xref: /linux/net/mptcp/protocol.c (revision c546656f31c5138afcaddfcd8f8b93fbf73e4d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void __mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static bool mptcp_is_tcpsk(struct sock *sk)
59 {
60 	struct socket *sock = sk->sk_socket;
61 
62 	if (unlikely(sk->sk_prot == &tcp_prot)) {
63 		/* we are being invoked after mptcp_accept() has
64 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
65 		 * not an mptcp one.
66 		 *
67 		 * Hand the socket over to tcp so all further socket ops
68 		 * bypass mptcp.
69 		 */
70 		sock->ops = &inet_stream_ops;
71 		return true;
72 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
73 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
74 		sock->ops = &inet6_stream_ops;
75 		return true;
76 #endif
77 	}
78 
79 	return false;
80 }
81 
82 static int __mptcp_socket_create(struct mptcp_sock *msk)
83 {
84 	struct mptcp_subflow_context *subflow;
85 	struct sock *sk = (struct sock *)msk;
86 	struct socket *ssock;
87 	int err;
88 
89 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
90 	if (err)
91 		return err;
92 
93 	WRITE_ONCE(msk->first, ssock->sk);
94 	WRITE_ONCE(msk->subflow, ssock);
95 	subflow = mptcp_subflow_ctx(ssock->sk);
96 	list_add(&subflow->node, &msk->conn_list);
97 	sock_hold(ssock->sk);
98 	subflow->request_mptcp = 1;
99 
100 	/* This is the first subflow, always with id 0 */
101 	subflow->local_id_valid = 1;
102 	mptcp_sock_graft(msk->first, sk->sk_socket);
103 
104 	return 0;
105 }
106 
107 /* If the MPC handshake is not started, returns the first subflow,
108  * eventually allocating it.
109  */
110 struct socket *__mptcp_nmpc_socket(struct mptcp_sock *msk)
111 {
112 	struct sock *sk = (struct sock *)msk;
113 	int ret;
114 
115 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
116 		return ERR_PTR(-EINVAL);
117 
118 	if (!msk->subflow) {
119 		if (msk->first)
120 			return ERR_PTR(-EINVAL);
121 
122 		ret = __mptcp_socket_create(msk);
123 		if (ret)
124 			return ERR_PTR(ret);
125 
126 		mptcp_sockopt_sync(msk, msk->first);
127 	}
128 
129 	return msk->subflow;
130 }
131 
132 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
133 {
134 	sk_drops_add(sk, skb);
135 	__kfree_skb(skb);
136 }
137 
138 static void mptcp_rmem_charge(struct sock *sk, int size)
139 {
140 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
141 }
142 
143 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
144 			       struct sk_buff *from)
145 {
146 	bool fragstolen;
147 	int delta;
148 
149 	if (MPTCP_SKB_CB(from)->offset ||
150 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
151 		return false;
152 
153 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
154 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
155 		 to->len, MPTCP_SKB_CB(from)->end_seq);
156 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
157 
158 	/* note the fwd memory can reach a negative value after accounting
159 	 * for the delta, but the later skb free will restore a non
160 	 * negative one
161 	 */
162 	atomic_add(delta, &sk->sk_rmem_alloc);
163 	mptcp_rmem_charge(sk, delta);
164 	kfree_skb_partial(from, fragstolen);
165 
166 	return true;
167 }
168 
169 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
170 				   struct sk_buff *from)
171 {
172 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
173 		return false;
174 
175 	return mptcp_try_coalesce((struct sock *)msk, to, from);
176 }
177 
178 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
179 {
180 	amount >>= PAGE_SHIFT;
181 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
182 	__sk_mem_reduce_allocated(sk, amount);
183 }
184 
185 static void mptcp_rmem_uncharge(struct sock *sk, int size)
186 {
187 	struct mptcp_sock *msk = mptcp_sk(sk);
188 	int reclaimable;
189 
190 	msk->rmem_fwd_alloc += size;
191 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
192 
193 	/* see sk_mem_uncharge() for the rationale behind the following schema */
194 	if (unlikely(reclaimable >= PAGE_SIZE))
195 		__mptcp_rmem_reclaim(sk, reclaimable);
196 }
197 
198 static void mptcp_rfree(struct sk_buff *skb)
199 {
200 	unsigned int len = skb->truesize;
201 	struct sock *sk = skb->sk;
202 
203 	atomic_sub(len, &sk->sk_rmem_alloc);
204 	mptcp_rmem_uncharge(sk, len);
205 }
206 
207 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
208 {
209 	skb_orphan(skb);
210 	skb->sk = sk;
211 	skb->destructor = mptcp_rfree;
212 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
213 	mptcp_rmem_charge(sk, skb->truesize);
214 }
215 
216 /* "inspired" by tcp_data_queue_ofo(), main differences:
217  * - use mptcp seqs
218  * - don't cope with sacks
219  */
220 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
221 {
222 	struct sock *sk = (struct sock *)msk;
223 	struct rb_node **p, *parent;
224 	u64 seq, end_seq, max_seq;
225 	struct sk_buff *skb1;
226 
227 	seq = MPTCP_SKB_CB(skb)->map_seq;
228 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
229 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
230 
231 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
232 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
233 	if (after64(end_seq, max_seq)) {
234 		/* out of window */
235 		mptcp_drop(sk, skb);
236 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
237 			 (unsigned long long)end_seq - (unsigned long)max_seq,
238 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
239 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
240 		return;
241 	}
242 
243 	p = &msk->out_of_order_queue.rb_node;
244 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
245 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
246 		rb_link_node(&skb->rbnode, NULL, p);
247 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
248 		msk->ooo_last_skb = skb;
249 		goto end;
250 	}
251 
252 	/* with 2 subflows, adding at end of ooo queue is quite likely
253 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
254 	 */
255 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
256 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
257 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
258 		return;
259 	}
260 
261 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
262 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
263 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
264 		parent = &msk->ooo_last_skb->rbnode;
265 		p = &parent->rb_right;
266 		goto insert;
267 	}
268 
269 	/* Find place to insert this segment. Handle overlaps on the way. */
270 	parent = NULL;
271 	while (*p) {
272 		parent = *p;
273 		skb1 = rb_to_skb(parent);
274 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
275 			p = &parent->rb_left;
276 			continue;
277 		}
278 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
279 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
280 				/* All the bits are present. Drop. */
281 				mptcp_drop(sk, skb);
282 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
283 				return;
284 			}
285 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
286 				/* partial overlap:
287 				 *     |     skb      |
288 				 *  |     skb1    |
289 				 * continue traversing
290 				 */
291 			} else {
292 				/* skb's seq == skb1's seq and skb covers skb1.
293 				 * Replace skb1 with skb.
294 				 */
295 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
296 						&msk->out_of_order_queue);
297 				mptcp_drop(sk, skb1);
298 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
299 				goto merge_right;
300 			}
301 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
302 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
303 			return;
304 		}
305 		p = &parent->rb_right;
306 	}
307 
308 insert:
309 	/* Insert segment into RB tree. */
310 	rb_link_node(&skb->rbnode, parent, p);
311 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
312 
313 merge_right:
314 	/* Remove other segments covered by skb. */
315 	while ((skb1 = skb_rb_next(skb)) != NULL) {
316 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
317 			break;
318 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
319 		mptcp_drop(sk, skb1);
320 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
321 	}
322 	/* If there is no skb after us, we are the last_skb ! */
323 	if (!skb1)
324 		msk->ooo_last_skb = skb;
325 
326 end:
327 	skb_condense(skb);
328 	mptcp_set_owner_r(skb, sk);
329 }
330 
331 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
332 {
333 	struct mptcp_sock *msk = mptcp_sk(sk);
334 	int amt, amount;
335 
336 	if (size <= msk->rmem_fwd_alloc)
337 		return true;
338 
339 	size -= msk->rmem_fwd_alloc;
340 	amt = sk_mem_pages(size);
341 	amount = amt << PAGE_SHIFT;
342 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
343 		return false;
344 
345 	msk->rmem_fwd_alloc += amount;
346 	return true;
347 }
348 
349 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
350 			     struct sk_buff *skb, unsigned int offset,
351 			     size_t copy_len)
352 {
353 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
354 	struct sock *sk = (struct sock *)msk;
355 	struct sk_buff *tail;
356 	bool has_rxtstamp;
357 
358 	__skb_unlink(skb, &ssk->sk_receive_queue);
359 
360 	skb_ext_reset(skb);
361 	skb_orphan(skb);
362 
363 	/* try to fetch required memory from subflow */
364 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
365 		goto drop;
366 
367 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
368 
369 	/* the skb map_seq accounts for the skb offset:
370 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
371 	 * value
372 	 */
373 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
374 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
375 	MPTCP_SKB_CB(skb)->offset = offset;
376 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
377 
378 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
379 		/* in sequence */
380 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
381 		tail = skb_peek_tail(&sk->sk_receive_queue);
382 		if (tail && mptcp_try_coalesce(sk, tail, skb))
383 			return true;
384 
385 		mptcp_set_owner_r(skb, sk);
386 		__skb_queue_tail(&sk->sk_receive_queue, skb);
387 		return true;
388 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
389 		mptcp_data_queue_ofo(msk, skb);
390 		return false;
391 	}
392 
393 	/* old data, keep it simple and drop the whole pkt, sender
394 	 * will retransmit as needed, if needed.
395 	 */
396 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
397 drop:
398 	mptcp_drop(sk, skb);
399 	return false;
400 }
401 
402 static void mptcp_stop_timer(struct sock *sk)
403 {
404 	struct inet_connection_sock *icsk = inet_csk(sk);
405 
406 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
407 	mptcp_sk(sk)->timer_ival = 0;
408 }
409 
410 static void mptcp_close_wake_up(struct sock *sk)
411 {
412 	if (sock_flag(sk, SOCK_DEAD))
413 		return;
414 
415 	sk->sk_state_change(sk);
416 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
417 	    sk->sk_state == TCP_CLOSE)
418 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
419 	else
420 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
421 }
422 
423 static bool mptcp_pending_data_fin_ack(struct sock *sk)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	return !__mptcp_check_fallback(msk) &&
428 	       ((1 << sk->sk_state) &
429 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
430 	       msk->write_seq == READ_ONCE(msk->snd_una);
431 }
432 
433 static void mptcp_check_data_fin_ack(struct sock *sk)
434 {
435 	struct mptcp_sock *msk = mptcp_sk(sk);
436 
437 	/* Look for an acknowledged DATA_FIN */
438 	if (mptcp_pending_data_fin_ack(sk)) {
439 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
440 
441 		switch (sk->sk_state) {
442 		case TCP_FIN_WAIT1:
443 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
444 			break;
445 		case TCP_CLOSING:
446 		case TCP_LAST_ACK:
447 			inet_sk_state_store(sk, TCP_CLOSE);
448 			break;
449 		}
450 
451 		mptcp_close_wake_up(sk);
452 	}
453 }
454 
455 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
456 {
457 	struct mptcp_sock *msk = mptcp_sk(sk);
458 
459 	if (READ_ONCE(msk->rcv_data_fin) &&
460 	    ((1 << sk->sk_state) &
461 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
462 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
463 
464 		if (msk->ack_seq == rcv_data_fin_seq) {
465 			if (seq)
466 				*seq = rcv_data_fin_seq;
467 
468 			return true;
469 		}
470 	}
471 
472 	return false;
473 }
474 
475 static void mptcp_set_datafin_timeout(struct sock *sk)
476 {
477 	struct inet_connection_sock *icsk = inet_csk(sk);
478 	u32 retransmits;
479 
480 	retransmits = min_t(u32, icsk->icsk_retransmits,
481 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
482 
483 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
484 }
485 
486 static void __mptcp_set_timeout(struct sock *sk, long tout)
487 {
488 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
489 }
490 
491 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
492 {
493 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
494 
495 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
496 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
497 }
498 
499 static void mptcp_set_timeout(struct sock *sk)
500 {
501 	struct mptcp_subflow_context *subflow;
502 	long tout = 0;
503 
504 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
505 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
506 	__mptcp_set_timeout(sk, tout);
507 }
508 
509 static inline bool tcp_can_send_ack(const struct sock *ssk)
510 {
511 	return !((1 << inet_sk_state_load(ssk)) &
512 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
513 }
514 
515 void __mptcp_subflow_send_ack(struct sock *ssk)
516 {
517 	if (tcp_can_send_ack(ssk))
518 		tcp_send_ack(ssk);
519 }
520 
521 static void mptcp_subflow_send_ack(struct sock *ssk)
522 {
523 	bool slow;
524 
525 	slow = lock_sock_fast(ssk);
526 	__mptcp_subflow_send_ack(ssk);
527 	unlock_sock_fast(ssk, slow);
528 }
529 
530 static void mptcp_send_ack(struct mptcp_sock *msk)
531 {
532 	struct mptcp_subflow_context *subflow;
533 
534 	mptcp_for_each_subflow(msk, subflow)
535 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
536 }
537 
538 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
539 {
540 	bool slow;
541 
542 	slow = lock_sock_fast(ssk);
543 	if (tcp_can_send_ack(ssk))
544 		tcp_cleanup_rbuf(ssk, 1);
545 	unlock_sock_fast(ssk, slow);
546 }
547 
548 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
549 {
550 	const struct inet_connection_sock *icsk = inet_csk(ssk);
551 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
552 	const struct tcp_sock *tp = tcp_sk(ssk);
553 
554 	return (ack_pending & ICSK_ACK_SCHED) &&
555 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
556 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
557 		 (rx_empty && ack_pending &
558 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
559 }
560 
561 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
562 {
563 	int old_space = READ_ONCE(msk->old_wspace);
564 	struct mptcp_subflow_context *subflow;
565 	struct sock *sk = (struct sock *)msk;
566 	int space =  __mptcp_space(sk);
567 	bool cleanup, rx_empty;
568 
569 	cleanup = (space > 0) && (space >= (old_space << 1));
570 	rx_empty = !__mptcp_rmem(sk);
571 
572 	mptcp_for_each_subflow(msk, subflow) {
573 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
574 
575 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
576 			mptcp_subflow_cleanup_rbuf(ssk);
577 	}
578 }
579 
580 static bool mptcp_check_data_fin(struct sock *sk)
581 {
582 	struct mptcp_sock *msk = mptcp_sk(sk);
583 	u64 rcv_data_fin_seq;
584 	bool ret = false;
585 
586 	if (__mptcp_check_fallback(msk))
587 		return ret;
588 
589 	/* Need to ack a DATA_FIN received from a peer while this side
590 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
591 	 * msk->rcv_data_fin was set when parsing the incoming options
592 	 * at the subflow level and the msk lock was not held, so this
593 	 * is the first opportunity to act on the DATA_FIN and change
594 	 * the msk state.
595 	 *
596 	 * If we are caught up to the sequence number of the incoming
597 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
598 	 * not caught up, do nothing and let the recv code send DATA_ACK
599 	 * when catching up.
