xref: /linux/net/mptcp/protocol.c (revision cc2f08129925b437bf28f7f7822f20dac083a87c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
65 	if (sk->sk_prot == &tcpv6_prot)
66 		return &inet6_stream_ops;
67 #endif
68 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69 	return &inet_stream_ops;
70 }
71 
72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73 {
74 	struct net *net = sock_net((struct sock *)msk);
75 
76 	if (__mptcp_check_fallback(msk))
77 		return true;
78 
79 	spin_lock_bh(&msk->fallback_lock);
80 	if (!msk->allow_infinite_fallback) {
81 		spin_unlock_bh(&msk->fallback_lock);
82 		return false;
83 	}
84 
85 	msk->allow_subflows = false;
86 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87 	__MPTCP_INC_STATS(net, fb_mib);
88 	spin_unlock_bh(&msk->fallback_lock);
89 	return true;
90 }
91 
92 static int __mptcp_socket_create(struct mptcp_sock *msk)
93 {
94 	struct mptcp_subflow_context *subflow;
95 	struct sock *sk = (struct sock *)msk;
96 	struct socket *ssock;
97 	int err;
98 
99 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100 	if (err)
101 		return err;
102 
103 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104 	WRITE_ONCE(msk->first, ssock->sk);
105 	subflow = mptcp_subflow_ctx(ssock->sk);
106 	list_add(&subflow->node, &msk->conn_list);
107 	sock_hold(ssock->sk);
108 	subflow->request_mptcp = 1;
109 	subflow->subflow_id = msk->subflow_id++;
110 
111 	/* This is the first subflow, always with id 0 */
112 	WRITE_ONCE(subflow->local_id, 0);
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 	iput(SOCK_INODE(ssock));
115 
116 	return 0;
117 }
118 
119 /* If the MPC handshake is not started, returns the first subflow,
120  * eventually allocating it.
121  */
122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123 {
124 	struct sock *sk = (struct sock *)msk;
125 	int ret;
126 
127 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128 		return ERR_PTR(-EINVAL);
129 
130 	if (!msk->first) {
131 		ret = __mptcp_socket_create(msk);
132 		if (ret)
133 			return ERR_PTR(ret);
134 	}
135 
136 	return msk->first;
137 }
138 
139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140 {
141 	sk_drops_skbadd(sk, skb);
142 	__kfree_skb(skb);
143 }
144 
145 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 			       struct sk_buff *from)
147 {
148 	bool fragstolen;
149 	int delta;
150 
151 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152 	    MPTCP_SKB_CB(from)->offset ||
153 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
154 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
155 		return false;
156 
157 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159 		 to->len, MPTCP_SKB_CB(from)->end_seq);
160 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161 
162 	/* note the fwd memory can reach a negative value after accounting
163 	 * for the delta, but the later skb free will restore a non
164 	 * negative one
165 	 */
166 	atomic_add(delta, &sk->sk_rmem_alloc);
167 	sk_mem_charge(sk, delta);
168 	kfree_skb_partial(from, fragstolen);
169 
170 	return true;
171 }
172 
173 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
174 				   struct sk_buff *from)
175 {
176 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
177 		return false;
178 
179 	return mptcp_try_coalesce((struct sock *)msk, to, from);
180 }
181 
182 /* "inspired" by tcp_data_queue_ofo(), main differences:
183  * - use mptcp seqs
184  * - don't cope with sacks
185  */
186 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
187 {
188 	struct sock *sk = (struct sock *)msk;
189 	struct rb_node **p, *parent;
190 	u64 seq, end_seq, max_seq;
191 	struct sk_buff *skb1;
192 
193 	seq = MPTCP_SKB_CB(skb)->map_seq;
194 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
195 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
196 
197 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
198 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
199 	if (after64(end_seq, max_seq)) {
200 		/* out of window */
201 		mptcp_drop(sk, skb);
202 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
203 			 (unsigned long long)end_seq - (unsigned long)max_seq,
204 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
206 		return;
207 	}
208 
209 	p = &msk->out_of_order_queue.rb_node;
210 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
211 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
212 		rb_link_node(&skb->rbnode, NULL, p);
213 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
214 		msk->ooo_last_skb = skb;
215 		goto end;
216 	}
217 
218 	/* with 2 subflows, adding at end of ooo queue is quite likely
219 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
220 	 */
221 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
222 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
223 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
224 		return;
225 	}
226 
227 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
228 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
229 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
230 		parent = &msk->ooo_last_skb->rbnode;
231 		p = &parent->rb_right;
232 		goto insert;
233 	}
234 
235 	/* Find place to insert this segment. Handle overlaps on the way. */
236 	parent = NULL;
237 	while (*p) {
238 		parent = *p;
239 		skb1 = rb_to_skb(parent);
240 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
241 			p = &parent->rb_left;
242 			continue;
243 		}
244 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
245 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
246 				/* All the bits are present. Drop. */
247 				mptcp_drop(sk, skb);
248 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
249 				return;
250 			}
251 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
252 				/* partial overlap:
253 				 *     |     skb      |
254 				 *  |     skb1    |
255 				 * continue traversing
256 				 */
257 			} else {
258 				/* skb's seq == skb1's seq and skb covers skb1.
259 				 * Replace skb1 with skb.
260 				 */
261 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
262 						&msk->out_of_order_queue);
263 				mptcp_drop(sk, skb1);
264 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
265 				goto merge_right;
266 			}
267 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
268 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
269 			return;
270 		}
271 		p = &parent->rb_right;
272 	}
273 
274 insert:
275 	/* Insert segment into RB tree. */
276 	rb_link_node(&skb->rbnode, parent, p);
277 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
278 
279 merge_right:
280 	/* Remove other segments covered by skb. */
281 	while ((skb1 = skb_rb_next(skb)) != NULL) {
282 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
283 			break;
284 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
285 		mptcp_drop(sk, skb1);
286 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
287 	}
288 	/* If there is no skb after us, we are the last_skb ! */
289 	if (!skb1)
290 		msk->ooo_last_skb = skb;
291 
292 end:
293 	skb_condense(skb);
294 	skb_set_owner_r(skb, sk);
295 }
296 
297 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
298 			     struct sk_buff *skb, unsigned int offset,
299 			     size_t copy_len)
300 {
301 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
302 	struct sock *sk = (struct sock *)msk;
303 	struct sk_buff *tail;
304 	bool has_rxtstamp;
305 
306 	__skb_unlink(skb, &ssk->sk_receive_queue);
307 
308 	skb_ext_reset(skb);
309 	skb_orphan(skb);
310 
311 	/* try to fetch required memory from subflow */
312 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
313 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
314 		goto drop;
315 	}
316 
317 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
318 
319 	/* the skb map_seq accounts for the skb offset:
320 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
321 	 * value
322 	 */
323 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
324 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
325 	MPTCP_SKB_CB(skb)->offset = offset;
326 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
327 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
328 
329 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
330 		/* in sequence */
331 		msk->bytes_received += copy_len;
332 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
333 		tail = skb_peek_tail(&sk->sk_receive_queue);
334 		if (tail && mptcp_try_coalesce(sk, tail, skb))
335 			return true;
336 
337 		skb_set_owner_r(skb, sk);
338 		__skb_queue_tail(&sk->sk_receive_queue, skb);
339 		return true;
340 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
341 		mptcp_data_queue_ofo(msk, skb);
342 		return false;
343 	}
344 
345 	/* old data, keep it simple and drop the whole pkt, sender
346 	 * will retransmit as needed, if needed.
347 	 */
348 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
349 drop:
350 	mptcp_drop(sk, skb);
351 	return false;
352 }
353 
354 static void mptcp_stop_rtx_timer(struct sock *sk)
355 {
356 	struct inet_connection_sock *icsk = inet_csk(sk);
357 
358 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
359 	mptcp_sk(sk)->timer_ival = 0;
360 }
361 
362 static void mptcp_close_wake_up(struct sock *sk)
363 {
364 	if (sock_flag(sk, SOCK_DEAD))
365 		return;
366 
367 	sk->sk_state_change(sk);
368 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
369 	    sk->sk_state == TCP_CLOSE)
370 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
371 	else
372 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
373 }
374 
375 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
376 {
377 	struct mptcp_subflow_context *subflow;
378 
379 	mptcp_for_each_subflow(msk, subflow) {
380 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
381 		bool slow;
382 
383 		slow = lock_sock_fast(ssk);
384 		tcp_shutdown(ssk, SEND_SHUTDOWN);
385 		unlock_sock_fast(ssk, slow);
386 	}
387 }
388 
389 /* called under the msk socket lock */
390 static bool mptcp_pending_data_fin_ack(struct sock *sk)
391 {
392 	struct mptcp_sock *msk = mptcp_sk(sk);
393 
394 	return ((1 << sk->sk_state) &
395 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
396 	       msk->write_seq == READ_ONCE(msk->snd_una);
397 }
398 
399 static void mptcp_check_data_fin_ack(struct sock *sk)
400 {
401 	struct mptcp_sock *msk = mptcp_sk(sk);
402 
403 	/* Look for an acknowledged DATA_FIN */
404 	if (mptcp_pending_data_fin_ack(sk)) {
405 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
406 
407 		switch (sk->sk_state) {
408 		case TCP_FIN_WAIT1:
409 			mptcp_set_state(sk, TCP_FIN_WAIT2);
410 			break;
411 		case TCP_CLOSING:
412 		case TCP_LAST_ACK:
413 			mptcp_shutdown_subflows(msk);
414 			mptcp_set_state(sk, TCP_CLOSE);
415 			break;
416 		}
417 
418 		mptcp_close_wake_up(sk);
419 	}
420 }
421 
422 /* can be called with no lock acquired */
423 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	if (READ_ONCE(msk->rcv_data_fin) &&
428 	    ((1 << inet_sk_state_load(sk)) &
429 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
430 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
431 
432 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
433 			if (seq)
434 				*seq = rcv_data_fin_seq;
435 
436 			return true;
437 		}
438 	}
439 
440 	return false;
441 }
442 
443 static void mptcp_set_datafin_timeout(struct sock *sk)
444 {
445 	struct inet_connection_sock *icsk = inet_csk(sk);
446 	u32 retransmits;
447 
448 	retransmits = min_t(u32, icsk->icsk_retransmits,
449 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
450 
451 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
452 }
453 
454 static void __mptcp_set_timeout(struct sock *sk, long tout)
455 {
456 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
457 }
458 
459 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
460 {
461 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
462 
463 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
464 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
465 }
466 
467 static void mptcp_set_timeout(struct sock *sk)
468 {
469 	struct mptcp_subflow_context *subflow;
470 	long tout = 0;
471 
472 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
473 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
474 	__mptcp_set_timeout(sk, tout);
475 }
476 
477 static inline bool tcp_can_send_ack(const struct sock *ssk)
478 {
479 	return !((1 << inet_sk_state_load(ssk)) &
480 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
481 }
482 
483 void __mptcp_subflow_send_ack(struct sock *ssk)
484 {
485 	if (tcp_can_send_ack(ssk))
486 		tcp_send_ack(ssk);
487 }
488 
489 static void mptcp_subflow_send_ack(struct sock *ssk)
490 {
491 	bool slow;
492 
493 	slow = lock_sock_fast(ssk);
494 	__mptcp_subflow_send_ack(ssk);
495 	unlock_sock_fast(ssk, slow);
496 }
497 
498 static void mptcp_send_ack(struct mptcp_sock *msk)
499 {
500 	struct mptcp_subflow_context *subflow;
501 
502 	mptcp_for_each_subflow(msk, subflow)
503 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
504 }
505 
506 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
507 {
508 	bool slow;
509 
510 	slow = lock_sock_fast(ssk);
511 	if (tcp_can_send_ack(ssk))
512 		tcp_cleanup_rbuf(ssk, copied);
513 	unlock_sock_fast(ssk, slow);
514 }
515 
516 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
517 {
518 	const struct inet_connection_sock *icsk = inet_csk(ssk);
519 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
520 	const struct tcp_sock *tp = tcp_sk(ssk);
521 
522 	return (ack_pending & ICSK_ACK_SCHED) &&
523 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
524 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
525 		 (rx_empty && ack_pending &
526 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
527 }
528 
529 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
530 {
531 	int old_space = READ_ONCE(msk->old_wspace);
532 	struct mptcp_subflow_context *subflow;
533 	struct sock *sk = (struct sock *)msk;
534 	int space =  __mptcp_space(sk);
535 	bool cleanup, rx_empty;
536 
537 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
538 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
539 
540 	mptcp_for_each_subflow(msk, subflow) {
541 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
542 
543 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
544 			mptcp_subflow_cleanup_rbuf(ssk, copied);
545 	}
546 }
547 
548 static void mptcp_check_data_fin(struct sock *sk)
549 {
550 	struct mptcp_sock *msk = mptcp_sk(sk);
551 	u64 rcv_data_fin_seq;
552 
553 	/* Need to ack a DATA_FIN received from a peer while this side
554 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
555 	 * msk->rcv_data_fin was set when parsing the incoming options
556 	 * at the subflow level and the msk lock was not held, so this
557 	 * is the first opportunity to act on the DATA_FIN and change
558 	 * the msk state.
559 	 *
560 	 * If we are caught up to the sequence number of the incoming
561 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
562 	 * not caught up, do nothing and let the recv code send DATA_ACK
563 	 * when catching up.
564 	 */
565 
566 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
567 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
568 		WRITE_ONCE(msk->rcv_data_fin, 0);
569 
570 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
571 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
572 
573 		switch (sk->sk_state) {
574 		case TCP_ESTABLISHED:
575 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
576 			break;
577 		case TCP_FIN_WAIT1:
578 			mptcp_set_state(sk, TCP_CLOSING);
579 			break;
580 		case TCP_FIN_WAIT2:
581 			mptcp_shutdown_subflows(msk);
582 			mptcp_set_state(sk, TCP_CLOSE);
583 			break;
584 		default:
585 			/* Other states not expected */
586 			WARN_ON_ONCE(1);
587 			break;
588 		}
589 
590 		if (!__mptcp_check_fallback(msk))
591 			mptcp_send_ack(msk);
592 		mptcp_close_wake_up(sk);
593 	}
594 }
595 
596 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
597 {
598 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
599 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
600 		mptcp_subflow_reset(ssk);
601 	}
602 }
603 
604 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
605 					   struct sock *ssk)
606 {
607 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
608 	struct sock *sk = (struct sock *)msk;
609 	bool more_data_avail;
610 	struct tcp_sock *tp;
611 	bool ret = false;
612 
613 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
614 	tp = tcp_sk(ssk);
615 	do {
616 		u32 map_remaining, offset;
617 		u32 seq = tp->copied_seq;
618 		struct sk_buff *skb;
619 		bool fin;
620 
621 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
622 			break;
623 
624 		/* try to move as much data as available */
625 		map_remaining = subflow->map_data_len -
626 				mptcp_subflow_get_map_offset(subflow);
627 
628 		skb = skb_peek(&ssk->sk_receive_queue);
629 		if (unlikely(!skb))
630 			break;
631 
632 		if (__mptcp_check_fallback(msk)) {
633 			/* Under fallback skbs have no MPTCP extension and TCP could
634 			 * collapse them between the dummy map creation and the
635 			 * current dequeue. Be sure to adjust the map size.
