1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 unsigned short family = READ_ONCE(sk->sk_family); 65 66 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 67 if (family == AF_INET6) 68 return &inet6_stream_ops; 69 #endif 70 WARN_ON_ONCE(family != AF_INET); 71 return &inet_stream_ops; 72 } 73 74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 75 { 76 struct net *net = sock_net((struct sock *)msk); 77 78 if (__mptcp_check_fallback(msk)) 79 return true; 80 81 /* The caller possibly is not holding the msk socket lock, but 82 * in the fallback case only the current subflow is touching 83 * the OoO queue. 84 */ 85 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 86 return false; 87 88 spin_lock_bh(&msk->fallback_lock); 89 if (!msk->allow_infinite_fallback) { 90 spin_unlock_bh(&msk->fallback_lock); 91 return false; 92 } 93 94 msk->allow_subflows = false; 95 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 96 __MPTCP_INC_STATS(net, fb_mib); 97 spin_unlock_bh(&msk->fallback_lock); 98 return true; 99 } 100 101 static int __mptcp_socket_create(struct mptcp_sock *msk) 102 { 103 struct mptcp_subflow_context *subflow; 104 struct sock *sk = (struct sock *)msk; 105 struct socket *ssock; 106 int err; 107 108 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 109 if (err) 110 return err; 111 112 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 113 WRITE_ONCE(msk->first, ssock->sk); 114 subflow = mptcp_subflow_ctx(ssock->sk); 115 list_add(&subflow->node, &msk->conn_list); 116 sock_hold(ssock->sk); 117 subflow->request_mptcp = 1; 118 subflow->subflow_id = msk->subflow_id++; 119 120 /* This is the first subflow, always with id 0 */ 121 WRITE_ONCE(subflow->local_id, 0); 122 mptcp_sock_graft(msk->first, sk->sk_socket); 123 iput(SOCK_INODE(ssock)); 124 125 return 0; 126 } 127 128 /* If the MPC handshake is not started, returns the first subflow, 129 * eventually allocating it. 130 */ 131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 132 { 133 struct sock *sk = (struct sock *)msk; 134 int ret; 135 136 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 137 return ERR_PTR(-EINVAL); 138 139 if (!msk->first) { 140 ret = __mptcp_socket_create(msk); 141 if (ret) 142 return ERR_PTR(ret); 143 } 144 145 return msk->first; 146 } 147 148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 149 { 150 sk_drops_skbadd(sk, skb); 151 __kfree_skb(skb); 152 } 153 154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 155 struct sk_buff *from, bool *fragstolen, 156 int *delta) 157 { 158 int limit = READ_ONCE(sk->sk_rcvbuf); 159 160 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 161 MPTCP_SKB_CB(from)->offset || 162 ((to->len + from->len) > (limit >> 3)) || 163 !skb_try_coalesce(to, from, fragstolen, delta)) 164 return false; 165 166 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 167 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 168 to->len, MPTCP_SKB_CB(from)->end_seq); 169 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 170 return true; 171 } 172 173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 174 struct sk_buff *from) 175 { 176 bool fragstolen; 177 int delta; 178 179 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 180 return false; 181 182 /* note the fwd memory can reach a negative value after accounting 183 * for the delta, but the later skb free will restore a non 184 * negative one 185 */ 186 atomic_add(delta, &sk->sk_rmem_alloc); 187 sk_mem_charge(sk, delta); 188 kfree_skb_partial(from, fragstolen); 189 190 return true; 191 } 192 193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 194 struct sk_buff *from) 195 { 196 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 197 return false; 198 199 return mptcp_try_coalesce((struct sock *)msk, to, from); 200 } 201 202 /* "inspired" by tcp_rcvbuf_grow(), main difference: 203 * - mptcp does not maintain a msk-level window clamp 204 * - returns true when the receive buffer is actually updated 205 */ 206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 207 { 208 struct mptcp_sock *msk = mptcp_sk(sk); 209 const struct net *net = sock_net(sk); 210 u32 rcvwin, rcvbuf, cap, oldval; 211 u64 grow; 212 213 oldval = msk->rcvq_space.space; 214 msk->rcvq_space.space = newval; 215 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 216 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 217 return false; 218 219 /* DRS is always one RTT late. */ 220 rcvwin = newval << 1; 221 222 /* slow start: allow the sender to double its rate. */ 223 grow = (u64)rcvwin * (newval - oldval); 224 do_div(grow, oldval); 225 rcvwin += grow << 1; 226 227 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 228 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 229 230 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 231 232 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 233 if (rcvbuf > sk->sk_rcvbuf) { 234 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 235 return true; 236 } 237 return false; 238 } 239 240 /* "inspired" by tcp_data_queue_ofo(), main differences: 241 * - use mptcp seqs 242 * - don't cope with sacks 243 */ 244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 245 { 246 struct sock *sk = (struct sock *)msk; 247 struct rb_node **p, *parent; 248 u64 seq, end_seq, max_seq; 249 struct sk_buff *skb1; 250 251 seq = MPTCP_SKB_CB(skb)->map_seq; 252 end_seq = MPTCP_SKB_CB(skb)->end_seq; 253 max_seq = atomic64_read(&msk->rcv_wnd_sent); 254 255 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 256 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 257 if (after64(end_seq, max_seq)) { 258 /* out of window */ 259 mptcp_drop(sk, skb); 260 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 261 (unsigned long long)end_seq - (unsigned long)max_seq, 262 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 264 return; 265 } 266 267 p = &msk->out_of_order_queue.rb_node; 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 269 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 270 rb_link_node(&skb->rbnode, NULL, p); 271 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 272 msk->ooo_last_skb = skb; 273 goto end; 274 } 275 276 /* with 2 subflows, adding at end of ooo queue is quite likely 277 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 278 */ 279 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 280 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 281 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 282 return; 283 } 284 285 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 286 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 288 parent = &msk->ooo_last_skb->rbnode; 289 p = &parent->rb_right; 290 goto insert; 291 } 292 293 /* Find place to insert this segment. Handle overlaps on the way. */ 294 parent = NULL; 295 while (*p) { 296 parent = *p; 297 skb1 = rb_to_skb(parent); 298 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 299 p = &parent->rb_left; 300 continue; 301 } 302 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 303 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 304 /* All the bits are present. Drop. */ 305 mptcp_drop(sk, skb); 306 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 307 return; 308 } 309 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 310 /* partial overlap: 311 * | skb | 312 * | skb1 | 313 * continue traversing 314 */ 315 } else { 316 /* skb's seq == skb1's seq and skb covers skb1. 317 * Replace skb1 with skb. 318 */ 319 rb_replace_node(&skb1->rbnode, &skb->rbnode, 320 &msk->out_of_order_queue); 321 mptcp_drop(sk, skb1); 322 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 323 goto merge_right; 324 } 325 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 326 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 327 return; 328 } 329 p = &parent->rb_right; 330 } 331 332 insert: 333 /* Insert segment into RB tree. */ 334 rb_link_node(&skb->rbnode, parent, p); 335 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 336 337 merge_right: 338 /* Remove other segments covered by skb. */ 339 while ((skb1 = skb_rb_next(skb)) != NULL) { 340 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 341 break; 342 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 343 mptcp_drop(sk, skb1); 344 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 345 } 346 /* If there is no skb after us, we are the last_skb ! */ 347 if (!skb1) 348 msk->ooo_last_skb = skb; 349 350 end: 351 skb_condense(skb); 352 skb_set_owner_r(skb, sk); 353 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 354 if (sk->sk_socket) 355 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 356 } 357 358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 359 int copy_len) 360 { 361 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 362 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 363 364 /* the skb map_seq accounts for the skb offset: 365 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 366 * value 367 */ 368 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 369 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 370 MPTCP_SKB_CB(skb)->offset = offset; 371 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 372 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 373 374 __skb_unlink(skb, &ssk->sk_receive_queue); 375 376 skb_ext_reset(skb); 377 skb_dst_drop(skb); 378 } 379 380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 381 { 382 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 383 struct mptcp_sock *msk = mptcp_sk(sk); 384 struct sk_buff *tail; 385 386 mptcp_borrow_fwdmem(sk, skb); 387 388 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 389 /* in sequence */ 390 msk->bytes_received += copy_len; 391 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 392 tail = skb_peek_tail(&sk->sk_receive_queue); 393 if (tail && mptcp_try_coalesce(sk, tail, skb)) 394 return true; 395 396 skb_set_owner_r(skb, sk); 397 __skb_queue_tail(&sk->sk_receive_queue, skb); 398 return true; 399 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 400 mptcp_data_queue_ofo(msk, skb); 401 return false; 402 } 403 404 /* old data, keep it simple and drop the whole pkt, sender 405 * will retransmit as needed, if needed. 406 */ 407 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 408 mptcp_drop(sk, skb); 409 return false; 410 } 411 412 static void mptcp_stop_rtx_timer(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 416 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 417 mptcp_sk(sk)->timer_ival = 0; 418 } 419 420 static void mptcp_close_wake_up(struct sock *sk) 421 { 422 if (sock_flag(sk, SOCK_DEAD)) 423 return; 424 425 sk->sk_state_change(sk); 426 if (sk->sk_shutdown == SHUTDOWN_MASK || 427 sk->sk_state == TCP_CLOSE) 428 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 429 else 430 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 431 } 432 433 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 434 { 435 struct mptcp_subflow_context *subflow; 436 437 mptcp_for_each_subflow(msk, subflow) { 438 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 439 bool slow; 440 441 slow = lock_sock_fast(ssk); 442 tcp_shutdown(ssk, SEND_SHUTDOWN); 443 unlock_sock_fast(ssk, slow); 444 } 445 } 446 447 /* called under the msk socket lock */ 448 static bool mptcp_pending_data_fin_ack(struct sock *sk) 449 { 450 struct mptcp_sock *msk = mptcp_sk(sk); 451 452 return ((1 << sk->sk_state) & 453 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 454 msk->write_seq == READ_ONCE(msk->snd_una); 455 } 456 457 static void mptcp_check_data_fin_ack(struct sock *sk) 458 { 459 struct mptcp_sock *msk = mptcp_sk(sk); 460 461 /* Look for an acknowledged DATA_FIN */ 462 if (mptcp_pending_data_fin_ack(sk)) { 463 WRITE_ONCE(msk->snd_data_fin_enable, 0); 464 465 switch (sk->sk_state) { 466 case TCP_FIN_WAIT1: 467 mptcp_set_state(sk, TCP_FIN_WAIT2); 468 break; 469 case TCP_CLOSING: 470 case TCP_LAST_ACK: 471 mptcp_shutdown_subflows(msk); 472 mptcp_set_state(sk, TCP_CLOSE); 473 break; 474 } 475 476 mptcp_close_wake_up(sk); 477 } 478 } 479 480 /* can be called with no lock acquired */ 481 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 482 { 483 struct mptcp_sock *msk = mptcp_sk(sk); 484 485 if (READ_ONCE(msk->rcv_data_fin) && 486 ((1 << inet_sk_state_load(sk)) & 487 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 488 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 489 490 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 491 if (seq) 492 *seq = rcv_data_fin_seq; 493 494 return true; 495 } 496 } 497 498 return false; 499 } 500 501 static void mptcp_set_datafin_timeout(struct sock *sk) 502 { 503 struct inet_connection_sock *icsk = inet_csk(sk); 504 u32 retransmits; 505 506 retransmits = min_t(u32, icsk->icsk_retransmits, 507 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 508 509 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 510 } 511 512 static void __mptcp_set_timeout(struct sock *sk, long tout) 513 { 514 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 515 } 516 517 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 518 { 519 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 520 521 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 522 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 523 } 524 525 static void mptcp_set_timeout(struct sock *sk) 526 { 527 struct mptcp_subflow_context *subflow; 528 long tout = 0; 529 530 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 531 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 532 __mptcp_set_timeout(sk, tout); 533 } 534 535 static inline bool tcp_can_send_ack(const struct sock *ssk) 536 { 537 return !((1 << inet_sk_state_load(ssk)) & 538 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 539 } 540 541 void __mptcp_subflow_send_ack(struct sock *ssk) 542 { 543 if (tcp_can_send_ack(ssk)) 544 tcp_send_ack(ssk); 545 } 546 547 static void mptcp_subflow_send_ack(struct sock *ssk) 548 { 549 bool slow; 550 551 slow = lock_sock_fast(ssk); 552 __mptcp_subflow_send_ack(ssk); 553 unlock_sock_fast(ssk, slow); 554 } 555 556 static void mptcp_send_ack(struct mptcp_sock *msk) 557 { 558 struct mptcp_subflow_context *subflow; 559 560 mptcp_for_each_subflow(msk, subflow) 561 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 562 } 563 564 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 565 { 566 bool slow; 567 568 slow = lock_sock_fast(ssk); 569 if (tcp_can_send_ack(ssk)) 570 tcp_cleanup_rbuf(ssk, copied); 571 unlock_sock_fast(ssk, slow); 572 } 573 574 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 575 { 576 const struct inet_connection_sock *icsk = inet_csk(ssk); 577 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 578 const struct tcp_sock *tp = tcp_sk(ssk); 579 580 return (ack_pending & ICSK_ACK_SCHED) && 581 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 582 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 583 (rx_empty && ack_pending & 584 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 585 } 586 587 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 588 { 589 int old_space = READ_ONCE(msk->old_wspace); 590 struct mptcp_subflow_context *subflow; 591 struct sock *sk = (struct sock *)msk; 592 int space = __mptcp_space(sk); 593 bool cleanup, rx_empty; 594 595 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 596 rx_empty = !sk_rmem_alloc_get(sk) && copied; 597 598 mptcp_for_each_subflow(msk, subflow) { 599 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 600 601 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 602 mptcp_subflow_cleanup_rbuf(ssk, copied); 603 } 604 } 605 606 static void mptcp_check_data_fin(struct sock *sk) 607 { 608 struct mptcp_sock *msk = mptcp_sk(sk); 609 u64 rcv_data_fin_seq; 610 611 /* Need to ack a DATA_FIN received from a peer while this side 612 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 613 * msk->rcv_data_fin was set when parsing the incoming options 614 * at the subflow level and the msk lock was not held, so this 615 * is the first opportunity to act on the DATA_FIN and change 616 * the msk state. 