xref: /linux/net/mptcp/protocol.c (revision c3e91403103974e8f40dc170f384c0b707fe93e4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/sock.h>
16 #include <net/inet_common.h>
17 #include <net/inet_hashtables.h>
18 #include <net/protocol.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/hotdata.h>
25 #include <net/xfrm.h>
26 #include <asm/ioctls.h>
27 #include "protocol.h"
28 #include "mib.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/mptcp.h>
32 
33 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
34 struct mptcp6_sock {
35 	struct mptcp_sock msk;
36 	struct ipv6_pinfo np;
37 };
38 #endif
39 
40 enum {
41 	MPTCP_CMSG_TS = BIT(0),
42 	MPTCP_CMSG_INQ = BIT(1),
43 };
44 
45 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
46 
47 static void __mptcp_destroy_sock(struct sock *sk);
48 static void mptcp_check_send_data_fin(struct sock *sk);
49 
50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
51 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
52 };
53 static struct net_device *mptcp_napi_dev;
54 
55 /* Returns end sequence number of the receiver's advertised window */
56 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
57 {
58 	return READ_ONCE(msk->wnd_end);
59 }
60 
61 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
62 {
63 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
64 	if (sk->sk_prot == &tcpv6_prot)
65 		return &inet6_stream_ops;
66 #endif
67 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
68 	return &inet_stream_ops;
69 }
70 
71 static int __mptcp_socket_create(struct mptcp_sock *msk)
72 {
73 	struct mptcp_subflow_context *subflow;
74 	struct sock *sk = (struct sock *)msk;
75 	struct socket *ssock;
76 	int err;
77 
78 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
79 	if (err)
80 		return err;
81 
82 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
83 	WRITE_ONCE(msk->first, ssock->sk);
84 	subflow = mptcp_subflow_ctx(ssock->sk);
85 	list_add(&subflow->node, &msk->conn_list);
86 	sock_hold(ssock->sk);
87 	subflow->request_mptcp = 1;
88 	subflow->subflow_id = msk->subflow_id++;
89 
90 	/* This is the first subflow, always with id 0 */
91 	WRITE_ONCE(subflow->local_id, 0);
92 	mptcp_sock_graft(msk->first, sk->sk_socket);
93 	iput(SOCK_INODE(ssock));
94 
95 	return 0;
96 }
97 
98 /* If the MPC handshake is not started, returns the first subflow,
99  * eventually allocating it.
100  */
101 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
102 {
103 	struct sock *sk = (struct sock *)msk;
104 	int ret;
105 
106 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
107 		return ERR_PTR(-EINVAL);
108 
109 	if (!msk->first) {
110 		ret = __mptcp_socket_create(msk);
111 		if (ret)
112 			return ERR_PTR(ret);
113 	}
114 
115 	return msk->first;
116 }
117 
118 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
119 {
120 	sk_drops_add(sk, skb);
121 	__kfree_skb(skb);
122 }
123 
124 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
125 			       struct sk_buff *from)
126 {
127 	bool fragstolen;
128 	int delta;
129 
130 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
131 	    MPTCP_SKB_CB(from)->offset ||
132 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
133 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
134 		return false;
135 
136 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
137 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
138 		 to->len, MPTCP_SKB_CB(from)->end_seq);
139 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
140 
141 	/* note the fwd memory can reach a negative value after accounting
142 	 * for the delta, but the later skb free will restore a non
143 	 * negative one
144 	 */
145 	atomic_add(delta, &sk->sk_rmem_alloc);
146 	sk_mem_charge(sk, delta);
147 	kfree_skb_partial(from, fragstolen);
148 
149 	return true;
150 }
151 
152 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
153 				   struct sk_buff *from)
154 {
155 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
156 		return false;
157 
158 	return mptcp_try_coalesce((struct sock *)msk, to, from);
159 }
160 
161 /* "inspired" by tcp_data_queue_ofo(), main differences:
162  * - use mptcp seqs
163  * - don't cope with sacks
164  */
165 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
166 {
167 	struct sock *sk = (struct sock *)msk;
168 	struct rb_node **p, *parent;
169 	u64 seq, end_seq, max_seq;
170 	struct sk_buff *skb1;
171 
172 	seq = MPTCP_SKB_CB(skb)->map_seq;
173 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
174 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
175 
176 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
177 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
178 	if (after64(end_seq, max_seq)) {
179 		/* out of window */
180 		mptcp_drop(sk, skb);
181 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
182 			 (unsigned long long)end_seq - (unsigned long)max_seq,
183 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
184 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
185 		return;
186 	}
187 
188 	p = &msk->out_of_order_queue.rb_node;
189 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
190 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
191 		rb_link_node(&skb->rbnode, NULL, p);
192 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
193 		msk->ooo_last_skb = skb;
194 		goto end;
195 	}
196 
197 	/* with 2 subflows, adding at end of ooo queue is quite likely
198 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
199 	 */
200 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
201 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
202 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
203 		return;
204 	}
205 
206 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
207 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
208 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
209 		parent = &msk->ooo_last_skb->rbnode;
210 		p = &parent->rb_right;
211 		goto insert;
212 	}
213 
214 	/* Find place to insert this segment. Handle overlaps on the way. */
215 	parent = NULL;
216 	while (*p) {
217 		parent = *p;
218 		skb1 = rb_to_skb(parent);
219 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
220 			p = &parent->rb_left;
221 			continue;
222 		}
223 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
224 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
225 				/* All the bits are present. Drop. */
226 				mptcp_drop(sk, skb);
227 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
228 				return;
229 			}
230 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
231 				/* partial overlap:
232 				 *     |     skb      |
233 				 *  |     skb1    |
234 				 * continue traversing
235 				 */
236 			} else {
237 				/* skb's seq == skb1's seq and skb covers skb1.
238 				 * Replace skb1 with skb.
239 				 */
240 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
241 						&msk->out_of_order_queue);
242 				mptcp_drop(sk, skb1);
243 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
244 				goto merge_right;
245 			}
246 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
247 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
248 			return;
249 		}
250 		p = &parent->rb_right;
251 	}
252 
253 insert:
254 	/* Insert segment into RB tree. */
255 	rb_link_node(&skb->rbnode, parent, p);
256 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
257 
258 merge_right:
259 	/* Remove other segments covered by skb. */
260 	while ((skb1 = skb_rb_next(skb)) != NULL) {
261 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
262 			break;
263 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
264 		mptcp_drop(sk, skb1);
265 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
266 	}
267 	/* If there is no skb after us, we are the last_skb ! */
268 	if (!skb1)
269 		msk->ooo_last_skb = skb;
270 
271 end:
272 	skb_condense(skb);
273 	skb_set_owner_r(skb, sk);
274 }
275 
276 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
277 			     struct sk_buff *skb, unsigned int offset,
278 			     size_t copy_len)
279 {
280 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
281 	struct sock *sk = (struct sock *)msk;
282 	struct sk_buff *tail;
283 	bool has_rxtstamp;
284 
285 	__skb_unlink(skb, &ssk->sk_receive_queue);
286 
287 	skb_ext_reset(skb);
288 	skb_orphan(skb);
289 
290 	/* try to fetch required memory from subflow */
291 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
292 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
293 		goto drop;
294 	}
295 
296 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
297 
298 	/* the skb map_seq accounts for the skb offset:
299 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
300 	 * value
301 	 */
302 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
303 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
304 	MPTCP_SKB_CB(skb)->offset = offset;
305 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
306 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
307 
308 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
309 		/* in sequence */
310 		msk->bytes_received += copy_len;
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
333 static void mptcp_stop_rtx_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
354 /* called under the msk socket lock */
355 static bool mptcp_pending_data_fin_ack(struct sock *sk)
356 {
357 	struct mptcp_sock *msk = mptcp_sk(sk);
358 
359 	return ((1 << sk->sk_state) &
360 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
361 	       msk->write_seq == READ_ONCE(msk->snd_una);
362 }
363 
364 static void mptcp_check_data_fin_ack(struct sock *sk)
365 {
366 	struct mptcp_sock *msk = mptcp_sk(sk);
367 
368 	/* Look for an acknowledged DATA_FIN */
369 	if (mptcp_pending_data_fin_ack(sk)) {
370 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
371 
372 		switch (sk->sk_state) {
373 		case TCP_FIN_WAIT1:
374 			mptcp_set_state(sk, TCP_FIN_WAIT2);
375 			break;
376 		case TCP_CLOSING:
377 		case TCP_LAST_ACK:
378 			mptcp_set_state(sk, TCP_CLOSE);
379 			break;
380 		}
381 
382 		mptcp_close_wake_up(sk);
383 	}
384 }
385 
386 /* can be called with no lock acquired */
387 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
388 {
389 	struct mptcp_sock *msk = mptcp_sk(sk);
390 
391 	if (READ_ONCE(msk->rcv_data_fin) &&
392 	    ((1 << inet_sk_state_load(sk)) &
393 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
394 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
395 
396 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
397 			if (seq)
398 				*seq = rcv_data_fin_seq;
399 
400 			return true;
401 		}
402 	}
403 
404 	return false;
405 }
406 
407 static void mptcp_set_datafin_timeout(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	u32 retransmits;
411 
412 	retransmits = min_t(u32, icsk->icsk_retransmits,
413 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
414 
415 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
416 }
417 
418 static void __mptcp_set_timeout(struct sock *sk, long tout)
419 {
420 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
421 }
422 
423 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
424 {
425 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
426 
427 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
428 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
429 }
430 
431 static void mptcp_set_timeout(struct sock *sk)
432 {
433 	struct mptcp_subflow_context *subflow;
434 	long tout = 0;
435 
436 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
437 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
438 	__mptcp_set_timeout(sk, tout);
439 }
440 
441 static inline bool tcp_can_send_ack(const struct sock *ssk)
442 {
443 	return !((1 << inet_sk_state_load(ssk)) &
444 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
445 }
446 
447 void __mptcp_subflow_send_ack(struct sock *ssk)
448 {
449 	if (tcp_can_send_ack(ssk))
450 		tcp_send_ack(ssk);
451 }
452 
453 static void mptcp_subflow_send_ack(struct sock *ssk)
454 {
455 	bool slow;
456 
457 	slow = lock_sock_fast(ssk);
458 	__mptcp_subflow_send_ack(ssk);
459 	unlock_sock_fast(ssk, slow);
460 }
461 
462 static void mptcp_send_ack(struct mptcp_sock *msk)
463 {
464 	struct mptcp_subflow_context *subflow;
465 
466 	mptcp_for_each_subflow(msk, subflow)
467 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
468 }
469 
470 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
471 {
472 	bool slow;
473 
474 	slow = lock_sock_fast(ssk);
475 	if (tcp_can_send_ack(ssk))
476 		tcp_cleanup_rbuf(ssk, copied);
477 	unlock_sock_fast(ssk, slow);
478 }
479 
480 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
481 {
482 	const struct inet_connection_sock *icsk = inet_csk(ssk);
483 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
484 	const struct tcp_sock *tp = tcp_sk(ssk);
485 
486 	return (ack_pending & ICSK_ACK_SCHED) &&
487 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
488 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
489 		 (rx_empty && ack_pending &
490 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
491 }
492 
493 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
494 {
495 	int old_space = READ_ONCE(msk->old_wspace);
496 	struct mptcp_subflow_context *subflow;
497 	struct sock *sk = (struct sock *)msk;
498 	int space =  __mptcp_space(sk);
499 	bool cleanup, rx_empty;
500 
501 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
502 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
503 
504 	mptcp_for_each_subflow(msk, subflow) {
505 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
506 
507 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
508 			mptcp_subflow_cleanup_rbuf(ssk, copied);
509 	}
510 }
511 
512 static bool mptcp_check_data_fin(struct sock *sk)
513 {
514 	struct mptcp_sock *msk = mptcp_sk(sk);
515 	u64 rcv_data_fin_seq;
516 	bool ret = false;
517 
518 	/* Need to ack a DATA_FIN received from a peer while this side
519 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
520 	 * msk->rcv_data_fin was set when parsing the incoming options
521 	 * at the subflow level and the msk lock was not held, so this
522 	 * is the first opportunity to act on the DATA_FIN and change
523 	 * the msk state.
524 	 *
525 	 * If we are caught up to the sequence number of the incoming
526 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
527 	 * not caught up, do nothing and let the recv code send DATA_ACK
528 	 * when catching up.
529 	 */
530 
531 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
532 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
533 		WRITE_ONCE(msk->rcv_data_fin, 0);
534 
535 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
536 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
537 
538 		switch (sk->sk_state) {
539 		case TCP_ESTABLISHED:
540 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
541 			break;
542 		case TCP_FIN_WAIT1:
543 			mptcp_set_state(sk, TCP_CLOSING);
544 			break;
545 		case TCP_FIN_WAIT2:
546 			mptcp_set_state(sk, TCP_CLOSE);
547 			break;
548 		default:
549 			/* Other states not expected */
550 			WARN_ON_ONCE(1);
551 			break;
552 		}
553 
554 		ret = true;
555 		if (!__mptcp_check_fallback(msk))
556 			mptcp_send_ack(msk);
557 		mptcp_close_wake_up(sk);
558 	}
559 	return ret;
560 }
561 
562 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
563 {
564 	if (mptcp_try_fallback(ssk)) {
565 		MPTCP_INC_STATS(sock_net(ssk),
566 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
567 	} else {
568 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
569 		mptcp_subflow_reset(ssk);
570 	}
571 }
572 
573 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
574 					   struct sock *ssk)
575 {
576 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
577 	struct sock *sk = (struct sock *)msk;
578 	bool more_data_avail;
579 	struct tcp_sock *tp;
580 	bool ret = false;
581 
582 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
583 	tp = tcp_sk(ssk);
584 	do {
585 		u32 map_remaining, offset;
586 		u32 seq = tp->copied_seq;
587 		struct sk_buff *skb;
588 		bool fin;
589 
590 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
591 			break;
592 
593 		/* try to move as much data as available */
594 		map_remaining = subflow->map_data_len -
595 				mptcp_subflow_get_map_offset(subflow);
596 
597 		skb = skb_peek(&ssk->sk_receive_queue);
598 		if (unlikely(!skb))
599 			break;
600 
601 		if (__mptcp_check_fallback(msk)) {
602 			/* Under fallback skbs have no MPTCP extension and TCP could
603 			 * collapse them between the dummy map creation and the
604 			 * current dequeue. Be sure to adjust the map size.
