1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 65 if (sk->sk_prot == &tcpv6_prot) 66 return &inet6_stream_ops; 67 #endif 68 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 69 return &inet_stream_ops; 70 } 71 72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 73 { 74 struct net *net = sock_net((struct sock *)msk); 75 76 if (__mptcp_check_fallback(msk)) 77 return true; 78 79 spin_lock_bh(&msk->fallback_lock); 80 if (!msk->allow_infinite_fallback) { 81 spin_unlock_bh(&msk->fallback_lock); 82 return false; 83 } 84 85 msk->allow_subflows = false; 86 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 87 __MPTCP_INC_STATS(net, fb_mib); 88 spin_unlock_bh(&msk->fallback_lock); 89 return true; 90 } 91 92 static int __mptcp_socket_create(struct mptcp_sock *msk) 93 { 94 struct mptcp_subflow_context *subflow; 95 struct sock *sk = (struct sock *)msk; 96 struct socket *ssock; 97 int err; 98 99 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 100 if (err) 101 return err; 102 103 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 104 WRITE_ONCE(msk->first, ssock->sk); 105 subflow = mptcp_subflow_ctx(ssock->sk); 106 list_add(&subflow->node, &msk->conn_list); 107 sock_hold(ssock->sk); 108 subflow->request_mptcp = 1; 109 subflow->subflow_id = msk->subflow_id++; 110 111 /* This is the first subflow, always with id 0 */ 112 WRITE_ONCE(subflow->local_id, 0); 113 mptcp_sock_graft(msk->first, sk->sk_socket); 114 iput(SOCK_INODE(ssock)); 115 116 return 0; 117 } 118 119 /* If the MPC handshake is not started, returns the first subflow, 120 * eventually allocating it. 121 */ 122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 123 { 124 struct sock *sk = (struct sock *)msk; 125 int ret; 126 127 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 128 return ERR_PTR(-EINVAL); 129 130 if (!msk->first) { 131 ret = __mptcp_socket_create(msk); 132 if (ret) 133 return ERR_PTR(ret); 134 } 135 136 return msk->first; 137 } 138 139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 140 { 141 sk_drops_skbadd(sk, skb); 142 __kfree_skb(skb); 143 } 144 145 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 146 struct sk_buff *from) 147 { 148 bool fragstolen; 149 int delta; 150 151 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 152 MPTCP_SKB_CB(from)->offset || 153 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 154 !skb_try_coalesce(to, from, &fragstolen, &delta)) 155 return false; 156 157 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 158 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 159 to->len, MPTCP_SKB_CB(from)->end_seq); 160 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 161 162 /* note the fwd memory can reach a negative value after accounting 163 * for the delta, but the later skb free will restore a non 164 * negative one 165 */ 166 atomic_add(delta, &sk->sk_rmem_alloc); 167 sk_mem_charge(sk, delta); 168 kfree_skb_partial(from, fragstolen); 169 170 return true; 171 } 172 173 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 174 struct sk_buff *from) 175 { 176 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 177 return false; 178 179 return mptcp_try_coalesce((struct sock *)msk, to, from); 180 } 181 182 /* "inspired" by tcp_data_queue_ofo(), main differences: 183 * - use mptcp seqs 184 * - don't cope with sacks 185 */ 186 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 187 { 188 struct sock *sk = (struct sock *)msk; 189 struct rb_node **p, *parent; 190 u64 seq, end_seq, max_seq; 191 struct sk_buff *skb1; 192 193 seq = MPTCP_SKB_CB(skb)->map_seq; 194 end_seq = MPTCP_SKB_CB(skb)->end_seq; 195 max_seq = atomic64_read(&msk->rcv_wnd_sent); 196 197 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 198 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 199 if (after64(end_seq, max_seq)) { 200 /* out of window */ 201 mptcp_drop(sk, skb); 202 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 203 (unsigned long long)end_seq - (unsigned long)max_seq, 204 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 205 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 206 return; 207 } 208 209 p = &msk->out_of_order_queue.rb_node; 210 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 211 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 212 rb_link_node(&skb->rbnode, NULL, p); 213 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 214 msk->ooo_last_skb = skb; 215 goto end; 216 } 217 218 /* with 2 subflows, adding at end of ooo queue is quite likely 219 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 220 */ 221 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 222 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 223 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 224 return; 225 } 226 227 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 228 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 230 parent = &msk->ooo_last_skb->rbnode; 231 p = &parent->rb_right; 232 goto insert; 233 } 234 235 /* Find place to insert this segment. Handle overlaps on the way. */ 236 parent = NULL; 237 while (*p) { 238 parent = *p; 239 skb1 = rb_to_skb(parent); 240 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 241 p = &parent->rb_left; 242 continue; 243 } 244 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 245 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 246 /* All the bits are present. Drop. */ 247 mptcp_drop(sk, skb); 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 249 return; 250 } 251 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 252 /* partial overlap: 253 * | skb | 254 * | skb1 | 255 * continue traversing 256 */ 257 } else { 258 /* skb's seq == skb1's seq and skb covers skb1. 259 * Replace skb1 with skb. 260 */ 261 rb_replace_node(&skb1->rbnode, &skb->rbnode, 262 &msk->out_of_order_queue); 263 mptcp_drop(sk, skb1); 264 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 265 goto merge_right; 266 } 267 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 269 return; 270 } 271 p = &parent->rb_right; 272 } 273 274 insert: 275 /* Insert segment into RB tree. */ 276 rb_link_node(&skb->rbnode, parent, p); 277 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 278 279 merge_right: 280 /* Remove other segments covered by skb. */ 281 while ((skb1 = skb_rb_next(skb)) != NULL) { 282 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 283 break; 284 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 285 mptcp_drop(sk, skb1); 286 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 287 } 288 /* If there is no skb after us, we are the last_skb ! */ 289 if (!skb1) 290 msk->ooo_last_skb = skb; 291 292 end: 293 skb_condense(skb); 294 skb_set_owner_r(skb, sk); 295 } 296 297 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 298 struct sk_buff *skb, unsigned int offset, 299 size_t copy_len) 300 { 301 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 302 struct sock *sk = (struct sock *)msk; 303 struct sk_buff *tail; 304 bool has_rxtstamp; 305 306 __skb_unlink(skb, &ssk->sk_receive_queue); 307 308 skb_ext_reset(skb); 309 skb_orphan(skb); 310 311 /* try to fetch required memory from subflow */ 312 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 313 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 314 goto drop; 315 } 316 317 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 318 319 /* the skb map_seq accounts for the skb offset: 320 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 321 * value 322 */ 323 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 324 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 325 MPTCP_SKB_CB(skb)->offset = offset; 326 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 327 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 328 329 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 330 /* in sequence */ 331 msk->bytes_received += copy_len; 332 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 333 tail = skb_peek_tail(&sk->sk_receive_queue); 334 if (tail && mptcp_try_coalesce(sk, tail, skb)) 335 return true; 336 337 skb_set_owner_r(skb, sk); 338 __skb_queue_tail(&sk->sk_receive_queue, skb); 339 return true; 340 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 341 mptcp_data_queue_ofo(msk, skb); 342 return false; 343 } 344 345 /* old data, keep it simple and drop the whole pkt, sender 346 * will retransmit as needed, if needed. 347 */ 348 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 349 drop: 350 mptcp_drop(sk, skb); 351 return false; 352 } 353 354 static void mptcp_stop_rtx_timer(struct sock *sk) 355 { 356 struct inet_connection_sock *icsk = inet_csk(sk); 357 358 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 359 mptcp_sk(sk)->timer_ival = 0; 360 } 361 362 static void mptcp_close_wake_up(struct sock *sk) 363 { 364 if (sock_flag(sk, SOCK_DEAD)) 365 return; 366 367 sk->sk_state_change(sk); 368 if (sk->sk_shutdown == SHUTDOWN_MASK || 369 sk->sk_state == TCP_CLOSE) 370 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 371 else 372 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 373 } 374 375 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 376 { 377 struct mptcp_subflow_context *subflow; 378 379 mptcp_for_each_subflow(msk, subflow) { 380 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 381 bool slow; 382 383 slow = lock_sock_fast(ssk); 384 tcp_shutdown(ssk, SEND_SHUTDOWN); 385 unlock_sock_fast(ssk, slow); 386 } 387 } 388 389 /* called under the msk socket lock */ 390 static bool mptcp_pending_data_fin_ack(struct sock *sk) 391 { 392 struct mptcp_sock *msk = mptcp_sk(sk); 393 394 return ((1 << sk->sk_state) & 395 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 396 msk->write_seq == READ_ONCE(msk->snd_una); 397 } 398 399 static void mptcp_check_data_fin_ack(struct sock *sk) 400 { 401 struct mptcp_sock *msk = mptcp_sk(sk); 402 403 /* Look for an acknowledged DATA_FIN */ 404 if (mptcp_pending_data_fin_ack(sk)) { 405 WRITE_ONCE(msk->snd_data_fin_enable, 0); 406 407 switch (sk->sk_state) { 408 case TCP_FIN_WAIT1: 409 mptcp_set_state(sk, TCP_FIN_WAIT2); 410 break; 411 case TCP_CLOSING: 412 case TCP_LAST_ACK: 413 mptcp_shutdown_subflows(msk); 414 mptcp_set_state(sk, TCP_CLOSE); 415 break; 416 } 417 418 mptcp_close_wake_up(sk); 419 } 420 } 421 422 /* can be called with no lock acquired */ 423 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 424 { 425 struct mptcp_sock *msk = mptcp_sk(sk); 426 427 if (READ_ONCE(msk->rcv_data_fin) && 428 ((1 << inet_sk_state_load(sk)) & 429 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 430 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 431 432 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 433 if (seq) 434 *seq = rcv_data_fin_seq; 435 436 return true; 437 } 438 } 439 440 return false; 441 } 442 443 static void mptcp_set_datafin_timeout(struct sock *sk) 444 { 445 struct inet_connection_sock *icsk = inet_csk(sk); 446 u32 retransmits; 447 448 retransmits = min_t(u32, icsk->icsk_retransmits, 449 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 450 451 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 452 } 453 454 static void __mptcp_set_timeout(struct sock *sk, long tout) 455 { 456 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 457 } 458 459 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 460 { 461 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 462 463 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 464 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 465 } 466 467 static void mptcp_set_timeout(struct sock *sk) 468 { 469 struct mptcp_subflow_context *subflow; 470 long tout = 0; 471 472 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 473 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 474 __mptcp_set_timeout(sk, tout); 475 } 476 477 static inline bool tcp_can_send_ack(const struct sock *ssk) 478 { 479 return !((1 << inet_sk_state_load(ssk)) & 480 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 481 } 482 483 void __mptcp_subflow_send_ack(struct sock *ssk) 484 { 485 if (tcp_can_send_ack(ssk)) 486 tcp_send_ack(ssk); 487 } 488 489 static void mptcp_subflow_send_ack(struct sock *ssk) 490 { 491 bool slow; 492 493 slow = lock_sock_fast(ssk); 494 __mptcp_subflow_send_ack(ssk); 495 unlock_sock_fast(ssk, slow); 496 } 497 498 static void mptcp_send_ack(struct mptcp_sock *msk) 499 { 500 struct mptcp_subflow_context *subflow; 501 502 mptcp_for_each_subflow(msk, subflow) 503 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 504 } 505 506 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 507 { 508 bool slow; 509 510 slow = lock_sock_fast(ssk); 511 if (tcp_can_send_ack(ssk)) 512 tcp_cleanup_rbuf(ssk, copied); 513 unlock_sock_fast(ssk, slow); 514 } 515 516 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 517 { 518 const struct inet_connection_sock *icsk = inet_csk(ssk); 519 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 520 const struct tcp_sock *tp = tcp_sk(ssk); 521 522 return (ack_pending & ICSK_ACK_SCHED) && 523 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 524 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 525 (rx_empty && ack_pending & 526 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 527 } 528 529 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 530 { 531 int old_space = READ_ONCE(msk->old_wspace); 532 struct mptcp_subflow_context *subflow; 533 struct sock *sk = (struct sock *)msk; 534 int space = __mptcp_space(sk); 535 bool cleanup, rx_empty; 536 537 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 538 rx_empty = !sk_rmem_alloc_get(sk) && copied; 539 540 mptcp_for_each_subflow(msk, subflow) { 541 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 542 543 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 544 mptcp_subflow_cleanup_rbuf(ssk, copied); 545 } 546 } 547 548 static void mptcp_check_data_fin(struct sock *sk) 549 { 550 struct mptcp_sock *msk = mptcp_sk(sk); 551 u64 rcv_data_fin_seq; 552 553 /* Need to ack a DATA_FIN received from a peer while this side 554 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 555 * msk->rcv_data_fin was set when parsing the incoming options 556 * at the subflow level and the msk lock was not held, so this 557 * is the first opportunity to act on the DATA_FIN and change 558 * the msk state. 559 * 560 * If we are caught up to the sequence number of the incoming 561 * DATA_FIN, send the DATA_ACK now and do state transition. If 562 * not caught up, do nothing and let the recv code send DATA_ACK 563 * when catching up. 564 */ 565 566 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 567 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 568 WRITE_ONCE(msk->rcv_data_fin, 0); 569 570 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 571 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 572 573 switch (sk->sk_state) { 574 case TCP_ESTABLISHED: 575 mptcp_set_state(sk, TCP_CLOSE_WAIT); 576 break; 577 case TCP_FIN_WAIT1: 578 mptcp_set_state(sk, TCP_CLOSING); 579 break; 580 case TCP_FIN_WAIT2: 581 mptcp_shutdown_subflows(msk); 582 mptcp_set_state(sk, TCP_CLOSE); 583 break; 584 default: 585 /* Other states not expected */ 586 WARN_ON_ONCE(1); 587 break; 588 } 589 590 if (!