636 			 */
637 			map_remaining = skb->len;
638 			subflow->map_data_len = skb->len;
639 		}
640 
641 		offset = seq - TCP_SKB_CB(skb)->seq;
642 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
643 		if (fin)
644 			seq++;
645 
646 		if (offset < skb->len) {
647 			size_t len = skb->len - offset;
648 
649 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
650 			seq += len;
651 
652 			if (unlikely(map_remaining < len)) {
653 				DEBUG_NET_WARN_ON_ONCE(1);
654 				mptcp_dss_corruption(msk, ssk);
655 			}
656 		} else {
657 			if (unlikely(!fin)) {
658 				DEBUG_NET_WARN_ON_ONCE(1);
659 				mptcp_dss_corruption(msk, ssk);
660 			}
661 
662 			sk_eat_skb(ssk, skb);
663 		}
664 
665 		WRITE_ONCE(tp->copied_seq, seq);
666 		more_data_avail = mptcp_subflow_data_available(ssk);
667 
668 	} while (more_data_avail);
669 
670 	if (ret)
671 		msk->last_data_recv = tcp_jiffies32;
672 	return ret;
673 }
674 
675 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
676 {
677 	struct sock *sk = (struct sock *)msk;
678 	struct sk_buff *skb, *tail;
679 	bool moved = false;
680 	struct rb_node *p;
681 	u64 end_seq;
682 
683 	p = rb_first(&msk->out_of_order_queue);
684 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
685 	while (p) {
686 		skb = rb_to_skb(p);
687 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
688 			break;
689 
690 		p = rb_next(p);
691 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
692 
693 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
694 				      msk->ack_seq))) {
695 			mptcp_drop(sk, skb);
696 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
697 			continue;
698 		}
699 
700 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
701 		tail = skb_peek_tail(&sk->sk_receive_queue);
702 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
703 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
704 
705 			/* skip overlapping data, if any */
706 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
707 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
708 				 delta);
709 			MPTCP_SKB_CB(skb)->offset += delta;
710 			MPTCP_SKB_CB(skb)->map_seq += delta;
711 			__skb_queue_tail(&sk->sk_receive_queue, skb);
712 		}
713 		msk->bytes_received += end_seq - msk->ack_seq;
714 		WRITE_ONCE(msk->ack_seq, end_seq);
715 		moved = true;
716 	}
717 	return moved;
718 }
719 
720 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
721 {
722 	int err = sock_error(ssk);
723 	int ssk_state;
724 
725 	if (!err)
726 		return false;
727 
728 	/* only propagate errors on fallen-back sockets or
729 	 * on MPC connect
730 	 */
731 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
732 		return false;
733 
734 	/* We need to propagate only transition to CLOSE state.
735 	 * Orphaned socket will see such state change via
736 	 * subflow_sched_work_if_closed() and that path will properly
737 	 * destroy the msk as needed.
738 	 */
739 	ssk_state = inet_sk_state_load(ssk);
740 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
741 		mptcp_set_state(sk, ssk_state);
742 	WRITE_ONCE(sk->sk_err, -err);
743 
744 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
745 	smp_wmb();
746 	sk_error_report(sk);
747 	return true;
748 }
749 
750 void __mptcp_error_report(struct sock *sk)
751 {
752 	struct mptcp_subflow_context *subflow;
753 	struct mptcp_sock *msk = mptcp_sk(sk);
754 
755 	mptcp_for_each_subflow(msk, subflow)
756 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
757 			break;
758 }
759 
760 /* In most cases we will be able to lock the mptcp socket.  If its already
761  * owned, we need to defer to the work queue to avoid ABBA deadlock.
762  */
763 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
764 {
765 	struct sock *sk = (struct sock *)msk;
766 	bool moved;
767 
768 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
769 	__mptcp_ofo_queue(msk);
770 	if (unlikely(ssk->sk_err)) {
771 		if (!sock_owned_by_user(sk))
772 			__mptcp_error_report(sk);
773 		else
774 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
775 	}
776 
777 	/* If the moves have caught up with the DATA_FIN sequence number
778 	 * it's time to ack the DATA_FIN and change socket state, but
779 	 * this is not a good place to change state. Let the workqueue
780 	 * do it.
781 	 */
782 	if (mptcp_pending_data_fin(sk, NULL))
783 		mptcp_schedule_work(sk);
784 	return moved;
785 }
786 
787 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
788 {
789 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
790 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
791 }
792 
793 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
794 {
795 	struct mptcp_sock *msk = mptcp_sk(sk);
796 
797 	__mptcp_rcvbuf_update(sk, ssk);
798 
799 	/* Wake-up the reader only for in-sequence data */
800 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
801 		sk->sk_data_ready(sk);
802 }
803 
804 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
805 {
806 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
807 
808 	/* The peer can send data while we are shutting down this
809 	 * subflow at msk destruction time, but we must avoid enqueuing
810 	 * more data to the msk receive queue
811 	 */
812 	if (unlikely(subflow->disposable))
813 		return;
814 
815 	mptcp_data_lock(sk);
816 	if (!sock_owned_by_user(sk))
817 		__mptcp_data_ready(sk, ssk);
818 	else
819 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
820 	mptcp_data_unlock(sk);
821 }
822 
823 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
824 {
825 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
826 	msk->allow_infinite_fallback = false;
827 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
828 }
829 
830 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
831 {
832 	struct sock *sk = (struct sock *)msk;
833 
834 	if (sk->sk_state != TCP_ESTABLISHED)
835 		return false;
836 
837 	spin_lock_bh(&msk->fallback_lock);
838 	if (!msk->allow_subflows) {
839 		spin_unlock_bh(&msk->fallback_lock);
840 		return false;
841 	}
842 	mptcp_subflow_joined(msk, ssk);
843 	spin_unlock_bh(&msk->fallback_lock);
844 
845 	/* attach to msk socket only after we are sure we will deal with it
846 	 * at close time
847 	 */
848 	if (sk->sk_socket && !ssk->sk_socket)
849 		mptcp_sock_graft(ssk, sk->sk_socket);
850 
851 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
852 	mptcp_sockopt_sync_locked(msk, ssk);
853 	mptcp_stop_tout_timer(sk);
854 	__mptcp_propagate_sndbuf(sk, ssk);
855 	return true;
856 }
857 
858 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
859 {
860 	struct mptcp_subflow_context *tmp, *subflow;
861 	struct mptcp_sock *msk = mptcp_sk(sk);
862 
863 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
864 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
865 		bool slow = lock_sock_fast(ssk);
866 
867 		list_move_tail(&subflow->node, &msk->conn_list);
868 		if (!__mptcp_finish_join(msk, ssk))
869 			mptcp_subflow_reset(ssk);
870 		unlock_sock_fast(ssk, slow);
871 	}
872 }
873 
874 static bool mptcp_rtx_timer_pending(struct sock *sk)
875 {
876 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
877 }
878 
879 static void mptcp_reset_rtx_timer(struct sock *sk)
880 {
881 	struct inet_connection_sock *icsk = inet_csk(sk);
882 	unsigned long tout;
883 
884 	/* prevent rescheduling on close */
885 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
886 		return;
887 
888 	tout = mptcp_sk(sk)->timer_ival;
889 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
890 }
891 
892 bool mptcp_schedule_work(struct sock *sk)
893 {
894 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
895 	    schedule_work(&mptcp_sk(sk)->work)) {
896 		/* each subflow already holds a reference to the sk, and the
897 		 * workqueue is invoked by a subflow, so sk can't go away here.
898 		 */
899 		sock_hold(sk);
900 		return true;
901 	}
902 	return false;
903 }
904 
905 static bool mptcp_skb_can_collapse_to(u64 write_seq,
906 				      const struct sk_buff *skb,
907 				      const struct mptcp_ext *mpext)
908 {
909 	if (!tcp_skb_can_collapse_to(skb))
910 		return false;
911 
912 	/* can collapse only if MPTCP level sequence is in order and this
913 	 * mapping has not been xmitted yet
914 	 */
915 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
916 	       !mpext->frozen;
917 }
918 
919 /* we can append data to the given data frag if:
920  * - there is space available in the backing page_frag
921  * - the data frag tail matches the current page_frag free offset
922  * - the data frag end sequence number matches the current write seq
923  */
924 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
925 				       const struct page_frag *pfrag,
926 				       const struct mptcp_data_frag *df)
927 {
928 	return df && pfrag->page == df->page &&
929 		pfrag->size - pfrag->offset > 0 &&
930 		pfrag->offset == (df->offset + df->data_len) &&
931 		df->data_seq + df->data_len == msk->write_seq;
932 }
933 
934 static void dfrag_uncharge(struct sock *sk, int len)
935 {
936 	sk_mem_uncharge(sk, len);
937 	sk_wmem_queued_add(sk, -len);
938 }
939 
940 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
941 {
942 	int len = dfrag->data_len + dfrag->overhead;
943 
944 	list_del(&dfrag->list);
945 	dfrag_uncharge(sk, len);
946 	put_page(dfrag->page);
947 }
948 
949 /* called under both the msk socket lock and the data lock */
950 static void __mptcp_clean_una(struct sock *sk)
951 {
952 	struct mptcp_sock *msk = mptcp_sk(sk);
953 	struct mptcp_data_frag *dtmp, *dfrag;
954 	u64 snd_una;
955 
956 	snd_una = msk->snd_una;
957 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
958 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
959 			break;
960 
961 		if (unlikely(dfrag == msk->first_pending)) {
962 			/* in recovery mode can see ack after the current snd head */
963 			if (WARN_ON_ONCE(!msk->recovery))
964 				break;
965 
966 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
967 		}
968 
969 		dfrag_clear(sk, dfrag);
970 	}
971 
972 	dfrag = mptcp_rtx_head(sk);
973 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
974 		u64 delta = snd_una - dfrag->data_seq;
975 
976 		/* prevent wrap around in recovery mode */
977 		if (unlikely(delta > dfrag->already_sent)) {
978 			if (WARN_ON_ONCE(!msk->recovery))
979 				goto out;
980 			if (WARN_ON_ONCE(delta > dfrag->data_len))
981 				goto out;
982 			dfrag->already_sent += delta - dfrag->already_sent;
983 		}
984 
985 		dfrag->data_seq += delta;
986 		dfrag->offset += delta;
987 		dfrag->data_len -= delta;
988 		dfrag->already_sent -= delta;
989 
990 		dfrag_uncharge(sk, delta);
991 	}
992 
993 	/* all retransmitted data acked, recovery completed */
994 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
995 		msk->recovery = false;
996 
997 out:
998 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
999 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1000 			mptcp_stop_rtx_timer(sk);
1001 	} else {
1002 		mptcp_reset_rtx_timer(sk);
1003 	}
1004 
1005 	if (mptcp_pending_data_fin_ack(sk))
1006 		mptcp_schedule_work(sk);
1007 }
1008 
1009 static void __mptcp_clean_una_wakeup(struct sock *sk)
1010 {
1011 	lockdep_assert_held_once(&sk->sk_lock.slock);
1012 
1013 	__mptcp_clean_una(sk);
1014 	mptcp_write_space(sk);
1015 }
1016 
1017 static void mptcp_clean_una_wakeup(struct sock *sk)
1018 {
1019 	mptcp_data_lock(sk);
1020 	__mptcp_clean_una_wakeup(sk);
1021 	mptcp_data_unlock(sk);
1022 }
1023 
1024 static void mptcp_enter_memory_pressure(struct sock *sk)
1025 {
1026 	struct mptcp_subflow_context *subflow;
1027 	struct mptcp_sock *msk = mptcp_sk(sk);
1028 	bool first = true;
1029 
1030 	mptcp_for_each_subflow(msk, subflow) {
1031 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1032 
1033 		if (first)
1034 			tcp_enter_memory_pressure(ssk);
1035 		sk_stream_moderate_sndbuf(ssk);
1036 
1037 		first = false;
1038 	}
1039 	__mptcp_sync_sndbuf(sk);
1040 }
1041 
1042 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1043  * data
1044  */
1045 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1046 {
1047 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1048 					pfrag, sk->sk_allocation)))
1049 		return true;
1050 
1051 	mptcp_enter_memory_pressure(sk);
1052 	return false;
1053 }
1054 
1055 static struct mptcp_data_frag *
1056 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1057 		      int orig_offset)
1058 {
1059 	int offset = ALIGN(orig_offset, sizeof(long));
1060 	struct mptcp_data_frag *dfrag;
1061 
1062 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1063 	dfrag->data_len = 0;
1064 	dfrag->data_seq = msk->write_seq;
1065 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1066 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1067 	dfrag->already_sent = 0;
1068 	dfrag->page = pfrag->page;
1069 
1070 	return dfrag;
1071 }
1072 
1073 struct mptcp_sendmsg_info {
1074 	int mss_now;
1075 	int size_goal;
1076 	u16 limit;
1077 	u16 sent;
1078 	unsigned int flags;
1079 	bool data_lock_held;
1080 };
1081 
1082 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1083 				    u64 data_seq, int avail_size)
1084 {
1085 	u64 window_end = mptcp_wnd_end(msk);
1086 	u64 mptcp_snd_wnd;
1087 
1088 	if (__mptcp_check_fallback(msk))
1089 		return avail_size;
1090 
1091 	mptcp_snd_wnd = window_end - data_seq;
1092 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1093 
1094 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1095 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1096 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1097 	}
1098 
1099 	return avail_size;
1100 }
1101 
1102 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1103 {
1104 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1105 
1106 	if (!mpext)
1107 		return false;
1108 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1109 	return true;
1110 }
1111 
1112 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1113 {
1114 	struct sk_buff *skb;
1115 
1116 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1117 	if (likely(skb)) {
1118 		if (likely(__mptcp_add_ext(skb, gfp))) {
1119 			skb_reserve(skb, MAX_TCP_HEADER);
1120 			skb->ip_summed = CHECKSUM_PARTIAL;
1121 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1122 			return skb;
1123 		}
1124 		__kfree_skb(skb);
1125 	} else {
1126 		mptcp_enter_memory_pressure(sk);
1127 	}
1128 	return NULL;
1129 }
1130 
1131 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1132 {
1133 	struct sk_buff *skb;
1134 
1135 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1136 	if (!skb)
1137 		return NULL;
1138 
1139 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1140 		tcp_skb_entail(ssk, skb);
1141 		return skb;
1142 	}
1143 	tcp_skb_tsorted_anchor_cleanup(skb);
1144 	kfree_skb(skb);
1145 	return NULL;
1146 }
1147 
1148 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1149 {
1150 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1151 
1152 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1153 }
1154 
1155 /* note: this always recompute the csum on the whole skb, even
1156  * if we just appended a single frag. More status info needed
1157  */
1158 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1159 {
1160 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1161 	__wsum csum = ~csum_unfold(mpext->csum);
1162 	int offset = skb->len - added;
1163 
1164 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1165 }
1166 
1167 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1168 				      struct sock *ssk,
1169 				      struct mptcp_ext *mpext)
1170 {
1171 	if (!mpext)
1172 		return;
1173 
1174 	mpext->infinite_map = 1;
1175 	mpext->data_len = 0;
1176 
1177 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1178 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1179 		mptcp_subflow_reset(ssk);
1180 		return;
1181 	}
1182 
1183 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1184 }
1185 
1186 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1187 
1188 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1189 			      struct mptcp_data_frag *dfrag,
1190 			      struct mptcp_sendmsg_info *info)
1191 {
1192 	u64 data_seq = dfrag->data_seq + info->sent;
1193 	int offset = dfrag->offset + info->sent;
1194 	struct mptcp_sock *msk = mptcp_sk(sk);
1195 	bool zero_window_probe = false;
1196 	struct mptcp_ext *mpext = NULL;
1197 	bool can_coalesce = false;
1198 	bool reuse_skb = true;
1199 	struct sk_buff *skb;
1200 	size_t copy;
1201 	int i;
1202 
1203 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1204 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1205 
1206 	if (WARN_ON_ONCE(info->sent > info->limit ||
1207 			 info->limit > dfrag->data_len))
1208 		return 0;
1209 
1210 	if (unlikely(!__tcp_can_send(ssk)))
1211 		return -EAGAIN;
1212 
1213 	/* compute send limit */
1214 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1215 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1216 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1217 	copy = info->size_goal;
1218 
1219 	skb = tcp_write_queue_tail(ssk);
1220 	if (skb && copy > skb->len) {
1221 		/* Limit the write to the size available in the
1222 		 * current skb, if any, so that we create at most a new skb.