605 			 */
606 			map_remaining = skb->len;
607 			subflow->map_data_len = skb->len;
608 		}
609 
610 		offset = seq - TCP_SKB_CB(skb)->seq;
611 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
612 		if (fin)
613 			seq++;
614 
615 		if (offset < skb->len) {
616 			size_t len = skb->len - offset;
617 
618 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
619 			seq += len;
620 
621 			if (unlikely(map_remaining < len)) {
622 				DEBUG_NET_WARN_ON_ONCE(1);
623 				mptcp_dss_corruption(msk, ssk);
624 			}
625 		} else {
626 			if (unlikely(!fin)) {
627 				DEBUG_NET_WARN_ON_ONCE(1);
628 				mptcp_dss_corruption(msk, ssk);
629 			}
630 
631 			sk_eat_skb(ssk, skb);
632 		}
633 
634 		WRITE_ONCE(tp->copied_seq, seq);
635 		more_data_avail = mptcp_subflow_data_available(ssk);
636 
637 	} while (more_data_avail);
638 
639 	if (ret)
640 		msk->last_data_recv = tcp_jiffies32;
641 	return ret;
642 }
643 
644 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
645 {
646 	struct sock *sk = (struct sock *)msk;
647 	struct sk_buff *skb, *tail;
648 	bool moved = false;
649 	struct rb_node *p;
650 	u64 end_seq;
651 
652 	p = rb_first(&msk->out_of_order_queue);
653 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
654 	while (p) {
655 		skb = rb_to_skb(p);
656 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
657 			break;
658 
659 		p = rb_next(p);
660 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
661 
662 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
663 				      msk->ack_seq))) {
664 			mptcp_drop(sk, skb);
665 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
666 			continue;
667 		}
668 
669 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
670 		tail = skb_peek_tail(&sk->sk_receive_queue);
671 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
672 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
673 
674 			/* skip overlapping data, if any */
675 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
676 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
677 				 delta);
678 			MPTCP_SKB_CB(skb)->offset += delta;
679 			MPTCP_SKB_CB(skb)->map_seq += delta;
680 			__skb_queue_tail(&sk->sk_receive_queue, skb);
681 		}
682 		msk->bytes_received += end_seq - msk->ack_seq;
683 		WRITE_ONCE(msk->ack_seq, end_seq);
684 		moved = true;
685 	}
686 	return moved;
687 }
688 
689 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
690 {
691 	int err = sock_error(ssk);
692 	int ssk_state;
693 
694 	if (!err)
695 		return false;
696 
697 	/* only propagate errors on fallen-back sockets or
698 	 * on MPC connect
699 	 */
700 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
701 		return false;
702 
703 	/* We need to propagate only transition to CLOSE state.
704 	 * Orphaned socket will see such state change via
705 	 * subflow_sched_work_if_closed() and that path will properly
706 	 * destroy the msk as needed.
707 	 */
708 	ssk_state = inet_sk_state_load(ssk);
709 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
710 		mptcp_set_state(sk, ssk_state);
711 	WRITE_ONCE(sk->sk_err, -err);
712 
713 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
714 	smp_wmb();
715 	sk_error_report(sk);
716 	return true;
717 }
718 
719 void __mptcp_error_report(struct sock *sk)
720 {
721 	struct mptcp_subflow_context *subflow;
722 	struct mptcp_sock *msk = mptcp_sk(sk);
723 
724 	mptcp_for_each_subflow(msk, subflow)
725 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
726 			break;
727 }
728 
729 /* In most cases we will be able to lock the mptcp socket.  If its already
730  * owned, we need to defer to the work queue to avoid ABBA deadlock.
731  */
732 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
733 {
734 	struct sock *sk = (struct sock *)msk;
735 	bool moved;
736 
737 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
738 	__mptcp_ofo_queue(msk);
739 	if (unlikely(ssk->sk_err)) {
740 		if (!sock_owned_by_user(sk))
741 			__mptcp_error_report(sk);
742 		else
743 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
744 	}
745 
746 	/* If the moves have caught up with the DATA_FIN sequence number
747 	 * it's time to ack the DATA_FIN and change socket state, but
748 	 * this is not a good place to change state. Let the workqueue
749 	 * do it.
750 	 */
751 	if (mptcp_pending_data_fin(sk, NULL))
752 		mptcp_schedule_work(sk);
753 	return moved;
754 }
755 
756 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
757 {
758 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
759 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
760 }
761 
762 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
763 {
764 	struct mptcp_sock *msk = mptcp_sk(sk);
765 
766 	__mptcp_rcvbuf_update(sk, ssk);
767 
768 	/* Wake-up the reader only for in-sequence data */
769 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
770 		sk->sk_data_ready(sk);
771 }
772 
773 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
774 {
775 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
776 
777 	/* The peer can send data while we are shutting down this
778 	 * subflow at msk destruction time, but we must avoid enqueuing
779 	 * more data to the msk receive queue
780 	 */
781 	if (unlikely(subflow->disposable))
782 		return;
783 
784 	mptcp_data_lock(sk);
785 	if (!sock_owned_by_user(sk))
786 		__mptcp_data_ready(sk, ssk);
787 	else
788 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
789 	mptcp_data_unlock(sk);
790 }
791 
792 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
793 {
794 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
795 	msk->allow_infinite_fallback = false;
796 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
797 }
798 
799 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
800 {
801 	struct sock *sk = (struct sock *)msk;
802 
803 	if (sk->sk_state != TCP_ESTABLISHED)
804 		return false;
805 
806 	spin_lock_bh(&msk->fallback_lock);
807 	if (!msk->allow_subflows) {
808 		spin_unlock_bh(&msk->fallback_lock);
809 		return false;
810 	}
811 	mptcp_subflow_joined(msk, ssk);
812 	spin_unlock_bh(&msk->fallback_lock);
813 
814 	/* attach to msk socket only after we are sure we will deal with it
815 	 * at close time
816 	 */
817 	if (sk->sk_socket && !ssk->sk_socket)
818 		mptcp_sock_graft(ssk, sk->sk_socket);
819 
820 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
821 	mptcp_sockopt_sync_locked(msk, ssk);
822 	mptcp_stop_tout_timer(sk);
823 	__mptcp_propagate_sndbuf(sk, ssk);
824 	return true;
825 }
826 
827 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
828 {
829 	struct mptcp_subflow_context *tmp, *subflow;
830 	struct mptcp_sock *msk = mptcp_sk(sk);
831 
832 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
833 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
834 		bool slow = lock_sock_fast(ssk);
835 
836 		list_move_tail(&subflow->node, &msk->conn_list);
837 		if (!__mptcp_finish_join(msk, ssk))
838 			mptcp_subflow_reset(ssk);
839 		unlock_sock_fast(ssk, slow);
840 	}
841 }
842 
843 static bool mptcp_rtx_timer_pending(struct sock *sk)
844 {
845 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
846 }
847 
848 static void mptcp_reset_rtx_timer(struct sock *sk)
849 {
850 	struct inet_connection_sock *icsk = inet_csk(sk);
851 	unsigned long tout;
852 
853 	/* prevent rescheduling on close */
854 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
855 		return;
856 
857 	tout = mptcp_sk(sk)->timer_ival;
858 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
859 }
860 
861 bool mptcp_schedule_work(struct sock *sk)
862 {
863 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
864 	    schedule_work(&mptcp_sk(sk)->work)) {
865 		/* each subflow already holds a reference to the sk, and the
866 		 * workqueue is invoked by a subflow, so sk can't go away here.
867 		 */
868 		sock_hold(sk);
869 		return true;
870 	}
871 	return false;
872 }
873 
874 static bool mptcp_skb_can_collapse_to(u64 write_seq,
875 				      const struct sk_buff *skb,
876 				      const struct mptcp_ext *mpext)
877 {
878 	if (!tcp_skb_can_collapse_to(skb))
879 		return false;
880 
881 	/* can collapse only if MPTCP level sequence is in order and this
882 	 * mapping has not been xmitted yet
883 	 */
884 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
885 	       !mpext->frozen;
886 }
887 
888 /* we can append data to the given data frag if:
889  * - there is space available in the backing page_frag
890  * - the data frag tail matches the current page_frag free offset
891  * - the data frag end sequence number matches the current write seq
892  */
893 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
894 				       const struct page_frag *pfrag,
895 				       const struct mptcp_data_frag *df)
896 {
897 	return df && pfrag->page == df->page &&
898 		pfrag->size - pfrag->offset > 0 &&
899 		pfrag->offset == (df->offset + df->data_len) &&
900 		df->data_seq + df->data_len == msk->write_seq;
901 }
902 
903 static void dfrag_uncharge(struct sock *sk, int len)
904 {
905 	sk_mem_uncharge(sk, len);
906 	sk_wmem_queued_add(sk, -len);
907 }
908 
909 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
910 {
911 	int len = dfrag->data_len + dfrag->overhead;
912 
913 	list_del(&dfrag->list);
914 	dfrag_uncharge(sk, len);
915 	put_page(dfrag->page);
916 }
917 
918 /* called under both the msk socket lock and the data lock */
919 static void __mptcp_clean_una(struct sock *sk)
920 {
921 	struct mptcp_sock *msk = mptcp_sk(sk);
922 	struct mptcp_data_frag *dtmp, *dfrag;
923 	u64 snd_una;
924 
925 	snd_una = msk->snd_una;
926 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
927 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
928 			break;
929 
930 		if (unlikely(dfrag == msk->first_pending)) {
931 			/* in recovery mode can see ack after the current snd head */
932 			if (WARN_ON_ONCE(!msk->recovery))
933 				break;
934 
935 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
936 		}
937 
938 		dfrag_clear(sk, dfrag);
939 	}
940 
941 	dfrag = mptcp_rtx_head(sk);
942 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
943 		u64 delta = snd_una - dfrag->data_seq;
944 
945 		/* prevent wrap around in recovery mode */
946 		if (unlikely(delta > dfrag->already_sent)) {
947 			if (WARN_ON_ONCE(!msk->recovery))
948 				goto out;
949 			if (WARN_ON_ONCE(delta > dfrag->data_len))
950 				goto out;
951 			dfrag->already_sent += delta - dfrag->already_sent;
952 		}
953 
954 		dfrag->data_seq += delta;
955 		dfrag->offset += delta;
956 		dfrag->data_len -= delta;
957 		dfrag->already_sent -= delta;
958 
959 		dfrag_uncharge(sk, delta);
960 	}
961 
962 	/* all retransmitted data acked, recovery completed */
963 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
964 		msk->recovery = false;
965 
966 out:
967 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
968 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
969 			mptcp_stop_rtx_timer(sk);
970 	} else {
971 		mptcp_reset_rtx_timer(sk);
972 	}
973 
974 	if (mptcp_pending_data_fin_ack(sk))
975 		mptcp_schedule_work(sk);
976 }
977 
978 static void __mptcp_clean_una_wakeup(struct sock *sk)
979 {
980 	lockdep_assert_held_once(&sk->sk_lock.slock);
981 
982 	__mptcp_clean_una(sk);
983 	mptcp_write_space(sk);
984 }
985 
986 static void mptcp_clean_una_wakeup(struct sock *sk)
987 {
988 	mptcp_data_lock(sk);
989 	__mptcp_clean_una_wakeup(sk);
990 	mptcp_data_unlock(sk);
991 }
992 
993 static void mptcp_enter_memory_pressure(struct sock *sk)
994 {
995 	struct mptcp_subflow_context *subflow;
996 	struct mptcp_sock *msk = mptcp_sk(sk);
997 	bool first = true;
998 
999 	mptcp_for_each_subflow(msk, subflow) {
1000 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1001 
1002 		if (first)
1003 			tcp_enter_memory_pressure(ssk);
1004 		sk_stream_moderate_sndbuf(ssk);
1005 
1006 		first = false;
1007 	}
1008 	__mptcp_sync_sndbuf(sk);
1009 }
1010 
1011 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1012  * data
1013  */
1014 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1015 {
1016 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1017 					pfrag, sk->sk_allocation)))
1018 		return true;
1019 
1020 	mptcp_enter_memory_pressure(sk);
1021 	return false;
1022 }
1023 
1024 static struct mptcp_data_frag *
1025 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1026 		      int orig_offset)
1027 {
1028 	int offset = ALIGN(orig_offset, sizeof(long));
1029 	struct mptcp_data_frag *dfrag;
1030 
1031 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1032 	dfrag->data_len = 0;
1033 	dfrag->data_seq = msk->write_seq;
1034 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1035 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1036 	dfrag->already_sent = 0;
1037 	dfrag->page = pfrag->page;
1038 
1039 	return dfrag;
1040 }
1041 
1042 struct mptcp_sendmsg_info {
1043 	int mss_now;
1044 	int size_goal;
1045 	u16 limit;
1046 	u16 sent;
1047 	unsigned int flags;
1048 	bool data_lock_held;
1049 };
1050 
1051 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1052 				    u64 data_seq, int avail_size)
1053 {
1054 	u64 window_end = mptcp_wnd_end(msk);
1055 	u64 mptcp_snd_wnd;
1056 
1057 	if (__mptcp_check_fallback(msk))
1058 		return avail_size;
1059 
1060 	mptcp_snd_wnd = window_end - data_seq;
1061 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1062 
1063 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1064 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1065 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1066 	}
1067 
1068 	return avail_size;
1069 }
1070 
1071 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1072 {
1073 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1074 
1075 	if (!mpext)
1076 		return false;
1077 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1078 	return true;
1079 }
1080 
1081 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1082 {
1083 	struct sk_buff *skb;
1084 
1085 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1086 	if (likely(skb)) {
1087 		if (likely(__mptcp_add_ext(skb, gfp))) {
1088 			skb_reserve(skb, MAX_TCP_HEADER);
1089 			skb->ip_summed = CHECKSUM_PARTIAL;
1090 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1091 			return skb;
1092 		}
1093 		__kfree_skb(skb);
1094 	} else {
1095 		mptcp_enter_memory_pressure(sk);
1096 	}
1097 	return NULL;
1098 }
1099 
1100 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1101 {
1102 	struct sk_buff *skb;
1103 
1104 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1105 	if (!skb)
1106 		return NULL;
1107 
1108 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1109 		tcp_skb_entail(ssk, skb);
1110 		return skb;
1111 	}
1112 	tcp_skb_tsorted_anchor_cleanup(skb);
1113 	kfree_skb(skb);
1114 	return NULL;
1115 }
1116 
1117 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1118 {
1119 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1120 
1121 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1122 }
1123 
1124 /* note: this always recompute the csum on the whole skb, even
1125  * if we just appended a single frag. More status info needed
1126  */
1127 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1128 {
1129 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1130 	__wsum csum = ~csum_unfold(mpext->csum);
1131 	int offset = skb->len - added;
1132 
1133 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1134 }
1135 
1136 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1137 				      struct sock *ssk,
1138 				      struct mptcp_ext *mpext)
1139 {
1140 	if (!mpext)
1141 		return;
1142 
1143 	mpext->infinite_map = 1;
1144 	mpext->data_len = 0;
1145 
1146 	if (!mptcp_try_fallback(ssk)) {
1147 		mptcp_subflow_reset(ssk);
1148 		return;
1149 	}
1150 
1151 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1152 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1153 	pr_fallback(msk);
1154 }
1155 
1156 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1157 
1158 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1159 			      struct mptcp_data_frag *dfrag,
1160 			      struct mptcp_sendmsg_info *info)
1161 {
1162 	u64 data_seq = dfrag->data_seq + info->sent;
1163 	int offset = dfrag->offset + info->sent;
1164 	struct mptcp_sock *msk = mptcp_sk(sk);
1165 	bool zero_window_probe = false;
1166 	struct mptcp_ext *mpext = NULL;
1167 	bool can_coalesce = false;
1168 	bool reuse_skb = true;
1169 	struct sk_buff *skb;
1170 	size_t copy;
1171 	int i;
1172 
1173 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1174 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1175 
1176 	if (WARN_ON_ONCE(info->sent > info->limit ||
1177 			 info->limit > dfrag->data_len))
1178 		return 0;
1179 
1180 	if (unlikely(!__tcp_can_send(ssk)))
1181 		return -EAGAIN;
1182 
1183 	/* compute send limit */
1184 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1185 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1186 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1187 	copy = info->size_goal;
1188 
1189 	skb = tcp_write_queue_tail(ssk);
1190 	if (skb && copy > skb->len) {
1191 		/* Limit the write to the size available in the
1192 		 * current skb, if any, so that we create at most a new skb.