__mptcp_check_fallback(msk)) 591 mptcp_send_ack(msk); 592 mptcp_close_wake_up(sk); 593 } 594 } 595 596 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 597 { 598 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 599 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 600 mptcp_subflow_reset(ssk); 601 } 602 } 603 604 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 605 struct sock *ssk) 606 { 607 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 608 struct sock *sk = (struct sock *)msk; 609 bool more_data_avail; 610 struct tcp_sock *tp; 611 bool ret = false; 612 613 pr_debug("msk=%p ssk=%p\n", msk, ssk); 614 tp = tcp_sk(ssk); 615 do { 616 u32 map_remaining, offset; 617 u32 seq = tp->copied_seq; 618 struct sk_buff *skb; 619 bool fin; 620 621 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 622 break; 623 624 /* try to move as much data as available */ 625 map_remaining = subflow->map_data_len - 626 mptcp_subflow_get_map_offset(subflow); 627 628 skb = skb_peek(&ssk->sk_receive_queue); 629 if (unlikely(!skb)) 630 break; 631 632 if (__mptcp_check_fallback(msk)) { 633 /* Under fallback skbs have no MPTCP extension and TCP could 634 * collapse them between the dummy map creation and the 635 * current dequeue. Be sure to adjust the map size. 636 */ 637 map_remaining = skb->len; 638 subflow->map_data_len = skb->len; 639 } 640 641 offset = seq - TCP_SKB_CB(skb)->seq; 642 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 643 if (fin) 644 seq++; 645 646 if (offset < skb->len) { 647 size_t len = skb->len - offset; 648 649 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret; 650 seq += len; 651 652 if (unlikely(map_remaining < len)) { 653 DEBUG_NET_WARN_ON_ONCE(1); 654 mptcp_dss_corruption(msk, ssk); 655 } 656 } else { 657 if (unlikely(!fin)) { 658 DEBUG_NET_WARN_ON_ONCE(1); 659 mptcp_dss_corruption(msk, ssk); 660 } 661 662 sk_eat_skb(ssk, skb); 663 } 664 665 WRITE_ONCE(tp->copied_seq, seq); 666 more_data_avail = mptcp_subflow_data_available(ssk); 667 668 } while (more_data_avail); 669 670 if (ret) 671 msk->last_data_recv = tcp_jiffies32; 672 return ret; 673 } 674 675 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 676 { 677 struct sock *sk = (struct sock *)msk; 678 struct sk_buff *skb, *tail; 679 bool moved = false; 680 struct rb_node *p; 681 u64 end_seq; 682 683 p = rb_first(&msk->out_of_order_queue); 684 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 685 while (p) { 686 skb = rb_to_skb(p); 687 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 688 break; 689 690 p = rb_next(p); 691 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 692 693 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 694 msk->ack_seq))) { 695 mptcp_drop(sk, skb); 696 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 697 continue; 698 } 699 700 end_seq = MPTCP_SKB_CB(skb)->end_seq; 701 tail = skb_peek_tail(&sk->sk_receive_queue); 702 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 703 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 704 705 /* skip overlapping data, if any */ 706 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 707 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 708 delta); 709 MPTCP_SKB_CB(skb)->offset += delta; 710 MPTCP_SKB_CB(skb)->map_seq += delta; 711 __skb_queue_tail(&sk->sk_receive_queue, skb); 712 } 713 msk->bytes_received += end_seq - msk->ack_seq; 714 WRITE_ONCE(msk->ack_seq, end_seq); 715 moved = true; 716 } 717 return moved; 718 } 719 720 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 721 { 722 int err = sock_error(ssk); 723 int ssk_state; 724 725 if (!err) 726 return false; 727 728 /* only propagate errors on fallen-back sockets or 729 * on MPC connect 730 */ 731 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 732 return false; 733 734 /* We need to propagate only transition to CLOSE state. 735 * Orphaned socket will see such state change via 736 * subflow_sched_work_if_closed() and that path will properly 737 * destroy the msk as needed. 738 */ 739 ssk_state = inet_sk_state_load(ssk); 740 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 741 mptcp_set_state(sk, ssk_state); 742 WRITE_ONCE(sk->sk_err, -err); 743 744 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 745 smp_wmb(); 746 sk_error_report(sk); 747 return true; 748 } 749 750 void __mptcp_error_report(struct sock *sk) 751 { 752 struct mptcp_subflow_context *subflow; 753 struct mptcp_sock *msk = mptcp_sk(sk); 754 755 mptcp_for_each_subflow(msk, subflow) 756 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 757 break; 758 } 759 760 /* In most cases we will be able to lock the mptcp socket. If its already 761 * owned, we need to defer to the work queue to avoid ABBA deadlock. 762 */ 763 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 764 { 765 struct sock *sk = (struct sock *)msk; 766 bool moved; 767 768 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 769 __mptcp_ofo_queue(msk); 770 if (unlikely(ssk->sk_err)) { 771 if (!sock_owned_by_user(sk)) 772 __mptcp_error_report(sk); 773 else 774 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 775 } 776 777 /* If the moves have caught up with the DATA_FIN sequence number 778 * it's time to ack the DATA_FIN and change socket state, but 779 * this is not a good place to change state. Let the workqueue 780 * do it. 781 */ 782 if (mptcp_pending_data_fin(sk, NULL)) 783 mptcp_schedule_work(sk); 784 return moved; 785 } 786 787 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk) 788 { 789 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf)) 790 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf); 791 } 792 793 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 794 { 795 struct mptcp_sock *msk = mptcp_sk(sk); 796 797 __mptcp_rcvbuf_update(sk, ssk); 798 799 /* Wake-up the reader only for in-sequence data */ 800 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 801 sk->sk_data_ready(sk); 802 } 803 804 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 805 { 806 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 807 808 /* The peer can send data while we are shutting down this 809 * subflow at msk destruction time, but we must avoid enqueuing 810 * more data to the msk receive queue 811 */ 812 if (unlikely(subflow->disposable)) 813 return; 814 815 mptcp_data_lock(sk); 816 if (!sock_owned_by_user(sk)) 817 __mptcp_data_ready(sk, ssk); 818 else 819 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 820 mptcp_data_unlock(sk); 821 } 822 823 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 824 { 825 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 826 msk->allow_infinite_fallback = false; 827 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 828 } 829 830 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 831 { 832 struct sock *sk = (struct sock *)msk; 833 834 if (sk->sk_state != TCP_ESTABLISHED) 835 return false; 836 837 spin_lock_bh(&msk->fallback_lock); 838 if (!msk->allow_subflows) { 839 spin_unlock_bh(&msk->fallback_lock); 840 return false; 841 } 842 mptcp_subflow_joined(msk, ssk); 843 spin_unlock_bh(&msk->fallback_lock); 844 845 /* attach to msk socket only after we are sure we will deal with it 846 * at close time 847 */ 848 if (sk->sk_socket && !ssk->sk_socket) 849 mptcp_sock_graft(ssk, sk->sk_socket); 850 851 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 852 mptcp_sockopt_sync_locked(msk, ssk); 853 mptcp_stop_tout_timer(sk); 854 __mptcp_propagate_sndbuf(sk, ssk); 855 return true; 856 } 857 858 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 859 { 860 struct mptcp_subflow_context *tmp, *subflow; 861 struct mptcp_sock *msk = mptcp_sk(sk); 862 863 list_for_each_entry_safe(subflow, tmp, join_list, node) { 864 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 865 bool slow = lock_sock_fast(ssk); 866 867 list_move_tail(&subflow->node, &msk->conn_list); 868 if (!__mptcp_finish_join(msk, ssk)) 869 mptcp_subflow_reset(ssk); 870 unlock_sock_fast(ssk, slow); 871 } 872 } 873 874 static bool mptcp_rtx_timer_pending(struct sock *sk) 875 { 876 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 877 } 878 879 static void mptcp_reset_rtx_timer(struct sock *sk) 880 { 881 struct inet_connection_sock *icsk = inet_csk(sk); 882 unsigned long tout; 883 884 /* prevent rescheduling on close */ 885 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 886 return; 887 888 tout = mptcp_sk(sk)->timer_ival; 889 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 890 } 891 892 bool mptcp_schedule_work(struct sock *sk) 893 { 894 if (inet_sk_state_load(sk) != TCP_CLOSE && 895 schedule_work(&mptcp_sk(sk)->work)) { 896 /* each subflow already holds a reference to the sk, and the 897 * workqueue is invoked by a subflow, so sk can't go away here. 898 */ 899 sock_hold(sk); 900 return true; 901 } 902 return false; 903 } 904 905 static bool mptcp_skb_can_collapse_to(u64 write_seq, 906 const struct sk_buff *skb, 907 const struct mptcp_ext *mpext) 908 { 909 if (!tcp_skb_can_collapse_to(skb)) 910 return false; 911 912 /* can collapse only if MPTCP level sequence is in order and this 913 * mapping has not been xmitted yet 914 */ 915 return mpext && mpext->data_seq + mpext->data_len == write_seq && 916 !mpext->frozen; 917 } 918 919 /* we can append data to the given data frag if: 920 * - there is space available in the backing page_frag 921 * - the data frag tail matches the current page_frag free offset 922 * - the data frag end sequence number matches the current write seq 923 */ 924 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 925 const struct page_frag *pfrag, 926 const struct mptcp_data_frag *df) 927 { 928 return df && pfrag->page == df->page && 929 pfrag->size - pfrag->offset > 0 && 930 pfrag->offset == (df->offset + df->data_len) && 931 df->data_seq + df->data_len == msk->write_seq; 932 } 933 934 static void dfrag_uncharge(struct sock *sk, int len) 935 { 936 sk_mem_uncharge(sk, len); 937 sk_wmem_queued_add(sk, -len); 938 } 939 940 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 941 { 942 int len = dfrag->data_len + dfrag->overhead; 943 944 list_del(&dfrag->list); 945 dfrag_uncharge(sk, len); 946 put_page(dfrag->page); 947 } 948 949 /* called under both the msk socket lock and the data lock */ 950 static void __mptcp_clean_una(struct sock *sk) 951 { 952 struct mptcp_sock *msk = mptcp_sk(sk); 953 struct mptcp_data_frag *dtmp, *dfrag; 954 u64 snd_una; 955 956 snd_una = msk->snd_una; 957 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 958 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 959 break; 960 961 if (unlikely(dfrag == msk->first_pending)) { 962 /* in recovery mode can see ack after the current snd head */ 963 if (WARN_ON_ONCE(!msk->recovery)) 964 break; 965 966 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 967 } 968 969 dfrag_clear(sk, dfrag); 970 } 971 972 dfrag = mptcp_rtx_head(sk); 973 if (dfrag && after64(snd_una, dfrag->data_seq)) { 974 u64 delta = snd_una - dfrag->data_seq; 975 976 /* prevent wrap around in recovery mode */ 977 if (unlikely(delta > dfrag->already_sent)) { 978 if (WARN_ON_ONCE(!msk->recovery)) 979 goto out; 980 if (WARN_ON_ONCE(delta > dfrag->data_len)) 981 goto out; 982 dfrag->already_sent += delta - dfrag->already_sent; 983 } 984 985 dfrag->data_seq += delta; 986 dfrag->offset += delta; 987 dfrag->data_len -= delta; 988 dfrag->already_sent -= delta; 989 990 dfrag_uncharge(sk, delta); 991 } 992 993 /* all retransmitted data acked, recovery completed */ 994 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 995 msk->recovery = false; 996 997 out: 998 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 999 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1000 mptcp_stop_rtx_timer(sk); 1001 } else { 1002 mptcp_reset_rtx_timer(sk); 1003 } 1004 1005 if (mptcp_pending_data_fin_ack(sk)) 1006 mptcp_schedule_work(sk); 1007 } 1008 1009 static void __mptcp_clean_una_wakeup(struct sock *sk) 1010 { 1011 lockdep_assert_held_once(&sk->sk_lock.slock); 1012 1013 __mptcp_clean_una(sk); 1014 mptcp_write_space(sk); 1015 } 1016 1017 static void mptcp_clean_una_wakeup(struct sock *sk) 1018 { 1019 mptcp_data_lock(sk); 1020 __mptcp_clean_una_wakeup(sk); 1021 mptcp_data_unlock(sk); 1022 } 1023 1024 static void mptcp_enter_memory_pressure(struct sock *sk) 1025 { 1026 struct mptcp_subflow_context *subflow; 1027 struct mptcp_sock *msk = mptcp_sk(sk); 1028 bool first = true; 1029 1030 mptcp_for_each_subflow(msk, subflow) { 1031 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1032 1033 if (first) 1034 tcp_enter_memory_pressure(ssk); 1035 sk_stream_moderate_sndbuf(ssk); 1036 1037 first = false; 1038 } 1039 __mptcp_sync_sndbuf(sk); 1040 } 1041 1042 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1043 * data 1044 */ 1045 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1046 { 1047 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1048 pfrag, sk->sk_allocation))) 1049 return true; 1050 1051 mptcp_enter_memory_pressure(sk); 1052 return false; 1053 } 1054 1055 static struct mptcp_data_frag * 1056 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1057 int orig_offset) 1058 { 1059 int offset = ALIGN(orig_offset, sizeof(long)); 1060 struct mptcp_data_frag *dfrag; 1061 1062 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1063 dfrag->data_len = 0; 1064 dfrag->data_seq = msk->write_seq; 1065 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1066 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1067 dfrag->already_sent = 0; 1068 dfrag->page = pfrag->page; 1069 1070 return dfrag; 1071 } 1072 1073 struct mptcp_sendmsg_info { 1074 int mss_now; 1075 int size_goal; 1076 u16 limit; 1077 u16 sent; 1078 unsigned int flags; 1079 bool data_lock_held; 1080 }; 1081 1082 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1083 u64 data_seq, int avail_size) 1084 { 1085 u64 window_end = mptcp_wnd_end(msk); 1086 u64 mptcp_snd_wnd; 1087 1088 if (__mptcp_check_fallback(msk)) 1089 return avail_size; 1090 1091 mptcp_snd_wnd = window_end - data_seq; 1092 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1093 1094 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1095 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1096 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1097 } 1098 1099 return avail_size; 1100 } 1101 1102 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1103 { 1104 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1105 1106 if (!mpext) 1107 return false; 1108 