600 	 */
601 
602 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
603 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
604 		WRITE_ONCE(msk->rcv_data_fin, 0);
605 
606 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
607 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
608 
609 		switch (sk->sk_state) {
610 		case TCP_ESTABLISHED:
611 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
612 			break;
613 		case TCP_FIN_WAIT1:
614 			inet_sk_state_store(sk, TCP_CLOSING);
615 			break;
616 		case TCP_FIN_WAIT2:
617 			inet_sk_state_store(sk, TCP_CLOSE);
618 			break;
619 		default:
620 			/* Other states not expected */
621 			WARN_ON_ONCE(1);
622 			break;
623 		}
624 
625 		ret = true;
626 		mptcp_send_ack(msk);
627 		mptcp_close_wake_up(sk);
628 	}
629 	return ret;
630 }
631 
632 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
633 					   struct sock *ssk,
634 					   unsigned int *bytes)
635 {
636 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
637 	struct sock *sk = (struct sock *)msk;
638 	unsigned int moved = 0;
639 	bool more_data_avail;
640 	struct tcp_sock *tp;
641 	bool done = false;
642 	int sk_rbuf;
643 
644 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
645 
646 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
647 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
648 
649 		if (unlikely(ssk_rbuf > sk_rbuf)) {
650 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
651 			sk_rbuf = ssk_rbuf;
652 		}
653 	}
654 
655 	pr_debug("msk=%p ssk=%p", msk, ssk);
656 	tp = tcp_sk(ssk);
657 	do {
658 		u32 map_remaining, offset;
659 		u32 seq = tp->copied_seq;
660 		struct sk_buff *skb;
661 		bool fin;
662 
663 		/* try to move as much data as available */
664 		map_remaining = subflow->map_data_len -
665 				mptcp_subflow_get_map_offset(subflow);
666 
667 		skb = skb_peek(&ssk->sk_receive_queue);
668 		if (!skb) {
669 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
670 			 * a different CPU can have already processed the pending
671 			 * data, stop here or we can enter an infinite loop
672 			 */
673 			if (!moved)
674 				done = true;
675 			break;
676 		}
677 
678 		if (__mptcp_check_fallback(msk)) {
679 			/* Under fallback skbs have no MPTCP extension and TCP could
680 			 * collapse them between the dummy map creation and the
681 			 * current dequeue. Be sure to adjust the map size.
682 			 */
683 			map_remaining = skb->len;
684 			subflow->map_data_len = skb->len;
685 		}
686 
687 		offset = seq - TCP_SKB_CB(skb)->seq;
688 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
689 		if (fin) {
690 			done = true;
691 			seq++;
692 		}
693 
694 		if (offset < skb->len) {
695 			size_t len = skb->len - offset;
696 
697 			if (tp->urg_data)
698 				done = true;
699 
700 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
701 				moved += len;
702 			seq += len;
703 
704 			if (WARN_ON_ONCE(map_remaining < len))
705 				break;
706 		} else {
707 			WARN_ON_ONCE(!fin);
708 			sk_eat_skb(ssk, skb);
709 			done = true;
710 		}
711 
712 		WRITE_ONCE(tp->copied_seq, seq);
713 		more_data_avail = mptcp_subflow_data_available(ssk);
714 
715 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
716 			done = true;
717 			break;
718 		}
719 	} while (more_data_avail);
720 
721 	*bytes += moved;
722 	return done;
723 }
724 
725 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
726 {
727 	struct sock *sk = (struct sock *)msk;
728 	struct sk_buff *skb, *tail;
729 	bool moved = false;
730 	struct rb_node *p;
731 	u64 end_seq;
732 
733 	p = rb_first(&msk->out_of_order_queue);
734 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
735 	while (p) {
736 		skb = rb_to_skb(p);
737 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
738 			break;
739 
740 		p = rb_next(p);
741 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
742 
743 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
744 				      msk->ack_seq))) {
745 			mptcp_drop(sk, skb);
746 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
747 			continue;
748 		}
749 
750 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
751 		tail = skb_peek_tail(&sk->sk_receive_queue);
752 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
753 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
754 
755 			/* skip overlapping data, if any */
756 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
757 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
758 				 delta);
759 			MPTCP_SKB_CB(skb)->offset += delta;
760 			MPTCP_SKB_CB(skb)->map_seq += delta;
761 			__skb_queue_tail(&sk->sk_receive_queue, skb);
762 		}
763 		msk->ack_seq = end_seq;
764 		moved = true;
765 	}
766 	return moved;
767 }
768 
769 /* In most cases we will be able to lock the mptcp socket.  If its already
770  * owned, we need to defer to the work queue to avoid ABBA deadlock.
771  */
772 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
773 {
774 	struct sock *sk = (struct sock *)msk;
775 	unsigned int moved = 0;
776 
777 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
778 	__mptcp_ofo_queue(msk);
779 	if (unlikely(ssk->sk_err)) {
780 		if (!sock_owned_by_user(sk))
781 			__mptcp_error_report(sk);
782 		else
783 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
784 	}
785 
786 	/* If the moves have caught up with the DATA_FIN sequence number
787 	 * it's time to ack the DATA_FIN and change socket state, but
788 	 * this is not a good place to change state. Let the workqueue
789 	 * do it.
790 	 */
791 	if (mptcp_pending_data_fin(sk, NULL))
792 		mptcp_schedule_work(sk);
793 	return moved > 0;
794 }
795 
796 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
797 {
798 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
799 	struct mptcp_sock *msk = mptcp_sk(sk);
800 	int sk_rbuf, ssk_rbuf;
801 
802 	/* The peer can send data while we are shutting down this
803 	 * subflow at msk destruction time, but we must avoid enqueuing
804 	 * more data to the msk receive queue
805 	 */
806 	if (unlikely(subflow->disposable))
807 		return;
808 
809 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
810 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
811 	if (unlikely(ssk_rbuf > sk_rbuf))
812 		sk_rbuf = ssk_rbuf;
813 
814 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
815 	if (__mptcp_rmem(sk) > sk_rbuf) {
816 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
817 		return;
818 	}
819 
820 	/* Wake-up the reader only for in-sequence data */
821 	mptcp_data_lock(sk);
822 	if (move_skbs_to_msk(msk, ssk))
823 		sk->sk_data_ready(sk);
824 
825 	mptcp_data_unlock(sk);
826 }
827 
828 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
829 {
830 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
831 	WRITE_ONCE(msk->allow_infinite_fallback, false);
832 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
833 }
834 
835 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
836 {
837 	struct sock *sk = (struct sock *)msk;
838 
839 	if (sk->sk_state != TCP_ESTABLISHED)
840 		return false;
841 
842 	/* attach to msk socket only after we are sure we will deal with it
843 	 * at close time
844 	 */
845 	if (sk->sk_socket && !ssk->sk_socket)
846 		mptcp_sock_graft(ssk, sk->sk_socket);
847 
848 	mptcp_sockopt_sync_locked(msk, ssk);
849 	mptcp_subflow_joined(msk, ssk);
850 	return true;
851 }
852 
853 static void __mptcp_flush_join_list(struct sock *sk)
854 {
855 	struct mptcp_subflow_context *tmp, *subflow;
856 	struct mptcp_sock *msk = mptcp_sk(sk);
857 
858 	list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
859 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
860 		bool slow = lock_sock_fast(ssk);
861 
862 		list_move_tail(&subflow->node, &msk->conn_list);
863 		if (!__mptcp_finish_join(msk, ssk))
864 			mptcp_subflow_reset(ssk);
865 		unlock_sock_fast(ssk, slow);
866 	}
867 }
868 
869 static bool mptcp_timer_pending(struct sock *sk)
870 {
871 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
872 }
873 
874 static void mptcp_reset_timer(struct sock *sk)
875 {
876 	struct inet_connection_sock *icsk = inet_csk(sk);
877 	unsigned long tout;
878 
879 	/* prevent rescheduling on close */
880 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
881 		return;
882 
883 	tout = mptcp_sk(sk)->timer_ival;
884 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
885 }
886 
887 bool mptcp_schedule_work(struct sock *sk)
888 {
889 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
890 	    schedule_work(&mptcp_sk(sk)->work)) {
891 		/* each subflow already holds a reference to the sk, and the
892 		 * workqueue is invoked by a subflow, so sk can't go away here.
893 		 */
894 		sock_hold(sk);
895 		return true;
896 	}
897 	return false;
898 }
899 
900 void mptcp_subflow_eof(struct sock *sk)
901 {
902 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
903 		mptcp_schedule_work(sk);
904 }
905 
906 static void mptcp_check_for_eof(struct mptcp_sock *msk)
907 {
908 	struct mptcp_subflow_context *subflow;
909 	struct sock *sk = (struct sock *)msk;
910 	int receivers = 0;
911 
912 	mptcp_for_each_subflow(msk, subflow)
913 		receivers += !subflow->rx_eof;
914 	if (receivers)
915 		return;
916 
917 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
918 		/* hopefully temporary hack: propagate shutdown status
919 		 * to msk, when all subflows agree on it
920 		 */
921 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
922 
923 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
924 		sk->sk_data_ready(sk);
925 	}
926 
927 	switch (sk->sk_state) {
928 	case TCP_ESTABLISHED:
929 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
930 		break;
931 	case TCP_FIN_WAIT1:
932 		inet_sk_state_store(sk, TCP_CLOSING);
933 		break;
934 	case TCP_FIN_WAIT2:
935 		inet_sk_state_store(sk, TCP_CLOSE);
936 		break;
937 	default:
938 		return;
939 	}
940 	mptcp_close_wake_up(sk);
941 }
942 
943 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
944 {
945 	struct mptcp_subflow_context *subflow;
946 
947 	msk_owned_by_me(msk);
948 
949 	mptcp_for_each_subflow(msk, subflow) {
950 		if (READ_ONCE(subflow->data_avail))
951 			return mptcp_subflow_tcp_sock(subflow);
952 	}
953 
954 	return NULL;
955 }
956 
957 static bool mptcp_skb_can_collapse_to(u64 write_seq,
958 				      const struct sk_buff *skb,
959 				      const struct mptcp_ext *mpext)
960 {
961 	if (!tcp_skb_can_collapse_to(skb))
962 		return false;
963 
964 	/* can collapse only if MPTCP level sequence is in order and this
965 	 * mapping has not been xmitted yet
966 	 */
967 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
968 	       !mpext->frozen;
969 }
970 
971 /* we can append data to the given data frag if:
972  * - there is space available in the backing page_frag
973  * - the data frag tail matches the current page_frag free offset
974  * - the data frag end sequence number matches the current write seq
975  */
976 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
977 				       const struct page_frag *pfrag,
978 				       const struct mptcp_data_frag *df)
979 {
980 	return df && pfrag->page == df->page &&
981 		pfrag->size - pfrag->offset > 0 &&
982 		pfrag->offset == (df->offset + df->data_len) &&
983 		df->data_seq + df->data_len == msk->write_seq;
984 }
985 
986 static void dfrag_uncharge(struct sock *sk, int len)
987 {
988 	sk_mem_uncharge(sk, len);
989 	sk_wmem_queued_add(sk, -len);
990 }
991 
992 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
993 {
994 	int len = dfrag->data_len + dfrag->overhead;
995 
996 	list_del(&dfrag->list);
997 	dfrag_uncharge(sk, len);
998 	put_page(dfrag->page);
999 }
1000 
1001 static void __mptcp_clean_una(struct sock *sk)
1002 {
1003 	struct mptcp_sock *msk = mptcp_sk(sk);
1004 	struct mptcp_data_frag *dtmp, *dfrag;
1005 	u64 snd_una;
1006 
1007 	/* on fallback we just need to ignore snd_una, as this is really
1008 	 * plain TCP
1009 	 */
1010 	if (__mptcp_check_fallback(msk))
1011 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1012 
1013 	snd_una = msk->snd_una;
1014 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1015 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1016 			break;
1017 
1018 		if (unlikely(dfrag == msk->first_pending)) {
1019 			/* in recovery mode can see ack after the current snd head */
1020 			if (WARN_ON_ONCE(!msk->recovery))
1021 				break;
1022 
1023 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1024 		}
1025 
1026 		dfrag_clear(sk, dfrag);
1027 	}
1028 
1029 	dfrag = mptcp_rtx_head(sk);
1030 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1031 		u64 delta = snd_una - dfrag->data_seq;
1032 
1033 		/* prevent wrap around in recovery mode */
1034 		if (unlikely(delta > dfrag->already_sent)) {
1035 			if (WARN_ON_ONCE(!msk->recovery))
1036 				goto out;
1037 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1038 				goto out;
1039 			dfrag->already_sent += delta - dfrag->already_sent;
1040 		}
1041 
1042 		dfrag->data_seq += delta;
1043 		dfrag->offset += delta;
1044 		dfrag->data_len -= delta;
1045 		dfrag->already_sent -= delta;
1046 
1047 		dfrag_uncharge(sk, delta);
1048 	}
1049 
1050 	/* all retransmitted data acked, recovery completed */
1051 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1052 		msk->recovery = false;
1053 
1054 out:
1055 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1056 	    snd_una == READ_ONCE(msk->write_seq)) {
1057 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1058 			mptcp_stop_timer(sk);
1059 	} else {
1060 		mptcp_reset_timer(sk);
1061 	}
1062 }
1063 
1064 static void __mptcp_clean_una_wakeup(struct sock *sk)
1065 {
1066 	lockdep_assert_held_once(&sk->sk_lock.slock);
1067 
1068 	__mptcp_clean_una(sk);
1069 	mptcp_write_space(sk);
1070 }
1071 
1072 static void mptcp_clean_una_wakeup(struct sock *sk)
1073 {
1074 	mptcp_data_lock(sk);
1075 	__mptcp_clean_una_wakeup(sk);
1076 	mptcp_data_unlock(sk);
1077 }
1078 
1079 static void mptcp_enter_memory_pressure(struct sock *sk)
1080 {
1081 	struct mptcp_subflow_context *subflow;
1082 	struct mptcp_sock *msk = mptcp_sk(sk);
1083 	bool first = true;
1084 
1085 	sk_stream_moderate_sndbuf(sk);
1086 	mptcp_for_each_subflow(msk, subflow) {
1087 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1088 
1089 		if (first)
1090 			tcp_enter_memory_pressure(ssk);
1091 		sk_stream_moderate_sndbuf(ssk);
1092 		first = false;
1093 	}
1094 }
1095 
1096 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1097  * data
1098  */
1099 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1100 {
1101 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1102 					pfrag, sk->sk_allocation)))
1103 		return true;
1104 
1105 	mptcp_enter_memory_pressure(sk);
1106 	return false;
1107 }
1108 
1109 static struct mptcp_data_frag *
1110 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1111 		      int orig_offset)
1112 {
1113 	int offset = ALIGN(orig_offset, sizeof(long));
1114 	struct mptcp_data_frag *dfrag;
1115 
1116 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1117 	dfrag->data_len = 0;
1118 	dfrag->data_seq = msk->write_seq;
1119 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1120 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1121 	dfrag->already_sent = 0;
1122 	dfrag->page = pfrag->page;
1123 
1124 	return dfrag;
1125 }
1126 
1127 struct mptcp_sendmsg_info {
1128 	int mss_now;
1129 	int size_goal;
1130 	u16 limit;
1131 	u16 sent;
1132 	unsigned int flags;
1133 	bool data_lock_held;
1134 };
1135 
1136 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1137 				    u64 data_seq, int avail_size)
1138 {
1139 	u64 window_end = mptcp_wnd_end(msk);
1140 	u64 mptcp_snd_wnd;
1141 
1142 	if (__mptcp_check_fallback(msk))
1143 		return avail_size;
1144 
1145 	mptcp_snd_wnd = window_end - data_seq;
1146 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1147 
1148 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1149 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1150 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1151 	}
1152 
1153 	return avail_size;
1154 }
1155 
1156 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1157 {
1158 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1159 
1160 	if (!mpext)
1161 		return false;
1162 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1163 	return true;
1164 }
1165 
1166 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1167 {
1168 	struct sk_buff *skb;
1169 
1170 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1171 	if (likely(skb)) {
1172 		if (likely(__mptcp_add_ext(skb, gfp))) {
1173 			skb_reserve(skb, MAX_TCP_HEADER);
1174 			skb->ip_summed = CHECKSUM_PARTIAL;
1175 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1176 			return skb;
1177 		}
1178 		__kfree_skb(skb);
1179 	} else {
1180 		mptcp_enter_memory_pressure(sk);
1181 	}
1182 	return NULL;
1183 }
1184 
1185 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1186 {
1187 	struct sk_buff *skb;
1188 
1189 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1190 	if (!skb)
1191 		return NULL;
1192 
1193 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1194 		tcp_skb_entail(ssk, skb);
1195 		return skb;
1196 	}
1197 	tcp_skb_tsorted_anchor_cleanup(skb);
1198 	kfree_skb(skb);
1199 	return NULL;
1200 }
1201 
1202 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1203 {
1204 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1205 
1206 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1207 }
1208 
1209 /* note: this always recompute the csum on the whole skb, even
1210  * if we just appended a single frag. More status info needed
1211  */
1212 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1213 {
1214 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1215 	__wsum csum = ~csum_unfold(mpext->csum);
1216 	int offset = skb->len - added;
1217 
1218 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1219 }
1220 
1221 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1222 				      struct sock *ssk,
1223 				      struct mptcp_ext *mpext)
1224 {
1225 	if (!mpext)
1226 		return;
1227 
1228 	mpext->infinite_map = 1;
1229 	mpext->data_len = 0;
1230 
1231 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1232 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1233 	pr_fallback(msk);
1234 	mptcp_do_fallback(ssk);
1235 }
1236 
1237 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1238 			      struct mptcp_data_frag *dfrag,
1239 			      struct mptcp_sendmsg_info *info)
1240 {
1241 	u64 data_seq = dfrag->data_seq + info->sent;
1242 	int offset = dfrag->offset + info->sent;
1243 	struct mptcp_sock *msk = mptcp_sk(sk);
1244 	bool zero_window_probe = false;
1245 	struct mptcp_ext *mpext = NULL;
1246 	bool can_coalesce = false;
1247 	bool reuse_skb = true;
1248 	struct sk_buff *skb;
1249 	size_t copy;
1250 	int i;
1251 
1252 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1253 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1254 
1255 	if (WARN_ON_ONCE(info->sent > info->limit ||
1256 			 info->limit > dfrag->data_len))
1257 		return 0;
1258 
1259 	if (unlikely(!__tcp_can_send(ssk)))
1260 		return -EAGAIN;
1261 
1262 	/* compute send limit */
1263 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1264 	copy = info->size_goal;
1265 
1266 	skb = tcp_write_queue_tail(ssk);
1267 	if (skb && copy > skb->len) {
1268 		/* Limit the write to the size available in the
1269 		 * current skb, if any, so that we create at most a new skb.
