTO_MIN; 2832 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2833 2834 WRITE_ONCE(msk->first, NULL); 2835 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2836 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2837 msk->allow_infinite_fallback = true; 2838 msk->allow_subflows = true; 2839 msk->recovery = false; 2840 msk->subflow_id = 1; 2841 msk->last_data_sent = tcp_jiffies32; 2842 msk->last_data_recv = tcp_jiffies32; 2843 msk->last_ack_recv = tcp_jiffies32; 2844 2845 mptcp_pm_data_init(msk); 2846 spin_lock_init(&msk->fallback_lock); 2847 2848 /* re-use the csk retrans timer for MPTCP-level retrans */ 2849 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2850 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2851 } 2852 2853 static void mptcp_ca_reset(struct sock *sk) 2854 { 2855 struct inet_connection_sock *icsk = inet_csk(sk); 2856 2857 tcp_assign_congestion_control(sk); 2858 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2859 sizeof(mptcp_sk(sk)->ca_name)); 2860 2861 /* no need to keep a reference to the ops, the name will suffice */ 2862 tcp_cleanup_congestion_control(sk); 2863 icsk->icsk_ca_ops = NULL; 2864 } 2865 2866 static int mptcp_init_sock(struct sock *sk) 2867 { 2868 struct net *net = sock_net(sk); 2869 int ret; 2870 2871 __mptcp_init_sock(sk); 2872 2873 if (!mptcp_is_enabled(net)) 2874 return -ENOPROTOOPT; 2875 2876 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2877 return -ENOMEM; 2878 2879 rcu_read_lock(); 2880 ret = mptcp_init_sched(mptcp_sk(sk), 2881 mptcp_sched_find(mptcp_get_scheduler(net))); 2882 rcu_read_unlock(); 2883 if (ret) 2884 return ret; 2885 2886 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2887 2888 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2889 * propagate the correct value 2890 */ 2891 mptcp_ca_reset(sk); 2892 2893 sk_sockets_allocated_inc(sk); 2894 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2895 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2896 2897 return 0; 2898 } 2899 2900 static void __mptcp_clear_xmit(struct sock *sk) 2901 { 2902 struct mptcp_sock *msk = mptcp_sk(sk); 2903 struct mptcp_data_frag *dtmp, *dfrag; 2904 2905 msk->first_pending = NULL; 2906 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2907 dfrag_clear(sk, dfrag); 2908 } 2909 2910 void mptcp_cancel_work(struct sock *sk) 2911 { 2912 struct mptcp_sock *msk = mptcp_sk(sk); 2913 2914 if (cancel_work_sync(&msk->work)) 2915 __sock_put(sk); 2916 } 2917 2918 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2919 { 2920 lock_sock(ssk); 2921 2922 switch (ssk->sk_state) { 2923 case TCP_LISTEN: 2924 if (!(how & RCV_SHUTDOWN)) 2925 break; 2926 fallthrough; 2927 case TCP_SYN_SENT: 2928 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2929 break; 2930 default: 2931 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2932 pr_debug("Fallback\n"); 2933 ssk->sk_shutdown |= how; 2934 tcp_shutdown(ssk, how); 2935 2936 /* simulate the data_fin ack reception to let the state 2937 * machine move forward 2938 */ 2939 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2940 mptcp_schedule_work(sk); 2941 } else { 2942 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2943 tcp_send_ack(ssk); 2944 if (!mptcp_rtx_timer_pending(sk)) 2945 mptcp_reset_rtx_timer(sk); 2946 } 2947 break; 2948 } 2949 2950 release_sock(ssk); 2951 } 2952 2953 void mptcp_set_state(struct sock *sk, int state) 2954 { 2955 int oldstate = sk->sk_state; 2956 2957 switch (state) { 2958 case TCP_ESTABLISHED: 2959 if (oldstate != TCP_ESTABLISHED) 2960 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2961 break; 2962 case TCP_CLOSE_WAIT: 2963 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2964 * MPTCP "accepted" sockets will be created later on. So no 2965 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2966 */ 2967 break; 2968 default: 2969 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2970 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2971 } 2972 2973 inet_sk_state_store(sk, state); 2974 } 2975 2976 static const unsigned char new_state[16] = { 2977 /* current state: new state: action: */ 2978 [0 /* (Invalid) */] = TCP_CLOSE, 2979 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2980 [TCP_SYN_SENT] = TCP_CLOSE, 2981 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2982 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2983 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2984 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2985 [TCP_CLOSE] = TCP_CLOSE, 2986 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2987 [TCP_LAST_ACK] = TCP_LAST_ACK, 2988 [TCP_LISTEN] = TCP_CLOSE, 2989 [TCP_CLOSING] = TCP_CLOSING, 2990 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2991 }; 2992 2993 static int mptcp_close_state(struct sock *sk) 2994 { 2995 int next = (int)new_state[sk->sk_state]; 2996 int ns = next & TCP_STATE_MASK; 2997 2998 mptcp_set_state(sk, ns); 2999 3000 return next & TCP_ACTION_FIN; 3001 } 3002 3003 static void mptcp_check_send_data_fin(struct sock *sk) 3004 { 3005 struct mptcp_subflow_context *subflow; 3006 struct mptcp_sock *msk = mptcp_sk(sk); 3007 3008 