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1109 return true; 1110 } 1111 1112 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1113 { 1114 struct sk_buff *skb; 1115 1116 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1117 if (likely(skb)) { 1118 if (likely(__mptcp_add_ext(skb, gfp))) { 1119 skb_reserve(skb, MAX_TCP_HEADER); 1120 skb->ip_summed = CHECKSUM_PARTIAL; 1121 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1122 return skb; 1123 } 1124 __kfree_skb(skb); 1125 } else { 1126 mptcp_enter_memory_pressure(sk); 1127 } 1128 return NULL; 1129 } 1130 1131 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1132 { 1133 struct sk_buff *skb; 1134 1135 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1136 if (!skb) 1137 return NULL; 1138 1139 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1140 tcp_skb_entail(ssk, skb); 1141 return skb; 1142 } 1143 tcp_skb_tsorted_anchor_cleanup(skb); 1144 kfree_skb(skb); 1145 return NULL; 1146 } 1147 1148 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1149 { 1150 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1151 1152 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1153 } 1154 1155 /* note: this always recompute the csum on the whole skb, even 1156 * if we just appended a single frag. More status info needed 1157 */ 1158 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1159 { 1160 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1161 __wsum csum = ~csum_unfold(mpext->csum); 1162 int offset = skb->len - added; 1163 1164 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1165 } 1166 1167 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1168 struct sock *ssk, 1169 struct mptcp_ext *mpext) 1170 { 1171 if (!mpext) 1172 return; 1173 1174 mpext->infinite_map = 1; 1175 mpext->data_len = 0; 1176 1177 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1178 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1179 mptcp_subflow_reset(ssk); 1180 return; 1181 } 1182 1183 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1184 } 1185 1186 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1187 1188 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1189 struct mptcp_data_frag *dfrag, 1190 struct mptcp_sendmsg_info *info) 1191 { 1192 u64 data_seq = dfrag->data_seq + info->sent; 1193 int offset = dfrag->offset + info->sent; 1194 struct mptcp_sock *msk = mptcp_sk(sk); 1195 bool zero_window_probe = false; 1196 struct mptcp_ext *mpext = NULL; 1197 bool can_coalesce = false; 1198 bool reuse_skb = true; 1199 struct sk_buff *skb; 1200 size_t copy; 1201 int i; 1202 1203 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1204 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1205 1206 if (WARN_ON_ONCE(info->sent > info->limit || 1207 info->limit > dfrag->data_len)) 1208 return 0; 1209 1210 if (unlikely(!__tcp_can_send(ssk))) 1211 return -EAGAIN; 1212 1213 /* compute send limit */ 1214 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1215 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1216 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1217 copy = info->size_goal; 1218 1219 skb = tcp_write_queue_tail(ssk); 1220 if (skb && copy > skb->len) { 1221 /* Limit the write to the size available in the 1222 * current skb, if any, so that we create at most a new skb. 1223 * Explicitly tells TCP internals to avoid collapsing on later 1224 * queue management operation, to avoid breaking the ext <-> 1225 * SSN association set here 1226 */ 1227 mpext = mptcp_get_ext(skb); 1228 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1229 TCP_SKB_CB(skb)->eor = 1; 1230 tcp_mark_push(tcp_sk(ssk), skb); 1231 goto alloc_skb; 1232 } 1233 1234 i = skb_shinfo(skb)->nr_frags; 1235 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1236 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1237 tcp_mark_push(tcp_sk(ssk), skb); 1238 goto alloc_skb; 1239 } 1240 1241 copy -= skb->len; 1242 } else { 1243 alloc_skb: 1244 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1245 if (!skb) 1246 return -ENOMEM; 1247 1248 i = skb_shinfo(skb)->nr_frags; 1249 reuse_skb = false; 1250 mpext = mptcp_get_ext(skb); 1251 } 1252 1253 /* Zero window and all data acked? Probe. */ 1254 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1255 if (copy == 0) { 1256 u64 snd_una = READ_ONCE(msk->snd_una); 1257 1258 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1259 tcp_remove_empty_skb(ssk); 1260 return 0; 1261 } 1262 1263 zero_window_probe = true; 1264 data_seq = snd_una - 1; 1265 copy = 1; 1266 } 1267 1268 copy = min_t(size_t, copy, info->limit - info->sent); 1269 if (!sk_wmem_schedule(ssk, copy)) { 1270 tcp_remove_empty_skb(ssk); 1271 return -ENOMEM; 1272 } 1273 1274 if (can_coalesce) { 1275 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1276 } else { 1277 get_page(dfrag->page); 1278 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1279 } 1280 1281 skb->len += copy; 1282 skb->data_len += copy; 1283 skb->truesize += copy; 1284 sk_wmem_queued_add(ssk, copy); 1285 sk_mem_charge(ssk, copy); 1286 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1287 TCP_SKB_CB(skb)->end_seq += copy; 1288 tcp_skb_pcount_set(skb, 0); 1289 1290 /* on skb reuse we just need to update the DSS len */ 1291 if (reuse_skb) { 1292 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1293 mpext->data_len += copy; 1294 goto out; 1295 } 1296 1297 memset(mpext, 0, sizeof(*mpext)); 1298 mpext->data_seq = data_seq; 1299 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1300 mpext->data_len = copy; 1301 mpext->use_map = 1; 1302 mpext->dsn64 = 1; 1303 1304 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1305 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1306 mpext->dsn64); 1307 1308 if (zero_window_probe) { 1309 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1310 mpext->frozen = 1; 1311 if (READ_ONCE(msk->csum_enabled)) 1312 mptcp_update_data_checksum(skb, copy); 1313 tcp_push_pending_frames(ssk); 1314 return 0; 1315 } 1316 out: 1317 if (READ_ONCE(msk->csum_enabled)) 1318 mptcp_update_data_checksum(skb, copy); 1319 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1320 mptcp_update_infinite_map(msk, ssk, mpext); 1321 trace_mptcp_sendmsg_frag(mpext); 1322 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1323 return copy; 1324 } 1325 1326 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1327 sizeof(struct tcphdr) - \ 1328 MAX_TCP_OPTION_SPACE - \ 1329 sizeof(struct ipv6hdr) - \ 1330 sizeof(struct frag_hdr)) 1331 1332 struct subflow_send_info { 1333 struct sock *ssk; 1334 u64 linger_time; 1335 }; 1336 1337 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1338 { 1339 if (!subflow->stale) 1340 return; 1341 1342 subflow->stale = 0; 1343 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1344 } 1345 1346 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1347 { 1348 if (unlikely(subflow->stale)) { 1349 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1350 1351 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1352 return false; 1353 1354 mptcp_subflow_set_active(subflow); 1355 } 1356 return __mptcp_subflow_active(subflow); 1357 } 1358 1359 #define SSK_MODE_ACTIVE 0 1360 #define SSK_MODE_BACKUP 1 1361 #define SSK_MODE_MAX 2 1362 1363 /* implement the mptcp packet scheduler; 1364 * returns the subflow that will transmit the next DSS 1365 * additionally updates the rtx timeout 1366 */ 1367 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1368 { 1369 struct subflow_send_info send_info[SSK_MODE_MAX]; 1370 struct mptcp_subflow_context *subflow; 1371 struct sock *sk = (struct sock *)msk; 1372 u32 pace, burst, wmem; 1373 int i, nr_active = 0; 1374 struct sock *ssk; 1375 u64 linger_time; 1376 long tout = 0; 1377 1378 /* pick the subflow with the lower wmem/wspace ratio */ 1379 for (i = 0; i < SSK_MODE_MAX; ++i) { 1380 send_info[i].ssk = NULL; 1381 send_info[i].linger_time = -1; 1382 } 1383 1384 mptcp_for_each_subflow(msk, subflow) { 1385 bool backup = subflow->backup || subflow->request_bkup; 1386 1387 trace_mptcp_subflow_get_send(subflow); 1388 ssk = mptcp_subflow_tcp_sock(subflow); 1389 if (!mptcp_subflow_active(subflow)) 1390 continue; 1391 1392 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1393 nr_active += !backup; 1394 pace = subflow->avg_pacing_rate; 1395 if (unlikely(!pace)) { 1396 /* init pacing rate from socket */ 1397 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1398 pace = subflow->avg_pacing_rate; 1399 if (!pace) 1400 continue; 1401 } 1402 1403 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1404 if (linger_time < send_info[backup].linger_time) { 1405 send_info[backup].ssk = ssk; 1406 send_info[backup].linger_time = linger_time; 1407 } 1408 } 1409 __mptcp_set_timeout(sk, tout); 1410 1411 /* pick the best backup if no other subflow is active */ 1412 if (!nr_active) 1413 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1414 1415 /* According to the blest algorithm, to avoid HoL blocking for the 1416 * faster flow, we need to: 1417 * - estimate the faster flow linger time 1418 * - use the above to estimate the amount of byte transferred 1419 * by the faster flow 1420 * - check that the amount of queued data is greater than the above, 1421 * otherwise do not use the picked, slower, subflow 1422 * We select the subflow with the shorter estimated time to flush 1423 * the queued mem, which basically ensure the above. We just need 1424 * to check that subflow has a non empty cwin. 1425 */ 1426 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1427 if (!ssk || !sk_stream_memory_free(ssk)) 1428 return NULL; 1429 1430 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1431 wmem = READ_ONCE(ssk->sk_wmem_queued); 1432 if (!burst) 1433 return ssk; 1434 1435 subflow = mptcp_subflow_ctx(ssk); 1436 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1437 READ_ONCE(ssk->sk_pacing_rate) * burst, 1438 burst + wmem); 1439 msk->snd_burst = burst; 1440 return ssk; 1441 } 1442 1443 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1444 { 1445 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1446 release_sock(ssk); 1447 } 1448 1449 static void mptcp_update_post_push(struct mptcp_sock *msk, 1450 struct mptcp_data_frag *dfrag, 1451 u32 sent) 1452 { 1453 u64 snd_nxt_new = dfrag->data_seq; 1454 1455 dfrag->already_sent += sent; 1456 1457 msk->snd_burst -= sent; 1458 1459 snd_nxt_new += dfrag->already_sent; 1460 1461 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1462 * is recovering after a failover. In that event, this re-sends 1463 * old segments. 1464 * 1465 * Thus compute snd_nxt_new candidate based on 1466 * the dfrag->data_seq that was sent and the data 1467 * that has been handed to the subflow for transmission 1468 * and skip update in case it was old dfrag. 1469 */ 1470 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1471 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1472 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1473 } 1474 } 1475 1476 void mptcp_check_and_set_pending(struct sock *sk) 1477 { 1478 if (mptcp_send_head(sk)) { 1479 mptcp_data_lock(sk); 1480 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1481 mptcp_data_unlock(sk); 1482 } 1483 } 1484 1485 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1486 struct mptcp_sendmsg_info *info) 1487 { 1488 struct mptcp_sock *msk = mptcp_sk(sk); 1489 struct mptcp_data_frag *dfrag; 1490 int len, copied = 0, err = 0; 1491 1492 while ((dfrag = mptcp_send_head(sk))) { 1493 info->sent = dfrag->already_sent; 1494 info->limit = dfrag->data_len; 1495 len = dfrag->data_len - dfrag->already_sent; 1496 while (len > 0) { 1497 int ret = 0; 1498 1499 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1500 if (ret <= 0) { 1501 err = copied ? : ret; 1502 goto out; 1503 } 1504 1505 info->sent += ret; 1506 copied += ret; 1507 len -= ret; 1508 1509 mptcp_update_post_push(msk, dfrag, ret); 1510 } 1511 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1512 1513 if (msk->snd_burst <= 0 || 1514 !sk_stream_memory_free(ssk) || 1515 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1516 err = copied; 1517 goto out; 1518 } 1519 mptcp_set_timeout(sk); 1520 } 1521 err = copied; 1522 1523 out: 1524 if (err > 0) 1525 msk->last_data_sent = tcp_jiffies32; 1526 return err; 1527 } 1528 1529 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1530 { 1531 struct sock *prev_ssk = NULL, *ssk = NULL; 1532 struct mptcp_sock *msk = mptcp_sk(sk); 1533 struct mptcp_sendmsg_info info = { 1534 .flags = flags, 1535 }; 1536 bool do_check_data_fin = false; 1537 int push_count = 1; 1538 1539 while (mptcp_send_head(sk) && (push_count > 0)) { 1540 struct mptcp_subflow_context *subflow; 1541 int ret = 0; 1542 1543 if (mptcp_sched_get_send(msk)) 1544 break; 1545 1546 push_count = 0; 1547 1548 mptcp_for_each_subflow(msk, subflow) { 1549 if (READ_ONCE(subflow->scheduled)) { 1550 mptcp_subflow_set_scheduled(subflow, false); 1551 1552 prev_ssk = ssk; 1553 ssk = mptcp_subflow_tcp_sock(subflow); 1554 if (ssk != prev_ssk) { 1555 /* First check. If the ssk has changed since 1556 * the last round, release prev_ssk 1557 */ 1558 if (prev_ssk) 1559 mptcp_push_release(prev_ssk, &info); 1560 1561 /* Need to lock the new subflow only if different 1562 * from the previous one, otherwise we are still 1563 * helding the relevant lock 1564 */ 1565 lock_sock(ssk); 1566 } 1567 1568 push_count++; 1569 1570 ret = __subflow_push_pending(sk, ssk, &info); 1571 if (ret <= 0) { 1572 if (ret != -EAGAIN || 1573 (1 << ssk->sk_state) & 1574 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1575 push_count--; 1576 continue; 1577 } 1578 do_check_data_fin = true; 1579 } 1580 } 1581 } 1582 1583 /* at this point we held the socket lock for the last subflow we used */ 1584 if (ssk) 1585 mptcp_push_release(ssk, &info); 1586 1587 /* ensure the rtx timer is running */ 1588 if (!mptcp_rtx_timer_pending(sk)) 1589 mptcp_reset_rtx_timer(sk); 1590 if (do_check_data_fin) 1591 mptcp_check_send_data_fin(sk); 1592 } 1593 1594 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1595 { 1596 struct mptcp_sock *msk = mptcp_sk(sk); 1597 struct mptcp_sendmsg_info info = { 1598 .data_lock_held = true, 1599 }; 1600 bool keep_pushing = true; 1601 struct sock *xmit_ssk; 1602 int copied = 0; 1603 1604 info.flags = 0; 1605 while (mptcp_send_head(sk) && keep_pushing) { 1606 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1607 int ret = 0; 1608 1609 /* check for a different subflow usage only after 1610 * spooling the first chunk of data 1611 */ 1612 if (first) { 1613 mptcp_subflow_set_scheduled(subflow, false); 1614 ret = __subflow_push_pending(sk, ssk, &info); 1615 first = false; 1616 if (ret <= 0) 1617 break; 1618 copied += ret; 1619 continue; 1620 } 1621 1622 if (mptcp_sched_get_send(msk)) 1623 goto out; 1624 1625 if (READ_ONCE(subflow->scheduled)) { 1626 mptcp_subflow_set_scheduled(subflow, false); 1627 ret = __subflow_push_pending(sk, ssk, &info); 1628 if (ret <= 0) 1629 keep_pushing = false; 1630 copied += ret; 1631 } 1632 1633 mptcp_for_each_subflow(msk, subflow) { 1634 if (READ_ONCE(subflow->scheduled)) { 1635 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1636 if (xmit_ssk != ssk) { 1637 mptcp_subflow_delegate(subflow, 1638 MPTCP_DELEGATE_SEND); 1639 keep_pushing = false; 1640 } 1641 } 1642 } 1643 } 1644 1645 out: 1646 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1647 * not going to flush it via release_sock() 1648 */ 1649 if (copied) { 1650 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1651 info.size_goal); 1652 if (!mptcp_rtx_timer_pending(sk)) 1653 mptcp_reset_rtx_timer(sk); 1654 1655 if (msk->snd_data_fin_enable && 1656 msk->snd_nxt + 1 == msk->write_seq) 1657 mptcp_schedule_work(sk); 1658 } 1659 } 1660 1661 static int mptcp_disconnect(struct sock *sk, int flags); 1662 1663 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1664 size_t len, int *copied_syn) 1665 { 1666 unsigned int saved_flags = msg->msg_flags; 1667 struct mptcp_sock *msk = mptcp_sk(sk); 1668 struct sock *ssk; 1669 int ret; 1670 1671 /* on flags based fastopen the mptcp is supposed to create the 1672 * first subflow right now. Otherwise we are in the defer_connect 1673 * path, and the first subflow must be already present. 