617 * 618 * If we are caught up to the sequence number of the incoming 619 * DATA_FIN, send the DATA_ACK now and do state transition. If 620 * not caught up, do nothing and let the recv code send DATA_ACK 621 * when catching up. 622 */ 623 624 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 625 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 626 WRITE_ONCE(msk->rcv_data_fin, 0); 627 628 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 629 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 630 631 switch (sk->sk_state) { 632 case TCP_ESTABLISHED: 633 mptcp_set_state(sk, TCP_CLOSE_WAIT); 634 break; 635 case TCP_FIN_WAIT1: 636 mptcp_set_state(sk, TCP_CLOSING); 637 break; 638 case TCP_FIN_WAIT2: 639 mptcp_shutdown_subflows(msk); 640 mptcp_set_state(sk, TCP_CLOSE); 641 break; 642 default: 643 /* Other states not expected */ 644 WARN_ON_ONCE(1); 645 break; 646 } 647 648 if (!__mptcp_check_fallback(msk)) 649 mptcp_send_ack(msk); 650 mptcp_close_wake_up(sk); 651 } 652 } 653 654 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 655 { 656 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 657 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 658 mptcp_subflow_reset(ssk); 659 } 660 } 661 662 static void __mptcp_add_backlog(struct sock *sk, 663 struct mptcp_subflow_context *subflow, 664 struct sk_buff *skb) 665 { 666 struct mptcp_sock *msk = mptcp_sk(sk); 667 struct sk_buff *tail = NULL; 668 struct sock *ssk = skb->sk; 669 bool fragstolen; 670 int delta; 671 672 if (unlikely(sk->sk_state == TCP_CLOSE)) { 673 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 674 return; 675 } 676 677 /* Try to coalesce with the last skb in our backlog */ 678 if (!list_empty(&msk->backlog_list)) 679 tail = list_last_entry(&msk->backlog_list, struct sk_buff, list); 680 681 if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq && 682 ssk == tail->sk && 683 __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) { 684 skb->truesize -= delta; 685 kfree_skb_partial(skb, fragstolen); 686 __mptcp_subflow_lend_fwdmem(subflow, delta); 687 goto account; 688 } 689 690 list_add_tail(&skb->list, &msk->backlog_list); 691 mptcp_subflow_lend_fwdmem(subflow, skb); 692 delta = skb->truesize; 693 694 account: 695 WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta); 696 697 /* Possibly not accept()ed yet, keep track of memory not CG 698 * accounted, mptcp_graft_subflows() will handle it. 699 */ 700 if (!mem_cgroup_from_sk(ssk)) 701 msk->backlog_unaccounted += delta; 702 } 703 704 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 705 struct sock *ssk, bool own_msk) 706 { 707 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 708 struct sock *sk = (struct sock *)msk; 709 bool more_data_avail; 710 struct tcp_sock *tp; 711 bool ret = false; 712 713 pr_debug("msk=%p ssk=%p\n", msk, ssk); 714 tp = tcp_sk(ssk); 715 do { 716 u32 map_remaining, offset; 717 u32 seq = tp->copied_seq; 718 struct sk_buff *skb; 719 bool fin; 720 721 /* try to move as much data as available */ 722 map_remaining = subflow->map_data_len - 723 mptcp_subflow_get_map_offset(subflow); 724 725 skb = skb_peek(&ssk->sk_receive_queue); 726 if (unlikely(!skb)) 727 break; 728 729 if (__mptcp_check_fallback(msk)) { 730 /* Under fallback skbs have no MPTCP extension and TCP could 731 * collapse them between the dummy map creation and the 732 * current dequeue. Be sure to adjust the map size. 733 */ 734 map_remaining = skb->len; 735 subflow->map_data_len = skb->len; 736 } 737 738 offset = seq - TCP_SKB_CB(skb)->seq; 739 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 740 if (fin) 741 seq++; 742 743 if (offset < skb->len) { 744 size_t len = skb->len - offset; 745 746 mptcp_init_skb(ssk, skb, offset, len); 747 748 if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) { 749 mptcp_subflow_lend_fwdmem(subflow, skb); 750 ret |= __mptcp_move_skb(sk, skb); 751 } else { 752 __mptcp_add_backlog(sk, subflow, skb); 753 } 754 seq += len; 755 756 if (unlikely(map_remaining < len)) { 757 DEBUG_NET_WARN_ON_ONCE(1); 758 mptcp_dss_corruption(msk, ssk); 759 } 760 } else { 761 if (unlikely(!fin)) { 762 DEBUG_NET_WARN_ON_ONCE(1); 763 mptcp_dss_corruption(msk, ssk); 764 } 765 766 sk_eat_skb(ssk, skb); 767 } 768 769 WRITE_ONCE(tp->copied_seq, seq); 770 more_data_avail = mptcp_subflow_data_available(ssk); 771 772 } while (more_data_avail); 773 774 if (ret) 775 msk->last_data_recv = tcp_jiffies32; 776 return ret; 777 } 778 779 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 780 { 781 struct sock *sk = (struct sock *)msk; 782 struct sk_buff *skb, *tail; 783 bool moved = false; 784 struct rb_node *p; 785 u64 end_seq; 786 787 p = rb_first(&msk->out_of_order_queue); 788 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 789 while (p) { 790 skb = rb_to_skb(p); 791 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 792 break; 793 794 p = rb_next(p); 795 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 796 797 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 798 msk->ack_seq))) { 799 mptcp_drop(sk, skb); 800 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 801 continue; 802 } 803 804 end_seq = MPTCP_SKB_CB(skb)->end_seq; 805 tail = skb_peek_tail(&sk->sk_receive_queue); 806 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 807 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 808 809 /* skip overlapping data, if any */ 810 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 811 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 812 delta); 813 MPTCP_SKB_CB(skb)->offset += delta; 814 MPTCP_SKB_CB(skb)->map_seq += delta; 815 __skb_queue_tail(&sk->sk_receive_queue, skb); 816 } 817 msk->bytes_received += end_seq - msk->ack_seq; 818 WRITE_ONCE(msk->ack_seq, end_seq); 819 moved = true; 820 } 821 return moved; 822 } 823 824 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 825 { 826 int err = sock_error(ssk); 827 int ssk_state; 828 829 if (!err) 830 return false; 831 832 /* only propagate errors on fallen-back sockets or 833 * on MPC connect 834 */ 835 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 836 return false; 837 838 /* We need to propagate only transition to CLOSE state. 839 * Orphaned socket will see such state change via 840 * subflow_sched_work_if_closed() and that path will properly 841 * destroy the msk as needed. 842 */ 843 ssk_state = inet_sk_state_load(ssk); 844 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 845 mptcp_set_state(sk, ssk_state); 846 WRITE_ONCE(sk->sk_err, -err); 847 848 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 849 smp_wmb(); 850 sk_error_report(sk); 851 return true; 852 } 853 854 void __mptcp_error_report(struct sock *sk) 855 { 856 struct mptcp_subflow_context *subflow; 857 struct mptcp_sock *msk = mptcp_sk(sk); 858 859 mptcp_for_each_subflow(msk, subflow) 860 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 861 break; 862 } 863 864 /* In most cases we will be able to lock the mptcp socket. If its already 865 * owned, we need to defer to the work queue to avoid ABBA deadlock. 866 */ 867 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 868 { 869 struct sock *sk = (struct sock *)msk; 870 bool moved; 871 872 moved = __mptcp_move_skbs_from_subflow(msk, ssk, true); 873 __mptcp_ofo_queue(msk); 874 if (unlikely(ssk->sk_err)) 875 __mptcp_subflow_error_report(sk, ssk); 876 877 /* If the moves have caught up with the DATA_FIN sequence number 878 * it's time to ack the DATA_FIN and change socket state, but 879 * this is not a good place to change state. Let the workqueue 880 * do it. 881 */ 882 if (mptcp_pending_data_fin(sk, NULL)) 883 mptcp_schedule_work(sk); 884 return moved; 885 } 886 887 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 888 { 889 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 890 struct mptcp_sock *msk = mptcp_sk(sk); 891 892 /* The peer can send data while we are shutting down this 893 * subflow at subflow destruction time, but we must avoid enqueuing 894 * more data to the msk receive queue 895 */ 896 if (unlikely(subflow->closing)) 897 return; 898 899 mptcp_data_lock(sk); 900 if (!sock_owned_by_user(sk)) { 901 /* Wake-up the reader only for in-sequence data */ 902 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 903 sk->sk_data_ready(sk); 904 } else { 905 __mptcp_move_skbs_from_subflow(msk, ssk, false); 906 } 907 mptcp_data_unlock(sk); 908 } 909 910 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 911 { 912 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 913 msk->allow_infinite_fallback = false; 914 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 915 } 916 917 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 918 { 919 struct sock *sk = (struct sock *)msk; 920 921 if (sk->sk_state != TCP_ESTABLISHED) 922 return false; 923 924 spin_lock_bh(&msk->fallback_lock); 925 if (!msk->allow_subflows) { 926 spin_unlock_bh(&msk->fallback_lock); 927 return false; 928 } 929 mptcp_subflow_joined(msk, ssk); 930 spin_unlock_bh(&msk->fallback_lock); 931 932 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 933 mptcp_sockopt_sync_locked(msk, ssk); 934 mptcp_stop_tout_timer(sk); 935 __mptcp_propagate_sndbuf(sk, ssk); 936 return true; 937 } 938 939 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 940 { 941 struct mptcp_subflow_context *tmp, *subflow; 942 struct mptcp_sock *msk = mptcp_sk(sk); 943 944 list_for_each_entry_safe(subflow, tmp, join_list, node) { 945 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 946 bool slow = lock_sock_fast(ssk); 947 948 list_move_tail(&subflow->node, &msk->conn_list); 949 if (!__mptcp_finish_join(msk, ssk)) 950 mptcp_subflow_reset(ssk); 951 unlock_sock_fast(ssk, slow); 952 } 953 } 954 955 static bool mptcp_rtx_timer_pending(struct sock *sk) 956 { 957 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 958 } 959 960 static void mptcp_reset_rtx_timer(struct sock *sk) 961 { 962 struct inet_connection_sock *icsk = inet_csk(sk); 963 unsigned long tout; 964 965 /* prevent rescheduling on close */ 966 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 967 return; 968 969 tout = mptcp_sk(sk)->timer_ival; 970 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 971 } 972 973 bool mptcp_schedule_work(struct sock *sk) 974 { 975 if (inet_sk_state_load(sk) == TCP_CLOSE) 976 return false; 977 978 /* Get a reference on this socket, mptcp_worker() will release it. 979 * As mptcp_worker() might complete before us, we can not avoid 980 * a sock_hold()/sock_put() if schedule_work() returns false. 981 */ 982 sock_hold(sk); 983 984 if (schedule_work(&mptcp_sk(sk)->work)) 985 return true; 986 987 sock_put(sk); 988 return false; 989 } 990 991 static bool mptcp_skb_can_collapse_to(u64 write_seq, 992 const struct sk_buff *skb, 993 const struct mptcp_ext *mpext) 994 { 995 if (!tcp_skb_can_collapse_to(skb)) 996 return false; 997 998 /* can collapse only if MPTCP level sequence is in order and this 999 * mapping has not been xmitted yet 1000 */ 1001 return mpext && mpext->data_seq + mpext->data_len == write_seq && 1002 !mpext->frozen; 1003 } 1004 1005 /* we can append data to the given data frag if: 1006 * - there is space available in the backing page_frag 1007 * - the data frag tail matches the current page_frag free offset 1008 * - the data frag end sequence number matches the current write seq 1009 */ 1010 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 1011 const struct page_frag *pfrag, 1012 const struct mptcp_data_frag *df) 1013 { 1014 return df && pfrag->page == df->page && 1015 pfrag->size - pfrag->offset > 0 && 1016 pfrag->offset == (df->offset + df->data_len) && 1017 df->data_seq + df->data_len == msk->write_seq; 1018 } 1019 1020 static void dfrag_uncharge(struct sock *sk, int len) 1021 { 1022 sk_mem_uncharge(sk, len); 1023 sk_wmem_queued_add(sk, -len); 1024 } 1025 1026 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1027 { 1028 int len = dfrag->data_len + dfrag->overhead; 1029 1030 list_del(&dfrag->list); 1031 dfrag_uncharge(sk, len); 1032 put_page(dfrag->page); 1033 } 1034 1035 /* called under both the msk socket lock and the data lock */ 1036 static void __mptcp_clean_una(struct sock *sk) 1037 { 1038 struct mptcp_sock *msk = mptcp_sk(sk); 1039 struct mptcp_data_frag *dtmp, *dfrag; 1040 u64 snd_una; 1041 1042 snd_una = msk->snd_una; 1043 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1044 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1045 break; 1046 1047 if (unlikely(dfrag == msk->first_pending)) { 1048 /* in recovery mode can see ack after the current snd head */ 1049 if (WARN_ON_ONCE(!msk->recovery)) 1050 break; 1051 1052 msk->first_pending = mptcp_send_next(sk); 1053 } 1054 1055 dfrag_clear(sk, dfrag); 1056 } 1057 1058 dfrag = mptcp_rtx_head(sk); 1059 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1060 u64 delta = snd_una - dfrag->data_seq; 1061 1062 /* prevent wrap around in recovery mode */ 1063 if (unlikely(delta > dfrag->already_sent)) { 1064 if (WARN_ON_ONCE(!msk->recovery)) 1065 goto out; 1066 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1067 goto out; 1068 dfrag->already_sent += delta - dfrag->already_sent; 1069 } 1070 1071 dfrag->data_seq += delta; 1072 dfrag->offset += delta; 1073 dfrag->data_len -= delta; 1074 dfrag->already_sent -= delta; 1075 1076 dfrag_uncharge(sk, delta); 1077 } 1078 1079 /* all retransmitted data acked, recovery completed */ 1080 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1081 msk->recovery = false; 1082 1083 out: 1084 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1085 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1086 mptcp_stop_rtx_timer(sk); 1087 } else { 1088 mptcp_reset_rtx_timer(sk); 1089 } 1090 1091 if (mptcp_pending_data_fin_ack(sk)) 1092 mptcp_schedule_work(sk); 1093 } 1094 1095 static void __mptcp_clean_una_wakeup(struct sock *sk) 1096 { 1097 lockdep_assert_held_once(&sk->sk_lock.slock); 1098 1099 __mptcp_clean_una(sk); 1100 mptcp_write_space(sk); 1101 } 1102 1103 static void mptcp_clean_una_wakeup(struct sock *sk) 1104 { 1105 mptcp_data_lock(sk); 1106 __mptcp_clean_una_wakeup(sk); 1107 mptcp_data_unlock(sk); 1108 } 1109 1110 static void mptcp_enter_memory_pressure(struct sock *sk) 1111 { 1112 struct mptcp_subflow_context *subflow; 1113 struct mptcp_sock *msk = mptcp_sk(sk); 1114 bool first = true; 1115 1116 mptcp_for_each_subflow(msk, subflow) { 1117 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1118 1119 if (first && !ssk->sk_bypass_prot_mem) { 1120 tcp_enter_memory_pressure(ssk); 1121 first = false; 1122 } 1123 1124 sk_stream_moderate_sndbuf(ssk); 1125 } 1126 __mptcp_sync_sndbuf(sk); 1127 } 1128 1129 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1130 * data 1131 */ 1132 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1133 { 1134 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1135 pfrag, sk->sk_allocation))) 1136 return true; 1137 1138 mptcp_enter_memory_pressure(sk); 1139 return false; 1140 } 1141 1142 static struct mptcp_data_frag * 1143 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1144 int orig_offset) 1145 { 1146 int offset = ALIGN(orig_offset, sizeof(long)); 1147 struct mptcp_data_frag *dfrag; 1148 1149 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1150 dfrag->data_len = 0; 1151 dfrag->data_seq = msk->write_seq; 1152 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1153 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1154 dfrag->already_sent = 0; 1155 dfrag->page = pfrag->page; 1156 1157 