1223 		 * Explicitly tells TCP internals to avoid collapsing on later
1224 		 * queue management operation, to avoid breaking the ext <->
1225 		 * SSN association set here
1226 		 */
1227 		mpext = mptcp_get_ext(skb);
1228 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1229 			TCP_SKB_CB(skb)->eor = 1;
1230 			tcp_mark_push(tcp_sk(ssk), skb);
1231 			goto alloc_skb;
1232 		}
1233 
1234 		i = skb_shinfo(skb)->nr_frags;
1235 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1236 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1237 			tcp_mark_push(tcp_sk(ssk), skb);
1238 			goto alloc_skb;
1239 		}
1240 
1241 		copy -= skb->len;
1242 	} else {
1243 alloc_skb:
1244 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1245 		if (!skb)
1246 			return -ENOMEM;
1247 
1248 		i = skb_shinfo(skb)->nr_frags;
1249 		reuse_skb = false;
1250 		mpext = mptcp_get_ext(skb);
1251 	}
1252 
1253 	/* Zero window and all data acked? Probe. */
1254 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1255 	if (copy == 0) {
1256 		u64 snd_una = READ_ONCE(msk->snd_una);
1257 
1258 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1259 			tcp_remove_empty_skb(ssk);
1260 			return 0;
1261 		}
1262 
1263 		zero_window_probe = true;
1264 		data_seq = snd_una - 1;
1265 		copy = 1;
1266 	}
1267 
1268 	copy = min_t(size_t, copy, info->limit - info->sent);
1269 	if (!sk_wmem_schedule(ssk, copy)) {
1270 		tcp_remove_empty_skb(ssk);
1271 		return -ENOMEM;
1272 	}
1273 
1274 	if (can_coalesce) {
1275 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1276 	} else {
1277 		get_page(dfrag->page);
1278 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1279 	}
1280 
1281 	skb->len += copy;
1282 	skb->data_len += copy;
1283 	skb->truesize += copy;
1284 	sk_wmem_queued_add(ssk, copy);
1285 	sk_mem_charge(ssk, copy);
1286 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1287 	TCP_SKB_CB(skb)->end_seq += copy;
1288 	tcp_skb_pcount_set(skb, 0);
1289 
1290 	/* on skb reuse we just need to update the DSS len */
1291 	if (reuse_skb) {
1292 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1293 		mpext->data_len += copy;
1294 		goto out;
1295 	}
1296 
1297 	memset(mpext, 0, sizeof(*mpext));
1298 	mpext->data_seq = data_seq;
1299 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1300 	mpext->data_len = copy;
1301 	mpext->use_map = 1;
1302 	mpext->dsn64 = 1;
1303 
1304 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1305 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1306 		 mpext->dsn64);
1307 
1308 	if (zero_window_probe) {
1309 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1310 		mpext->frozen = 1;
1311 		if (READ_ONCE(msk->csum_enabled))
1312 			mptcp_update_data_checksum(skb, copy);
1313 		tcp_push_pending_frames(ssk);
1314 		return 0;
1315 	}
1316 out:
1317 	if (READ_ONCE(msk->csum_enabled))
1318 		mptcp_update_data_checksum(skb, copy);
1319 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1320 		mptcp_update_infinite_map(msk, ssk, mpext);
1321 	trace_mptcp_sendmsg_frag(mpext);
1322 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1323 	return copy;
1324 }
1325 
1326 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1327 					 sizeof(struct tcphdr) - \
1328 					 MAX_TCP_OPTION_SPACE - \
1329 					 sizeof(struct ipv6hdr) - \
1330 					 sizeof(struct frag_hdr))
1331 
1332 struct subflow_send_info {
1333 	struct sock *ssk;
1334 	u64 linger_time;
1335 };
1336 
1337 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1338 {
1339 	if (!subflow->stale)
1340 		return;
1341 
1342 	subflow->stale = 0;
1343 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1344 }
1345 
1346 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1347 {
1348 	if (unlikely(subflow->stale)) {
1349 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1350 
1351 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1352 			return false;
1353 
1354 		mptcp_subflow_set_active(subflow);
1355 	}
1356 	return __mptcp_subflow_active(subflow);
1357 }
1358 
1359 #define SSK_MODE_ACTIVE	0
1360 #define SSK_MODE_BACKUP	1
1361 #define SSK_MODE_MAX	2
1362 
1363 /* implement the mptcp packet scheduler;
1364  * returns the subflow that will transmit the next DSS
1365  * additionally updates the rtx timeout
1366  */
1367 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1368 {
1369 	struct subflow_send_info send_info[SSK_MODE_MAX];
1370 	struct mptcp_subflow_context *subflow;
1371 	struct sock *sk = (struct sock *)msk;
1372 	u32 pace, burst, wmem;
1373 	int i, nr_active = 0;
1374 	struct sock *ssk;
1375 	u64 linger_time;
1376 	long tout = 0;
1377 
1378 	/* pick the subflow with the lower wmem/wspace ratio */
1379 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1380 		send_info[i].ssk = NULL;
1381 		send_info[i].linger_time = -1;
1382 	}
1383 
1384 	mptcp_for_each_subflow(msk, subflow) {
1385 		bool backup = subflow->backup || subflow->request_bkup;
1386 
1387 		trace_mptcp_subflow_get_send(subflow);
1388 		ssk =  mptcp_subflow_tcp_sock(subflow);
1389 		if (!mptcp_subflow_active(subflow))
1390 			continue;
1391 
1392 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1393 		nr_active += !backup;
1394 		pace = subflow->avg_pacing_rate;
1395 		if (unlikely(!pace)) {
1396 			/* init pacing rate from socket */
1397 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1398 			pace = subflow->avg_pacing_rate;
1399 			if (!pace)
1400 				continue;
1401 		}
1402 
1403 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1404 		if (linger_time < send_info[backup].linger_time) {
1405 			send_info[backup].ssk = ssk;
1406 			send_info[backup].linger_time = linger_time;
1407 		}
1408 	}
1409 	__mptcp_set_timeout(sk, tout);
1410 
1411 	/* pick the best backup if no other subflow is active */
1412 	if (!nr_active)
1413 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1414 
1415 	/* According to the blest algorithm, to avoid HoL blocking for the
1416 	 * faster flow, we need to:
1417 	 * - estimate the faster flow linger time
1418 	 * - use the above to estimate the amount of byte transferred
1419 	 *   by the faster flow
1420 	 * - check that the amount of queued data is greater than the above,
1421 	 *   otherwise do not use the picked, slower, subflow
1422 	 * We select the subflow with the shorter estimated time to flush
1423 	 * the queued mem, which basically ensure the above. We just need
1424 	 * to check that subflow has a non empty cwin.
1425 	 */
1426 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1427 	if (!ssk || !sk_stream_memory_free(ssk))
1428 		return NULL;
1429 
1430 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1431 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1432 	if (!burst)
1433 		return ssk;
1434 
1435 	subflow = mptcp_subflow_ctx(ssk);
1436 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1437 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1438 					   burst + wmem);
1439 	msk->snd_burst = burst;
1440 	return ssk;
1441 }
1442 
1443 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1444 {
1445 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1446 	release_sock(ssk);
1447 }
1448 
1449 static void mptcp_update_post_push(struct mptcp_sock *msk,
1450 				   struct mptcp_data_frag *dfrag,
1451 				   u32 sent)
1452 {
1453 	u64 snd_nxt_new = dfrag->data_seq;
1454 
1455 	dfrag->already_sent += sent;
1456 
1457 	msk->snd_burst -= sent;
1458 
1459 	snd_nxt_new += dfrag->already_sent;
1460 
1461 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1462 	 * is recovering after a failover. In that event, this re-sends
1463 	 * old segments.
1464 	 *
1465 	 * Thus compute snd_nxt_new candidate based on
1466 	 * the dfrag->data_seq that was sent and the data
1467 	 * that has been handed to the subflow for transmission
1468 	 * and skip update in case it was old dfrag.
1469 	 */
1470 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1471 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1472 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1473 	}
1474 }
1475 
1476 void mptcp_check_and_set_pending(struct sock *sk)
1477 {
1478 	if (mptcp_send_head(sk)) {
1479 		mptcp_data_lock(sk);
1480 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1481 		mptcp_data_unlock(sk);
1482 	}
1483 }
1484 
1485 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1486 				  struct mptcp_sendmsg_info *info)
1487 {
1488 	struct mptcp_sock *msk = mptcp_sk(sk);
1489 	struct mptcp_data_frag *dfrag;
1490 	int len, copied = 0, err = 0;
1491 
1492 	while ((dfrag = mptcp_send_head(sk))) {
1493 		info->sent = dfrag->already_sent;
1494 		info->limit = dfrag->data_len;
1495 		len = dfrag->data_len - dfrag->already_sent;
1496 		while (len > 0) {
1497 			int ret = 0;
1498 
1499 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1500 			if (ret <= 0) {
1501 				err = copied ? : ret;
1502 				goto out;
1503 			}
1504 
1505 			info->sent += ret;
1506 			copied += ret;
1507 			len -= ret;
1508 
1509 			mptcp_update_post_push(msk, dfrag, ret);
1510 		}
1511 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1512 
1513 		if (msk->snd_burst <= 0 ||
1514 		    !sk_stream_memory_free(ssk) ||
1515 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1516 			err = copied;
1517 			goto out;
1518 		}
1519 		mptcp_set_timeout(sk);
1520 	}
1521 	err = copied;
1522 
1523 out:
1524 	if (err > 0)
1525 		msk->last_data_sent = tcp_jiffies32;
1526 	return err;
1527 }
1528 
1529 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1530 {
1531 	struct sock *prev_ssk = NULL, *ssk = NULL;
1532 	struct mptcp_sock *msk = mptcp_sk(sk);
1533 	struct mptcp_sendmsg_info info = {
1534 				.flags = flags,
1535 	};
1536 	bool do_check_data_fin = false;
1537 	int push_count = 1;
1538 
1539 	while (mptcp_send_head(sk) && (push_count > 0)) {
1540 		struct mptcp_subflow_context *subflow;
1541 		int ret = 0;
1542 
1543 		if (mptcp_sched_get_send(msk))
1544 			break;
1545 
1546 		push_count = 0;
1547 
1548 		mptcp_for_each_subflow(msk, subflow) {
1549 			if (READ_ONCE(subflow->scheduled)) {
1550 				mptcp_subflow_set_scheduled(subflow, false);
1551 
1552 				prev_ssk = ssk;
1553 				ssk = mptcp_subflow_tcp_sock(subflow);
1554 				if (ssk != prev_ssk) {
1555 					/* First check. If the ssk has changed since
1556 					 * the last round, release prev_ssk
1557 					 */
1558 					if (prev_ssk)
1559 						mptcp_push_release(prev_ssk, &info);
1560 
1561 					/* Need to lock the new subflow only if different
1562 					 * from the previous one, otherwise we are still
1563 					 * helding the relevant lock
1564 					 */
1565 					lock_sock(ssk);
1566 				}
1567 
1568 				push_count++;
1569 
1570 				ret = __subflow_push_pending(sk, ssk, &info);
1571 				if (ret <= 0) {
1572 					if (ret != -EAGAIN ||
1573 					    (1 << ssk->sk_state) &
1574 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1575 						push_count--;
1576 					continue;
1577 				}
1578 				do_check_data_fin = true;
1579 			}
1580 		}
1581 	}
1582 
1583 	/* at this point we held the socket lock for the last subflow we used */
1584 	if (ssk)
1585 		mptcp_push_release(ssk, &info);
1586 
1587 	/* ensure the rtx timer is running */
1588 	if (!mptcp_rtx_timer_pending(sk))
1589 		mptcp_reset_rtx_timer(sk);
1590 	if (do_check_data_fin)
1591 		mptcp_check_send_data_fin(sk);
1592 }
1593 
1594 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1595 {
1596 	struct mptcp_sock *msk = mptcp_sk(sk);
1597 	struct mptcp_sendmsg_info info = {
1598 		.data_lock_held = true,
1599 	};
1600 	bool keep_pushing = true;
1601 	struct sock *xmit_ssk;
1602 	int copied = 0;
1603 
1604 	info.flags = 0;
1605 	while (mptcp_send_head(sk) && keep_pushing) {
1606 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1607 		int ret = 0;
1608 
1609 		/* check for a different subflow usage only after
1610 		 * spooling the first chunk of data
1611 		 */
1612 		if (first) {
1613 			mptcp_subflow_set_scheduled(subflow, false);
1614 			ret = __subflow_push_pending(sk, ssk, &info);
1615 			first = false;
1616 			if (ret <= 0)
1617 				break;
1618 			copied += ret;
1619 			continue;
1620 		}
1621 
1622 		if (mptcp_sched_get_send(msk))
1623 			goto out;
1624 
1625 		if (READ_ONCE(subflow->scheduled)) {
1626 			mptcp_subflow_set_scheduled(subflow, false);
1627 			ret = __subflow_push_pending(sk, ssk, &info);
1628 			if (ret <= 0)
1629 				keep_pushing = false;
1630 			copied += ret;
1631 		}
1632 
1633 		mptcp_for_each_subflow(msk, subflow) {
1634 			if (READ_ONCE(subflow->scheduled)) {
1635 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1636 				if (xmit_ssk != ssk) {
1637 					mptcp_subflow_delegate(subflow,
1638 							       MPTCP_DELEGATE_SEND);
1639 					keep_pushing = false;
1640 				}
1641 			}
1642 		}
1643 	}
1644 
1645 out:
1646 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1647 	 * not going to flush it via release_sock()
1648 	 */
1649 	if (copied) {
1650 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1651 			 info.size_goal);
1652 		if (!mptcp_rtx_timer_pending(sk))
1653 			mptcp_reset_rtx_timer(sk);
1654 
1655 		if (msk->snd_data_fin_enable &&
1656 		    msk->snd_nxt + 1 == msk->write_seq)
1657 			mptcp_schedule_work(sk);
1658 	}
1659 }
1660 
1661 static int mptcp_disconnect(struct sock *sk, int flags);
1662 
1663 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1664 				  size_t len, int *copied_syn)
1665 {
1666 	unsigned int saved_flags = msg->msg_flags;
1667 	struct mptcp_sock *msk = mptcp_sk(sk);
1668 	struct sock *ssk;
1669 	int ret;
1670 
1671 	/* on flags based fastopen the mptcp is supposed to create the
1672 	 * first subflow right now. Otherwise we are in the defer_connect
1673 	 * path, and the first subflow must be already present.
1674 	 * Since the defer_connect flag is cleared after the first succsful
1675 	 * fastopen attempt, no need to check for additional subflow status.
1676 	 */
1677 	if (msg->msg_flags & MSG_FASTOPEN) {
1678 		ssk = __mptcp_nmpc_sk(msk);
1679 		if (IS_ERR(ssk))
1680 			return PTR_ERR(ssk);
1681 	}
1682 	if (!msk->first)
1683 		return -EINVAL;
1684 
1685 	ssk = msk->first;
1686 
1687 	lock_sock(ssk);
1688 	msg->msg_flags |= MSG_DONTWAIT;
1689 	msk->fastopening = 1;
1690 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1691 	msk->fastopening = 0;
1692 	msg->msg_flags = saved_flags;
1693 	release_sock(ssk);
1694 
1695 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1696 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1697 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1698 					    msg->msg_namelen, msg->msg_flags, 1);
1699 
1700 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1701 		 * case of any error, except timeout or signal
1702 		 */
1703 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1704 			*copied_syn = 0;
1705 	} else if (ret && ret != -EINPROGRESS) {
1706 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1707 		 * __inet_stream_connect() can fail, due to looking check,
1708 		 * see mptcp_disconnect().