1270 		 * Explicitly tells TCP internals to avoid collapsing on later
1271 		 * queue management operation, to avoid breaking the ext <->
1272 		 * SSN association set here
1273 		 */
1274 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1275 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1276 			TCP_SKB_CB(skb)->eor = 1;
1277 			goto alloc_skb;
1278 		}
1279 
1280 		i = skb_shinfo(skb)->nr_frags;
1281 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1282 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1283 			tcp_mark_push(tcp_sk(ssk), skb);
1284 			goto alloc_skb;
1285 		}
1286 
1287 		copy -= skb->len;
1288 	} else {
1289 alloc_skb:
1290 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1291 		if (!skb)
1292 			return -ENOMEM;
1293 
1294 		i = skb_shinfo(skb)->nr_frags;
1295 		reuse_skb = false;
1296 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1297 	}
1298 
1299 	/* Zero window and all data acked? Probe. */
1300 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1301 	if (copy == 0) {
1302 		u64 snd_una = READ_ONCE(msk->snd_una);
1303 
1304 		if (snd_una != msk->snd_nxt) {
1305 			tcp_remove_empty_skb(ssk);
1306 			return 0;
1307 		}
1308 
1309 		zero_window_probe = true;
1310 		data_seq = snd_una - 1;
1311 		copy = 1;
1312 
1313 		/* all mptcp-level data is acked, no skbs should be present into the
1314 		 * ssk write queue
1315 		 */
1316 		WARN_ON_ONCE(reuse_skb);
1317 	}
1318 
1319 	copy = min_t(size_t, copy, info->limit - info->sent);
1320 	if (!sk_wmem_schedule(ssk, copy)) {
1321 		tcp_remove_empty_skb(ssk);
1322 		return -ENOMEM;
1323 	}
1324 
1325 	if (can_coalesce) {
1326 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1327 	} else {
1328 		get_page(dfrag->page);
1329 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1330 	}
1331 
1332 	skb->len += copy;
1333 	skb->data_len += copy;
1334 	skb->truesize += copy;
1335 	sk_wmem_queued_add(ssk, copy);
1336 	sk_mem_charge(ssk, copy);
1337 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1338 	TCP_SKB_CB(skb)->end_seq += copy;
1339 	tcp_skb_pcount_set(skb, 0);
1340 
1341 	/* on skb reuse we just need to update the DSS len */
1342 	if (reuse_skb) {
1343 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1344 		mpext->data_len += copy;
1345 		WARN_ON_ONCE(zero_window_probe);
1346 		goto out;
1347 	}
1348 
1349 	memset(mpext, 0, sizeof(*mpext));
1350 	mpext->data_seq = data_seq;
1351 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1352 	mpext->data_len = copy;
1353 	mpext->use_map = 1;
1354 	mpext->dsn64 = 1;
1355 
1356 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1357 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1358 		 mpext->dsn64);
1359 
1360 	if (zero_window_probe) {
1361 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1362 		mpext->frozen = 1;
1363 		if (READ_ONCE(msk->csum_enabled))
1364 			mptcp_update_data_checksum(skb, copy);
1365 		tcp_push_pending_frames(ssk);
1366 		return 0;
1367 	}
1368 out:
1369 	if (READ_ONCE(msk->csum_enabled))
1370 		mptcp_update_data_checksum(skb, copy);
1371 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1372 		mptcp_update_infinite_map(msk, ssk, mpext);
1373 	trace_mptcp_sendmsg_frag(mpext);
1374 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1375 	return copy;
1376 }
1377 
1378 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1379 					 sizeof(struct tcphdr) - \
1380 					 MAX_TCP_OPTION_SPACE - \
1381 					 sizeof(struct ipv6hdr) - \
1382 					 sizeof(struct frag_hdr))
1383 
1384 struct subflow_send_info {
1385 	struct sock *ssk;
1386 	u64 linger_time;
1387 };
1388 
1389 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1390 {
1391 	if (!subflow->stale)
1392 		return;
1393 
1394 	subflow->stale = 0;
1395 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1396 }
1397 
1398 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1399 {
1400 	if (unlikely(subflow->stale)) {
1401 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1402 
1403 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1404 			return false;
1405 
1406 		mptcp_subflow_set_active(subflow);
1407 	}
1408 	return __mptcp_subflow_active(subflow);
1409 }
1410 
1411 #define SSK_MODE_ACTIVE	0
1412 #define SSK_MODE_BACKUP	1
1413 #define SSK_MODE_MAX	2
1414 
1415 /* implement the mptcp packet scheduler;
1416  * returns the subflow that will transmit the next DSS
1417  * additionally updates the rtx timeout
1418  */
1419 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1420 {
1421 	struct subflow_send_info send_info[SSK_MODE_MAX];
1422 	struct mptcp_subflow_context *subflow;
1423 	struct sock *sk = (struct sock *)msk;
1424 	u32 pace, burst, wmem;
1425 	int i, nr_active = 0;
1426 	struct sock *ssk;
1427 	u64 linger_time;
1428 	long tout = 0;
1429 
1430 	msk_owned_by_me(msk);
1431 
1432 	if (__mptcp_check_fallback(msk)) {
1433 		if (!msk->first)
1434 			return NULL;
1435 		return __tcp_can_send(msk->first) &&
1436 		       sk_stream_memory_free(msk->first) ? msk->first : NULL;
1437 	}
1438 
1439 	/* re-use last subflow, if the burst allow that */
1440 	if (msk->last_snd && msk->snd_burst > 0 &&
1441 	    sk_stream_memory_free(msk->last_snd) &&
1442 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1443 		mptcp_set_timeout(sk);
1444 		return msk->last_snd;
1445 	}
1446 
1447 	/* pick the subflow with the lower wmem/wspace ratio */
1448 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1449 		send_info[i].ssk = NULL;
1450 		send_info[i].linger_time = -1;
1451 	}
1452 
1453 	mptcp_for_each_subflow(msk, subflow) {
1454 		trace_mptcp_subflow_get_send(subflow);
1455 		ssk =  mptcp_subflow_tcp_sock(subflow);
1456 		if (!mptcp_subflow_active(subflow))
1457 			continue;
1458 
1459 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1460 		nr_active += !subflow->backup;
1461 		pace = subflow->avg_pacing_rate;
1462 		if (unlikely(!pace)) {
1463 			/* init pacing rate from socket */
1464 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1465 			pace = subflow->avg_pacing_rate;
1466 			if (!pace)
1467 				continue;
1468 		}
1469 
1470 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1471 		if (linger_time < send_info[subflow->backup].linger_time) {
1472 			send_info[subflow->backup].ssk = ssk;
1473 			send_info[subflow->backup].linger_time = linger_time;
1474 		}
1475 	}
1476 	__mptcp_set_timeout(sk, tout);
1477 
1478 	/* pick the best backup if no other subflow is active */
1479 	if (!nr_active)
1480 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1481 
1482 	/* According to the blest algorithm, to avoid HoL blocking for the
1483 	 * faster flow, we need to:
1484 	 * - estimate the faster flow linger time
1485 	 * - use the above to estimate the amount of byte transferred
1486 	 *   by the faster flow
1487 	 * - check that the amount of queued data is greter than the above,
1488 	 *   otherwise do not use the picked, slower, subflow
1489 	 * We select the subflow with the shorter estimated time to flush
1490 	 * the queued mem, which basically ensure the above. We just need
1491 	 * to check that subflow has a non empty cwin.
1492 	 */
1493 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1494 	if (!ssk || !sk_stream_memory_free(ssk))
1495 		return NULL;
1496 
1497 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1498 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1499 	if (!burst) {
1500 		msk->last_snd = NULL;
1501 		return ssk;
1502 	}
1503 
1504 	subflow = mptcp_subflow_ctx(ssk);
1505 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1506 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1507 					   burst + wmem);
1508 	msk->last_snd = ssk;
1509 	msk->snd_burst = burst;
1510 	return ssk;
1511 }
1512 
1513 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1514 {
1515 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1516 	release_sock(ssk);
1517 }
1518 
1519 static void mptcp_update_post_push(struct mptcp_sock *msk,
1520 				   struct mptcp_data_frag *dfrag,
1521 				   u32 sent)
1522 {
1523 	u64 snd_nxt_new = dfrag->data_seq;
1524 
1525 	dfrag->already_sent += sent;
1526 
1527 	msk->snd_burst -= sent;
1528 
1529 	snd_nxt_new += dfrag->already_sent;
1530 
1531 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1532 	 * is recovering after a failover. In that event, this re-sends
1533 	 * old segments.
1534 	 *
1535 	 * Thus compute snd_nxt_new candidate based on
1536 	 * the dfrag->data_seq that was sent and the data
1537 	 * that has been handed to the subflow for transmission
1538 	 * and skip update in case it was old dfrag.