1193 		 * Explicitly tells TCP internals to avoid collapsing on later
1194 		 * queue management operation, to avoid breaking the ext <->
1195 		 * SSN association set here
1196 		 */
1197 		mpext = mptcp_get_ext(skb);
1198 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1199 			TCP_SKB_CB(skb)->eor = 1;
1200 			tcp_mark_push(tcp_sk(ssk), skb);
1201 			goto alloc_skb;
1202 		}
1203 
1204 		i = skb_shinfo(skb)->nr_frags;
1205 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1206 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1207 			tcp_mark_push(tcp_sk(ssk), skb);
1208 			goto alloc_skb;
1209 		}
1210 
1211 		copy -= skb->len;
1212 	} else {
1213 alloc_skb:
1214 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1215 		if (!skb)
1216 			return -ENOMEM;
1217 
1218 		i = skb_shinfo(skb)->nr_frags;
1219 		reuse_skb = false;
1220 		mpext = mptcp_get_ext(skb);
1221 	}
1222 
1223 	/* Zero window and all data acked? Probe. */
1224 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1225 	if (copy == 0) {
1226 		u64 snd_una = READ_ONCE(msk->snd_una);
1227 
1228 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1229 			tcp_remove_empty_skb(ssk);
1230 			return 0;
1231 		}
1232 
1233 		zero_window_probe = true;
1234 		data_seq = snd_una - 1;
1235 		copy = 1;
1236 	}
1237 
1238 	copy = min_t(size_t, copy, info->limit - info->sent);
1239 	if (!sk_wmem_schedule(ssk, copy)) {
1240 		tcp_remove_empty_skb(ssk);
1241 		return -ENOMEM;
1242 	}
1243 
1244 	if (can_coalesce) {
1245 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1246 	} else {
1247 		get_page(dfrag->page);
1248 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1249 	}
1250 
1251 	skb->len += copy;
1252 	skb->data_len += copy;
1253 	skb->truesize += copy;
1254 	sk_wmem_queued_add(ssk, copy);
1255 	sk_mem_charge(ssk, copy);
1256 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1257 	TCP_SKB_CB(skb)->end_seq += copy;
1258 	tcp_skb_pcount_set(skb, 0);
1259 
1260 	/* on skb reuse we just need to update the DSS len */
1261 	if (reuse_skb) {
1262 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1263 		mpext->data_len += copy;
1264 		goto out;
1265 	}
1266 
1267 	memset(mpext, 0, sizeof(*mpext));
1268 	mpext->data_seq = data_seq;
1269 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1270 	mpext->data_len = copy;
1271 	mpext->use_map = 1;
1272 	mpext->dsn64 = 1;
1273 
1274 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1275 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1276 		 mpext->dsn64);
1277 
1278 	if (zero_window_probe) {
1279 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1280 		mpext->frozen = 1;
1281 		if (READ_ONCE(msk->csum_enabled))
1282 			mptcp_update_data_checksum(skb, copy);
1283 		tcp_push_pending_frames(ssk);
1284 		return 0;
1285 	}
1286 out:
1287 	if (READ_ONCE(msk->csum_enabled))
1288 		mptcp_update_data_checksum(skb, copy);
1289 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1290 		mptcp_update_infinite_map(msk, ssk, mpext);
1291 	trace_mptcp_sendmsg_frag(mpext);
1292 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1293 	return copy;
1294 }
1295 
1296 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1297 					 sizeof(struct tcphdr) - \
1298 					 MAX_TCP_OPTION_SPACE - \
1299 					 sizeof(struct ipv6hdr) - \
1300 					 sizeof(struct frag_hdr))
1301 
1302 struct subflow_send_info {
1303 	struct sock *ssk;
1304 	u64 linger_time;
1305 };
1306 
1307 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1308 {
1309 	if (!subflow->stale)
1310 		return;
1311 
1312 	subflow->stale = 0;
1313 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1314 }
1315 
1316 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1317 {
1318 	if (unlikely(subflow->stale)) {
1319 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1320 
1321 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1322 			return false;
1323 
1324 		mptcp_subflow_set_active(subflow);
1325 	}
1326 	return __mptcp_subflow_active(subflow);
1327 }
1328 
1329 #define SSK_MODE_ACTIVE	0
1330 #define SSK_MODE_BACKUP	1
1331 #define SSK_MODE_MAX	2
1332 
1333 /* implement the mptcp packet scheduler;
1334  * returns the subflow that will transmit the next DSS
1335  * additionally updates the rtx timeout
1336  */
1337 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1338 {
1339 	struct subflow_send_info send_info[SSK_MODE_MAX];
1340 	struct mptcp_subflow_context *subflow;
1341 	struct sock *sk = (struct sock *)msk;
1342 	u32 pace, burst, wmem;
1343 	int i, nr_active = 0;
1344 	struct sock *ssk;
1345 	u64 linger_time;
1346 	long tout = 0;
1347 
1348 	/* pick the subflow with the lower wmem/wspace ratio */
1349 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1350 		send_info[i].ssk = NULL;
1351 		send_info[i].linger_time = -1;
1352 	}
1353 
1354 	mptcp_for_each_subflow(msk, subflow) {
1355 		bool backup = subflow->backup || subflow->request_bkup;
1356 
1357 		trace_mptcp_subflow_get_send(subflow);
1358 		ssk =  mptcp_subflow_tcp_sock(subflow);
1359 		if (!mptcp_subflow_active(subflow))
1360 			continue;
1361 
1362 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1363 		nr_active += !backup;
1364 		pace = subflow->avg_pacing_rate;
1365 		if (unlikely(!pace)) {
1366 			/* init pacing rate from socket */
1367 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1368 			pace = subflow->avg_pacing_rate;
1369 			if (!pace)
1370 				continue;
1371 		}
1372 
1373 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1374 		if (linger_time < send_info[backup].linger_time) {
1375 			send_info[backup].ssk = ssk;
1376 			send_info[backup].linger_time = linger_time;
1377 		}
1378 	}
1379 	__mptcp_set_timeout(sk, tout);
1380 
1381 	/* pick the best backup if no other subflow is active */
1382 	if (!nr_active)
1383 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1384 
1385 	/* According to the blest algorithm, to avoid HoL blocking for the
1386 	 * faster flow, we need to:
1387 	 * - estimate the faster flow linger time
1388 	 * - use the above to estimate the amount of byte transferred
1389 	 *   by the faster flow
1390 	 * - check that the amount of queued data is greter than the above,
1391 	 *   otherwise do not use the picked, slower, subflow
1392 	 * We select the subflow with the shorter estimated time to flush
1393 	 * the queued mem, which basically ensure the above. We just need
1394 	 * to check that subflow has a non empty cwin.
1395 	 */
1396 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1397 	if (!ssk || !sk_stream_memory_free(ssk))
1398 		return NULL;
1399 
1400 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1401 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1402 	if (!burst)
1403 		return ssk;
1404 
1405 	subflow = mptcp_subflow_ctx(ssk);
1406 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1407 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1408 					   burst + wmem);
1409 	msk->snd_burst = burst;
1410 	return ssk;
1411 }
1412 
1413 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1414 {
1415 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1416 	release_sock(ssk);
1417 }
1418 
1419 static void mptcp_update_post_push(struct mptcp_sock *msk,
1420 				   struct mptcp_data_frag *dfrag,
1421 				   u32 sent)
1422 {
1423 	u64 snd_nxt_new = dfrag->data_seq;
1424 
1425 	dfrag->already_sent += sent;
1426 
1427 	msk->snd_burst -= sent;
1428 
1429 	snd_nxt_new += dfrag->already_sent;
1430 
1431 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1432 	 * is recovering after a failover. In that event, this re-sends
1433 	 * old segments.
1434 	 *
1435 	 * Thus compute snd_nxt_new candidate based on
1436 	 * the dfrag->data_seq that was sent and the data
1437 	 * that has been handed to the subflow for transmission
1438 	 * and skip update in case it was old dfrag.
1439 	 */
1440 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1441 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1442 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1443 	}
1444 }
1445 
1446 void mptcp_check_and_set_pending(struct sock *sk)
1447 {
1448 	if (mptcp_send_head(sk)) {
1449 		mptcp_data_lock(sk);
1450 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1451 		mptcp_data_unlock(sk);
1452 	}
1453 }
1454 
1455 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1456 				  struct mptcp_sendmsg_info *info)
1457 {
1458 	struct mptcp_sock *msk = mptcp_sk(sk);
1459 	struct mptcp_data_frag *dfrag;
1460 	int len, copied = 0, err = 0;
1461 
1462 	while ((dfrag = mptcp_send_head(sk))) {
1463 		info->sent = dfrag->already_sent;
1464 		info->limit = dfrag->data_len;
1465 		len = dfrag->data_len - dfrag->already_sent;
1466 		while (len > 0) {
1467 			int ret = 0;
1468 
1469 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1470 			if (ret <= 0) {
1471 				err = copied ? : ret;
1472 				goto out;
1473 			}
1474 
1475 			info->sent += ret;
1476 			copied += ret;
1477 			len -= ret;
1478 
1479 			mptcp_update_post_push(msk, dfrag, ret);
1480 		}
1481 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1482 
1483 		if (msk->snd_burst <= 0 ||
1484 		    !sk_stream_memory_free(ssk) ||
1485 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1486 			err = copied;
1487 			goto out;
1488 		}
1489 		mptcp_set_timeout(sk);
1490 	}
1491 	err = copied;
1492 
1493 out:
1494 	if (err > 0)
1495 		msk->last_data_sent = tcp_jiffies32;
1496 	return err;
1497 }
1498 
1499 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1500 {
1501 	struct sock *prev_ssk = NULL, *ssk = NULL;
1502 	struct mptcp_sock *msk = mptcp_sk(sk);
1503 	struct mptcp_sendmsg_info info = {
1504 				.flags = flags,
1505 	};
1506 	bool do_check_data_fin = false;
1507 	int push_count = 1;
1508 
1509 	while (mptcp_send_head(sk) && (push_count > 0)) {
1510 		struct mptcp_subflow_context *subflow;
1511 		int ret = 0;
1512 
1513 		if (mptcp_sched_get_send(msk))
1514 			break;
1515 
1516 		push_count = 0;
1517 
1518 		mptcp_for_each_subflow(msk, subflow) {
1519 			if (READ_ONCE(subflow->scheduled)) {
1520 				mptcp_subflow_set_scheduled(subflow, false);
1521 
1522 				prev_ssk = ssk;
1523 				ssk = mptcp_subflow_tcp_sock(subflow);
1524 				if (ssk != prev_ssk) {
1525 					/* First check. If the ssk has changed since
1526 					 * the last round, release prev_ssk
1527 					 */
1528 					if (prev_ssk)
1529 						mptcp_push_release(prev_ssk, &info);
1530 
1531 					/* Need to lock the new subflow only if different
1532 					 * from the previous one, otherwise we are still
1533 					 * helding the relevant lock
1534 					 */
1535 					lock_sock(ssk);
1536 				}
1537 
1538 				push_count++;
1539 
1540 				ret = __subflow_push_pending(sk, ssk, &info);
1541 				if (ret <= 0) {
1542 					if (ret != -EAGAIN ||
1543 					    (1 << ssk->sk_state) &
1544 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1545 						push_count--;
1546 					continue;
1547 				}
1548 				do_check_data_fin = true;
1549 			}
1550 		}
1551 	}
1552 
1553 	/* at this point we held the socket lock for the last subflow we used */
1554 	if (ssk)
1555 		mptcp_push_release(ssk, &info);
1556 
1557 	/* ensure the rtx timer is running */
1558 	if (!mptcp_rtx_timer_pending(sk))
1559 		mptcp_reset_rtx_timer(sk);
1560 	if (do_check_data_fin)
1561 		mptcp_check_send_data_fin(sk);
1562 }
1563 
1564 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1565 {
1566 	struct mptcp_sock *msk = mptcp_sk(sk);
1567 	struct mptcp_sendmsg_info info = {
1568 		.data_lock_held = true,
1569 	};
1570 	bool keep_pushing = true;
1571 	struct sock *xmit_ssk;
1572 	int copied = 0;
1573 
1574 	info.flags = 0;
1575 	while (mptcp_send_head(sk) && keep_pushing) {
1576 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1577 		int ret = 0;
1578 
1579 		/* check for a different subflow usage only after
1580 		 * spooling the first chunk of data
1581 		 */
1582 		if (first) {
1583 			mptcp_subflow_set_scheduled(subflow, false);
1584 			ret = __subflow_push_pending(sk, ssk, &info);
1585 			first = false;
1586 			if (ret <= 0)
1587 				break;
1588 			copied += ret;
1589 			continue;
1590 		}
1591 
1592 		if (mptcp_sched_get_send(msk))
1593 			goto out;
1594 
1595 		if (READ_ONCE(subflow->scheduled)) {
1596 			mptcp_subflow_set_scheduled(subflow, false);
1597 			ret = __subflow_push_pending(sk, ssk, &info);
1598 			if (ret <= 0)
1599 				keep_pushing = false;
1600 			copied += ret;
1601 		}
1602 
1603 		mptcp_for_each_subflow(msk, subflow) {
1604 			if (READ_ONCE(subflow->scheduled)) {
1605 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1606 				if (xmit_ssk != ssk) {
1607 					mptcp_subflow_delegate(subflow,
1608 							       MPTCP_DELEGATE_SEND);
1609 					keep_pushing = false;
1610 				}
1611 			}
1612 		}
1613 	}
1614 
1615 out:
1616 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1617 	 * not going to flush it via release_sock()
1618 	 */
1619 	if (copied) {
1620 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1621 			 info.size_goal);
1622 		if (!mptcp_rtx_timer_pending(sk))
1623 			mptcp_reset_rtx_timer(sk);
1624 
1625 		if (msk->snd_data_fin_enable &&
1626 		    msk->snd_nxt + 1 == msk->write_seq)
1627 			mptcp_schedule_work(sk);
1628 	}
1629 }
1630 
1631 static int mptcp_disconnect(struct sock *sk, int flags);
1632 
1633 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1634 				  size_t len, int *copied_syn)
1635 {
1636 	unsigned int saved_flags = msg->msg_flags;
1637 	struct mptcp_sock *msk = mptcp_sk(sk);
1638 	struct sock *ssk;
1639 	int ret;
1640 
1641 	/* on flags based fastopen the mptcp is supposed to create the
1642 	 * first subflow right now. Otherwise we are in the defer_connect
1643 	 * path, and the first subflow must be already present.
1644 	 * Since the defer_connect flag is cleared after the first succsful
1645 	 * fastopen attempt, no need to check for additional subflow status.
1646 	 */
1647 	if (msg->msg_flags & MSG_FASTOPEN) {
1648 		ssk = __mptcp_nmpc_sk(msk);
1649 		if (IS_ERR(ssk))
1650 			return PTR_ERR(ssk);
1651 	}
1652 	if (!msk->first)
1653 		return -EINVAL;
1654 
1655 	ssk = msk->first;
1656 
1657 	lock_sock(ssk);
1658 	msg->msg_flags |= MSG_DONTWAIT;
1659 	msk->fastopening = 1;
1660 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1661 	msk->fastopening = 0;
1662 	msg->msg_flags = saved_flags;
1663 	release_sock(ssk);
1664 
1665 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1666 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1667 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1668 					    msg->msg_namelen, msg->msg_flags, 1);
1669 
1670 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1671 		 * case of any error, except timeout or signal
1672 		 */
1673 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1674 			*copied_syn = 0;
1675 	} else if (ret && ret != -EINPROGRESS) {
1676 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1677 		 * __inet_stream_connect() can fail, due to looking check,
1678 		 * see mptcp_disconnect().
