1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 65 if (sk->sk_prot == &tcpv6_prot) 66 return &inet6_stream_ops; 67 #endif 68 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 69 return &inet_stream_ops; 70 } 71 72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 73 { 74 struct net *net = sock_net((struct sock *)msk); 75 76 if (__mptcp_check_fallback(msk)) 77 return true; 78 79 spin_lock_bh(&msk->fallback_lock); 80 if (!msk->allow_infinite_fallback) { 81 spin_unlock_bh(&msk->fallback_lock); 82 return false; 83 } 84 85 msk->allow_subflows = false; 86 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 87 __MPTCP_INC_STATS(net, fb_mib); 88 spin_unlock_bh(&msk->fallback_lock); 89 return true; 90 } 91 92 static int __mptcp_socket_create(struct mptcp_sock *msk) 93 { 94 struct mptcp_subflow_context *subflow; 95 struct sock *sk = (struct sock *)msk; 96 struct socket *ssock; 97 int err; 98 99 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 100 if (err) 101 return err; 102 103 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 104 WRITE_ONCE(msk->first, ssock->sk); 105 subflow = mptcp_subflow_ctx(ssock->sk); 106 list_add(&subflow->node, &msk->conn_list); 107 sock_hold(ssock->sk); 108 subflow->request_mptcp = 1; 109 subflow->subflow_id = msk->subflow_id++; 110 111 /* This is the first subflow, always with id 0 */ 112 WRITE_ONCE(subflow->local_id, 0); 113 mptcp_sock_graft(msk->first, sk->sk_socket); 114 iput(SOCK_INODE(ssock)); 115 116 return 0; 117 } 118 119 /* If the MPC handshake is not started, returns the first subflow, 120 * eventually allocating it. 121 */ 122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 123 { 124 struct sock *sk = (struct sock *)msk; 125 int ret; 126 127 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 128 return ERR_PTR(-EINVAL); 129 130 if (!msk->first) { 131 ret = __mptcp_socket_create(msk); 132 if (ret) 133 return ERR_PTR(ret); 134 } 135 136 return msk->first; 137 } 138 139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 140 { 141 sk_drops_skbadd(sk, skb); 142 __kfree_skb(skb); 143 } 144 145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 146 struct sk_buff *from, bool *fragstolen, 147 int *delta) 148 { 149 int limit = READ_ONCE(sk->sk_rcvbuf); 150 151 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 152 MPTCP_SKB_CB(from)->offset || 153 ((to->len + from->len) > (limit >> 3)) || 154 !skb_try_coalesce(to, from, fragstolen, delta)) 155 return false; 156 157 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 158 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 159 to->len, MPTCP_SKB_CB(from)->end_seq); 160 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 161 return true; 162 } 163 164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 165 struct sk_buff *from) 166 { 167 bool fragstolen; 168 int delta; 169 170 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 171 return false; 172 173 /* note the fwd memory can reach a negative value after accounting 174 * for the delta, but the later skb free will restore a non 175 * negative one 176 */ 177 atomic_add(delta, &sk->sk_rmem_alloc); 178 sk_mem_charge(sk, delta); 179 kfree_skb_partial(from, fragstolen); 180 181 return true; 182 } 183 184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 185 struct sk_buff *from) 186 { 187 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 188 return false; 189 190 return mptcp_try_coalesce((struct sock *)msk, to, from); 191 } 192 193 /* "inspired" by tcp_rcvbuf_grow(), main difference: 194 * - mptcp does not maintain a msk-level window clamp 195 * - returns true when the receive buffer is actually updated 196 */ 197 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 198 { 199 struct mptcp_sock *msk = mptcp_sk(sk); 200 const struct net *net = sock_net(sk); 201 u32 rcvwin, rcvbuf, cap, oldval; 202 u64 grow; 203 204 oldval = msk->rcvq_space.space; 205 msk->rcvq_space.space = newval; 206 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 207 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 208 return false; 209 210 /* DRS is always one RTT late. */ 211 rcvwin = newval << 1; 212 213 /* slow start: allow the sender to double its rate. */ 214 grow = (u64)rcvwin * (newval - oldval); 215 do_div(grow, oldval); 216 rcvwin += grow << 1; 217 218 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 219 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 220 221 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 222 223 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 224 if (rcvbuf > sk->sk_rcvbuf) { 225 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 226 return true; 227 } 228 return false; 229 } 230 231 /* "inspired" by tcp_data_queue_ofo(), main differences: 232 * - use mptcp seqs 233 * - don't cope with sacks 234 */ 235 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 236 { 237 struct sock *sk = (struct sock *)msk; 238 struct rb_node **p, *parent; 239 u64 seq, end_seq, max_seq; 240 struct sk_buff *skb1; 241 242 seq = MPTCP_SKB_CB(skb)->map_seq; 243 end_seq = MPTCP_SKB_CB(skb)->end_seq; 244 max_seq = atomic64_read(&msk->rcv_wnd_sent); 245 246 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 247 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 248 if (after64(end_seq, max_seq)) { 249 /* out of window */ 250 mptcp_drop(sk, skb); 251 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 252 (unsigned long long)end_seq - (unsigned long)max_seq, 253 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 255 return; 256 } 257 258 p = &msk->out_of_order_queue.rb_node; 259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 260 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 261 rb_link_node(&skb->rbnode, NULL, p); 262 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 263 msk->ooo_last_skb = skb; 264 goto end; 265 } 266 267 /* with 2 subflows, adding at end of ooo queue is quite likely 268 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 269 */ 270 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 273 return; 274 } 275 276 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 277 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 279 parent = &msk->ooo_last_skb->rbnode; 280 p = &parent->rb_right; 281 goto insert; 282 } 283 284 /* Find place to insert this segment. Handle overlaps on the way. */ 285 parent = NULL; 286 while (*p) { 287 parent = *p; 288 skb1 = rb_to_skb(parent); 289 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 290 p = &parent->rb_left; 291 continue; 292 } 293 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 294 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 295 /* All the bits are present. Drop. */ 296 mptcp_drop(sk, skb); 297 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 298 return; 299 } 300 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 301 /* partial overlap: 302 * | skb | 303 * | skb1 | 304 * continue traversing 305 */ 306 } else { 307 /* skb's seq == skb1's seq and skb covers skb1. 308 * Replace skb1 with skb. 309 */ 310 rb_replace_node(&skb1->rbnode, &skb->rbnode, 311 &msk->out_of_order_queue); 312 mptcp_drop(sk, skb1); 313 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 314 goto merge_right; 315 } 316 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 317 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 318 return; 319 } 320 p = &parent->rb_right; 321 } 322 323 insert: 324 /* Insert segment into RB tree. */ 325 rb_link_node(&skb->rbnode, parent, p); 326 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 327 328 merge_right: 329 /* Remove other segments covered by skb. */ 330 while ((skb1 = skb_rb_next(skb)) != NULL) { 331 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 332 break; 333 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 334 mptcp_drop(sk, skb1); 335 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 336 } 337 /* If there is no skb after us, we are the last_skb ! */ 338 if (!skb1) 339 msk->ooo_last_skb = skb; 340 341 end: 342 skb_condense(skb); 343 skb_set_owner_r(skb, sk); 344 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 345 if (sk->sk_socket) 346 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 347 } 348 349 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 350 int copy_len) 351 { 352 const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 353 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 354 355 /* the skb map_seq accounts for the skb offset: 