1539 	 */
1540 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1541 		msk->snd_nxt = snd_nxt_new;
1542 }
1543 
1544 void mptcp_check_and_set_pending(struct sock *sk)
1545 {
1546 	if (mptcp_send_head(sk))
1547 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1548 }
1549 
1550 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1551 {
1552 	struct sock *prev_ssk = NULL, *ssk = NULL;
1553 	struct mptcp_sock *msk = mptcp_sk(sk);
1554 	struct mptcp_sendmsg_info info = {
1555 				.flags = flags,
1556 	};
1557 	bool do_check_data_fin = false;
1558 	struct mptcp_data_frag *dfrag;
1559 	int len;
1560 
1561 	while ((dfrag = mptcp_send_head(sk))) {
1562 		info.sent = dfrag->already_sent;
1563 		info.limit = dfrag->data_len;
1564 		len = dfrag->data_len - dfrag->already_sent;
1565 		while (len > 0) {
1566 			int ret = 0;
1567 
1568 			prev_ssk = ssk;
1569 			ssk = mptcp_subflow_get_send(msk);
1570 
1571 			/* First check. If the ssk has changed since
1572 			 * the last round, release prev_ssk
1573 			 */
1574 			if (ssk != prev_ssk && prev_ssk)
1575 				mptcp_push_release(prev_ssk, &info);
1576 			if (!ssk)
1577 				goto out;
1578 
1579 			/* Need to lock the new subflow only if different
1580 			 * from the previous one, otherwise we are still
1581 			 * helding the relevant lock
1582 			 */
1583 			if (ssk != prev_ssk)
1584 				lock_sock(ssk);
1585 
1586 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1587 			if (ret <= 0) {
1588 				if (ret == -EAGAIN)
1589 					continue;
1590 				mptcp_push_release(ssk, &info);
1591 				goto out;
1592 			}
1593 
1594 			do_check_data_fin = true;
1595 			info.sent += ret;
1596 			len -= ret;
1597 
1598 			mptcp_update_post_push(msk, dfrag, ret);
1599 		}
1600 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1601 	}
1602 
1603 	/* at this point we held the socket lock for the last subflow we used */
1604 	if (ssk)
1605 		mptcp_push_release(ssk, &info);
1606 
1607 out:
1608 	/* ensure the rtx timer is running */
1609 	if (!mptcp_timer_pending(sk))
1610 		mptcp_reset_timer(sk);
1611 	if (do_check_data_fin)
1612 		__mptcp_check_send_data_fin(sk);
1613 }
1614 
1615 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1616 {
1617 	struct mptcp_sock *msk = mptcp_sk(sk);
1618 	struct mptcp_sendmsg_info info = {
1619 		.data_lock_held = true,
1620 	};
1621 	struct mptcp_data_frag *dfrag;
1622 	struct sock *xmit_ssk;
1623 	int len, copied = 0;
1624 
1625 	info.flags = 0;
1626 	while ((dfrag = mptcp_send_head(sk))) {
1627 		info.sent = dfrag->already_sent;
1628 		info.limit = dfrag->data_len;
1629 		len = dfrag->data_len - dfrag->already_sent;
1630 		while (len > 0) {
1631 			int ret = 0;
1632 
1633 			/* check for a different subflow usage only after
1634 			 * spooling the first chunk of data
1635 			 */
1636 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(msk);
1637 			if (!xmit_ssk)
1638 				goto out;
1639 			if (xmit_ssk != ssk) {
1640 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1641 						       MPTCP_DELEGATE_SEND);
1642 				goto out;
1643 			}
1644 
1645 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1646 			if (ret <= 0)
1647 				goto out;
1648 
1649 			info.sent += ret;
1650 			copied += ret;
1651 			len -= ret;
1652 			first = false;
1653 
1654 			mptcp_update_post_push(msk, dfrag, ret);
1655 		}
1656 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1657 	}
1658 
1659 out:
1660 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1661 	 * not going to flush it via release_sock()
1662 	 */
1663 	if (copied) {
1664 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1665 			 info.size_goal);
1666 		if (!mptcp_timer_pending(sk))
1667 			mptcp_reset_timer(sk);
1668 
1669 		if (msk->snd_data_fin_enable &&
1670 		    msk->snd_nxt + 1 == msk->write_seq)
1671 			mptcp_schedule_work(sk);
1672 	}
1673 }
1674 
1675 static void mptcp_set_nospace(struct sock *sk)
1676 {
1677 	/* enable autotune */
1678 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1679 
1680 	/* will be cleared on avail space */
1681 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1682 }
1683 
1684 static int mptcp_disconnect(struct sock *sk, int flags);
1685 
1686 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1687 				  size_t len, int *copied_syn)
1688 {
1689 	unsigned int saved_flags = msg->msg_flags;
1690 	struct mptcp_sock *msk = mptcp_sk(sk);
1691 	struct socket *ssock;
1692 	struct sock *ssk;
1693 	int ret;
1694 
1695 	/* on flags based fastopen the mptcp is supposed to create the
1696 	 * first subflow right now. Otherwise we are in the defer_connect
1697 	 * path, and the first subflow must be already present.
1698 	 * Since the defer_connect flag is cleared after the first succsful
1699 	 * fastopen attempt, no need to check for additional subflow status.
1700 	 */
1701 	if (msg->msg_flags & MSG_FASTOPEN) {
1702 		ssock = __mptcp_nmpc_socket(msk);
1703 		if (IS_ERR(ssock))
1704 			return PTR_ERR(ssock);
1705 	}
1706 	if (!msk->first)
1707 		return -EINVAL;
1708 
1709 	ssk = msk->first;
1710 
1711 	lock_sock(ssk);
1712 	msg->msg_flags |= MSG_DONTWAIT;
1713 	msk->fastopening = 1;
1714 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1715 	msk->fastopening = 0;
1716 	msg->msg_flags = saved_flags;
1717 	release_sock(ssk);
1718 
1719 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1720 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1721 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1722 					    msg->msg_namelen, msg->msg_flags, 1);
1723 
1724 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1725 		 * case of any error, except timeout or signal
1726 		 */
1727 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1728 			*copied_syn = 0;
1729 	} else if (ret && ret != -EINPROGRESS) {
1730 		mptcp_disconnect(sk, 0);
1731 	}
1732 	inet_sk(sk)->defer_connect = 0;
1733 
1734 	return ret;
1735 }
1736 
1737 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1738 {
1739 	struct mptcp_sock *msk = mptcp_sk(sk);
1740 	struct page_frag *pfrag;
1741 	size_t copied = 0;
1742 	int ret = 0;
1743 	long timeo;
1744 
1745 	/* silently ignore everything else */
1746 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1747 
1748 	lock_sock(sk);
1749 
1750 	if (unlikely(inet_sk(sk)->defer_connect || msg->msg_flags & MSG_FASTOPEN)) {
1751 		int copied_syn = 0;
1752 
1753 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1754 		copied += copied_syn;
1755 		if (ret == -EINPROGRESS && copied_syn > 0)
1756 			goto out;
1757 		else if (ret)
1758 			goto do_error;
1759 	}
1760 
1761 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1762 
1763 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1764 		ret = sk_stream_wait_connect(sk, &timeo);
1765 		if (ret)
1766 			goto do_error;
1767 	}
1768 
1769 	ret = -EPIPE;
1770 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1771 		goto do_error;
1772 
1773 	pfrag = sk_page_frag(sk);
1774 
1775 	while (msg_data_left(msg)) {
1776 		int total_ts, frag_truesize = 0;
1777 		struct mptcp_data_frag *dfrag;
1778 		bool dfrag_collapsed;
1779 		size_t psize, offset;
1780 
1781 		/* reuse tail pfrag, if possible, or carve a new one from the
1782 		 * page allocator
1783 		 */
1784 		dfrag = mptcp_pending_tail(sk);
1785 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1786 		if (!dfrag_collapsed) {
1787 			if (!sk_stream_memory_free(sk))
1788 				goto wait_for_memory;
1789 
1790 			if (!mptcp_page_frag_refill(sk, pfrag))
1791 				goto wait_for_memory;
1792 
1793 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1794 			frag_truesize = dfrag->overhead;
1795 		}
1796 
1797 		/* we do not bound vs wspace, to allow a single packet.
1798 		 * memory accounting will prevent execessive memory usage
1799 		 * anyway
1800 		 */
1801 		offset = dfrag->offset + dfrag->data_len;
1802 		psize = pfrag->size - offset;
1803 		psize = min_t(size_t, psize, msg_data_left(msg));
1804 		total_ts = psize + frag_truesize;
1805 
1806 		if (!sk_wmem_schedule(sk, total_ts))
1807 			goto wait_for_memory;
1808 
1809 		if (copy_page_from_iter(dfrag->page, offset, psize,
1810 					&msg->msg_iter) != psize) {
1811 			ret = -EFAULT;
1812 			goto do_error;
1813 		}
1814 
1815 		/* data successfully copied into the write queue */
1816 		sk->sk_forward_alloc -= total_ts;
1817 		copied += psize;
1818 		dfrag->data_len += psize;
1819 		frag_truesize += psize;
1820 		pfrag->offset += frag_truesize;
1821 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1822 
1823 		/* charge data on mptcp pending queue to the msk socket
1824 		 * Note: we charge such data both to sk and ssk
1825 		 */
1826 		sk_wmem_queued_add(sk, frag_truesize);
1827 		if (!dfrag_collapsed) {
1828 			get_page(dfrag->page);
1829 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1830 			if (!msk->first_pending)
1831 				WRITE_ONCE(msk->first_pending, dfrag);
1832 		}
1833 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1834 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1835 			 !dfrag_collapsed);
1836 
1837 		continue;
1838 
1839 wait_for_memory:
1840 		mptcp_set_nospace(sk);
1841 		__mptcp_push_pending(sk, msg->msg_flags);
1842 		ret = sk_stream_wait_memory(sk, &timeo);
1843 		if (ret)
1844 			goto do_error;
1845 	}
1846 
1847 	if (copied)
1848 		__mptcp_push_pending(sk, msg->msg_flags);
1849 
1850 out:
1851 	release_sock(sk);
1852 	return copied;
1853 
1854 do_error:
1855 	if (copied)
1856 		goto out;
1857 
1858 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1859 	goto out;
1860 }
1861 
1862 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1863 				struct msghdr *msg,
1864 				size_t len, int flags,
1865 				struct scm_timestamping_internal *tss,
1866 				int *cmsg_flags)
1867 {
1868 	struct sk_buff *skb, *tmp;
1869 	int copied = 0;
1870 
1871 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1872 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1873 		u32 data_len = skb->len - offset;
1874 		u32 count = min_t(size_t, len - copied, data_len);
1875 		int err;
1876 
1877 		if (!(flags & MSG_TRUNC)) {
1878 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1879 			if (unlikely(err < 0)) {
1880 				if (!copied)
1881 					return err;
1882 				break;
1883 			}
1884 		}
1885 
1886 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1887 			tcp_update_recv_tstamps(skb, tss);
1888 			*cmsg_flags |= MPTCP_CMSG_TS;
1889 		}
1890 
1891 		copied += count;
1892 
1893 		if (count < data_len) {
1894 			if (!(flags & MSG_PEEK)) {
1895 				MPTCP_SKB_CB(skb)->offset += count;
1896 				MPTCP_SKB_CB(skb)->map_seq += count;
1897 			}
1898 			break;
1899 		}
1900 
1901 		if (!(flags & MSG_PEEK)) {
1902 			/* we will bulk release the skb memory later */
1903 			skb->destructor = NULL;
1904 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1905 			__skb_unlink(skb, &msk->receive_queue);
1906 			__kfree_skb(skb);
1907 		}
1908 
1909 		if (copied >= len)
1910 			break;
1911 	}
1912 
1913 	return copied;
1914 }
1915 
1916 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1917  *
1918  * Only difference: Use highest rtt estimate of the subflows in use.
1919  */
1920 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1921 {
1922 	struct mptcp_subflow_context *subflow;
1923 	struct sock *sk = (struct sock *)msk;
1924 	u32 time, advmss = 1;
1925 	u64 rtt_us, mstamp;
1926 
1927 	msk_owned_by_me(msk);
1928 
1929 	if (copied <= 0)
1930 		return;
1931 
1932 	msk->rcvq_space.copied += copied;
1933 
1934 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1935 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1936 
1937 	rtt_us = msk->rcvq_space.rtt_us;
1938 	if (rtt_us && time < (rtt_us >> 3))
1939 		return;
1940 
1941 	rtt_us = 0;
1942 	mptcp_for_each_subflow(msk, subflow) {
1943 		const struct tcp_sock *tp;
1944 		u64 sf_rtt_us;
1945 		u32 sf_advmss;
1946 
1947 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1948 
1949 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1950 		sf_advmss = READ_ONCE(tp->advmss);
1951 
1952 		rtt_us = max(sf_rtt_us, rtt_us);
1953 		advmss = max(sf_advmss, advmss);
1954 	}
1955 
1956 	msk->rcvq_space.rtt_us = rtt_us;
1957 	if (time < (rtt_us >> 3) || rtt_us == 0)
1958 		return;
1959 
1960 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1961 		goto new_measure;
1962 
1963 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1964 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1965 		int rcvmem, rcvbuf;
1966 		u64 rcvwin, grow;
1967 
1968 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1969 
1970 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1971 
1972 		do_div(grow, msk->rcvq_space.space);
1973 		rcvwin += (grow << 1);
1974 
1975 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1976 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1977 			rcvmem += 128;
1978 
1979 		do_div(rcvwin, advmss);
1980 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1981 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1982 
1983 		if (rcvbuf > sk->sk_rcvbuf) {
1984 			u32 window_clamp;
1985 
1986 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1987 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1988 
1989 			/* Make subflows follow along.  If we do not do this, we
1990 			 * get drops at subflow level if skbs can't be moved to
1991 			 * the mptcp rx queue fast enough (announced rcv_win can
1992 			 * exceed ssk->sk_rcvbuf).
1993 			 */
1994 			mptcp_for_each_subflow(msk, subflow) {
1995 				struct sock *ssk;
1996 				bool slow;
1997 
1998 				ssk = mptcp_subflow_tcp_sock(subflow);
1999 				slow = lock_sock_fast(ssk);
2000 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2001 				tcp_sk(ssk)->window_clamp = window_clamp;
2002 				tcp_cleanup_rbuf(ssk, 1);
2003 				unlock_sock_fast(ssk, slow);
2004 			}
2005 		}
2006 	}
2007 
2008 	msk->rcvq_space.space = msk->rcvq_space.copied;
2009 new_measure:
2010 	msk->rcvq_space.copied = 0;
2011 	msk->rcvq_space.time = mstamp;
2012 }
2013 
2014 static void __mptcp_update_rmem(struct sock *sk)
2015 {
2016 	struct mptcp_sock *msk = mptcp_sk(sk);
2017 
2018 	if (!msk->rmem_released)
2019 		return;
2020 
2021 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2022 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2023 	WRITE_ONCE(msk->rmem_released, 0);
2024 }
2025 
2026 static void __mptcp_splice_receive_queue(struct sock *sk)
2027 {
2028 	struct mptcp_sock *msk = mptcp_sk(sk);
2029 
2030 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2031 }
2032 
2033 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2034 {
2035 	struct sock *sk = (struct sock *)msk;
2036 	unsigned int moved = 0;
2037 	bool ret, done;
2038 
2039 	do {
2040 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2041 		bool slowpath;
2042 
2043 		/* we can have data pending in the subflows only if the msk
2044 		 * receive buffer was full at subflow_data_ready() time,
2045 		 * that is an unlikely slow path.