1679 		 * Attempt it again outside the problematic scope.
1680 		 */
1681 		if (!mptcp_disconnect(sk, 0)) {
1682 			sk->sk_disconnects++;
1683 			sk->sk_socket->state = SS_UNCONNECTED;
1684 		}
1685 	}
1686 	inet_clear_bit(DEFER_CONNECT, sk);
1687 
1688 	return ret;
1689 }
1690 
1691 static int do_copy_data_nocache(struct sock *sk, int copy,
1692 				struct iov_iter *from, char *to)
1693 {
1694 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1695 		if (!copy_from_iter_full_nocache(to, copy, from))
1696 			return -EFAULT;
1697 	} else if (!copy_from_iter_full(to, copy, from)) {
1698 		return -EFAULT;
1699 	}
1700 	return 0;
1701 }
1702 
1703 /* open-code sk_stream_memory_free() plus sent limit computation to
1704  * avoid indirect calls in fast-path.
1705  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1706  * annotations.
1707  */
1708 static u32 mptcp_send_limit(const struct sock *sk)
1709 {
1710 	const struct mptcp_sock *msk = mptcp_sk(sk);
1711 	u32 limit, not_sent;
1712 
1713 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1714 		return 0;
1715 
1716 	limit = mptcp_notsent_lowat(sk);
1717 	if (limit == UINT_MAX)
1718 		return UINT_MAX;
1719 
1720 	not_sent = msk->write_seq - msk->snd_nxt;
1721 	if (not_sent >= limit)
1722 		return 0;
1723 
1724 	return limit - not_sent;
1725 }
1726 
1727 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1728 {
1729 	struct mptcp_sock *msk = mptcp_sk(sk);
1730 	struct page_frag *pfrag;
1731 	size_t copied = 0;
1732 	int ret = 0;
1733 	long timeo;
1734 
1735 	/* silently ignore everything else */
1736 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1737 
1738 	lock_sock(sk);
1739 
1740 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1741 		     msg->msg_flags & MSG_FASTOPEN)) {
1742 		int copied_syn = 0;
1743 
1744 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1745 		copied += copied_syn;
1746 		if (ret == -EINPROGRESS && copied_syn > 0)
1747 			goto out;
1748 		else if (ret)
1749 			goto do_error;
1750 	}
1751 
1752 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1753 
1754 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1755 		ret = sk_stream_wait_connect(sk, &timeo);
1756 		if (ret)
1757 			goto do_error;
1758 	}
1759 
1760 	ret = -EPIPE;
1761 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1762 		goto do_error;
1763 
1764 	pfrag = sk_page_frag(sk);
1765 
1766 	while (msg_data_left(msg)) {
1767 		int total_ts, frag_truesize = 0;
1768 		struct mptcp_data_frag *dfrag;
1769 		bool dfrag_collapsed;
1770 		size_t psize, offset;
1771 		u32 copy_limit;
1772 
1773 		/* ensure fitting the notsent_lowat() constraint */
1774 		copy_limit = mptcp_send_limit(sk);
1775 		if (!copy_limit)
1776 			goto wait_for_memory;
1777 
1778 		/* reuse tail pfrag, if possible, or carve a new one from the
1779 		 * page allocator
1780 		 */
1781 		dfrag = mptcp_pending_tail(sk);
1782 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1783 		if (!dfrag_collapsed) {
1784 			if (!mptcp_page_frag_refill(sk, pfrag))
1785 				goto wait_for_memory;
1786 
1787 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1788 			frag_truesize = dfrag->overhead;
1789 		}
1790 
1791 		/* we do not bound vs wspace, to allow a single packet.
1792 		 * memory accounting will prevent execessive memory usage
1793 		 * anyway
1794 		 */
1795 		offset = dfrag->offset + dfrag->data_len;
1796 		psize = pfrag->size - offset;
1797 		psize = min_t(size_t, psize, msg_data_left(msg));
1798 		psize = min_t(size_t, psize, copy_limit);
1799 		total_ts = psize + frag_truesize;
1800 
1801 		if (!sk_wmem_schedule(sk, total_ts))
1802 			goto wait_for_memory;
1803 
1804 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1805 					   page_address(dfrag->page) + offset);
1806 		if (ret)
1807 			goto do_error;
1808 
1809 		/* data successfully copied into the write queue */
1810 		sk_forward_alloc_add(sk, -total_ts);
1811 		copied += psize;
1812 		dfrag->data_len += psize;
1813 		frag_truesize += psize;
1814 		pfrag->offset += frag_truesize;
1815 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1816 
1817 		/* charge data on mptcp pending queue to the msk socket
1818 		 * Note: we charge such data both to sk and ssk
1819 		 */
1820 		sk_wmem_queued_add(sk, frag_truesize);
1821 		if (!dfrag_collapsed) {
1822 			get_page(dfrag->page);
1823 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1824 			if (!msk->first_pending)
1825 				WRITE_ONCE(msk->first_pending, dfrag);
1826 		}
1827 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1828 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1829 			 !dfrag_collapsed);
1830 
1831 		continue;
1832 
1833 wait_for_memory:
1834 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1835 		__mptcp_push_pending(sk, msg->msg_flags);
1836 		ret = sk_stream_wait_memory(sk, &timeo);
1837 		if (ret)
1838 			goto do_error;
1839 	}
1840 
1841 	if (copied)
1842 		__mptcp_push_pending(sk, msg->msg_flags);
1843 
1844 out:
1845 	release_sock(sk);
1846 	return copied;
1847 
1848 do_error:
1849 	if (copied)
1850 		goto out;
1851 
1852 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1853 	goto out;
1854 }
1855 
1856 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1857 
1858 static int __mptcp_recvmsg_mskq(struct sock *sk,
1859 				struct msghdr *msg,
1860 				size_t len, int flags,
1861 				struct scm_timestamping_internal *tss,
1862 				int *cmsg_flags)
1863 {
1864 	struct mptcp_sock *msk = mptcp_sk(sk);
1865 	struct sk_buff *skb, *tmp;
1866 	int copied = 0;
1867 
1868 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1869 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1870 		u32 data_len = skb->len - offset;
1871 		u32 count = min_t(size_t, len - copied, data_len);
1872 		int err;
1873 
1874 		if (!(flags & MSG_TRUNC)) {
1875 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1876 			if (unlikely(err < 0)) {
1877 				if (!copied)
1878 					return err;
1879 				break;
1880 			}
1881 		}
1882 
1883 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1884 			tcp_update_recv_tstamps(skb, tss);
1885 			*cmsg_flags |= MPTCP_CMSG_TS;
1886 		}
1887 
1888 		copied += count;
1889 
1890 		if (count < data_len) {
1891 			if (!(flags & MSG_PEEK)) {
1892 				MPTCP_SKB_CB(skb)->offset += count;
1893 				MPTCP_SKB_CB(skb)->map_seq += count;
1894 				msk->bytes_consumed += count;
1895 			}
1896 			break;
1897 		}
1898 
1899 		if (!(flags & MSG_PEEK)) {
1900 			/* avoid the indirect call, we know the destructor is sock_wfree */
1901 			skb->destructor = NULL;
1902 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1903 			sk_mem_uncharge(sk, skb->truesize);
1904 			__skb_unlink(skb, &sk->sk_receive_queue);
1905 			__kfree_skb(skb);
1906 			msk->bytes_consumed += count;
1907 		}
1908 
1909 		if (copied >= len)
1910 			break;
1911 	}
1912 
1913 	mptcp_rcv_space_adjust(msk, copied);
1914 	return copied;
1915 }
1916 
1917 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1918  *
1919  * Only difference: Use highest rtt estimate of the subflows in use.
1920  */
1921 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1922 {
1923 	struct mptcp_subflow_context *subflow;
1924 	struct sock *sk = (struct sock *)msk;
1925 	u8 scaling_ratio = U8_MAX;
1926 	u32 time, advmss = 1;
1927 	u64 rtt_us, mstamp;
1928 
1929 	msk_owned_by_me(msk);
1930 
1931 	if (copied <= 0)
1932 		return;
1933 
1934 	if (!msk->rcvspace_init)
1935 		mptcp_rcv_space_init(msk, msk->first);
1936 
1937 	msk->rcvq_space.copied += copied;
1938 
1939 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1940 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1941 
1942 	rtt_us = msk->rcvq_space.rtt_us;
1943 	if (rtt_us && time < (rtt_us >> 3))
1944 		return;
1945 
1946 	rtt_us = 0;
1947 	mptcp_for_each_subflow(msk, subflow) {
1948 		const struct tcp_sock *tp;
1949 		u64 sf_rtt_us;
1950 		u32 sf_advmss;
1951 
1952 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1953 
1954 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1955 		sf_advmss = READ_ONCE(tp->advmss);
1956 
1957 		rtt_us = max(sf_rtt_us, rtt_us);
1958 		advmss = max(sf_advmss, advmss);
1959 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1960 	}
1961 
1962 	msk->rcvq_space.rtt_us = rtt_us;
1963 	msk->scaling_ratio = scaling_ratio;
1964 	if (time < (rtt_us >> 3) || rtt_us == 0)
1965 		return;
1966 
1967 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1968 		goto new_measure;
1969 
1970 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1971 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1972 		u64 rcvwin, grow;
1973 		int rcvbuf;
1974 
1975 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1976 
1977 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1978 
1979 		do_div(grow, msk->rcvq_space.space);
1980 		rcvwin += (grow << 1);
1981 
1982 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1983 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1984 
1985 		if (rcvbuf > sk->sk_rcvbuf) {
1986 			u32 window_clamp;
1987 
1988 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
1989 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1990 
1991 			/* Make subflows follow along.  If we do not do this, we
1992 			 * get drops at subflow level if skbs can't be moved to
1993 			 * the mptcp rx queue fast enough (announced rcv_win can
1994 			 * exceed ssk->sk_rcvbuf).
1995 			 */
1996 			mptcp_for_each_subflow(msk, subflow) {
1997 				struct sock *ssk;
1998 				bool slow;
1999 
2000 				ssk = mptcp_subflow_tcp_sock(subflow);
2001 				slow = lock_sock_fast(ssk);
2002 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2003 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2004 				if (tcp_can_send_ack(ssk))
2005 					tcp_cleanup_rbuf(ssk, 1);
2006 				unlock_sock_fast(ssk, slow);
2007 			}
2008 		}
2009 	}
2010 
2011 	msk->rcvq_space.space = msk->rcvq_space.copied;
2012 new_measure:
2013 	msk->rcvq_space.copied = 0;
2014 	msk->rcvq_space.time = mstamp;
2015 }
2016 
2017 static struct mptcp_subflow_context *
2018 __mptcp_first_ready_from(struct mptcp_sock *msk,
2019 			 struct mptcp_subflow_context *subflow)
2020 {
2021 	struct mptcp_subflow_context *start_subflow = subflow;
2022 
2023 	while (!READ_ONCE(subflow->data_avail)) {
2024 		subflow = mptcp_next_subflow(msk, subflow);
2025 		if (subflow == start_subflow)
2026 			return NULL;
2027 	}
2028 	return subflow;
2029 }
2030 
2031 static bool __mptcp_move_skbs(struct sock *sk)
2032 {
2033 	struct mptcp_subflow_context *subflow;
2034 	struct mptcp_sock *msk = mptcp_sk(sk);
2035 	bool ret = false;
2036 
2037 	if (list_empty(&msk->conn_list))
2038 		return false;
2039 
2040 	/* verify we can move any data from the subflow, eventually updating */
2041 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2042 		mptcp_for_each_subflow(msk, subflow)
2043 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2044 
2045 	subflow = list_first_entry(&msk->conn_list,
2046 				   struct mptcp_subflow_context, node);
2047 	for (;;) {
2048 		struct sock *ssk;
2049 		bool slowpath;
2050 
2051 		/*
2052 		 * As an optimization avoid traversing the subflows list
2053 		 * and ev. acquiring the subflow socket lock before baling out
2054 		 */
2055 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2056 			break;
2057 
2058 		subflow = __mptcp_first_ready_from(msk, subflow);
2059 		if (!subflow)
2060 			break;
2061 
2062 		ssk = mptcp_subflow_tcp_sock(subflow);
2063 		slowpath = lock_sock_fast(ssk);
2064 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2065 		if (unlikely(ssk->sk_err))
2066 			__mptcp_error_report(sk);
2067 		unlock_sock_fast(ssk, slowpath);
2068 
2069 		subflow = mptcp_next_subflow(msk, subflow);
2070 	}
2071 
2072 	__mptcp_ofo_queue(msk);
2073 	if (ret)
2074 		mptcp_check_data_fin((struct sock *)msk);
2075 	return ret;
2076 }
2077 
2078 static unsigned int mptcp_inq_hint(const struct sock *sk)
2079 {
2080 	const struct mptcp_sock *msk = mptcp_sk(sk);
2081 	const struct sk_buff *skb;
2082 
2083 	skb = skb_peek(&sk->sk_receive_queue);
2084 	if (skb) {
2085 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2086 
2087 		if (hint_val >= INT_MAX)
2088 			return INT_MAX;
2089 
2090 		return (unsigned int)hint_val;
2091 	}
2092 
2093 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2094 		return 1;
2095 
2096 	return 0;
2097 }
2098 
2099 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2100 			 int flags, int *addr_len)
2101 {
2102 	struct mptcp_sock *msk = mptcp_sk(sk);
2103 	struct scm_timestamping_internal tss;
2104 	int copied = 0, cmsg_flags = 0;
2105 	int target;
2106 	long timeo;
2107 
2108 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2109 	if (unlikely(flags & MSG_ERRQUEUE))
2110 		return inet_recv_error(sk, msg, len, addr_len);
2111 
2112 	lock_sock(sk);
2113 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2114 		copied = -ENOTCONN;
2115 		goto out_err;
2116 	}
2117 
2118 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2119 
2120 	len = min_t(size_t, len, INT_MAX);
2121 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2122 
2123 	if (unlikely(msk->recvmsg_inq))
2124 		cmsg_flags = MPTCP_CMSG_INQ;
2125 
2126 	while (copied < len) {
2127 		int err, bytes_read;
2128 
2129 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2130 		if (unlikely(bytes_read < 0)) {
2131 			if (!copied)
2132 				copied = bytes_read;
2133 			goto out_err;
2134 		}
2135 
2136 		copied += bytes_read;
2137 
2138 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2139 			continue;
2140 
2141 		/* only the MPTCP socket status is relevant here. The exit
2142 		 * conditions mirror closely tcp_recvmsg()
2143 		 */
2144 		if (copied >= target)
2145 			break;
2146 
2147 		if (copied) {
2148 			if (sk->sk_err ||
2149 			    sk->sk_state == TCP_CLOSE ||
2150 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2151 			    !timeo ||
2152 			    signal_pending(current))
2153 				break;
2154 		} else {
2155 			if (sk->sk_err) {
2156 				copied = sock_error(sk);
2157 				break;
2158 			}
2159 
2160 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2161 				/* race breaker: the shutdown could be after the
2162 				 * previous receive queue check
2163 				 */
2164 				if (__mptcp_move_skbs(sk))
2165 					continue;
2166 				break;
2167 			}
2168 
2169 			if (sk->sk_state == TCP_CLOSE) {
2170 				copied = -ENOTCONN;
2171 				break;
2172 			}
2173 
2174 			if (!timeo) {
2175 				copied = -EAGAIN;
2176 				break;
2177 			}
2178 
2179 			if (signal_pending(current)) {
2180 				copied = sock_intr_errno(timeo);
2181 				break;
2182 			}
2183 		}
2184 
2185 		pr_debug("block timeout %ld\n", timeo);
2186 		mptcp_cleanup_rbuf(msk, copied);
2187 		err = sk_wait_data(sk, &timeo, NULL);
2188 		if (err < 0) {
2189 			err = copied ? : err;
2190 			goto out_err;
2191 		}
2192 	}
2193 
2194 	mptcp_cleanup_rbuf(msk, copied);
2195 
2196 out_err:
2197 	if (cmsg_flags && copied >= 0) {
2198 		if (cmsg_flags & MPTCP_CMSG_TS)
2199 			tcp_recv_timestamp(msg, sk, &tss);
2200 
2201 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2202 			unsigned int inq = mptcp_inq_hint(sk);
2203 
2204 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2205 		}
2206 	}
2207 
2208 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2209 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2210 
2211 	release_sock(sk);
2212 	return copied;
2213 }
2214 
2215 static void mptcp_retransmit_timer(struct timer_list *t)
2216 {
2217 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2218 							       icsk_retransmit_timer);
2219 	struct sock *sk = &icsk->icsk_inet.sk;
2220 	struct mptcp_sock *msk = mptcp_sk(sk);
2221 
2222 	bh_lock_sock(sk);
2223 	if (!sock_owned_by_user(sk)) {
2224 		/* we need a process context to retransmit */
2225 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2226 			mptcp_schedule_work(sk);
2227 	} else {
2228 		/* delegate our work to tcp_release_cb() */
2229 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2230 	}
2231 	bh_unlock_sock(sk);
2232 	sock_put(sk);
2233 }
2234 
2235 static void mptcp_tout_timer(struct timer_list *t)
2236 {
2237 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2238 
2239 	mptcp_schedule_work(sk);
2240 	sock_put(sk);
2241 }
2242 
2243 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2244  * level.