1709 		 * Attempt it again outside the problematic scope.
1710 		 */
1711 		if (!mptcp_disconnect(sk, 0)) {
1712 			sk->sk_disconnects++;
1713 			sk->sk_socket->state = SS_UNCONNECTED;
1714 		}
1715 	}
1716 	inet_clear_bit(DEFER_CONNECT, sk);
1717 
1718 	return ret;
1719 }
1720 
1721 static int do_copy_data_nocache(struct sock *sk, int copy,
1722 				struct iov_iter *from, char *to)
1723 {
1724 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1725 		if (!copy_from_iter_full_nocache(to, copy, from))
1726 			return -EFAULT;
1727 	} else if (!copy_from_iter_full(to, copy, from)) {
1728 		return -EFAULT;
1729 	}
1730 	return 0;
1731 }
1732 
1733 /* open-code sk_stream_memory_free() plus sent limit computation to
1734  * avoid indirect calls in fast-path.
1735  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1736  * annotations.
1737  */
1738 static u32 mptcp_send_limit(const struct sock *sk)
1739 {
1740 	const struct mptcp_sock *msk = mptcp_sk(sk);
1741 	u32 limit, not_sent;
1742 
1743 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1744 		return 0;
1745 
1746 	limit = mptcp_notsent_lowat(sk);
1747 	if (limit == UINT_MAX)
1748 		return UINT_MAX;
1749 
1750 	not_sent = msk->write_seq - msk->snd_nxt;
1751 	if (not_sent >= limit)
1752 		return 0;
1753 
1754 	return limit - not_sent;
1755 }
1756 
1757 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1758 {
1759 	struct mptcp_subflow_context *subflow;
1760 
1761 	if (!rfs_is_needed())
1762 		return;
1763 
1764 	mptcp_for_each_subflow(msk, subflow) {
1765 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1766 
1767 		sock_rps_record_flow(ssk);
1768 	}
1769 }
1770 
1771 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1772 {
1773 	struct mptcp_sock *msk = mptcp_sk(sk);
1774 	struct page_frag *pfrag;
1775 	size_t copied = 0;
1776 	int ret = 0;
1777 	long timeo;
1778 
1779 	/* silently ignore everything else */
1780 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1781 
1782 	lock_sock(sk);
1783 
1784 	mptcp_rps_record_subflows(msk);
1785 
1786 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1787 		     msg->msg_flags & MSG_FASTOPEN)) {
1788 		int copied_syn = 0;
1789 
1790 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1791 		copied += copied_syn;
1792 		if (ret == -EINPROGRESS && copied_syn > 0)
1793 			goto out;
1794 		else if (ret)
1795 			goto do_error;
1796 	}
1797 
1798 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1799 
1800 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1801 		ret = sk_stream_wait_connect(sk, &timeo);
1802 		if (ret)
1803 			goto do_error;
1804 	}
1805 
1806 	ret = -EPIPE;
1807 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1808 		goto do_error;
1809 
1810 	pfrag = sk_page_frag(sk);
1811 
1812 	while (msg_data_left(msg)) {
1813 		int total_ts, frag_truesize = 0;
1814 		struct mptcp_data_frag *dfrag;
1815 		bool dfrag_collapsed;
1816 		size_t psize, offset;
1817 		u32 copy_limit;
1818 
1819 		/* ensure fitting the notsent_lowat() constraint */
1820 		copy_limit = mptcp_send_limit(sk);
1821 		if (!copy_limit)
1822 			goto wait_for_memory;
1823 
1824 		/* reuse tail pfrag, if possible, or carve a new one from the
1825 		 * page allocator
1826 		 */
1827 		dfrag = mptcp_pending_tail(sk);
1828 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1829 		if (!dfrag_collapsed) {
1830 			if (!mptcp_page_frag_refill(sk, pfrag))
1831 				goto wait_for_memory;
1832 
1833 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1834 			frag_truesize = dfrag->overhead;
1835 		}
1836 
1837 		/* we do not bound vs wspace, to allow a single packet.
1838 		 * memory accounting will prevent execessive memory usage
1839 		 * anyway
1840 		 */
1841 		offset = dfrag->offset + dfrag->data_len;
1842 		psize = pfrag->size - offset;
1843 		psize = min_t(size_t, psize, msg_data_left(msg));
1844 		psize = min_t(size_t, psize, copy_limit);
1845 		total_ts = psize + frag_truesize;
1846 
1847 		if (!sk_wmem_schedule(sk, total_ts))
1848 			goto wait_for_memory;
1849 
1850 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1851 					   page_address(dfrag->page) + offset);
1852 		if (ret)
1853 			goto do_error;
1854 
1855 		/* data successfully copied into the write queue */
1856 		sk_forward_alloc_add(sk, -total_ts);
1857 		copied += psize;
1858 		dfrag->data_len += psize;
1859 		frag_truesize += psize;
1860 		pfrag->offset += frag_truesize;
1861 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1862 
1863 		/* charge data on mptcp pending queue to the msk socket
1864 		 * Note: we charge such data both to sk and ssk
1865 		 */
1866 		sk_wmem_queued_add(sk, frag_truesize);
1867 		if (!dfrag_collapsed) {
1868 			get_page(dfrag->page);
1869 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1870 			if (!msk->first_pending)
1871 				WRITE_ONCE(msk->first_pending, dfrag);
1872 		}
1873 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1874 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1875 			 !dfrag_collapsed);
1876 
1877 		continue;
1878 
1879 wait_for_memory:
1880 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1881 		__mptcp_push_pending(sk, msg->msg_flags);
1882 		ret = sk_stream_wait_memory(sk, &timeo);
1883 		if (ret)
1884 			goto do_error;
1885 	}
1886 
1887 	if (copied)
1888 		__mptcp_push_pending(sk, msg->msg_flags);
1889 
1890 out:
1891 	release_sock(sk);
1892 	return copied;
1893 
1894 do_error:
1895 	if (copied)
1896 		goto out;
1897 
1898 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1899 	goto out;
1900 }
1901 
1902 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1903 
1904 static int __mptcp_recvmsg_mskq(struct sock *sk,
1905 				struct msghdr *msg,
1906 				size_t len, int flags,
1907 				struct scm_timestamping_internal *tss,
1908 				int *cmsg_flags)
1909 {
1910 	struct mptcp_sock *msk = mptcp_sk(sk);
1911 	struct sk_buff *skb, *tmp;
1912 	int copied = 0;
1913 
1914 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1915 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1916 		u32 data_len = skb->len - offset;
1917 		u32 count = min_t(size_t, len - copied, data_len);
1918 		int err;
1919 
1920 		if (!(flags & MSG_TRUNC)) {
1921 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1922 			if (unlikely(err < 0)) {
1923 				if (!copied)
1924 					return err;
1925 				break;
1926 			}
1927 		}
1928 
1929 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1930 			tcp_update_recv_tstamps(skb, tss);
1931 			*cmsg_flags |= MPTCP_CMSG_TS;
1932 		}
1933 
1934 		copied += count;
1935 
1936 		if (count < data_len) {
1937 			if (!(flags & MSG_PEEK)) {
1938 				MPTCP_SKB_CB(skb)->offset += count;
1939 				MPTCP_SKB_CB(skb)->map_seq += count;
1940 				msk->bytes_consumed += count;
1941 			}
1942 			break;
1943 		}
1944 
1945 		if (!(flags & MSG_PEEK)) {
1946 			/* avoid the indirect call, we know the destructor is sock_wfree */
1947 			skb->destructor = NULL;
1948 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1949 			sk_mem_uncharge(sk, skb->truesize);
1950 			__skb_unlink(skb, &sk->sk_receive_queue);
1951 			__kfree_skb(skb);
1952 			msk->bytes_consumed += count;
1953 		}
1954 
1955 		if (copied >= len)
1956 			break;
1957 	}
1958 
1959 	mptcp_rcv_space_adjust(msk, copied);
1960 	return copied;
1961 }
1962 
1963 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1964  *
1965  * Only difference: Use highest rtt estimate of the subflows in use.
1966  */
1967 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1968 {
1969 	struct mptcp_subflow_context *subflow;
1970 	struct sock *sk = (struct sock *)msk;
1971 	u8 scaling_ratio = U8_MAX;
1972 	u32 time, advmss = 1;
1973 	u64 rtt_us, mstamp;
1974 
1975 	msk_owned_by_me(msk);
1976 
1977 	if (copied <= 0)
1978 		return;
1979 
1980 	if (!msk->rcvspace_init)
1981 		mptcp_rcv_space_init(msk, msk->first);
1982 
1983 	msk->rcvq_space.copied += copied;
1984 
1985 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1986 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1987 
1988 	rtt_us = msk->rcvq_space.rtt_us;
1989 	if (rtt_us && time < (rtt_us >> 3))
1990 		return;
1991 
1992 	rtt_us = 0;
1993 	mptcp_for_each_subflow(msk, subflow) {
1994 		const struct tcp_sock *tp;
1995 		u64 sf_rtt_us;
1996 		u32 sf_advmss;
1997 
1998 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1999 
2000 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2001 		sf_advmss = READ_ONCE(tp->advmss);
2002 
2003 		rtt_us = max(sf_rtt_us, rtt_us);
2004 		advmss = max(sf_advmss, advmss);
2005 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2006 	}
2007 
2008 	msk->rcvq_space.rtt_us = rtt_us;
2009 	msk->scaling_ratio = scaling_ratio;
2010 	if (time < (rtt_us >> 3) || rtt_us == 0)
2011 		return;
2012 
2013 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2014 		goto new_measure;
2015 
2016 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2017 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2018 		u64 rcvwin, grow;
2019 		int rcvbuf;
2020 
2021 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2022 
2023 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2024 
2025 		do_div(grow, msk->rcvq_space.space);
2026 		rcvwin += (grow << 1);
2027 
2028 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
2029 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2030 
2031 		if (rcvbuf > sk->sk_rcvbuf) {
2032 			u32 window_clamp;
2033 
2034 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
2035 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2036 
2037 			/* Make subflows follow along.  If we do not do this, we
2038 			 * get drops at subflow level if skbs can't be moved to
2039 			 * the mptcp rx queue fast enough (announced rcv_win can
2040 			 * exceed ssk->sk_rcvbuf).
2041 			 */
2042 			mptcp_for_each_subflow(msk, subflow) {
2043 				struct sock *ssk;
2044 				bool slow;
2045 
2046 				ssk = mptcp_subflow_tcp_sock(subflow);
2047 				slow = lock_sock_fast(ssk);
2048 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2049 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2050 				if (tcp_can_send_ack(ssk))
2051 					tcp_cleanup_rbuf(ssk, 1);
2052 				unlock_sock_fast(ssk, slow);
2053 			}
2054 		}
2055 	}
2056 
2057 	msk->rcvq_space.space = msk->rcvq_space.copied;
2058 new_measure:
2059 	msk->rcvq_space.copied = 0;
2060 	msk->rcvq_space.time = mstamp;
2061 }
2062 
2063 static struct mptcp_subflow_context *
2064 __mptcp_first_ready_from(struct mptcp_sock *msk,
2065 			 struct mptcp_subflow_context *subflow)
2066 {
2067 	struct mptcp_subflow_context *start_subflow = subflow;
2068 
2069 	while (!READ_ONCE(subflow->data_avail)) {
2070 		subflow = mptcp_next_subflow(msk, subflow);
2071 		if (subflow == start_subflow)
2072 			return NULL;
2073 	}
2074 	return subflow;
2075 }
2076 
2077 static bool __mptcp_move_skbs(struct sock *sk)
2078 {
2079 	struct mptcp_subflow_context *subflow;
2080 	struct mptcp_sock *msk = mptcp_sk(sk);
2081 	bool ret = false;
2082 
2083 	if (list_empty(&msk->conn_list))
2084 		return false;
2085 
2086 	/* verify we can move any data from the subflow, eventually updating */
2087 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2088 		mptcp_for_each_subflow(msk, subflow)
2089 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2090 
2091 	subflow = list_first_entry(&msk->conn_list,
2092 				   struct mptcp_subflow_context, node);
2093 	for (;;) {
2094 		struct sock *ssk;
2095 		bool slowpath;
2096 
2097 		/*
2098 		 * As an optimization avoid traversing the subflows list
2099 		 * and ev. acquiring the subflow socket lock before baling out
2100 		 */
2101 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2102 			break;
2103 
2104 		subflow = __mptcp_first_ready_from(msk, subflow);
2105 		if (!subflow)
2106 			break;
2107 
2108 		ssk = mptcp_subflow_tcp_sock(subflow);
2109 		slowpath = lock_sock_fast(ssk);
2110 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2111 		if (unlikely(ssk->sk_err))
2112 			__mptcp_error_report(sk);
2113 		unlock_sock_fast(ssk, slowpath);
2114 
2115 		subflow = mptcp_next_subflow(msk, subflow);
2116 	}
2117 
2118 	__mptcp_ofo_queue(msk);
2119 	if (ret)
2120 		mptcp_check_data_fin((struct sock *)msk);
2121 	return ret;
2122 }
2123 
2124 static unsigned int mptcp_inq_hint(const struct sock *sk)
2125 {
2126 	const struct mptcp_sock *msk = mptcp_sk(sk);
2127 	const struct sk_buff *skb;
2128 
2129 	skb = skb_peek(&sk->sk_receive_queue);
2130 	if (skb) {
2131 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2132 
2133 		if (hint_val >= INT_MAX)
2134 			return INT_MAX;
2135 
2136 		return (unsigned int)hint_val;
2137 	}
2138 
2139 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2140 		return 1;
2141 
2142 	return 0;
2143 }
2144 
2145 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2146 			 int flags, int *addr_len)
2147 {
2148 	struct mptcp_sock *msk = mptcp_sk(sk);
2149 	struct scm_timestamping_internal tss;
2150 	int copied = 0, cmsg_flags = 0;
2151 	int target;
2152 	long timeo;
2153 
2154 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2155 	if (unlikely(flags & MSG_ERRQUEUE))
2156 		return inet_recv_error(sk, msg, len, addr_len);
2157 
2158 	lock_sock(sk);
2159 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2160 		copied = -ENOTCONN;
2161 		goto out_err;
2162 	}
2163 
2164 	mptcp_rps_record_subflows(msk);
2165 
2166 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2167 
2168 	len = min_t(size_t, len, INT_MAX);
2169 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2170 
2171 	if (unlikely(msk->recvmsg_inq))
2172 		cmsg_flags = MPTCP_CMSG_INQ;
2173 
2174 	while (copied < len) {
2175 		int err, bytes_read;
2176 
2177 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2178 		if (unlikely(bytes_read < 0)) {
2179 			if (!copied)
2180 				copied = bytes_read;
2181 			goto out_err;
2182 		}
2183 
2184 		copied += bytes_read;
2185 
2186 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2187 			continue;
2188 
2189 		/* only the MPTCP socket status is relevant here. The exit
2190 		 * conditions mirror closely tcp_recvmsg()
2191 		 */
2192 		if (copied >= target)
2193 			break;
2194 
2195 		if (copied) {
2196 			if (sk->sk_err ||
2197 			    sk->sk_state == TCP_CLOSE ||
2198 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2199 			    !timeo ||
2200 			    signal_pending(current))
2201 				break;
2202 		} else {
2203 			if (sk->sk_err) {
2204 				copied = sock_error(sk);
2205 				break;
2206 			}
2207 
2208 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2209 				/* race breaker: the shutdown could be after the
2210 				 * previous receive queue check
2211 				 */
2212 				if (__mptcp_move_skbs(sk))
2213 					continue;
2214 				break;
2215 			}
2216 
2217 			if (sk->sk_state == TCP_CLOSE) {
2218 				copied = -ENOTCONN;
2219 				break;
2220 			}
2221 
2222 			if (!timeo) {
2223 				copied = -EAGAIN;
2224 				break;
2225 			}
2226 
2227 			if (signal_pending(current)) {
2228 				copied = sock_intr_errno(timeo);
2229 				break;
2230 			}
2231 		}
2232 
2233 		pr_debug("block timeout %ld\n", timeo);
2234 		mptcp_cleanup_rbuf(msk, copied);
2235 		err = sk_wait_data(sk, &timeo, NULL);
2236 		if (err < 0) {
2237 			err = copied ? : err;
2238 			goto out_err;
2239 		}
2240 	}
2241 
2242 	mptcp_cleanup_rbuf(msk, copied);
2243 
2244 out_err:
2245 	if (cmsg_flags && copied >= 0) {
2246 		if (cmsg_flags & MPTCP_CMSG_TS)
2247 			tcp_recv_timestamp(msg, sk, &tss);
2248 
2249 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2250 			unsigned int inq = mptcp_inq_hint(sk);
2251 
2252 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2253 		}
2254 	}
2255 
2256 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2257 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2258 
2259 	release_sock(sk);
2260 	return copied;
2261 }
2262 
2263 static void mptcp_retransmit_timer(struct timer_list *t)
2264 {
2265 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2266 							       icsk_retransmit_timer);
2267 	struct sock *sk = &icsk->icsk_inet.sk;
2268 	struct mptcp_sock *msk = mptcp_sk(sk);
2269 
2270 	bh_lock_sock(sk);
2271 	if (!sock_owned_by_user(sk)) {
2272 		/* we need a process context to retransmit */
2273 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2274 			mptcp_schedule_work(sk);
2275 	} else {
2276 		/* delegate our work to tcp_release_cb() */
2277 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2278 	}
2279 	bh_unlock_sock(sk);
2280 	sock_put(sk);
2281 }
2282 
2283 static void mptcp_tout_timer(struct timer_list *t)
2284 {
2285 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2286 
2287 	mptcp_schedule_work(sk);
2288 	sock_put(sk);
2289 }
2290 
2291 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2292  * level.