2046 		 */
2047 		if (likely(!ssk))
2048 			break;
2049 
2050 		slowpath = lock_sock_fast(ssk);
2051 		mptcp_data_lock(sk);
2052 		__mptcp_update_rmem(sk);
2053 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2054 		mptcp_data_unlock(sk);
2055 
2056 		if (unlikely(ssk->sk_err))
2057 			__mptcp_error_report(sk);
2058 		unlock_sock_fast(ssk, slowpath);
2059 	} while (!done);
2060 
2061 	/* acquire the data lock only if some input data is pending */
2062 	ret = moved > 0;
2063 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2064 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2065 		mptcp_data_lock(sk);
2066 		__mptcp_update_rmem(sk);
2067 		ret |= __mptcp_ofo_queue(msk);
2068 		__mptcp_splice_receive_queue(sk);
2069 		mptcp_data_unlock(sk);
2070 	}
2071 	if (ret)
2072 		mptcp_check_data_fin((struct sock *)msk);
2073 	return !skb_queue_empty(&msk->receive_queue);
2074 }
2075 
2076 static unsigned int mptcp_inq_hint(const struct sock *sk)
2077 {
2078 	const struct mptcp_sock *msk = mptcp_sk(sk);
2079 	const struct sk_buff *skb;
2080 
2081 	skb = skb_peek(&msk->receive_queue);
2082 	if (skb) {
2083 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2084 
2085 		if (hint_val >= INT_MAX)
2086 			return INT_MAX;
2087 
2088 		return (unsigned int)hint_val;
2089 	}
2090 
2091 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2092 		return 1;
2093 
2094 	return 0;
2095 }
2096 
2097 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2098 			 int flags, int *addr_len)
2099 {
2100 	struct mptcp_sock *msk = mptcp_sk(sk);
2101 	struct scm_timestamping_internal tss;
2102 	int copied = 0, cmsg_flags = 0;
2103 	int target;
2104 	long timeo;
2105 
2106 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2107 	if (unlikely(flags & MSG_ERRQUEUE))
2108 		return inet_recv_error(sk, msg, len, addr_len);
2109 
2110 	lock_sock(sk);
2111 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2112 		copied = -ENOTCONN;
2113 		goto out_err;
2114 	}
2115 
2116 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2117 
2118 	len = min_t(size_t, len, INT_MAX);
2119 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2120 
2121 	if (unlikely(msk->recvmsg_inq))
2122 		cmsg_flags = MPTCP_CMSG_INQ;
2123 
2124 	while (copied < len) {
2125 		int bytes_read;
2126 
2127 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2128 		if (unlikely(bytes_read < 0)) {
2129 			if (!copied)
2130 				copied = bytes_read;
2131 			goto out_err;
2132 		}
2133 
2134 		copied += bytes_read;
2135 
2136 		/* be sure to advertise window change */
2137 		mptcp_cleanup_rbuf(msk);
2138 
2139 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2140 			continue;
2141 
2142 		/* only the master socket status is relevant here. The exit
2143 		 * conditions mirror closely tcp_recvmsg()
2144 		 */
2145 		if (copied >= target)
2146 			break;
2147 
2148 		if (copied) {
2149 			if (sk->sk_err ||
2150 			    sk->sk_state == TCP_CLOSE ||
2151 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2152 			    !timeo ||
2153 			    signal_pending(current))
2154 				break;
2155 		} else {
2156 			if (sk->sk_err) {
2157 				copied = sock_error(sk);
2158 				break;
2159 			}
2160 
2161 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2162 				mptcp_check_for_eof(msk);
2163 
2164 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2165 				/* race breaker: the shutdown could be after the
2166 				 * previous receive queue check
2167 				 */
2168 				if (__mptcp_move_skbs(msk))
2169 					continue;
2170 				break;
2171 			}
2172 
2173 			if (sk->sk_state == TCP_CLOSE) {
2174 				copied = -ENOTCONN;
2175 				break;
2176 			}
2177 
2178 			if (!timeo) {
2179 				copied = -EAGAIN;
2180 				break;
2181 			}
2182 
2183 			if (signal_pending(current)) {
2184 				copied = sock_intr_errno(timeo);
2185 				break;
2186 			}
2187 		}
2188 
2189 		pr_debug("block timeout %ld", timeo);
2190 		sk_wait_data(sk, &timeo, NULL);
2191 	}
2192 
2193 out_err:
2194 	if (cmsg_flags && copied >= 0) {
2195 		if (cmsg_flags & MPTCP_CMSG_TS)
2196 			tcp_recv_timestamp(msg, sk, &tss);
2197 
2198 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2199 			unsigned int inq = mptcp_inq_hint(sk);
2200 
2201 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2202 		}
2203 	}
2204 
2205 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2206 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2207 		 skb_queue_empty(&msk->receive_queue), copied);
2208 	if (!(flags & MSG_PEEK))
2209 		mptcp_rcv_space_adjust(msk, copied);
2210 
2211 	release_sock(sk);
2212 	return copied;
2213 }
2214 
2215 static void mptcp_retransmit_timer(struct timer_list *t)
2216 {
2217 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2218 						       icsk_retransmit_timer);
2219 	struct sock *sk = &icsk->icsk_inet.sk;
2220 	struct mptcp_sock *msk = mptcp_sk(sk);
2221 
2222 	bh_lock_sock(sk);
2223 	if (!sock_owned_by_user(sk)) {
2224 		/* we need a process context to retransmit */
2225 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2226 			mptcp_schedule_work(sk);
2227 	} else {
2228 		/* delegate our work to tcp_release_cb() */
2229 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2230 	}
2231 	bh_unlock_sock(sk);
2232 	sock_put(sk);
2233 }
2234 
2235 static void mptcp_timeout_timer(struct timer_list *t)
2236 {
2237 	struct sock *sk = from_timer(sk, t, sk_timer);
2238 
2239 	mptcp_schedule_work(sk);
2240 	sock_put(sk);
2241 }
2242 
2243 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2244  * level.
2245  *
2246  * A backup subflow is returned only if that is the only kind available.
2247  */
2248 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2249 {
2250 	struct sock *backup = NULL, *pick = NULL;
2251 	struct mptcp_subflow_context *subflow;
2252 	int min_stale_count = INT_MAX;
2253 
2254 	msk_owned_by_me(msk);
2255 
2256 	if (__mptcp_check_fallback(msk))
2257 		return NULL;
2258 
2259 	mptcp_for_each_subflow(msk, subflow) {
2260 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2261 
2262 		if (!__mptcp_subflow_active(subflow))
2263 			continue;
2264 
2265 		/* still data outstanding at TCP level? skip this */
2266 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2267 			mptcp_pm_subflow_chk_stale(msk, ssk);
2268 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2269 			continue;
2270 		}
2271 
2272 		if (subflow->backup) {
2273 			if (!backup)
2274 				backup = ssk;
2275 			continue;
2276 		}
2277 
2278 		if (!pick)
2279 			pick = ssk;
2280 	}
2281 
2282 	if (pick)
2283 		return pick;
2284 
2285 	/* use backup only if there are no progresses anywhere */
2286 	return min_stale_count > 1 ? backup : NULL;
2287 }
2288 
2289 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2290 {
2291 	if (msk->subflow) {
2292 		iput(SOCK_INODE(msk->subflow));
2293 		WRITE_ONCE(msk->subflow, NULL);
2294 	}
2295 }
2296 
2297 bool __mptcp_retransmit_pending_data(struct sock *sk)
2298 {
2299 	struct mptcp_data_frag *cur, *rtx_head;
2300 	struct mptcp_sock *msk = mptcp_sk(sk);
2301 
2302 	if (__mptcp_check_fallback(msk))
2303 		return false;
2304 
2305 	if (tcp_rtx_and_write_queues_empty(sk))
2306 		return false;
2307 
2308 	/* the closing socket has some data untransmitted and/or unacked:
2309 	 * some data in the mptcp rtx queue has not really xmitted yet.
2310 	 * keep it simple and re-inject the whole mptcp level rtx queue
2311 	 */
2312 	mptcp_data_lock(sk);
2313 	__mptcp_clean_una_wakeup(sk);
2314 	rtx_head = mptcp_rtx_head(sk);
2315 	if (!rtx_head) {
2316 		mptcp_data_unlock(sk);
2317 		return false;
2318 	}
2319 
2320 	msk->recovery_snd_nxt = msk->snd_nxt;
2321 	msk->recovery = true;
2322 	mptcp_data_unlock(sk);
2323 
2324 	msk->first_pending = rtx_head;
2325 	msk->snd_burst = 0;
2326 
2327 	/* be sure to clear the "sent status" on all re-injected fragments */
2328 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2329 		if (!cur->already_sent)
2330 			break;
2331 		cur->already_sent = 0;
2332 	}
2333 
2334 	return true;
2335 }
2336 
2337 /* flags for __mptcp_close_ssk() */
2338 #define MPTCP_CF_PUSH		BIT(1)
2339 #define MPTCP_CF_FASTCLOSE	BIT(2)
2340 
2341 /* subflow sockets can be either outgoing (connect) or incoming
2342  * (accept).
2343  *
2344  * Outgoing subflows use in-kernel sockets.
2345  * Incoming subflows do not have their own 'struct socket' allocated,
2346  * so we need to use tcp_close() after detaching them from the mptcp
2347  * parent socket.
2348  */
2349 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2350 			      struct mptcp_subflow_context *subflow,
2351 			      unsigned int flags)
2352 {
2353 	struct mptcp_sock *msk = mptcp_sk(sk);
2354 	bool dispose_it, need_push = false;
2355 
2356 	/* If the first subflow moved to a close state before accept, e.g. due
2357 	 * to an incoming reset, mptcp either:
2358 	 * - if either the subflow or the msk are dead, destroy the context
2359 	 *   (the subflow socket is deleted by inet_child_forget) and the msk
2360 	 * - otherwise do nothing at the moment and take action at accept and/or
2361 	 *   listener shutdown - user-space must be able to accept() the closed
2362 	 *   socket.
2363 	 */
2364 	if (msk->in_accept_queue && msk->first == ssk) {
2365 		if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD))
2366 			return;
2367 
2368 		/* ensure later check in mptcp_worker() will dispose the msk */
2369 		sock_set_flag(sk, SOCK_DEAD);
2370 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2371 		mptcp_subflow_drop_ctx(ssk);
2372 		goto out_release;
2373 	}
2374 
2375 	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2376 	if (dispose_it)
2377 		list_del(&subflow->node);
2378 
2379 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2380 
2381 	if (flags & MPTCP_CF_FASTCLOSE) {
2382 		/* be sure to force the tcp_disconnect() path,
2383 		 * to generate the egress reset
2384 		 */
2385 		ssk->sk_lingertime = 0;
2386 		sock_set_flag(ssk, SOCK_LINGER);
2387 		subflow->send_fastclose = 1;
2388 	}
2389 
2390 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2391 	if (!dispose_it) {
2392 		tcp_disconnect(ssk, 0);
2393 		msk->subflow->state = SS_UNCONNECTED;
2394 		mptcp_subflow_ctx_reset(subflow);
2395 		release_sock(ssk);
2396 
2397 		goto out;
2398 	}
2399 
2400 	subflow->disposable = 1;
2401 
2402 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2403 	 * the ssk has been already destroyed, we just need to release the
2404 	 * reference owned by msk;
2405 	 */
2406 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2407 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2408 		kfree_rcu(subflow, rcu);
2409 	} else {
2410 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2411 		if (ssk->sk_state == TCP_LISTEN) {
2412 			tcp_set_state(ssk, TCP_CLOSE);
2413 			mptcp_subflow_queue_clean(sk, ssk);
2414 			inet_csk_listen_stop(ssk);
2415 			mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2416 		}
2417 
2418 		__tcp_close(ssk, 0);
2419 
2420 		/* close acquired an extra ref */
2421 		__sock_put(ssk);
2422 	}
2423 
2424 out_release:
2425 	release_sock(ssk);
2426 
2427 	sock_put(ssk);
2428 
2429 	if (ssk == msk->first)
2430 		WRITE_ONCE(msk->first, NULL);
2431 
2432 out:
2433 	if (ssk == msk->last_snd)
2434 		msk->last_snd = NULL;
2435 
2436 	if (need_push)
2437 		__mptcp_push_pending(sk, 0);
2438 }
2439 
2440 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2441 		     struct mptcp_subflow_context *subflow)
2442 {
2443 	if (sk->sk_state == TCP_ESTABLISHED)
2444 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2445 
2446 	/* subflow aborted before reaching the fully_established status
2447 	 * attempt the creation of the next subflow
2448 	 */
2449 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2450 
2451 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2452 }
2453 
2454 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2455 {
2456 	return 0;
2457 }
2458 
2459 static void __mptcp_close_subflow(struct sock *sk)
2460 {
2461 	struct mptcp_subflow_context *subflow, *tmp;
2462 	struct mptcp_sock *msk = mptcp_sk(sk);
2463 
2464 	might_sleep();
2465 
2466 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2467 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2468 
2469 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2470 			continue;
2471 
2472 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2473 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2474 			continue;
2475 
2476 		mptcp_close_ssk(sk, ssk, subflow);
2477 	}
2478 
2479 }
2480 
2481 static bool mptcp_should_close(const struct sock *sk)
2482 {
2483 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2484 	struct mptcp_subflow_context *subflow;
2485 
2486 	if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue)
2487 		return true;
2488 
2489 	/* if all subflows are in closed status don't bother with additional
2490 	 * timeout
2491 	 */
2492 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2493 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2494 		    TCP_CLOSE)
2495 			return false;
2496 	}
2497 	return true;
2498 }
2499 
2500 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2501 {
2502 	struct mptcp_subflow_context *subflow, *tmp;
2503 	struct sock *sk = (struct sock *)msk;
2504 
2505 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2506 		return;
2507 
2508 	mptcp_token_destroy(msk);
2509 
2510 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2511 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2512 		bool slow;
2513 
2514 		slow = lock_sock_fast(tcp_sk);
2515 		if (tcp_sk->sk_state != TCP_CLOSE) {
2516 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2517 			tcp_set_state(tcp_sk, TCP_CLOSE);
2518 		}
2519 		unlock_sock_fast(tcp_sk, slow);
2520 	}
2521 
2522 	/* Mirror the tcp_reset() error propagation */
2523 	switch (sk->sk_state) {
2524 	case TCP_SYN_SENT:
2525 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2526 		break;
2527 	case TCP_CLOSE_WAIT:
2528 		WRITE_ONCE(sk->sk_err, EPIPE);
2529 		break;
2530 	case TCP_CLOSE:
2531 		return;
2532 	default:
2533 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2534 	}
2535 
2536 	inet_sk_state_store(sk, TCP_CLOSE);
2537 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2538 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2539 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2540 
2541 	/* the calling mptcp_worker will properly destroy the socket */
2542 	if (sock_flag(sk, SOCK_DEAD))
2543 		return;
2544 
2545 	sk->sk_state_change(sk);
2546 	sk_error_report(sk);
2547 }
2548 
2549 static void __mptcp_retrans(struct sock *sk)
2550 {
2551 	struct mptcp_sock *msk = mptcp_sk(sk);
2552 	struct mptcp_sendmsg_info info = {};
2553 	struct mptcp_data_frag *dfrag;
2554 	size_t copied = 0;
2555 	struct sock *ssk;
2556 	int ret;
2557 
2558 	mptcp_clean_una_wakeup(sk);
2559 
2560 	/* first check ssk: need to kick "stale" logic */
2561 	ssk = mptcp_subflow_get_retrans(msk);
2562 	dfrag = mptcp_rtx_head(sk);
2563 	if (!dfrag) {
2564 		if (mptcp_data_fin_enabled(msk)) {
2565 			struct inet_connection_sock *icsk = inet_csk(sk);
2566 
2567 			icsk->icsk_retransmits++;
2568 			mptcp_set_datafin_timeout(sk);
2569 			mptcp_send_ack(msk);
2570 