return dfrag; 1158 } 1159 1160 struct mptcp_sendmsg_info { 1161 int mss_now; 1162 int size_goal; 1163 u16 limit; 1164 u16 sent; 1165 unsigned int flags; 1166 bool data_lock_held; 1167 }; 1168 1169 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1170 u64 data_seq, int avail_size) 1171 { 1172 u64 window_end = mptcp_wnd_end(msk); 1173 u64 mptcp_snd_wnd; 1174 1175 if (__mptcp_check_fallback(msk)) 1176 return avail_size; 1177 1178 mptcp_snd_wnd = window_end - data_seq; 1179 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1180 1181 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1182 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1183 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1184 } 1185 1186 return avail_size; 1187 } 1188 1189 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1190 { 1191 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1192 1193 if (!mpext) 1194 return false; 1195 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1196 return true; 1197 } 1198 1199 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1200 { 1201 struct sk_buff *skb; 1202 1203 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1204 if (likely(skb)) { 1205 if (likely(__mptcp_add_ext(skb, gfp))) { 1206 skb_reserve(skb, MAX_TCP_HEADER); 1207 skb->ip_summed = CHECKSUM_PARTIAL; 1208 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1209 return skb; 1210 } 1211 __kfree_skb(skb); 1212 } else { 1213 mptcp_enter_memory_pressure(sk); 1214 } 1215 return NULL; 1216 } 1217 1218 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1219 { 1220 struct sk_buff *skb; 1221 1222 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1223 if (!skb) 1224 return NULL; 1225 1226 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1227 tcp_skb_entail(ssk, skb); 1228 return skb; 1229 } 1230 tcp_skb_tsorted_anchor_cleanup(skb); 1231 kfree_skb(skb); 1232 return NULL; 1233 } 1234 1235 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1236 { 1237 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1238 1239 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1240 } 1241 1242 /* note: this always recompute the csum on the whole skb, even 1243 * if we just appended a single frag. More status info needed 1244 */ 1245 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1246 { 1247 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1248 __wsum csum = ~csum_unfold(mpext->csum); 1249 int offset = skb->len - added; 1250 1251 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1252 } 1253 1254 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1255 struct sock *ssk, 1256 struct mptcp_ext *mpext) 1257 { 1258 if (!mpext) 1259 return; 1260 1261 mpext->infinite_map = 1; 1262 mpext->data_len = 0; 1263 1264 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1265 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1266 mptcp_subflow_reset(ssk); 1267 return; 1268 } 1269 1270 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1271 } 1272 1273 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1274 1275 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1276 struct mptcp_data_frag *dfrag, 1277 struct mptcp_sendmsg_info *info) 1278 { 1279 u64 data_seq = dfrag->data_seq + info->sent; 1280 int offset = dfrag->offset + info->sent; 1281 struct mptcp_sock *msk = mptcp_sk(sk); 1282 bool zero_window_probe = false; 1283 struct mptcp_ext *mpext = NULL; 1284 bool can_coalesce = false; 1285 bool reuse_skb = true; 1286 struct sk_buff *skb; 1287 size_t copy; 1288 int i; 1289 1290 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1291 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1292 1293 if (WARN_ON_ONCE(info->sent > info->limit || 1294 info->limit > dfrag->data_len)) 1295 return 0; 1296 1297 if (unlikely(!__tcp_can_send(ssk))) 1298 return -EAGAIN; 1299 1300 /* compute send limit */ 1301 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1302 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1303 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1304 copy = info->size_goal; 1305 1306 skb = tcp_write_queue_tail(ssk); 1307 if (skb && copy > skb->len) { 1308 /* Limit the write to the size available in the 1309 * current skb, if any, so that we create at most a new skb. 1310 * Explicitly tells TCP internals to avoid collapsing on later 1311 * queue management operation, to avoid breaking the ext <-> 1312 * SSN association set here 1313 */ 1314 mpext = mptcp_get_ext(skb); 1315 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1316 TCP_SKB_CB(skb)->eor = 1; 1317 tcp_mark_push(tcp_sk(ssk), skb); 1318 goto alloc_skb; 1319 } 1320 1321 i = skb_shinfo(skb)->nr_frags; 1322 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1323 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1324 tcp_mark_push(tcp_sk(ssk), skb); 1325 goto alloc_skb; 1326 } 1327 1328 copy -= skb->len; 1329 } else { 1330 alloc_skb: 1331 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1332 if (!skb) 1333 return -ENOMEM; 1334 1335 i = skb_shinfo(skb)->nr_frags; 1336 reuse_skb = false; 1337 mpext = mptcp_get_ext(skb); 1338 } 1339 1340 /* Zero window and all data acked? Probe. */ 1341 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1342 if (copy == 0) { 1343 u64 snd_una = READ_ONCE(msk->snd_una); 1344 1345 /* No need for zero probe if there are any data pending 1346 * either at the msk or ssk level; skb is the current write 1347 * queue tail and can be empty at this point. 1348 */ 1349 if (snd_una != msk->snd_nxt || skb->len || 1350 skb != tcp_send_head(ssk)) { 1351 tcp_remove_empty_skb(ssk); 1352 return 0; 1353 } 1354 1355 zero_window_probe = true; 1356 data_seq = snd_una - 1; 1357 copy = 1; 1358 } 1359 1360 copy = min_t(size_t, copy, info->limit - info->sent); 1361 if (!sk_wmem_schedule(ssk, copy)) { 1362 tcp_remove_empty_skb(ssk); 1363 return -ENOMEM; 1364 } 1365 1366 if (can_coalesce) { 1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1368 } else { 1369 get_page(dfrag->page); 1370 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1371 } 1372 1373 skb->len += copy; 1374 skb->data_len += copy; 1375 skb->truesize += copy; 1376 sk_wmem_queued_add(ssk, copy); 1377 sk_mem_charge(ssk, copy); 1378 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1379 TCP_SKB_CB(skb)->end_seq += copy; 1380 tcp_skb_pcount_set(skb, 0); 1381 1382 /* on skb reuse we just need to update the DSS len */ 1383 if (reuse_skb) { 1384 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1385 mpext->data_len += copy; 1386 goto out; 1387 } 1388 1389 memset(mpext, 0, sizeof(*mpext)); 1390 mpext->data_seq = data_seq; 1391 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1392 mpext->data_len = copy; 1393 mpext->use_map = 1; 1394 mpext->dsn64 = 1; 1395 1396 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1397 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1398 mpext->dsn64); 1399 1400 if (zero_window_probe) { 1401 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1402 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1403 mpext->frozen = 1; 1404 if (READ_ONCE(msk->csum_enabled)) 1405 mptcp_update_data_checksum(skb, copy); 1406 tcp_push_pending_frames(ssk); 1407 return 0; 1408 } 1409 out: 1410 if (READ_ONCE(msk->csum_enabled)) 1411 mptcp_update_data_checksum(skb, copy); 1412 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1413 mptcp_update_infinite_map(msk, ssk, mpext); 1414 trace_mptcp_sendmsg_frag(mpext); 1415 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1416 return copy; 1417 } 1418 1419 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1420 sizeof(struct tcphdr) - \ 1421 MAX_TCP_OPTION_SPACE - \ 1422 sizeof(struct ipv6hdr) - \ 1423 sizeof(struct frag_hdr)) 1424 1425 struct subflow_send_info { 1426 struct sock *ssk; 1427 u64 linger_time; 1428 }; 1429 1430 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1431 { 1432 if (!subflow->stale) 1433 return; 1434 1435 subflow->stale = 0; 1436 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1437 } 1438 1439 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1440 { 1441 if (unlikely(subflow->stale)) { 1442 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1443 1444 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1445 return false; 1446 1447 mptcp_subflow_set_active(subflow); 1448 } 1449 return __mptcp_subflow_active(subflow); 1450 } 1451 1452 #define SSK_MODE_ACTIVE 0 1453 #define SSK_MODE_BACKUP 1 1454 #define SSK_MODE_MAX 2 1455 1456 /* implement the mptcp packet scheduler; 1457 * returns the subflow that will transmit the next DSS 1458 * additionally updates the rtx timeout 1459 */ 1460 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1461 { 1462 struct subflow_send_info send_info[SSK_MODE_MAX]; 1463 struct mptcp_subflow_context *subflow; 1464 struct sock *sk = (struct sock *)msk; 1465 u32 pace, burst, wmem; 1466 int i, nr_active = 0; 1467 struct sock *ssk; 1468 u64 linger_time; 1469 long tout = 0; 1470 1471 /* pick the subflow with the lower wmem/wspace ratio */ 1472 for (i = 0; i < SSK_MODE_MAX; ++i) { 1473 send_info[i].ssk = NULL; 1474 send_info[i].linger_time = -1; 1475 } 1476 1477 mptcp_for_each_subflow(msk, subflow) { 1478 bool backup = subflow->backup || subflow->request_bkup; 1479 1480 trace_mptcp_subflow_get_send(subflow); 1481 ssk = mptcp_subflow_tcp_sock(subflow); 1482 if (!mptcp_subflow_active(subflow)) 1483 continue; 1484 1485 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1486 nr_active += !backup; 1487 pace = subflow->avg_pacing_rate; 1488 if (unlikely(!pace)) { 1489 /* init pacing rate from socket */ 1490 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1491 pace = subflow->avg_pacing_rate; 1492 if (!pace) 1493 continue; 1494 } 1495 1496 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1497 if (linger_time < send_info[backup].linger_time) { 1498 send_info[backup].ssk = ssk; 1499 send_info[backup].linger_time = linger_time; 1500 } 1501 } 1502 __mptcp_set_timeout(sk, tout); 1503 1504 /* pick the best backup if no other subflow is active */ 1505 if (!nr_active) 1506 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1507 1508 /* According to the blest algorithm, to avoid HoL blocking for the 1509 * faster flow, we need to: 1510 * - estimate the faster flow linger time 1511 * - use the above to estimate the amount of byte transferred 1512 * by the faster flow 1513 * - check that the amount of queued data is greater than the above, 1514 * otherwise do not use the picked, slower, subflow 1515 * We select the subflow with the shorter estimated time to flush 1516 * the queued mem, which basically ensure the above. We just need 1517 * to check that subflow has a non empty cwin. 1518 */ 1519 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1520 if (!ssk || !sk_stream_memory_free(ssk)) 1521 return NULL; 1522 1523 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1524 wmem = READ_ONCE(ssk->sk_wmem_queued); 1525 if (!burst) 1526 return ssk; 1527 1528 subflow = mptcp_subflow_ctx(ssk); 1529 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1530 READ_ONCE(ssk->sk_pacing_rate) * burst, 1531 burst + wmem); 1532 msk->snd_burst = burst; 1533 return ssk; 1534 } 1535 1536 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1537 { 1538 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1539 release_sock(ssk); 1540 } 1541 1542 static void mptcp_update_post_push(struct mptcp_sock *msk, 1543 struct mptcp_data_frag *dfrag, 1544 u32 sent) 1545 { 1546 u64 snd_nxt_new = dfrag->data_seq; 1547 1548 dfrag->already_sent += sent; 1549 1550 msk->snd_burst -= sent; 1551 1552 snd_nxt_new += dfrag->already_sent; 1553 1554 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1555 * is recovering after a failover. In that event, this re-sends 1556 * old segments. 1557 * 1558 * Thus compute snd_nxt_new candidate based on 1559 * the dfrag->data_seq that was sent and the data 1560 * that has been handed to the subflow for transmission 1561 * and skip update in case it was old dfrag. 1562 */ 1563 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1564 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1565 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1566 } 1567 } 1568 1569 void mptcp_check_and_set_pending(struct sock *sk) 1570 { 1571 if (mptcp_send_head(sk)) { 1572 mptcp_data_lock(sk); 1573 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1574 mptcp_data_unlock(sk); 1575 } 1576 } 1577 1578 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1579 struct mptcp_sendmsg_info *info) 1580 { 1581 struct mptcp_sock *msk = mptcp_sk(sk); 1582 struct mptcp_data_frag *dfrag; 1583 int len, copied = 0, err = 0; 1584 1585 while ((dfrag = mptcp_send_head(sk))) { 1586 info->sent = dfrag->already_sent; 1587 info->limit = dfrag->data_len; 1588 len = dfrag->data_len - dfrag->already_sent; 1589 while (len > 0) { 1590 int ret = 0; 1591 1592 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1593 if (ret <= 0) { 1594 err = copied ? : ret; 1595 goto out; 1596 } 1597 1598 info->sent += ret; 1599 copied += ret; 1600 len -= ret; 1601 1602 mptcp_update_post_push(msk, dfrag, ret); 1603 } 1604 msk->first_pending = mptcp_send_next(sk); 1605 1606 if (msk->snd_burst <= 0 || 1607 !sk_stream_memory_free(ssk) || 1608 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1609 err = copied; 1610 goto out; 1611 } 1612 mptcp_set_timeout(sk); 1613 } 1614 err = copied; 1615 1616 out: 1617 if (err > 0) 1618 msk->last_data_sent = tcp_jiffies32; 1619 return err; 1620 } 1621 1622 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1623 { 1624 struct sock *prev_ssk = NULL, *ssk = NULL; 1625 struct mptcp_sock *msk = mptcp_sk(sk); 1626 struct mptcp_sendmsg_info info = { 1627 .flags = flags, 1628 }; 1629 bool do_check_data_fin = false; 1630 int push_count = 1; 1631 1632 while (mptcp_send_head(sk) && (push_count > 0)) { 1633 struct mptcp_subflow_context *subflow; 1634 int ret = 0; 1635 1636 if (mptcp_sched_get_send(msk)) 1637 break; 1638 1639 push_count = 0; 1640 1641 mptcp_for_each_subflow(msk, subflow) { 1642 if (READ_ONCE(subflow->scheduled)) { 1643 mptcp_subflow_set_scheduled(subflow, false); 1644 1645 prev_ssk = ssk; 1646 ssk = mptcp_subflow_tcp_sock(subflow); 1647 if (ssk != prev_ssk) { 1648 /* First check. If the ssk has changed since 1649 * the last round, release prev_ssk 1650 */ 1651 if (prev_ssk) 1652 mptcp_push_release(prev_ssk, &info); 1653 1654 /* Need to lock the new subflow only if different 1655 * from the previous one, otherwise we are still 1656 * helding the relevant lock 1657 */ 1658 lock_sock(ssk); 1659 } 1660 1661 push_count++; 1662 1663 ret = __subflow_push_pending(sk, ssk, &info); 1664 if (ret <= 0) { 1665 if (ret != -EAGAIN || 1666 (1 << ssk->sk_state) & 1667 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1668 push_count--; 1669 continue; 1670 } 1671 do_check_data_fin = true; 1672 } 1673 } 1674 } 1675 1676 /* at this point we held the socket lock for the last subflow we used */ 1677 if (ssk) 1678 mptcp_push_release(ssk, &info); 1679 1680 /* ensure the rtx timer is running */ 1681 if (!mptcp_rtx_timer_pending(sk)) 1682 mptcp_reset_rtx_timer(sk); 1683 if (do_check_data_fin) 1684 mptcp_check_send_data_fin(sk); 1685 } 1686 1687 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1688 { 1689 struct mptcp_sock *msk = mptcp_sk(sk); 1690 struct mptcp_sendmsg_info info = { 1691 .data_lock_held = true, 1692 }; 1693 bool keep_pushing = true; 1694 struct sock *xmit_ssk; 1695 int copied = 0; 1696 1697 info.flags = 0; 1698 while (mptcp_send_head(sk) && keep_pushing) { 1699 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1700 int ret = 0; 1701 1702 /* check for a different subflow usage only after 1703 * spooling the first chunk of data 1704 */ 1705 if (first) { 1706 mptcp_subflow_set_scheduled(subflow, false); 1707 ret = __subflow_push_pending(sk, ssk, &info); 1708 first = false; 1709 if (ret <= 0) 1710 break; 1711 copied += ret; 1712 continue; 1713 } 1714 1715 if (mptcp_sched_get_send(msk)) 1716 goto out; 1717 1718 if (READ_ONCE(subflow->scheduled)) { 1719 mptcp_subflow_set_scheduled(subflow, false); 1720 ret = __subflow_push_pending(sk, ssk, &info); 1721 if (ret <= 0) 1722 keep_pushing = false; 1723 copied += ret; 1724 } 1725 1726 mptcp_for_each_subflow(msk, subflow) { 1727 if (READ_ONCE(subflow->scheduled)) { 1728 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1729 if (xmit_ssk != ssk) { 1730 mptcp_subflow_delegate(subflow, 1731 MPTCP_DELEGATE_SEND); 1732 keep_pushing = false; 1733 } 1734 } 1735 } 1736 } 1737 1738 out: 1739 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1740 * not going to flush it via release_sock() 1741 */ 1742 if (copied) { 1743 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1744 info.size_goal); 1745 if (!mptcp_rtx_timer_pending(sk)) 1746 mptcp_reset_rtx_timer(sk); 1747 1748 if (msk->snd_data_fin_enable && 1749 msk->snd_nxt + 1 == msk->write_seq) 1750 mptcp_schedule_work(sk); 1751 } 1752 } 1753 1754 static int mptcp_disconnect(struct sock *sk, int flags); 1755 1756 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1757 size_t len, int *copied_syn) 1758 { 1759 unsigned int saved_flags = msg->msg_flags; 1760 struct mptcp_sock *msk = mptcp_sk(sk); 1761 struct sock *ssk; 1762 int ret; 1763 1764 /* on flags based fastopen the mptcp is supposed to create the 1765 * first subflow right now. Otherwise we are in the defer_connect 1766 * path, and the first subflow must be already present. 