356 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 357 * value 358 */ 359 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 360 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 361 MPTCP_SKB_CB(skb)->offset = offset; 362 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 363 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 364 365 __skb_unlink(skb, &ssk->sk_receive_queue); 366 367 skb_ext_reset(skb); 368 skb_dst_drop(skb); 369 } 370 371 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 372 { 373 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 374 struct mptcp_sock *msk = mptcp_sk(sk); 375 struct sk_buff *tail; 376 377 /* try to fetch required memory from subflow */ 378 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 379 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 380 goto drop; 381 } 382 383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 384 /* in sequence */ 385 msk->bytes_received += copy_len; 386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 387 tail = skb_peek_tail(&sk->sk_receive_queue); 388 if (tail && mptcp_try_coalesce(sk, tail, skb)) 389 return true; 390 391 skb_set_owner_r(skb, sk); 392 __skb_queue_tail(&sk->sk_receive_queue, skb); 393 return true; 394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 395 mptcp_data_queue_ofo(msk, skb); 396 return false; 397 } 398 399 /* old data, keep it simple and drop the whole pkt, sender 400 * will retransmit as needed, if needed. 401 */ 402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 403 drop: 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_rtx_timer(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 413 mptcp_sk(sk)->timer_ival = 0; 414 } 415 416 static void mptcp_close_wake_up(struct sock *sk) 417 { 418 if (sock_flag(sk, SOCK_DEAD)) 419 return; 420 421 sk->sk_state_change(sk); 422 if (sk->sk_shutdown == SHUTDOWN_MASK || 423 sk->sk_state == TCP_CLOSE) 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 425 else 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 427 } 428 429 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 430 { 431 struct mptcp_subflow_context *subflow; 432 433 mptcp_for_each_subflow(msk, subflow) { 434 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 435 bool slow; 436 437 slow = lock_sock_fast(ssk); 438 tcp_shutdown(ssk, SEND_SHUTDOWN); 439 unlock_sock_fast(ssk, slow); 440 } 441 } 442 443 /* called under the msk socket lock */ 444 static bool mptcp_pending_data_fin_ack(struct sock *sk) 445 { 446 struct mptcp_sock *msk = mptcp_sk(sk); 447 448 return ((1 << sk->sk_state) & 449 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 450 msk->write_seq == READ_ONCE(msk->snd_una); 451 } 452 453 static void mptcp_check_data_fin_ack(struct sock *sk) 454 { 455 struct mptcp_sock *msk = mptcp_sk(sk); 456 457 /* Look for an acknowledged DATA_FIN */ 458 if (mptcp_pending_data_fin_ack(sk)) { 459 WRITE_ONCE(msk->snd_data_fin_enable, 0); 460 461 switch (sk->sk_state) { 462 case TCP_FIN_WAIT1: 463 mptcp_set_state(sk, TCP_FIN_WAIT2); 464 break; 465 case TCP_CLOSING: 466 case TCP_LAST_ACK: 467 mptcp_shutdown_subflows(msk); 468 mptcp_set_state(sk, TCP_CLOSE); 469 break; 470 } 471 472 mptcp_close_wake_up(sk); 473 } 474 } 475 476 /* can be called with no lock acquired */ 477 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 478 { 479 struct mptcp_sock *msk = mptcp_sk(sk); 480 481 if (READ_ONCE(msk->rcv_data_fin) && 482 ((1 << inet_sk_state_load(sk)) & 483 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 484 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 485 486 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 487 if (seq) 488 *seq = rcv_data_fin_seq; 489 490 return true; 491 } 492 } 493 494 return false; 495 } 496 497 static void mptcp_set_datafin_timeout(struct sock *sk) 498 { 499 struct inet_connection_sock *icsk = inet_csk(sk); 500 u32 retransmits; 501 502 retransmits = min_t(u32, icsk->icsk_retransmits, 503 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 504 505 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 506 } 507 508 static void __mptcp_set_timeout(struct sock *sk, long tout) 509 { 510 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 511 } 512 513 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 514 { 515 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 516 517 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 518 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 519 } 520 521 static void mptcp_set_timeout(struct sock *sk) 522 { 523 struct mptcp_subflow_context *subflow; 524 long tout = 0; 525 526 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 527 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 528 __mptcp_set_timeout(sk, tout); 529 } 530 531 static inline bool tcp_can_send_ack(const struct sock *ssk) 532 { 533 return !((1 << inet_sk_state_load(ssk)) & 534 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 535 } 536 537 void __mptcp_subflow_send_ack(struct sock *ssk) 538 { 539 if (tcp_can_send_ack(ssk)) 540 tcp_send_ack(ssk); 541 } 542 543 static void mptcp_subflow_send_ack(struct sock *ssk) 544 { 545 bool slow; 546 547 slow = lock_sock_fast(ssk); 548 __mptcp_subflow_send_ack(ssk); 549 unlock_sock_fast(ssk, slow); 550 } 551 552 static void mptcp_send_ack(struct mptcp_sock *msk) 553 { 554 struct mptcp_subflow_context *subflow; 555 556 mptcp_for_each_subflow(msk, subflow) 557 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 558 } 559 560 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 561 { 562 bool slow; 563 564 slow = lock_sock_fast(ssk); 565 if (tcp_can_send_ack(ssk)) 566 tcp_cleanup_rbuf(ssk, copied); 567 unlock_sock_fast(ssk, slow); 568 } 569 570 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 571 { 572 const struct inet_connection_sock *icsk = inet_csk(ssk); 573 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 574 const struct tcp_sock *tp = tcp_sk(ssk); 575 576 return (ack_pending & ICSK_ACK_SCHED) && 577 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 578 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 579 (rx_empty && ack_pending & 580 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 581 } 582 583 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 584 { 585 int old_space = READ_ONCE(msk->old_wspace); 586 struct mptcp_subflow_context *subflow; 587 struct sock *sk = (struct sock *)msk; 588 int space = __mptcp_space(sk); 589 bool cleanup, rx_empty; 590 591 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 592 rx_empty = !sk_rmem_alloc_get(sk) && copied; 593 594 mptcp_for_each_subflow(msk, subflow) { 595 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 596 597 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 598 mptcp_subflow_cleanup_rbuf(ssk, copied); 599 } 600 } 601 602 static void mptcp_check_data_fin(struct sock *sk) 603 { 604 struct mptcp_sock *msk = mptcp_sk(sk); 605 u64 rcv_data_fin_seq; 606 607 /* Need to ack a DATA_FIN received from a peer while this side 608 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 609 * msk->rcv_data_fin was set when parsing the incoming options 610 * at the subflow level and the msk lock was not held, so this 611 * is the first opportunity to act on the DATA_FIN and change 612 * the msk state. 613 * 614 * If we are caught up to the sequence number of the incoming 615 * DATA_FIN, send the DATA_ACK now and do state transition. If 616 * not caught up, do nothing and let the recv code send DATA_ACK 617 * when catching up. 618 */ 619 620 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 621 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 622 WRITE_ONCE(msk->rcv_data_fin, 0); 623 624 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 625 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 626 627 switch (sk->sk_state) { 628 case TCP_ESTABLISHED: 629 mptcp_set_state(sk, TCP_CLOSE_WAIT); 630 break; 631 case TCP_FIN_WAIT1: 632 mptcp_set_state(sk, TCP_CLOSING); 633 break; 634 case TCP_FIN_WAIT2: 635 mptcp_shutdown_subflows(msk); 636 mptcp_set_state(sk, TCP_CLOSE); 637 break; 638 default: 639 /* Other states not expected */ 640 WARN_ON_ONCE(1); 641 break; 642 } 643 644 if (!