2571 			goto reset_timer;
2572 		}
2573 
2574 		if (!mptcp_send_head(sk))
2575 			return;
2576 
2577 		goto reset_timer;
2578 	}
2579 
2580 	if (!ssk)
2581 		goto reset_timer;
2582 
2583 	lock_sock(ssk);
2584 
2585 	/* limit retransmission to the bytes already sent on some subflows */
2586 	info.sent = 0;
2587 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2588 	while (info.sent < info.limit) {
2589 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2590 		if (ret <= 0)
2591 			break;
2592 
2593 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2594 		copied += ret;
2595 		info.sent += ret;
2596 	}
2597 	if (copied) {
2598 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2599 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2600 			 info.size_goal);
2601 		WRITE_ONCE(msk->allow_infinite_fallback, false);
2602 	}
2603 
2604 	release_sock(ssk);
2605 
2606 reset_timer:
2607 	mptcp_check_and_set_pending(sk);
2608 
2609 	if (!mptcp_timer_pending(sk))
2610 		mptcp_reset_timer(sk);
2611 }
2612 
2613 /* schedule the timeout timer for the relevant event: either close timeout
2614  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2615  */
2616 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2617 {
2618 	struct sock *sk = (struct sock *)msk;
2619 	unsigned long timeout, close_timeout;
2620 
2621 	if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2622 		return;
2623 
2624 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2625 
2626 	/* the close timeout takes precedence on the fail one, and here at least one of
2627 	 * them is active
2628 	 */
2629 	timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2630 
2631 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2632 }
2633 
2634 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2635 {
2636 	struct sock *ssk = msk->first;
2637 	bool slow;
2638 
2639 	if (!ssk)
2640 		return;
2641 
2642 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2643 
2644 	slow = lock_sock_fast(ssk);
2645 	mptcp_subflow_reset(ssk);
2646 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2647 	unlock_sock_fast(ssk, slow);
2648 
2649 	mptcp_reset_timeout(msk, 0);
2650 }
2651 
2652 static void mptcp_do_fastclose(struct sock *sk)
2653 {
2654 	struct mptcp_subflow_context *subflow, *tmp;
2655 	struct mptcp_sock *msk = mptcp_sk(sk);
2656 
2657 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2658 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2659 				  subflow, MPTCP_CF_FASTCLOSE);
2660 }
2661 
2662 static void mptcp_worker(struct work_struct *work)
2663 {
2664 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2665 	struct sock *sk = (struct sock *)msk;
2666 	unsigned long fail_tout;
2667 	int state;
2668 
2669 	lock_sock(sk);
2670 	state = sk->sk_state;
2671 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2672 		goto unlock;
2673 
2674 	mptcp_check_data_fin_ack(sk);
2675 
2676 	mptcp_check_fastclose(msk);
2677 
2678 	mptcp_pm_nl_work(msk);
2679 
2680 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2681 		mptcp_check_for_eof(msk);
2682 
2683 	__mptcp_check_send_data_fin(sk);
2684 	mptcp_check_data_fin(sk);
2685 
2686 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2687 		__mptcp_close_subflow(sk);
2688 
2689 	/* There is no point in keeping around an orphaned sk timedout or
2690 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2691 	 * even if it is orphaned and in FIN_WAIT2 state
2692 	 */
2693 	if (sock_flag(sk, SOCK_DEAD)) {
2694 		if (mptcp_should_close(sk)) {
2695 			inet_sk_state_store(sk, TCP_CLOSE);
2696 			mptcp_do_fastclose(sk);
2697 		}
2698 		if (sk->sk_state == TCP_CLOSE) {
2699 			__mptcp_destroy_sock(sk);
2700 			goto unlock;
2701 		}
2702 	}
2703 
2704 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2705 		__mptcp_retrans(sk);
2706 
2707 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2708 	if (fail_tout && time_after(jiffies, fail_tout))
2709 		mptcp_mp_fail_no_response(msk);
2710 
2711 unlock:
2712 	release_sock(sk);
2713 	sock_put(sk);
2714 }
2715 
2716 static int __mptcp_init_sock(struct sock *sk)
2717 {
2718 	struct mptcp_sock *msk = mptcp_sk(sk);
2719 
2720 	INIT_LIST_HEAD(&msk->conn_list);
2721 	INIT_LIST_HEAD(&msk->join_list);
2722 	INIT_LIST_HEAD(&msk->rtx_queue);
2723 	INIT_WORK(&msk->work, mptcp_worker);
2724 	__skb_queue_head_init(&msk->receive_queue);
2725 	msk->out_of_order_queue = RB_ROOT;
2726 	msk->first_pending = NULL;
2727 	msk->rmem_fwd_alloc = 0;
2728 	WRITE_ONCE(msk->rmem_released, 0);
2729 	msk->timer_ival = TCP_RTO_MIN;
2730 
2731 	WRITE_ONCE(msk->first, NULL);
2732 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2733 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2734 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2735 	msk->recovery = false;
2736 
2737 	mptcp_pm_data_init(msk);
2738 
2739 	/* re-use the csk retrans timer for MPTCP-level retrans */
2740 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2741 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2742 
2743 	return 0;
2744 }
2745 
2746 static void mptcp_ca_reset(struct sock *sk)
2747 {
2748 	struct inet_connection_sock *icsk = inet_csk(sk);
2749 
2750 	tcp_assign_congestion_control(sk);
2751 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2752 
2753 	/* no need to keep a reference to the ops, the name will suffice */
2754 	tcp_cleanup_congestion_control(sk);
2755 	icsk->icsk_ca_ops = NULL;
2756 }
2757 
2758 static int mptcp_init_sock(struct sock *sk)
2759 {
2760 	struct net *net = sock_net(sk);
2761 	int ret;
2762 
2763 	ret = __mptcp_init_sock(sk);
2764 	if (ret)
2765 		return ret;
2766 
2767 	if (!mptcp_is_enabled(net))
2768 		return -ENOPROTOOPT;
2769 
2770 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2771 		return -ENOMEM;
2772 
2773 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2774 
2775 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2776 	 * propagate the correct value
2777 	 */
2778 	mptcp_ca_reset(sk);
2779 
2780 	sk_sockets_allocated_inc(sk);
2781 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2782 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2783 
2784 	return 0;
2785 }
2786 
2787 static void __mptcp_clear_xmit(struct sock *sk)
2788 {
2789 	struct mptcp_sock *msk = mptcp_sk(sk);
2790 	struct mptcp_data_frag *dtmp, *dfrag;
2791 
2792 	WRITE_ONCE(msk->first_pending, NULL);
2793 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2794 		dfrag_clear(sk, dfrag);
2795 }
2796 
2797 void mptcp_cancel_work(struct sock *sk)
2798 {
2799 	struct mptcp_sock *msk = mptcp_sk(sk);
2800 
2801 	if (cancel_work_sync(&msk->work))
2802 		__sock_put(sk);
2803 }
2804 
2805 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2806 {
2807 	lock_sock(ssk);
2808 
2809 	switch (ssk->sk_state) {
2810 	case TCP_LISTEN:
2811 		if (!(how & RCV_SHUTDOWN))
2812 			break;
2813 		fallthrough;
2814 	case TCP_SYN_SENT:
2815 		tcp_disconnect(ssk, O_NONBLOCK);
2816 		break;
2817 	default:
2818 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2819 			pr_debug("Fallback");
2820 			ssk->sk_shutdown |= how;
2821 			tcp_shutdown(ssk, how);
2822 		} else {
2823 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2824 			tcp_send_ack(ssk);
2825 			if (!mptcp_timer_pending(sk))
2826 				mptcp_reset_timer(sk);
2827 		}
2828 		break;
2829 	}
2830 
2831 	release_sock(ssk);
2832 }
2833 
2834 static const unsigned char new_state[16] = {
2835 	/* current state:     new state:      action:	*/
2836 	[0 /* (Invalid) */] = TCP_CLOSE,
2837 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2838 	[TCP_SYN_SENT]      = TCP_CLOSE,
2839 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2840 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2841 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2842 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2843 	[TCP_CLOSE]         = TCP_CLOSE,
2844 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2845 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2846 	[TCP_LISTEN]        = TCP_CLOSE,
2847 	[TCP_CLOSING]       = TCP_CLOSING,
2848 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2849 };
2850 
2851 static int mptcp_close_state(struct sock *sk)
2852 {
2853 	int next = (int)new_state[sk->sk_state];
2854 	int ns = next & TCP_STATE_MASK;
2855 
2856 	inet_sk_state_store(sk, ns);
2857 
2858 	return next & TCP_ACTION_FIN;
2859 }
2860 
2861 static void __mptcp_check_send_data_fin(struct sock *sk)
2862 {
2863 	struct mptcp_subflow_context *subflow;
2864 	struct mptcp_sock *msk = mptcp_sk(sk);
2865 
2866 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2867 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2868 		 msk->snd_nxt, msk->write_seq);
2869 
2870 	/* we still need to enqueue subflows or not really shutting down,
2871 	 * skip this
2872 	 */
2873 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2874 	    mptcp_send_head(sk))
2875 		return;
2876 
2877 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2878 
2879 	/* fallback socket will not get data_fin/ack, can move to the next
2880 	 * state now
2881 	 */
2882 	if (__mptcp_check_fallback(msk)) {
2883 		WRITE_ONCE(msk->snd_una, msk->write_seq);
2884 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2885 			inet_sk_state_store(sk, TCP_CLOSE);
2886 			mptcp_close_wake_up(sk);
2887 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2888 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2889 		}
2890 	}
2891 
2892 	mptcp_for_each_subflow(msk, subflow) {
2893 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2894 
2895 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2896 	}
2897 }
2898 
2899 static void __mptcp_wr_shutdown(struct sock *sk)
2900 {
2901 	struct mptcp_sock *msk = mptcp_sk(sk);
2902 
2903 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2904 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2905 		 !!mptcp_send_head(sk));
2906 
2907 	/* will be ignored by fallback sockets */
2908 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2909 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2910 
2911 	__mptcp_check_send_data_fin(sk);
2912 }
2913 
2914 static void __mptcp_destroy_sock(struct sock *sk)
2915 {
2916 	struct mptcp_sock *msk = mptcp_sk(sk);
2917 
2918 	pr_debug("msk=%p", msk);
2919 
2920 	might_sleep();
2921 
2922 	mptcp_stop_timer(sk);
2923 	sk_stop_timer(sk, &sk->sk_timer);
2924 	msk->pm.status = 0;
2925 
2926 	sk->sk_prot->destroy(sk);
2927 
2928 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2929 	WARN_ON_ONCE(msk->rmem_released);
2930 	sk_stream_kill_queues(sk);
2931 	xfrm_sk_free_policy(sk);
2932 
2933 	sock_put(sk);
2934 }
2935 
2936 void __mptcp_unaccepted_force_close(struct sock *sk)
2937 {
2938 	sock_set_flag(sk, SOCK_DEAD);
2939 	inet_sk_state_store(sk, TCP_CLOSE);
2940 	mptcp_do_fastclose(sk);
2941 	__mptcp_destroy_sock(sk);
2942 }
2943 
2944 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2945 {
2946 	/* Concurrent splices from sk_receive_queue into receive_queue will
2947 	 * always show at least one non-empty queue when checked in this order.
2948 	 */
2949 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2950 	    skb_queue_empty_lockless(&msk->receive_queue))
2951 		return 0;
2952 
2953 	return EPOLLIN | EPOLLRDNORM;
2954 }
2955 
2956 static void mptcp_listen_inuse_dec(struct sock *sk)
2957 {
2958 	if (inet_sk_state_load(sk) == TCP_LISTEN)
2959 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2960 }
2961 
2962 bool __mptcp_close(struct sock *sk, long timeout)
2963 {
2964 	struct mptcp_subflow_context *subflow;
2965 	struct mptcp_sock *msk = mptcp_sk(sk);
2966 	bool do_cancel_work = false;
2967 	int subflows_alive = 0;
2968 
2969 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2970 
2971 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2972 		mptcp_listen_inuse_dec(sk);
2973 		inet_sk_state_store(sk, TCP_CLOSE);
2974 		goto cleanup;
2975 	}
2976 
2977 	if (mptcp_check_readable(msk) || timeout < 0) {
2978 		/* If the msk has read data, or the caller explicitly ask it,
2979 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
2980 		 */
2981 		inet_sk_state_store(sk, TCP_CLOSE);
2982 		mptcp_do_fastclose(sk);
2983 		timeout = 0;
2984 	} else if (mptcp_close_state(sk)) {
2985 		__mptcp_wr_shutdown(sk);
2986 	}
2987 
2988 	sk_stream_wait_close(sk, timeout);
2989 
2990 cleanup:
2991 	/* orphan all the subflows */
2992 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2993 	mptcp_for_each_subflow(msk, subflow) {
2994 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2995 		bool slow = lock_sock_fast_nested(ssk);
2996 
2997 		subflows_alive += ssk->sk_state != TCP_CLOSE;
2998 
2999 		/* since the close timeout takes precedence on the fail one,
3000 		 * cancel the latter
3001 		 */
3002 		if (ssk == msk->first)
3003 			subflow->fail_tout = 0;
3004 
3005 		/* detach from the parent socket, but allow data_ready to
3006 		 * push incoming data into the mptcp stack, to properly ack it
3007 		 */
3008 		ssk->sk_socket = NULL;
3009 		ssk->sk_wq = NULL;
3010 		unlock_sock_fast(ssk, slow);
3011 	}
3012 	sock_orphan(sk);
3013 
3014 	/* all the subflows are closed, only timeout can change the msk
3015 	 * state, let's not keep resources busy for no reasons
3016 	 */
3017 	if (subflows_alive == 0)
3018 		inet_sk_state_store(sk, TCP_CLOSE);
3019 
3020 	sock_hold(sk);
3021 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3022 	if (msk->token)
3023 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3024 
3025 	if (sk->sk_state == TCP_CLOSE) {
3026 		__mptcp_destroy_sock(sk);
3027 		do_cancel_work = true;
3028 	} else {
3029 		mptcp_reset_timeout(msk, 0);
3030 	}
3031 
3032 	return do_cancel_work;
3033 }
3034 
3035 static void mptcp_close(struct sock *sk, long timeout)
3036 {
3037 	bool do_cancel_work;
3038 
3039 	lock_sock(sk);
3040 
3041 	do_cancel_work = __mptcp_close(sk, timeout);
3042 	release_sock(sk);
3043 	if (do_cancel_work)
3044 		mptcp_cancel_work(sk);
3045 
3046 	sock_put(sk);
3047 }
3048 
3049 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3050 {
3051 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3052 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3053 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3054 
3055 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3056 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3057 
3058 	if (msk6 && ssk6) {
3059 		msk6->saddr = ssk6->saddr;
3060 		msk6->flow_label = ssk6->flow_label;
3061 	}
3062 #endif
3063 
3064 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3065 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3066 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3067 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3068 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3069 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3070 }
3071 
3072 static int mptcp_disconnect(struct sock *sk, int flags)
3073 {
3074 	struct mptcp_sock *msk = mptcp_sk(sk);
3075 
3076 	/* We are on the fastopen error path. We can't call straight into the
3077 	 * subflows cleanup code due to lock nesting (we are already under
3078 	 * msk->firstsocket lock). Do nothing and leave the cleanup to the
3079 	 * caller.