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3009 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3010 msk->snd_nxt, msk->write_seq); 3011 3012 /* we still need to enqueue subflows or not really shutting down, 3013 * skip this 3014 */ 3015 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3016 mptcp_send_head(sk)) 3017 return; 3018 3019 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3020 3021 mptcp_for_each_subflow(msk, subflow) { 3022 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3023 3024 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3025 } 3026 } 3027 3028 static void __mptcp_wr_shutdown(struct sock *sk) 3029 { 3030 struct mptcp_sock *msk = mptcp_sk(sk); 3031 3032 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3033 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3034 !!mptcp_send_head(sk)); 3035 3036 /* will be ignored by fallback sockets */ 3037 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3038 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3039 3040 mptcp_check_send_data_fin(sk); 3041 } 3042 3043 static void __mptcp_destroy_sock(struct sock *sk) 3044 { 3045 struct mptcp_sock *msk = mptcp_sk(sk); 3046 3047 pr_debug("msk=%p\n", msk); 3048 3049 might_sleep(); 3050 3051 mptcp_stop_rtx_timer(sk); 3052 sk_stop_timer(sk, &sk->sk_timer); 3053 msk->pm.status = 0; 3054 mptcp_release_sched(msk); 3055 3056 sk->sk_prot->destroy(sk); 3057 3058 sk_stream_kill_queues(sk); 3059 xfrm_sk_free_policy(sk); 3060 3061 sock_put(sk); 3062 } 3063 3064 void __mptcp_unaccepted_force_close(struct sock *sk) 3065 { 3066 sock_set_flag(sk, SOCK_DEAD); 3067 mptcp_do_fastclose(sk); 3068 __mptcp_destroy_sock(sk); 3069 } 3070 3071 static __poll_t mptcp_check_readable(struct sock *sk) 3072 { 3073 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3074 } 3075 3076 static void mptcp_check_listen_stop(struct sock *sk) 3077 { 3078 struct sock *ssk; 3079 3080 if (inet_sk_state_load(sk) != TCP_LISTEN) 3081 return; 3082 3083 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3084 ssk = mptcp_sk(sk)->first; 3085 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3086 return; 3087 3088 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3089 tcp_set_state(ssk, TCP_CLOSE); 3090 mptcp_subflow_queue_clean(sk, ssk); 3091 inet_csk_listen_stop(ssk); 3092 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3093 release_sock(ssk); 3094 } 3095 3096 bool __mptcp_close(struct sock *sk, long timeout) 3097 { 3098 struct mptcp_subflow_context *subflow; 3099 struct mptcp_sock *msk = mptcp_sk(sk); 3100 bool do_cancel_work = false; 3101 int subflows_alive = 0; 3102 3103 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3104 3105 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3106 mptcp_check_listen_stop(sk); 3107 mptcp_set_state(sk, TCP_CLOSE); 3108 goto cleanup; 3109 } 3110 3111 if (mptcp_data_avail(msk) || timeout < 0) { 3112 /* If the msk has read data, or the caller explicitly ask it, 3113 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3114 */ 3115 mptcp_do_fastclose(sk); 3116 timeout = 0; 3117 } else if (mptcp_close_state(sk)) { 3118 __mptcp_wr_shutdown(sk); 3119 } 3120 3121 sk_stream_wait_close(sk, timeout); 3122 3123 cleanup: 3124 /* orphan all the subflows */ 3125 mptcp_for_each_subflow(msk, subflow) { 3126 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3127 bool slow = lock_sock_fast_nested(ssk); 3128 3129 subflows_alive += ssk->sk_state != TCP_CLOSE; 3130 3131 /* since the close timeout takes precedence on the fail one, 3132 * cancel the latter 3133 */ 3134 if (ssk == msk->first) 3135 subflow->fail_tout = 0; 3136 3137 /* detach from the parent socket, but allow data_ready to 3138 * push incoming data into the mptcp stack, to properly ack it 3139 */ 3140 ssk->sk_socket = NULL; 3141 ssk->sk_wq = NULL; 3142 unlock_sock_fast(ssk, slow); 3143 } 3144 sock_orphan(sk); 3145 3146 /* all the subflows are closed, only timeout can change the msk 3147 * state, let's not keep resources busy for no reasons 3148 */ 3149 if (subflows_alive == 0) 3150 mptcp_set_state(sk, TCP_CLOSE); 3151 3152 sock_hold(sk); 3153 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3154 mptcp_pm_connection_closed(msk); 3155 3156 if (sk->sk_state == TCP_CLOSE) { 3157 __mptcp_destroy_sock(sk); 3158 do_cancel_work = true; 3159 } else { 3160 mptcp_start_tout_timer(sk); 3161 } 3162 3163 return do_cancel_work; 3164 } 3165 3166 static void mptcp_close(struct sock *sk, long timeout) 3167 { 3168 bool do_cancel_work; 3169 3170 lock_sock(sk); 3171 3172 do_cancel_work = __mptcp_close(sk, timeout); 3173 release_sock(sk); 3174 if (do_cancel_work) 3175 mptcp_cancel_work(sk); 3176 3177 sock_put(sk); 3178 } 3179 3180 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3181 { 3182 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3183 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3184 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3185 3186 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3187 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3188 3189 if (msk6 && ssk6) { 3190 msk6->saddr = ssk6->saddr; 3191 msk6->flow_label = ssk6->flow_label; 3192 } 3193 #endif 3194 3195 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3196 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3197 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3198 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3199 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3200 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3201 } 3202 3203 static int mptcp_disconnect(struct sock *sk, int flags) 3204 { 3205 struct mptcp_sock *msk = mptcp_sk(sk); 3206 3207 /* We are on the fastopen error path. We can't call straight into the 3208 * subflows cleanup code due to lock nesting (we are already under 3209 * msk->firstsocket lock). 