__mptcp_check_fallback(msk)) 645 mptcp_send_ack(msk); 646 mptcp_close_wake_up(sk); 647 } 648 } 649 650 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 651 { 652 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 653 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 654 mptcp_subflow_reset(ssk); 655 } 656 } 657 658 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 659 struct sock *ssk) 660 { 661 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 662 struct sock *sk = (struct sock *)msk; 663 bool more_data_avail; 664 struct tcp_sock *tp; 665 bool ret = false; 666 667 pr_debug("msk=%p ssk=%p\n", msk, ssk); 668 tp = tcp_sk(ssk); 669 do { 670 u32 map_remaining, offset; 671 u32 seq = tp->copied_seq; 672 struct sk_buff *skb; 673 bool fin; 674 675 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 676 break; 677 678 /* try to move as much data as available */ 679 map_remaining = subflow->map_data_len - 680 mptcp_subflow_get_map_offset(subflow); 681 682 skb = skb_peek(&ssk->sk_receive_queue); 683 if (unlikely(!skb)) 684 break; 685 686 if (__mptcp_check_fallback(msk)) { 687 /* Under fallback skbs have no MPTCP extension and TCP could 688 * collapse them between the dummy map creation and the 689 * current dequeue. Be sure to adjust the map size. 690 */ 691 map_remaining = skb->len; 692 subflow->map_data_len = skb->len; 693 } 694 695 offset = seq - TCP_SKB_CB(skb)->seq; 696 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 697 if (fin) 698 seq++; 699 700 if (offset < skb->len) { 701 size_t len = skb->len - offset; 702 703 mptcp_init_skb(ssk, skb, offset, len); 704 skb_orphan(skb); 705 ret = __mptcp_move_skb(sk, skb) || ret; 706 seq += len; 707 708 if (unlikely(map_remaining < len)) { 709 DEBUG_NET_WARN_ON_ONCE(1); 710 mptcp_dss_corruption(msk, ssk); 711 } 712 } else { 713 if (unlikely(!fin)) { 714 DEBUG_NET_WARN_ON_ONCE(1); 715 mptcp_dss_corruption(msk, ssk); 716 } 717 718 sk_eat_skb(ssk, skb); 719 } 720 721 WRITE_ONCE(tp->copied_seq, seq); 722 more_data_avail = mptcp_subflow_data_available(ssk); 723 724 } while (more_data_avail); 725 726 if (ret) 727 msk->last_data_recv = tcp_jiffies32; 728 return ret; 729 } 730 731 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 732 { 733 struct sock *sk = (struct sock *)msk; 734 struct sk_buff *skb, *tail; 735 bool moved = false; 736 struct rb_node *p; 737 u64 end_seq; 738 739 p = rb_first(&msk->out_of_order_queue); 740 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 741 while (p) { 742 skb = rb_to_skb(p); 743 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 744 break; 745 746 p = rb_next(p); 747 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 748 749 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 750 msk->ack_seq))) { 751 mptcp_drop(sk, skb); 752 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 753 continue; 754 } 755 756 end_seq = MPTCP_SKB_CB(skb)->end_seq; 757 tail = skb_peek_tail(&sk->sk_receive_queue); 758 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 759 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 760 761 /* skip overlapping data, if any */ 762 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 763 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 764 delta); 765 MPTCP_SKB_CB(skb)->offset += delta; 766 MPTCP_SKB_CB(skb)->map_seq += delta; 767 __skb_queue_tail(&sk->sk_receive_queue, skb); 768 } 769 msk->bytes_received += end_seq - msk->ack_seq; 770 WRITE_ONCE(msk->ack_seq, end_seq); 771 moved = true; 772 } 773 return moved; 774 } 775 776 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 777 { 778 int err = sock_error(ssk); 779 int ssk_state; 780 781 if (!err) 782 return false; 783 784 /* only propagate errors on fallen-back sockets or 785 * on MPC connect 786 */ 787 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 788 return false; 789 790 /* We need to propagate only transition to CLOSE state. 791 * Orphaned socket will see such state change via 792 * subflow_sched_work_if_closed() and that path will properly 793 * destroy the msk as needed. 794 */ 795 ssk_state = inet_sk_state_load(ssk); 796 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 797 mptcp_set_state(sk, ssk_state); 798 WRITE_ONCE(sk->sk_err, -err); 799 800 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 801 smp_wmb(); 802 sk_error_report(sk); 803 return true; 804 } 805 806 void __mptcp_error_report(struct sock *sk) 807 { 808 struct mptcp_subflow_context *subflow; 809 struct mptcp_sock *msk = mptcp_sk(sk); 810 811 mptcp_for_each_subflow(msk, subflow) 812 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 813 break; 814 } 815 816 /* In most cases we will be able to lock the mptcp socket. If its already 817 * owned, we need to defer to the work queue to avoid ABBA deadlock. 818 */ 819 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 820 { 821 struct sock *sk = (struct sock *)msk; 822 bool moved; 823 824 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 825 __mptcp_ofo_queue(msk); 826 if (unlikely(ssk->sk_err)) 827 __mptcp_subflow_error_report(sk, ssk); 828 829 /* If the moves have caught up with the DATA_FIN sequence number 830 * it's time to ack the DATA_FIN and change socket state, but 831 * this is not a good place to change state. Let the workqueue 832 * do it. 833 */ 834 if (mptcp_pending_data_fin(sk, NULL)) 835 mptcp_schedule_work(sk); 836 return moved; 837 } 838 839 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 840 { 841 struct mptcp_sock *msk = mptcp_sk(sk); 842 843 /* Wake-up the reader only for in-sequence data */ 844 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 845 sk->sk_data_ready(sk); 846 } 847 848 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 849 { 850 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 851 852 /* The peer can send data while we are shutting down this 853 * subflow at msk destruction time, but we must avoid enqueuing 854 * more data to the msk receive queue 855 */ 856 if (unlikely(subflow->disposable)) 857 return; 858 859 mptcp_data_lock(sk); 860 if (!sock_owned_by_user(sk)) 861 __mptcp_data_ready(sk, ssk); 862 else 863 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 864 mptcp_data_unlock(sk); 865 } 866 867 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 868 { 869 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 870 msk->allow_infinite_fallback = false; 871 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 872 } 873 874 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 875 { 876 struct sock *sk = (struct sock *)msk; 877 878 if (sk->sk_state != TCP_ESTABLISHED) 879 return false; 880 881 spin_lock_bh(&msk->fallback_lock); 882 if (!msk->allow_subflows) { 883 spin_unlock_bh(&msk->fallback_lock); 884 return false; 885 } 886 mptcp_subflow_joined(msk, ssk); 887 spin_unlock_bh(&msk->fallback_lock); 888 889 /* attach to msk socket only after we are sure we will deal with it 890 * at close time 891 */ 892 if (sk->sk_socket && !ssk->sk_socket) 893 mptcp_sock_graft(ssk, sk->sk_socket); 894 895 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 896 mptcp_sockopt_sync_locked(msk, ssk); 897 mptcp_stop_tout_timer(sk); 898 __mptcp_propagate_sndbuf(sk, ssk); 899 return true; 900 } 901 902 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 903 { 904 struct mptcp_subflow_context *tmp, *subflow; 905 struct mptcp_sock *msk = mptcp_sk(sk); 906 907 list_for_each_entry_safe(subflow, tmp, join_list, node) { 908 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 909 bool slow = lock_sock_fast(ssk); 910 911 list_move_tail(&subflow->node, &msk->conn_list); 912 if (!