2245  *
2246  * A backup subflow is returned only if that is the only kind available.
2247  */
2248 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2249 {
2250 	struct sock *backup = NULL, *pick = NULL;
2251 	struct mptcp_subflow_context *subflow;
2252 	int min_stale_count = INT_MAX;
2253 
2254 	mptcp_for_each_subflow(msk, subflow) {
2255 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2256 
2257 		if (!__mptcp_subflow_active(subflow))
2258 			continue;
2259 
2260 		/* still data outstanding at TCP level? skip this */
2261 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2262 			mptcp_pm_subflow_chk_stale(msk, ssk);
2263 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2264 			continue;
2265 		}
2266 
2267 		if (subflow->backup || subflow->request_bkup) {
2268 			if (!backup)
2269 				backup = ssk;
2270 			continue;
2271 		}
2272 
2273 		if (!pick)
2274 			pick = ssk;
2275 	}
2276 
2277 	if (pick)
2278 		return pick;
2279 
2280 	/* use backup only if there are no progresses anywhere */
2281 	return min_stale_count > 1 ? backup : NULL;
2282 }
2283 
2284 bool __mptcp_retransmit_pending_data(struct sock *sk)
2285 {
2286 	struct mptcp_data_frag *cur, *rtx_head;
2287 	struct mptcp_sock *msk = mptcp_sk(sk);
2288 
2289 	if (__mptcp_check_fallback(msk))
2290 		return false;
2291 
2292 	/* the closing socket has some data untransmitted and/or unacked:
2293 	 * some data in the mptcp rtx queue has not really xmitted yet.
2294 	 * keep it simple and re-inject the whole mptcp level rtx queue
2295 	 */
2296 	mptcp_data_lock(sk);
2297 	__mptcp_clean_una_wakeup(sk);
2298 	rtx_head = mptcp_rtx_head(sk);
2299 	if (!rtx_head) {
2300 		mptcp_data_unlock(sk);
2301 		return false;
2302 	}
2303 
2304 	msk->recovery_snd_nxt = msk->snd_nxt;
2305 	msk->recovery = true;
2306 	mptcp_data_unlock(sk);
2307 
2308 	msk->first_pending = rtx_head;
2309 	msk->snd_burst = 0;
2310 
2311 	/* be sure to clear the "sent status" on all re-injected fragments */
2312 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2313 		if (!cur->already_sent)
2314 			break;
2315 		cur->already_sent = 0;
2316 	}
2317 
2318 	return true;
2319 }
2320 
2321 /* flags for __mptcp_close_ssk() */
2322 #define MPTCP_CF_PUSH		BIT(1)
2323 #define MPTCP_CF_FASTCLOSE	BIT(2)
2324 
2325 /* be sure to send a reset only if the caller asked for it, also
2326  * clean completely the subflow status when the subflow reaches
2327  * TCP_CLOSE state
2328  */
2329 static void __mptcp_subflow_disconnect(struct sock *ssk,
2330 				       struct mptcp_subflow_context *subflow,
2331 				       unsigned int flags)
2332 {
2333 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2334 	    (flags & MPTCP_CF_FASTCLOSE)) {
2335 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2336 		 * disconnect should never fail
2337 		 */
2338 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2339 		mptcp_subflow_ctx_reset(subflow);
2340 	} else {
2341 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2342 	}
2343 }
2344 
2345 /* subflow sockets can be either outgoing (connect) or incoming
2346  * (accept).
2347  *
2348  * Outgoing subflows use in-kernel sockets.
2349  * Incoming subflows do not have their own 'struct socket' allocated,
2350  * so we need to use tcp_close() after detaching them from the mptcp
2351  * parent socket.
2352  */
2353 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2354 			      struct mptcp_subflow_context *subflow,
2355 			      unsigned int flags)
2356 {
2357 	struct mptcp_sock *msk = mptcp_sk(sk);
2358 	bool dispose_it, need_push = false;
2359 
2360 	/* If the first subflow moved to a close state before accept, e.g. due
2361 	 * to an incoming reset or listener shutdown, the subflow socket is
2362 	 * already deleted by inet_child_forget() and the mptcp socket can't
2363 	 * survive too.
2364 	 */
2365 	if (msk->in_accept_queue && msk->first == ssk &&
2366 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2367 		/* ensure later check in mptcp_worker() will dispose the msk */
2368 		sock_set_flag(sk, SOCK_DEAD);
2369 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2370 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2371 		mptcp_subflow_drop_ctx(ssk);
2372 		goto out_release;
2373 	}
2374 
2375 	dispose_it = msk->free_first || ssk != msk->first;
2376 	if (dispose_it)
2377 		list_del(&subflow->node);
2378 
2379 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2380 
2381 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2382 		/* be sure to force the tcp_close path
2383 		 * to generate the egress reset
2384 		 */
2385 		ssk->sk_lingertime = 0;
2386 		sock_set_flag(ssk, SOCK_LINGER);
2387 		subflow->send_fastclose = 1;
2388 	}
2389 
2390 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2391 	if (!dispose_it) {
2392 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2393 		release_sock(ssk);
2394 
2395 		goto out;
2396 	}
2397 
2398 	subflow->disposable = 1;
2399 
2400 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2401 	 * the ssk has been already destroyed, we just need to release the
2402 	 * reference owned by msk;
2403 	 */
2404 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2405 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2406 		kfree_rcu(subflow, rcu);
2407 	} else {
2408 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2409 		__tcp_close(ssk, 0);
2410 
2411 		/* close acquired an extra ref */
2412 		__sock_put(ssk);
2413 	}
2414 
2415 out_release:
2416 	__mptcp_subflow_error_report(sk, ssk);
2417 	release_sock(ssk);
2418 
2419 	sock_put(ssk);
2420 
2421 	if (ssk == msk->first)
2422 		WRITE_ONCE(msk->first, NULL);
2423 
2424 out:
2425 	__mptcp_sync_sndbuf(sk);
2426 	if (need_push)
2427 		__mptcp_push_pending(sk, 0);
2428 
2429 	/* Catch every 'all subflows closed' scenario, including peers silently
2430 	 * closing them, e.g. due to timeout.
2431 	 * For established sockets, allow an additional timeout before closing,
2432 	 * as the protocol can still create more subflows.
2433 	 */
2434 	if (list_is_singular(&msk->conn_list) && msk->first &&
2435 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2436 		if (sk->sk_state != TCP_ESTABLISHED ||
2437 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2438 			mptcp_set_state(sk, TCP_CLOSE);
2439 			mptcp_close_wake_up(sk);
2440 		} else {
2441 			mptcp_start_tout_timer(sk);
2442 		}
2443 	}
2444 }
2445 
2446 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2447 		     struct mptcp_subflow_context *subflow)
2448 {
2449 	/* The first subflow can already be closed and still in the list */
2450 	if (subflow->close_event_done)
2451 		return;
2452 
2453 	subflow->close_event_done = true;
2454 
2455 	if (sk->sk_state == TCP_ESTABLISHED)
2456 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2457 
2458 	/* subflow aborted before reaching the fully_established status
2459 	 * attempt the creation of the next subflow
2460 	 */
2461 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2462 
2463 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2464 }
2465 
2466 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2467 {
2468 	return 0;
2469 }
2470 
2471 static void __mptcp_close_subflow(struct sock *sk)
2472 {
2473 	struct mptcp_subflow_context *subflow, *tmp;
2474 	struct mptcp_sock *msk = mptcp_sk(sk);
2475 
2476 	might_sleep();
2477 
2478 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2479 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2480 		int ssk_state = inet_sk_state_load(ssk);
2481 
2482 		if (ssk_state != TCP_CLOSE &&
2483 		    (ssk_state != TCP_CLOSE_WAIT ||
2484 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2485 			continue;
2486 
2487 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2488 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2489 			continue;
2490 
2491 		mptcp_close_ssk(sk, ssk, subflow);
2492 	}
2493 
2494 }
2495 
2496 static bool mptcp_close_tout_expired(const struct sock *sk)
2497 {
2498 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2499 	    sk->sk_state == TCP_CLOSE)
2500 		return false;
2501 
2502 	return time_after32(tcp_jiffies32,
2503 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2504 }
2505 
2506 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2507 {
2508 	struct mptcp_subflow_context *subflow, *tmp;
2509 	struct sock *sk = (struct sock *)msk;
2510 
2511 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2512 		return;
2513 
2514 	mptcp_token_destroy(msk);
2515 
2516 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2517 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2518 		bool slow;
2519 
2520 		slow = lock_sock_fast(tcp_sk);
2521 		if (tcp_sk->sk_state != TCP_CLOSE) {
2522 			mptcp_send_active_reset_reason(tcp_sk);
2523 			tcp_set_state(tcp_sk, TCP_CLOSE);
2524 		}
2525 		unlock_sock_fast(tcp_sk, slow);
2526 	}
2527 
2528 	/* Mirror the tcp_reset() error propagation */
2529 	switch (sk->sk_state) {
2530 	case TCP_SYN_SENT:
2531 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2532 		break;
2533 	case TCP_CLOSE_WAIT:
2534 		WRITE_ONCE(sk->sk_err, EPIPE);
2535 		break;
2536 	case TCP_CLOSE:
2537 		return;
2538 	default:
2539 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2540 	}
2541 
2542 	mptcp_set_state(sk, TCP_CLOSE);
2543 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2544 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2545 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2546 
2547 	/* the calling mptcp_worker will properly destroy the socket */
2548 	if (sock_flag(sk, SOCK_DEAD))
2549 		return;
2550 
2551 	sk->sk_state_change(sk);
2552 	sk_error_report(sk);
2553 }
2554 
2555 static void __mptcp_retrans(struct sock *sk)
2556 {
2557 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2558 	struct mptcp_sock *msk = mptcp_sk(sk);
2559 	struct mptcp_subflow_context *subflow;
2560 	struct mptcp_data_frag *dfrag;
2561 	struct sock *ssk;
2562 	int ret, err;
2563 	u16 len = 0;
2564 
2565 	mptcp_clean_una_wakeup(sk);
2566 
2567 	/* first check ssk: need to kick "stale" logic */
2568 	err = mptcp_sched_get_retrans(msk);
2569 	dfrag = mptcp_rtx_head(sk);
2570 	if (!dfrag) {
2571 		if (mptcp_data_fin_enabled(msk)) {
2572 			struct inet_connection_sock *icsk = inet_csk(sk);
2573 
2574 			icsk->icsk_retransmits++;
2575 			mptcp_set_datafin_timeout(sk);
2576 			mptcp_send_ack(msk);
2577 
2578 			goto reset_timer;
2579 		}
2580 
2581 		if (!mptcp_send_head(sk))
2582 			return;
2583 
2584 		goto reset_timer;
2585 	}
2586 
2587 	if (err)
2588 		goto reset_timer;
2589 
2590 	mptcp_for_each_subflow(msk, subflow) {
2591 		if (READ_ONCE(subflow->scheduled)) {
2592 			u16 copied = 0;
2593 
2594 			mptcp_subflow_set_scheduled(subflow, false);
2595 
2596 			ssk = mptcp_subflow_tcp_sock(subflow);
2597 
2598 			lock_sock(ssk);
2599 
2600 			/* limit retransmission to the bytes already sent on some subflows */
2601 			info.sent = 0;
2602 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2603 								    dfrag->already_sent;
2604 
2605 			/*
2606 			 * make the whole retrans decision, xmit, disallow
2607 			 * fallback atomic
2608 			 */
2609 			spin_lock_bh(&msk->fallback_lock);
2610 			if (__mptcp_check_fallback(msk)) {
2611 				spin_unlock_bh(&msk->fallback_lock);
2612 				release_sock(ssk);
2613 				return;
2614 			}
2615 
2616 			while (info.sent < info.limit) {
2617 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2618 				if (ret <= 0)
2619 					break;
2620 
2621 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2622 				copied += ret;
2623 				info.sent += ret;
2624 			}
2625 			if (copied) {
2626 				len = max(copied, len);
2627 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2628 					 info.size_goal);
2629 				msk->allow_infinite_fallback = false;
2630 			}
2631 			spin_unlock_bh(&msk->fallback_lock);
2632 
2633 			release_sock(ssk);
2634 		}
2635 	}
2636 
2637 	msk->bytes_retrans += len;
2638 	dfrag->already_sent = max(dfrag->already_sent, len);
2639 
2640 reset_timer:
2641 	mptcp_check_and_set_pending(sk);
2642 
2643 	if (!mptcp_rtx_timer_pending(sk))
2644 		mptcp_reset_rtx_timer(sk);
2645 }
2646 
2647 /* schedule the timeout timer for the relevant event: either close timeout
2648  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2649  */
2650 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2651 {
2652 	struct sock *sk = (struct sock *)msk;
2653 	unsigned long timeout, close_timeout;
2654 
2655 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2656 		return;
2657 
2658 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2659 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2660 
2661 	/* the close timeout takes precedence on the fail one, and here at least one of
2662 	 * them is active
2663 	 */
2664 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2665 
2666 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2667 }
2668 
2669 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2670 {
2671 	struct sock *ssk = msk->first;
2672 	bool slow;
2673 
2674 	if (!ssk)
2675 		return;
2676 
2677 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2678 
2679 	slow = lock_sock_fast(ssk);
2680 	mptcp_subflow_reset(ssk);
2681 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2682 	unlock_sock_fast(ssk, slow);
2683 }
2684 
2685 static void mptcp_do_fastclose(struct sock *sk)