3210 */ 3211 if (msk->fastopening) 3212 return -EBUSY; 3213 3214 mptcp_check_listen_stop(sk); 3215 mptcp_set_state(sk, TCP_CLOSE); 3216 3217 mptcp_stop_rtx_timer(sk); 3218 mptcp_stop_tout_timer(sk); 3219 3220 mptcp_pm_connection_closed(msk); 3221 3222 /* msk->subflow is still intact, the following will not free the first 3223 * subflow 3224 */ 3225 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3226 3227 /* The first subflow is already in TCP_CLOSE status, the following 3228 * can't overlap with a fallback anymore 3229 */ 3230 spin_lock_bh(&msk->fallback_lock); 3231 msk->allow_subflows = true; 3232 msk->allow_infinite_fallback = true; 3233 WRITE_ONCE(msk->flags, 0); 3234 spin_unlock_bh(&msk->fallback_lock); 3235 3236 msk->cb_flags = 0; 3237 msk->recovery = false; 3238 WRITE_ONCE(msk->can_ack, false); 3239 WRITE_ONCE(msk->fully_established, false); 3240 WRITE_ONCE(msk->rcv_data_fin, false); 3241 WRITE_ONCE(msk->snd_data_fin_enable, false); 3242 WRITE_ONCE(msk->rcv_fastclose, false); 3243 WRITE_ONCE(msk->use_64bit_ack, false); 3244 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3245 mptcp_pm_data_reset(msk); 3246 mptcp_ca_reset(sk); 3247 msk->bytes_consumed = 0; 3248 msk->bytes_acked = 0; 3249 msk->bytes_received = 0; 3250 msk->bytes_sent = 0; 3251 msk->bytes_retrans = 0; 3252 msk->rcvspace_init = 0; 3253 3254 WRITE_ONCE(sk->sk_shutdown, 0); 3255 sk_error_report(sk); 3256 return 0; 3257 } 3258 3259 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3260 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3261 { 3262 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3263 3264 return &msk6->np; 3265 } 3266 3267 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3268 { 3269 const struct ipv6_pinfo *np = inet6_sk(sk); 3270 struct ipv6_txoptions *opt; 3271 struct ipv6_pinfo *newnp; 3272 3273 newnp = inet6_sk(newsk); 3274 3275 rcu_read_lock(); 3276 opt = rcu_dereference(np->opt); 3277 if (opt) { 3278 opt = ipv6_dup_options(newsk, opt); 3279 if (!opt) 3280 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3281 } 3282 RCU_INIT_POINTER(newnp->opt, opt); 3283 rcu_read_unlock(); 3284 } 3285 #endif 3286 3287 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3288 { 3289 struct ip_options_rcu *inet_opt, *newopt = NULL; 3290 const struct inet_sock *inet = inet_sk(sk); 3291 struct inet_sock *newinet; 3292 3293 newinet = inet_sk(newsk); 3294 3295 rcu_read_lock(); 3296 inet_opt = rcu_dereference(inet->inet_opt); 3297 if (inet_opt) { 3298 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3299 inet_opt->opt.optlen, GFP_ATOMIC); 3300 if (!newopt) 3301 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3302 } 3303 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3304 rcu_read_unlock(); 3305 } 3306 3307 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3308 const struct mptcp_options_received *mp_opt, 3309 struct sock *ssk, 3310 struct request_sock *req) 3311 { 3312 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3313 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3314 struct mptcp_subflow_context *subflow; 3315 struct mptcp_sock *msk; 3316 3317 if (!nsk) 3318 return NULL; 3319 3320 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3321 if (nsk->sk_family == AF_INET6) 3322 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3323 #endif 3324 3325 __mptcp_init_sock(nsk); 3326 3327 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3328 if (nsk->sk_family == AF_INET6) 3329 mptcp_copy_ip6_options(nsk, sk); 3330 else 3331 #endif 3332 mptcp_copy_ip_options(nsk, sk); 3333 3334 msk = mptcp_sk(nsk); 3335 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3336 WRITE_ONCE(msk->token, subflow_req->token); 3337 msk->in_accept_queue = 1; 3338 WRITE_ONCE(msk->fully_established, false); 3339 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3340 WRITE_ONCE(msk->csum_enabled, true); 3341 3342 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3343 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3344 WRITE_ONCE(msk->snd_una, msk->write_seq); 3345 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3346 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3347 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3348 3349 /* passive msk is created after the first/MPC subflow */ 3350 msk->subflow_id = 2; 3351 3352 sock_reset_flag(nsk, SOCK_RCU_FREE); 3353 security_inet_csk_clone(nsk, req); 3354 3355 /* this can't race with mptcp_close(), as the msk