1767 * Since the defer_connect flag is cleared after the first succsful 1768 * fastopen attempt, no need to check for additional subflow status. 1769 */ 1770 if (msg->msg_flags & MSG_FASTOPEN) { 1771 ssk = __mptcp_nmpc_sk(msk); 1772 if (IS_ERR(ssk)) 1773 return PTR_ERR(ssk); 1774 } 1775 if (!msk->first) 1776 return -EINVAL; 1777 1778 ssk = msk->first; 1779 1780 lock_sock(ssk); 1781 msg->msg_flags |= MSG_DONTWAIT; 1782 msk->fastopening = 1; 1783 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1784 msk->fastopening = 0; 1785 msg->msg_flags = saved_flags; 1786 release_sock(ssk); 1787 1788 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1789 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1790 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1791 msg->msg_namelen, msg->msg_flags, 1); 1792 1793 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1794 * case of any error, except timeout or signal 1795 */ 1796 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1797 *copied_syn = 0; 1798 } else if (ret && ret != -EINPROGRESS) { 1799 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1800 * __inet_stream_connect() can fail, due to looking check, 1801 * see mptcp_disconnect(). 1802 * Attempt it again outside the problematic scope. 1803 */ 1804 if (!mptcp_disconnect(sk, 0)) { 1805 sk->sk_disconnects++; 1806 sk->sk_socket->state = SS_UNCONNECTED; 1807 } 1808 } 1809 inet_clear_bit(DEFER_CONNECT, sk); 1810 1811 return ret; 1812 } 1813 1814 static int do_copy_data_nocache(struct sock *sk, int copy, 1815 struct iov_iter *from, char *to) 1816 { 1817 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1818 if (!copy_from_iter_full_nocache(to, copy, from)) 1819 return -EFAULT; 1820 } else if (!copy_from_iter_full(to, copy, from)) { 1821 return -EFAULT; 1822 } 1823 return 0; 1824 } 1825 1826 /* open-code sk_stream_memory_free() plus sent limit computation to 1827 * avoid indirect calls in fast-path. 1828 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1829 * annotations. 1830 */ 1831 static u32 mptcp_send_limit(const struct sock *sk) 1832 { 1833 const struct mptcp_sock *msk = mptcp_sk(sk); 1834 u32 limit, not_sent; 1835 1836 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1837 return 0; 1838 1839 limit = mptcp_notsent_lowat(sk); 1840 if (limit == UINT_MAX) 1841 return UINT_MAX; 1842 1843 not_sent = msk->write_seq - msk->snd_nxt; 1844 if (not_sent >= limit) 1845 return 0; 1846 1847 return limit - not_sent; 1848 } 1849 1850 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1851 { 1852 struct mptcp_subflow_context *subflow; 1853 1854 if (!rfs_is_needed()) 1855 return; 1856 1857 mptcp_for_each_subflow(msk, subflow) { 1858 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1859 1860 sock_rps_record_flow(ssk); 1861 } 1862 } 1863 1864 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1865 { 1866 struct mptcp_sock *msk = mptcp_sk(sk); 1867 struct page_frag *pfrag; 1868 size_t copied = 0; 1869 int ret = 0; 1870 long timeo; 1871 1872 /* silently ignore everything else */ 1873 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1874 1875 lock_sock(sk); 1876 1877 mptcp_rps_record_subflows(msk); 1878 1879 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1880 msg->msg_flags & MSG_FASTOPEN)) { 1881 int copied_syn = 0; 1882 1883 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1884 copied += copied_syn; 1885 if (ret == -EINPROGRESS && copied_syn > 0) 1886 goto out; 1887 else if (ret) 1888 goto do_error; 1889 } 1890 1891 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1892 1893 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1894 ret = sk_stream_wait_connect(sk, &timeo); 1895 if (ret) 1896 goto do_error; 1897 } 1898 1899 ret = -EPIPE; 1900 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1901 goto do_error; 1902 1903 pfrag = sk_page_frag(sk); 1904 1905 while (msg_data_left(msg)) { 1906 int total_ts, frag_truesize = 0; 1907 struct mptcp_data_frag *dfrag; 1908 bool dfrag_collapsed; 1909 size_t psize, offset; 1910 u32 copy_limit; 1911 1912 /* ensure fitting the notsent_lowat() constraint */ 1913 copy_limit = mptcp_send_limit(sk); 1914 if (!copy_limit) 1915 goto wait_for_memory; 1916 1917 /* reuse tail pfrag, if possible, or carve a new one from the 1918 * page allocator 1919 */ 1920 dfrag = mptcp_pending_tail(sk); 1921 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1922 if (!dfrag_collapsed) { 1923 if (!mptcp_page_frag_refill(sk, pfrag)) 1924 goto wait_for_memory; 1925 1926 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1927 frag_truesize = dfrag->overhead; 1928 } 1929 1930 /* we do not bound vs wspace, to allow a single packet. 1931 * memory accounting will prevent execessive memory usage 1932 * anyway 1933 */ 1934 offset = dfrag->offset + dfrag->data_len; 1935 psize = pfrag->size - offset; 1936 psize = min_t(size_t, psize, msg_data_left(msg)); 1937 psize = min_t(size_t, psize, copy_limit); 1938 total_ts = psize + frag_truesize; 1939 1940 if (!sk_wmem_schedule(sk, total_ts)) 1941 goto wait_for_memory; 1942 1943 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1944 page_address(dfrag->page) + offset); 1945 if (ret) 1946 goto do_error; 1947 1948 /* data successfully copied into the write queue */ 1949 sk_forward_alloc_add(sk, -total_ts); 1950 copied += psize; 1951 dfrag->data_len += psize; 1952 frag_truesize += psize; 1953 pfrag->offset += frag_truesize; 1954 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1955 1956 /* charge data on mptcp pending queue to the msk socket 1957 * Note: we charge such data both to sk and ssk 1958 */ 1959 sk_wmem_queued_add(sk, frag_truesize); 1960 if (!dfrag_collapsed) { 1961 get_page(dfrag->page); 1962 list_add_tail(&dfrag->list, &msk->rtx_queue); 1963 if (!msk->first_pending) 1964 msk->first_pending = dfrag; 1965 } 1966 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1967 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1968 !dfrag_collapsed); 1969 1970 continue; 1971 1972 wait_for_memory: 1973 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1974 __mptcp_push_pending(sk, msg->msg_flags); 1975 ret = sk_stream_wait_memory(sk, &timeo); 1976 if (ret) 1977 goto do_error; 1978 } 1979 1980 if (copied) 1981 __mptcp_push_pending(sk, msg->msg_flags); 1982 1983 out: 1984 release_sock(sk); 1985 return copied; 1986 1987 do_error: 1988 if (copied) 1989 goto out; 1990 1991 copied = sk_stream_error(sk, msg->msg_flags, ret); 1992 goto out; 1993 } 1994 1995 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1996 1997 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1998 size_t len, int flags, int copied_total, 1999 struct scm_timestamping_internal *tss, 2000 int *cmsg_flags) 2001 { 2002 struct mptcp_sock *msk = mptcp_sk(sk); 2003 struct sk_buff *skb, *tmp; 2004 int total_data_len = 0; 2005 int copied = 0; 2006 2007 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 2008 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 2009 u32 data_len = skb->len - offset; 2010 u32 count; 2011 int err; 2012 2013 if (flags & MSG_PEEK) { 2014 /* skip already peeked skbs */ 2015 if (total_data_len + data_len <= copied_total) { 2016 total_data_len += data_len; 2017 continue; 2018 } 2019 2020 /* skip the already peeked data in the current skb */ 2021 delta = copied_total - total_data_len; 2022 offset += delta; 2023 data_len -= delta; 2024 } 2025 2026 count = min_t(size_t, len - copied, data_len); 2027 if (!(flags & MSG_TRUNC)) { 2028 err = skb_copy_datagram_msg(skb, offset, msg, count); 2029 if (unlikely(err < 0)) { 2030 if (!copied) 2031 return err; 2032 break; 2033 } 2034 } 2035 2036 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 2037 tcp_update_recv_tstamps(skb, tss); 2038 *cmsg_flags |= MPTCP_CMSG_TS; 2039 } 2040 2041 copied += count; 2042 2043 if (!(flags & MSG_PEEK)) { 2044 msk->bytes_consumed += count; 2045 if (count < data_len) { 2046 MPTCP_SKB_CB(skb)->offset += count; 2047 MPTCP_SKB_CB(skb)->map_seq += count; 2048 break; 2049 } 2050 2051 /* avoid the indirect call, we know the destructor is sock_rfree */ 2052 skb->destructor = NULL; 2053 skb->sk = NULL; 2054 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2055 sk_mem_uncharge(sk, skb->truesize); 2056 __skb_unlink(skb, &sk->sk_receive_queue); 2057 skb_attempt_defer_free(skb); 2058 } 2059 2060 if (copied >= len) 2061 break; 2062 } 2063 2064 mptcp_rcv_space_adjust(msk, copied); 2065 return copied; 2066 } 2067 2068 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2069 * 2070 * Only difference: Use highest rtt estimate of the subflows in use. 2071 */ 2072 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2073 { 2074 struct mptcp_subflow_context *subflow; 2075 struct sock *sk = (struct sock *)msk; 2076 u8 scaling_ratio = U8_MAX; 2077 u32 time, advmss = 1; 2078 u64 rtt_us, mstamp; 2079 2080 msk_owned_by_me(msk); 2081 2082 if (copied <= 0) 2083 return; 2084 2085 if (!msk->rcvspace_init) 2086 mptcp_rcv_space_init(msk, msk->first); 2087 2088 msk->rcvq_space.copied += copied; 2089 2090 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2091 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2092 2093 rtt_us = msk->rcvq_space.rtt_us; 2094 if (rtt_us && time < (rtt_us >> 3)) 2095 return; 2096 2097 rtt_us = 0; 2098 mptcp_for_each_subflow(msk, subflow) { 2099 const struct tcp_sock *tp; 2100 u64 sf_rtt_us; 2101 u32 sf_advmss; 2102 2103 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2104 2105 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2106 sf_advmss = READ_ONCE(tp->advmss); 2107 2108 rtt_us = max(sf_rtt_us, rtt_us); 2109 advmss = max(sf_advmss, advmss); 2110 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2111 } 2112 2113 msk->rcvq_space.rtt_us = rtt_us; 2114 msk->scaling_ratio = scaling_ratio; 2115 if (time < (rtt_us >> 3) || rtt_us == 0) 2116 return; 2117 2118 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2119 goto new_measure; 2120 2121 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2122 /* Make subflows follow along. If we do not do this, we 2123 * get drops at subflow level if skbs can't be moved to 2124 * the mptcp rx queue fast enough (announced rcv_win can 2125 * exceed ssk->sk_rcvbuf). 2126 */ 2127 mptcp_for_each_subflow(msk, subflow) { 2128 struct sock *ssk; 2129 bool slow; 2130 2131 ssk = mptcp_subflow_tcp_sock(subflow); 2132 slow = lock_sock_fast(ssk); 2133 /* subflows can be added before tcp_init_transfer() */ 2134 if (tcp_sk(ssk)->rcvq_space.space) 2135 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2136 unlock_sock_fast(ssk, slow); 2137 } 2138 } 2139 2140 new_measure: 2141 msk->rcvq_space.copied = 0; 2142 msk->rcvq_space.time = mstamp; 2143 } 2144 2145 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta) 2146 { 2147 struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list); 2148 struct mptcp_sock *msk = mptcp_sk(sk); 2149 bool moved = false; 2150 2151 *delta = 0; 2152 while (1) { 2153 /* If the msk recvbuf is full stop, don't drop */ 2154 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2155 break; 2156 2157 prefetch(skb->next); 2158 list_del(&skb->list); 2159 *delta += skb->truesize; 2160 2161 moved |= __mptcp_move_skb(sk, skb); 2162 if (list_empty(skbs)) 2163 break; 2164 2165 skb = list_first_entry(skbs, struct sk_buff, list); 2166 } 2167 2168 __mptcp_ofo_queue(msk); 2169 if (moved) 2170 mptcp_check_data_fin((struct sock *)msk); 2171 return moved; 2172 } 2173 2174 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs) 2175 { 2176 struct mptcp_sock *msk = mptcp_sk(sk); 2177 2178 /* After CG initialization, subflows should never add skb before 2179 * gaining the CG themself. 2180 */ 2181 DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket && 2182 mem_cgroup_from_sk(sk)); 2183 2184 /* Don't spool the backlog if the rcvbuf is full. */ 2185 if (list_empty(&msk->backlog_list) || 2186 sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2187 return false; 2188 2189 INIT_LIST_HEAD(skbs); 2190 list_splice_init(&msk->backlog_list, skbs); 2191 return true; 2192 } 2193 2194 static void mptcp_backlog_spooled(struct sock *sk, u32 moved, 2195 struct list_head *skbs) 2196 { 2197 struct mptcp_sock *msk = mptcp_sk(sk); 2198 2199 WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved); 2200 list_splice(skbs, &msk->backlog_list); 2201 } 2202 2203 static bool mptcp_move_skbs(struct sock *sk) 2204 { 2205 struct list_head skbs; 2206 bool enqueued = false; 2207 u32 moved; 2208 2209 mptcp_data_lock(sk); 2210 while (mptcp_can_spool_backlog(sk, &skbs)) { 2211 mptcp_data_unlock(sk); 2212 enqueued |= __mptcp_move_skbs(sk, &skbs, &moved); 2213 2214 mptcp_data_lock(sk); 2215 mptcp_backlog_spooled(sk, moved, &skbs); 2216 } 2217 mptcp_data_unlock(sk); 2218 return enqueued; 2219 } 2220 2221 static unsigned int mptcp_inq_hint(const struct sock *sk) 2222 { 2223 const struct mptcp_sock *msk = mptcp_sk(sk); 2224 const struct sk_buff *skb; 2225 2226 skb = skb_peek(&sk->sk_receive_queue); 2227 if (skb) { 2228 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2229 2230 if (hint_val >= INT_MAX) 2231 return INT_MAX; 2232 2233 return (unsigned int)hint_val; 2234 } 2235 2236 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2237 return 1; 2238 2239 return 0; 2240 } 2241 2242 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2243 int flags, int *addr_len) 2244 { 2245 struct mptcp_sock *msk = mptcp_sk(sk); 2246 struct scm_timestamping_internal tss; 2247 int copied = 0, cmsg_flags = 0; 2248 int target; 2249 long timeo; 2250 2251 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2252 if (unlikely(flags & MSG_ERRQUEUE)) 2253 return inet_recv_error(sk, msg, len, addr_len); 2254 2255 lock_sock(sk); 2256 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2257 copied = -ENOTCONN; 2258 goto out_err; 2259 } 2260 2261 mptcp_rps_record_subflows(msk); 2262 2263 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2264 2265 len = min_t(size_t, len, INT_MAX); 2266 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2267 2268 if (unlikely(msk->recvmsg_inq)) 2269 cmsg_flags = MPTCP_CMSG_INQ; 2270 2271 while (copied < len) { 2272 int err, bytes_read; 2273 2274 