3080 	 */
3081 	if (msk->fastopening)
3082 		return 0;
3083 
3084 	mptcp_listen_inuse_dec(sk);
3085 	inet_sk_state_store(sk, TCP_CLOSE);
3086 
3087 	mptcp_stop_timer(sk);
3088 	sk_stop_timer(sk, &sk->sk_timer);
3089 
3090 	if (msk->token)
3091 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3092 
3093 	/* msk->subflow is still intact, the following will not free the first
3094 	 * subflow
3095 	 */
3096 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3097 	msk->last_snd = NULL;
3098 	WRITE_ONCE(msk->flags, 0);
3099 	msk->cb_flags = 0;
3100 	msk->push_pending = 0;
3101 	msk->recovery = false;
3102 	msk->can_ack = false;
3103 	msk->fully_established = false;
3104 	msk->rcv_data_fin = false;
3105 	msk->snd_data_fin_enable = false;
3106 	msk->rcv_fastclose = false;
3107 	msk->use_64bit_ack = false;
3108 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3109 	mptcp_pm_data_reset(msk);
3110 	mptcp_ca_reset(sk);
3111 
3112 	WRITE_ONCE(sk->sk_shutdown, 0);
3113 	sk_error_report(sk);
3114 	return 0;
3115 }
3116 
3117 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3118 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3119 {
3120 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3121 
3122 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3123 }
3124 #endif
3125 
3126 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3127 				 const struct mptcp_options_received *mp_opt,
3128 				 struct sock *ssk,
3129 				 struct request_sock *req)
3130 {
3131 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3132 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3133 	struct mptcp_sock *msk;
3134 
3135 	if (!nsk)
3136 		return NULL;
3137 
3138 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3139 	if (nsk->sk_family == AF_INET6)
3140 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3141 #endif
3142 
3143 	__mptcp_init_sock(nsk);
3144 
3145 	msk = mptcp_sk(nsk);
3146 	msk->local_key = subflow_req->local_key;
3147 	msk->token = subflow_req->token;
3148 	WRITE_ONCE(msk->subflow, NULL);
3149 	msk->in_accept_queue = 1;
3150 	WRITE_ONCE(msk->fully_established, false);
3151 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3152 		WRITE_ONCE(msk->csum_enabled, true);
3153 
3154 	msk->write_seq = subflow_req->idsn + 1;
3155 	msk->snd_nxt = msk->write_seq;
3156 	msk->snd_una = msk->write_seq;
3157 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3158 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3159 
3160 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3161 	security_inet_csk_clone(nsk, req);
3162 
3163 	/* this can't race with mptcp_close(), as the msk is
3164 	 * not yet exposted to user-space
3165 	 */
3166 	inet_sk_state_store(nsk, TCP_ESTABLISHED);
3167 
3168 	/* The msk maintain a ref to each subflow in the connections list */
3169 	WRITE_ONCE(msk->first, ssk);
3170 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3171 	sock_hold(ssk);
3172 
3173 	/* new mpc subflow takes ownership of the newly
3174 	 * created mptcp socket
3175 	 */
3176 	mptcp_token_accept(subflow_req, msk);
3177 
3178 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3179 	 * uses the correct data
3180 	 */
3181 	mptcp_copy_inaddrs(nsk, ssk);
3182 	mptcp_propagate_sndbuf(nsk, ssk);
3183 
3184 	mptcp_rcv_space_init(msk, ssk);
3185 	bh_unlock_sock(nsk);
3186 
3187 	/* note: the newly allocated socket refcount is 2 now */
3188 	return nsk;
3189 }
3190 
3191 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3192 {
3193 	const struct tcp_sock *tp = tcp_sk(ssk);
3194 
3195 	msk->rcvq_space.copied = 0;
3196 	msk->rcvq_space.rtt_us = 0;
3197 
3198 	msk->rcvq_space.time = tp->tcp_mstamp;
3199 
3200 	/* initial rcv_space offering made to peer */
3201 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3202 				      TCP_INIT_CWND * tp->advmss);
3203 	if (msk->rcvq_space.space == 0)
3204 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3205 
3206 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3207 }
3208 
3209 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3210 				 bool kern)
3211 {
3212 	struct mptcp_sock *msk = mptcp_sk(sk);
3213 	struct socket *listener;
3214 	struct sock *newsk;
3215 
3216 	listener = READ_ONCE(msk->subflow);
3217 	if (WARN_ON_ONCE(!listener)) {
3218 		*err = -EINVAL;
3219 		return NULL;
3220 	}
3221 
3222 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3223 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
3224 	if (!newsk)
3225 		return NULL;
3226 
3227 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3228 	if (sk_is_mptcp(newsk)) {
3229 		struct mptcp_subflow_context *subflow;
3230 		struct sock *new_mptcp_sock;
3231 
3232 		subflow = mptcp_subflow_ctx(newsk);
3233 		new_mptcp_sock = subflow->conn;
3234 
3235 		/* is_mptcp should be false if subflow->conn is missing, see
3236 		 * subflow_syn_recv_sock()
3237 		 */
3238 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3239 			tcp_sk(newsk)->is_mptcp = 0;
3240 			goto out;
3241 		}
3242 
3243 		newsk = new_mptcp_sock;
3244 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3245 	} else {
3246 		MPTCP_INC_STATS(sock_net(sk),
3247 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3248 	}
3249 
3250 out:
3251 	newsk->sk_kern_sock = kern;
3252 	return newsk;
3253 }
3254 
3255 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3256 {
3257 	struct mptcp_subflow_context *subflow, *tmp;
3258 	struct sock *sk = (struct sock *)msk;
3259 
3260 	__mptcp_clear_xmit(sk);
3261 
3262 	/* join list will be eventually flushed (with rst) at sock lock release time */
3263 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3264 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3265 
3266 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3267 	mptcp_data_lock(sk);
3268 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3269 	__skb_queue_purge(&sk->sk_receive_queue);
3270 	skb_rbtree_purge(&msk->out_of_order_queue);
3271 	mptcp_data_unlock(sk);
3272 
3273 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3274 	 * inet_sock_destruct() will dispose it
3275 	 */
3276 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3277 	msk->rmem_fwd_alloc = 0;
3278 	mptcp_token_destroy(msk);
3279 	mptcp_pm_free_anno_list(msk);
3280 	mptcp_free_local_addr_list(msk);
3281 }
3282 
3283 static void mptcp_destroy(struct sock *sk)
3284 {
3285 	struct mptcp_sock *msk = mptcp_sk(sk);
3286 
3287 	/* clears msk->subflow, allowing the following to close
3288 	 * even the initial subflow
3289 	 */
3290 	mptcp_dispose_initial_subflow(msk);
3291 	mptcp_destroy_common(msk, 0);
3292 	sk_sockets_allocated_dec(sk);
3293 }
3294 
3295 void __mptcp_data_acked(struct sock *sk)
3296 {
3297 	if (!sock_owned_by_user(sk))
3298 		__mptcp_clean_una(sk);
3299 	else
3300 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3301 
3302 	if (mptcp_pending_data_fin_ack(sk))
3303 		mptcp_schedule_work(sk);
3304 }
3305 
3306 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3307 {
3308 	if (!mptcp_send_head(sk))
3309 		return;
3310 
3311 	if (!sock_owned_by_user(sk))
3312 		__mptcp_subflow_push_pending(sk, ssk, false);
3313 	else
3314 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3315 }
3316 
3317 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3318 				      BIT(MPTCP_RETRANSMIT) | \
3319 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3320 
3321 /* processes deferred events and flush wmem */
3322 static void mptcp_release_cb(struct sock *sk)
3323 	__must_hold(&sk->sk_lock.slock)
3324 {
3325 	struct mptcp_sock *msk = mptcp_sk(sk);
3326 
3327 	for (;;) {
3328 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3329 				      msk->push_pending;
3330 		if (!flags)
3331 			break;
3332 
3333 		/* the following actions acquire the subflow socket lock
3334 		 *
3335 		 * 1) can't be invoked in atomic scope
3336 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3337 		 *    datapath acquires the msk socket spinlock while helding
3338 		 *    the subflow socket lock
3339 		 */
3340 		msk->push_pending = 0;
3341 		msk->cb_flags &= ~flags;
3342 		spin_unlock_bh(&sk->sk_lock.slock);
3343 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3344 			__mptcp_flush_join_list(sk);
3345 		if (flags & BIT(MPTCP_PUSH_PENDING))
3346 			__mptcp_push_pending(sk, 0);
3347 		if (flags & BIT(MPTCP_RETRANSMIT))
3348 			__mptcp_retrans(sk);
3349 
3350 		cond_resched();
3351 		spin_lock_bh(&sk->sk_lock.slock);
3352 	}
3353 
3354 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3355 		__mptcp_clean_una_wakeup(sk);
3356 	if (unlikely(&msk->cb_flags)) {
3357 		/* be sure to set the current sk state before tacking actions
3358 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3359 		 */
3360 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3361 			__mptcp_set_connected(sk);
3362 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3363 			__mptcp_error_report(sk);
3364 		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3365 			msk->last_snd = NULL;
3366 	}
3367 
3368 	__mptcp_update_rmem(sk);
3369 }
3370 
3371 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3372  * TCP can't schedule delack timer before the subflow is fully established.
3373  * MPTCP uses the delack timer to do 3rd ack retransmissions
3374  */
3375 static void schedule_3rdack_retransmission(struct sock *ssk)
3376 {
3377 	struct inet_connection_sock *icsk = inet_csk(ssk);
3378 	struct tcp_sock *tp = tcp_sk(ssk);
3379 	unsigned long timeout;
3380 
3381 	if (mptcp_subflow_ctx(ssk)->fully_established)
3382 		return;
3383 
3384 	/* reschedule with a timeout above RTT, as we must look only for drop */
3385 	if (tp->srtt_us)
3386 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3387 	else
3388 		timeout = TCP_TIMEOUT_INIT;
3389 	timeout += jiffies;
3390 
3391 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3392 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3393 	icsk->icsk_ack.timeout = timeout;
3394 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3395 }
3396 
3397 void mptcp_subflow_process_delegated(struct sock *ssk)
3398 {
3399 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3400 	struct sock *sk = subflow->conn;
3401 
3402 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3403 		mptcp_data_lock(sk);
3404 		if (!sock_owned_by_user(sk))
3405 			__mptcp_subflow_push_pending(sk, ssk, true);
3406 		else
3407 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3408 		mptcp_data_unlock(sk);
3409 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3410 	}
3411 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3412 		schedule_3rdack_retransmission(ssk);
3413 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3414 	}
3415 }
3416 
3417 static int mptcp_hash(struct sock *sk)
3418 {
3419 	/* should never be called,
3420 	 * we hash the TCP subflows not the master socket
3421 	 */
3422 	WARN_ON_ONCE(1);
3423 	return 0;
3424 }
3425 
3426 static void mptcp_unhash(struct sock *sk)
3427 {
3428 	/* called from sk_common_release(), but nothing to do here */
3429 }
3430 
3431 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3432 {
3433 	struct mptcp_sock *msk = mptcp_sk(sk);
3434 	struct socket *ssock;
3435 
3436 	ssock = msk->subflow;
3437 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3438 	if (WARN_ON_ONCE(!ssock))
3439 		return -EINVAL;
3440 
3441 	return inet_csk_get_port(ssock->sk, snum);
3442 }
3443 
3444 void mptcp_finish_connect(struct sock *ssk)
3445 {
3446 	struct mptcp_subflow_context *subflow;
3447 	struct mptcp_sock *msk;
3448 	struct sock *sk;
3449 
3450 	subflow = mptcp_subflow_ctx(ssk);
3451 	sk = subflow->conn;
3452 	msk = mptcp_sk(sk);
3453 
3454 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3455 
3456 	subflow->map_seq = subflow->iasn;
3457 	subflow->map_subflow_seq = 1;
3458 
3459 	/* the socket is not connected yet, no msk/subflow ops can access/race
3460 	 * accessing the field below
3461 	 */
3462 	WRITE_ONCE(msk->local_key, subflow->local_key);
3463 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3464 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3465 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3466 
3467 	mptcp_pm_new_connection(msk, ssk, 0);
3468 
3469 	mptcp_rcv_space_init(msk, ssk);
3470 }
3471 
3472 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3473 {
3474 	write_lock_bh(&sk->sk_callback_lock);
3475 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3476 	sk_set_socket(sk, parent);
3477 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3478 	write_unlock_bh(&sk->sk_callback_lock);
3479 }
3480 
3481 bool mptcp_finish_join(struct sock *ssk)
3482 {
3483 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3484 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3485 	struct sock *parent = (void *)msk;
3486 	bool ret = true;
3487 
3488 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3489 
3490 	/* mptcp socket already closing? */
3491 	if (!mptcp_is_fully_established(parent)) {
3492 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3493 		return false;
3494 	}
3495 
3496 	/* active subflow, already present inside the conn_list */
3497 	if (!list_empty(&subflow->node)) {
3498 		mptcp_subflow_joined(msk, ssk);
3499 		return true;
3500 	}
3501 
3502 	if (!mptcp_pm_allow_new_subflow(msk))
3503 		goto err_prohibited;
3504 
3505 	/* If we can't acquire msk socket lock here, let the release callback
3506 	 * handle it
3507 	 */
3508 	mptcp_data_lock(parent);
3509 	if (!sock_owned_by_user(parent)) {
3510 		ret = __mptcp_finish_join(msk, ssk);
3511 		if (ret) {
3512 			sock_hold(ssk);
3513 			list_add_tail(&subflow->node, &msk->conn_list);
3514 		}
3515 	} else {
3516 		sock_hold(ssk);
3517 		list_add_tail(&subflow->node, &msk->join_list);
3518 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3519 	}
3520 	mptcp_data_unlock(parent);
3521 
3522 	if (!ret) {
3523 err_prohibited:
3524 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3525 		return false;
3526 	}
3527 
3528 	return true;
3529 }
3530 
3531 static void mptcp_shutdown(struct sock *sk, int how)
3532 {
3533 	pr_debug("sk=%p, how=%d", sk, how);
3534 
3535 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3536 		__mptcp_wr_shutdown(sk);
3537 }
3538 
3539 static int mptcp_forward_alloc_get(const struct sock *sk)
3540 {
3541 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3542 }
3543 
3544 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3545 {
3546 	const struct sock *sk = (void *)msk;
3547 	u64 delta;
3548 
3549 	if (sk->sk_state == TCP_LISTEN)
3550 		return -EINVAL;
3551 
3552 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3553 		return 0;
3554 
3555 	delta = msk->write_seq - v;
3556 	if (__mptcp_check_fallback(msk) && msk->first) {
3557 		struct tcp_sock *tp = tcp_sk(msk->first);
3558 
3559 		/* the first subflow is disconnected after close - see
3560 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3561 		 * so ignore that status, too.