1674 * Since the defer_connect flag is cleared after the first succsful 1675 * fastopen attempt, no need to check for additional subflow status. 1676 */ 1677 if (msg->msg_flags & MSG_FASTOPEN) { 1678 ssk = __mptcp_nmpc_sk(msk); 1679 if (IS_ERR(ssk)) 1680 return PTR_ERR(ssk); 1681 } 1682 if (!msk->first) 1683 return -EINVAL; 1684 1685 ssk = msk->first; 1686 1687 lock_sock(ssk); 1688 msg->msg_flags |= MSG_DONTWAIT; 1689 msk->fastopening = 1; 1690 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1691 msk->fastopening = 0; 1692 msg->msg_flags = saved_flags; 1693 release_sock(ssk); 1694 1695 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1696 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1697 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1698 msg->msg_namelen, msg->msg_flags, 1); 1699 1700 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1701 * case of any error, except timeout or signal 1702 */ 1703 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1704 *copied_syn = 0; 1705 } else if (ret && ret != -EINPROGRESS) { 1706 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1707 * __inet_stream_connect() can fail, due to looking check, 1708 * see mptcp_disconnect(). 1709 * Attempt it again outside the problematic scope. 1710 */ 1711 if (!mptcp_disconnect(sk, 0)) { 1712 sk->sk_disconnects++; 1713 sk->sk_socket->state = SS_UNCONNECTED; 1714 } 1715 } 1716 inet_clear_bit(DEFER_CONNECT, sk); 1717 1718 return ret; 1719 } 1720 1721 static int do_copy_data_nocache(struct sock *sk, int copy, 1722 struct iov_iter *from, char *to) 1723 { 1724 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1725 if (!copy_from_iter_full_nocache(to, copy, from)) 1726 return -EFAULT; 1727 } else if (!copy_from_iter_full(to, copy, from)) { 1728 return -EFAULT; 1729 } 1730 return 0; 1731 } 1732 1733 /* open-code sk_stream_memory_free() plus sent limit computation to 1734 * avoid indirect calls in fast-path. 1735 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1736 * annotations. 1737 */ 1738 static u32 mptcp_send_limit(const struct sock *sk) 1739 { 1740 const struct mptcp_sock *msk = mptcp_sk(sk); 1741 u32 limit, not_sent; 1742 1743 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1744 return 0; 1745 1746 limit = mptcp_notsent_lowat(sk); 1747 if (limit == UINT_MAX) 1748 return UINT_MAX; 1749 1750 not_sent = msk->write_seq - msk->snd_nxt; 1751 if (not_sent >= limit) 1752 return 0; 1753 1754 return limit - not_sent; 1755 } 1756 1757 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1758 { 1759 struct mptcp_subflow_context *subflow; 1760 1761 if (!rfs_is_needed()) 1762 return; 1763 1764 mptcp_for_each_subflow(msk, subflow) { 1765 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1766 1767 sock_rps_record_flow(ssk); 1768 } 1769 } 1770 1771 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1772 { 1773 struct mptcp_sock *msk = mptcp_sk(sk); 1774 struct page_frag *pfrag; 1775 size_t copied = 0; 1776 int ret = 0; 1777 long timeo; 1778 1779 /* silently ignore everything else */ 1780 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1781 1782 lock_sock(sk); 1783 1784 mptcp_rps_record_subflows(msk); 1785 1786 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1787 msg->msg_flags & MSG_FASTOPEN)) { 1788 int copied_syn = 0; 1789 1790 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1791 copied += copied_syn; 1792 if (ret == -EINPROGRESS && copied_syn > 0) 1793 goto out; 1794 else if (ret) 1795 goto do_error; 1796 } 1797 1798 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1799 1800 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1801 ret = sk_stream_wait_connect(sk, &timeo); 1802 if (ret) 1803 goto do_error; 1804 } 1805 1806 ret = -EPIPE; 1807 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1808 goto do_error; 1809 1810 pfrag = sk_page_frag(sk); 1811 1812 while (msg_data_left(msg)) { 1813 int total_ts, frag_truesize = 0; 1814 struct mptcp_data_frag *dfrag; 1815 bool dfrag_collapsed; 1816 size_t psize, offset; 1817 u32 copy_limit; 1818 1819 /* ensure fitting the notsent_lowat() constraint */ 1820 copy_limit = mptcp_send_limit(sk); 1821 if (!copy_limit) 1822 goto wait_for_memory; 1823 1824 /* reuse tail pfrag, if possible, or carve a new one from the 1825 * page allocator 1826 */ 1827 dfrag = mptcp_pending_tail(sk); 1828 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1829 if (!dfrag_collapsed) { 1830 if (!mptcp_page_frag_refill(sk, pfrag)) 1831 goto wait_for_memory; 1832 1833 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1834 frag_truesize = dfrag->overhead; 1835 } 1836 1837 /* we do not bound vs wspace, to allow a single packet. 1838 * memory accounting will prevent execessive memory usage 1839 * anyway 1840 */ 1841 offset = dfrag->offset + dfrag->data_len; 1842 psize = pfrag->size - offset; 1843 psize = min_t(size_t, psize, msg_data_left(msg)); 1844 psize = min_t(size_t, psize, copy_limit); 1845 total_ts = psize + frag_truesize; 1846 1847 if (!sk_wmem_schedule(sk, total_ts)) 1848 goto wait_for_memory; 1849 1850 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1851 page_address(dfrag->page) + offset); 1852 if (ret) 1853 goto do_error; 1854 1855 /* data successfully copied into the write queue */ 1856 sk_forward_alloc_add(sk, -total_ts); 1857 copied += psize; 1858 dfrag->data_len += psize; 1859 frag_truesize += psize; 1860 pfrag->offset += frag_truesize; 1861 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1862 1863 /* charge data on mptcp pending queue to the msk socket 1864 * Note: we charge such data both to sk and ssk 1865 */ 1866 sk_wmem_queued_add(sk, frag_truesize); 1867 if (!dfrag_collapsed) { 1868 get_page(dfrag->page); 1869 list_add_tail(&dfrag->list, &msk->rtx_queue); 1870 if (!msk->first_pending) 1871 WRITE_ONCE(msk->first_pending, dfrag); 1872 } 1873 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1874 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1875 !dfrag_collapsed); 1876 1877 continue; 1878 1879 wait_for_memory: 1880 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1881 __mptcp_push_pending(sk, msg->msg_flags); 1882 ret = sk_stream_wait_memory(sk, &timeo); 1883 if (ret) 1884 goto do_error; 1885 } 1886 1887 if (copied) 1888 __mptcp_push_pending(sk, msg->msg_flags); 1889 1890 out: 1891 release_sock(sk); 1892 return copied; 1893 1894 do_error: 1895 if (copied) 1896 goto out; 1897 1898 copied = sk_stream_error(sk, msg->msg_flags, ret); 1899 goto out; 1900 } 1901 1902 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1903 1904 static int __mptcp_recvmsg_mskq(struct sock *sk, 1905 struct msghdr *msg, 1906 size_t len, int flags, 1907 struct scm_timestamping_internal *tss, 1908 int *cmsg_flags) 1909 { 1910 struct mptcp_sock *msk = mptcp_sk(sk); 1911 struct sk_buff *skb, *tmp; 1912 int copied = 0; 1913 1914 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1915 u32 offset = MPTCP_SKB_CB(skb)->offset; 1916 u32 data_len = skb->len - offset; 1917 u32 count = min_t(size_t, len - copied, data_len); 1918 int err; 1919 1920 if (!(flags & MSG_TRUNC)) { 1921 err = skb_copy_datagram_msg(skb, offset, msg, count); 1922 if (unlikely(err < 0)) { 1923 if (!copied) 1924 return err; 1925 break; 1926 } 1927 } 1928 1929 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1930 tcp_update_recv_tstamps(skb, tss); 1931 *cmsg_flags |= MPTCP_CMSG_TS; 1932 } 1933 1934 copied += count; 1935 1936 if (count < data_len) { 1937 if (!(flags & MSG_PEEK)) { 1938 MPTCP_SKB_CB(skb)->offset += count; 1939 MPTCP_SKB_CB(skb)->map_seq += count; 1940 msk->bytes_consumed += count; 1941 } 1942 break; 1943 } 1944 1945 if (!(flags & MSG_PEEK)) { 1946 /* avoid the indirect call, we know the destructor is sock_wfree */ 1947 skb->destructor = NULL; 1948 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1949 sk_mem_uncharge(sk, skb->truesize); 1950 __skb_unlink(skb, &sk->sk_receive_queue); 1951 __kfree_skb(skb); 1952 msk->bytes_consumed += count; 1953 } 1954 1955 if (copied >= len) 1956 break; 1957 } 1958 1959 mptcp_rcv_space_adjust(msk, copied); 1960 return copied; 1961 } 1962 1963 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1964 * 1965 * Only difference: Use highest rtt estimate of the subflows in use. 1966 */ 1967 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1968 { 1969 struct mptcp_subflow_context *subflow; 1970 struct sock *sk = (struct sock *)msk; 1971 u8 scaling_ratio = U8_MAX; 1972 u32 time, advmss = 1; 1973 u64 rtt_us, mstamp; 1974 1975 msk_owned_by_me(msk); 1976 1977 if (copied <= 0) 1978 return; 1979 1980 if (!msk->rcvspace_init) 1981 mptcp_rcv_space_init(msk, msk->first); 1982 1983 msk->rcvq_space.copied += copied; 1984 1985 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1986 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1987 1988 rtt_us = msk->rcvq_space.rtt_us; 1989 if (rtt_us && time < (rtt_us >> 3)) 1990 return; 1991 1992 rtt_us = 0; 1993 mptcp_for_each_subflow(msk, subflow) { 1994 const struct tcp_sock *tp; 1995 u64 sf_rtt_us; 1996 u32 sf_advmss; 1997 1998 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1999 2000 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2001 sf_advmss = READ_ONCE(tp->advmss); 2002 2003 rtt_us = max(sf_rtt_us, rtt_us); 2004 advmss = max(sf_advmss, advmss); 2005 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2006 } 2007 2008 msk->rcvq_space.rtt_us = rtt_us; 2009 msk->scaling_ratio = scaling_ratio; 2010 if (time < (rtt_us >> 3) || rtt_us == 0) 2011 return; 2012 2013 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2014 goto new_measure; 2015 2016 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2017 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2018 u64 rcvwin, grow; 2019 int rcvbuf; 2020 2021 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2022 2023 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2024 2025 do_div(grow, msk->rcvq_space.space); 2026 rcvwin += (grow << 1); 2027 2028 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 2029 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2030 2031 if (rcvbuf > sk->sk_rcvbuf) { 2032 u32 window_clamp; 2033 2034 window_clamp = mptcp_win_from_space(sk, rcvbuf); 2035 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2036 2037 /* Make subflows follow along. If we do not do this, we 2038 * get drops at subflow level if skbs can't be moved to 2039 * the mptcp rx queue fast enough (announced rcv_win can 2040 * exceed ssk->sk_rcvbuf). 2041 */ 2042 mptcp_for_each_subflow(msk, subflow) { 2043 struct sock *ssk; 2044 bool slow; 2045 2046 ssk = mptcp_subflow_tcp_sock(subflow); 2047 slow = lock_sock_fast(ssk); 2048 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2049 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2050 if (tcp_can_send_ack(ssk)) 2051 tcp_cleanup_rbuf(ssk, 1); 2052 unlock_sock_fast(ssk, slow); 2053 } 2054 } 2055 } 2056 2057 msk->rcvq_space.space = msk->rcvq_space.copied; 2058 new_measure: 2059 msk->rcvq_space.copied = 0; 2060 msk->rcvq_space.time = mstamp; 2061 } 2062 2063 static struct mptcp_subflow_context * 2064 __mptcp_first_ready_from(struct mptcp_sock *msk, 2065 struct mptcp_subflow_context *subflow) 2066 { 2067 struct mptcp_subflow_context *start_subflow = subflow; 2068 2069 while (!READ_ONCE(subflow->data_avail)) { 2070 subflow = mptcp_next_subflow(msk, subflow); 2071 if (subflow == start_subflow) 2072 return NULL; 2073 } 2074 return subflow; 2075 } 2076 2077 static bool __mptcp_move_skbs(struct sock *sk) 2078 { 2079 struct mptcp_subflow_context *subflow; 2080 struct mptcp_sock *msk = mptcp_sk(sk); 2081 bool ret = false; 2082 2083 if (list_empty(&msk->conn_list)) 2084 return false; 2085 2086 /* verify we can move any data from the subflow, eventually updating */ 2087 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 2088 mptcp_for_each_subflow(msk, subflow) 2089 __mptcp_rcvbuf_update(sk, subflow->tcp_sock); 2090 2091 subflow = list_first_entry(&msk->conn_list, 2092 struct mptcp_subflow_context, node); 2093 for (;;) { 2094 struct sock *ssk; 2095 bool slowpath; 2096 2097 /* 2098 * As an optimization avoid traversing the subflows list 2099 * and ev. acquiring the subflow socket lock before baling out 2100 */ 2101 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2102 break; 2103 2104 subflow = __mptcp_first_ready_from(msk, subflow); 2105 if (!subflow) 2106 break; 2107 2108 ssk = mptcp_subflow_tcp_sock(subflow); 2109 slowpath = lock_sock_fast(ssk); 2110 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2111 if (unlikely(ssk->sk_err)) 2112 __mptcp_error_report(sk); 2113 unlock_sock_fast(ssk, slowpath); 2114 2115 subflow = mptcp_next_subflow(msk, subflow); 2116 } 2117 2118 __mptcp_ofo_queue(msk); 2119 if (ret) 2120 mptcp_check_data_fin((struct sock *)msk); 2121 return ret; 2122 } 2123 2124 static unsigned int mptcp_inq_hint(const struct sock *sk) 2125 { 2126 const struct mptcp_sock *msk = mptcp_sk(sk); 2127 const struct sk_buff *skb; 2128 2129 skb = skb_peek(&sk->sk_receive_queue); 2130 if (skb) { 2131 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2132 2133 if (hint_val >= INT_MAX) 2134 return INT_MAX; 2135 2136 return (unsigned int)hint_val; 2137 } 2138 2139 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2140 return 1; 2141 2142 return 0; 2143 } 2144 2145 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2146 int flags, int *addr_len) 2147 { 2148 struct mptcp_sock *msk = mptcp_sk(sk); 2149 struct scm_timestamping_internal