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2275 copied, &tss, &cmsg_flags); 2276 if (unlikely(bytes_read < 0)) { 2277 if (!copied) 2278 copied = bytes_read; 2279 goto out_err; 2280 } 2281 2282 copied += bytes_read; 2283 2284 if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk)) 2285 continue; 2286 2287 /* only the MPTCP socket status is relevant here. The exit 2288 * conditions mirror closely tcp_recvmsg() 2289 */ 2290 if (copied >= target) 2291 break; 2292 2293 if (copied) { 2294 if (sk->sk_err || 2295 sk->sk_state == TCP_CLOSE || 2296 (sk->sk_shutdown & RCV_SHUTDOWN) || 2297 !timeo || 2298 signal_pending(current)) 2299 break; 2300 } else { 2301 if (sk->sk_err) { 2302 copied = sock_error(sk); 2303 break; 2304 } 2305 2306 if (sk->sk_shutdown & RCV_SHUTDOWN) 2307 break; 2308 2309 if (sk->sk_state == TCP_CLOSE) { 2310 copied = -ENOTCONN; 2311 break; 2312 } 2313 2314 if (!timeo) { 2315 copied = -EAGAIN; 2316 break; 2317 } 2318 2319 if (signal_pending(current)) { 2320 copied = sock_intr_errno(timeo); 2321 break; 2322 } 2323 } 2324 2325 pr_debug("block timeout %ld\n", timeo); 2326 mptcp_cleanup_rbuf(msk, copied); 2327 err = sk_wait_data(sk, &timeo, NULL); 2328 if (err < 0) { 2329 err = copied ? : err; 2330 goto out_err; 2331 } 2332 } 2333 2334 mptcp_cleanup_rbuf(msk, copied); 2335 2336 out_err: 2337 if (cmsg_flags && copied >= 0) { 2338 if (cmsg_flags & MPTCP_CMSG_TS) 2339 tcp_recv_timestamp(msg, sk, &tss); 2340 2341 if (cmsg_flags & MPTCP_CMSG_INQ) { 2342 unsigned int inq = mptcp_inq_hint(sk); 2343 2344 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2345 } 2346 } 2347 2348 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2349 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2350 2351 release_sock(sk); 2352 return copied; 2353 } 2354 2355 static void mptcp_retransmit_timer(struct timer_list *t) 2356 { 2357 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2358 icsk_retransmit_timer); 2359 struct sock *sk = &icsk->icsk_inet.sk; 2360 struct mptcp_sock *msk = mptcp_sk(sk); 2361 2362 bh_lock_sock(sk); 2363 if (!sock_owned_by_user(sk)) { 2364 /* we need a process context to retransmit */ 2365 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2366 mptcp_schedule_work(sk); 2367 } else { 2368 /* delegate our work to tcp_release_cb() */ 2369 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2370 } 2371 bh_unlock_sock(sk); 2372 sock_put(sk); 2373 } 2374 2375 static void mptcp_tout_timer(struct timer_list *t) 2376 { 2377 struct sock *sk = timer_container_of(sk, t, sk_timer); 2378 2379 mptcp_schedule_work(sk); 2380 sock_put(sk); 2381 } 2382 2383 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2384 * level. 2385 * 2386 * A backup subflow is returned only if that is the only kind available. 2387 */ 2388 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2389 { 2390 struct sock *backup = NULL, *pick = NULL; 2391 struct mptcp_subflow_context *subflow; 2392 int min_stale_count = INT_MAX; 2393 2394 mptcp_for_each_subflow(msk, subflow) { 2395 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2396 2397 if (!__mptcp_subflow_active(subflow)) 2398 continue; 2399 2400 /* still data outstanding at TCP level? skip this */ 2401 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2402 mptcp_pm_subflow_chk_stale(msk, ssk); 2403 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2404 continue; 2405 } 2406 2407 if (subflow->backup || subflow->request_bkup) { 2408 if (!backup) 2409 backup = ssk; 2410 continue; 2411 } 2412 2413 if (!pick) 2414 pick = ssk; 2415 } 2416 2417 if (pick) 2418 return pick; 2419 2420 /* use backup only if there are no progresses anywhere */ 2421 return min_stale_count > 1 ? backup : NULL; 2422 } 2423 2424 bool __mptcp_retransmit_pending_data(struct sock *sk) 2425 { 2426 struct mptcp_data_frag *cur, *rtx_head; 2427 struct mptcp_sock *msk = mptcp_sk(sk); 2428 2429 if (__mptcp_check_fallback(msk)) 2430 return false; 2431 2432 /* the closing socket has some data untransmitted and/or unacked: 2433 * some data in the mptcp rtx queue has not really xmitted yet. 2434 * keep it simple and re-inject the whole mptcp level rtx queue 2435 */ 2436 mptcp_data_lock(sk); 2437 __mptcp_clean_una_wakeup(sk); 2438 rtx_head = mptcp_rtx_head(sk); 2439 if (!rtx_head) { 2440 mptcp_data_unlock(sk); 2441 return false; 2442 } 2443 2444 msk->recovery_snd_nxt = msk->snd_nxt; 2445 msk->recovery = true; 2446 mptcp_data_unlock(sk); 2447 2448 msk->first_pending = rtx_head; 2449 msk->snd_burst = 0; 2450 2451 /* be sure to clear the "sent status" on all re-injected fragments */ 2452 list_for_each_entry(cur, &msk->rtx_queue, list) { 2453 if (!cur->already_sent) 2454 break; 2455 cur->already_sent = 0; 2456 } 2457 2458 return true; 2459 } 2460 2461 /* flags for __mptcp_close_ssk() */ 2462 #define MPTCP_CF_PUSH BIT(1) 2463 2464 /* be sure to send a reset only if the caller asked for it, also 2465 * clean completely the subflow status when the subflow reaches 2466 * TCP_CLOSE state 2467 */ 2468 static void __mptcp_subflow_disconnect(struct sock *ssk, 2469 struct mptcp_subflow_context *subflow, 2470 unsigned int flags) 2471 { 2472 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2473 subflow->send_fastclose) { 2474 /* The MPTCP code never wait on the subflow sockets, TCP-level 2475 * disconnect should never fail 2476 */ 2477 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2478 mptcp_subflow_ctx_reset(subflow); 2479 } else { 2480 tcp_shutdown(ssk, SEND_SHUTDOWN); 2481 } 2482 } 2483 2484 /* subflow sockets can be either outgoing (connect) or incoming 2485 * (accept). 2486 * 2487 * Outgoing subflows use in-kernel sockets. 2488 * Incoming subflows do not have their own 'struct socket' allocated, 2489 * so we need to use tcp_close() after detaching them from the mptcp 2490 * parent socket. 2491 */ 2492 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2493 struct mptcp_subflow_context *subflow, 2494 unsigned int flags) 2495 { 2496 struct mptcp_sock *msk = mptcp_sk(sk); 2497 bool dispose_it, need_push = false; 2498 int fwd_remaining; 2499 2500 /* Do not pass RX data to the msk, even if the subflow socket is not 2501 * going to be freed (i.e. even for the first subflow on graceful 2502 * subflow close. 2503 */ 2504 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2505 subflow->closing = 1; 2506 2507 /* Borrow the fwd allocated page left-over; fwd memory for the subflow 2508 * could be negative at this point, but will be reach zero soon - when 2509 * the data allocated using such fragment will be freed. 2510 */ 2511 if (subflow->lent_mem_frag) { 2512 fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag; 2513 sk_forward_alloc_add(sk, fwd_remaining); 2514 sk_forward_alloc_add(ssk, -fwd_remaining); 2515 subflow->lent_mem_frag = 0; 2516 } 2517 2518 /* If the first subflow moved to a close state before accept, e.g. due 2519 * to an incoming reset or listener shutdown, the subflow socket is 2520 * already deleted by inet_child_forget() and the mptcp socket can't 2521 * survive too. 2522 */ 2523 if (msk->in_accept_queue && msk->first == ssk && 2524 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2525 /* ensure later check in mptcp_worker() will dispose the msk */ 2526 sock_set_flag(sk, SOCK_DEAD); 2527 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2528 mptcp_subflow_drop_ctx(ssk); 2529 goto out_release; 2530 } 2531 2532 dispose_it = msk->free_first || ssk != msk->first; 2533 if (dispose_it) 2534 list_del(&subflow->node); 2535 2536 if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE) 2537 tcp_set_state(ssk, TCP_CLOSE); 2538 2539 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2540 if (!dispose_it) { 2541 __mptcp_subflow_disconnect(ssk, subflow, flags); 2542 release_sock(ssk); 2543 2544 goto out; 2545 } 2546 2547 subflow->disposable = 1; 2548 2549 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2550 * the ssk has been already destroyed, we just need to release the 2551 * reference owned by msk; 2552 */ 2553 if (!inet_csk(ssk)->icsk_ulp_ops) { 2554 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2555 kfree_rcu(subflow, rcu); 2556 } else { 2557 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2558 __tcp_close(ssk, 0); 2559 2560 /* close acquired an extra ref */ 2561 __sock_put(ssk); 2562 } 2563 2564 out_release: 2565 __mptcp_subflow_error_report(sk, ssk); 2566 release_sock(ssk); 2567 2568 sock_put(ssk); 2569 2570 if (ssk == msk->first) 2571 WRITE_ONCE(msk->first, NULL); 2572 2573 out: 2574 __mptcp_sync_sndbuf(sk); 2575 if (need_push) 2576 __mptcp_push_pending(sk, 0); 2577 2578 /* Catch every 'all subflows closed' scenario, including peers silently 2579 * closing them, e.g. due to timeout. 2580 * For established sockets, allow an additional timeout before closing, 2581 * as the protocol can still create more subflows. 2582 */ 2583 if (list_is_singular(&msk->conn_list) && msk->first && 2584 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2585 if (sk->sk_state != TCP_ESTABLISHED || 2586 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2587 mptcp_set_state(sk, TCP_CLOSE); 2588 mptcp_close_wake_up(sk); 2589 } else { 2590 mptcp_start_tout_timer(sk); 2591 } 2592 } 2593 } 2594 2595 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2596 struct mptcp_subflow_context *subflow) 2597 { 2598 struct mptcp_sock *msk = mptcp_sk(sk); 2599 struct sk_buff *skb; 2600 2601 /* The first subflow can already be closed and still in the list */ 2602 if (subflow->close_event_done) 2603 return; 2604 2605 subflow->close_event_done = true; 2606 2607 if (sk->sk_state == TCP_ESTABLISHED) 2608 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2609 2610 /* Remove any reference from the backlog to this ssk; backlog skbs consume 2611 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc 2612 */ 2613 list_for_each_entry(skb, &msk->backlog_list, list) { 2614 if (skb->sk != ssk) 2615 continue; 2616 2617 atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc); 2618 skb->sk = NULL; 2619 } 2620 2621 /* subflow aborted before reaching the fully_established status 2622 * attempt the creation of the next subflow 2623 */ 2624 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2625 2626 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2627 } 2628 2629 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2630 { 2631 return 0; 2632 } 2633 2634 static void __mptcp_close_subflow(struct sock *sk) 2635 { 2636 struct mptcp_subflow_context *subflow, *tmp; 2637 struct mptcp_sock *msk = mptcp_sk(sk); 2638 2639 might_sleep(); 2640 2641 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2642 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2643 int ssk_state = inet_sk_state_load(ssk); 2644 2645 if (ssk_state != TCP_CLOSE && 2646 (ssk_state != TCP_CLOSE_WAIT || 2647 inet_sk_state_load(sk) != TCP_ESTABLISHED || 2648 __mptcp_check_fallback(msk))) 2649 continue; 2650 2651 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2652 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2653 continue; 2654 2655 mptcp_close_ssk(sk, ssk, subflow); 2656 } 2657 2658 } 2659 2660 static bool mptcp_close_tout_expired(const struct sock *sk) 2661 { 2662 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2663 sk->sk_state == TCP_CLOSE) 2664 return false; 2665 2666 return time_after32(tcp_jiffies32, 2667 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2668 } 2669 2670 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2671 { 2672 struct mptcp_subflow_context *subflow, *tmp; 2673 struct sock *sk = (struct sock *)msk; 2674 2675 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2676 return; 2677 2678 mptcp_token_destroy(msk); 2679 2680 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2681 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2682 bool slow; 2683 2684 slow = lock_sock_fast(tcp_sk); 2685 if (tcp_sk->sk_state != TCP_CLOSE) { 2686 mptcp_send_active_reset_reason(tcp_sk); 2687 tcp_set_state(tcp_sk, TCP_CLOSE); 2688 } 2689 unlock_sock_fast(tcp_sk, slow); 2690 } 2691 2692 /* Mirror the tcp_reset() error propagation */ 2693 switch (sk->sk_state) { 2694 case TCP_SYN_SENT: 2695 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2696 break; 2697 case TCP_CLOSE_WAIT: 2698 WRITE_ONCE(sk->sk_err, EPIPE); 2699 break; 2700 case TCP_CLOSE: 2701 return; 2702 default: 2703 WRITE_ONCE(sk->sk_err, ECONNRESET); 2704 } 2705 2706 mptcp_set_state(sk, TCP_CLOSE); 2707 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2708 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2709 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2710 2711 /* the calling mptcp_worker will properly destroy the socket */ 2712 if (sock_flag(sk, SOCK_DEAD)) 2713 return; 2714 2715 sk->sk_state_change(sk); 2716 sk_error_report(sk); 2717 } 2718 2719 static void __mptcp_retrans(struct sock *sk) 2720 { 2721 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2722 struct mptcp_sock *msk = mptcp_sk(sk); 2723 struct mptcp_subflow_context *subflow; 2724 struct mptcp_data_frag *dfrag; 2725 struct sock *ssk; 2726 int ret, err; 2727 u16 len = 0; 2728 2729 mptcp_clean_una_wakeup(sk); 2730 2731 /* first check ssk: need to kick "stale" logic */ 2732 err = mptcp_sched_get_retrans(msk); 2733 dfrag = mptcp_rtx_head(sk); 2734 if (!dfrag) { 2735 if (mptcp_data_fin_enabled(msk)) { 2736 struct inet_connection_sock *icsk = inet_csk(sk); 2737 2738 WRITE_ONCE(icsk->icsk_retransmits, 2739 icsk->icsk_retransmits + 1); 2740 mptcp_set_datafin_timeout(sk); 2741 mptcp_send_ack(msk); 2742 2743 goto reset_timer; 2744 } 2745 2746 if (!mptcp_send_head(sk)) 2747 return; 2748 2749 goto reset_timer; 2750 } 2751 2752 if (err) 2753 goto reset_timer; 2754 2755 mptcp_for_each_subflow(msk, subflow) { 2756 if (READ_ONCE(subflow->scheduled)) { 2757 u16 copied = 0; 2758 2759 mptcp_subflow_set_scheduled(subflow, false); 2760 2761 ssk = mptcp_subflow_tcp_sock(subflow); 2762 2763 lock_sock(ssk); 2764 2765 /* limit retransmission to the bytes already sent on some subflows */ 2766 info.sent = 0; 2767 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2768 dfrag->already_sent; 2769 2770 /* 2771 * make the whole retrans decision, xmit, disallow 2772 * fallback atomic 2773 */ 2774 spin_lock_bh(&msk->fallback_lock); 2775 if (__mptcp_check_fallback(msk)) { 2776 spin_unlock_bh(&msk->fallback_lock); 2777 release_sock(ssk); 2778 return; 2779 } 2780 2781 while (info.sent < info.limit) { 2782 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2783 if (ret <= 0) 2784 break; 2785 2786 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2787 copied += ret; 2788 info.sent += ret; 2789 } 2790 if (copied) { 2791 len = max(copied, len); 2792 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2793 info.size_goal); 2794 msk->allow_infinite_fallback = false; 2795 } 2796 spin_unlock_bh(&msk->fallback_lock); 2797 2798 release_sock(ssk); 2799 } 2800 } 2801 2802 msk->bytes_retrans += len; 2803 dfrag->already_sent = max(dfrag->already_sent, len); 2804 2805 reset_timer: 2806 mptcp_check_and_set_pending(sk); 2807 2808 if (!mptcp_rtx_timer_pending(sk)) 2809 mptcp_reset_rtx_timer(sk); 2810 } 2811 2812 /* schedule the timeout timer for the relevant event: either close timeout 2813 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2814 */ 2815 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2816 { 2817 struct sock *sk = (struct sock *)msk; 2818 unsigned long timeout, close_timeout; 2819 2820 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2821 return; 2822 2823 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2824 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2825 2826 /* the close timeout takes precedence on the fail one, and here at least one of 2827 * them is active 2828 */ 2829 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2830 2831 sk_reset_timer(sk, &sk->sk_timer, timeout); 2832 } 2833 2834 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2835 { 2836 struct sock *ssk = msk->first; 2837 bool slow; 2838 2839 if (!ssk) 2840 return; 2841 2842 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2843 2844 slow = lock_sock_fast(ssk); 2845 mptcp_subflow_reset(ssk); 2846 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2847 unlock_sock_fast(ssk, slow); 2848 } 2849 2850 static void mptcp_backlog_purge(struct sock *sk) 2851 { 2852 struct mptcp_sock *msk = mptcp_sk(sk); 2853 struct sk_buff *tmp, *skb; 2854 LIST_HEAD(backlog); 2855 2856 mptcp_data_lock(sk); 2857 list_splice_init(&msk->backlog_list, &backlog); 2858 msk->backlog_len = 0; 2859 mptcp_data_unlock(sk); 2860 2861 list_for_each_entry_safe(skb, tmp, &backlog, list) { 2862 mptcp_borrow_fwdmem(sk, skb); 2863 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 2864 } 2865 sk_mem_reclaim(sk); 2866 } 2867 2868 static void mptcp_do_fastclose(struct sock *sk) 2869 { 2870 struct mptcp_subflow_context *subflow, *tmp; 2871 struct mptcp_sock *msk = mptcp_sk(sk); 2872 2873 mptcp_set_state(sk, TCP_CLOSE); 2874 mptcp_backlog_purge(sk); 2875 2876 /* Explicitly send the fastclose reset as need */ 2877 if (__mptcp_check_fallback(msk)) 2878 return; 2879 2880 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2881 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2882 2883 lock_sock(ssk); 2884 2885 /* Some subflow socket states don't allow/need a reset.