3562 		 */
3563 		if (!((1 << msk->first->sk_state) &
3564 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3565 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3566 	}
3567 	if (delta > INT_MAX)
3568 		delta = INT_MAX;
3569 
3570 	return (int)delta;
3571 }
3572 
3573 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3574 {
3575 	struct mptcp_sock *msk = mptcp_sk(sk);
3576 	bool slow;
3577 	int answ;
3578 
3579 	switch (cmd) {
3580 	case SIOCINQ:
3581 		if (sk->sk_state == TCP_LISTEN)
3582 			return -EINVAL;
3583 
3584 		lock_sock(sk);
3585 		__mptcp_move_skbs(msk);
3586 		answ = mptcp_inq_hint(sk);
3587 		release_sock(sk);
3588 		break;
3589 	case SIOCOUTQ:
3590 		slow = lock_sock_fast(sk);
3591 		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3592 		unlock_sock_fast(sk, slow);
3593 		break;
3594 	case SIOCOUTQNSD:
3595 		slow = lock_sock_fast(sk);
3596 		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3597 		unlock_sock_fast(sk, slow);
3598 		break;
3599 	default:
3600 		return -ENOIOCTLCMD;
3601 	}
3602 
3603 	return put_user(answ, (int __user *)arg);
3604 }
3605 
3606 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3607 					 struct mptcp_subflow_context *subflow)
3608 {
3609 	subflow->request_mptcp = 0;
3610 	__mptcp_do_fallback(msk);
3611 }
3612 
3613 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3614 {
3615 	struct mptcp_subflow_context *subflow;
3616 	struct mptcp_sock *msk = mptcp_sk(sk);
3617 	struct socket *ssock;
3618 	int err = -EINVAL;
3619 
3620 	ssock = __mptcp_nmpc_socket(msk);
3621 	if (IS_ERR(ssock))
3622 		return PTR_ERR(ssock);
3623 
3624 	mptcp_token_destroy(msk);
3625 	inet_sk_state_store(sk, TCP_SYN_SENT);
3626 	subflow = mptcp_subflow_ctx(ssock->sk);
3627 #ifdef CONFIG_TCP_MD5SIG
3628 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3629 	 * TCP option space.
3630 	 */
3631 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3632 		mptcp_subflow_early_fallback(msk, subflow);
3633 #endif
3634 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3635 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3636 		mptcp_subflow_early_fallback(msk, subflow);
3637 	}
3638 	if (likely(!__mptcp_check_fallback(msk)))
3639 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3640 
3641 	/* if reaching here via the fastopen/sendmsg path, the caller already
3642 	 * acquired the subflow socket lock, too.
3643 	 */
3644 	if (msk->fastopening)
3645 		err = __inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK, 1);
3646 	else
3647 		err = inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK);
3648 	inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect;
3649 
3650 	/* on successful connect, the msk state will be moved to established by
3651 	 * subflow_finish_connect()
3652 	 */
3653 	if (unlikely(err && err != -EINPROGRESS)) {
3654 		inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3655 		return err;
3656 	}
3657 
3658 	mptcp_copy_inaddrs(sk, ssock->sk);
3659 
3660 	/* silence EINPROGRESS and let the caller inet_stream_connect
3661 	 * handle the connection in progress
3662 	 */
3663 	return 0;
3664 }
3665 
3666 static struct proto mptcp_prot = {
3667 	.name		= "MPTCP",
3668 	.owner		= THIS_MODULE,
3669 	.init		= mptcp_init_sock,
3670 	.connect	= mptcp_connect,
3671 	.disconnect	= mptcp_disconnect,
3672 	.close		= mptcp_close,
3673 	.accept		= mptcp_accept,
3674 	.setsockopt	= mptcp_setsockopt,
3675 	.getsockopt	= mptcp_getsockopt,
3676 	.shutdown	= mptcp_shutdown,
3677 	.destroy	= mptcp_destroy,
3678 	.sendmsg	= mptcp_sendmsg,
3679 	.ioctl		= mptcp_ioctl,
3680 	.recvmsg	= mptcp_recvmsg,
3681 	.release_cb	= mptcp_release_cb,
3682 	.hash		= mptcp_hash,
3683 	.unhash		= mptcp_unhash,
3684 	.get_port	= mptcp_get_port,
3685 	.forward_alloc_get	= mptcp_forward_alloc_get,
3686 	.sockets_allocated	= &mptcp_sockets_allocated,
3687 
3688 	.memory_allocated	= &tcp_memory_allocated,
3689 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3690 
3691 	.memory_pressure	= &tcp_memory_pressure,
3692 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3693 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3694 	.sysctl_mem	= sysctl_tcp_mem,
3695 	.obj_size	= sizeof(struct mptcp_sock),
3696 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3697 	.no_autobind	= true,
3698 };
3699 
3700 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3701 {
3702 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3703 	struct socket *ssock;
3704 	int err;
3705 
3706 	lock_sock(sock->sk);
3707 	ssock = __mptcp_nmpc_socket(msk);
3708 	if (IS_ERR(ssock)) {
3709 		err = PTR_ERR(ssock);
3710 		goto unlock;
3711 	}
3712 
3713 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3714 	if (!err)
3715 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3716 
3717 unlock:
3718 	release_sock(sock->sk);
3719 	return err;
3720 }
3721 
3722 static int mptcp_listen(struct socket *sock, int backlog)
3723 {
3724 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3725 	struct sock *sk = sock->sk;
3726 	struct socket *ssock;
3727 	int err;
3728 
3729 	pr_debug("msk=%p", msk);
3730 
3731 	lock_sock(sk);
3732 	ssock = __mptcp_nmpc_socket(msk);
3733 	if (IS_ERR(ssock)) {
3734 		err = PTR_ERR(ssock);
3735 		goto unlock;
3736 	}
3737 
3738 	mptcp_token_destroy(msk);
3739 	inet_sk_state_store(sk, TCP_LISTEN);
3740 	sock_set_flag(sk, SOCK_RCU_FREE);
3741 
3742 	err = ssock->ops->listen(ssock, backlog);
3743 	inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3744 	if (!err) {
3745 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3746 		mptcp_copy_inaddrs(sk, ssock->sk);
3747 	}
3748 
3749 	mptcp_event_pm_listener(ssock->sk, MPTCP_EVENT_LISTENER_CREATED);
3750 
3751 unlock:
3752 	release_sock(sk);
3753 	return err;
3754 }
3755 
3756 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3757 			       int flags, bool kern)
3758 {
3759 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3760 	struct socket *ssock;
3761 	int err;
3762 
3763 	pr_debug("msk=%p", msk);
3764 
3765 	/* Buggy applications can call accept on socket states other then LISTEN
3766 	 * but no need to allocate the first subflow just to error out.
3767 	 */
3768 	ssock = READ_ONCE(msk->subflow);
3769 	if (!ssock)
3770 		return -EINVAL;
3771 
3772 	err = ssock->ops->accept(sock, newsock, flags, kern);
3773 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3774 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3775 		struct mptcp_subflow_context *subflow;
3776 		struct sock *newsk = newsock->sk;
3777 
3778 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3779 		msk->in_accept_queue = 0;
3780 
3781 		lock_sock(newsk);
3782 
3783 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3784 		 * This is needed so NOSPACE flag can be set from tcp stack.
3785 		 */
3786 		mptcp_for_each_subflow(msk, subflow) {
3787 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3788 
3789 			if (!ssk->sk_socket)
3790 				mptcp_sock_graft(ssk, newsock);
3791 		}
3792 
3793 		/* Do late cleanup for the first subflow as necessary. Also
3794 		 * deal with bad peers not doing a complete shutdown.
3795 		 */
3796 		if (msk->first &&
3797 		    unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3798 			__mptcp_close_ssk(newsk, msk->first,
3799 					  mptcp_subflow_ctx(msk->first), 0);
3800 			if (unlikely(list_empty(&msk->conn_list)))
3801 				inet_sk_state_store(newsk, TCP_CLOSE);
3802 		}
3803 
3804 		release_sock(newsk);
3805 	}
3806 
3807 	return err;
3808 }
3809 
3810 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3811 {
3812 	struct sock *sk = (struct sock *)msk;
3813 
3814 	if (sk_stream_is_writeable(sk))
3815 		return EPOLLOUT | EPOLLWRNORM;
3816 
3817 	mptcp_set_nospace(sk);
3818 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3819 	if (sk_stream_is_writeable(sk))
3820 		return EPOLLOUT | EPOLLWRNORM;
3821 
3822 	return 0;
3823 }
3824 
3825 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3826 			   struct poll_table_struct *wait)
3827 {
3828 	struct sock *sk = sock->sk;
3829 	struct mptcp_sock *msk;
3830 	__poll_t mask = 0;
3831 	u8 shutdown;
3832 	int state;
3833 
3834 	msk = mptcp_sk(sk);
3835 	sock_poll_wait(file, sock, wait);
3836 
3837 	state = inet_sk_state_load(sk);
3838 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3839 	if (state == TCP_LISTEN) {
3840 		struct socket *ssock = READ_ONCE(msk->subflow);
3841 
3842 		if (WARN_ON_ONCE(!ssock || !ssock->sk))
3843 			return 0;
3844 
3845 		return inet_csk_listen_poll(ssock->sk);
3846 	}
3847 
3848 	shutdown = READ_ONCE(sk->sk_shutdown);
3849 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3850 		mask |= EPOLLHUP;
3851 	if (shutdown & RCV_SHUTDOWN)
3852 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3853 
3854 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3855 		mask |= mptcp_check_readable(msk);
3856 		if (shutdown & SEND_SHUTDOWN)
3857 			mask |= EPOLLOUT | EPOLLWRNORM;
3858 		else
3859 			mask |= mptcp_check_writeable(msk);
3860 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
3861 		/* cf tcp_poll() note about TFO */
3862 		mask |= EPOLLOUT | EPOLLWRNORM;
3863 	}
3864 
3865 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3866 	smp_rmb();
3867 	if (READ_ONCE(sk->sk_err))
3868 		mask |= EPOLLERR;
3869 
3870 	return mask;
3871 }
3872 
3873 static const struct proto_ops mptcp_stream_ops = {
3874 	.family		   = PF_INET,
3875 	.owner		   = THIS_MODULE,
3876 	.release	   = inet_release,
3877 	.bind		   = mptcp_bind,
3878 	.connect	   = inet_stream_connect,
3879 	.socketpair	   = sock_no_socketpair,
3880 	.accept		   = mptcp_stream_accept,
3881 	.getname	   = inet_getname,
3882 	.poll		   = mptcp_poll,
3883 	.ioctl		   = inet_ioctl,
3884 	.gettstamp	   = sock_gettstamp,
3885 	.listen		   = mptcp_listen,
3886 	.shutdown	   = inet_shutdown,
3887 	.setsockopt	   = sock_common_setsockopt,
3888 	.getsockopt	   = sock_common_getsockopt,
3889 	.sendmsg	   = inet_sendmsg,
3890 	.recvmsg	   = inet_recvmsg,
3891 	.mmap		   = sock_no_mmap,
3892 	.sendpage	   = inet_sendpage,
3893 };
3894 
3895 static struct inet_protosw mptcp_protosw = {
3896 	.type		= SOCK_STREAM,
3897 	.protocol	= IPPROTO_MPTCP,
3898 	.prot		= &mptcp_prot,
3899 	.ops		= &mptcp_stream_ops,
3900 	.flags		= INET_PROTOSW_ICSK,
3901 };
3902 
3903 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3904 {
3905 	struct mptcp_delegated_action *delegated;
3906 	struct mptcp_subflow_context *subflow;
3907 	int work_done = 0;
3908 
3909 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3910 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3911 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3912 
3913 		bh_lock_sock_nested(ssk);
3914 		if (!sock_owned_by_user(ssk) &&
3915 		    mptcp_subflow_has_delegated_action(subflow))
3916 			mptcp_subflow_process_delegated(ssk);
3917 		/* ... elsewhere tcp_release_cb_override already processed
3918 		 * the action or will do at next release_sock().
3919 		 * In both case must dequeue the subflow here - on the same
3920 		 * CPU that scheduled it.
3921 		 */
3922 		bh_unlock_sock(ssk);
3923 		sock_put(ssk);
3924 
3925 		if (++work_done == budget)
3926 			return budget;
3927 	}
3928 
3929 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3930 	 * will not try accessing the NULL napi->dev ptr
3931 	 */
3932 	napi_complete_done(napi, 0);
3933 	return work_done;
3934 }
3935 
3936 void __init mptcp_proto_init(void)
3937 {
3938 	struct mptcp_delegated_action *delegated;
3939 	int cpu;
3940 
3941 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3942 
3943 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3944 		panic("Failed to allocate MPTCP pcpu counter\n");
3945 
3946 	init_dummy_netdev(&mptcp_napi_dev);
3947 	for_each_possible_cpu(cpu) {
3948 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3949 		INIT_LIST_HEAD(&delegated->head);
3950 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3951 				  mptcp_napi_poll);
3952 		napi_enable(&delegated->napi);
3953 	}
3954 
3955 	mptcp_subflow_init();
3956 	mptcp_pm_init();
3957 	mptcp_token_init();
3958 
3959 	if (proto_register(&mptcp_prot, 1) != 0)
3960 		panic("Failed to register MPTCP proto.\n");
3961 
3962 	inet_register_protosw(&mptcp_protosw);
3963 
3964 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3965 }
3966 
3967 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3968 static const struct proto_ops mptcp_v6_stream_ops = {
3969 	.family		   = PF_INET6,
3970 	.owner		   = THIS_MODULE,
3971 	.release	   = inet6_release,
3972 	.bind		   = mptcp_bind,
3973 	.connect	   = inet_stream_connect,
3974 	.socketpair	   = sock_no_socketpair,
3975 	.accept		   = mptcp_stream_accept,
3976 	.getname	   = inet6_getname,
3977 	.poll		   = mptcp_poll,
3978 	.ioctl		   = inet6_ioctl,
3979 	.gettstamp	   = sock_gettstamp,
3980 	.listen		   = mptcp_listen,
3981 	.shutdown	   = inet_shutdown,
3982 	.setsockopt	   = sock_common_setsockopt,
3983 	.getsockopt	   = sock_common_getsockopt,
3984 	.sendmsg	   = inet6_sendmsg,
3985 	.recvmsg	   = inet6_recvmsg,
3986 	.mmap		   = sock_no_mmap,
3987 	.sendpage	   = inet_sendpage,
3988 #ifdef CONFIG_COMPAT
3989 	.compat_ioctl	   = inet6_compat_ioctl,
3990 #endif
3991 };
3992 
3993 static struct proto mptcp_v6_prot;
3994 
3995 static struct inet_protosw mptcp_v6_protosw = {
3996 	.type		= SOCK_STREAM,
3997 	.protocol	= IPPROTO_MPTCP,
3998 	.prot		= &mptcp_v6_prot,
3999 	.ops		= &mptcp_v6_stream_ops,
4000 	.flags		= INET_PROTOSW_ICSK,
4001 };
4002 
4003 int __init mptcp_proto_v6_init(void)
4004 {
4005 	int err;
4006 
4007 	mptcp_v6_prot = mptcp_prot;
4008 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4009 	mptcp_v6_prot.slab = NULL;
4010 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4011 
4012 	err = proto_register(&mptcp_v6_prot, 1);
4013 	if (err)
4014 		return err;
4015 
4016 	err = inet6_register_protosw(&mptcp_v6_protosw);
4017 	if (err)
4018 		proto_unregister(&mptcp_v6_prot);
4019 
4020 	return err;
4021 }
4022 #endif
4023