is 3356 * not yet exposted to user-space 3357 */ 3358 mptcp_set_state(nsk, TCP_ESTABLISHED); 3359 3360 /* The msk maintain a ref to each subflow in the connections list */ 3361 WRITE_ONCE(msk->first, ssk); 3362 subflow = mptcp_subflow_ctx(ssk); 3363 list_add(&subflow->node, &msk->conn_list); 3364 sock_hold(ssk); 3365 3366 /* new mpc subflow takes ownership of the newly 3367 * created mptcp socket 3368 */ 3369 mptcp_token_accept(subflow_req, msk); 3370 3371 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3372 * uses the correct data 3373 */ 3374 mptcp_copy_inaddrs(nsk, ssk); 3375 __mptcp_propagate_sndbuf(nsk, ssk); 3376 3377 mptcp_rcv_space_init(msk, ssk); 3378 3379 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3380 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3381 bh_unlock_sock(nsk); 3382 3383 /* note: the newly allocated socket refcount is 2 now */ 3384 return nsk; 3385 } 3386 3387 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3388 { 3389 const struct tcp_sock *tp = tcp_sk(ssk); 3390 3391 msk->rcvspace_init = 1; 3392 msk->rcvq_space.copied = 0; 3393 msk->rcvq_space.rtt_us = 0; 3394 3395 msk->rcvq_space.time = tp->tcp_mstamp; 3396 3397 /* initial rcv_space offering made to peer */ 3398 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3399 TCP_INIT_CWND * tp->advmss); 3400 if (msk->rcvq_space.space == 0) 3401 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3402 } 3403 3404 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3405 { 3406 struct mptcp_subflow_context *subflow, *tmp; 3407 struct sock *sk = (struct sock *)msk; 3408 3409 __mptcp_clear_xmit(sk); 3410 3411 /* join list will be eventually flushed (with rst) at sock lock release time */ 3412 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3413 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3414 3415 __skb_queue_purge(&sk->sk_receive_queue); 3416 skb_rbtree_purge(&msk->out_of_order_queue); 3417 3418 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3419 * inet_sock_destruct() will dispose it 3420 */ 3421 mptcp_token_destroy(msk); 3422 mptcp_pm_destroy(msk); 3423 } 3424 3425 static void mptcp_destroy(struct sock *sk) 3426 { 3427 struct mptcp_sock *msk = mptcp_sk(sk); 3428 3429 /* allow the following to close even the initial subflow */ 3430 msk->free_first = 1; 3431 mptcp_destroy_common(msk, 0); 3432 sk_sockets_allocated_dec(sk); 3433 } 3434 3435 void __mptcp_data_acked(struct sock *sk) 3436 { 3437 if (!sock_owned_by_user(sk)) 3438 __mptcp_clean_una(sk); 3439 else 3440 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3441 } 3442 3443 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3444 { 3445 if (!sock_owned_by_user(sk)) 3446 __mptcp_subflow_push_pending(sk, ssk, false); 3447 else 3448 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3449 } 3450 3451 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3452 BIT(MPTCP_RETRANSMIT) | \ 3453 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3454 BIT(MPTCP_DEQUEUE)) 3455 3456 /* processes deferred events and flush wmem */ 3457 static void mptcp_release_cb(struct sock *sk) 3458 __must_hold(&sk->sk_lock.slock) 3459 { 3460 struct mptcp_sock *msk = mptcp_sk(sk); 3461 3462 for (;;) { 3463 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3464 struct list_head join_list; 3465 3466 if (!flags) 3467 break; 3468 3469 INIT_LIST_HEAD(&join_list); 3470 list_splice_init(&msk->join_list, &join_list); 3471 3472 /* the following actions acquire the subflow socket lock 3473 * 3474 * 1) can't be invoked in atomic scope 3475 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3476 * datapath acquires the msk socket spinlock while helding 3477 * the subflow socket lock 3478 */ 3479 msk->cb_flags &= ~flags; 3480 spin_unlock_bh(&sk->sk_lock.slock); 3481 3482 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3483 __mptcp_flush_join_list(sk, &join_list); 3484 if (flags & BIT(MPTCP_PUSH_PENDING)) 3485 __mptcp_push_pending(sk, 0); 3486 if (flags & BIT(MPTCP_RETRANSMIT)) 3487 __mptcp_retrans(sk); 3488 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3489 /* notify ack seq update */ 3490 mptcp_cleanup_rbuf(msk, 0); 3491 sk->sk_data_ready(sk); 3492 } 3493 3494 cond_resched(); 3495 spin_lock_bh(&sk->sk_lock.slock); 3496 } 3497 3498 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3499 __mptcp_clean_una_wakeup(sk); 3500 if (unlikely(msk->cb_flags)) { 3501 /* be sure to sync the msk state before taking actions 3502 * depending on sk_state (MPTCP_ERROR_REPORT) 3503 * On sk release avoid actions depending on the first subflow 3504 */ 3505 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3506 __mptcp_sync_state(sk, msk->pending_state); 3507 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3508 __mptcp_error_report(sk); 3509 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3510 __mptcp_sync_sndbuf(sk); 3511 } 3512 } 3513 3514 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3515 * TCP can't schedule delack timer before the subflow is fully established. 