*/ 2886 if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 2887 goto unlock; 2888 2889 subflow->send_fastclose = 1; 2890 tcp_send_active_reset(ssk, ssk->sk_allocation, 2891 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 2892 unlock: 2893 release_sock(ssk); 2894 } 2895 } 2896 2897 static void mptcp_worker(struct work_struct *work) 2898 { 2899 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2900 struct sock *sk = (struct sock *)msk; 2901 unsigned long fail_tout; 2902 int state; 2903 2904 lock_sock(sk); 2905 state = sk->sk_state; 2906 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2907 goto unlock; 2908 2909 mptcp_check_fastclose(msk); 2910 2911 mptcp_pm_worker(msk); 2912 2913 mptcp_check_send_data_fin(sk); 2914 mptcp_check_data_fin_ack(sk); 2915 mptcp_check_data_fin(sk); 2916 2917 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2918 __mptcp_close_subflow(sk); 2919 2920 if (mptcp_close_tout_expired(sk)) { 2921 struct mptcp_subflow_context *subflow, *tmp; 2922 2923 mptcp_do_fastclose(sk); 2924 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2925 __mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0); 2926 mptcp_close_wake_up(sk); 2927 } 2928 2929 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2930 __mptcp_destroy_sock(sk); 2931 goto unlock; 2932 } 2933 2934 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2935 __mptcp_retrans(sk); 2936 2937 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2938 if (fail_tout && time_after(jiffies, fail_tout)) 2939 mptcp_mp_fail_no_response(msk); 2940 2941 unlock: 2942 release_sock(sk); 2943 sock_put(sk); 2944 } 2945 2946 static void __mptcp_init_sock(struct sock *sk) 2947 { 2948 struct mptcp_sock *msk = mptcp_sk(sk); 2949 2950 INIT_LIST_HEAD(&msk->conn_list); 2951 INIT_LIST_HEAD(&msk->join_list); 2952 INIT_LIST_HEAD(&msk->rtx_queue); 2953 INIT_LIST_HEAD(&msk->backlog_list); 2954 INIT_WORK(&msk->work, mptcp_worker); 2955 msk->out_of_order_queue = RB_ROOT; 2956 msk->first_pending = NULL; 2957 msk->timer_ival = TCP_RTO_MIN; 2958 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2959 msk->backlog_len = 0; 2960 2961 WRITE_ONCE(msk->first, NULL); 2962 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2963 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2964 msk->allow_infinite_fallback = true; 2965 msk->allow_subflows = true; 2966 msk->recovery = false; 2967 msk->subflow_id = 1; 2968 msk->last_data_sent = tcp_jiffies32; 2969 msk->last_data_recv = tcp_jiffies32; 2970 msk->last_ack_recv = tcp_jiffies32; 2971 2972 mptcp_pm_data_init(msk); 2973 spin_lock_init(&msk->fallback_lock); 2974 2975 /* re-use the csk retrans timer for MPTCP-level retrans */ 2976 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2977 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2978 } 2979 2980 static void mptcp_ca_reset(struct sock *sk) 2981 { 2982 struct inet_connection_sock *icsk = inet_csk(sk); 2983 2984 tcp_assign_congestion_control(sk); 2985 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2986 sizeof(mptcp_sk(sk)->ca_name)); 2987 2988 /* no need to keep a reference to the ops, the name will suffice */ 2989 tcp_cleanup_congestion_control(sk); 2990 icsk->icsk_ca_ops = NULL; 2991 } 2992 2993 static int mptcp_init_sock(struct sock *sk) 2994 { 2995 struct net *net = sock_net(sk); 2996 int ret; 2997 2998 __mptcp_init_sock(sk); 2999 3000 if (!mptcp_is_enabled(net)) 3001 return -ENOPROTOOPT; 3002 3003 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 3004 return -ENOMEM; 3005 3006 rcu_read_lock(); 3007 ret = mptcp_init_sched(mptcp_sk(sk), 3008 mptcp_sched_find(mptcp_get_scheduler(net))); 3009 rcu_read_unlock(); 3010 if (ret) 3011 return ret; 3012 3013 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 3014 3015 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 3016 * propagate the correct value 3017 */ 3018 mptcp_ca_reset(sk); 3019 3020 sk_sockets_allocated_inc(sk); 3021 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 3022 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 3023 3024 return 0; 3025 } 3026 3027 static void __mptcp_clear_xmit(struct sock *sk) 3028 { 3029 struct mptcp_sock *msk = mptcp_sk(sk); 3030 struct mptcp_data_frag *dtmp, *dfrag; 3031 3032 msk->first_pending = NULL; 3033 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 3034 dfrag_clear(sk, dfrag); 3035 } 3036 3037 void mptcp_cancel_work(struct sock *sk) 3038 { 3039 struct mptcp_sock *msk = mptcp_sk(sk); 3040 3041 if (cancel_work_sync(&msk->work)) 3042 __sock_put(sk); 3043 } 3044 3045 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 3046 { 3047 lock_sock(ssk); 3048 3049 switch (ssk->sk_state) { 3050 case TCP_LISTEN: 3051 if (!(how & RCV_SHUTDOWN)) 3052 break; 3053 fallthrough; 3054 case TCP_SYN_SENT: 3055 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 3056 break; 3057 default: 3058 if (__mptcp_check_fallback(mptcp_sk(sk))) { 3059 pr_debug("Fallback\n"); 3060 ssk->sk_shutdown |= how; 3061 tcp_shutdown(ssk, how); 3062 3063 /* simulate the data_fin ack reception to let the state 3064 * machine move forward 3065 */ 3066 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 3067 mptcp_schedule_work(sk); 3068 } else { 3069 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 3070 tcp_send_ack(ssk); 3071 if (!mptcp_rtx_timer_pending(sk)) 3072 mptcp_reset_rtx_timer(sk); 3073 } 3074 break; 3075 } 3076 3077 release_sock(ssk); 3078 } 3079 3080 void mptcp_set_state(struct sock *sk, int state) 3081 { 3082 int oldstate = sk->sk_state; 3083 3084 switch (state) { 3085 case TCP_ESTABLISHED: 3086 if (oldstate != TCP_ESTABLISHED) 3087 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3088 break; 3089 case TCP_CLOSE_WAIT: 3090 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 3091 * MPTCP "accepted" sockets will be created later on. So no 3092 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 3093 */ 3094 break; 3095 default: 3096 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 3097 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3098 } 3099 3100 inet_sk_state_store(sk, state); 3101 } 3102 3103 static const unsigned char new_state[16] = { 3104 /* current state: new state: action: */ 3105 [0 /* (Invalid) */] = TCP_CLOSE, 3106 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3107 [TCP_SYN_SENT] = TCP_CLOSE, 3108 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3109 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3110 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3111 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 3112 [TCP_CLOSE] = TCP_CLOSE, 3113 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3114 [TCP_LAST_ACK] = TCP_LAST_ACK, 3115 [TCP_LISTEN] = TCP_CLOSE, 3116 [TCP_CLOSING] = TCP_CLOSING, 3117 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3118 }; 3119 3120 static int mptcp_close_state(struct sock *sk) 3121 { 3122 int next = (int)new_state[sk->sk_state]; 3123 int ns = next & TCP_STATE_MASK; 3124 3125 mptcp_set_state(sk, ns); 3126 3127 return next & TCP_ACTION_FIN; 3128 } 3129 3130 static void mptcp_check_send_data_fin(struct sock *sk) 3131 { 3132 struct mptcp_subflow_context *subflow; 3133 struct mptcp_sock *msk = mptcp_sk(sk); 3134 3135 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3136 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3137 msk->snd_nxt, msk->write_seq); 3138 3139 /* we still need to enqueue subflows or not really shutting down, 3140 * skip this 3141 */ 3142 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3143 mptcp_send_head(sk)) 3144 return; 3145 3146 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3147 3148 mptcp_for_each_subflow(msk, subflow) { 3149 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3150 3151 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3152 } 3153 } 3154 3155 static void __mptcp_wr_shutdown(struct sock *sk) 3156 { 3157 struct mptcp_sock *msk = mptcp_sk(sk); 3158 3159 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3160 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3161 !!mptcp_send_head(sk)); 3162 3163 /* will be ignored by fallback sockets */ 3164 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3165 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3166 3167 mptcp_check_send_data_fin(sk); 3168 } 3169 3170 static void __mptcp_destroy_sock(struct sock *sk) 3171 { 3172 struct mptcp_sock *msk = mptcp_sk(sk); 3173 3174 pr_debug("msk=%p\n", msk); 3175 3176 might_sleep(); 3177 3178 mptcp_stop_rtx_timer(sk); 3179 sk_stop_timer(sk, &sk->sk_timer); 3180 msk->pm.status = 0; 3181 mptcp_release_sched(msk); 3182 3183 sk->sk_prot->destroy(sk); 3184 3185 sk_stream_kill_queues(sk); 3186 xfrm_sk_free_policy(sk); 3187 3188 sock_put(sk); 3189 } 3190 3191 void __mptcp_unaccepted_force_close(struct sock *sk) 3192 { 3193 sock_set_flag(sk, SOCK_DEAD); 3194 mptcp_do_fastclose(sk); 3195 __mptcp_destroy_sock(sk); 3196 } 3197 3198 static __poll_t mptcp_check_readable(struct sock *sk) 3199 { 3200 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3201 } 3202 3203 static void mptcp_check_listen_stop(struct sock *sk) 3204 { 3205 struct sock *ssk; 3206 3207 if (inet_sk_state_load(sk) != TCP_LISTEN) 3208 return; 3209 3210 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3211 ssk = mptcp_sk(sk)->first; 3212 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3213 return; 3214 3215 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3216 tcp_set_state(ssk, TCP_CLOSE); 3217 mptcp_subflow_queue_clean(sk, ssk); 3218 inet_csk_listen_stop(ssk); 3219 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3220 release_sock(ssk); 3221 } 3222 3223 bool __mptcp_close(struct sock *sk, long timeout) 3224 { 3225 struct mptcp_subflow_context *subflow; 3226 struct mptcp_sock *msk = mptcp_sk(sk); 3227 bool do_cancel_work = false; 3228 int subflows_alive = 0; 3229 3230 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3231 3232 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3233 mptcp_check_listen_stop(sk); 3234 mptcp_set_state(sk, TCP_CLOSE); 3235 goto cleanup; 3236 } 3237 3238 if (mptcp_data_avail(msk) || timeout < 0) { 3239 /* If the msk has read data, or the caller explicitly ask it, 3240 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3241 */ 3242 mptcp_do_fastclose(sk); 3243 timeout = 0; 3244 } else if (mptcp_close_state(sk)) { 3245 __mptcp_wr_shutdown(sk); 3246 } 3247 3248 sk_stream_wait_close(sk, timeout); 3249 3250 cleanup: 3251 /* orphan all the subflows */ 3252 mptcp_for_each_subflow(msk, subflow) { 3253 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3254 bool slow = lock_sock_fast_nested(ssk); 3255 3256 subflows_alive += ssk->sk_state != TCP_CLOSE; 3257 3258 /* since the close timeout takes precedence on the fail one, 3259 * cancel the latter 3260 */ 3261 if (ssk == msk->first) 3262 subflow->fail_tout = 0; 3263 3264 /* detach from the parent socket, but allow data_ready to 3265 * push incoming data into the mptcp stack, to properly ack it 3266 */ 3267 ssk->sk_socket = NULL; 3268 ssk->sk_wq = NULL; 3269 unlock_sock_fast(ssk, slow); 3270 } 3271 sock_orphan(sk); 3272 3273 /* all the subflows are closed, only timeout can change the msk 3274 * state, let's not keep resources busy for no reasons 3275 */ 3276 if (subflows_alive == 0) 3277 mptcp_set_state(sk, TCP_CLOSE); 3278 3279 sock_hold(sk); 3280 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3281 mptcp_pm_connection_closed(msk); 3282 3283 if (sk->sk_state == TCP_CLOSE) { 3284 __mptcp_destroy_sock(sk); 3285 do_cancel_work = true; 3286 } else { 3287 mptcp_start_tout_timer(sk); 3288 } 3289 3290 return do_cancel_work; 3291 } 3292 3293 static void mptcp_close(struct sock *sk, long timeout) 3294 { 3295 bool do_cancel_work; 3296 3297 lock_sock(sk); 3298 3299 do_cancel_work = __mptcp_close(sk, timeout); 3300 release_sock(sk); 3301 if (do_cancel_work) 3302 mptcp_cancel_work(sk); 3303 3304 sock_put(sk); 3305 } 3306 3307 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3308 { 3309 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3310 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3311 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3312 3313 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3314 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3315 3316 if (msk6 && ssk6) { 3317 msk6->saddr = ssk6->saddr; 3318 msk6->flow_label = ssk6->flow_label; 3319 } 3320 #endif 3321 3322 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3323 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3324 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3325 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3326 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3327 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3328 } 3329 3330 static void mptcp_destroy_common(struct mptcp_sock *msk) 3331 { 3332 struct mptcp_subflow_context *subflow, *tmp; 3333 struct sock *sk = (struct sock *)msk; 3334 3335 __mptcp_clear_xmit(sk); 3336 mptcp_backlog_purge(sk); 3337 3338 /* join list will be eventually flushed (with rst) at sock lock release time */ 3339 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3340 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0); 3341 3342 __skb_queue_purge(&sk->sk_receive_queue); 3343 skb_rbtree_purge(&msk->out_of_order_queue); 3344 3345 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3346 * inet_sock_destruct() will dispose it 3347 */ 3348 mptcp_token_destroy(msk); 3349 mptcp_pm_destroy(msk); 3350 } 3351 3352 static int mptcp_disconnect(struct sock *sk, int flags) 3353 { 3354 struct mptcp_sock *msk = mptcp_sk(sk); 3355 3356 /* We are on the fastopen error path. We can't call straight into the 3357 * subflows cleanup code due to lock nesting (we are already under 3358 * msk->firstsocket lock). 