__mptcp_finish_join(msk, ssk)) 913 mptcp_subflow_reset(ssk); 914 unlock_sock_fast(ssk, slow); 915 } 916 } 917 918 static bool mptcp_rtx_timer_pending(struct sock *sk) 919 { 920 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 921 } 922 923 static void mptcp_reset_rtx_timer(struct sock *sk) 924 { 925 struct inet_connection_sock *icsk = inet_csk(sk); 926 unsigned long tout; 927 928 /* prevent rescheduling on close */ 929 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 930 return; 931 932 tout = mptcp_sk(sk)->timer_ival; 933 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 934 } 935 936 bool mptcp_schedule_work(struct sock *sk) 937 { 938 if (inet_sk_state_load(sk) != TCP_CLOSE && 939 schedule_work(&mptcp_sk(sk)->work)) { 940 /* each subflow already holds a reference to the sk, and the 941 * workqueue is invoked by a subflow, so sk can't go away here. 942 */ 943 sock_hold(sk); 944 return true; 945 } 946 return false; 947 } 948 949 static bool mptcp_skb_can_collapse_to(u64 write_seq, 950 const struct sk_buff *skb, 951 const struct mptcp_ext *mpext) 952 { 953 if (!tcp_skb_can_collapse_to(skb)) 954 return false; 955 956 /* can collapse only if MPTCP level sequence is in order and this 957 * mapping has not been xmitted yet 958 */ 959 return mpext && mpext->data_seq + mpext->data_len == write_seq && 960 !mpext->frozen; 961 } 962 963 /* we can append data to the given data frag if: 964 * - there is space available in the backing page_frag 965 * - the data frag tail matches the current page_frag free offset 966 * - the data frag end sequence number matches the current write seq 967 */ 968 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 969 const struct page_frag *pfrag, 970 const struct mptcp_data_frag *df) 971 { 972 return df && pfrag->page == df->page && 973 pfrag->size - pfrag->offset > 0 && 974 pfrag->offset == (df->offset + df->data_len) && 975 df->data_seq + df->data_len == msk->write_seq; 976 } 977 978 static void dfrag_uncharge(struct sock *sk, int len) 979 { 980 sk_mem_uncharge(sk, len); 981 sk_wmem_queued_add(sk, -len); 982 } 983 984 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 985 { 986 int len = dfrag->data_len + dfrag->overhead; 987 988 list_del(&dfrag->list); 989 dfrag_uncharge(sk, len); 990 put_page(dfrag->page); 991 } 992 993 /* called under both the msk socket lock and the data lock */ 994 static void __mptcp_clean_una(struct sock *sk) 995 { 996 struct mptcp_sock *msk = mptcp_sk(sk); 997 struct mptcp_data_frag *dtmp, *dfrag; 998 u64 snd_una; 999 1000 snd_una = msk->snd_una; 1001 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1002 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1003 break; 1004 1005 if (unlikely(dfrag == msk->first_pending)) { 1006 /* in recovery mode can see ack after the current snd head */ 1007 if (WARN_ON_ONCE(!msk->recovery)) 1008 break; 1009 1010 msk->first_pending = mptcp_send_next(sk); 1011 } 1012 1013 dfrag_clear(sk, dfrag); 1014 } 1015 1016 dfrag = mptcp_rtx_head(sk); 1017 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1018 u64 delta = snd_una - dfrag->data_seq; 1019 1020 /* prevent wrap around in recovery mode */ 1021 if (unlikely(delta > dfrag->already_sent)) { 1022 if (WARN_ON_ONCE(!msk->recovery)) 1023 goto out; 1024 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1025 goto out; 1026 dfrag->already_sent += delta - dfrag->already_sent; 1027 } 1028 1029 dfrag->data_seq += delta; 1030 dfrag->offset += delta; 1031 dfrag->data_len -= delta; 1032 dfrag->already_sent -= delta; 1033 1034 dfrag_uncharge(sk, delta); 1035 } 1036 1037 /* all retransmitted data acked, recovery completed */ 1038 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1039 msk->recovery = false; 1040 1041 out: 1042 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1043 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1044 mptcp_stop_rtx_timer(sk); 1045 } else { 1046 mptcp_reset_rtx_timer(sk); 1047 } 1048 1049 if (mptcp_pending_data_fin_ack(sk)) 1050 mptcp_schedule_work(sk); 1051 } 1052 1053 static void __mptcp_clean_una_wakeup(struct sock *sk) 1054 { 1055 lockdep_assert_held_once(&sk->sk_lock.slock); 1056 1057 __mptcp_clean_una(sk); 1058 mptcp_write_space(sk); 1059 } 1060 1061 static void mptcp_clean_una_wakeup(struct sock *sk) 1062 { 1063 mptcp_data_lock(sk); 1064 __mptcp_clean_una_wakeup(sk); 1065 mptcp_data_unlock(sk); 1066 } 1067 1068 static void mptcp_enter_memory_pressure(struct sock *sk) 1069 { 1070 struct mptcp_subflow_context *subflow; 1071 struct mptcp_sock *msk = mptcp_sk(sk); 1072 bool first = true; 1073 1074 mptcp_for_each_subflow(msk, subflow) { 1075 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1076 1077 if (first && !ssk->sk_bypass_prot_mem) { 1078 tcp_enter_memory_pressure(ssk); 1079 first = false; 1080 } 1081 1082 sk_stream_moderate_sndbuf(ssk); 1083 } 1084 __mptcp_sync_sndbuf(sk); 1085 } 1086 1087 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1088 * data 1089 */ 1090 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1091 { 1092 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1093 pfrag, sk->sk_allocation))) 1094 return true; 1095 1096 mptcp_enter_memory_pressure(sk); 1097 return false; 1098 } 1099 1100 static struct mptcp_data_frag * 1101 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1102 int orig_offset) 1103 { 1104 int offset = ALIGN(orig_offset, sizeof(long)); 1105 struct mptcp_data_frag *dfrag; 1106 1107 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1108 dfrag->data_len = 0; 1109 dfrag->data_seq = msk->write_seq; 1110 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1111 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1112 dfrag->already_sent = 0; 1113 dfrag->page = pfrag->page; 1114 1115 return dfrag; 1116 } 1117 1118 struct mptcp_sendmsg_info { 1119 int mss_now; 1120 int size_goal; 1121 u16 limit; 1122 u16 sent; 1123 unsigned int flags; 1124 bool data_lock_held; 1125 }; 1126 1127 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1128 u64 data_seq, int avail_size) 1129 { 1130 u64 window_end = mptcp_wnd_end(msk); 1131 u64 mptcp_snd_wnd; 1132 1133 if (__mptcp_check_fallback(msk)) 1134 return avail_size; 1135 1136 mptcp_snd_wnd = window_end - data_seq; 1137 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1138 1139 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1140 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1141 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1142 } 1143 1144 return avail_size; 1145 } 1146 1147 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1148 { 1149 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1150 1151 if (!mpext) 1152 return false; 1153 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1154 return true; 1155 } 1156 1157 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1158 { 1159 struct sk_buff *skb; 1160 1161 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1162 if (likely(skb)) { 1163 if (likely(__mptcp_add_ext(skb, gfp))) { 1164 skb_reserve(skb, MAX_TCP_HEADER); 1165 skb->ip_summed = CHECKSUM_PARTIAL; 1166 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1167 return skb; 1168 } 1169 __kfree_skb(skb); 1170 } else { 1171 mptcp_enter_memory_pressure(sk); 1172 } 1173 return NULL; 1174 } 1175 1176 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1177 { 1178 struct sk_buff *skb; 1179 1180 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1181 if (!skb) 1182 return NULL; 1183 1184 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1185 tcp_skb_entail(ssk, skb); 1186 return skb; 1187 } 1188 tcp_skb_tsorted_anchor_cleanup(skb); 1189 kfree_skb(skb); 1190 return NULL; 1191 } 1192 1193 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1194 { 1195 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1196 1197 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1198 } 1199 1200 /* note: this always recompute the csum on the whole skb, even 1201 * if we just appended a single frag. More status info needed 1202 */ 1203 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1204 { 1205 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1206 __wsum csum = ~csum_unfold(mpext->csum); 1207 int offset = skb->len - added; 1208 1209 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1210 } 1211 1212 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1213 struct sock *ssk, 1214 struct mptcp_ext *mpext) 1215 { 1216 if (!mpext) 1217 return; 1218 1219 mpext->infinite_map = 1; 1220 mpext->data_len = 0; 1221 1222 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1223 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1224 mptcp_subflow_reset(ssk); 1225 return; 1226 } 1227 1228 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1229 } 1230 1231 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1232 1233 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1234 struct mptcp_data_frag *dfrag, 1235 struct mptcp_sendmsg_info *info) 1236 { 1237 u64 data_seq = dfrag->data_seq + info->sent; 1238 int offset = dfrag->offset + info->sent; 1239 struct mptcp_sock *msk = mptcp_sk(sk); 1240 bool zero_window_probe = false; 1241 struct mptcp_ext *mpext = NULL; 1242 bool can_coalesce = false; 1243 bool reuse_skb = true; 1244 struct sk_buff *skb; 1245 size_t copy; 1246 int i; 1247 1248 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1249 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1250 1251 if (WARN_ON_ONCE(info->sent > info->limit || 1252 info->limit > dfrag->data_len)) 1253 return 0; 1254 1255 if (unlikely(!