3516 * MPTCP uses the delack timer to do 3rd ack retransmissions 3517 */ 3518 static void schedule_3rdack_retransmission(struct sock *ssk) 3519 { 3520 struct inet_connection_sock *icsk = inet_csk(ssk); 3521 struct tcp_sock *tp = tcp_sk(ssk); 3522 unsigned long timeout; 3523 3524 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3525 return; 3526 3527 /* reschedule with a timeout above RTT, as we must look only for drop */ 3528 if (tp->srtt_us) 3529 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3530 else 3531 timeout = TCP_TIMEOUT_INIT; 3532 timeout += jiffies; 3533 3534 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3535 smp_store_release(&icsk->icsk_ack.pending, 3536 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3537 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3538 } 3539 3540 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3541 { 3542 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3543 struct sock *sk = subflow->conn; 3544 3545 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3546 mptcp_data_lock(sk); 3547 if (!sock_owned_by_user(sk)) 3548 __mptcp_subflow_push_pending(sk, ssk, true); 3549 else 3550 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3551 mptcp_data_unlock(sk); 3552 } 3553 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3554 mptcp_data_lock(sk); 3555 if (!sock_owned_by_user(sk)) 3556 __mptcp_sync_sndbuf(sk); 3557 else 3558 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3559 mptcp_data_unlock(sk); 3560 } 3561 if (status & BIT(MPTCP_DELEGATE_ACK)) 3562 schedule_3rdack_retransmission(ssk); 3563 } 3564 3565 static int mptcp_hash(struct sock *sk) 3566 { 3567 /* should never be called, 3568 * we hash the TCP subflows not the MPTCP socket 3569 */ 3570 WARN_ON_ONCE(1); 3571 return 0; 3572 } 3573 3574 static void mptcp_unhash(struct sock *sk) 3575 { 3576 /* called from sk_common_release(), but nothing to do here */ 3577 } 3578 3579 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3580 { 3581 struct mptcp_sock *msk = mptcp_sk(sk); 3582 3583 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3584 if (WARN_ON_ONCE(!msk->first)) 3585 return -EINVAL; 3586 3587 return inet_csk_get_port(msk->first, snum); 3588 } 3589 3590 void mptcp_finish_connect(struct sock *ssk) 3591 { 3592 struct mptcp_subflow_context *subflow; 3593 struct mptcp_sock *msk; 3594 struct sock *sk; 3595 3596 subflow = mptcp_subflow_ctx(ssk); 3597 sk = subflow->conn; 3598 msk = mptcp_sk(sk); 3599 3600 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3601 3602 subflow->map_seq = subflow->iasn; 3603 subflow->map_subflow_seq = 1; 3604 3605 /* the socket is not connected yet, no msk/subflow ops can access/race 3606 * accessing the field below 3607 */ 3608 WRITE_ONCE(msk->local_key, subflow->local_key); 3609 3610 mptcp_pm_new_connection(msk, ssk, 0); 3611 } 3612 3613 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3614 { 3615 write_lock_bh(&sk->sk_callback_lock); 3616 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3617 sk_set_socket(sk, parent); 3618 write_unlock_bh(&sk->sk_callback_lock); 3619 } 3620 3621 bool mptcp_finish_join(struct sock *ssk) 3622 { 3623 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3624 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3625 struct sock *parent = (void *)msk; 3626 bool ret = true; 3627 3628 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3629 3630 /* mptcp socket already closing? */ 3631 if (!mptcp_is_fully_established(parent)) { 3632 subflow->reset_reason = MPTCP_RST_EMPTCP; 3633 return false; 3634 } 3635 3636 /* active subflow, already present inside the conn_list */ 3637 if (!list_empty(&subflow->node)) { 3638 spin_lock_bh(&msk->fallback_lock); 3639 if (!msk->allow_subflows) { 3640 spin_unlock_bh(&msk->fallback_lock); 3641 return false; 3642 } 3643 mptcp_subflow_joined(msk, ssk); 3644 spin_unlock_bh(&msk->fallback_lock); 3645 mptcp_propagate_sndbuf(parent, ssk); 3646 return true; 3647 } 3648 3649 if (!mptcp_pm_allow_new_subflow(msk)) { 3650 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3651 goto err_prohibited; 3652 } 3653 3654 /* If we can't acquire msk socket lock here, let the release callback 3655 * handle it 3656 */ 3657 mptcp_data_lock(parent); 3658 if (!sock_owned_by_user(parent)) { 3659 ret = __mptcp_finish_join(msk, ssk); 3660 if (ret) { 3661 sock_hold(ssk); 3662 list_add_tail(&subflow->node, &msk->conn_list); 3663 } 3664 } else { 3665 sock_hold(ssk); 3666 list_add_tail(&subflow->node, &msk->join_list); 3667 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3668 } 3669 mptcp_data_unlock(parent); 3670 3671 if (!ret) { 3672 err_prohibited: 3673 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3674 return false; 3675 } 3676 3677 return true; 3678 } 3679 3680 static void mptcp_shutdown(struct sock *sk, int how) 3681 { 3682 pr_debug("sk=%p, how=%d\n", sk, how); 3683 3684 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3685 __mptcp_wr_shutdown(sk); 3686 } 3687 3688 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3689 { 3690 const struct sock *sk = (void *)msk; 3691 u64 delta; 3692 3693 if (sk->sk_state == TCP_LISTEN) 3694 return -EINVAL; 3695 3696 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3697 return 0; 3698 3699 delta = msk->write_seq - v; 3700 if (__mptcp_check_fallback(msk) && msk->first) { 3701 struct tcp_sock *tp = tcp_sk(msk->first); 3702 3703 /* the first subflow is disconnected after close - see 3704 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3705 * so ignore that status, too. 3706 */ 3707 if (!