2686 {
2687 	struct mptcp_subflow_context *subflow, *tmp;
2688 	struct mptcp_sock *msk = mptcp_sk(sk);
2689 
2690 	mptcp_set_state(sk, TCP_CLOSE);
2691 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2692 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2693 				  subflow, MPTCP_CF_FASTCLOSE);
2694 }
2695 
2696 static void mptcp_worker(struct work_struct *work)
2697 {
2698 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2699 	struct sock *sk = (struct sock *)msk;
2700 	unsigned long fail_tout;
2701 	int state;
2702 
2703 	lock_sock(sk);
2704 	state = sk->sk_state;
2705 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2706 		goto unlock;
2707 
2708 	mptcp_check_fastclose(msk);
2709 
2710 	mptcp_pm_worker(msk);
2711 
2712 	mptcp_check_send_data_fin(sk);
2713 	mptcp_check_data_fin_ack(sk);
2714 	mptcp_check_data_fin(sk);
2715 
2716 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2717 		__mptcp_close_subflow(sk);
2718 
2719 	if (mptcp_close_tout_expired(sk)) {
2720 		mptcp_do_fastclose(sk);
2721 		mptcp_close_wake_up(sk);
2722 	}
2723 
2724 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2725 		__mptcp_destroy_sock(sk);
2726 		goto unlock;
2727 	}
2728 
2729 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2730 		__mptcp_retrans(sk);
2731 
2732 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2733 	if (fail_tout && time_after(jiffies, fail_tout))
2734 		mptcp_mp_fail_no_response(msk);
2735 
2736 unlock:
2737 	release_sock(sk);
2738 	sock_put(sk);
2739 }
2740 
2741 static void __mptcp_init_sock(struct sock *sk)
2742 {
2743 	struct mptcp_sock *msk = mptcp_sk(sk);
2744 
2745 	INIT_LIST_HEAD(&msk->conn_list);
2746 	INIT_LIST_HEAD(&msk->join_list);
2747 	INIT_LIST_HEAD(&msk->rtx_queue);
2748 	INIT_WORK(&msk->work, mptcp_worker);
2749 	msk->out_of_order_queue = RB_ROOT;
2750 	msk->first_pending = NULL;
2751 	msk->timer_ival = TCP_RTO_MIN;
2752 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2753 
2754 	WRITE_ONCE(msk->first, NULL);
2755 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2756 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2757 	msk->allow_infinite_fallback = true;
2758 	msk->allow_subflows = true;
2759 	msk->recovery = false;
2760 	msk->subflow_id = 1;
2761 	msk->last_data_sent = tcp_jiffies32;
2762 	msk->last_data_recv = tcp_jiffies32;
2763 	msk->last_ack_recv = tcp_jiffies32;
2764 
2765 	mptcp_pm_data_init(msk);
2766 	spin_lock_init(&msk->fallback_lock);
2767 
2768 	/* re-use the csk retrans timer for MPTCP-level retrans */
2769 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2770 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2771 }
2772 
2773 static void mptcp_ca_reset(struct sock *sk)
2774 {
2775 	struct inet_connection_sock *icsk = inet_csk(sk);
2776 
2777 	tcp_assign_congestion_control(sk);
2778 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2779 		sizeof(mptcp_sk(sk)->ca_name));
2780 
2781 	/* no need to keep a reference to the ops, the name will suffice */
2782 	tcp_cleanup_congestion_control(sk);
2783 	icsk->icsk_ca_ops = NULL;
2784 }
2785 
2786 static int mptcp_init_sock(struct sock *sk)
2787 {
2788 	struct net *net = sock_net(sk);
2789 	int ret;
2790 
2791 	__mptcp_init_sock(sk);
2792 
2793 	if (!mptcp_is_enabled(net))
2794 		return -ENOPROTOOPT;
2795 
2796 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2797 		return -ENOMEM;
2798 
2799 	rcu_read_lock();
2800 	ret = mptcp_init_sched(mptcp_sk(sk),
2801 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2802 	rcu_read_unlock();
2803 	if (ret)
2804 		return ret;
2805 
2806 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2807 
2808 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2809 	 * propagate the correct value
2810 	 */
2811 	mptcp_ca_reset(sk);
2812 
2813 	sk_sockets_allocated_inc(sk);
2814 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2815 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2816 
2817 	return 0;
2818 }
2819 
2820 static void __mptcp_clear_xmit(struct sock *sk)
2821 {
2822 	struct mptcp_sock *msk = mptcp_sk(sk);
2823 	struct mptcp_data_frag *dtmp, *dfrag;
2824 
2825 	WRITE_ONCE(msk->first_pending, NULL);
2826 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2827 		dfrag_clear(sk, dfrag);
2828 }
2829 
2830 void mptcp_cancel_work(struct sock *sk)
2831 {
2832 	struct mptcp_sock *msk = mptcp_sk(sk);
2833 
2834 	if (cancel_work_sync(&msk->work))
2835 		__sock_put(sk);
2836 }
2837 
2838 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2839 {
2840 	lock_sock(ssk);
2841 
2842 	switch (ssk->sk_state) {
2843 	case TCP_LISTEN:
2844 		if (!(how & RCV_SHUTDOWN))
2845 			break;
2846 		fallthrough;
2847 	case TCP_SYN_SENT:
2848 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2849 		break;
2850 	default:
2851 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2852 			pr_debug("Fallback\n");
2853 			ssk->sk_shutdown |= how;
2854 			tcp_shutdown(ssk, how);
2855 
2856 			/* simulate the data_fin ack reception to let the state
2857 			 * machine move forward
2858 			 */
2859 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2860 			mptcp_schedule_work(sk);
2861 		} else {
2862 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2863 			tcp_send_ack(ssk);
2864 			if (!mptcp_rtx_timer_pending(sk))
2865 				mptcp_reset_rtx_timer(sk);
2866 		}
2867 		break;
2868 	}
2869 
2870 	release_sock(ssk);
2871 }
2872 
2873 void mptcp_set_state(struct sock *sk, int state)
2874 {
2875 	int oldstate = sk->sk_state;
2876 
2877 	switch (state) {
2878 	case TCP_ESTABLISHED:
2879 		if (oldstate != TCP_ESTABLISHED)
2880 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2881 		break;
2882 	case TCP_CLOSE_WAIT:
2883 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2884 		 * MPTCP "accepted" sockets will be created later on. So no
2885 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2886 		 */
2887 		break;
2888 	default:
2889 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2890 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2891 	}
2892 
2893 	inet_sk_state_store(sk, state);
2894 }
2895 
2896 static const unsigned char new_state[16] = {
2897 	/* current state:     new state:      action:	*/
2898 	[0 /* (Invalid) */] = TCP_CLOSE,
2899 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2900 	[TCP_SYN_SENT]      = TCP_CLOSE,
2901 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2902 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2903 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2904 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2905 	[TCP_CLOSE]         = TCP_CLOSE,
2906 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2907 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2908 	[TCP_LISTEN]        = TCP_CLOSE,
2909 	[TCP_CLOSING]       = TCP_CLOSING,
2910 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2911 };
2912 
2913 static int mptcp_close_state(struct sock *sk)
2914 {
2915 	int next = (int)new_state[sk->sk_state];
2916 	int ns = next & TCP_STATE_MASK;
2917 
2918 	mptcp_set_state(sk, ns);
2919 
2920 	return next & TCP_ACTION_FIN;
2921 }
2922 
2923 static void mptcp_check_send_data_fin(struct sock *sk)
2924 {
2925 	struct mptcp_subflow_context *subflow;
2926 	struct mptcp_sock *msk = mptcp_sk(sk);
2927 
2928 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2929 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2930 		 msk->snd_nxt, msk->write_seq);
2931 
2932 	/* we still need to enqueue subflows or not really shutting down,
2933 	 * skip this
2934 	 */
2935 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2936 	    mptcp_send_head(sk))
2937 		return;
2938 
2939 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2940 
2941 	mptcp_for_each_subflow(msk, subflow) {
2942 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2943 
2944 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2945 	}
2946 }
2947 
2948 static void __mptcp_wr_shutdown(struct sock *sk)
2949 {
2950 	struct mptcp_sock *msk = mptcp_sk(sk);
2951 
2952 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2953 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2954 		 !!mptcp_send_head(sk));
2955 
2956 	/* will be ignored by fallback sockets */
2957 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2958 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2959 
2960 	mptcp_check_send_data_fin(sk);
2961 }
2962 
2963 static void __mptcp_destroy_sock(struct sock *sk)
2964 {
2965 	struct mptcp_sock *msk = mptcp_sk(sk);
2966 
2967 	pr_debug("msk=%p\n", msk);
2968 
2969 	might_sleep();
2970 
2971 	mptcp_stop_rtx_timer(sk);
2972 	sk_stop_timer(sk, &sk->sk_timer);
2973 	msk->pm.status = 0;
2974 	mptcp_release_sched(msk);
2975 
2976 	sk->sk_prot->destroy(sk);
2977 
2978 	sk_stream_kill_queues(sk);
2979 	xfrm_sk_free_policy(sk);
2980 
2981 	sock_put(sk);
2982 }
2983 
2984 void __mptcp_unaccepted_force_close(struct sock *sk)
2985 {
2986 	sock_set_flag(sk, SOCK_DEAD);
2987 	mptcp_do_fastclose(sk);
2988 	__mptcp_destroy_sock(sk);
2989 }
2990 
2991 static __poll_t mptcp_check_readable(struct sock *sk)
2992 {
2993 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2994 }
2995 
2996 static void mptcp_check_listen_stop(struct sock *sk)
2997 {
2998 	struct sock *ssk;
2999 
3000 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3001 		return;
3002 
3003 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3004 	ssk = mptcp_sk(sk)->first;
3005 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3006 		return;
3007 
3008 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3009 	tcp_set_state(ssk, TCP_CLOSE);
3010 	mptcp_subflow_queue_clean(sk, ssk);
3011 	inet_csk_listen_stop(ssk);
3012 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3013 	release_sock(ssk);
3014 }
3015 
3016 bool __mptcp_close(struct sock *sk, long timeout)
3017 {
3018 	struct mptcp_subflow_context *subflow;
3019 	struct mptcp_sock *msk = mptcp_sk(sk);
3020 	bool do_cancel_work = false;
3021 	int subflows_alive = 0;
3022 
3023 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3024 
3025 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3026 		mptcp_check_listen_stop(sk);
3027 		mptcp_set_state(sk, TCP_CLOSE);
3028 		goto cleanup;
3029 	}
3030 
3031 	if (mptcp_data_avail(msk) || timeout < 0) {
3032 		/* If the msk has read data, or the caller explicitly ask it,
3033 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3034 		 */
3035 		mptcp_do_fastclose(sk);
3036 		timeout = 0;
3037 	} else if (mptcp_close_state(sk)) {
3038 		__mptcp_wr_shutdown(sk);
3039 	}
3040 
3041 	sk_stream_wait_close(sk, timeout);
3042 
3043 cleanup:
3044 	/* orphan all the subflows */
3045 	mptcp_for_each_subflow(msk, subflow) {
3046 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3047 		bool slow = lock_sock_fast_nested(ssk);
3048 
3049 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3050 
3051 		/* since the close timeout takes precedence on the fail one,
3052 		 * cancel the latter
3053 		 */
3054 		if (ssk == msk->first)
3055 			subflow->fail_tout = 0;
3056 
3057 		/* detach from the parent socket, but allow data_ready to
3058 		 * push incoming data into the mptcp stack, to properly ack it
3059 		 */
3060 		ssk->sk_socket = NULL;
3061 		ssk->sk_wq = NULL;
3062 		unlock_sock_fast(ssk, slow);
3063 	}
3064 	sock_orphan(sk);
3065 
3066 	/* all the subflows are closed, only timeout can change the msk
3067 	 * state, let's not keep resources busy for no reasons
3068 	 */
3069 	if (subflows_alive == 0)
3070 		mptcp_set_state(sk, TCP_CLOSE);
3071 
3072 	sock_hold(sk);
3073 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3074 	mptcp_pm_connection_closed(msk);
3075 
3076 	if (sk->sk_state == TCP_CLOSE) {
3077 		__mptcp_destroy_sock(sk);
3078 		do_cancel_work = true;
3079 	} else {
3080 		mptcp_start_tout_timer(sk);
3081 	}
3082 
3083 	return do_cancel_work;
3084 }
3085 
3086 static void mptcp_close(struct sock *sk, long timeout)
3087 {
3088 	bool do_cancel_work;
3089 
3090 	lock_sock(sk);
3091 
3092 	do_cancel_work = __mptcp_close(sk, timeout);
3093 	release_sock(sk);
3094 	if (do_cancel_work)
3095 		mptcp_cancel_work(sk);
3096 
3097 	sock_put(sk);
3098 }
3099 
3100 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3101 {
3102 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3103 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3104 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3105 
3106 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3107 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3108 
3109 	if (msk6 && ssk6) {
3110 		msk6->saddr = ssk6->saddr;
3111 		msk6->flow_label = ssk6->flow_label;
3112 	}
3113 #endif
3114 
3115 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3116 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3117 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3118 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3119 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3120 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3121 }
3122 
3123 static int mptcp_disconnect(struct sock *sk, int flags)
3124 {
3125 	struct mptcp_sock *msk = mptcp_sk(sk);
3126 
3127 	/* We are on the fastopen error path. We can't call straight into the
3128 	 * subflows cleanup code due to lock nesting (we are already under
3129 	 * msk->firstsocket lock).