__tcp_can_send(ssk))) 1256 return -EAGAIN; 1257 1258 /* compute send limit */ 1259 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1260 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1261 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1262 copy = info->size_goal; 1263 1264 skb = tcp_write_queue_tail(ssk); 1265 if (skb && copy > skb->len) { 1266 /* Limit the write to the size available in the 1267 * current skb, if any, so that we create at most a new skb. 1268 * Explicitly tells TCP internals to avoid collapsing on later 1269 * queue management operation, to avoid breaking the ext <-> 1270 * SSN association set here 1271 */ 1272 mpext = mptcp_get_ext(skb); 1273 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1274 TCP_SKB_CB(skb)->eor = 1; 1275 tcp_mark_push(tcp_sk(ssk), skb); 1276 goto alloc_skb; 1277 } 1278 1279 i = skb_shinfo(skb)->nr_frags; 1280 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1281 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1282 tcp_mark_push(tcp_sk(ssk), skb); 1283 goto alloc_skb; 1284 } 1285 1286 copy -= skb->len; 1287 } else { 1288 alloc_skb: 1289 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1290 if (!skb) 1291 return -ENOMEM; 1292 1293 i = skb_shinfo(skb)->nr_frags; 1294 reuse_skb = false; 1295 mpext = mptcp_get_ext(skb); 1296 } 1297 1298 /* Zero window and all data acked? Probe. */ 1299 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1300 if (copy == 0) { 1301 u64 snd_una = READ_ONCE(msk->snd_una); 1302 1303 /* No need for zero probe if there are any data pending 1304 * either at the msk or ssk level; skb is the current write 1305 * queue tail and can be empty at this point. 1306 */ 1307 if (snd_una != msk->snd_nxt || skb->len || 1308 skb != tcp_send_head(ssk)) { 1309 tcp_remove_empty_skb(ssk); 1310 return 0; 1311 } 1312 1313 zero_window_probe = true; 1314 data_seq = snd_una - 1; 1315 copy = 1; 1316 } 1317 1318 copy = min_t(size_t, copy, info->limit - info->sent); 1319 if (!sk_wmem_schedule(ssk, copy)) { 1320 tcp_remove_empty_skb(ssk); 1321 return -ENOMEM; 1322 } 1323 1324 if (can_coalesce) { 1325 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1326 } else { 1327 get_page(dfrag->page); 1328 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1329 } 1330 1331 skb->len += copy; 1332 skb->data_len += copy; 1333 skb->truesize += copy; 1334 sk_wmem_queued_add(ssk, copy); 1335 sk_mem_charge(ssk, copy); 1336 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1337 TCP_SKB_CB(skb)->end_seq += copy; 1338 tcp_skb_pcount_set(skb, 0); 1339 1340 /* on skb reuse we just need to update the DSS len */ 1341 if (reuse_skb) { 1342 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1343 mpext->data_len += copy; 1344 goto out; 1345 } 1346 1347 memset(mpext, 0, sizeof(*mpext)); 1348 mpext->data_seq = data_seq; 1349 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1350 mpext->data_len = copy; 1351 mpext->use_map = 1; 1352 mpext->dsn64 = 1; 1353 1354 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1355 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1356 mpext->dsn64); 1357 1358 if (zero_window_probe) { 1359 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1360 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1361 mpext->frozen = 1; 1362 if (READ_ONCE(msk->csum_enabled)) 1363 mptcp_update_data_checksum(skb, copy); 1364 tcp_push_pending_frames(ssk); 1365 return 0; 1366 } 1367 out: 1368 if (READ_ONCE(msk->csum_enabled)) 1369 mptcp_update_data_checksum(skb, copy); 1370 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1371 mptcp_update_infinite_map(msk, ssk, mpext); 1372 trace_mptcp_sendmsg_frag(mpext); 1373 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1374 return copy; 1375 } 1376 1377 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1378 sizeof(struct tcphdr) - \ 1379 MAX_TCP_OPTION_SPACE - \ 1380 sizeof(struct ipv6hdr) - \ 1381 sizeof(struct frag_hdr)) 1382 1383 struct subflow_send_info { 1384 struct sock *ssk; 1385 u64 linger_time; 1386 }; 1387 1388 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1389 { 1390 if (!subflow->stale) 1391 return; 1392 1393 subflow->stale = 0; 1394 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1395 } 1396 1397 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1398 { 1399 if (unlikely(subflow->stale)) { 1400 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1401 1402 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1403 return false; 1404 1405 mptcp_subflow_set_active(subflow); 1406 } 1407 return __mptcp_subflow_active(subflow); 1408 } 1409 1410 #define SSK_MODE_ACTIVE 0 1411 #define SSK_MODE_BACKUP 1 1412 #define SSK_MODE_MAX 2 1413 1414 /* implement the mptcp packet scheduler; 1415 * returns the subflow that will transmit the next DSS 1416 * additionally updates the rtx timeout 1417 */ 1418 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1419 { 1420 struct subflow_send_info send_info[SSK_MODE_MAX]; 1421 struct mptcp_subflow_context *subflow; 1422 struct sock *sk = (struct sock *)msk; 1423 u32 pace, burst, wmem; 1424 int i, nr_active = 0; 1425 struct sock *ssk; 1426 u64 linger_time; 1427 long tout = 0; 1428 1429 /* pick the subflow with the lower wmem/wspace ratio */ 1430 for (i = 0; i < SSK_MODE_MAX; ++i) { 1431 send_info[i].ssk = NULL; 1432 send_info[i].linger_time = -1; 1433 } 1434 1435 mptcp_for_each_subflow(msk, subflow) { 1436 bool backup = subflow->backup || subflow->request_bkup; 1437 1438 trace_mptcp_subflow_get_send(subflow); 1439 ssk = mptcp_subflow_tcp_sock(subflow); 1440 if (!mptcp_subflow_active(subflow)) 1441 continue; 1442 1443 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1444 nr_active += !backup; 1445 pace = subflow->avg_pacing_rate; 1446 if (unlikely(!pace)) { 1447 /* init pacing rate from socket */ 1448 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1449 pace = subflow->avg_pacing_rate; 1450 if (!pace) 1451 continue; 1452 } 1453 1454 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1455 if (linger_time < send_info[backup].linger_time) { 1456 send_info[backup].ssk = ssk; 1457 send_info[backup].linger_time = linger_time; 1458 } 1459 } 1460 __mptcp_set_timeout(sk, tout); 1461 1462 /* pick the best backup if no other subflow is active */ 1463 if (!nr_active) 1464 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1465 1466 /* According to the blest algorithm, to avoid HoL blocking for the 1467 * faster flow, we need to: 1468 * - estimate the faster flow linger time 1469 * - use the above to estimate the amount of byte transferred 1470 * by the faster flow 1471 * - check that the amount of queued data is greater than the above, 1472 * otherwise do not use the picked, slower, subflow 1473 * We select the subflow with the shorter estimated time to flush 1474 * the queued mem, which basically ensure the above. We just need 1475 * to check that subflow has a non empty cwin. 1476 */ 1477 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1478 if (!ssk || !sk_stream_memory_free(ssk)) 1479 return NULL; 1480 1481 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1482 wmem = READ_ONCE(ssk->sk_wmem_queued); 1483 if (!burst) 1484 return ssk; 1485 1486 subflow = mptcp_subflow_ctx(ssk); 1487 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1488 READ_ONCE(ssk->sk_pacing_rate) * burst, 1489 burst + wmem); 1490 msk->snd_burst = burst; 1491 return ssk; 1492 } 1493 1494 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1495 { 1496 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1497 release_sock(ssk); 1498 } 1499 1500 static void mptcp_update_post_push(struct mptcp_sock *msk, 1501 struct mptcp_data_frag *dfrag, 1502 u32 sent) 1503 { 1504 u64 snd_nxt_new = dfrag->data_seq; 1505 1506 dfrag->already_sent += sent; 1507 1508 msk->snd_burst -= sent; 1509 1510 snd_nxt_new += dfrag->already_sent; 1511 1512 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1513 * is recovering after a failover. In that event, this re-sends 1514 * old segments. 1515 * 1516 * Thus compute snd_nxt_new candidate based on 1517 * the dfrag->data_seq that was sent and the data 1518 * that has been handed to the subflow for transmission 1519 * and skip update in case it was old dfrag. 