((1 << msk->first->sk_state) & 3708 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3709 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3710 } 3711 if (delta > INT_MAX) 3712 delta = INT_MAX; 3713 3714 return (int)delta; 3715 } 3716 3717 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3718 { 3719 struct mptcp_sock *msk = mptcp_sk(sk); 3720 bool slow; 3721 3722 switch (cmd) { 3723 case SIOCINQ: 3724 if (sk->sk_state == TCP_LISTEN) 3725 return -EINVAL; 3726 3727 lock_sock(sk); 3728 if (__mptcp_move_skbs(sk)) 3729 mptcp_cleanup_rbuf(msk, 0); 3730 *karg = mptcp_inq_hint(sk); 3731 release_sock(sk); 3732 break; 3733 case SIOCOUTQ: 3734 slow = lock_sock_fast(sk); 3735 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3736 unlock_sock_fast(sk, slow); 3737 break; 3738 case SIOCOUTQNSD: 3739 slow = lock_sock_fast(sk); 3740 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3741 unlock_sock_fast(sk, slow); 3742 break; 3743 default: 3744 return -ENOIOCTLCMD; 3745 } 3746 3747 return 0; 3748 } 3749 3750 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3751 { 3752 struct mptcp_subflow_context *subflow; 3753 struct mptcp_sock *msk = mptcp_sk(sk); 3754 int err = -EINVAL; 3755 struct sock *ssk; 3756 3757 ssk = __mptcp_nmpc_sk(msk); 3758 if (IS_ERR(ssk)) 3759 return PTR_ERR(ssk); 3760 3761 mptcp_set_state(sk, TCP_SYN_SENT); 3762 subflow = mptcp_subflow_ctx(ssk); 3763 #ifdef CONFIG_TCP_MD5SIG 3764 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3765 * TCP option space. 3766 */ 3767 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3768 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3769 #endif 3770 if (subflow->request_mptcp) { 3771 if (mptcp_active_should_disable(sk)) 3772 mptcp_early_fallback(msk, subflow, 3773 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3774 else if (mptcp_token_new_connect(ssk) < 0) 3775 mptcp_early_fallback(msk, subflow, 3776 MPTCP_MIB_TOKENFALLBACKINIT); 3777 } 3778 3779 WRITE_ONCE(msk->write_seq, subflow->idsn); 3780 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3781 WRITE_ONCE(msk->snd_una, subflow->idsn); 3782 if (likely(!__mptcp_check_fallback(msk))) 3783 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3784 3785 /* if reaching here via the fastopen/sendmsg path, the caller already 3786 * acquired the subflow socket lock, too. 3787 */ 3788 if (!msk->fastopening) 3789 lock_sock(ssk); 3790 3791 /* the following mirrors closely a very small chunk of code from 3792 * __inet_stream_connect() 3793 */ 3794 if (ssk->sk_state != TCP_CLOSE) 3795 goto out; 3796 3797 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3798 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3799 if (err) 3800 goto out; 3801 } 3802 3803 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3804 if (err < 0) 3805 goto out; 3806 3807 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3808 3809 out: 3810 if (!msk->fastopening) 3811 release_sock(ssk); 3812 3813 /* on successful connect, the msk state will be moved to established by 3814 * subflow_finish_connect() 3815 */ 3816 if (unlikely(err)) { 3817 /* avoid leaving a dangling token in an unconnected socket */ 3818 mptcp_token_destroy(msk); 3819 mptcp_set_state(sk, TCP_CLOSE); 3820 return err; 3821 } 3822 3823 mptcp_copy_inaddrs(sk, ssk); 3824 return 0; 3825 } 3826 3827 static struct proto mptcp_prot = { 3828 .name = "MPTCP", 3829 .owner = THIS_MODULE, 3830 .init = mptcp_init_sock, 3831 .connect = mptcp_connect, 3832 .disconnect = mptcp_disconnect, 3833 .close = mptcp_close, 3834 .setsockopt = mptcp_setsockopt, 3835 .getsockopt = mptcp_getsockopt, 3836 .shutdown = mptcp_shutdown, 3837 .destroy = mptcp_destroy, 3838 .sendmsg = mptcp_sendmsg, 3839 .ioctl = mptcp_ioctl, 3840 .recvmsg = mptcp_recvmsg, 3841 .release_cb = mptcp_release_cb, 3842 .hash = mptcp_hash, 3843 .unhash = mptcp_unhash, 3844 .get_port = mptcp_get_port, 3845 .stream_memory_free = mptcp_stream_memory_free, 3846 .sockets_allocated = &mptcp_sockets_allocated, 3847 3848 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3849 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3850 3851 .memory_pressure = &tcp_memory_pressure, 3852 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3853 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3854 .sysctl_mem = sysctl_tcp_mem, 3855 .obj_size = sizeof(struct mptcp_sock), 3856 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3857 .no_autobind = true, 3858 }; 3859 3860 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3861 { 3862 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3863 struct sock *ssk, *sk = sock->sk; 3864 int err = -EINVAL; 3865 3866 lock_sock(sk); 3867 ssk = __mptcp_nmpc_sk(msk); 3868 if (IS_ERR(ssk)) { 3869 err = PTR_ERR(ssk); 3870 goto unlock; 3871 } 3872 3873 if (sk->sk_family == AF_INET) 3874 err = inet_bind_sk(ssk, uaddr, addr_len); 3875 