3130 	 */
3131 	if (msk->fastopening)
3132 		return -EBUSY;
3133 
3134 	mptcp_check_listen_stop(sk);
3135 	mptcp_set_state(sk, TCP_CLOSE);
3136 
3137 	mptcp_stop_rtx_timer(sk);
3138 	mptcp_stop_tout_timer(sk);
3139 
3140 	mptcp_pm_connection_closed(msk);
3141 
3142 	/* msk->subflow is still intact, the following will not free the first
3143 	 * subflow
3144 	 */
3145 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3146 
3147 	/* The first subflow is already in TCP_CLOSE status, the following
3148 	 * can't overlap with a fallback anymore
3149 	 */
3150 	spin_lock_bh(&msk->fallback_lock);
3151 	msk->allow_subflows = true;
3152 	msk->allow_infinite_fallback = true;
3153 	WRITE_ONCE(msk->flags, 0);
3154 	spin_unlock_bh(&msk->fallback_lock);
3155 
3156 	msk->cb_flags = 0;
3157 	msk->recovery = false;
3158 	WRITE_ONCE(msk->can_ack, false);
3159 	WRITE_ONCE(msk->fully_established, false);
3160 	WRITE_ONCE(msk->rcv_data_fin, false);
3161 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3162 	WRITE_ONCE(msk->rcv_fastclose, false);
3163 	WRITE_ONCE(msk->use_64bit_ack, false);
3164 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3165 	mptcp_pm_data_reset(msk);
3166 	mptcp_ca_reset(sk);
3167 	msk->bytes_consumed = 0;
3168 	msk->bytes_acked = 0;
3169 	msk->bytes_received = 0;
3170 	msk->bytes_sent = 0;
3171 	msk->bytes_retrans = 0;
3172 	msk->rcvspace_init = 0;
3173 
3174 	WRITE_ONCE(sk->sk_shutdown, 0);
3175 	sk_error_report(sk);
3176 	return 0;
3177 }
3178 
3179 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3180 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3181 {
3182 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3183 
3184 	return &msk6->np;
3185 }
3186 
3187 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3188 {
3189 	const struct ipv6_pinfo *np = inet6_sk(sk);
3190 	struct ipv6_txoptions *opt;
3191 	struct ipv6_pinfo *newnp;
3192 
3193 	newnp = inet6_sk(newsk);
3194 
3195 	rcu_read_lock();
3196 	opt = rcu_dereference(np->opt);
3197 	if (opt) {
3198 		opt = ipv6_dup_options(newsk, opt);
3199 		if (!opt)
3200 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3201 	}
3202 	RCU_INIT_POINTER(newnp->opt, opt);
3203 	rcu_read_unlock();
3204 }
3205 #endif
3206 
3207 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3208 {
3209 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3210 	const struct inet_sock *inet = inet_sk(sk);
3211 	struct inet_sock *newinet;
3212 
3213 	newinet = inet_sk(newsk);
3214 
3215 	rcu_read_lock();
3216 	inet_opt = rcu_dereference(inet->inet_opt);
3217 	if (inet_opt) {
3218 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3219 				      inet_opt->opt.optlen, GFP_ATOMIC);
3220 		if (!newopt)
3221 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3222 	}
3223 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3224 	rcu_read_unlock();
3225 }
3226 
3227 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3228 				 const struct mptcp_options_received *mp_opt,
3229 				 struct sock *ssk,
3230 				 struct request_sock *req)
3231 {
3232 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3233 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3234 	struct mptcp_subflow_context *subflow;
3235 	struct mptcp_sock *msk;
3236 
3237 	if (!nsk)
3238 		return NULL;
3239 
3240 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3241 	if (nsk->sk_family == AF_INET6)
3242 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3243 #endif
3244 
3245 	__mptcp_init_sock(nsk);
3246 
3247 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3248 	if (nsk->sk_family == AF_INET6)
3249 		mptcp_copy_ip6_options(nsk, sk);
3250 	else
3251 #endif
3252 		mptcp_copy_ip_options(nsk, sk);
3253 
3254 	msk = mptcp_sk(nsk);
3255 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3256 	WRITE_ONCE(msk->token, subflow_req->token);
3257 	msk->in_accept_queue = 1;
3258 	WRITE_ONCE(msk->fully_established, false);
3259 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3260 		WRITE_ONCE(msk->csum_enabled, true);
3261 
3262 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3263 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3264 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3265 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3266 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3267 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3268 
3269 	/* passive msk is created after the first/MPC subflow */
3270 	msk->subflow_id = 2;
3271 
3272 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3273 	security_inet_csk_clone(nsk, req);
3274 
3275 	/* this can't race with mptcp_close(), as the msk is
3276 	 * not yet exposted to user-space
3277 	 */
3278 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3279 
3280 	/* The msk maintain a ref to each subflow in the connections list */
3281 	WRITE_ONCE(msk->first, ssk);
3282 	subflow = mptcp_subflow_ctx(ssk);
3283 	list_add(&subflow->node, &msk->conn_list);
3284 	sock_hold(ssk);
3285 
3286 	/* new mpc subflow takes ownership of the newly
3287 	 * created mptcp socket
3288 	 */
3289 	mptcp_token_accept(subflow_req, msk);
3290 
3291 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3292 	 * uses the correct data
3293 	 */
3294 	mptcp_copy_inaddrs(nsk, ssk);
3295 	__mptcp_propagate_sndbuf(nsk, ssk);
3296 
3297 	mptcp_rcv_space_init(msk, ssk);
3298 
3299 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3300 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3301 	bh_unlock_sock(nsk);
3302 
3303 	/* note: the newly allocated socket refcount is 2 now */
3304 	return nsk;
3305 }
3306 
3307 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3308 {
3309 	const struct tcp_sock *tp = tcp_sk(ssk);
3310 
3311 	msk->rcvspace_init = 1;
3312 	msk->rcvq_space.copied = 0;
3313 	msk->rcvq_space.rtt_us = 0;
3314 
3315 	msk->rcvq_space.time = tp->tcp_mstamp;
3316 
3317 	/* initial rcv_space offering made to peer */
3318 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3319 				      TCP_INIT_CWND * tp->advmss);
3320 	if (msk->rcvq_space.space == 0)
3321 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3322 }
3323 
3324 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3325 {
3326 	struct mptcp_subflow_context *subflow, *tmp;
3327 	struct sock *sk = (struct sock *)msk;
3328 
3329 	__mptcp_clear_xmit(sk);
3330 
3331 	/* join list will be eventually flushed (with rst) at sock lock release time */
3332 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3333 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3334 
3335 	__skb_queue_purge(&sk->sk_receive_queue);
3336 	skb_rbtree_purge(&msk->out_of_order_queue);
3337 
3338 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3339 	 * inet_sock_destruct() will dispose it
3340 	 */
3341 	mptcp_token_destroy(msk);
3342 	mptcp_pm_destroy(msk);
3343 }
3344 
3345 static void mptcp_destroy(struct sock *sk)
3346 {
3347 	struct mptcp_sock *msk = mptcp_sk(sk);
3348 
3349 	/* allow the following to close even the initial subflow */
3350 	msk->free_first = 1;
3351 	mptcp_destroy_common(msk, 0);
3352 	sk_sockets_allocated_dec(sk);
3353 }
3354 
3355 void __mptcp_data_acked(struct sock *sk)
3356 {
3357 	if (!sock_owned_by_user(sk))
3358 		__mptcp_clean_una(sk);
3359 	else
3360 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3361 }
3362 
3363 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3364 {
3365 	if (!mptcp_send_head(sk))
3366 		return;
3367 
3368 	if (!sock_owned_by_user(sk))
3369 		__mptcp_subflow_push_pending(sk, ssk, false);
3370 	else
3371 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3372 }
3373 
3374 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3375 				      BIT(MPTCP_RETRANSMIT) | \
3376 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3377 				      BIT(MPTCP_DEQUEUE))
3378 
3379 /* processes deferred events and flush wmem */
3380 static void mptcp_release_cb(struct sock *sk)
3381 	__must_hold(&sk->sk_lock.slock)
3382 {
3383 	struct mptcp_sock *msk = mptcp_sk(sk);
3384 
3385 	for (;;) {
3386 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3387 		struct list_head join_list;
3388 
3389 		if (!flags)
3390 			break;
3391 
3392 		INIT_LIST_HEAD(&join_list);
3393 		list_splice_init(&msk->join_list, &join_list);
3394 
3395 		/* the following actions acquire the subflow socket lock
3396 		 *
3397 		 * 1) can't be invoked in atomic scope
3398 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3399 		 *    datapath acquires the msk socket spinlock while helding
3400 		 *    the subflow socket lock
3401 		 */
3402 		msk->cb_flags &= ~flags;
3403 		spin_unlock_bh(&sk->sk_lock.slock);
3404 
3405 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3406 			__mptcp_flush_join_list(sk, &join_list);
3407 		if (flags & BIT(MPTCP_PUSH_PENDING))
3408 			__mptcp_push_pending(sk, 0);
3409 		if (flags & BIT(MPTCP_RETRANSMIT))
3410 			__mptcp_retrans(sk);
3411 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3412 			/* notify ack seq update */
3413 			mptcp_cleanup_rbuf(msk, 0);
3414 			sk->sk_data_ready(sk);
3415 		}
3416 
3417 		cond_resched();
3418 		spin_lock_bh(&sk->sk_lock.slock);
3419 	}
3420 
3421 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3422 		__mptcp_clean_una_wakeup(sk);
3423 	if (unlikely(msk->cb_flags)) {
3424 		/* be sure to sync the msk state before taking actions
3425 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3426 		 * On sk release avoid actions depending on the first subflow
3427 		 */
3428 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3429 			__mptcp_sync_state(sk, msk->pending_state);
3430 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3431 			__mptcp_error_report(sk);
3432 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3433 			__mptcp_sync_sndbuf(sk);
3434 	}
3435 }
3436 
3437 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3438  * TCP can't schedule delack timer before the subflow is fully established.
3439  * MPTCP uses the delack timer to do 3rd ack retransmissions
3440  */
3441 static void schedule_3rdack_retransmission(struct sock *ssk)
3442 {
3443 	struct inet_connection_sock *icsk = inet_csk(ssk);
3444 	struct tcp_sock *tp = tcp_sk(ssk);
3445 	unsigned long timeout;
3446 
3447 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3448 		return;
3449 
3450 	/* reschedule with a timeout above RTT, as we must look only for drop */
3451 	if (tp->srtt_us)
3452 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3453 	else
3454 		timeout = TCP_TIMEOUT_INIT;
3455 	timeout += jiffies;
3456 
3457 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3458 	smp_store_release(&icsk->icsk_ack.pending,
3459 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3460 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3461 }
3462 
3463 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3464 {
3465 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3466 	struct sock *sk = subflow->conn;
3467 
3468 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3469 		mptcp_data_lock(sk);
3470 		if (!sock_owned_by_user(sk))
3471 			__mptcp_subflow_push_pending(sk, ssk, true);
3472 		else
3473 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3474 		mptcp_data_unlock(sk);
3475 	}
3476 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3477 		mptcp_data_lock(sk);
3478 		if (!sock_owned_by_user(sk))
3479 			__mptcp_sync_sndbuf(sk);
3480 		else
3481 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3482 		mptcp_data_unlock(sk);
3483 	}
3484 	if (status & BIT(MPTCP_DELEGATE_ACK))
3485 		schedule_3rdack_retransmission(ssk);
3486 }
3487 
3488 static int mptcp_hash(struct sock *sk)
3489 {
3490 	/* should never be called,
3491 	 * we hash the TCP subflows not the MPTCP socket
3492 	 */
3493 	WARN_ON_ONCE(1);
3494 	return 0;
3495 }
3496 
3497 static void mptcp_unhash(struct sock *sk)
3498 {
3499 	/* called from sk_common_release(), but nothing to do here */
3500 }
3501 
3502 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3503 {
3504 	struct mptcp_sock *msk = mptcp_sk(sk);
3505 
3506 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3507 	if (WARN_ON_ONCE(!msk->first))
3508 		return -EINVAL;
3509 
3510 	return inet_csk_get_port(msk->first, snum);
3511 }
3512 
3513 void mptcp_finish_connect(struct sock *ssk)
3514 {
3515 	struct mptcp_subflow_context *subflow;
3516 	struct mptcp_sock *msk;
3517 	struct sock *sk;
3518 
3519 	subflow = mptcp_subflow_ctx(ssk);
3520 	sk = subflow->conn;
3521 	msk = mptcp_sk(sk);
3522 
3523 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3524 
3525 	subflow->map_seq = subflow->iasn;
3526 	subflow->map_subflow_seq = 1;
3527 
3528 	/* the socket is not connected yet, no msk/subflow ops can access/race
3529 	 * accessing the field below
3530 	 */
3531 	WRITE_ONCE(msk->local_key, subflow->local_key);
3532 
3533 	mptcp_pm_new_connection(msk, ssk, 0);
3534 }
3535 
3536 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3537 {
3538 	write_lock_bh(&sk->sk_callback_lock);
3539 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3540 	sk_set_socket(sk, parent);
3541 	WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid);
3542 	write_unlock_bh(&sk->sk_callback_lock);
3543 }
3544 
3545 bool mptcp_finish_join(struct sock *ssk)
3546 {
3547 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3548 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3549 	struct sock *parent = (void *)msk;
3550 	bool ret = true;
3551 
3552 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3553 
3554 	/* mptcp socket already closing? */
3555 	if (!mptcp_is_fully_established(parent)) {
3556 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3557 		return false;
3558 	}
3559 
3560 	/* active subflow, already present inside the conn_list */
3561 	if (!list_empty(&subflow->node)) {
3562 		spin_lock_bh(&msk->fallback_lock);
3563 		if (!msk->allow_subflows) {
3564 			spin_unlock_bh(&msk->fallback_lock);
3565 			return false;
3566 		}
3567 		mptcp_subflow_joined(msk, ssk);
3568 		spin_unlock_bh(&msk->fallback_lock);
3569 		mptcp_propagate_sndbuf(parent, ssk);
3570 		return true;
3571 	}
3572 
3573 	if (!mptcp_pm_allow_new_subflow(msk)) {
3574 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3575 		goto err_prohibited;
3576 	}
3577 
3578 	/* If we can't acquire msk socket lock here, let the release callback
3579 	 * handle it
3580 	 */
3581 	mptcp_data_lock(parent);
3582 	if (!sock_owned_by_user(parent)) {
3583 		ret = __mptcp_finish_join(msk, ssk);
3584 		if (ret) {
3585 			sock_hold(ssk);
3586 			list_add_tail(&subflow->node, &msk->conn_list);
3587 		}
3588 	} else {
3589 		sock_hold(ssk);
3590 		list_add_tail(&subflow->node, &msk->join_list);
3591 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3592 	}
3593 	mptcp_data_unlock(parent);
3594 
3595 	if (!ret) {
3596 err_prohibited:
3597 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3598 		return false;
3599 	}
3600 
3601 	return true;
3602 }
3603 
3604 static void mptcp_shutdown(struct sock *sk, int how)
3605 {
3606 	pr_debug("sk=%p, how=%d\n", sk, how);
3607 
3608 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3609 		__mptcp_wr_shutdown(sk);
3610 }
3611 
3612 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3613 {
3614 	const struct sock *sk = (void *)msk;
3615 	u64 delta;
3616 
3617 	if (sk->sk_state == TCP_LISTEN)
3618 		return -EINVAL;
3619 
3620 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3621 		return 0;
3622 
3623 	delta = msk->write_seq - v;
3624 	if (__mptcp_check_fallback(msk) && msk->first) {
3625 		struct tcp_sock *tp = tcp_sk(msk->first);
3626 
3627 		/* the first subflow is disconnected after close - see
3628 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3629 		 * so ignore that status, too.
3630 		 */
3631 		if (!((1 << msk->first->sk_state) &
3632 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3633 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3634 	}
3635 	if (delta > INT_MAX)
3636 		delta = INT_MAX;
3637 
3638 	return (int)delta;
3639 }
3640 
3641 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3642 {
3643 	struct mptcp_sock *msk = mptcp_sk(sk);
3644 	bool slow;
3645 
3646 	switch (cmd) {
3647 	case SIOCINQ:
3648 		if (sk->sk_state == TCP_LISTEN)
3649 			return -EINVAL;
3650 
3651 		lock_sock(sk);
3652 		if (__mptcp_move_skbs(sk))
3653 			mptcp_cleanup_rbuf(msk, 0);
3654 		*karg = mptcp_inq_hint(sk);
3655 		release_sock(sk);
3656 		break;
3657 	case SIOCOUTQ:
3658 		slow = lock_sock_fast(sk);
3659 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3660 		unlock_sock_fast(sk, slow);
3661 		break;
3662 	case SIOCOUTQNSD:
3663 		slow = lock_sock_fast(sk);
3664 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3665 		unlock_sock_fast(sk, slow);
3666 		break;
3667 	default:
3668 		return -ENOIOCTLCMD;
3669 	}
3670 
3671 	return 0;
3672 }
3673 
3674 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3675 {
3676 	struct mptcp_subflow_context *subflow;
3677 	struct mptcp_sock *msk = mptcp_sk(sk);
3678 	int err = -EINVAL;
3679 	struct sock *ssk;
3680 
3681 	ssk = __mptcp_nmpc_sk(msk);
3682 	if (IS_ERR(ssk))
3683 		return PTR_ERR(ssk);
3684 
3685 	mptcp_set_state(sk, TCP_SYN_SENT);
3686 	subflow = mptcp_subflow_ctx(ssk);
3687 #ifdef CONFIG_TCP_MD5SIG
3688 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3689 	 * TCP option space.