2293  *
2294  * A backup subflow is returned only if that is the only kind available.
2295  */
2296 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2297 {
2298 	struct sock *backup = NULL, *pick = NULL;
2299 	struct mptcp_subflow_context *subflow;
2300 	int min_stale_count = INT_MAX;
2301 
2302 	mptcp_for_each_subflow(msk, subflow) {
2303 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2304 
2305 		if (!__mptcp_subflow_active(subflow))
2306 			continue;
2307 
2308 		/* still data outstanding at TCP level? skip this */
2309 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2310 			mptcp_pm_subflow_chk_stale(msk, ssk);
2311 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2312 			continue;
2313 		}
2314 
2315 		if (subflow->backup || subflow->request_bkup) {
2316 			if (!backup)
2317 				backup = ssk;
2318 			continue;
2319 		}
2320 
2321 		if (!pick)
2322 			pick = ssk;
2323 	}
2324 
2325 	if (pick)
2326 		return pick;
2327 
2328 	/* use backup only if there are no progresses anywhere */
2329 	return min_stale_count > 1 ? backup : NULL;
2330 }
2331 
2332 bool __mptcp_retransmit_pending_data(struct sock *sk)
2333 {
2334 	struct mptcp_data_frag *cur, *rtx_head;
2335 	struct mptcp_sock *msk = mptcp_sk(sk);
2336 
2337 	if (__mptcp_check_fallback(msk))
2338 		return false;
2339 
2340 	/* the closing socket has some data untransmitted and/or unacked:
2341 	 * some data in the mptcp rtx queue has not really xmitted yet.
2342 	 * keep it simple and re-inject the whole mptcp level rtx queue
2343 	 */
2344 	mptcp_data_lock(sk);
2345 	__mptcp_clean_una_wakeup(sk);
2346 	rtx_head = mptcp_rtx_head(sk);
2347 	if (!rtx_head) {
2348 		mptcp_data_unlock(sk);
2349 		return false;
2350 	}
2351 
2352 	msk->recovery_snd_nxt = msk->snd_nxt;
2353 	msk->recovery = true;
2354 	mptcp_data_unlock(sk);
2355 
2356 	msk->first_pending = rtx_head;
2357 	msk->snd_burst = 0;
2358 
2359 	/* be sure to clear the "sent status" on all re-injected fragments */
2360 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2361 		if (!cur->already_sent)
2362 			break;
2363 		cur->already_sent = 0;
2364 	}
2365 
2366 	return true;
2367 }
2368 
2369 /* flags for __mptcp_close_ssk() */
2370 #define MPTCP_CF_PUSH		BIT(1)
2371 #define MPTCP_CF_FASTCLOSE	BIT(2)
2372 
2373 /* be sure to send a reset only if the caller asked for it, also
2374  * clean completely the subflow status when the subflow reaches
2375  * TCP_CLOSE state
2376  */
2377 static void __mptcp_subflow_disconnect(struct sock *ssk,
2378 				       struct mptcp_subflow_context *subflow,
2379 				       unsigned int flags)
2380 {
2381 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2382 	    (flags & MPTCP_CF_FASTCLOSE)) {
2383 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2384 		 * disconnect should never fail
2385 		 */
2386 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2387 		mptcp_subflow_ctx_reset(subflow);
2388 	} else {
2389 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2390 	}
2391 }
2392 
2393 /* subflow sockets can be either outgoing (connect) or incoming
2394  * (accept).
2395  *
2396  * Outgoing subflows use in-kernel sockets.
2397  * Incoming subflows do not have their own 'struct socket' allocated,
2398  * so we need to use tcp_close() after detaching them from the mptcp
2399  * parent socket.
2400  */
2401 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2402 			      struct mptcp_subflow_context *subflow,
2403 			      unsigned int flags)
2404 {
2405 	struct mptcp_sock *msk = mptcp_sk(sk);
2406 	bool dispose_it, need_push = false;
2407 
2408 	/* If the first subflow moved to a close state before accept, e.g. due
2409 	 * to an incoming reset or listener shutdown, the subflow socket is
2410 	 * already deleted by inet_child_forget() and the mptcp socket can't
2411 	 * survive too.
2412 	 */
2413 	if (msk->in_accept_queue && msk->first == ssk &&
2414 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2415 		/* ensure later check in mptcp_worker() will dispose the msk */
2416 		sock_set_flag(sk, SOCK_DEAD);
2417 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2418 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2419 		mptcp_subflow_drop_ctx(ssk);
2420 		goto out_release;
2421 	}
2422 
2423 	dispose_it = msk->free_first || ssk != msk->first;
2424 	if (dispose_it)
2425 		list_del(&subflow->node);
2426 
2427 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2428 
2429 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2430 		/* be sure to force the tcp_close path
2431 		 * to generate the egress reset
2432 		 */
2433 		ssk->sk_lingertime = 0;
2434 		sock_set_flag(ssk, SOCK_LINGER);
2435 		subflow->send_fastclose = 1;
2436 	}
2437 
2438 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2439 	if (!dispose_it) {
2440 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2441 		release_sock(ssk);
2442 
2443 		goto out;
2444 	}
2445 
2446 	subflow->disposable = 1;
2447 
2448 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2449 	 * the ssk has been already destroyed, we just need to release the
2450 	 * reference owned by msk;
2451 	 */
2452 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2453 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2454 		kfree_rcu(subflow, rcu);
2455 	} else {
2456 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2457 		__tcp_close(ssk, 0);
2458 
2459 		/* close acquired an extra ref */
2460 		__sock_put(ssk);
2461 	}
2462 
2463 out_release:
2464 	__mptcp_subflow_error_report(sk, ssk);
2465 	release_sock(ssk);
2466 
2467 	sock_put(ssk);
2468 
2469 	if (ssk == msk->first)
2470 		WRITE_ONCE(msk->first, NULL);
2471 
2472 out:
2473 	__mptcp_sync_sndbuf(sk);
2474 	if (need_push)
2475 		__mptcp_push_pending(sk, 0);
2476 
2477 	/* Catch every 'all subflows closed' scenario, including peers silently
2478 	 * closing them, e.g. due to timeout.
2479 	 * For established sockets, allow an additional timeout before closing,
2480 	 * as the protocol can still create more subflows.
2481 	 */
2482 	if (list_is_singular(&msk->conn_list) && msk->first &&
2483 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2484 		if (sk->sk_state != TCP_ESTABLISHED ||
2485 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2486 			mptcp_set_state(sk, TCP_CLOSE);
2487 			mptcp_close_wake_up(sk);
2488 		} else {
2489 			mptcp_start_tout_timer(sk);
2490 		}
2491 	}
2492 }
2493 
2494 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2495 		     struct mptcp_subflow_context *subflow)
2496 {
2497 	/* The first subflow can already be closed and still in the list */
2498 	if (subflow->close_event_done)
2499 		return;
2500 
2501 	subflow->close_event_done = true;
2502 
2503 	if (sk->sk_state == TCP_ESTABLISHED)
2504 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2505 
2506 	/* subflow aborted before reaching the fully_established status
2507 	 * attempt the creation of the next subflow
2508 	 */
2509 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2510 
2511 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2512 }
2513 
2514 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2515 {
2516 	return 0;
2517 }
2518 
2519 static void __mptcp_close_subflow(struct sock *sk)
2520 {
2521 	struct mptcp_subflow_context *subflow, *tmp;
2522 	struct mptcp_sock *msk = mptcp_sk(sk);
2523 
2524 	might_sleep();
2525 
2526 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2527 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2528 		int ssk_state = inet_sk_state_load(ssk);
2529 
2530 		if (ssk_state != TCP_CLOSE &&
2531 		    (ssk_state != TCP_CLOSE_WAIT ||
2532 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2533 			continue;
2534 
2535 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2536 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2537 			continue;
2538 
2539 		mptcp_close_ssk(sk, ssk, subflow);
2540 	}
2541 
2542 }
2543 
2544 static bool mptcp_close_tout_expired(const struct sock *sk)
2545 {
2546 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2547 	    sk->sk_state == TCP_CLOSE)
2548 		return false;
2549 
2550 	return time_after32(tcp_jiffies32,
2551 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2552 }
2553 
2554 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2555 {
2556 	struct mptcp_subflow_context *subflow, *tmp;
2557 	struct sock *sk = (struct sock *)msk;
2558 
2559 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2560 		return;
2561 
2562 	mptcp_token_destroy(msk);
2563 
2564 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2565 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2566 		bool slow;
2567 
2568 		slow = lock_sock_fast(tcp_sk);
2569 		if (tcp_sk->sk_state != TCP_CLOSE) {
2570 			mptcp_send_active_reset_reason(tcp_sk);
2571 			tcp_set_state(tcp_sk, TCP_CLOSE);
2572 		}
2573 		unlock_sock_fast(tcp_sk, slow);
2574 	}
2575 
2576 	/* Mirror the tcp_reset() error propagation */
2577 	switch (sk->sk_state) {
2578 	case TCP_SYN_SENT:
2579 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2580 		break;
2581 	case TCP_CLOSE_WAIT:
2582 		WRITE_ONCE(sk->sk_err, EPIPE);
2583 		break;
2584 	case TCP_CLOSE:
2585 		return;
2586 	default:
2587 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2588 	}
2589 
2590 	mptcp_set_state(sk, TCP_CLOSE);
2591 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2592 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2593 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2594 
2595 	/* the calling mptcp_worker will properly destroy the socket */
2596 	if (sock_flag(sk, SOCK_DEAD))
2597 		return;
2598 
2599 	sk->sk_state_change(sk);
2600 	sk_error_report(sk);
2601 }
2602 
2603 static void __mptcp_retrans(struct sock *sk)
2604 {
2605 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2606 	struct mptcp_sock *msk = mptcp_sk(sk);
2607 	struct mptcp_subflow_context *subflow;
2608 	struct mptcp_data_frag *dfrag;
2609 	struct sock *ssk;
2610 	int ret, err;
2611 	u16 len = 0;
2612 
2613 	mptcp_clean_una_wakeup(sk);
2614 
2615 	/* first check ssk: need to kick "stale" logic */
2616 	err = mptcp_sched_get_retrans(msk);
2617 	dfrag = mptcp_rtx_head(sk);
2618 	if (!dfrag) {
2619 		if (mptcp_data_fin_enabled(msk)) {
2620 			struct inet_connection_sock *icsk = inet_csk(sk);
2621 
2622 			WRITE_ONCE(icsk->icsk_retransmits,
2623 				   icsk->icsk_retransmits + 1);
2624 			mptcp_set_datafin_timeout(sk);
2625 			mptcp_send_ack(msk);
2626 
2627 			goto reset_timer;
2628 		}
2629 
2630 		if (!mptcp_send_head(sk))
2631 			return;
2632 
2633 		goto reset_timer;
2634 	}
2635 
2636 	if (err)
2637 		goto reset_timer;
2638 
2639 	mptcp_for_each_subflow(msk, subflow) {
2640 		if (READ_ONCE(subflow->scheduled)) {
2641 			u16 copied = 0;
2642 
2643 			mptcp_subflow_set_scheduled(subflow, false);
2644 
2645 			ssk = mptcp_subflow_tcp_sock(subflow);
2646 
2647 			lock_sock(ssk);
2648 
2649 			/* limit retransmission to the bytes already sent on some subflows */
2650 			info.sent = 0;
2651 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2652 								    dfrag->already_sent;
2653 
2654 			/*
2655 			 * make the whole retrans decision, xmit, disallow
2656 			 * fallback atomic
2657 			 */
2658 			spin_lock_bh(&msk->fallback_lock);
2659 			if (__mptcp_check_fallback(msk)) {
2660 				spin_unlock_bh(&msk->fallback_lock);
2661 				release_sock(ssk);
2662 				return;
2663 			}
2664 
2665 			while (info.sent < info.limit) {
2666 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2667 				if (ret <= 0)
2668 					break;
2669 
2670 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2671 				copied += ret;
2672 				info.sent += ret;
2673 			}
2674 			if (copied) {
2675 				len = max(copied, len);
2676 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2677 					 info.size_goal);
2678 				msk->allow_infinite_fallback = false;
2679 			}
2680 			spin_unlock_bh(&msk->fallback_lock);
2681 
2682 			release_sock(ssk);
2683 		}
2684 	}
2685 
2686 	msk->bytes_retrans += len;
2687 	dfrag->already_sent = max(dfrag->already_sent, len);
2688 
2689 reset_timer:
2690 	mptcp_check_and_set_pending(sk);
2691 
2692 	if (!mptcp_rtx_timer_pending(sk))
2693 		mptcp_reset_rtx_timer(sk);
2694 }
2695 
2696 /* schedule the timeout timer for the relevant event: either close timeout
2697  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2698  */
2699 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2700 {
2701 	struct sock *sk = (struct sock *)msk;
2702 	unsigned long timeout, close_timeout;
2703 
2704 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2705 		return;
2706 
2707 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2708 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2709 
2710 	/* the close timeout takes precedence on the fail one, and here at least one of
2711 	 * them is active
2712 	 */
2713 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2714 
2715 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2716 }
2717 
2718 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2719 {
2720 	struct sock *ssk = msk->first;
2721 	bool slow;
2722 
2723 	if (!ssk)
2724 		return;
2725 
2726 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2727 
2728 	slow = lock_sock_fast(ssk);
2729 	mptcp_subflow_reset(ssk);
2730 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2731 	unlock_sock_fast(ssk, slow);
2732 }
2733 