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3876 else if (sk->sk_family == AF_INET6) 3877 err = inet6_bind_sk(ssk, uaddr, addr_len); 3878 #endif 3879 if (!err) 3880 mptcp_copy_inaddrs(sk, ssk); 3881 3882 unlock: 3883 release_sock(sk); 3884 return err; 3885 } 3886 3887 static int mptcp_listen(struct socket *sock, int backlog) 3888 { 3889 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3890 struct sock *sk = sock->sk; 3891 struct sock *ssk; 3892 int err; 3893 3894 pr_debug("msk=%p\n", msk); 3895 3896 lock_sock(sk); 3897 3898 err = -EINVAL; 3899 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3900 goto unlock; 3901 3902 ssk = __mptcp_nmpc_sk(msk); 3903 if (IS_ERR(ssk)) { 3904 err = PTR_ERR(ssk); 3905 goto unlock; 3906 } 3907 3908 mptcp_set_state(sk, TCP_LISTEN); 3909 sock_set_flag(sk, SOCK_RCU_FREE); 3910 3911 lock_sock(ssk); 3912 err = __inet_listen_sk(ssk, backlog); 3913 release_sock(ssk); 3914 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3915 3916 if (!err) { 3917 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3918 mptcp_copy_inaddrs(sk, ssk); 3919 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3920 } 3921 3922 unlock: 3923 release_sock(sk); 3924 return err; 3925 } 3926 3927 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3928 struct proto_accept_arg *arg) 3929 { 3930 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3931 struct sock *ssk, *newsk; 3932 3933 pr_debug("msk=%p\n", msk); 3934 3935 /* Buggy applications can call accept on socket states other then LISTEN 3936 * but no need to allocate the first subflow just to error out. 3937 */ 3938 ssk = READ_ONCE(msk->first); 3939 if (!ssk) 3940 return -EINVAL; 3941 3942 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3943 newsk = inet_csk_accept(ssk, arg); 3944 if (!newsk) 3945 return arg->err; 3946 3947 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3948 if (sk_is_mptcp(newsk)) { 3949 struct mptcp_subflow_context *subflow; 3950 struct sock *new_mptcp_sock; 3951 3952 subflow = mptcp_subflow_ctx(newsk); 3953 new_mptcp_sock = subflow->conn; 3954 3955 /* is_mptcp should be false if subflow->conn is missing, see 3956 * subflow_syn_recv_sock() 3957 */ 3958 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3959 tcp_sk(newsk)->is_mptcp = 0; 3960 goto tcpfallback; 3961 } 3962 3963 newsk = new_mptcp_sock; 3964 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3965 3966 newsk->sk_kern_sock = arg->kern; 3967 lock_sock(newsk); 3968 __inet_accept(sock, newsock, newsk); 3969 3970 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3971 msk = mptcp_sk(newsk); 3972 msk->in_accept_queue = 0; 3973 3974 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3975 * This is needed so NOSPACE flag can be set from tcp stack. 3976 */ 3977 mptcp_for_each_subflow(msk, subflow) { 3978 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3979 3980 if (!ssk->sk_socket) 3981 mptcp_sock_graft(ssk, newsock); 3982 } 3983 3984 mptcp_rps_record_subflows(msk); 3985 3986 /* Do late cleanup for the first subflow as necessary. Also 3987 * deal with bad peers not doing a complete shutdown. 3988 */ 3989 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3990 __mptcp_close_ssk(newsk, msk->first, 3991 mptcp_subflow_ctx(msk->first), 0); 3992 if (unlikely(list_is_singular(&msk->conn_list))) 3993 mptcp_set_state(newsk, TCP_CLOSE); 3994 } 3995 } else { 3996 tcpfallback: 3997 newsk->sk_kern_sock = arg->kern; 3998 lock_sock(newsk); 3999 __inet_accept(sock, newsock, newsk); 4000 /* we are being invoked after accepting a non-mp-capable 4001 * flow: sk is a tcp_sk, not an mptcp one. 4002 * 4003 * Hand the socket over to tcp so all further socket ops 4004 * bypass mptcp. 4005 */ 4006 WRITE_ONCE(newsock->sk->sk_socket->ops, 4007 mptcp_fallback_tcp_ops(newsock->sk)); 4008 } 4009 release_sock(newsk); 4010 4011 return 0; 4012 } 4013 4014 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4015 { 4016 struct sock *sk = (struct sock *)msk; 4017 4018 if (__mptcp_stream_is_writeable(sk, 1)) 4019 return EPOLLOUT | EPOLLWRNORM; 4020 4021 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4022 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4023 if (__mptcp_stream_is_writeable(sk, 1)) 4024 return EPOLLOUT | EPOLLWRNORM; 4025 4026 return 0; 4027 } 4028 4029 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4030 struct poll_table_struct *wait) 4031 { 4032 struct sock *sk = sock->sk; 4033 struct mptcp_sock *msk; 4034 __poll_t mask = 0; 4035 u8 shutdown; 4036 int state; 4037 4038 msk = mptcp_sk(sk); 4039 sock_poll_wait(file, sock, wait); 4040 4041 state = inet_sk_state_load(sk); 4042 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4043 if (state == TCP_LISTEN) { 4044 struct sock *ssk = READ_ONCE(msk->first); 4045 4046 if (WARN_ON_ONCE(!ssk)) 4047 return 0; 4048 4049 return inet_csk_listen_poll(ssk); 4050 } 4051 4052 shutdown = READ_ONCE(sk->sk_shutdown); 4053 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4054 mask |= EPOLLHUP; 4055 if (shutdown & RCV_SHUTDOWN) 4056 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4057 4058 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4059 