3690 	 */
3691 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3692 		mptcp_subflow_early_fallback(msk, subflow);
3693 #endif
3694 	if (subflow->request_mptcp) {
3695 		if (mptcp_active_should_disable(sk)) {
3696 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3697 			mptcp_subflow_early_fallback(msk, subflow);
3698 		} else if (mptcp_token_new_connect(ssk) < 0) {
3699 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3700 			mptcp_subflow_early_fallback(msk, subflow);
3701 		}
3702 	}
3703 
3704 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3705 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3706 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3707 	if (likely(!__mptcp_check_fallback(msk)))
3708 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3709 
3710 	/* if reaching here via the fastopen/sendmsg path, the caller already
3711 	 * acquired the subflow socket lock, too.
3712 	 */
3713 	if (!msk->fastopening)
3714 		lock_sock(ssk);
3715 
3716 	/* the following mirrors closely a very small chunk of code from
3717 	 * __inet_stream_connect()
3718 	 */
3719 	if (ssk->sk_state != TCP_CLOSE)
3720 		goto out;
3721 
3722 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3723 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3724 		if (err)
3725 			goto out;
3726 	}
3727 
3728 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3729 	if (err < 0)
3730 		goto out;
3731 
3732 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3733 
3734 out:
3735 	if (!msk->fastopening)
3736 		release_sock(ssk);
3737 
3738 	/* on successful connect, the msk state will be moved to established by
3739 	 * subflow_finish_connect()
3740 	 */
3741 	if (unlikely(err)) {
3742 		/* avoid leaving a dangling token in an unconnected socket */
3743 		mptcp_token_destroy(msk);
3744 		mptcp_set_state(sk, TCP_CLOSE);
3745 		return err;
3746 	}
3747 
3748 	mptcp_copy_inaddrs(sk, ssk);
3749 	return 0;
3750 }
3751 
3752 static struct proto mptcp_prot = {
3753 	.name		= "MPTCP",
3754 	.owner		= THIS_MODULE,
3755 	.init		= mptcp_init_sock,
3756 	.connect	= mptcp_connect,
3757 	.disconnect	= mptcp_disconnect,
3758 	.close		= mptcp_close,
3759 	.setsockopt	= mptcp_setsockopt,
3760 	.getsockopt	= mptcp_getsockopt,
3761 	.shutdown	= mptcp_shutdown,
3762 	.destroy	= mptcp_destroy,
3763 	.sendmsg	= mptcp_sendmsg,
3764 	.ioctl		= mptcp_ioctl,
3765 	.recvmsg	= mptcp_recvmsg,
3766 	.release_cb	= mptcp_release_cb,
3767 	.hash		= mptcp_hash,
3768 	.unhash		= mptcp_unhash,
3769 	.get_port	= mptcp_get_port,
3770 	.stream_memory_free	= mptcp_stream_memory_free,
3771 	.sockets_allocated	= &mptcp_sockets_allocated,
3772 
3773 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3774 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3775 
3776 	.memory_pressure	= &tcp_memory_pressure,
3777 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3778 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3779 	.sysctl_mem	= sysctl_tcp_mem,
3780 	.obj_size	= sizeof(struct mptcp_sock),
3781 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3782 	.no_autobind	= true,
3783 };
3784 
3785 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3786 {
3787 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3788 	struct sock *ssk, *sk = sock->sk;
3789 	int err = -EINVAL;
3790 
3791 	lock_sock(sk);
3792 	ssk = __mptcp_nmpc_sk(msk);
3793 	if (IS_ERR(ssk)) {
3794 		err = PTR_ERR(ssk);
3795 		goto unlock;
3796 	}
3797 
3798 	if (sk->sk_family == AF_INET)
3799 		err = inet_bind_sk(ssk, uaddr, addr_len);
3800 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3801 	else if (sk->sk_family == AF_INET6)
3802 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3803 #endif
3804 	if (!err)
3805 		mptcp_copy_inaddrs(sk, ssk);
3806 
3807 unlock:
3808 	release_sock(sk);
3809 	return err;
3810 }
3811 
3812 static int mptcp_listen(struct socket *sock, int backlog)
3813 {
3814 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3815 	struct sock *sk = sock->sk;
3816 	struct sock *ssk;
3817 	int err;
3818 
3819 	pr_debug("msk=%p\n", msk);
3820 
3821 	lock_sock(sk);
3822 
3823 	err = -EINVAL;
3824 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3825 		goto unlock;
3826 
3827 	ssk = __mptcp_nmpc_sk(msk);
3828 	if (IS_ERR(ssk)) {
3829 		err = PTR_ERR(ssk);
3830 		goto unlock;
3831 	}
3832 
3833 	mptcp_set_state(sk, TCP_LISTEN);
3834 	sock_set_flag(sk, SOCK_RCU_FREE);
3835 
3836 	lock_sock(ssk);
3837 	err = __inet_listen_sk(ssk, backlog);
3838 	release_sock(ssk);
3839 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3840 
3841 	if (!err) {
3842 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3843 		mptcp_copy_inaddrs(sk, ssk);
3844 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3845 	}
3846 
3847 unlock:
3848 	release_sock(sk);
3849 	return err;
3850 }
3851 
3852 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3853 			       struct proto_accept_arg *arg)
3854 {
3855 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3856 	struct sock *ssk, *newsk;
3857 
3858 	pr_debug("msk=%p\n", msk);
3859 
3860 	/* Buggy applications can call accept on socket states other then LISTEN
3861 	 * but no need to allocate the first subflow just to error out.
3862 	 */
3863 	ssk = READ_ONCE(msk->first);
3864 	if (!ssk)
3865 		return -EINVAL;
3866 
3867 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3868 	newsk = inet_csk_accept(ssk, arg);
3869 	if (!newsk)
3870 		return arg->err;
3871 
3872 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3873 	if (sk_is_mptcp(newsk)) {
3874 		struct mptcp_subflow_context *subflow;
3875 		struct sock *new_mptcp_sock;
3876 
3877 		subflow = mptcp_subflow_ctx(newsk);
3878 		new_mptcp_sock = subflow->conn;
3879 
3880 		/* is_mptcp should be false if subflow->conn is missing, see
3881 		 * subflow_syn_recv_sock()
3882 		 */
3883 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3884 			tcp_sk(newsk)->is_mptcp = 0;
3885 			goto tcpfallback;
3886 		}
3887 
3888 		newsk = new_mptcp_sock;
3889 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3890 
3891 		newsk->sk_kern_sock = arg->kern;
3892 		lock_sock(newsk);
3893 		__inet_accept(sock, newsock, newsk);
3894 
3895 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3896 		msk = mptcp_sk(newsk);
3897 		msk->in_accept_queue = 0;
3898 
3899 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3900 		 * This is needed so NOSPACE flag can be set from tcp stack.
3901 		 */
3902 		mptcp_for_each_subflow(msk, subflow) {
3903 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3904 
3905 			if (!ssk->sk_socket)
3906 				mptcp_sock_graft(ssk, newsock);
3907 		}
3908 
3909 		/* Do late cleanup for the first subflow as necessary. Also
3910 		 * deal with bad peers not doing a complete shutdown.
3911 		 */
3912 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3913 			__mptcp_close_ssk(newsk, msk->first,
3914 					  mptcp_subflow_ctx(msk->first), 0);
3915 			if (unlikely(list_is_singular(&msk->conn_list)))
3916 				mptcp_set_state(newsk, TCP_CLOSE);
3917 		}
3918 	} else {
3919 tcpfallback:
3920 		newsk->sk_kern_sock = arg->kern;
3921 		lock_sock(newsk);
3922 		__inet_accept(sock, newsock, newsk);
3923 		/* we are being invoked after accepting a non-mp-capable
3924 		 * flow: sk is a tcp_sk, not an mptcp one.
3925 		 *
3926 		 * Hand the socket over to tcp so all further socket ops
3927 		 * bypass mptcp.
3928 		 */
3929 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3930 			   mptcp_fallback_tcp_ops(newsock->sk));
3931 	}
3932 	release_sock(newsk);
3933 
3934 	return 0;
3935 }
3936 
3937 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3938 {
3939 	struct sock *sk = (struct sock *)msk;
3940 
3941 	if (__mptcp_stream_is_writeable(sk, 1))
3942 		return EPOLLOUT | EPOLLWRNORM;
3943 
3944 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3945 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3946 	if (__mptcp_stream_is_writeable(sk, 1))
3947 		return EPOLLOUT | EPOLLWRNORM;
3948 
3949 	return 0;
3950 }
3951 
3952 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3953 			   struct poll_table_struct *wait)
3954 {
3955 	struct sock *sk = sock->sk;
3956 	struct mptcp_sock *msk;
3957 	__poll_t mask = 0;
3958 	u8 shutdown;
3959 	int state;
3960 
3961 	msk = mptcp_sk(sk);
3962 	sock_poll_wait(file, sock, wait);
3963 
3964 	state = inet_sk_state_load(sk);
3965 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3966 	if (state == TCP_LISTEN) {
3967 		struct sock *ssk = READ_ONCE(msk->first);
3968 
3969 		if (WARN_ON_ONCE(!ssk))
3970 			return 0;
3971 
3972 		return inet_csk_listen_poll(ssk);
3973 	}
3974 
3975 	shutdown = READ_ONCE(sk->sk_shutdown);
3976 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3977 		mask |= EPOLLHUP;
3978 	if (shutdown & RCV_SHUTDOWN)
3979 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3980 
3981 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3982 		mask |= mptcp_check_readable(sk);
3983 		if (shutdown & SEND_SHUTDOWN)
3984 			mask |= EPOLLOUT | EPOLLWRNORM;
3985 		else
3986 			mask |= mptcp_check_writeable(msk);
3987 	} else if (state == TCP_SYN_SENT &&
3988 		   inet_test_bit(DEFER_CONNECT, sk)) {
3989 		/* cf tcp_poll() note about TFO */
3990 		mask |= EPOLLOUT | EPOLLWRNORM;
3991 	}
3992 
3993 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3994 	smp_rmb();
3995 	if (READ_ONCE(sk->sk_err))
3996 		mask |= EPOLLERR;
3997 
3998 	return mask;
3999 }
4000 
4001 static const struct proto_ops mptcp_stream_ops = {
4002 	.family		   = PF_INET,
4003 	.owner		   = THIS_MODULE,
4004 	.release	   = inet_release,
4005 	.bind		   = mptcp_bind,
4006 	.connect	   = inet_stream_connect,
4007 	.socketpair	   = sock_no_socketpair,
4008 	.accept		   = mptcp_stream_accept,
4009 	.getname	   = inet_getname,
4010 	.poll		   = mptcp_poll,
4011 	.ioctl		   = inet_ioctl,
4012 	.gettstamp	   = sock_gettstamp,
4013 	.listen		   = mptcp_listen,
4014 	.shutdown	   = inet_shutdown,
4015 	.setsockopt	   = sock_common_setsockopt,
4016 	.getsockopt	   = sock_common_getsockopt,
4017 	.sendmsg	   = inet_sendmsg,
4018 	.recvmsg	   = inet_recvmsg,
4019 	.mmap		   = sock_no_mmap,
4020 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4021 };
4022 
4023 static struct inet_protosw mptcp_protosw = {
4024 	.type		= SOCK_STREAM,
4025 	.protocol	= IPPROTO_MPTCP,
4026 	.prot		= &mptcp_prot,
4027 	.ops		= &mptcp_stream_ops,
4028 	.flags		= INET_PROTOSW_ICSK,
4029 };
4030 
4031 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4032 {
4033 	struct mptcp_delegated_action *delegated;
4034 	struct mptcp_subflow_context *subflow;
4035 	int work_done = 0;
4036 
4037 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4038 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4039 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4040 
4041 		bh_lock_sock_nested(ssk);
4042 		if (!sock_owned_by_user(ssk)) {
4043 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4044 		} else {
4045 			/* tcp_release_cb_override already processed
4046 			 * the action or will do at next release_sock().
4047 			 * In both case must dequeue the subflow here - on the same
4048 			 * CPU that scheduled it.
4049 			 */
4050 			smp_wmb();
4051 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4052 		}
4053 		bh_unlock_sock(ssk);
4054 		sock_put(ssk);
4055 
4056 		if (++work_done == budget)
4057 			return budget;
4058 	}
4059 
4060 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4061 	 * will not try accessing the NULL napi->dev ptr
4062 	 */
4063 	napi_complete_done(napi, 0);
4064 	return work_done;
4065 }
4066 
4067 void __init mptcp_proto_init(void)
4068 {
4069 	struct mptcp_delegated_action *delegated;
4070 	int cpu;
4071 
4072 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4073 
4074 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4075 		panic("Failed to allocate MPTCP pcpu counter\n");
4076 
4077 	mptcp_napi_dev = alloc_netdev_dummy(0);
4078 	if (!mptcp_napi_dev)
4079 		panic("Failed to allocate MPTCP dummy netdev\n");
4080 	for_each_possible_cpu(cpu) {
4081 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4082 		INIT_LIST_HEAD(&delegated->head);
4083 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4084 				  mptcp_napi_poll);
4085 		napi_enable(&delegated->napi);
4086 	}
4087 
4088 	mptcp_subflow_init();
4089 	mptcp_pm_init();
4090 	mptcp_sched_init();
4091 	mptcp_token_init();
4092 
4093 	if (proto_register(&mptcp_prot, 1) != 0)
4094 		panic("Failed to register MPTCP proto.\n");
4095 
4096 	inet_register_protosw(&mptcp_protosw);
4097 
4098 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4099 }
4100 
4101 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4102 static const struct proto_ops mptcp_v6_stream_ops = {
4103 	.family		   = PF_INET6,
4104 	.owner		   = THIS_MODULE,
4105 	.release	   = inet6_release,
4106 	.bind		   = mptcp_bind,
4107 	.connect	   = inet_stream_connect,
4108 	.socketpair	   = sock_no_socketpair,
4109 	.accept		   = mptcp_stream_accept,
4110 	.getname	   = inet6_getname,
4111 	.poll		   = mptcp_poll,
4112 	.ioctl		   = inet6_ioctl,
4113 	.gettstamp	   = sock_gettstamp,
4114 	.listen		   = mptcp_listen,
4115 	.shutdown	   = inet_shutdown,
4116 	.setsockopt	   = sock_common_setsockopt,
4117 	.getsockopt	   = sock_common_getsockopt,
4118 	.sendmsg	   = inet6_sendmsg,
4119 	.recvmsg	   = inet6_recvmsg,
4120 	.mmap		   = sock_no_mmap,
4121 #ifdef CONFIG_COMPAT
4122 	.compat_ioctl	   = inet6_compat_ioctl,
4123 #endif
4124 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4125 };
4126 
4127 static struct proto mptcp_v6_prot;
4128 
4129 static struct inet_protosw mptcp_v6_protosw = {
4130 	.type		= SOCK_STREAM,
4131 	.protocol	= IPPROTO_MPTCP,
4132 	.prot		= &mptcp_v6_prot,
4133 	.ops		= &mptcp_v6_stream_ops,
4134 	.flags		= INET_PROTOSW_ICSK,
4135 };
4136 
4137 int __init mptcp_proto_v6_init(void)
4138 {
4139 	int err;
4140 
4141 	mptcp_v6_prot = mptcp_prot;
4142 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4143 	mptcp_v6_prot.slab = NULL;
4144 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4145 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4146 
4147 	err = proto_register(&mptcp_v6_prot, 1);
4148 	if (err)
4149 		return err;
4150 
4151 	err = inet6_register_protosw(&mptcp_v6_protosw);
4152 	if (err)
4153 		proto_unregister(&mptcp_v6_prot);
4154 
4155 	return err;
4156 }
4157 #endif
4158