tss; 2150 int copied = 0, cmsg_flags = 0; 2151 int target; 2152 long timeo; 2153 2154 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2155 if (unlikely(flags & MSG_ERRQUEUE)) 2156 return inet_recv_error(sk, msg, len, addr_len); 2157 2158 lock_sock(sk); 2159 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2160 copied = -ENOTCONN; 2161 goto out_err; 2162 } 2163 2164 mptcp_rps_record_subflows(msk); 2165 2166 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2167 2168 len = min_t(size_t, len, INT_MAX); 2169 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2170 2171 if (unlikely(msk->recvmsg_inq)) 2172 cmsg_flags = MPTCP_CMSG_INQ; 2173 2174 while (copied < len) { 2175 int err, bytes_read; 2176 2177 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2178 if (unlikely(bytes_read < 0)) { 2179 if (!copied) 2180 copied = bytes_read; 2181 goto out_err; 2182 } 2183 2184 copied += bytes_read; 2185 2186 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2187 continue; 2188 2189 /* only the MPTCP socket status is relevant here. The exit 2190 * conditions mirror closely tcp_recvmsg() 2191 */ 2192 if (copied >= target) 2193 break; 2194 2195 if (copied) { 2196 if (sk->sk_err || 2197 sk->sk_state == TCP_CLOSE || 2198 (sk->sk_shutdown & RCV_SHUTDOWN) || 2199 !timeo || 2200 signal_pending(current)) 2201 break; 2202 } else { 2203 if (sk->sk_err) { 2204 copied = sock_error(sk); 2205 break; 2206 } 2207 2208 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2209 /* race breaker: the shutdown could be after the 2210 * previous receive queue check 2211 */ 2212 if (__mptcp_move_skbs(sk)) 2213 continue; 2214 break; 2215 } 2216 2217 if (sk->sk_state == TCP_CLOSE) { 2218 copied = -ENOTCONN; 2219 break; 2220 } 2221 2222 if (!timeo) { 2223 copied = -EAGAIN; 2224 break; 2225 } 2226 2227 if (signal_pending(current)) { 2228 copied = sock_intr_errno(timeo); 2229 break; 2230 } 2231 } 2232 2233 pr_debug("block timeout %ld\n", timeo); 2234 mptcp_cleanup_rbuf(msk, copied); 2235 err = sk_wait_data(sk, &timeo, NULL); 2236 if (err < 0) { 2237 err = copied ? : err; 2238 goto out_err; 2239 } 2240 } 2241 2242 mptcp_cleanup_rbuf(msk, copied); 2243 2244 out_err: 2245 if (cmsg_flags && copied >= 0) { 2246 if (cmsg_flags & MPTCP_CMSG_TS) 2247 tcp_recv_timestamp(msg, sk, &tss); 2248 2249 if (cmsg_flags & MPTCP_CMSG_INQ) { 2250 unsigned int inq = mptcp_inq_hint(sk); 2251 2252 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2253 } 2254 } 2255 2256 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2257 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2258 2259 release_sock(sk); 2260 return copied; 2261 } 2262 2263 static void mptcp_retransmit_timer(struct timer_list *t) 2264 { 2265 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2266 icsk_retransmit_timer); 2267 struct sock *sk = &icsk->icsk_inet.sk; 2268 struct mptcp_sock *msk = mptcp_sk(sk); 2269 2270 bh_lock_sock(sk); 2271 if (!sock_owned_by_user(sk)) { 2272 /* we need a process context to retransmit */ 2273 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2274 mptcp_schedule_work(sk); 2275 } else { 2276 /* delegate our work to tcp_release_cb() */ 2277 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2278 } 2279 bh_unlock_sock(sk); 2280 sock_put(sk); 2281 } 2282 2283 static void mptcp_tout_timer(struct timer_list *t) 2284 { 2285 struct sock *sk = timer_container_of(sk, t, sk_timer); 2286 2287 mptcp_schedule_work(sk); 2288 sock_put(sk); 2289 } 2290 2291 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2292 * level. 2293 * 2294 * A backup subflow is returned only if that is the only kind available. 2295 */ 2296 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2297 { 2298 struct sock *backup = NULL, *pick = NULL; 2299 struct mptcp_subflow_context *subflow; 2300 int min_stale_count = INT_MAX; 2301 2302 mptcp_for_each_subflow(msk, subflow) { 2303 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2304 2305 if (!__mptcp_subflow_active(subflow)) 2306 continue; 2307 2308 /* still data outstanding at TCP level? skip this */ 2309 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2310 mptcp_pm_subflow_chk_stale(msk, ssk); 2311 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2312 continue; 2313 } 2314 2315 if (subflow->backup || subflow->request_bkup) { 2316 if (!backup) 2317 backup = ssk; 2318 continue; 2319 } 2320 2321 if (!pick) 2322 pick = ssk; 2323 } 2324 2325 if (pick) 2326 return pick; 2327 2328 /* use backup only if there are no progresses anywhere */ 2329 return min_stale_count > 1 ? backup : NULL; 2330 } 2331 2332 bool __mptcp_retransmit_pending_data(struct sock *sk) 2333 { 2334 struct mptcp_data_frag *cur, *rtx_head; 2335 struct mptcp_sock *msk = mptcp_sk(sk); 2336 2337 if (__mptcp_check_fallback(msk)) 2338 return false; 2339 2340 /* the closing socket has some data untransmitted and/or unacked: 2341 * some data in the mptcp rtx queue has not really xmitted yet. 2342 * keep it simple and re-inject the whole mptcp level rtx queue 2343 */ 2344 mptcp_data_lock(sk); 2345 __mptcp_clean_una_wakeup(sk); 2346 rtx_head = mptcp_rtx_head(sk); 2347 if (!rtx_head) { 2348 mptcp_data_unlock(sk); 2349 return false; 2350 } 2351 2352 msk->recovery_snd_nxt = msk->snd_nxt; 2353 msk->recovery = true; 2354 mptcp_data_unlock(sk); 2355 2356 msk->first_pending = rtx_head; 2357 msk->snd_burst = 0; 2358 2359 /* be sure to clear the "sent status" on all re-injected fragments */ 2360 list_for_each_entry(cur, &msk->rtx_queue, list) { 2361 if (!cur->already_sent) 2362 break; 2363 cur->already_sent = 0; 2364 } 2365 2366 return true; 2367 } 2368 2369 /* flags for __mptcp_close_ssk() */ 2370 #define MPTCP_CF_PUSH BIT(1) 2371 #define MPTCP_CF_FASTCLOSE BIT(2) 2372 2373 /* be sure to send a reset only if the caller asked for it, also 2374 * clean completely the subflow status when the subflow reaches 2375 * TCP_CLOSE state 2376 */ 2377 static void __mptcp_subflow_disconnect(struct sock *ssk, 2378 struct mptcp_subflow_context *subflow, 2379 unsigned int flags) 2380 { 2381 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2382 (flags & MPTCP_CF_FASTCLOSE)) { 2383 /* The MPTCP code never wait on the subflow sockets, TCP-level 2384 * disconnect should never fail 2385 */ 2386 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2387 mptcp_subflow_ctx_reset(subflow); 2388 } else { 2389 tcp_shutdown(ssk, SEND_SHUTDOWN); 2390 } 2391 } 2392 2393 /* subflow sockets can be either outgoing (connect) or incoming 2394 * (accept). 2395 * 2396 * Outgoing subflows use in-kernel sockets. 2397 * Incoming subflows do not have their own 'struct socket' allocated, 2398 * so we need to use tcp_close() after detaching them from the mptcp 2399 * parent socket. 2400 */ 2401 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2402 struct mptcp_subflow_context *subflow, 2403 unsigned int flags) 2404 { 2405 struct mptcp_sock *msk = mptcp_sk(sk); 2406 bool dispose_it, need_push = false; 2407 2408 /* If the first subflow moved to a close state before accept, e.g. due 2409 * to an incoming reset or listener shutdown, the subflow socket is 2410 * already deleted by inet_child_forget() and the mptcp socket can't 2411 * survive too. 2412 */ 2413 if (msk->in_accept_queue && msk->first == ssk && 2414 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2415 /* ensure later check in mptcp_worker() will dispose the msk */ 2416 sock_set_flag(sk, SOCK_DEAD); 2417 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2418 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2419 mptcp_subflow_drop_ctx(ssk); 2420 goto out_release; 2421 } 2422 2423 dispose_it = msk->free_first || ssk != msk->first; 2424 if (dispose_it) 2425 list_del(&subflow->node); 2426 2427 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2428 2429 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2430 /* be sure to force the tcp_close path 2431 * to generate the egress reset 2432 */ 2433 ssk->sk_lingertime = 0; 2434 sock_set_flag(ssk, SOCK_LINGER); 2435 subflow->send_fastclose = 1; 2436 } 2437 2438 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2439 if (!dispose_it) { 2440 __mptcp_subflow_disconnect(ssk, subflow, flags); 2441 release_sock(ssk); 2442 2443 goto out; 2444 } 2445 2446 subflow->disposable = 1; 2447 2448 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2449 * the ssk has been already destroyed, we just need to release the 2450 * reference owned by msk; 2451 */ 2452 if (!inet_csk(ssk)->icsk_ulp_ops) { 2453 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2454 kfree_rcu(subflow, rcu); 2455 } else { 2456 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2457 __tcp_close(ssk, 0); 2458 2459 /* close acquired an extra ref */ 2460 __sock_put(ssk); 2461 } 2462 2463 out_release: 2464 __mptcp_subflow_error_report(sk, ssk); 2465 release_sock(ssk); 2466 2467 sock_put(ssk); 2468 2469 if (ssk == msk->first) 2470 WRITE_ONCE(msk->first, NULL); 2471 2472 out: 2473 __mptcp_sync_sndbuf(sk); 2474 if (need_push) 2475 __mptcp_push_pending(sk, 0); 2476 2477 /* Catch every 'all subflows closed' scenario, including peers silently 2478 * closing them, e.g. due to timeout. 2479 * For established sockets, allow an additional timeout before closing, 2480 * as the protocol can still create more subflows. 2481 */ 2482 if (list_is_singular(&msk->conn_list) && msk->first && 2483 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2484 if (sk->sk_state != TCP_ESTABLISHED || 2485 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2486 mptcp_set_state(sk, TCP_CLOSE); 2487 mptcp_close_wake_up(sk); 2488 } else { 2489 mptcp_start_tout_timer(sk); 2490 } 2491 } 2492 } 2493 2494 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2495 struct mptcp_subflow_context *subflow) 2496 { 2497 /* The first subflow can already be closed and still in the list */ 2498 if (subflow->close_event_done) 2499 return; 2500 2501 subflow->close_event_done = true; 2502 2503 if (sk->sk_state == TCP_ESTABLISHED) 2504 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2505 2506 /* subflow aborted before reaching the fully_established status 2507 * attempt the creation of the next subflow 2508 */ 2509 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2510 2511 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2512 } 2513 2514 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2515 { 2516 return 0; 2517 } 2518 2519 static void __mptcp_close_subflow(struct sock *sk) 2520 { 2521 struct mptcp_subflow_context *subflow, *tmp; 2522 struct mptcp_sock *msk = mptcp_sk(sk); 2523 2524 might_sleep(); 2525 2526 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2527 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2528 int ssk_state = inet_sk_state_load(ssk); 2529 2530 if (ssk_state != TCP_CLOSE && 2531 (ssk_state != TCP_CLOSE_WAIT || 2532 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2533 continue; 2534 2535 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2536 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2537 continue; 2538 2539 mptcp_close_ssk(sk, ssk, subflow); 2540 } 2541 2542 } 2543 2544 static bool mptcp_close_tout_expired(const struct sock *sk) 2545 { 2546 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2547 sk->sk_state == TCP_CLOSE) 2548 return false; 2549 2550 return time_after32(tcp_jiffies32, 2551 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2552 } 2553 2554 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2555 { 2556 struct mptcp_subflow_context *subflow, *tmp; 2557 struct sock *sk = (struct sock *)msk; 2558 2559 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2560 return; 2561 2562 mptcp_token_destroy(msk); 2563 2564 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2565 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2566 bool slow; 2567 2568 slow = lock_sock_fast(tcp_sk); 2569 if (tcp_sk->sk_state != TCP_CLOSE) { 2570 mptcp_send_active_reset_reason(tcp_sk); 2571 tcp_set_state(tcp_sk, TCP_CLOSE); 2572 } 2573 unlock_sock_fast(tcp_sk, slow); 2574 } 2575 2576 /* Mirror the tcp_reset() error propagation */ 2577 switch (sk->sk_state) { 2578 case TCP_SYN_SENT: 2579 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2580 break; 2581 case TCP_CLOSE_WAIT: 2582 WRITE_ONCE(sk->sk_err, EPIPE); 2583 break; 2584 case TCP_CLOSE: 2585 return; 2586 default: 2587 WRITE_ONCE(sk->sk_err, ECONNRESET); 2588 } 2589 2590 mptcp_set_state(sk, TCP_CLOSE); 2591 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2592 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2593 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2594 2595 /* the calling mptcp_worker will properly destroy the socket */ 2596 if (sock_flag(sk, SOCK_DEAD)) 2597 return; 2598 2599 sk->sk_state_change(sk); 2600 sk_error_report(sk); 2601 } 2602 2603 static void __mptcp_retrans(struct sock *sk) 2604 { 2605 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2606 struct mptcp_sock *msk = mptcp_sk(sk); 2607 struct mptcp_subflow_context *subflow; 2608 struct mptcp_data_frag *dfrag; 2609 struct sock *ssk; 2610 int ret, err; 2611 u16 len = 0; 2612 2613 mptcp_clean_una_wakeup(sk); 2614 2615 /* first check ssk: need to kick "stale" logic */ 2616 err = mptcp_sched_get_retrans(msk); 2617 dfrag = mptcp_rtx_head(sk); 2618 if (!dfrag) { 2619 if (mptcp_data_fin_enabled(msk)) { 2620 struct inet_connection_sock *icsk = inet_csk(sk); 2621 2622 WRITE_ONCE(icsk->icsk_retransmits, 2623 icsk->icsk_retransmits + 1); 2624 mptcp_set_datafin_timeout(sk); 2625 mptcp_send_ack(msk); 2626 2627 goto reset_timer; 2628 } 2629 2630 if (!mptcp_send_head(sk)) 2631 return; 2632 2633 goto reset_timer; 2634 } 2635 2636 if (err) 2637 goto reset_timer; 2638 2639 mptcp_for_each_subflow(msk, subflow) { 2640 if (READ_ONCE(subflow->scheduled)) { 2641 u16 copied = 0; 2642 2643 mptcp_subflow_set_scheduled(subflow, false); 2644 2645 ssk = mptcp_subflow_tcp_sock(subflow); 2646 2647 lock_sock(ssk); 2648 2649 /* limit retransmission to the bytes already sent on some subflows */ 2650 info.sent = 0; 2651 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2652 dfrag->already_sent; 2653 2654 /* 2655 * make the whole retrans decision, xmit, disallow 2656 * fallback atomic 2657 */ 2658 spin_lock_bh(&msk->fallback_lock); 2659 if (__mptcp_check_fallback(msk)) { 2660 spin_unlock_bh(&msk->fallback_lock); 2661 release_sock(ssk); 2662 return; 2663 } 2664 2665 while (info.sent < info.limit) { 2666 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2667 if (ret <= 0) 2668 break; 2669 2670 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2671 copied += ret; 2672 info.sent += ret; 2673 } 2674 if (copied) { 2675 len = max(copied, len); 2676 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2677 info.size_goal); 2678 msk->allow_infinite_fallback = false; 2679 } 2680 spin_unlock_bh(&msk->fallback_lock); 2681 2682 release_sock(ssk); 