1520 */ 1521 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1522 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1523 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1524 } 1525 } 1526 1527 void mptcp_check_and_set_pending(struct sock *sk) 1528 { 1529 if (mptcp_send_head(sk)) { 1530 mptcp_data_lock(sk); 1531 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1532 mptcp_data_unlock(sk); 1533 } 1534 } 1535 1536 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1537 struct mptcp_sendmsg_info *info) 1538 { 1539 struct mptcp_sock *msk = mptcp_sk(sk); 1540 struct mptcp_data_frag *dfrag; 1541 int len, copied = 0, err = 0; 1542 1543 while ((dfrag = mptcp_send_head(sk))) { 1544 info->sent = dfrag->already_sent; 1545 info->limit = dfrag->data_len; 1546 len = dfrag->data_len - dfrag->already_sent; 1547 while (len > 0) { 1548 int ret = 0; 1549 1550 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1551 if (ret <= 0) { 1552 err = copied ? : ret; 1553 goto out; 1554 } 1555 1556 info->sent += ret; 1557 copied += ret; 1558 len -= ret; 1559 1560 mptcp_update_post_push(msk, dfrag, ret); 1561 } 1562 msk->first_pending = mptcp_send_next(sk); 1563 1564 if (msk->snd_burst <= 0 || 1565 !sk_stream_memory_free(ssk) || 1566 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1567 err = copied; 1568 goto out; 1569 } 1570 mptcp_set_timeout(sk); 1571 } 1572 err = copied; 1573 1574 out: 1575 if (err > 0) 1576 msk->last_data_sent = tcp_jiffies32; 1577 return err; 1578 } 1579 1580 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1581 { 1582 struct sock *prev_ssk = NULL, *ssk = NULL; 1583 struct mptcp_sock *msk = mptcp_sk(sk); 1584 struct mptcp_sendmsg_info info = { 1585 .flags = flags, 1586 }; 1587 bool do_check_data_fin = false; 1588 int push_count = 1; 1589 1590 while (mptcp_send_head(sk) && (push_count > 0)) { 1591 struct mptcp_subflow_context *subflow; 1592 int ret = 0; 1593 1594 if (mptcp_sched_get_send(msk)) 1595 break; 1596 1597 push_count = 0; 1598 1599 mptcp_for_each_subflow(msk, subflow) { 1600 if (READ_ONCE(subflow->scheduled)) { 1601 mptcp_subflow_set_scheduled(subflow, false); 1602 1603 prev_ssk = ssk; 1604 ssk = mptcp_subflow_tcp_sock(subflow); 1605 if (ssk != prev_ssk) { 1606 /* First check. If the ssk has changed since 1607 * the last round, release prev_ssk 1608 */ 1609 if (prev_ssk) 1610 mptcp_push_release(prev_ssk, &info); 1611 1612 /* Need to lock the new subflow only if different 1613 * from the previous one, otherwise we are still 1614 * helding the relevant lock 1615 */ 1616 lock_sock(ssk); 1617 } 1618 1619 push_count++; 1620 1621 ret = __subflow_push_pending(sk, ssk, &info); 1622 if (ret <= 0) { 1623 if (ret != -EAGAIN || 1624 (1 << ssk->sk_state) & 1625 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1626 push_count--; 1627 continue; 1628 } 1629 do_check_data_fin = true; 1630 } 1631 } 1632 } 1633 1634 /* at this point we held the socket lock for the last subflow we used */ 1635 if (ssk) 1636 mptcp_push_release(ssk, &info); 1637 1638 /* ensure the rtx timer is running */ 1639 if (!mptcp_rtx_timer_pending(sk)) 1640 mptcp_reset_rtx_timer(sk); 1641 if (do_check_data_fin) 1642 mptcp_check_send_data_fin(sk); 1643 } 1644 1645 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1646 { 1647 struct mptcp_sock *msk = mptcp_sk(sk); 1648 struct mptcp_sendmsg_info info = { 1649 .data_lock_held = true, 1650 }; 1651 bool keep_pushing = true; 1652 struct sock *xmit_ssk; 1653 int copied = 0; 1654 1655 info.flags = 0; 1656 while (mptcp_send_head(sk) && keep_pushing) { 1657 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1658 int ret = 0; 1659 1660 /* check for a different subflow usage only after 1661 * spooling the first chunk of data 1662 */ 1663 if (first) { 1664 mptcp_subflow_set_scheduled(subflow, false); 1665 ret = __subflow_push_pending(sk, ssk, &info); 1666 first = false; 1667 if (ret <= 0) 1668 break; 1669 copied += ret; 1670 continue; 1671 } 1672 1673 if (mptcp_sched_get_send(msk)) 1674 goto out; 1675 1676 if (READ_ONCE(subflow->scheduled)) { 1677 mptcp_subflow_set_scheduled(subflow, false); 1678 ret = __subflow_push_pending(sk, ssk, &info); 1679 if (ret <= 0) 1680 keep_pushing = false; 1681 copied += ret; 1682 } 1683 1684 mptcp_for_each_subflow(msk, subflow) { 1685 if (READ_ONCE(subflow->scheduled)) { 1686 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1687 if (xmit_ssk != ssk) { 1688 mptcp_subflow_delegate(subflow, 1689 MPTCP_DELEGATE_SEND); 1690 keep_pushing = false; 1691 } 1692 } 1693 } 1694 } 1695 1696 out: 1697 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1698 * not going to flush it via release_sock() 1699 */ 1700 if (copied) { 1701 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1702 info.size_goal); 1703 if (!mptcp_rtx_timer_pending(sk)) 1704 mptcp_reset_rtx_timer(sk); 1705 1706 if (msk->snd_data_fin_enable && 1707 msk->snd_nxt + 1 == msk->write_seq) 1708 mptcp_schedule_work(sk); 1709 } 1710 } 1711 1712 static int mptcp_disconnect(struct sock *sk, int flags); 1713 1714 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1715 size_t len, int *copied_syn) 1716 { 1717 unsigned int saved_flags = msg->msg_flags; 1718 struct mptcp_sock *msk = mptcp_sk(sk); 1719 struct sock *ssk; 1720 int ret; 1721 1722 /* on flags based fastopen the mptcp is supposed to create the 1723 * first subflow right now. Otherwise we are in the defer_connect 1724 * path, and the first subflow must be already present. 1725 * Since the defer_connect flag is cleared after the first succsful 1726 * fastopen attempt, no need to check for additional subflow status. 1727 */ 1728 if (msg->msg_flags & MSG_FASTOPEN) { 1729 ssk = __mptcp_nmpc_sk(msk); 1730 if (IS_ERR(ssk)) 1731 return PTR_ERR(ssk); 1732 } 1733 if (!msk->first) 1734 return -EINVAL; 1735 1736 ssk = msk->first; 1737 1738 lock_sock(ssk); 1739 msg->msg_flags |= MSG_DONTWAIT; 1740 msk->fastopening = 1; 1741 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1742 msk->fastopening = 0; 1743 msg->msg_flags = saved_flags; 1744 release_sock(ssk); 1745 1746 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1747 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1748 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1749 msg->msg_namelen, msg->msg_flags, 1); 1750 1751 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1752 * case of any error, except timeout or signal 1753 */ 1754 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1755 *copied_syn = 0; 1756 } else if (ret && ret != -EINPROGRESS) { 1757 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1758 * __inet_stream_connect() can fail, due to looking check, 1759 * see mptcp_disconnect(). 1760 * Attempt it again outside the problematic scope. 1761 */ 1762 if (!mptcp_disconnect(sk, 0)) { 1763 sk->sk_disconnects++; 1764 sk->sk_socket->state = SS_UNCONNECTED; 1765 } 1766 } 1767 inet_clear_bit(DEFER_CONNECT, sk); 1768 1769 return ret; 1770 } 1771 1772 static int do_copy_data_nocache(struct sock *sk, int copy, 1773 struct iov_iter *from, char *to) 1774 { 1775 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1776 if (!copy_from_iter_full_nocache(to, copy, from)) 1777 return -EFAULT; 1778 } else if (!copy_from_iter_full(to, copy, from)) { 1779 return -EFAULT; 1780 } 1781 return 0; 1782 } 1783 1784 /* open-code sk_stream_memory_free() plus sent limit computation to 1785 * avoid indirect calls in fast-path. 1786 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1787 * annotations. 1788 */ 1789 static u32 mptcp_send_limit(const struct sock *sk) 1790 { 1791 const struct mptcp_sock *msk = mptcp_sk(sk); 1792 u32 limit, not_sent; 1793 1794 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1795 return 0; 1796 1797 limit = mptcp_notsent_lowat(sk); 1798 if (limit == UINT_MAX) 1799 return UINT_MAX; 1800 1801 not_sent = msk->write_seq - msk->snd_nxt; 1802 if (not_sent >= limit) 1803 return 0; 1804 1805 return limit - not_sent; 1806 } 1807 1808 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1809 { 1810 struct mptcp_subflow_context *subflow; 1811 1812 if (!rfs_is_needed()) 1813 return; 1814 1815 mptcp_for_each_subflow(msk, subflow) { 1816 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1817 1818 sock_rps_record_flow(ssk); 1819 } 1820 } 1821 1822 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1823 { 1824 struct mptcp_sock *msk = mptcp_sk(sk); 1825 struct page_frag *pfrag; 1826 size_t copied = 0; 1827 int ret = 0; 1828 long timeo; 1829 1830 /* silently ignore everything else */ 1831 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1832 1833 lock_sock(sk); 1834 1835 mptcp_rps_record_subflows(msk); 1836 1837 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1838 msg->msg_flags & MSG_FASTOPEN)) { 1839 int copied_syn = 0; 1840 1841 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1842 copied += copied_syn; 1843 if (ret == -EINPROGRESS && copied_syn > 0) 1844 goto out; 1845 else if (ret) 1846 goto do_error; 1847 } 1848 1849 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1850 1851 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1852 ret = sk_stream_wait_connect(sk, &timeo); 1853 if (ret) 1854 goto do_error; 1855 } 1856 1857 ret = -EPIPE; 1858 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1859 goto do_error; 1860 1861 pfrag = sk_page_frag(sk); 1862 1863 while (msg_data_left(msg)) { 1864 int total_ts, frag_truesize = 0; 1865 struct mptcp_data_frag *dfrag; 1866 bool dfrag_collapsed; 1867 size_t psize, offset; 1868 u32 copy_limit; 1869 1870 /* ensure fitting the notsent_lowat() constraint */ 1871 copy_limit = mptcp_send_limit(sk); 1872 if (!copy_limit) 1873 goto wait_for_memory; 1874 1875 /* reuse tail pfrag, if possible, or carve a new one from the 1876 * page allocator 1877 */ 1878 dfrag = mptcp_pending_tail(sk); 1879 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1880 if (!dfrag_collapsed) { 1881 if (!mptcp_page_frag_refill(sk, pfrag)) 1882 goto wait_for_memory; 1883 1884 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1885 frag_truesize = dfrag->overhead; 1886 } 1887 1888 /* we do not bound vs wspace, to allow a single packet. 1889 * memory accounting will prevent execessive memory usage 1890 * anyway 1891 */ 1892 offset = dfrag->offset + dfrag->data_len; 1893 psize = pfrag->size - offset; 1894 psize = min_t(size_t, psize, msg_data_left(msg)); 1895 psize = min_t(size_t, psize, copy_limit); 1896 total_ts = psize + frag_truesize; 1897 1898 if (!sk_wmem_schedule(sk, total_ts)) 1899 goto wait_for_memory; 1900 1901 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1902 page_address(dfrag->page) + offset); 1903 if (ret) 1904 goto do_error; 1905 1906 /* data successfully copied into the write queue */ 1907 sk_forward_alloc_add(sk, -total_ts); 1908 copied += psize; 1909 dfrag->data_len += psize; 1910 frag_truesize += psize; 1911 pfrag->offset += frag_truesize; 1912 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1913 1914 /* charge data on mptcp pending queue to the msk socket 1915 * Note: we charge such data both to sk and ssk 1916 */ 1917 sk_wmem_queued_add(sk, frag_truesize); 1918 if (!dfrag_collapsed) { 1919 get_page(dfrag->page); 1920 list_add_tail(&dfrag->list, &msk->rtx_queue); 1921 if (!msk->first_pending) 1922 msk->first_pending = dfrag; 1923 } 1924 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1925 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1926 !dfrag_collapsed); 1927 1928 continue; 1929 1930 wait_for_memory: 1931 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1932 __mptcp_push_pending(sk, msg->msg_flags); 1933 ret = sk_stream_wait_memory(sk, &timeo); 1934 if (ret) 1935 goto do_error; 1936 } 1937 1938 if (copied) 1939 __mptcp_push_pending(sk, msg->msg_flags); 1940 1941 out: 1942 release_sock(sk); 1943 return copied; 1944 1945 do_error: 1946 if (copied) 1947 goto out; 1948 1949 copied = sk_stream_error(sk, msg->msg_flags, ret); 1950 goto out; 1951 } 1952 1953 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1954 1955 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1956 size_t len, int flags, int copied_total, 1957 struct scm_timestamping_internal *tss, 1958 int *cmsg_flags) 1959 { 1960 struct mptcp_sock *msk = mptcp_sk(sk); 1961 struct sk_buff *skb, *tmp; 1962 int total_data_len = 0; 1963 int copied = 0; 1964 1965 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1966 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 1967 u32 data_len = skb->len - offset; 1968 u32 count; 1969 int err; 1970 1971 if (flags & MSG_PEEK) { 1972 /* skip already peeked skbs */ 1973 if (total_data_len + data_len <= copied_total) { 1974 total_data_len += data_len; 1975 continue; 1976 } 1977 1978 /* skip the already peeked data in the current skb */ 1979 delta = copied_total - total_data_len; 1980 offset += delta; 1981 data_len -= delta; 1982 } 1983 1984 count = min_t(size_t, len - copied, data_len); 1985 if (!(flags & MSG_TRUNC)) { 1986 err = skb_copy_datagram_msg(skb, offset, msg, count); 1987 if (unlikely(err < 0)) { 1988 if (!copied) 1989 return err; 1990 break; 1991 } 1992 } 1993 1994 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1995 tcp_update_recv_tstamps(skb, tss); 1996 *cmsg_flags |= MPTCP_CMSG_TS; 1997 } 1998 1999 copied += count; 2000 2001 if (!(flags & MSG_PEEK)) { 2002 msk->bytes_consumed += count; 2003 if (count < data_len) { 2004 MPTCP_SKB_CB(skb)->offset += count; 2005 MPTCP_SKB_CB(skb)->map_seq += count; 2006 break; 2007 } 2008 2009 /* avoid the indirect call, we know the destructor is sock_rfree */ 2010 skb->destructor = NULL; 2011 skb->sk = NULL; 2012 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2013 sk_mem_uncharge(sk, skb->truesize); 2014 __skb_unlink(skb, &sk->sk_receive_queue); 2015 skb_attempt_defer_free(skb); 2016 } 2017 2018 if (copied >= len) 2019 break; 2020 } 2021 2022 mptcp_rcv_space_adjust(msk, copied); 2023 return copied; 2024 } 2025 2026 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2027 * 2028 * Only difference: Use highest rtt estimate of the subflows in use. 2029 */ 2030 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2031 { 2032 struct mptcp_subflow_context *subflow; 2033 struct sock *sk = (struct sock *)msk; 2034 u8 scaling_ratio = U8_MAX; 2035 u32 time, advmss = 1; 2036 u64 rtt_us, mstamp; 2037 2038 msk_owned_by_me(msk); 2039 2040 if (copied <= 0) 2041 return; 2042 2043 if (!msk->rcvspace_init) 2044 mptcp_rcv_space_init(msk, msk->first); 2045 2046 msk->rcvq_space.copied += copied; 2047 2048 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2049 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2050 2051 rtt_us = msk->rcvq_space.rtt_us; 2052 if (rtt_us && time < (rtt_us >> 3)) 2053 return; 2054 2055 rtt_us = 0; 2056 mptcp_for_each_subflow(msk, subflow) { 2057 const struct tcp_sock *tp; 2058 u64 sf_rtt_us; 2059 u32 sf_advmss; 2060 2061 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2062 2063 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2064 sf_advmss = READ_ONCE(tp->advmss); 2065 2066 rtt_us = max(sf_rtt_us, rtt_us); 2067 advmss = max(sf_advmss, advmss); 2068 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2069 } 2070 2071 msk->rcvq_space.rtt_us = rtt_us; 2072 msk->scaling_ratio = scaling_ratio; 2073 if (time < (rtt_us >> 3) || rtt_us == 0) 2074 return; 2075 2076 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2077 goto new_measure; 2078 2079 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2080 /* Make subflows follow along. If we do not do this, we 2081 * get drops at subflow level if skbs can't be moved to 2082 * the mptcp rx queue fast enough (announced rcv_win can 2083 * exceed ssk->sk_rcvbuf). 2084 */ 2085 mptcp_for_each_subflow(msk, subflow) { 2086 struct sock *ssk; 2087 bool slow; 2088 2089 ssk = mptcp_subflow_tcp_sock(subflow); 2090 slow = lock_sock_fast(ssk); 2091 /* subflows can be added before tcp_init_transfer() */ 2092 if (tcp_sk(ssk)->rcvq_space.space) 2093 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2094 unlock_sock_fast(ssk, slow); 2095 } 2096 } 2097 2098 new_measure: 2099 msk->rcvq_space.copied = 0; 2100 msk->rcvq_space.time = mstamp; 2101 } 2102 2103 static struct mptcp_subflow_context * 2104 __mptcp_first_ready_from(struct mptcp_sock *msk, 2105 struct mptcp_subflow_context *subflow) 2106 { 2107 struct mptcp_subflow_context *start_subflow = subflow; 2108 2109 while (!READ_ONCE(subflow->data_avail)) { 2110 subflow = mptcp_next_subflow(msk, subflow); 2111 if (subflow == start_subflow) 2112 return NULL; 2113 } 2114 return subflow; 2115 } 2116 2117 static bool __mptcp_move_skbs(struct sock *sk) 2118 { 2119 struct mptcp_subflow_context *subflow; 2120 struct mptcp_sock *msk = mptcp_sk(sk); 2121 bool ret = false; 2122 2123 if (list_empty(&msk->conn_list)) 2124 return false; 2125 2126 subflow = list_first_entry(&msk->conn_list, 2127 struct mptcp_subflow_context, node); 2128 for (;;) { 2129 struct sock *ssk; 2130 bool slowpath; 2131 2132 /* 2133 * As an optimization avoid traversing the subflows list 2134 * and ev. acquiring the subflow socket lock before baling out 2135 */ 2136 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2137 break; 2138 2139 subflow = __mptcp_first_ready_from(msk, subflow); 2140 if (!subflow) 2141 break; 2142 2143 ssk = mptcp_subflow_tcp_sock(subflow); 2144 slowpath = lock_sock_fast(ssk); 