mask |= mptcp_check_readable(sk); 4060 if (shutdown & SEND_SHUTDOWN) 4061 mask |= EPOLLOUT | EPOLLWRNORM; 4062 else 4063 mask |= mptcp_check_writeable(msk); 4064 } else if (state == TCP_SYN_SENT && 4065 inet_test_bit(DEFER_CONNECT, sk)) { 4066 /* cf tcp_poll() note about TFO */ 4067 mask |= EPOLLOUT | EPOLLWRNORM; 4068 } 4069 4070 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4071 smp_rmb(); 4072 if (READ_ONCE(sk->sk_err)) 4073 mask |= EPOLLERR; 4074 4075 return mask; 4076 } 4077 4078 static const struct proto_ops mptcp_stream_ops = { 4079 .family = PF_INET, 4080 .owner = THIS_MODULE, 4081 .release = inet_release, 4082 .bind = mptcp_bind, 4083 .connect = inet_stream_connect, 4084 .socketpair = sock_no_socketpair, 4085 .accept = mptcp_stream_accept, 4086 .getname = inet_getname, 4087 .poll = mptcp_poll, 4088 .ioctl = inet_ioctl, 4089 .gettstamp = sock_gettstamp, 4090 .listen = mptcp_listen, 4091 .shutdown = inet_shutdown, 4092 .setsockopt = sock_common_setsockopt, 4093 .getsockopt = sock_common_getsockopt, 4094 .sendmsg = inet_sendmsg, 4095 .recvmsg = inet_recvmsg, 4096 .mmap = sock_no_mmap, 4097 .set_rcvlowat = mptcp_set_rcvlowat, 4098 }; 4099 4100 static struct inet_protosw mptcp_protosw = { 4101 .type = SOCK_STREAM, 4102 .protocol = IPPROTO_MPTCP, 4103 .prot = &mptcp_prot, 4104 .ops = &mptcp_stream_ops, 4105 .flags = INET_PROTOSW_ICSK, 4106 }; 4107 4108 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4109 { 4110 struct mptcp_delegated_action *delegated; 4111 struct mptcp_subflow_context *subflow; 4112 int work_done = 0; 4113 4114 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4115 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4116 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4117 4118 bh_lock_sock_nested(ssk); 4119 if (!sock_owned_by_user(ssk)) { 4120 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4121 } else { 4122 /* tcp_release_cb_override already processed 4123 * the action or will do at next release_sock(). 4124 * In both case must dequeue the subflow here - on the same 4125 * CPU that scheduled it. 4126 */ 4127 smp_wmb(); 4128 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4129 } 4130 bh_unlock_sock(ssk); 4131 sock_put(ssk); 4132 4133 if (++work_done == budget) 4134 return budget; 4135 } 4136 4137 /* always provide a 0 'work_done' argument, so that napi_complete_done 4138 * will not try accessing the NULL napi->dev ptr 4139 */ 4140 napi_complete_done(napi, 0); 4141 return work_done; 4142 } 4143 4144 void __init mptcp_proto_init(void) 4145 { 4146 struct mptcp_delegated_action *delegated; 4147 int cpu; 4148 4149 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4150 4151 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4152 panic("Failed to allocate MPTCP pcpu counter\n"); 4153 4154 mptcp_napi_dev = alloc_netdev_dummy(0); 4155 if (!mptcp_napi_dev) 4156 panic("Failed to allocate MPTCP dummy netdev\n"); 4157 for_each_possible_cpu(cpu) { 4158 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4159 INIT_LIST_HEAD(&delegated->head); 4160 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4161 mptcp_napi_poll); 4162 napi_enable(&delegated->napi); 4163 } 4164 4165 mptcp_subflow_init(); 4166 mptcp_pm_init(); 4167 mptcp_sched_init(); 4168 mptcp_token_init(); 4169 4170 if (proto_register(&mptcp_prot, 1) != 0) 4171 panic("Failed to register MPTCP proto.\n"); 4172 4173 inet_register_protosw(&mptcp_protosw); 4174 4175 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4176 } 4177 4178 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4179 static const struct proto_ops mptcp_v6_stream_ops = { 4180 .family = PF_INET6, 4181 .owner = THIS_MODULE, 4182 .release = inet6_release, 4183 .bind = mptcp_bind, 4184 .connect = inet_stream_connect, 4185 .socketpair = sock_no_socketpair, 4186 .accept = mptcp_stream_accept, 4187 .getname = inet6_getname, 4188 .poll = mptcp_poll, 4189 .ioctl = inet6_ioctl, 4190 .gettstamp = sock_gettstamp, 4191 .listen = mptcp_listen, 4192 .shutdown = inet_shutdown, 4193 .setsockopt = sock_common_setsockopt, 4194 .getsockopt = sock_common_getsockopt, 4195 .sendmsg = inet6_sendmsg, 4196 .recvmsg = inet6_recvmsg, 4197 .mmap = sock_no_mmap, 4198 #ifdef CONFIG_COMPAT 4199 .compat_ioctl = inet6_compat_ioctl, 4200 #endif 4201 .set_rcvlowat = mptcp_set_rcvlowat, 4202 }; 4203 4204 static struct proto mptcp_v6_prot; 4205 4206 static struct inet_protosw mptcp_v6_protosw = { 4207 .type = SOCK_STREAM, 4208 .protocol = IPPROTO_MPTCP, 4209 .prot = &mptcp_v6_prot, 4210 .ops = &mptcp_v6_stream_ops, 4211 .flags = INET_PROTOSW_ICSK, 4212 }; 4213 4214 int __init mptcp_proto_v6_init(void) 4215 { 4216 int err; 4217 4218 mptcp_v6_prot = mptcp_prot; 4219 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4220 mptcp_v6_prot.slab = NULL; 4221 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4222 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4223 4224 err = proto_register(&mptcp_v6_prot, 1); 4225 if (err) 4226 return err; 4227 4228 err = inet6_register_protosw(&mptcp_v6_protosw); 4229 if (err) 4230 proto_unregister(&mptcp_v6_prot); 4231 4232 return err; 4233 } 4234 #endif 4235