2683 } 2684 } 2685 2686 msk->bytes_retrans += len; 2687 dfrag->already_sent = max(dfrag->already_sent, len); 2688 2689 reset_timer: 2690 mptcp_check_and_set_pending(sk); 2691 2692 if (!mptcp_rtx_timer_pending(sk)) 2693 mptcp_reset_rtx_timer(sk); 2694 } 2695 2696 /* schedule the timeout timer for the relevant event: either close timeout 2697 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2698 */ 2699 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2700 { 2701 struct sock *sk = (struct sock *)msk; 2702 unsigned long timeout, close_timeout; 2703 2704 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2705 return; 2706 2707 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2708 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2709 2710 /* the close timeout takes precedence on the fail one, and here at least one of 2711 * them is active 2712 */ 2713 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2714 2715 sk_reset_timer(sk, &sk->sk_timer, timeout); 2716 } 2717 2718 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2719 { 2720 struct sock *ssk = msk->first; 2721 bool slow; 2722 2723 if (!ssk) 2724 return; 2725 2726 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2727 2728 slow = lock_sock_fast(ssk); 2729 mptcp_subflow_reset(ssk); 2730 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2731 unlock_sock_fast(ssk, slow); 2732 } 2733 2734 static void mptcp_do_fastclose(struct sock *sk) 2735 { 2736 struct mptcp_subflow_context *subflow, *tmp; 2737 struct mptcp_sock *msk = mptcp_sk(sk); 2738 2739 mptcp_set_state(sk, TCP_CLOSE); 2740 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2741 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2742 subflow, MPTCP_CF_FASTCLOSE); 2743 } 2744 2745 static void mptcp_worker(struct work_struct *work) 2746 { 2747 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2748 struct sock *sk = (struct sock *)msk; 2749 unsigned long fail_tout; 2750 int state; 2751 2752 lock_sock(sk); 2753 state = sk->sk_state; 2754 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2755 goto unlock; 2756 2757 mptcp_check_fastclose(msk); 2758 2759 mptcp_pm_worker(msk); 2760 2761 mptcp_check_send_data_fin(sk); 2762 mptcp_check_data_fin_ack(sk); 2763 mptcp_check_data_fin(sk); 2764 2765 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2766 __mptcp_close_subflow(sk); 2767 2768 if (mptcp_close_tout_expired(sk)) { 2769 mptcp_do_fastclose(sk); 2770 mptcp_close_wake_up(sk); 2771 } 2772 2773 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2774 __mptcp_destroy_sock(sk); 2775 goto unlock; 2776 } 2777 2778 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2779 __mptcp_retrans(sk); 2780 2781 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2782 if (fail_tout && time_after(jiffies, fail_tout)) 2783 mptcp_mp_fail_no_response(msk); 2784 2785 unlock: 2786 release_sock(sk); 2787 sock_put(sk); 2788 } 2789 2790 static void __mptcp_init_sock(struct sock *sk) 2791 { 2792 struct mptcp_sock *msk = mptcp_sk(sk); 2793 2794 INIT_LIST_HEAD(&msk->conn_list); 2795 INIT_LIST_HEAD(&msk->join_list); 2796 INIT_LIST_HEAD(&msk->rtx_queue); 2797 INIT_WORK(&msk->work, mptcp_worker); 2798 msk->out_of_order_queue = RB_ROOT; 2799 msk->first_pending = NULL; 2800 msk->timer_ival = TCP_RTO_MIN; 2801 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2802 2803 WRITE_ONCE(msk->first, NULL); 2804 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2805 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2806 msk->allow_infinite_fallback = true; 2807 msk->allow_subflows = true; 2808 msk->recovery = false; 2809 msk->subflow_id = 1; 2810 msk->last_data_sent = tcp_jiffies32; 2811 msk->last_data_recv = tcp_jiffies32; 2812 msk->last_ack_recv = tcp_jiffies32; 2813 2814 mptcp_pm_data_init(msk); 2815 spin_lock_init(&msk->fallback_lock); 2816 2817 /* re-use the csk retrans timer for MPTCP-level retrans */ 2818 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2819 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2820 } 2821 2822 static void mptcp_ca_reset(struct sock *sk) 2823 { 2824 struct inet_connection_sock *icsk = inet_csk(sk); 2825 2826 tcp_assign_congestion_control(sk); 2827 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2828 sizeof(mptcp_sk(sk)->ca_name)); 2829 2830 /* no need to keep a reference to the ops, the name will suffice */ 2831 tcp_cleanup_congestion_control(sk); 2832 icsk->icsk_ca_ops = NULL; 2833 } 2834 2835 static int mptcp_init_sock(struct sock *sk) 2836 { 2837 struct net *net = sock_net(sk); 2838 int ret; 2839 2840 __mptcp_init_sock(sk); 2841 2842 if (!mptcp_is_enabled(net)) 2843 return -ENOPROTOOPT; 2844 2845 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2846 return -ENOMEM; 2847 2848 rcu_read_lock(); 2849 ret = mptcp_init_sched(mptcp_sk(sk), 2850 mptcp_sched_find(mptcp_get_scheduler(net))); 2851 rcu_read_unlock(); 2852 if (ret) 2853 return ret; 2854 2855 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2856 2857 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2858 * propagate the correct value 2859 */ 2860 mptcp_ca_reset(sk); 2861 2862 sk_sockets_allocated_inc(sk); 2863 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2864 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2865 2866 return 0; 2867 } 2868 2869 static void __mptcp_clear_xmit(struct sock *sk) 2870 { 2871 struct mptcp_sock *msk = mptcp_sk(sk); 2872 struct mptcp_data_frag *dtmp, *dfrag; 2873 2874 WRITE_ONCE(msk->first_pending, NULL); 2875 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2876 dfrag_clear(sk, dfrag); 2877 } 2878 2879 void mptcp_cancel_work(struct sock *sk) 2880 { 2881 struct mptcp_sock *msk = mptcp_sk(sk); 2882 2883 if (cancel_work_sync(&msk->work)) 2884 __sock_put(sk); 2885 } 2886 2887 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2888 { 2889 lock_sock(ssk); 2890 2891 switch (ssk->sk_state) { 2892 case TCP_LISTEN: 2893 if (!(how & RCV_SHUTDOWN)) 2894 break; 2895 fallthrough; 2896 case TCP_SYN_SENT: 2897 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2898 break; 2899 default: 2900 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2901 pr_debug("Fallback\n"); 2902 ssk->sk_shutdown |= how; 2903 tcp_shutdown(ssk, how); 2904 2905 /* simulate the data_fin ack reception to let the state 2906 * machine move forward 2907 */ 2908 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2909 mptcp_schedule_work(sk); 2910 } else { 2911 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2912 tcp_send_ack(ssk); 2913 if (!mptcp_rtx_timer_pending(sk)) 2914 mptcp_reset_rtx_timer(sk); 2915 } 2916 break; 2917 } 2918 2919 release_sock(ssk); 2920 } 2921 2922 void mptcp_set_state(struct sock *sk, int state) 2923 { 2924 int oldstate = sk->sk_state; 2925 2926 switch (state) { 2927 case TCP_ESTABLISHED: 2928 if (oldstate != TCP_ESTABLISHED) 2929 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2930 break; 2931 case TCP_CLOSE_WAIT: 2932 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2933 * MPTCP "accepted" sockets will be created later on. So no 2934 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2935 */ 2936 break; 2937 default: 2938 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2939 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2940 } 2941 2942 inet_sk_state_store(sk, state); 2943 } 2944 2945 static const unsigned char new_state[16] = { 2946 /* current state: new state: action: */ 2947 [0 /* (Invalid) */] = TCP_CLOSE, 2948 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2949 [TCP_SYN_SENT] = TCP_CLOSE, 2950 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2951 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2952 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2953 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2954 [TCP_CLOSE] = TCP_CLOSE, 2955 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2956 [TCP_LAST_ACK] = TCP_LAST_ACK, 2957 [TCP_LISTEN] = TCP_CLOSE, 2958 [TCP_CLOSING] = TCP_CLOSING, 2959 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2960 }; 2961 2962 static int mptcp_close_state(struct sock *sk) 2963 { 2964 int next = (int)new_state[sk->sk_state]; 2965 int ns = next & TCP_STATE_MASK; 2966 2967 mptcp_set_state(sk, ns); 2968 2969 return next & TCP_ACTION_FIN; 2970 } 2971 2972 static void mptcp_check_send_data_fin(struct sock *sk) 2973 { 2974 struct mptcp_subflow_context *subflow; 2975 struct mptcp_sock *msk = mptcp_sk(sk); 2976 2977 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2978 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2979 msk->snd_nxt, msk->write_seq); 2980 2981 /* we still need to enqueue subflows or not really shutting down, 2982 * skip this 2983 */ 2984 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2985 mptcp_send_head(sk)) 2986 return; 2987 2988 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2989 2990 mptcp_for_each_subflow(msk, subflow) { 2991 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2992 2993 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2994 } 2995 } 2996 2997 static void __mptcp_wr_shutdown(struct sock *sk) 2998 { 2999 struct mptcp_sock *msk = mptcp_sk(sk); 3000 3001 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3002 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3003 !!mptcp_send_head(sk)); 3004 3005 /* will be ignored by fallback sockets */ 3006 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3007 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3008 3009 mptcp_check_send_data_fin(sk); 3010 } 3011 3012 static void __mptcp_destroy_sock(struct sock *sk) 3013 { 3014 struct mptcp_sock *msk = mptcp_sk(sk); 3015 3016 pr_debug("msk=%p\n", msk); 3017 3018 might_sleep(); 3019 3020 mptcp_stop_rtx_timer(sk); 3021 sk_stop_timer(sk, &sk->sk_timer); 3022 msk->pm.status = 0; 3023 mptcp_release_sched(msk); 3024 3025 sk->sk_prot->destroy(sk); 3026 3027 sk_stream_kill_queues(sk); 3028 xfrm_sk_free_policy(sk); 3029 3030 sock_put(sk); 3031 } 3032 3033 void __mptcp_unaccepted_force_close(struct sock *sk) 3034 { 3035 sock_set_flag(sk, SOCK_DEAD); 3036 mptcp_do_fastclose(sk); 3037 __mptcp_destroy_sock(sk); 3038 } 3039 3040 static __poll_t mptcp_check_readable(struct sock *sk) 3041 { 3042 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3043 } 3044 3045 static void mptcp_check_listen_stop(struct sock *sk) 3046 { 3047 struct sock *ssk; 3048 3049 if (inet_sk_state_load(sk) != TCP_LISTEN) 3050 return; 3051 3052 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3053 ssk = mptcp_sk(sk)->first; 3054 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3055 return; 3056 3057 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3058 tcp_set_state(ssk, TCP_CLOSE); 3059 mptcp_subflow_queue_clean(sk, ssk); 3060 inet_csk_listen_stop(ssk); 3061 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3062 release_sock(ssk); 3063 } 3064 3065 bool __mptcp_close(struct sock *sk, long timeout) 3066 { 3067 struct mptcp_subflow_context *subflow; 3068 struct mptcp_sock *msk = mptcp_sk(sk); 3069 bool do_cancel_work = false; 3070 int subflows_alive = 0; 3071 3072 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3073 3074 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3075 mptcp_check_listen_stop(sk); 3076 mptcp_set_state(sk, TCP_CLOSE); 3077 goto cleanup; 3078 } 3079 3080 if (mptcp_data_avail(msk) || timeout < 0) { 3081 /* If the msk has read data, or the caller explicitly ask it, 3082 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3083 */ 3084 mptcp_do_fastclose(sk); 3085 timeout = 0; 3086 } else if (mptcp_close_state(sk)) { 3087 __mptcp_wr_shutdown(sk); 3088 } 3089 3090 sk_stream_wait_close(sk, timeout); 3091 3092 cleanup: 3093 /* orphan all the subflows */ 3094 mptcp_for_each_subflow(msk, subflow) { 3095 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3096 bool slow = lock_sock_fast_nested(ssk); 3097 3098 subflows_alive += ssk->sk_state != TCP_CLOSE; 3099 3100 /* since the close timeout takes precedence on the fail one, 3101 * cancel the latter 3102 */ 3103 if (ssk == msk->first) 3104 subflow->fail_tout = 0; 3105 3106 /* detach from the parent socket, but allow data_ready to 3107 * push incoming data into the mptcp stack, to properly ack it 3108 */ 3109 ssk->sk_socket = NULL; 3110 ssk->sk_wq = NULL; 3111 unlock_sock_fast(ssk, slow); 3112 } 3113 sock_orphan(sk); 3114 3115 /* all the subflows are closed, only timeout can change the msk 3116 * state, let's not keep resources busy for no reasons 3117 */ 3118 if (subflows_alive == 0) 3119 mptcp_set_state(sk, TCP_CLOSE); 3120 3121 sock_hold(sk); 3122 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3123 mptcp_pm_connection_closed(msk); 3124 3125 if (sk->sk_state == TCP_CLOSE) { 3126 __mptcp_destroy_sock(sk); 3127 do_cancel_work = true; 3128 } else { 3129 mptcp_start_tout_timer(sk); 3130 } 3131 3132 return do_cancel_work; 3133 } 3134 3135 static void mptcp_close(struct sock *sk, long timeout) 3136 { 3137 bool do_cancel_work; 3138 3139 lock_sock(sk); 3140 3141 do_cancel_work = __mptcp_close(sk, timeout); 3142 release_sock(sk); 3143 if (do_cancel_work) 3144 mptcp_cancel_work(sk); 3145 3146 sock_put(sk); 3147 } 3148 3149 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3150 { 3151 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3152 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3153 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3154 3155 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3156 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3157 3158 if (msk6 && ssk6) { 3159 msk6->saddr = ssk6->saddr; 3160 msk6->flow_label = ssk6->flow_label; 3161 } 3162 #endif 3163 3164 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3165 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3166 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3167 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3168 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3169 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3170 } 3171 3172 static int mptcp_disconnect(struct sock *sk, int flags) 3173 { 3174 struct mptcp_sock *msk = mptcp_sk(sk); 3175 3176 /* We are on the fastopen error path. We can't call straight into the 3177 * subflows cleanup code due to lock nesting (we are already under 3178 * msk->firstsocket lock). 