2734 static void mptcp_do_fastclose(struct sock *sk)
2735 {
2736 	struct mptcp_subflow_context *subflow, *tmp;
2737 	struct mptcp_sock *msk = mptcp_sk(sk);
2738 
2739 	mptcp_set_state(sk, TCP_CLOSE);
2740 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2741 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2742 				  subflow, MPTCP_CF_FASTCLOSE);
2743 }
2744 
2745 static void mptcp_worker(struct work_struct *work)
2746 {
2747 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2748 	struct sock *sk = (struct sock *)msk;
2749 	unsigned long fail_tout;
2750 	int state;
2751 
2752 	lock_sock(sk);
2753 	state = sk->sk_state;
2754 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2755 		goto unlock;
2756 
2757 	mptcp_check_fastclose(msk);
2758 
2759 	mptcp_pm_worker(msk);
2760 
2761 	mptcp_check_send_data_fin(sk);
2762 	mptcp_check_data_fin_ack(sk);
2763 	mptcp_check_data_fin(sk);
2764 
2765 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2766 		__mptcp_close_subflow(sk);
2767 
2768 	if (mptcp_close_tout_expired(sk)) {
2769 		mptcp_do_fastclose(sk);
2770 		mptcp_close_wake_up(sk);
2771 	}
2772 
2773 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2774 		__mptcp_destroy_sock(sk);
2775 		goto unlock;
2776 	}
2777 
2778 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2779 		__mptcp_retrans(sk);
2780 
2781 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2782 	if (fail_tout && time_after(jiffies, fail_tout))
2783 		mptcp_mp_fail_no_response(msk);
2784 
2785 unlock:
2786 	release_sock(sk);
2787 	sock_put(sk);
2788 }
2789 
2790 static void __mptcp_init_sock(struct sock *sk)
2791 {
2792 	struct mptcp_sock *msk = mptcp_sk(sk);
2793 
2794 	INIT_LIST_HEAD(&msk->conn_list);
2795 	INIT_LIST_HEAD(&msk->join_list);
2796 	INIT_LIST_HEAD(&msk->rtx_queue);
2797 	INIT_WORK(&msk->work, mptcp_worker);
2798 	msk->out_of_order_queue = RB_ROOT;
2799 	msk->first_pending = NULL;
2800 	msk->timer_ival = TCP_RTO_MIN;
2801 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2802 
2803 	WRITE_ONCE(msk->first, NULL);
2804 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2805 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2806 	msk->allow_infinite_fallback = true;
2807 	msk->allow_subflows = true;
2808 	msk->recovery = false;
2809 	msk->subflow_id = 1;
2810 	msk->last_data_sent = tcp_jiffies32;
2811 	msk->last_data_recv = tcp_jiffies32;
2812 	msk->last_ack_recv = tcp_jiffies32;
2813 
2814 	mptcp_pm_data_init(msk);
2815 	spin_lock_init(&msk->fallback_lock);
2816 
2817 	/* re-use the csk retrans timer for MPTCP-level retrans */
2818 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2819 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2820 }
2821 
2822 static void mptcp_ca_reset(struct sock *sk)
2823 {
2824 	struct inet_connection_sock *icsk = inet_csk(sk);
2825 
2826 	tcp_assign_congestion_control(sk);
2827 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2828 		sizeof(mptcp_sk(sk)->ca_name));
2829 
2830 	/* no need to keep a reference to the ops, the name will suffice */
2831 	tcp_cleanup_congestion_control(sk);
2832 	icsk->icsk_ca_ops = NULL;
2833 }
2834 
2835 static int mptcp_init_sock(struct sock *sk)
2836 {
2837 	struct net *net = sock_net(sk);
2838 	int ret;
2839 
2840 	__mptcp_init_sock(sk);
2841 
2842 	if (!mptcp_is_enabled(net))
2843 		return -ENOPROTOOPT;
2844 
2845 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2846 		return -ENOMEM;
2847 
2848 	rcu_read_lock();
2849 	ret = mptcp_init_sched(mptcp_sk(sk),
2850 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2851 	rcu_read_unlock();
2852 	if (ret)
2853 		return ret;
2854 
2855 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2856 
2857 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2858 	 * propagate the correct value
2859 	 */
2860 	mptcp_ca_reset(sk);
2861 
2862 	sk_sockets_allocated_inc(sk);
2863 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2864 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2865 
2866 	return 0;
2867 }
2868 
2869 static void __mptcp_clear_xmit(struct sock *sk)
2870 {
2871 	struct mptcp_sock *msk = mptcp_sk(sk);
2872 	struct mptcp_data_frag *dtmp, *dfrag;
2873 
2874 	WRITE_ONCE(msk->first_pending, NULL);
2875 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2876 		dfrag_clear(sk, dfrag);
2877 }
2878 
2879 void mptcp_cancel_work(struct sock *sk)
2880 {
2881 	struct mptcp_sock *msk = mptcp_sk(sk);
2882 
2883 	if (cancel_work_sync(&msk->work))
2884 		__sock_put(sk);
2885 }
2886 
2887 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2888 {
2889 	lock_sock(ssk);
2890 
2891 	switch (ssk->sk_state) {
2892 	case TCP_LISTEN:
2893 		if (!(how & RCV_SHUTDOWN))
2894 			break;
2895 		fallthrough;
2896 	case TCP_SYN_SENT:
2897 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2898 		break;
2899 	default:
2900 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2901 			pr_debug("Fallback\n");
2902 			ssk->sk_shutdown |= how;
2903 			tcp_shutdown(ssk, how);
2904 
2905 			/* simulate the data_fin ack reception to let the state
2906 			 * machine move forward
2907 			 */
2908 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2909 			mptcp_schedule_work(sk);
2910 		} else {
2911 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2912 			tcp_send_ack(ssk);
2913 			if (!mptcp_rtx_timer_pending(sk))
2914 				mptcp_reset_rtx_timer(sk);
2915 		}
2916 		break;
2917 	}
2918 
2919 	release_sock(ssk);
2920 }
2921 
2922 void mptcp_set_state(struct sock *sk, int state)
2923 {
2924 	int oldstate = sk->sk_state;
2925 
2926 	switch (state) {
2927 	case TCP_ESTABLISHED:
2928 		if (oldstate != TCP_ESTABLISHED)
2929 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2930 		break;
2931 	case TCP_CLOSE_WAIT:
2932 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2933 		 * MPTCP "accepted" sockets will be created later on. So no
2934 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2935 		 */
2936 		break;
2937 	default:
2938 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2939 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2940 	}
2941 
2942 	inet_sk_state_store(sk, state);
2943 }
2944 
2945 static const unsigned char new_state[16] = {
2946 	/* current state:     new state:      action:	*/
2947 	[0 /* (Invalid) */] = TCP_CLOSE,
2948 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2949 	[TCP_SYN_SENT]      = TCP_CLOSE,
2950 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2951 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2952 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2953 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2954 	[TCP_CLOSE]         = TCP_CLOSE,
2955 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2956 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2957 	[TCP_LISTEN]        = TCP_CLOSE,
2958 	[TCP_CLOSING]       = TCP_CLOSING,
2959 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2960 };
2961 
2962 static int mptcp_close_state(struct sock *sk)
2963 {
2964 	int next = (int)new_state[sk->sk_state];
2965 	int ns = next & TCP_STATE_MASK;
2966 
2967 	mptcp_set_state(sk, ns);
2968 
2969 	return next & TCP_ACTION_FIN;
2970 }
2971 
2972 static void mptcp_check_send_data_fin(struct sock *sk)
2973 {
2974 	struct mptcp_subflow_context *subflow;
2975 	struct mptcp_sock *msk = mptcp_sk(sk);
2976 
2977 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2978 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2979 		 msk->snd_nxt, msk->write_seq);
2980 
2981 	/* we still need to enqueue subflows or not really shutting down,
2982 	 * skip this
2983 	 */
2984 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2985 	    mptcp_send_head(sk))
2986 		return;
2987 
2988 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2989 
2990 	mptcp_for_each_subflow(msk, subflow) {
2991 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2992 
2993 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2994 	}
2995 }
2996 
2997 static void __mptcp_wr_shutdown(struct sock *sk)
2998 {
2999 	struct mptcp_sock *msk = mptcp_sk(sk);
3000 
3001 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3002 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3003 		 !!mptcp_send_head(sk));
3004 
3005 	/* will be ignored by fallback sockets */
3006 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3007 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3008 
3009 	mptcp_check_send_data_fin(sk);
3010 }
3011 
3012 static void __mptcp_destroy_sock(struct sock *sk)
3013 {
3014 	struct mptcp_sock *msk = mptcp_sk(sk);
3015 
3016 	pr_debug("msk=%p\n", msk);
3017 
3018 	might_sleep();
3019 
3020 	mptcp_stop_rtx_timer(sk);
3021 	sk_stop_timer(sk, &sk->sk_timer);
3022 	msk->pm.status = 0;
3023 	mptcp_release_sched(msk);
3024 
3025 	sk->sk_prot->destroy(sk);
3026 
3027 	sk_stream_kill_queues(sk);
3028 	xfrm_sk_free_policy(sk);
3029 
3030 	sock_put(sk);
3031 }
3032 
3033 void __mptcp_unaccepted_force_close(struct sock *sk)
3034 {
3035 	sock_set_flag(sk, SOCK_DEAD);
3036 	mptcp_do_fastclose(sk);
3037 	__mptcp_destroy_sock(sk);
3038 }
3039 
3040 static __poll_t mptcp_check_readable(struct sock *sk)
3041 {
3042 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3043 }
3044 
3045 static void mptcp_check_listen_stop(struct sock *sk)
3046 {
3047 	struct sock *ssk;
3048 
3049 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3050 		return;
3051 
3052 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3053 	ssk = mptcp_sk(sk)->first;
3054 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3055 		return;
3056 
3057 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3058 	tcp_set_state(ssk, TCP_CLOSE);
3059 	mptcp_subflow_queue_clean(sk, ssk);
3060 	inet_csk_listen_stop(ssk);
3061 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3062 	release_sock(ssk);
3063 }
3064 
3065 bool __mptcp_close(struct sock *sk, long timeout)
3066 {
3067 	struct mptcp_subflow_context *subflow;
3068 	struct mptcp_sock *msk = mptcp_sk(sk);
3069 	bool do_cancel_work = false;
3070 	int subflows_alive = 0;
3071 
3072 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3073 
3074 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3075 		mptcp_check_listen_stop(sk);
3076 		mptcp_set_state(sk, TCP_CLOSE);
3077 		goto cleanup;
3078 	}
3079 
3080 	if (mptcp_data_avail(msk) || timeout < 0) {
3081 		/* If the msk has read data, or the caller explicitly ask it,
3082 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3083 		 */
3084 		mptcp_do_fastclose(sk);
3085 		timeout = 0;
3086 	} else if (mptcp_close_state(sk)) {
3087 		__mptcp_wr_shutdown(sk);
3088 	}
3089 
3090 	sk_stream_wait_close(sk, timeout);
3091 
3092 cleanup:
3093 	/* orphan all the subflows */
3094 	mptcp_for_each_subflow(msk, subflow) {
3095 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3096 		bool slow = lock_sock_fast_nested(ssk);
3097 
3098 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3099 
3100 		/* since the close timeout takes precedence on the fail one,
3101 		 * cancel the latter
3102 		 */
3103 		if (ssk == msk->first)
3104 			subflow->fail_tout = 0;
3105 
3106 		/* detach from the parent socket, but allow data_ready to
3107 		 * push incoming data into the mptcp stack, to properly ack it
3108 		 */
3109 		ssk->sk_socket = NULL;
3110 		ssk->sk_wq = NULL;
3111 		unlock_sock_fast(ssk, slow);
3112 	}
3113 	sock_orphan(sk);
3114 
3115 	/* all the subflows are closed, only timeout can change the msk
3116 	 * state, let's not keep resources busy for no reasons
3117 	 */
3118 	if (subflows_alive == 0)
3119 		mptcp_set_state(sk, TCP_CLOSE);
3120 
3121 	sock_hold(sk);
3122 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3123 	mptcp_pm_connection_closed(msk);
3124 
3125 	if (sk->sk_state == TCP_CLOSE) {
3126 		__mptcp_destroy_sock(sk);
3127 		do_cancel_work = true;
3128 	} else {
3129 		mptcp_start_tout_timer(sk);
3130 	}
3131 
3132 	return do_cancel_work;
3133 }
3134 
3135 static void mptcp_close(struct sock *sk, long timeout)
3136 {
3137 	bool do_cancel_work;
3138 
3139 	lock_sock(sk);
3140 
3141 	do_cancel_work = __mptcp_close(sk, timeout);
3142 	release_sock(sk);
3143 	if (do_cancel_work)
3144 		mptcp_cancel_work(sk);
3145 
3146 	sock_put(sk);
3147 }
3148 
3149 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3150 {
3151 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3152 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3153 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3154 
3155 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3156 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3157 
3158 	if (msk6 && ssk6) {
3159 		msk6->saddr = ssk6->saddr;
3160 		msk6->flow_label = ssk6->flow_label;
3161 	}
3162 #endif
3163 
3164 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3165 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3166 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3167 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3168 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3169 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3170 }
3171 
3172 static int mptcp_disconnect(struct sock *sk, int flags)
3173 {
3174 	struct mptcp_sock *msk = mptcp_sk(sk);
3175 
3176 	/* We are on the fastopen error path. We can't call straight into the
3177 	 * subflows cleanup code due to lock nesting (we are already under
3178 	 * msk->firstsocket lock).