3359 */ 3360 if (msk->fastopening) 3361 return -EBUSY; 3362 3363 mptcp_check_listen_stop(sk); 3364 mptcp_set_state(sk, TCP_CLOSE); 3365 3366 mptcp_stop_rtx_timer(sk); 3367 mptcp_stop_tout_timer(sk); 3368 3369 mptcp_pm_connection_closed(msk); 3370 3371 /* msk->subflow is still intact, the following will not free the first 3372 * subflow 3373 */ 3374 mptcp_do_fastclose(sk); 3375 mptcp_destroy_common(msk); 3376 3377 /* The first subflow is already in TCP_CLOSE status, the following 3378 * can't overlap with a fallback anymore 3379 */ 3380 spin_lock_bh(&msk->fallback_lock); 3381 msk->allow_subflows = true; 3382 msk->allow_infinite_fallback = true; 3383 WRITE_ONCE(msk->flags, 0); 3384 spin_unlock_bh(&msk->fallback_lock); 3385 3386 msk->cb_flags = 0; 3387 msk->recovery = false; 3388 WRITE_ONCE(msk->can_ack, false); 3389 WRITE_ONCE(msk->fully_established, false); 3390 WRITE_ONCE(msk->rcv_data_fin, false); 3391 WRITE_ONCE(msk->snd_data_fin_enable, false); 3392 WRITE_ONCE(msk->rcv_fastclose, false); 3393 WRITE_ONCE(msk->use_64bit_ack, false); 3394 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3395 mptcp_pm_data_reset(msk); 3396 mptcp_ca_reset(sk); 3397 msk->bytes_consumed = 0; 3398 msk->bytes_acked = 0; 3399 msk->bytes_received = 0; 3400 msk->bytes_sent = 0; 3401 msk->bytes_retrans = 0; 3402 msk->rcvspace_init = 0; 3403 3404 /* for fallback's sake */ 3405 WRITE_ONCE(msk->ack_seq, 0); 3406 3407 WRITE_ONCE(sk->sk_shutdown, 0); 3408 sk_error_report(sk); 3409 return 0; 3410 } 3411 3412 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3413 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3414 { 3415 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3416 3417 return &msk6->np; 3418 } 3419 3420 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3421 { 3422 const struct ipv6_pinfo *np = inet6_sk(sk); 3423 struct ipv6_txoptions *opt; 3424 struct ipv6_pinfo *newnp; 3425 3426 newnp = inet6_sk(newsk); 3427 3428 rcu_read_lock(); 3429 opt = rcu_dereference(np->opt); 3430 if (opt) { 3431 opt = ipv6_dup_options(newsk, opt); 3432 if (!opt) 3433 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3434 } 3435 RCU_INIT_POINTER(newnp->opt, opt); 3436 rcu_read_unlock(); 3437 } 3438 #endif 3439 3440 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3441 { 3442 struct ip_options_rcu *inet_opt, *newopt = NULL; 3443 const struct inet_sock *inet = inet_sk(sk); 3444 struct inet_sock *newinet; 3445 3446 newinet = inet_sk(newsk); 3447 3448 rcu_read_lock(); 3449 inet_opt = rcu_dereference(inet->inet_opt); 3450 if (inet_opt) { 3451 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3452 inet_opt->opt.optlen, GFP_ATOMIC); 3453 if (!newopt) 3454 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3455 } 3456 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3457 rcu_read_unlock(); 3458 } 3459 3460 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3461 const struct mptcp_options_received *mp_opt, 3462 struct sock *ssk, 3463 struct request_sock *req) 3464 { 3465 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3466 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3467 struct mptcp_subflow_context *subflow; 3468 struct mptcp_sock *msk; 3469 3470 if (!nsk) 3471 return NULL; 3472 3473 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3474 if (nsk->sk_family == AF_INET6) 3475 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3476 #endif 3477 3478 __mptcp_init_sock(nsk); 3479 3480 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3481 if (nsk->sk_family == AF_INET6) 3482 mptcp_copy_ip6_options(nsk, sk); 3483 else 3484 #endif 3485 mptcp_copy_ip_options(nsk, sk); 3486 3487 msk = mptcp_sk(nsk); 3488 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3489 WRITE_ONCE(msk->token, subflow_req->token); 3490 msk->in_accept_queue = 1; 3491 WRITE_ONCE(msk->fully_established, false); 3492 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3493 WRITE_ONCE(msk->csum_enabled, true); 3494 3495 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3496 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3497 WRITE_ONCE(msk->snd_una, msk->write_seq); 3498 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3499 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3500 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3501 3502 /* passive msk is created after the first/MPC subflow */ 3503 msk->subflow_id = 2; 3504 3505 sock_reset_flag(nsk, SOCK_RCU_FREE); 3506 security_inet_csk_clone(nsk, req); 3507 3508 /* this can't race with mptcp_close(), as the msk is 3509 * not yet exposted to user-space 3510 */ 3511 mptcp_set_state(nsk, TCP_ESTABLISHED); 3512 3513 /* The msk maintain a ref to each subflow in the connections list */ 3514 WRITE_ONCE(msk->first, ssk); 3515 subflow = mptcp_subflow_ctx(ssk); 3516 list_add(&subflow->node, &msk->conn_list); 3517 sock_hold(ssk); 3518 3519 /* new mpc subflow takes ownership of the newly 3520 * created mptcp socket 3521 */ 3522 mptcp_token_accept(subflow_req, msk); 3523 3524 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3525 * uses the correct data 3526 */ 3527 mptcp_copy_inaddrs(nsk, ssk); 3528 __mptcp_propagate_sndbuf(nsk, ssk); 3529 3530 mptcp_rcv_space_init(msk, ssk); 3531 3532 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3533 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3534 bh_unlock_sock(nsk); 3535 3536 /* note: the newly allocated socket refcount is 2 now */ 3537 return nsk; 3538 } 3539 3540 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3541 { 3542 const struct tcp_sock *tp = tcp_sk(ssk); 3543 3544 msk->rcvspace_init = 1; 3545 msk->rcvq_space.copied = 0; 3546 msk->rcvq_space.rtt_us = 0; 3547 3548 msk->rcvq_space.time = tp->tcp_mstamp; 3549 3550 /* initial rcv_space offering made to peer */ 3551 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3552 TCP_INIT_CWND * tp->advmss); 3553 if (msk->rcvq_space.space == 0) 3554 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3555 } 3556 3557 static void mptcp_destroy(struct sock *sk) 3558 { 3559 struct mptcp_sock *msk = mptcp_sk(sk); 3560 3561 /* allow the following to close even the initial subflow */ 3562 msk->free_first = 1; 3563 mptcp_destroy_common(msk); 3564 sk_sockets_allocated_dec(sk); 3565 } 3566 3567 void __mptcp_data_acked(struct sock *sk) 3568 { 3569 if (!sock_owned_by_user(sk)) 3570 __mptcp_clean_una(sk); 3571 else 3572 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3573 } 3574 3575 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3576 { 3577 if (!sock_owned_by_user(sk)) 3578 __mptcp_subflow_push_pending(sk, ssk, false); 3579 else 3580 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3581 } 3582 3583 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3584 BIT(MPTCP_RETRANSMIT) | \ 3585 BIT(MPTCP_FLUSH_JOIN_LIST)) 3586 3587 /* processes deferred events and flush wmem */ 3588 static void mptcp_release_cb(struct sock *sk) 3589 __must_hold(&sk->sk_lock.slock) 3590 { 3591 struct mptcp_sock *msk = mptcp_sk(sk); 3592 3593 for (;;) { 3594 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3595 struct list_head join_list, skbs; 3596 bool spool_bl; 3597 u32 moved; 3598 3599 spool_bl = mptcp_can_spool_backlog(sk, &skbs); 3600 if (!flags && !spool_bl) 3601 break; 3602 3603 INIT_LIST_HEAD(&join_list); 3604 list_splice_init(&msk->join_list, &join_list); 3605 3606 /* the following actions acquire the subflow socket lock 3607 * 3608 * 1) can't be invoked in atomic scope 3609 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3610 * datapath acquires the msk socket spinlock while helding 3611 * the subflow socket lock 3612 */ 3613 msk->cb_flags &= ~flags; 3614 spin_unlock_bh(&sk->sk_lock.slock); 3615 3616 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3617 __mptcp_flush_join_list(sk, &join_list); 3618 if (flags & BIT(MPTCP_PUSH_PENDING)) 3619 __mptcp_push_pending(sk, 0); 3620 if (flags & BIT(MPTCP_RETRANSMIT)) 3621 __mptcp_retrans(sk); 3622 if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) { 3623 /* notify ack seq update */ 3624 mptcp_cleanup_rbuf(msk, 0); 3625 sk->sk_data_ready(sk); 3626 } 3627 3628 cond_resched(); 3629 spin_lock_bh(&sk->sk_lock.slock); 3630 if (spool_bl) 3631 mptcp_backlog_spooled(sk, moved, &skbs); 3632 } 3633 3634 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3635 __mptcp_clean_una_wakeup(sk); 3636 if (unlikely(msk->cb_flags)) { 3637 /* be sure to sync the msk state before taking actions 3638 * depending on sk_state (MPTCP_ERROR_REPORT) 3639 * On sk release avoid actions depending on the first subflow 3640 */ 3641 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3642 __mptcp_sync_state(sk, msk->pending_state); 3643 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3644 __mptcp_error_report(sk); 3645 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3646 __mptcp_sync_sndbuf(sk); 3647 } 3648 } 3649 3650 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3651 * TCP can't schedule delack timer before the subflow is fully established. 3652 * MPTCP uses the delack timer to do 3rd ack retransmissions 3653 */ 3654 static void schedule_3rdack_retransmission(struct sock *ssk) 3655 { 3656 struct inet_connection_sock *icsk = inet_csk(ssk); 3657 struct tcp_sock *tp = tcp_sk(ssk); 3658 unsigned long timeout; 3659 3660 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3661 return; 3662 3663 /* reschedule with a timeout above RTT, as we must look only for drop */ 3664 if (tp->srtt_us) 3665 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3666 else 3667 timeout = TCP_TIMEOUT_INIT; 3668 timeout += jiffies; 3669 3670 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3671 smp_store_release(&icsk->icsk_ack.pending, 3672 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3673 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3674 } 3675 3676 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3677 { 3678 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3679 struct sock *sk = subflow->conn; 3680 3681 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3682 mptcp_data_lock(sk); 3683 if (!sock_owned_by_user(sk)) 3684 __mptcp_subflow_push_pending(sk, ssk, true); 3685 else 3686 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3687 mptcp_data_unlock(sk); 3688 } 3689 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3690 mptcp_data_lock(sk); 3691 if (!sock_owned_by_user(sk)) 3692 __mptcp_sync_sndbuf(sk); 3693 else 3694 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3695 mptcp_data_unlock(sk); 3696 } 3697 if (status & BIT(MPTCP_DELEGATE_ACK)) 3698 schedule_3rdack_retransmission(ssk); 3699 } 3700 3701 static int mptcp_hash(struct sock *sk) 3702 { 3703 /* should never be called, 3704 * we hash the TCP subflows not the MPTCP socket 3705 */ 3706 WARN_ON_ONCE(1); 3707 return 0; 3708 } 3709 3710 static void mptcp_unhash(struct sock *sk) 3711 { 3712 /* called from sk_common_release(), but nothing to do here */ 3713 } 3714 3715 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3716 { 3717 struct mptcp_sock *msk = mptcp_sk(sk); 3718 3719 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3720 if (WARN_ON_ONCE(!msk->first)) 3721 return -EINVAL; 3722 3723 return inet_csk_get_port(msk->first, snum); 3724 } 3725 3726 void mptcp_finish_connect(struct sock *ssk) 3727 { 3728 struct mptcp_subflow_context *subflow; 3729 struct mptcp_sock *msk; 3730 struct sock *sk; 3731 3732 subflow = mptcp_subflow_ctx(ssk); 3733 sk = subflow->conn; 3734 msk = mptcp_sk(sk); 3735 3736 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3737 3738 subflow->map_seq = subflow->iasn; 3739 subflow->map_subflow_seq = 1; 3740 3741 /* the socket is not connected yet, no msk/subflow ops can access/race 3742 * accessing the field below 3743 */ 3744 WRITE_ONCE(msk->local_key, subflow->local_key); 3745 3746 mptcp_pm_new_connection(msk, ssk, 0); 3747 } 3748 3749 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3750 { 3751 write_lock_bh(&sk->sk_callback_lock); 3752 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3753 sk_set_socket(sk, parent); 3754 write_unlock_bh(&sk->sk_callback_lock); 3755 } 3756 3757 /* Can be called without holding the msk socket lock; use the callback lock 3758 * to avoid {READ_,WRITE_}ONCE annotations on sk_socket. 3759 */ 3760 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk) 3761 { 3762 struct socket *sock; 3763 3764 write_lock_bh(&sk->sk_callback_lock); 3765 sock = sk->sk_socket; 3766 write_unlock_bh(&sk->sk_callback_lock); 3767 if (sock) { 3768 mptcp_sock_graft(ssk, sock); 3769 __mptcp_inherit_cgrp_data(sk, ssk); 3770 __mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC); 3771 } 3772 } 3773 3774 bool mptcp_finish_join(struct sock *ssk) 3775 { 3776 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3777 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3778 struct sock *parent = (void *)msk; 3779 bool ret = true; 3780 3781 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3782 3783 /* mptcp socket already closing? */ 3784 if (!mptcp_is_fully_established(parent)) { 3785 subflow->reset_reason = MPTCP_RST_EMPTCP; 3786 return false; 3787 } 3788 3789 /* Active subflow, already present inside the conn_list; is grafted 3790 * either by __mptcp_subflow_connect() or accept. 3791 */ 3792 if (!list_empty(&subflow->node)) { 3793 spin_lock_bh(&msk->fallback_lock); 3794 if (!msk->allow_subflows) { 3795 spin_unlock_bh(&msk->fallback_lock); 3796 return false; 3797 } 3798 mptcp_subflow_joined(msk, ssk); 3799 spin_unlock_bh(&msk->fallback_lock); 3800 mptcp_propagate_sndbuf(parent, ssk); 3801 return true; 3802 } 3803 3804 if (!mptcp_pm_allow_new_subflow(msk)) { 3805 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3806 goto err_prohibited; 3807 } 3808 3809 /* If we can't acquire msk socket lock here, let the release callback 3810 * handle it 3811 */ 3812 mptcp_data_lock(parent); 3813 if (!sock_owned_by_user(parent)) { 3814 ret = __mptcp_finish_join(msk, ssk); 3815 if (ret) { 3816 sock_hold(ssk); 3817 list_add_tail(&subflow->node, &msk->conn_list); 3818 mptcp_sock_check_graft(parent, ssk); 3819 } 3820 } else { 3821 sock_hold(ssk); 3822 list_add_tail(&subflow->node, &msk->join_list); 3823 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3824 3825 /* In case of later failures, __mptcp_flush_join_list() will 3826 * properly orphan the ssk via mptcp_close_ssk(). 3827 */ 3828 mptcp_sock_check_graft(parent, ssk); 3829 } 3830 mptcp_data_unlock(parent); 3831 3832 if (!ret) { 3833 err_prohibited: 3834 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3835 return false; 3836 } 3837 3838 return true; 3839 } 3840 3841 static void mptcp_shutdown(struct sock *sk, int how) 3842 { 3843 pr_debug("sk=%p, how=%d\n", sk, how); 3844 3845 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3846 __mptcp_wr_shutdown(sk); 3847 } 3848 3849 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3850 { 3851 const struct sock *sk = (void *)msk; 3852 u64 delta; 3853 3854 if (sk->sk_state == TCP_LISTEN) 3855 return -EINVAL; 3856 3857 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3858 return 0; 3859 3860 delta = msk->write_seq - v; 3861 if (__mptcp_check_fallback(msk) && msk->first) { 3862 struct tcp_sock *tp = tcp_sk(msk->first); 3863 3864 /* the first subflow is disconnected after close - see 3865 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3866 * so ignore that status, too. 3867 */ 3868 if (!((1 << msk->first->sk_state) & 3869 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3870 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3871 } 3872 if (delta > INT_MAX) 3873 delta = INT_MAX; 3874 3875 return (int)delta; 3876 } 3877 3878 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3879 { 3880 struct mptcp_sock *msk = mptcp_sk(sk); 3881 bool slow; 3882 3883 switch (cmd) { 3884 case SIOCINQ: 3885 if (sk->sk_state == TCP_LISTEN) 3886 return -EINVAL; 3887 3888 lock_sock(sk); 3889 if (mptcp_move_skbs(sk)) 3890 mptcp_cleanup_rbuf(msk, 0); 3891 *karg = mptcp_inq_hint(sk); 3892 release_sock(sk); 3893 break; 3894 case SIOCOUTQ: 3895 slow = lock_sock_fast(sk); 3896 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3897 unlock_sock_fast(sk, slow); 3898 break; 3899 case SIOCOUTQNSD: 3900 slow = lock_sock_fast(sk); 3901 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3902 unlock_sock_fast(sk, slow); 3903 break; 3904 default: 3905 return -ENOIOCTLCMD; 3906 } 3907 3908 return 0; 3909 } 3910 3911 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 3912 int addr_len) 3913 { 3914 struct mptcp_subflow_context *subflow; 3915 struct mptcp_sock *msk = mptcp_sk(sk); 3916 int err = -EINVAL; 3917 struct sock *ssk; 3918 3919 ssk = __mptcp_nmpc_sk(msk); 3920 if (IS_ERR(ssk)) 3921 return PTR_ERR(ssk); 3922 3923 mptcp_set_state(sk, TCP_SYN_SENT); 3924 subflow = mptcp_subflow_ctx(ssk); 3925 #ifdef CONFIG_TCP_MD5SIG 3926 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3927 * TCP option space. 