3179 */ 3180 if (msk->fastopening) 3181 return -EBUSY; 3182 3183 mptcp_check_listen_stop(sk); 3184 mptcp_set_state(sk, TCP_CLOSE); 3185 3186 mptcp_stop_rtx_timer(sk); 3187 mptcp_stop_tout_timer(sk); 3188 3189 mptcp_pm_connection_closed(msk); 3190 3191 /* msk->subflow is still intact, the following will not free the first 3192 * subflow 3193 */ 3194 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3195 3196 /* The first subflow is already in TCP_CLOSE status, the following 3197 * can't overlap with a fallback anymore 3198 */ 3199 spin_lock_bh(&msk->fallback_lock); 3200 msk->allow_subflows = true; 3201 msk->allow_infinite_fallback = true; 3202 WRITE_ONCE(msk->flags, 0); 3203 spin_unlock_bh(&msk->fallback_lock); 3204 3205 msk->cb_flags = 0; 3206 msk->recovery = false; 3207 WRITE_ONCE(msk->can_ack, false); 3208 WRITE_ONCE(msk->fully_established, false); 3209 WRITE_ONCE(msk->rcv_data_fin, false); 3210 WRITE_ONCE(msk->snd_data_fin_enable, false); 3211 WRITE_ONCE(msk->rcv_fastclose, false); 3212 WRITE_ONCE(msk->use_64bit_ack, false); 3213 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3214 mptcp_pm_data_reset(msk); 3215 mptcp_ca_reset(sk); 3216 msk->bytes_consumed = 0; 3217 msk->bytes_acked = 0; 3218 msk->bytes_received = 0; 3219 msk->bytes_sent = 0; 3220 msk->bytes_retrans = 0; 3221 msk->rcvspace_init = 0; 3222 3223 WRITE_ONCE(sk->sk_shutdown, 0); 3224 sk_error_report(sk); 3225 return 0; 3226 } 3227 3228 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3229 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3230 { 3231 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3232 3233 return &msk6->np; 3234 } 3235 3236 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3237 { 3238 const struct ipv6_pinfo *np = inet6_sk(sk); 3239 struct ipv6_txoptions *opt; 3240 struct ipv6_pinfo *newnp; 3241 3242 newnp = inet6_sk(newsk); 3243 3244 rcu_read_lock(); 3245 opt = rcu_dereference(np->opt); 3246 if (opt) { 3247 opt = ipv6_dup_options(newsk, opt); 3248 if (!opt) 3249 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3250 } 3251 RCU_INIT_POINTER(newnp->opt, opt); 3252 rcu_read_unlock(); 3253 } 3254 #endif 3255 3256 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3257 { 3258 struct ip_options_rcu *inet_opt, *newopt = NULL; 3259 const struct inet_sock *inet = inet_sk(sk); 3260 struct inet_sock *newinet; 3261 3262 newinet = inet_sk(newsk); 3263 3264 rcu_read_lock(); 3265 inet_opt = rcu_dereference(inet->inet_opt); 3266 if (inet_opt) { 3267 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3268 inet_opt->opt.optlen, GFP_ATOMIC); 3269 if (!newopt) 3270 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3271 } 3272 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3273 rcu_read_unlock(); 3274 } 3275 3276 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3277 const struct mptcp_options_received *mp_opt, 3278 struct sock *ssk, 3279 struct request_sock *req) 3280 { 3281 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3282 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3283 struct mptcp_subflow_context *subflow; 3284 struct mptcp_sock *msk; 3285 3286 if (!nsk) 3287 return NULL; 3288 3289 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3290 if (nsk->sk_family == AF_INET6) 3291 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3292 #endif 3293 3294 __mptcp_init_sock(nsk); 3295 3296 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3297 if (nsk->sk_family == AF_INET6) 3298 mptcp_copy_ip6_options(nsk, sk); 3299 else 3300 #endif 3301 mptcp_copy_ip_options(nsk, sk); 3302 3303 msk = mptcp_sk(nsk); 3304 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3305 WRITE_ONCE(msk->token, subflow_req->token); 3306 msk->in_accept_queue = 1; 3307 WRITE_ONCE(msk->fully_established, false); 3308 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3309 WRITE_ONCE(msk->csum_enabled, true); 3310 3311 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3312 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3313 WRITE_ONCE(msk->snd_una, msk->write_seq); 3314 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3315 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3316 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3317 3318 /* passive msk is created after the first/MPC subflow */ 3319 msk->subflow_id = 2; 3320 3321 sock_reset_flag(nsk, SOCK_RCU_FREE); 3322 security_inet_csk_clone(nsk, req); 3323 3324 /* this can't race with mptcp_close(), as the msk is 3325 * not yet exposted to user-space 3326 */ 3327 mptcp_set_state(nsk, TCP_ESTABLISHED); 3328 3329 /* The msk maintain a ref to each subflow in the connections list */ 3330 WRITE_ONCE(msk->first, ssk); 3331 subflow = mptcp_subflow_ctx(ssk); 3332 list_add(&subflow->node, &msk->conn_list); 3333 sock_hold(ssk); 3334 3335 /* new mpc subflow takes ownership of the newly 3336 * created mptcp socket 3337 */ 3338 mptcp_token_accept(subflow_req, msk); 3339 3340 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3341 * uses the correct data 3342 */ 3343 mptcp_copy_inaddrs(nsk, ssk); 3344 __mptcp_propagate_sndbuf(nsk, ssk); 3345 3346 mptcp_rcv_space_init(msk, ssk); 3347 3348 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3349 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3350 bh_unlock_sock(nsk); 3351 3352 /* note: the newly allocated socket refcount is 2 now */ 3353 return nsk; 3354 } 3355 3356 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3357 { 3358 const struct tcp_sock *tp = tcp_sk(ssk); 3359 3360 msk->rcvspace_init = 1; 3361 msk->rcvq_space.copied = 0; 3362 msk->rcvq_space.rtt_us = 0; 3363 3364 msk->rcvq_space.time = tp->tcp_mstamp; 3365 3366 /* initial rcv_space offering made to peer */ 3367 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3368 TCP_INIT_CWND * tp->advmss); 3369 if (msk->rcvq_space.space == 0) 3370 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3371 } 3372 3373 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3374 { 3375 struct mptcp_subflow_context *subflow, *tmp; 3376 struct sock *sk = (struct sock *)msk; 3377 3378 __mptcp_clear_xmit(sk); 3379 3380 /* join list will be eventually flushed (with rst) at sock lock release time */ 3381 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3382 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3383 3384 __skb_queue_purge(&sk->sk_receive_queue); 3385 skb_rbtree_purge(&msk->out_of_order_queue); 3386 3387 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3388 * inet_sock_destruct() will dispose it 3389 */ 3390 mptcp_token_destroy(msk); 3391 mptcp_pm_destroy(msk); 3392 } 3393 3394 static void mptcp_destroy(struct sock *sk) 3395 { 3396 struct mptcp_sock *msk = mptcp_sk(sk); 3397 3398 /* allow the following to close even the initial subflow */ 3399 msk->free_first = 1; 3400 mptcp_destroy_common(msk, 0); 3401 sk_sockets_allocated_dec(sk); 3402 } 3403 3404 void __mptcp_data_acked(struct sock *sk) 3405 { 3406 if (!sock_owned_by_user(sk)) 3407 __mptcp_clean_una(sk); 3408 else 3409 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3410 } 3411 3412 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3413 { 3414 if (!mptcp_send_head(sk)) 3415 return; 3416 3417 if (!sock_owned_by_user(sk)) 3418 __mptcp_subflow_push_pending(sk, ssk, false); 3419 else 3420 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3421 } 3422 3423 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3424 BIT(MPTCP_RETRANSMIT) | \ 3425 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3426 BIT(MPTCP_DEQUEUE)) 3427 3428 /* processes deferred events and flush wmem */ 3429 static void mptcp_release_cb(struct sock *sk) 3430 __must_hold(&sk->sk_lock.slock) 3431 { 3432 struct mptcp_sock *msk = mptcp_sk(sk); 3433 3434 for (;;) { 3435 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3436 struct list_head join_list; 3437 3438 if (!flags) 3439 break; 3440 3441 INIT_LIST_HEAD(&join_list); 3442 list_splice_init(&msk->join_list, &join_list); 3443 3444 /* the following actions acquire the subflow socket lock 3445 * 3446 * 1) can't be invoked in atomic scope 3447 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3448 * datapath acquires the msk socket spinlock while helding 3449 * the subflow socket lock 3450 */ 3451 msk->cb_flags &= ~flags; 3452 spin_unlock_bh(&sk->sk_lock.slock); 3453 3454 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3455 __mptcp_flush_join_list(sk, &join_list); 3456 if (flags & BIT(MPTCP_PUSH_PENDING)) 3457 __mptcp_push_pending(sk, 0); 3458 if (flags & BIT(MPTCP_RETRANSMIT)) 3459 __mptcp_retrans(sk); 3460 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3461 /* notify ack seq update */ 3462 mptcp_cleanup_rbuf(msk, 0); 3463 sk->sk_data_ready(sk); 3464 } 3465 3466 cond_resched(); 3467 spin_lock_bh(&sk->sk_lock.slock); 3468 } 3469 3470 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3471 __mptcp_clean_una_wakeup(sk); 3472 if (unlikely(msk->cb_flags)) { 3473 /* be sure to sync the msk state before taking actions 3474 * depending on sk_state (MPTCP_ERROR_REPORT) 3475 * On sk release avoid actions depending on the first subflow 3476 */ 3477 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3478 __mptcp_sync_state(sk, msk->pending_state); 3479 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3480 __mptcp_error_report(sk); 3481 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3482 __mptcp_sync_sndbuf(sk); 3483 } 3484 } 3485 3486 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3487 * TCP can't schedule delack timer before the subflow is fully established. 3488 * MPTCP uses the delack timer to do 3rd ack retransmissions 3489 */ 3490 static void schedule_3rdack_retransmission(struct sock *ssk) 3491 { 3492 struct inet_connection_sock *icsk = inet_csk(ssk); 3493 struct tcp_sock *tp = tcp_sk(ssk); 3494 unsigned long timeout; 3495 3496 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3497 return; 3498 3499 /* reschedule with a timeout above RTT, as we must look only for drop */ 3500 if (tp->srtt_us) 3501 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3502 else 3503 timeout = TCP_TIMEOUT_INIT; 3504 timeout += jiffies; 3505 3506 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3507 smp_store_release(&icsk->icsk_ack.pending, 3508 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3509 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3510 } 3511 3512 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3513 { 3514 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3515 struct sock *sk = subflow->conn; 3516 3517 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3518 mptcp_data_lock(sk); 3519 if (!sock_owned_by_user(sk)) 3520 __mptcp_subflow_push_pending(sk, ssk, true); 3521 else 3522 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3523 mptcp_data_unlock(sk); 3524 } 3525 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3526 mptcp_data_lock(sk); 3527 if (!sock_owned_by_user(sk)) 3528 __mptcp_sync_sndbuf(sk); 3529 else 3530 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3531 mptcp_data_unlock(sk); 3532 } 3533 if (status & BIT(MPTCP_DELEGATE_ACK)) 3534 schedule_3rdack_retransmission(ssk); 3535 } 3536 3537 static int mptcp_hash(struct sock *sk) 3538 { 3539 /* should never be called, 3540 * we hash the TCP subflows not the MPTCP socket 3541 */ 3542 WARN_ON_ONCE(1); 3543 return 0; 3544 } 3545 3546 static void mptcp_unhash(struct sock *sk) 3547 { 3548 /* called from sk_common_release(), but nothing to do here */ 3549 } 3550 3551 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3552 { 3553 struct mptcp_sock *msk = mptcp_sk(sk); 3554 3555 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3556 if (WARN_ON_ONCE(!msk->first)) 3557 return -EINVAL; 3558 3559 return inet_csk_get_port(msk->first, snum); 3560 } 3561 3562 void mptcp_finish_connect(struct sock *ssk) 3563 { 3564 struct mptcp_subflow_context *subflow; 3565 struct mptcp_sock *msk; 3566 struct sock *sk; 3567 3568 subflow = mptcp_subflow_ctx(ssk); 3569 sk = subflow->conn; 3570 msk = mptcp_sk(sk); 3571 3572 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3573 3574 subflow->map_seq = subflow->iasn; 3575 subflow->map_subflow_seq = 1; 3576 3577 /* the socket is not connected yet, no msk/subflow ops can access/race 3578 * accessing the field below 3579 */ 3580 WRITE_ONCE(msk->local_key, subflow->local_key); 3581 3582 mptcp_pm_new_connection(msk, ssk, 0); 3583 } 3584 3585 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3586 { 3587 write_lock_bh(&sk->sk_callback_lock); 3588 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3589 sk_set_socket(sk, parent); 3590 write_unlock_bh(&sk->sk_callback_lock); 3591 } 3592 3593 bool mptcp_finish_join(struct sock *ssk) 3594 { 3595 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3596 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3597 struct sock *parent = (void *)msk; 3598 bool ret = true; 3599 3600 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3601 3602 /* mptcp socket already closing? */ 3603 if (!mptcp_is_fully_established(parent)) { 3604 subflow->reset_reason = MPTCP_RST_EMPTCP; 3605 return false; 3606 } 3607 3608 /* active subflow, already present inside the conn_list */ 3609 if (!list_empty(&subflow->node)) { 3610 spin_lock_bh(&msk->fallback_lock); 3611 if (!msk->allow_subflows) { 3612 spin_unlock_bh(&msk->fallback_lock); 3613 return false; 3614 } 3615 mptcp_subflow_joined(msk, ssk); 3616 spin_unlock_bh(&msk->fallback_lock); 3617 mptcp_propagate_sndbuf(parent, ssk); 3618 return true; 3619 } 3620 3621 if (!mptcp_pm_allow_new_subflow(msk)) { 3622 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3623 goto err_prohibited; 3624 } 3625 3626 /* If we can't acquire msk socket lock here, let the release callback 3627 * handle it 3628 */ 3629 mptcp_data_lock(parent); 3630 if (!sock_owned_by_user(parent)) { 3631 ret = __mptcp_finish_join(msk, ssk); 3632 if (ret) { 3633 sock_hold(ssk); 3634 list_add_tail(&subflow->node, &msk->conn_list); 3635 } 3636 } else { 3637 sock_hold(ssk); 3638 list_add_tail(&subflow->node, &msk->join_list); 3639 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3640 } 3641 mptcp_data_unlock(parent); 3642 3643 if (!ret) { 3644 err_prohibited: 3645 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3646 return false; 3647 } 3648 3649 return true; 3650 } 3651 3652 static void mptcp_shutdown(struct sock *sk, int how) 3653 { 3654 pr_debug("sk=%p, how=%d\n", sk, how); 3655 3656 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3657 __mptcp_wr_shutdown(sk); 3658 } 3659 3660 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3661 { 3662 const struct sock *sk = (void *)msk; 3663 u64 delta; 3664 3665 if (sk->sk_state == TCP_LISTEN) 3666 return -EINVAL; 3667 3668 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3669 return 0; 3670 3671 delta = msk->write_seq - v; 3672 if (__mptcp_check_fallback(msk) && msk->first) { 3673 struct tcp_sock *tp = tcp_sk(msk->first); 3674 3675 /* the first subflow is disconnected after close - see 3676 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3677 * so ignore that status, too. 3678 */ 3679 if (!