3179 	 */
3180 	if (msk->fastopening)
3181 		return -EBUSY;
3182 
3183 	mptcp_check_listen_stop(sk);
3184 	mptcp_set_state(sk, TCP_CLOSE);
3185 
3186 	mptcp_stop_rtx_timer(sk);
3187 	mptcp_stop_tout_timer(sk);
3188 
3189 	mptcp_pm_connection_closed(msk);
3190 
3191 	/* msk->subflow is still intact, the following will not free the first
3192 	 * subflow
3193 	 */
3194 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3195 
3196 	/* The first subflow is already in TCP_CLOSE status, the following
3197 	 * can't overlap with a fallback anymore
3198 	 */
3199 	spin_lock_bh(&msk->fallback_lock);
3200 	msk->allow_subflows = true;
3201 	msk->allow_infinite_fallback = true;
3202 	WRITE_ONCE(msk->flags, 0);
3203 	spin_unlock_bh(&msk->fallback_lock);
3204 
3205 	msk->cb_flags = 0;
3206 	msk->recovery = false;
3207 	WRITE_ONCE(msk->can_ack, false);
3208 	WRITE_ONCE(msk->fully_established, false);
3209 	WRITE_ONCE(msk->rcv_data_fin, false);
3210 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3211 	WRITE_ONCE(msk->rcv_fastclose, false);
3212 	WRITE_ONCE(msk->use_64bit_ack, false);
3213 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3214 	mptcp_pm_data_reset(msk);
3215 	mptcp_ca_reset(sk);
3216 	msk->bytes_consumed = 0;
3217 	msk->bytes_acked = 0;
3218 	msk->bytes_received = 0;
3219 	msk->bytes_sent = 0;
3220 	msk->bytes_retrans = 0;
3221 	msk->rcvspace_init = 0;
3222 
3223 	WRITE_ONCE(sk->sk_shutdown, 0);
3224 	sk_error_report(sk);
3225 	return 0;
3226 }
3227 
3228 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3229 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3230 {
3231 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3232 
3233 	return &msk6->np;
3234 }
3235 
3236 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3237 {
3238 	const struct ipv6_pinfo *np = inet6_sk(sk);
3239 	struct ipv6_txoptions *opt;
3240 	struct ipv6_pinfo *newnp;
3241 
3242 	newnp = inet6_sk(newsk);
3243 
3244 	rcu_read_lock();
3245 	opt = rcu_dereference(np->opt);
3246 	if (opt) {
3247 		opt = ipv6_dup_options(newsk, opt);
3248 		if (!opt)
3249 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3250 	}
3251 	RCU_INIT_POINTER(newnp->opt, opt);
3252 	rcu_read_unlock();
3253 }
3254 #endif
3255 
3256 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3257 {
3258 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3259 	const struct inet_sock *inet = inet_sk(sk);
3260 	struct inet_sock *newinet;
3261 
3262 	newinet = inet_sk(newsk);
3263 
3264 	rcu_read_lock();
3265 	inet_opt = rcu_dereference(inet->inet_opt);
3266 	if (inet_opt) {
3267 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3268 				      inet_opt->opt.optlen, GFP_ATOMIC);
3269 		if (!newopt)
3270 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3271 	}
3272 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3273 	rcu_read_unlock();
3274 }
3275 
3276 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3277 				 const struct mptcp_options_received *mp_opt,
3278 				 struct sock *ssk,
3279 				 struct request_sock *req)
3280 {
3281 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3282 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3283 	struct mptcp_subflow_context *subflow;
3284 	struct mptcp_sock *msk;
3285 
3286 	if (!nsk)
3287 		return NULL;
3288 
3289 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3290 	if (nsk->sk_family == AF_INET6)
3291 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3292 #endif
3293 
3294 	__mptcp_init_sock(nsk);
3295 
3296 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3297 	if (nsk->sk_family == AF_INET6)
3298 		mptcp_copy_ip6_options(nsk, sk);
3299 	else
3300 #endif
3301 		mptcp_copy_ip_options(nsk, sk);
3302 
3303 	msk = mptcp_sk(nsk);
3304 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3305 	WRITE_ONCE(msk->token, subflow_req->token);
3306 	msk->in_accept_queue = 1;
3307 	WRITE_ONCE(msk->fully_established, false);
3308 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3309 		WRITE_ONCE(msk->csum_enabled, true);
3310 
3311 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3312 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3313 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3314 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3315 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3316 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3317 
3318 	/* passive msk is created after the first/MPC subflow */
3319 	msk->subflow_id = 2;
3320 
3321 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3322 	security_inet_csk_clone(nsk, req);
3323 
3324 	/* this can't race with mptcp_close(), as the msk is
3325 	 * not yet exposted to user-space
3326 	 */
3327 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3328 
3329 	/* The msk maintain a ref to each subflow in the connections list */
3330 	WRITE_ONCE(msk->first, ssk);
3331 	subflow = mptcp_subflow_ctx(ssk);
3332 	list_add(&subflow->node, &msk->conn_list);
3333 	sock_hold(ssk);
3334 
3335 	/* new mpc subflow takes ownership of the newly
3336 	 * created mptcp socket
3337 	 */
3338 	mptcp_token_accept(subflow_req, msk);
3339 
3340 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3341 	 * uses the correct data
3342 	 */
3343 	mptcp_copy_inaddrs(nsk, ssk);
3344 	__mptcp_propagate_sndbuf(nsk, ssk);
3345 
3346 	mptcp_rcv_space_init(msk, ssk);
3347 
3348 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3349 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3350 	bh_unlock_sock(nsk);
3351 
3352 	/* note: the newly allocated socket refcount is 2 now */
3353 	return nsk;
3354 }
3355 
3356 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3357 {
3358 	const struct tcp_sock *tp = tcp_sk(ssk);
3359 
3360 	msk->rcvspace_init = 1;
3361 	msk->rcvq_space.copied = 0;
3362 	msk->rcvq_space.rtt_us = 0;
3363 
3364 	msk->rcvq_space.time = tp->tcp_mstamp;
3365 
3366 	/* initial rcv_space offering made to peer */
3367 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3368 				      TCP_INIT_CWND * tp->advmss);
3369 	if (msk->rcvq_space.space == 0)
3370 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3371 }
3372 
3373 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3374 {
3375 	struct mptcp_subflow_context *subflow, *tmp;
3376 	struct sock *sk = (struct sock *)msk;
3377 
3378 	__mptcp_clear_xmit(sk);
3379 
3380 	/* join list will be eventually flushed (with rst) at sock lock release time */
3381 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3382 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3383 
3384 	__skb_queue_purge(&sk->sk_receive_queue);
3385 	skb_rbtree_purge(&msk->out_of_order_queue);
3386 
3387 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3388 	 * inet_sock_destruct() will dispose it
3389 	 */
3390 	mptcp_token_destroy(msk);
3391 	mptcp_pm_destroy(msk);
3392 }
3393 
3394 static void mptcp_destroy(struct sock *sk)
3395 {
3396 	struct mptcp_sock *msk = mptcp_sk(sk);
3397 
3398 	/* allow the following to close even the initial subflow */
3399 	msk->free_first = 1;
3400 	mptcp_destroy_common(msk, 0);
3401 	sk_sockets_allocated_dec(sk);
3402 }
3403 
3404 void __mptcp_data_acked(struct sock *sk)
3405 {
3406 	if (!sock_owned_by_user(sk))
3407 		__mptcp_clean_una(sk);
3408 	else
3409 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3410 }
3411 
3412 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3413 {
3414 	if (!mptcp_send_head(sk))
3415 		return;
3416 
3417 	if (!sock_owned_by_user(sk))
3418 		__mptcp_subflow_push_pending(sk, ssk, false);
3419 	else
3420 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3421 }
3422 
3423 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3424 				      BIT(MPTCP_RETRANSMIT) | \
3425 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3426 				      BIT(MPTCP_DEQUEUE))
3427 
3428 /* processes deferred events and flush wmem */
3429 static void mptcp_release_cb(struct sock *sk)
3430 	__must_hold(&sk->sk_lock.slock)
3431 {
3432 	struct mptcp_sock *msk = mptcp_sk(sk);
3433 
3434 	for (;;) {
3435 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3436 		struct list_head join_list;
3437 
3438 		if (!flags)
3439 			break;
3440 
3441 		INIT_LIST_HEAD(&join_list);
3442 		list_splice_init(&msk->join_list, &join_list);
3443 
3444 		/* the following actions acquire the subflow socket lock
3445 		 *
3446 		 * 1) can't be invoked in atomic scope
3447 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3448 		 *    datapath acquires the msk socket spinlock while helding
3449 		 *    the subflow socket lock
3450 		 */
3451 		msk->cb_flags &= ~flags;
3452 		spin_unlock_bh(&sk->sk_lock.slock);
3453 
3454 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3455 			__mptcp_flush_join_list(sk, &join_list);
3456 		if (flags & BIT(MPTCP_PUSH_PENDING))
3457 			__mptcp_push_pending(sk, 0);
3458 		if (flags & BIT(MPTCP_RETRANSMIT))
3459 			__mptcp_retrans(sk);
3460 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3461 			/* notify ack seq update */
3462 			mptcp_cleanup_rbuf(msk, 0);
3463 			sk->sk_data_ready(sk);
3464 		}
3465 
3466 		cond_resched();
3467 		spin_lock_bh(&sk->sk_lock.slock);
3468 	}
3469 
3470 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3471 		__mptcp_clean_una_wakeup(sk);
3472 	if (unlikely(msk->cb_flags)) {
3473 		/* be sure to sync the msk state before taking actions
3474 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3475 		 * On sk release avoid actions depending on the first subflow
3476 		 */
3477 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3478 			__mptcp_sync_state(sk, msk->pending_state);
3479 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3480 			__mptcp_error_report(sk);
3481 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3482 			__mptcp_sync_sndbuf(sk);
3483 	}
3484 }
3485 
3486 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3487  * TCP can't schedule delack timer before the subflow is fully established.
3488  * MPTCP uses the delack timer to do 3rd ack retransmissions
3489  */
3490 static void schedule_3rdack_retransmission(struct sock *ssk)
3491 {
3492 	struct inet_connection_sock *icsk = inet_csk(ssk);
3493 	struct tcp_sock *tp = tcp_sk(ssk);
3494 	unsigned long timeout;
3495 
3496 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3497 		return;
3498 
3499 	/* reschedule with a timeout above RTT, as we must look only for drop */
3500 	if (tp->srtt_us)
3501 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3502 	else
3503 		timeout = TCP_TIMEOUT_INIT;
3504 	timeout += jiffies;
3505 
3506 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3507 	smp_store_release(&icsk->icsk_ack.pending,
3508 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3509 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3510 }
3511 
3512 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3513 {
3514 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3515 	struct sock *sk = subflow->conn;
3516 
3517 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3518 		mptcp_data_lock(sk);
3519 		if (!sock_owned_by_user(sk))
3520 			__mptcp_subflow_push_pending(sk, ssk, true);
3521 		else
3522 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3523 		mptcp_data_unlock(sk);
3524 	}
3525 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3526 		mptcp_data_lock(sk);
3527 		if (!sock_owned_by_user(sk))
3528 			__mptcp_sync_sndbuf(sk);
3529 		else
3530 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3531 		mptcp_data_unlock(sk);
3532 	}
3533 	if (status & BIT(MPTCP_DELEGATE_ACK))
3534 		schedule_3rdack_retransmission(ssk);
3535 }
3536 
3537 static int mptcp_hash(struct sock *sk)
3538 {
3539 	/* should never be called,
3540 	 * we hash the TCP subflows not the MPTCP socket
3541 	 */
3542 	WARN_ON_ONCE(1);
3543 	return 0;
3544 }
3545 
3546 static void mptcp_unhash(struct sock *sk)
3547 {
3548 	/* called from sk_common_release(), but nothing to do here */
3549 }
3550 
3551 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3552 {
3553 	struct mptcp_sock *msk = mptcp_sk(sk);
3554 
3555 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3556 	if (WARN_ON_ONCE(!msk->first))
3557 		return -EINVAL;
3558 
3559 	return inet_csk_get_port(msk->first, snum);
3560 }
3561 
3562 void mptcp_finish_connect(struct sock *ssk)
3563 {
3564 	struct mptcp_subflow_context *subflow;
3565 	struct mptcp_sock *msk;
3566 	struct sock *sk;
3567 
3568 	subflow = mptcp_subflow_ctx(ssk);
3569 	sk = subflow->conn;
3570 	msk = mptcp_sk(sk);
3571 
3572 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3573 
3574 	subflow->map_seq = subflow->iasn;
3575 	subflow->map_subflow_seq = 1;
3576 
3577 	/* the socket is not connected yet, no msk/subflow ops can access/race
3578 	 * accessing the field below
3579 	 */
3580 	WRITE_ONCE(msk->local_key, subflow->local_key);
3581 
3582 	mptcp_pm_new_connection(msk, ssk, 0);
3583 }
3584 
3585 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3586 {
3587 	write_lock_bh(&sk->sk_callback_lock);
3588 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3589 	sk_set_socket(sk, parent);
3590 	write_unlock_bh(&sk->sk_callback_lock);
3591 }
3592 
3593 bool mptcp_finish_join(struct sock *ssk)
3594 {
3595 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3596 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3597 	struct sock *parent = (void *)msk;
3598 	bool ret = true;
3599 
3600 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3601 
3602 	/* mptcp socket already closing? */
3603 	if (!mptcp_is_fully_established(parent)) {
3604 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3605 		return false;
3606 	}
3607 
3608 	/* active subflow, already present inside the conn_list */
3609 	if (!list_empty(&subflow->node)) {
3610 		spin_lock_bh(&msk->fallback_lock);
3611 		if (!msk->allow_subflows) {
3612 			spin_unlock_bh(&msk->fallback_lock);
3613 			return false;
3614 		}
3615 		mptcp_subflow_joined(msk, ssk);
3616 		spin_unlock_bh(&msk->fallback_lock);
3617 		mptcp_propagate_sndbuf(parent, ssk);
3618 		return true;
3619 	}
3620 
3621 	if (!mptcp_pm_allow_new_subflow(msk)) {
3622 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3623 		goto err_prohibited;
3624 	}
3625 
3626 	/* If we can't acquire msk socket lock here, let the release callback
3627 	 * handle it
3628 	 */
3629 	mptcp_data_lock(parent);
3630 	if (!sock_owned_by_user(parent)) {
3631 		ret = __mptcp_finish_join(msk, ssk);
3632 		if (ret) {
3633 			sock_hold(ssk);
3634 			list_add_tail(&subflow->node, &msk->conn_list);
3635 		}
3636 	} else {
3637 		sock_hold(ssk);
3638 		list_add_tail(&subflow->node, &msk->join_list);
3639 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3640 	}
3641 	mptcp_data_unlock(parent);
3642 
3643 	if (!ret) {
3644 err_prohibited:
3645 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3646 		return false;
3647 	}
3648 
3649 	return true;
3650 }
3651 
3652 static void mptcp_shutdown(struct sock *sk, int how)
3653 {
3654 	pr_debug("sk=%p, how=%d\n", sk, how);
3655 
3656 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3657 		__mptcp_wr_shutdown(sk);
3658 }
3659 
3660 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3661 {
3662 	const struct sock *sk = (void *)msk;
3663 	u64 delta;
3664 
3665 	if (sk->sk_state == TCP_LISTEN)
3666 		return -EINVAL;
3667 
3668 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3669 		return 0;
3670 
3671 	delta = msk->write_seq - v;
3672 	if (__mptcp_check_fallback(msk) && msk->first) {
3673 		struct tcp_sock *tp = tcp_sk(msk->first);
3674 
3675 		/* the first subflow is disconnected after close - see
3676 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3677 		 * so ignore that status, too.
3678 		 */
3679 		if (!((1 << msk->first->sk_state) &
3680 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3681 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3682 	}
3683 	if (delta > INT_MAX)
3684 		delta = INT_MAX;
3685 
3686 	return (int)delta;
3687 }
3688 
3689 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3690 {
3691 	struct mptcp_sock *msk = mptcp_sk(sk);
3692 	bool slow;
3693 
3694 	switch (cmd) {
3695 	case SIOCINQ:
3696 		if (sk->sk_state == TCP_LISTEN)
3697 			return -EINVAL;
3698 
3699 		lock_sock(sk);
3700 		if (__mptcp_move_skbs(sk))
3701 			mptcp_cleanup_rbuf(msk, 0);
3702 		*karg = mptcp_inq_hint(sk);
3703 		release_sock(sk);
3704 		break;
3705 	case SIOCOUTQ:
3706 		slow = lock_sock_fast(sk);
3707 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3708 		unlock_sock_fast(sk, slow);
3709 		break;
3710 	case SIOCOUTQNSD:
3711 		slow = lock_sock_fast(sk);
3712 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3713 		unlock_sock_fast(sk, slow);
3714 		break;
3715 	default:
3716 		return -ENOIOCTLCMD;
3717 	}
3718 
3719 	return 0;
3720 }
3721 
3722 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3723 {
3724 	struct mptcp_subflow_context *subflow;
3725 	struct mptcp_sock *msk = mptcp_sk(sk);
3726 	int err = -EINVAL;
3727 	struct sock *ssk;
3728 
3729 	ssk = __mptcp_nmpc_sk(msk);
3730 	if (IS_ERR(ssk))
3731 		return PTR_ERR(ssk);
3732 
3733 	mptcp_set_state(sk, TCP_SYN_SENT);
3734 	subflow = mptcp_subflow_ctx(ssk);
3735 #ifdef CONFIG_TCP_MD5SIG
3736 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3737 	 * TCP option space.