3928 */ 3929 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3930 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3931 #endif 3932 if (subflow->request_mptcp) { 3933 if (mptcp_active_should_disable(sk)) 3934 mptcp_early_fallback(msk, subflow, 3935 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3936 else if (mptcp_token_new_connect(ssk) < 0) 3937 mptcp_early_fallback(msk, subflow, 3938 MPTCP_MIB_TOKENFALLBACKINIT); 3939 } 3940 3941 WRITE_ONCE(msk->write_seq, subflow->idsn); 3942 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3943 WRITE_ONCE(msk->snd_una, subflow->idsn); 3944 if (likely(!__mptcp_check_fallback(msk))) 3945 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3946 3947 /* if reaching here via the fastopen/sendmsg path, the caller already 3948 * acquired the subflow socket lock, too. 3949 */ 3950 if (!msk->fastopening) 3951 lock_sock(ssk); 3952 3953 /* the following mirrors closely a very small chunk of code from 3954 * __inet_stream_connect() 3955 */ 3956 if (ssk->sk_state != TCP_CLOSE) 3957 goto out; 3958 3959 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3960 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3961 if (err) 3962 goto out; 3963 } 3964 3965 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3966 if (err < 0) 3967 goto out; 3968 3969 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3970 3971 out: 3972 if (!msk->fastopening) 3973 release_sock(ssk); 3974 3975 /* on successful connect, the msk state will be moved to established by 3976 * subflow_finish_connect() 3977 */ 3978 if (unlikely(err)) { 3979 /* avoid leaving a dangling token in an unconnected socket */ 3980 mptcp_token_destroy(msk); 3981 mptcp_set_state(sk, TCP_CLOSE); 3982 return err; 3983 } 3984 3985 mptcp_copy_inaddrs(sk, ssk); 3986 return 0; 3987 } 3988 3989 static struct proto mptcp_prot = { 3990 .name = "MPTCP", 3991 .owner = THIS_MODULE, 3992 .init = mptcp_init_sock, 3993 .connect = mptcp_connect, 3994 .disconnect = mptcp_disconnect, 3995 .close = mptcp_close, 3996 .setsockopt = mptcp_setsockopt, 3997 .getsockopt = mptcp_getsockopt, 3998 .shutdown = mptcp_shutdown, 3999 .destroy = mptcp_destroy, 4000 .sendmsg = mptcp_sendmsg, 4001 .ioctl = mptcp_ioctl, 4002 .recvmsg = mptcp_recvmsg, 4003 .release_cb = mptcp_release_cb, 4004 .hash = mptcp_hash, 4005 .unhash = mptcp_unhash, 4006 .get_port = mptcp_get_port, 4007 .stream_memory_free = mptcp_stream_memory_free, 4008 .sockets_allocated = &mptcp_sockets_allocated, 4009 4010 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 4011 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 4012 4013 .memory_pressure = &tcp_memory_pressure, 4014 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 4015 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 4016 .sysctl_mem = sysctl_tcp_mem, 4017 .obj_size = sizeof(struct mptcp_sock), 4018 .slab_flags = SLAB_TYPESAFE_BY_RCU, 4019 .no_autobind = true, 4020 }; 4021 4022 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len) 4023 { 4024 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4025 struct sock *ssk, *sk = sock->sk; 4026 int err = -EINVAL; 4027 4028 lock_sock(sk); 4029 ssk = __mptcp_nmpc_sk(msk); 4030 if (IS_ERR(ssk)) { 4031 err = PTR_ERR(ssk); 4032 goto unlock; 4033 } 4034 4035 if (sk->sk_family == AF_INET) 4036 err = inet_bind_sk(ssk, uaddr, addr_len); 4037 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4038 else if (sk->sk_family == AF_INET6) 4039 err = inet6_bind_sk(ssk, uaddr, addr_len); 4040 #endif 4041 if (!err) 4042 mptcp_copy_inaddrs(sk, ssk); 4043 4044 unlock: 4045 release_sock(sk); 4046 return err; 4047 } 4048 4049 static int mptcp_listen(struct socket *sock, int backlog) 4050 { 4051 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4052 struct sock *sk = sock->sk; 4053 struct sock *ssk; 4054 int err; 4055 4056 pr_debug("msk=%p\n", msk); 4057 4058 lock_sock(sk); 4059 4060 err = -EINVAL; 4061 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 4062 goto unlock; 4063 4064 ssk = __mptcp_nmpc_sk(msk); 4065 if (IS_ERR(ssk)) { 4066 err = PTR_ERR(ssk); 4067 goto unlock; 4068 } 4069 4070 mptcp_set_state(sk, TCP_LISTEN); 4071 sock_set_flag(sk, SOCK_RCU_FREE); 4072 4073 lock_sock(ssk); 4074 err = __inet_listen_sk(ssk, backlog); 4075 release_sock(ssk); 4076 mptcp_set_state(sk, inet_sk_state_load(ssk)); 4077 4078 if (!err) { 4079 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 4080 mptcp_copy_inaddrs(sk, ssk); 4081 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 4082 } 4083 4084 unlock: 4085 release_sock(sk); 4086 return err; 4087 } 4088 4089 static void mptcp_graft_subflows(struct sock *sk) 4090 { 4091 struct mptcp_subflow_context *subflow; 4092 struct mptcp_sock *msk = mptcp_sk(sk); 4093 4094 if (mem_cgroup_sockets_enabled) { 4095 LIST_HEAD(join_list); 4096 4097 /* Subflows joining after __inet_accept() will get the 4098 * mem CG properly initialized at mptcp_finish_join() time, 4099 * but subflows pending in join_list need explicit 4100 * initialization before flushing `backlog_unaccounted` 4101 * or MPTCP can later unexpectedly observe unaccounted memory. 4102 */ 4103 mptcp_data_lock(sk); 4104 list_splice_init(&msk->join_list, &join_list); 4105 mptcp_data_unlock(sk); 4106 4107 __mptcp_flush_join_list(sk, &join_list); 4108 } 4109 4110 mptcp_for_each_subflow(msk, subflow) { 4111 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4112 4113 lock_sock(ssk); 4114 4115 /* Set ssk->sk_socket of accept()ed flows to mptcp socket. 4116 * This is needed so NOSPACE flag can be set from tcp stack. 4117 */ 4118 if (!ssk->sk_socket) 4119 mptcp_sock_graft(ssk, sk->sk_socket); 4120 4121 if (!mem_cgroup_sk_enabled(sk)) 4122 goto unlock; 4123 4124 __mptcp_inherit_cgrp_data(sk, ssk); 4125 __mptcp_inherit_memcg(sk, ssk, GFP_KERNEL); 4126 4127 unlock: 4128 release_sock(ssk); 4129 } 4130 4131 if (mem_cgroup_sk_enabled(sk)) { 4132 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 4133 int amt; 4134 4135 /* Account the backlog memory; prior accept() is aware of 4136 * fwd and rmem only. 4137 */ 4138 mptcp_data_lock(sk); 4139 amt = sk_mem_pages(sk->sk_forward_alloc + 4140 msk->backlog_unaccounted + 4141 atomic_read(&sk->sk_rmem_alloc)) - 4142 sk_mem_pages(sk->sk_forward_alloc + 4143 atomic_read(&sk->sk_rmem_alloc)); 4144 msk->backlog_unaccounted = 0; 4145 mptcp_data_unlock(sk); 4146 4147 if (amt) 4148 mem_cgroup_sk_charge(sk, amt, gfp); 4149 } 4150 } 4151 4152 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 4153 struct proto_accept_arg *arg) 4154 { 4155 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4156 struct sock *ssk, *newsk; 4157 4158 pr_debug("msk=%p\n", msk); 4159 4160 /* Buggy applications can call accept on socket states other then LISTEN 4161 * but no need to allocate the first subflow just to error out. 4162 */ 4163 ssk = READ_ONCE(msk->first); 4164 if (!ssk) 4165 return -EINVAL; 4166 4167 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 4168 newsk = inet_csk_accept(ssk, arg); 4169 if (!newsk) 4170 return arg->err; 4171 4172 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 4173 if (sk_is_mptcp(newsk)) { 4174 struct mptcp_subflow_context *subflow; 4175 struct sock *new_mptcp_sock; 4176 4177 subflow = mptcp_subflow_ctx(newsk); 4178 new_mptcp_sock = subflow->conn; 4179 4180 /* is_mptcp should be false if subflow->conn is missing, see 4181 * subflow_syn_recv_sock() 4182 */ 4183 if (WARN_ON_ONCE(!new_mptcp_sock)) { 4184 tcp_sk(newsk)->is_mptcp = 0; 4185 goto tcpfallback; 4186 } 4187 4188 newsk = new_mptcp_sock; 4189 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 4190 4191 newsk->sk_kern_sock = arg->kern; 4192 lock_sock(newsk); 4193 __inet_accept(sock, newsock, newsk); 4194 4195 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 4196 msk = mptcp_sk(newsk); 4197 msk->in_accept_queue = 0; 4198 4199 mptcp_graft_subflows(newsk); 4200 mptcp_rps_record_subflows(msk); 4201 4202 /* Do late cleanup for the first subflow as necessary. Also 4203 * deal with bad peers not doing a complete shutdown. 4204 */ 4205 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 4206 if (unlikely(list_is_singular(&msk->conn_list))) 4207 mptcp_set_state(newsk, TCP_CLOSE); 4208 mptcp_close_ssk(newsk, msk->first, 4209 mptcp_subflow_ctx(msk->first)); 4210 } 4211 } else { 4212 tcpfallback: 4213 newsk->sk_kern_sock = arg->kern; 4214 lock_sock(newsk); 4215 __inet_accept(sock, newsock, newsk); 4216 /* we are being invoked after accepting a non-mp-capable 4217 * flow: sk is a tcp_sk, not an mptcp one. 4218 * 4219 * Hand the socket over to tcp so all further socket ops 4220 * bypass mptcp. 4221 */ 4222 WRITE_ONCE(newsock->sk->sk_socket->ops, 4223 mptcp_fallback_tcp_ops(newsock->sk)); 4224 } 4225 release_sock(newsk); 4226 4227 return 0; 4228 } 4229 4230 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4231 { 4232 struct sock *sk = (struct sock *)msk; 4233 4234 if (__mptcp_stream_is_writeable(sk, 1)) 4235 return EPOLLOUT | EPOLLWRNORM; 4236 4237 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4238 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4239 if (__mptcp_stream_is_writeable(sk, 1)) 4240 return EPOLLOUT | EPOLLWRNORM; 4241 4242 return 0; 4243 } 4244 4245 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4246 struct poll_table_struct *wait) 4247 { 4248 struct sock *sk = sock->sk; 4249 struct mptcp_sock *msk; 4250 __poll_t mask = 0; 4251 u8 shutdown; 4252 int state; 4253 4254 msk = mptcp_sk(sk); 4255 sock_poll_wait(file, sock, wait); 4256 4257 state = inet_sk_state_load(sk); 4258 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4259 if (state == TCP_LISTEN) { 4260 struct sock *ssk = READ_ONCE(msk->first); 4261 4262 if (WARN_ON_ONCE(!ssk)) 4263 return 0; 4264 4265 return inet_csk_listen_poll(ssk); 4266 } 4267 4268 shutdown = READ_ONCE(sk->sk_shutdown); 4269 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4270 mask |= EPOLLHUP; 4271 if (shutdown & RCV_SHUTDOWN) 4272 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4273 4274 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4275 mask |= mptcp_check_readable(sk); 4276 if (shutdown & SEND_SHUTDOWN) 4277 mask |= EPOLLOUT | EPOLLWRNORM; 4278 else 4279 mask |= mptcp_check_writeable(msk); 4280 } else if (state == TCP_SYN_SENT && 4281 inet_test_bit(DEFER_CONNECT, sk)) { 4282 /* cf tcp_poll() note about TFO */ 4283 mask |= EPOLLOUT | EPOLLWRNORM; 4284 } 4285 4286 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4287 smp_rmb(); 4288 if (READ_ONCE(sk->sk_err)) 4289 mask |= EPOLLERR; 4290 4291 return mask; 4292 } 4293 4294 static const struct proto_ops mptcp_stream_ops = { 4295 .family = PF_INET, 4296 .owner = THIS_MODULE, 4297 .release = inet_release, 4298 .bind = mptcp_bind, 4299 .connect = inet_stream_connect, 4300 .socketpair = sock_no_socketpair, 4301 .accept = mptcp_stream_accept, 4302 .getname = inet_getname, 4303 .poll = mptcp_poll, 4304 .ioctl = inet_ioctl, 4305 .gettstamp = sock_gettstamp, 4306 .listen = mptcp_listen, 4307 .shutdown = inet_shutdown, 4308 .setsockopt = sock_common_setsockopt, 4309 .getsockopt = sock_common_getsockopt, 4310 .sendmsg = inet_sendmsg, 4311 .recvmsg = inet_recvmsg, 4312 .mmap = sock_no_mmap, 4313 .set_rcvlowat = mptcp_set_rcvlowat, 4314 }; 4315 4316 static struct inet_protosw mptcp_protosw = { 4317 .type = SOCK_STREAM, 4318 .protocol = IPPROTO_MPTCP, 4319 .prot = &mptcp_prot, 4320 .ops = &mptcp_stream_ops, 4321 .flags = INET_PROTOSW_ICSK, 4322 }; 4323 4324 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4325 { 4326 struct mptcp_delegated_action *delegated; 4327 struct mptcp_subflow_context *subflow; 4328 int work_done = 0; 4329 4330 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4331 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4332 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4333 4334 bh_lock_sock_nested(ssk); 4335 if (!sock_owned_by_user(ssk)) { 4336 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4337 } else { 4338 /* tcp_release_cb_override already processed 4339 * the action or will do at next release_sock(). 4340 * In both case must dequeue the subflow here - on the same 4341 * CPU that scheduled it. 4342 */ 4343 smp_wmb(); 4344 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4345 } 4346 bh_unlock_sock(ssk); 4347 sock_put(ssk); 4348 4349 if (++work_done == budget) 4350 return budget; 4351 } 4352 4353 /* always provide a 0 'work_done' argument, so that napi_complete_done 4354 * will not try accessing the NULL napi->dev ptr 4355 */ 4356 napi_complete_done(napi, 0); 4357 return work_done; 4358 } 4359 4360 void __init mptcp_proto_init(void) 4361 { 4362 struct mptcp_delegated_action *delegated; 4363 int cpu; 4364 4365 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4366 4367 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4368 panic("Failed to allocate MPTCP pcpu counter\n"); 4369 4370 mptcp_napi_dev = alloc_netdev_dummy(0); 4371 if (!mptcp_napi_dev) 4372 panic("Failed to allocate MPTCP dummy netdev\n"); 4373 for_each_possible_cpu(cpu) { 4374 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4375 INIT_LIST_HEAD(&delegated->head); 4376 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4377 mptcp_napi_poll); 4378 napi_enable(&delegated->napi); 4379 } 4380 4381 mptcp_subflow_init(); 4382 mptcp_pm_init(); 4383 mptcp_sched_init(); 4384 mptcp_token_init(); 4385 4386 if (proto_register(&mptcp_prot, 1) != 0) 4387 panic("Failed to register MPTCP proto.\n"); 4388 4389 inet_register_protosw(&mptcp_protosw); 4390 4391 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4392 } 4393 4394 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4395 static const struct proto_ops mptcp_v6_stream_ops = { 4396 .family = PF_INET6, 4397 .owner = THIS_MODULE, 4398 .release = inet6_release, 4399 .bind = mptcp_bind, 4400 .connect = inet_stream_connect, 4401 .socketpair = sock_no_socketpair, 4402 .accept = mptcp_stream_accept, 4403 .getname = inet6_getname, 4404 .poll = mptcp_poll, 4405 .ioctl = inet6_ioctl, 4406 .gettstamp = sock_gettstamp, 4407 .listen = mptcp_listen, 4408 .shutdown = inet_shutdown, 4409 .setsockopt = sock_common_setsockopt, 4410 .getsockopt = sock_common_getsockopt, 4411 .sendmsg = inet6_sendmsg, 4412 .recvmsg = inet6_recvmsg, 4413 .mmap = sock_no_mmap, 4414 #ifdef CONFIG_COMPAT 4415 .compat_ioctl = inet6_compat_ioctl, 4416 #endif 4417 .set_rcvlowat = mptcp_set_rcvlowat, 4418 }; 4419 4420 static struct proto mptcp_v6_prot; 4421 4422 static struct inet_protosw mptcp_v6_protosw = { 4423 .type = SOCK_STREAM, 4424 .protocol = IPPROTO_MPTCP, 4425 .prot = &mptcp_v6_prot, 4426 .ops = &mptcp_v6_stream_ops, 4427 .flags = INET_PROTOSW_ICSK, 4428 }; 4429 4430 int __init mptcp_proto_v6_init(void) 4431 { 4432 int err; 4433 4434 mptcp_v6_prot = mptcp_prot; 4435 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4436 mptcp_v6_prot.slab = NULL; 4437 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4438 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4439 4440 err = proto_register(&mptcp_v6_prot, 1); 4441 if (err) 4442 return err; 4443 4444 err = inet6_register_protosw(&mptcp_v6_protosw); 4445 if (err) 4446 proto_unregister(&mptcp_v6_prot); 4447 4448 return err; 4449 } 4450 #endif 4451