((1 << msk->first->sk_state) & 3680 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3681 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3682 } 3683 if (delta > INT_MAX) 3684 delta = INT_MAX; 3685 3686 return (int)delta; 3687 } 3688 3689 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3690 { 3691 struct mptcp_sock *msk = mptcp_sk(sk); 3692 bool slow; 3693 3694 switch (cmd) { 3695 case SIOCINQ: 3696 if (sk->sk_state == TCP_LISTEN) 3697 return -EINVAL; 3698 3699 lock_sock(sk); 3700 if (__mptcp_move_skbs(sk)) 3701 mptcp_cleanup_rbuf(msk, 0); 3702 *karg = mptcp_inq_hint(sk); 3703 release_sock(sk); 3704 break; 3705 case SIOCOUTQ: 3706 slow = lock_sock_fast(sk); 3707 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3708 unlock_sock_fast(sk, slow); 3709 break; 3710 case SIOCOUTQNSD: 3711 slow = lock_sock_fast(sk); 3712 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3713 unlock_sock_fast(sk, slow); 3714 break; 3715 default: 3716 return -ENOIOCTLCMD; 3717 } 3718 3719 return 0; 3720 } 3721 3722 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3723 { 3724 struct mptcp_subflow_context *subflow; 3725 struct mptcp_sock *msk = mptcp_sk(sk); 3726 int err = -EINVAL; 3727 struct sock *ssk; 3728 3729 ssk = __mptcp_nmpc_sk(msk); 3730 if (IS_ERR(ssk)) 3731 return PTR_ERR(ssk); 3732 3733 mptcp_set_state(sk, TCP_SYN_SENT); 3734 subflow = mptcp_subflow_ctx(ssk); 3735 #ifdef CONFIG_TCP_MD5SIG 3736 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3737 * TCP option space. 3738 */ 3739 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3740 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3741 #endif 3742 if (subflow->request_mptcp) { 3743 if (mptcp_active_should_disable(sk)) 3744 mptcp_early_fallback(msk, subflow, 3745 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3746 else if (mptcp_token_new_connect(ssk) < 0) 3747 mptcp_early_fallback(msk, subflow, 3748 MPTCP_MIB_TOKENFALLBACKINIT); 3749 } 3750 3751 WRITE_ONCE(msk->write_seq, subflow->idsn); 3752 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3753 WRITE_ONCE(msk->snd_una, subflow->idsn); 3754 if (likely(!__mptcp_check_fallback(msk))) 3755 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3756 3757 /* if reaching here via the fastopen/sendmsg path, the caller already 3758 * acquired the subflow socket lock, too. 3759 */ 3760 if (!msk->fastopening) 3761 lock_sock(ssk); 3762 3763 /* the following mirrors closely a very small chunk of code from 3764 * __inet_stream_connect() 3765 */ 3766 if (ssk->sk_state != TCP_CLOSE) 3767 goto out; 3768 3769 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3770 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3771 if (err) 3772 goto out; 3773 } 3774 3775 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3776 if (err < 0) 3777 goto out; 3778 3779 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3780 3781 out: 3782 if (!msk->fastopening) 3783 release_sock(ssk); 3784 3785 /* on successful connect, the msk state will be moved to established by 3786 * subflow_finish_connect() 3787 */ 3788 if (unlikely(err)) { 3789 /* avoid leaving a dangling token in an unconnected socket */ 3790 mptcp_token_destroy(msk); 3791 mptcp_set_state(sk, TCP_CLOSE); 3792 return err; 3793 } 3794 3795 mptcp_copy_inaddrs(sk, ssk); 3796 return 0; 3797 } 3798 3799 static struct proto mptcp_prot = { 3800 .name = "MPTCP", 3801 .owner = THIS_MODULE, 3802 .init = mptcp_init_sock, 3803 .connect = mptcp_connect, 3804 .disconnect = mptcp_disconnect, 3805 .close = mptcp_close, 3806 .setsockopt = mptcp_setsockopt, 3807 .getsockopt = mptcp_getsockopt, 3808 .shutdown = mptcp_shutdown, 3809 .destroy = mptcp_destroy, 3810 .sendmsg = mptcp_sendmsg, 3811 .ioctl = mptcp_ioctl, 3812 .recvmsg = mptcp_recvmsg, 3813 .release_cb = mptcp_release_cb, 3814 .hash = mptcp_hash, 3815 .unhash = mptcp_unhash, 3816 .get_port = mptcp_get_port, 3817 .stream_memory_free = mptcp_stream_memory_free, 3818 .sockets_allocated = &mptcp_sockets_allocated, 3819 3820 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3821 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3822 3823 .memory_pressure = &tcp_memory_pressure, 3824 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3825 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3826 .sysctl_mem = sysctl_tcp_mem, 3827 .obj_size = sizeof(struct mptcp_sock), 3828 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3829 .no_autobind = true, 3830 }; 3831 3832 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3833 { 3834 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3835 struct sock *ssk, *sk = sock->sk; 3836 int err = -EINVAL; 3837 3838 lock_sock(sk); 3839 ssk = __mptcp_nmpc_sk(msk); 3840 if (IS_ERR(ssk)) { 3841 err = PTR_ERR(ssk); 3842 goto unlock; 3843 } 3844 3845 if (sk->sk_family == AF_INET) 3846 err = inet_bind_sk(ssk, uaddr, addr_len); 3847 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3848 else if (sk->sk_family == AF_INET6) 3849 err = inet6_bind_sk(ssk, uaddr, addr_len); 3850 #endif 3851 if (!err) 3852 mptcp_copy_inaddrs(sk, ssk); 3853 3854 unlock: 3855 release_sock(sk); 3856 return err; 3857 } 3858 3859 static int mptcp_listen(struct socket *sock, int backlog) 3860 { 3861 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3862 struct sock *sk = sock->sk; 3863 struct sock *ssk; 3864 int err; 3865 3866 pr_debug("msk=%p\n", msk); 3867 3868 lock_sock(sk); 3869 3870 err = -EINVAL; 3871 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3872 goto unlock; 3873 3874 ssk = __mptcp_nmpc_sk(msk); 3875 if (IS_ERR(ssk)) { 3876 err = PTR_ERR(ssk); 3877 goto unlock; 3878 } 3879 3880 mptcp_set_state(sk, TCP_LISTEN); 3881 sock_set_flag(sk, SOCK_RCU_FREE); 3882 3883 lock_sock(ssk); 3884 err = __inet_listen_sk(ssk, backlog); 3885 release_sock(ssk); 3886 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3887 3888 if (!err) { 3889 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3890 mptcp_copy_inaddrs(sk, ssk); 3891 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3892 } 3893 3894 unlock: 3895 release_sock(sk); 3896 return err; 3897 } 3898 3899 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3900 struct proto_accept_arg *arg) 3901 { 3902 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3903 struct sock *ssk, *newsk; 3904 3905 pr_debug("msk=%p\n", msk); 3906 3907 /* Buggy applications can call accept on socket states other then LISTEN 3908 * but no need to allocate the first subflow just to error out. 3909 */ 3910 ssk = READ_ONCE(msk->first); 3911 if (!ssk) 3912 return -EINVAL; 3913 3914 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3915 newsk = inet_csk_accept(ssk, arg); 3916 if (!newsk) 3917 return arg->err; 3918 3919 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3920 if (sk_is_mptcp(newsk)) { 3921 struct mptcp_subflow_context *subflow; 3922 struct sock *new_mptcp_sock; 3923 3924 subflow = mptcp_subflow_ctx(newsk); 3925 new_mptcp_sock = subflow->conn; 3926 3927 /* is_mptcp should be false if subflow->conn is missing, see 3928 * subflow_syn_recv_sock() 3929 */ 3930 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3931 tcp_sk(newsk)->is_mptcp = 0; 3932 goto tcpfallback; 3933 } 3934 3935 newsk = new_mptcp_sock; 3936 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3937 3938 newsk->sk_kern_sock = arg->kern; 3939 lock_sock(newsk); 3940 __inet_accept(sock, newsock, newsk); 3941 3942 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3943 msk = mptcp_sk(newsk); 3944 msk->in_accept_queue = 0; 3945 3946 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3947 * This is needed so NOSPACE flag can be set from tcp stack. 3948 */ 3949 mptcp_for_each_subflow(msk, subflow) { 3950 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3951 3952 if (!ssk->sk_socket) 3953 mptcp_sock_graft(ssk, newsock); 3954 } 3955 3956 mptcp_rps_record_subflows(msk); 3957 3958 /* Do late cleanup for the first subflow as necessary. Also 3959 * deal with bad peers not doing a complete shutdown. 3960 */ 3961 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3962 __mptcp_close_ssk(newsk, msk->first, 3963 mptcp_subflow_ctx(msk->first), 0); 3964 if (unlikely(list_is_singular(&msk->conn_list))) 3965 mptcp_set_state(newsk, TCP_CLOSE); 3966 } 3967 } else { 3968 tcpfallback: 3969 newsk->sk_kern_sock = arg->kern; 3970 lock_sock(newsk); 3971 __inet_accept(sock, newsock, newsk); 3972 /* we are being invoked after accepting a non-mp-capable 3973 * flow: sk is a tcp_sk, not an mptcp one. 3974 * 3975 * Hand the socket over to tcp so all further socket ops 3976 * bypass mptcp. 3977 */ 3978 WRITE_ONCE(newsock->sk->sk_socket->ops, 3979 mptcp_fallback_tcp_ops(newsock->sk)); 3980 } 3981 release_sock(newsk); 3982 3983 return 0; 3984 } 3985 3986 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3987 { 3988 struct sock *sk = (struct sock *)msk; 3989 3990 if (__mptcp_stream_is_writeable(sk, 1)) 3991 return EPOLLOUT | EPOLLWRNORM; 3992 3993 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3994 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3995 if (__mptcp_stream_is_writeable(sk, 1)) 3996 return EPOLLOUT | EPOLLWRNORM; 3997 3998 return 0; 3999 } 4000 4001 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4002 struct poll_table_struct *wait) 4003 { 4004 struct sock *sk = sock->sk; 4005 struct mptcp_sock *msk; 4006 __poll_t mask = 0; 4007 u8 shutdown; 4008 int state; 4009 4010 msk = mptcp_sk(sk); 4011 sock_poll_wait(file, sock, wait); 4012 4013 state = inet_sk_state_load(sk); 4014 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4015 if (state == TCP_LISTEN) { 4016 struct sock *ssk = READ_ONCE(msk->first); 4017 4018 if (WARN_ON_ONCE(!ssk)) 4019 return 0; 4020 4021 return inet_csk_listen_poll(ssk); 4022 } 4023 4024 shutdown = READ_ONCE(sk->sk_shutdown); 4025 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4026 mask |= EPOLLHUP; 4027 if (shutdown & RCV_SHUTDOWN) 4028 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4029 4030 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4031 mask |= mptcp_check_readable(sk); 4032 if (shutdown & SEND_SHUTDOWN) 4033 mask |= EPOLLOUT | EPOLLWRNORM; 4034 else 4035 mask |= mptcp_check_writeable(msk); 4036 } else if (state == TCP_SYN_SENT && 4037 inet_test_bit(DEFER_CONNECT, sk)) { 4038 /* cf tcp_poll() note about TFO */ 4039 mask |= EPOLLOUT | EPOLLWRNORM; 4040 } 4041 4042 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4043 smp_rmb(); 4044 if (READ_ONCE(sk->sk_err)) 4045 mask |= EPOLLERR; 4046 4047 return mask; 4048 } 4049 4050 static const struct proto_ops mptcp_stream_ops = { 4051 .family = PF_INET, 4052 .owner = THIS_MODULE, 4053 .release = inet_release, 4054 .bind = mptcp_bind, 4055 .connect = inet_stream_connect, 4056 .socketpair = sock_no_socketpair, 4057 .accept = mptcp_stream_accept, 4058 .getname = inet_getname, 4059 .poll = mptcp_poll, 4060 .ioctl = inet_ioctl, 4061 .gettstamp = sock_gettstamp, 4062 .listen = mptcp_listen, 4063 .shutdown = inet_shutdown, 4064 .setsockopt = sock_common_setsockopt, 4065 .getsockopt = sock_common_getsockopt, 4066 .sendmsg = inet_sendmsg, 4067 .recvmsg = inet_recvmsg, 4068 .mmap = sock_no_mmap, 4069 .set_rcvlowat = mptcp_set_rcvlowat, 4070 }; 4071 4072 static struct inet_protosw mptcp_protosw = { 4073 .type = SOCK_STREAM, 4074 .protocol = IPPROTO_MPTCP, 4075 .prot = &mptcp_prot, 4076 .ops = &mptcp_stream_ops, 4077 .flags = INET_PROTOSW_ICSK, 4078 }; 4079 4080 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4081 { 4082 struct mptcp_delegated_action *delegated; 4083 struct mptcp_subflow_context *subflow; 4084 int work_done = 0; 4085 4086 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4087 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4088 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4089 4090 bh_lock_sock_nested(ssk); 4091 if (!sock_owned_by_user(ssk)) { 4092 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4093 } else { 4094 /* tcp_release_cb_override already processed 4095 * the action or will do at next release_sock(). 4096 * In both case must dequeue the subflow here - on the same 4097 * CPU that scheduled it. 4098 */ 4099 smp_wmb(); 4100 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4101 } 4102 bh_unlock_sock(ssk); 4103 sock_put(ssk); 4104 4105 if (++work_done == budget) 4106 return budget; 4107 } 4108 4109 /* always provide a 0 'work_done' argument, so that napi_complete_done 4110 * will not try accessing the NULL napi->dev ptr 4111 */ 4112 napi_complete_done(napi, 0); 4113 return work_done; 4114 } 4115 4116 void __init mptcp_proto_init(void) 4117 { 4118 struct mptcp_delegated_action *delegated; 4119 int cpu; 4120 4121 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4122 4123 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4124 panic("Failed to allocate MPTCP pcpu counter\n"); 4125 4126 mptcp_napi_dev = alloc_netdev_dummy(0); 4127 if (!mptcp_napi_dev) 4128 panic("Failed to allocate MPTCP dummy netdev\n"); 4129 for_each_possible_cpu(cpu) { 4130 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4131 INIT_LIST_HEAD(&delegated->head); 4132 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4133 mptcp_napi_poll); 4134 napi_enable(&delegated->napi); 4135 } 4136 4137 mptcp_subflow_init(); 4138 mptcp_pm_init(); 4139 mptcp_sched_init(); 4140 mptcp_token_init(); 4141 4142 if (proto_register(&mptcp_prot, 1) != 0) 4143 panic("Failed to register MPTCP proto.\n"); 4144 4145 inet_register_protosw(&mptcp_protosw); 4146 4147 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4148 } 4149 4150 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4151 static const struct proto_ops mptcp_v6_stream_ops = { 4152 .family = PF_INET6, 4153 .owner = THIS_MODULE, 4154 .release = inet6_release, 4155 .bind = mptcp_bind, 4156 .connect = inet_stream_connect, 4157 .socketpair = sock_no_socketpair, 4158 .accept = mptcp_stream_accept, 4159 .getname = inet6_getname, 4160 .poll = mptcp_poll, 4161 .ioctl = inet6_ioctl, 4162 .gettstamp = sock_gettstamp, 4163 .listen = mptcp_listen, 4164 .shutdown = inet_shutdown, 4165 .setsockopt = sock_common_setsockopt, 4166 .getsockopt = sock_common_getsockopt, 4167 .sendmsg = inet6_sendmsg, 4168 .recvmsg = inet6_recvmsg, 4169 .mmap = sock_no_mmap, 4170 #ifdef CONFIG_COMPAT 4171 .compat_ioctl = inet6_compat_ioctl, 4172 #endif 4173 .set_rcvlowat = mptcp_set_rcvlowat, 4174 }; 4175 4176 static struct proto mptcp_v6_prot; 4177 4178 static struct inet_protosw mptcp_v6_protosw = { 4179 .type = SOCK_STREAM, 4180 .protocol = IPPROTO_MPTCP, 4181 .prot = &mptcp_v6_prot, 4182 .ops = &mptcp_v6_stream_ops, 4183 .flags = INET_PROTOSW_ICSK, 4184 }; 4185 4186 int __init mptcp_proto_v6_init(void) 4187 { 4188 int err; 4189 4190 mptcp_v6_prot = mptcp_prot; 4191 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4192 mptcp_v6_prot.slab = NULL; 4193 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4194 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4195 4196 err = proto_register(&mptcp_v6_prot, 1); 4197 if (err) 4198 return err; 4199 4200 err = inet6_register_protosw(&mptcp_v6_protosw); 4201 if (err) 4202 proto_unregister(&mptcp_v6_prot); 4203 4204 return err; 4205 } 4206 #endif 4207