3738 	 */
3739 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3740 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3741 #endif
3742 	if (subflow->request_mptcp) {
3743 		if (mptcp_active_should_disable(sk))
3744 			mptcp_early_fallback(msk, subflow,
3745 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3746 		else if (mptcp_token_new_connect(ssk) < 0)
3747 			mptcp_early_fallback(msk, subflow,
3748 					     MPTCP_MIB_TOKENFALLBACKINIT);
3749 	}
3750 
3751 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3752 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3753 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3754 	if (likely(!__mptcp_check_fallback(msk)))
3755 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3756 
3757 	/* if reaching here via the fastopen/sendmsg path, the caller already
3758 	 * acquired the subflow socket lock, too.
3759 	 */
3760 	if (!msk->fastopening)
3761 		lock_sock(ssk);
3762 
3763 	/* the following mirrors closely a very small chunk of code from
3764 	 * __inet_stream_connect()
3765 	 */
3766 	if (ssk->sk_state != TCP_CLOSE)
3767 		goto out;
3768 
3769 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3770 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3771 		if (err)
3772 			goto out;
3773 	}
3774 
3775 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3776 	if (err < 0)
3777 		goto out;
3778 
3779 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3780 
3781 out:
3782 	if (!msk->fastopening)
3783 		release_sock(ssk);
3784 
3785 	/* on successful connect, the msk state will be moved to established by
3786 	 * subflow_finish_connect()
3787 	 */
3788 	if (unlikely(err)) {
3789 		/* avoid leaving a dangling token in an unconnected socket */
3790 		mptcp_token_destroy(msk);
3791 		mptcp_set_state(sk, TCP_CLOSE);
3792 		return err;
3793 	}
3794 
3795 	mptcp_copy_inaddrs(sk, ssk);
3796 	return 0;
3797 }
3798 
3799 static struct proto mptcp_prot = {
3800 	.name		= "MPTCP",
3801 	.owner		= THIS_MODULE,
3802 	.init		= mptcp_init_sock,
3803 	.connect	= mptcp_connect,
3804 	.disconnect	= mptcp_disconnect,
3805 	.close		= mptcp_close,
3806 	.setsockopt	= mptcp_setsockopt,
3807 	.getsockopt	= mptcp_getsockopt,
3808 	.shutdown	= mptcp_shutdown,
3809 	.destroy	= mptcp_destroy,
3810 	.sendmsg	= mptcp_sendmsg,
3811 	.ioctl		= mptcp_ioctl,
3812 	.recvmsg	= mptcp_recvmsg,
3813 	.release_cb	= mptcp_release_cb,
3814 	.hash		= mptcp_hash,
3815 	.unhash		= mptcp_unhash,
3816 	.get_port	= mptcp_get_port,
3817 	.stream_memory_free	= mptcp_stream_memory_free,
3818 	.sockets_allocated	= &mptcp_sockets_allocated,
3819 
3820 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3821 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3822 
3823 	.memory_pressure	= &tcp_memory_pressure,
3824 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3825 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3826 	.sysctl_mem	= sysctl_tcp_mem,
3827 	.obj_size	= sizeof(struct mptcp_sock),
3828 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3829 	.no_autobind	= true,
3830 };
3831 
3832 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3833 {
3834 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3835 	struct sock *ssk, *sk = sock->sk;
3836 	int err = -EINVAL;
3837 
3838 	lock_sock(sk);
3839 	ssk = __mptcp_nmpc_sk(msk);
3840 	if (IS_ERR(ssk)) {
3841 		err = PTR_ERR(ssk);
3842 		goto unlock;
3843 	}
3844 
3845 	if (sk->sk_family == AF_INET)
3846 		err = inet_bind_sk(ssk, uaddr, addr_len);
3847 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3848 	else if (sk->sk_family == AF_INET6)
3849 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3850 #endif
3851 	if (!err)
3852 		mptcp_copy_inaddrs(sk, ssk);
3853 
3854 unlock:
3855 	release_sock(sk);
3856 	return err;
3857 }
3858 
3859 static int mptcp_listen(struct socket *sock, int backlog)
3860 {
3861 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3862 	struct sock *sk = sock->sk;
3863 	struct sock *ssk;
3864 	int err;
3865 
3866 	pr_debug("msk=%p\n", msk);
3867 
3868 	lock_sock(sk);
3869 
3870 	err = -EINVAL;
3871 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3872 		goto unlock;
3873 
3874 	ssk = __mptcp_nmpc_sk(msk);
3875 	if (IS_ERR(ssk)) {
3876 		err = PTR_ERR(ssk);
3877 		goto unlock;
3878 	}
3879 
3880 	mptcp_set_state(sk, TCP_LISTEN);
3881 	sock_set_flag(sk, SOCK_RCU_FREE);
3882 
3883 	lock_sock(ssk);
3884 	err = __inet_listen_sk(ssk, backlog);
3885 	release_sock(ssk);
3886 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3887 
3888 	if (!err) {
3889 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3890 		mptcp_copy_inaddrs(sk, ssk);
3891 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3892 	}
3893 
3894 unlock:
3895 	release_sock(sk);
3896 	return err;
3897 }
3898 
3899 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3900 			       struct proto_accept_arg *arg)
3901 {
3902 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3903 	struct sock *ssk, *newsk;
3904 
3905 	pr_debug("msk=%p\n", msk);
3906 
3907 	/* Buggy applications can call accept on socket states other then LISTEN
3908 	 * but no need to allocate the first subflow just to error out.
3909 	 */
3910 	ssk = READ_ONCE(msk->first);
3911 	if (!ssk)
3912 		return -EINVAL;
3913 
3914 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3915 	newsk = inet_csk_accept(ssk, arg);
3916 	if (!newsk)
3917 		return arg->err;
3918 
3919 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3920 	if (sk_is_mptcp(newsk)) {
3921 		struct mptcp_subflow_context *subflow;
3922 		struct sock *new_mptcp_sock;
3923 
3924 		subflow = mptcp_subflow_ctx(newsk);
3925 		new_mptcp_sock = subflow->conn;
3926 
3927 		/* is_mptcp should be false if subflow->conn is missing, see
3928 		 * subflow_syn_recv_sock()
3929 		 */
3930 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3931 			tcp_sk(newsk)->is_mptcp = 0;
3932 			goto tcpfallback;
3933 		}
3934 
3935 		newsk = new_mptcp_sock;
3936 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3937 
3938 		newsk->sk_kern_sock = arg->kern;
3939 		lock_sock(newsk);
3940 		__inet_accept(sock, newsock, newsk);
3941 
3942 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3943 		msk = mptcp_sk(newsk);
3944 		msk->in_accept_queue = 0;
3945 
3946 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3947 		 * This is needed so NOSPACE flag can be set from tcp stack.
3948 		 */
3949 		mptcp_for_each_subflow(msk, subflow) {
3950 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3951 
3952 			if (!ssk->sk_socket)
3953 				mptcp_sock_graft(ssk, newsock);
3954 		}
3955 
3956 		mptcp_rps_record_subflows(msk);
3957 
3958 		/* Do late cleanup for the first subflow as necessary. Also
3959 		 * deal with bad peers not doing a complete shutdown.
3960 		 */
3961 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3962 			__mptcp_close_ssk(newsk, msk->first,
3963 					  mptcp_subflow_ctx(msk->first), 0);
3964 			if (unlikely(list_is_singular(&msk->conn_list)))
3965 				mptcp_set_state(newsk, TCP_CLOSE);
3966 		}
3967 	} else {
3968 tcpfallback:
3969 		newsk->sk_kern_sock = arg->kern;
3970 		lock_sock(newsk);
3971 		__inet_accept(sock, newsock, newsk);
3972 		/* we are being invoked after accepting a non-mp-capable
3973 		 * flow: sk is a tcp_sk, not an mptcp one.
3974 		 *
3975 		 * Hand the socket over to tcp so all further socket ops
3976 		 * bypass mptcp.
3977 		 */
3978 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3979 			   mptcp_fallback_tcp_ops(newsock->sk));
3980 	}
3981 	release_sock(newsk);
3982 
3983 	return 0;
3984 }
3985 
3986 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3987 {
3988 	struct sock *sk = (struct sock *)msk;
3989 
3990 	if (__mptcp_stream_is_writeable(sk, 1))
3991 		return EPOLLOUT | EPOLLWRNORM;
3992 
3993 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3994 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3995 	if (__mptcp_stream_is_writeable(sk, 1))
3996 		return EPOLLOUT | EPOLLWRNORM;
3997 
3998 	return 0;
3999 }
4000 
4001 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4002 			   struct poll_table_struct *wait)
4003 {
4004 	struct sock *sk = sock->sk;
4005 	struct mptcp_sock *msk;
4006 	__poll_t mask = 0;
4007 	u8 shutdown;
4008 	int state;
4009 
4010 	msk = mptcp_sk(sk);
4011 	sock_poll_wait(file, sock, wait);
4012 
4013 	state = inet_sk_state_load(sk);
4014 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4015 	if (state == TCP_LISTEN) {
4016 		struct sock *ssk = READ_ONCE(msk->first);
4017 
4018 		if (WARN_ON_ONCE(!ssk))
4019 			return 0;
4020 
4021 		return inet_csk_listen_poll(ssk);
4022 	}
4023 
4024 	shutdown = READ_ONCE(sk->sk_shutdown);
4025 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4026 		mask |= EPOLLHUP;
4027 	if (shutdown & RCV_SHUTDOWN)
4028 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4029 
4030 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4031 		mask |= mptcp_check_readable(sk);
4032 		if (shutdown & SEND_SHUTDOWN)
4033 			mask |= EPOLLOUT | EPOLLWRNORM;
4034 		else
4035 			mask |= mptcp_check_writeable(msk);
4036 	} else if (state == TCP_SYN_SENT &&
4037 		   inet_test_bit(DEFER_CONNECT, sk)) {
4038 		/* cf tcp_poll() note about TFO */
4039 		mask |= EPOLLOUT | EPOLLWRNORM;
4040 	}
4041 
4042 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4043 	smp_rmb();
4044 	if (READ_ONCE(sk->sk_err))
4045 		mask |= EPOLLERR;
4046 
4047 	return mask;
4048 }
4049 
4050 static const struct proto_ops mptcp_stream_ops = {
4051 	.family		   = PF_INET,
4052 	.owner		   = THIS_MODULE,
4053 	.release	   = inet_release,
4054 	.bind		   = mptcp_bind,
4055 	.connect	   = inet_stream_connect,
4056 	.socketpair	   = sock_no_socketpair,
4057 	.accept		   = mptcp_stream_accept,
4058 	.getname	   = inet_getname,
4059 	.poll		   = mptcp_poll,
4060 	.ioctl		   = inet_ioctl,
4061 	.gettstamp	   = sock_gettstamp,
4062 	.listen		   = mptcp_listen,
4063 	.shutdown	   = inet_shutdown,
4064 	.setsockopt	   = sock_common_setsockopt,
4065 	.getsockopt	   = sock_common_getsockopt,
4066 	.sendmsg	   = inet_sendmsg,
4067 	.recvmsg	   = inet_recvmsg,
4068 	.mmap		   = sock_no_mmap,
4069 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4070 };
4071 
4072 static struct inet_protosw mptcp_protosw = {
4073 	.type		= SOCK_STREAM,
4074 	.protocol	= IPPROTO_MPTCP,
4075 	.prot		= &mptcp_prot,
4076 	.ops		= &mptcp_stream_ops,
4077 	.flags		= INET_PROTOSW_ICSK,
4078 };
4079 
4080 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4081 {
4082 	struct mptcp_delegated_action *delegated;
4083 	struct mptcp_subflow_context *subflow;
4084 	int work_done = 0;
4085 
4086 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4087 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4088 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4089 
4090 		bh_lock_sock_nested(ssk);
4091 		if (!sock_owned_by_user(ssk)) {
4092 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4093 		} else {
4094 			/* tcp_release_cb_override already processed
4095 			 * the action or will do at next release_sock().
4096 			 * In both case must dequeue the subflow here - on the same
4097 			 * CPU that scheduled it.
4098 			 */
4099 			smp_wmb();
4100 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4101 		}
4102 		bh_unlock_sock(ssk);
4103 		sock_put(ssk);
4104 
4105 		if (++work_done == budget)
4106 			return budget;
4107 	}
4108 
4109 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4110 	 * will not try accessing the NULL napi->dev ptr
4111 	 */
4112 	napi_complete_done(napi, 0);
4113 	return work_done;
4114 }
4115 
4116 void __init mptcp_proto_init(void)
4117 {
4118 	struct mptcp_delegated_action *delegated;
4119 	int cpu;
4120 
4121 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4122 
4123 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4124 		panic("Failed to allocate MPTCP pcpu counter\n");
4125 
4126 	mptcp_napi_dev = alloc_netdev_dummy(0);
4127 	if (!mptcp_napi_dev)
4128 		panic("Failed to allocate MPTCP dummy netdev\n");
4129 	for_each_possible_cpu(cpu) {
4130 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4131 		INIT_LIST_HEAD(&delegated->head);
4132 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4133 				  mptcp_napi_poll);
4134 		napi_enable(&delegated->napi);
4135 	}
4136 
4137 	mptcp_subflow_init();
4138 	mptcp_pm_init();
4139 	mptcp_sched_init();
4140 	mptcp_token_init();
4141 
4142 	if (proto_register(&mptcp_prot, 1) != 0)
4143 		panic("Failed to register MPTCP proto.\n");
4144 
4145 	inet_register_protosw(&mptcp_protosw);
4146 
4147 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4148 }
4149 
4150 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4151 static const struct proto_ops mptcp_v6_stream_ops = {
4152 	.family		   = PF_INET6,
4153 	.owner		   = THIS_MODULE,
4154 	.release	   = inet6_release,
4155 	.bind		   = mptcp_bind,
4156 	.connect	   = inet_stream_connect,
4157 	.socketpair	   = sock_no_socketpair,
4158 	.accept		   = mptcp_stream_accept,
4159 	.getname	   = inet6_getname,
4160 	.poll		   = mptcp_poll,
4161 	.ioctl		   = inet6_ioctl,
4162 	.gettstamp	   = sock_gettstamp,
4163 	.listen		   = mptcp_listen,
4164 	.shutdown	   = inet_shutdown,
4165 	.setsockopt	   = sock_common_setsockopt,
4166 	.getsockopt	   = sock_common_getsockopt,
4167 	.sendmsg	   = inet6_sendmsg,
4168 	.recvmsg	   = inet6_recvmsg,
4169 	.mmap		   = sock_no_mmap,
4170 #ifdef CONFIG_COMPAT
4171 	.compat_ioctl	   = inet6_compat_ioctl,
4172 #endif
4173 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4174 };
4175 
4176 static struct proto mptcp_v6_prot;
4177 
4178 static struct inet_protosw mptcp_v6_protosw = {
4179 	.type		= SOCK_STREAM,
4180 	.protocol	= IPPROTO_MPTCP,
4181 	.prot		= &mptcp_v6_prot,
4182 	.ops		= &mptcp_v6_stream_ops,
4183 	.flags		= INET_PROTOSW_ICSK,
4184 };
4185 
4186 int __init mptcp_proto_v6_init(void)
4187 {
4188 	int err;
4189 
4190 	mptcp_v6_prot = mptcp_prot;
4191 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4192 	mptcp_v6_prot.slab = NULL;
4193 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4194 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4195 
4196 	err = proto_register(&mptcp_v6_prot, 1);
4197 	if (err)
4198 		return err;
4199 
4200 	err = inet6_register_protosw(&mptcp_v6_protosw);
4201 	if (err)
4202 		proto_unregister(&mptcp_v6_prot);
4203 
4204 	return err;
4205 }
4206 #endif
4207