2145 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2146 if (unlikely(ssk->sk_err)) 2147 __mptcp_error_report(sk); 2148 unlock_sock_fast(ssk, slowpath); 2149 2150 subflow = mptcp_next_subflow(msk, subflow); 2151 } 2152 2153 __mptcp_ofo_queue(msk); 2154 if (ret) 2155 mptcp_check_data_fin((struct sock *)msk); 2156 return ret; 2157 } 2158 2159 static unsigned int mptcp_inq_hint(const struct sock *sk) 2160 { 2161 const struct mptcp_sock *msk = mptcp_sk(sk); 2162 const struct sk_buff *skb; 2163 2164 skb = skb_peek(&sk->sk_receive_queue); 2165 if (skb) { 2166 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2167 2168 if (hint_val >= INT_MAX) 2169 return INT_MAX; 2170 2171 return (unsigned int)hint_val; 2172 } 2173 2174 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2175 return 1; 2176 2177 return 0; 2178 } 2179 2180 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2181 int flags, int *addr_len) 2182 { 2183 struct mptcp_sock *msk = mptcp_sk(sk); 2184 struct scm_timestamping_internal tss; 2185 int copied = 0, cmsg_flags = 0; 2186 int target; 2187 long timeo; 2188 2189 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2190 if (unlikely(flags & MSG_ERRQUEUE)) 2191 return inet_recv_error(sk, msg, len, addr_len); 2192 2193 lock_sock(sk); 2194 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2195 copied = -ENOTCONN; 2196 goto out_err; 2197 } 2198 2199 mptcp_rps_record_subflows(msk); 2200 2201 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2202 2203 len = min_t(size_t, len, INT_MAX); 2204 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2205 2206 if (unlikely(msk->recvmsg_inq)) 2207 cmsg_flags = MPTCP_CMSG_INQ; 2208 2209 while (copied < len) { 2210 int err, bytes_read; 2211 2212 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2213 copied, &tss, &cmsg_flags); 2214 if (unlikely(bytes_read < 0)) { 2215 if (!copied) 2216 copied = bytes_read; 2217 goto out_err; 2218 } 2219 2220 copied += bytes_read; 2221 2222 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2223 continue; 2224 2225 /* only the MPTCP socket status is relevant here. The exit 2226 * conditions mirror closely tcp_recvmsg() 2227 */ 2228 if (copied >= target) 2229 break; 2230 2231 if (copied) { 2232 if (sk->sk_err || 2233 sk->sk_state == TCP_CLOSE || 2234 (sk->sk_shutdown & RCV_SHUTDOWN) || 2235 !timeo || 2236 signal_pending(current)) 2237 break; 2238 } else { 2239 if (sk->sk_err) { 2240 copied = sock_error(sk); 2241 break; 2242 } 2243 2244 if (sk->sk_shutdown & RCV_SHUTDOWN) 2245 break; 2246 2247 if (sk->sk_state == TCP_CLOSE) { 2248 copied = -ENOTCONN; 2249 break; 2250 } 2251 2252 if (!timeo) { 2253 copied = -EAGAIN; 2254 break; 2255 } 2256 2257 if (signal_pending(current)) { 2258 copied = sock_intr_errno(timeo); 2259 break; 2260 } 2261 } 2262 2263 pr_debug("block timeout %ld\n", timeo); 2264 mptcp_cleanup_rbuf(msk, copied); 2265 err = sk_wait_data(sk, &timeo, NULL); 2266 if (err < 0) { 2267 err = copied ? : err; 2268 goto out_err; 2269 } 2270 } 2271 2272 mptcp_cleanup_rbuf(msk, copied); 2273 2274 out_err: 2275 if (cmsg_flags && copied >= 0) { 2276 if (cmsg_flags & MPTCP_CMSG_TS) 2277 tcp_recv_timestamp(msg, sk, &tss); 2278 2279 if (cmsg_flags & MPTCP_CMSG_INQ) { 2280 unsigned int inq = mptcp_inq_hint(sk); 2281 2282 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2283 } 2284 } 2285 2286 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2287 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2288 2289 release_sock(sk); 2290 return copied; 2291 } 2292 2293 static void mptcp_retransmit_timer(struct timer_list *t) 2294 { 2295 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2296 icsk_retransmit_timer); 2297 struct sock *sk = &icsk->icsk_inet.sk; 2298 struct mptcp_sock *msk = mptcp_sk(sk); 2299 2300 bh_lock_sock(sk); 2301 if (!sock_owned_by_user(sk)) { 2302 /* we need a process context to retransmit */ 2303 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2304 mptcp_schedule_work(sk); 2305 } else { 2306 /* delegate our work to tcp_release_cb() */ 2307 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2308 } 2309 bh_unlock_sock(sk); 2310 sock_put(sk); 2311 } 2312 2313 static void mptcp_tout_timer(struct timer_list *t) 2314 { 2315 struct sock *sk = timer_container_of(sk, t, sk_timer); 2316 2317 mptcp_schedule_work(sk); 2318 sock_put(sk); 2319 } 2320 2321 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2322 * level. 2323 * 2324 * A backup subflow is returned only if that is the only kind available. 2325 */ 2326 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2327 { 2328 struct sock *backup = NULL, *pick = NULL; 2329 struct mptcp_subflow_context *subflow; 2330 int min_stale_count = INT_MAX; 2331 2332 mptcp_for_each_subflow(msk, subflow) { 2333 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2334 2335 if (!__mptcp_subflow_active(subflow)) 2336 continue; 2337 2338 /* still data outstanding at TCP level? skip this */ 2339 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2340 mptcp_pm_subflow_chk_stale(msk, ssk); 2341 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2342 continue; 2343 } 2344 2345 if (subflow->backup || subflow->request_bkup) { 2346 if (!backup) 2347 backup = ssk; 2348 continue; 2349 } 2350 2351 if (!pick) 2352 pick = ssk; 2353 } 2354 2355 if (pick) 2356 return pick; 2357 2358 /* use backup only if there are no progresses anywhere */ 2359 return min_stale_count > 1 ? backup : NULL; 2360 } 2361 2362 bool __mptcp_retransmit_pending_data(struct sock *sk) 2363 { 2364 struct mptcp_data_frag *cur, *rtx_head; 2365 struct mptcp_sock *msk = mptcp_sk(sk); 2366 2367 if (__mptcp_check_fallback(msk)) 2368 return false; 2369 2370 /* the closing socket has some data untransmitted and/or unacked: 2371 * some data in the mptcp rtx queue has not really xmitted yet. 2372 * keep it simple and re-inject the whole mptcp level rtx queue 2373 */ 2374 mptcp_data_lock(sk); 2375 __mptcp_clean_una_wakeup(sk); 2376 rtx_head = mptcp_rtx_head(sk); 2377 if (!rtx_head) { 2378 mptcp_data_unlock(sk); 2379 return false; 2380 } 2381 2382 msk->recovery_snd_nxt = msk->snd_nxt; 2383 msk->recovery = true; 2384 mptcp_data_unlock(sk); 2385 2386 msk->first_pending = rtx_head; 2387 msk->snd_burst = 0; 2388 2389 /* be sure to clear the "sent status" on all re-injected fragments */ 2390 list_for_each_entry(cur, &msk->rtx_queue, list) { 2391 if (!cur->already_sent) 2392 break; 2393 cur->already_sent = 0; 2394 } 2395 2396 return true; 2397 } 2398 2399 /* flags for __mptcp_close_ssk() */ 2400 #define MPTCP_CF_PUSH BIT(1) 2401 #define MPTCP_CF_FASTCLOSE BIT(2) 2402 2403 /* be sure to send a reset only if the caller asked for it, also 2404 * clean completely the subflow status when the subflow reaches 2405 * TCP_CLOSE state 2406 */ 2407 static void __mptcp_subflow_disconnect(struct sock *ssk, 2408 struct mptcp_subflow_context *subflow, 2409 unsigned int flags) 2410 { 2411 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2412 (flags & MPTCP_CF_FASTCLOSE)) { 2413 /* The MPTCP code never wait on the subflow sockets, TCP-level 2414 * disconnect should never fail 2415 */ 2416 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2417 mptcp_subflow_ctx_reset(subflow); 2418 } else { 2419 tcp_shutdown(ssk, SEND_SHUTDOWN); 2420 } 2421 } 2422 2423 /* subflow sockets can be either outgoing (connect) or incoming 2424 * (accept). 2425 * 2426 * Outgoing subflows use in-kernel sockets. 2427 * Incoming subflows do not have their own 'struct socket' allocated, 2428 * so we need to use tcp_close() after detaching them from the mptcp 2429 * parent socket. 2430 */ 2431 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2432 struct mptcp_subflow_context *subflow, 2433 unsigned int flags) 2434 { 2435 struct mptcp_sock *msk = mptcp_sk(sk); 2436 bool dispose_it, need_push = false; 2437 2438 /* If the first subflow moved to a close state before accept, e.g. due 2439 * to an incoming reset or listener shutdown, the subflow socket is 2440 * already deleted by inet_child_forget() and the mptcp socket can't 2441 * survive too. 2442 */ 2443 if (msk->in_accept_queue && msk->first == ssk && 2444 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2445 /* ensure later check in mptcp_worker() will dispose the msk */ 2446 sock_set_flag(sk, SOCK_DEAD); 2447 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2448 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2449 mptcp_subflow_drop_ctx(ssk); 2450 goto out_release; 2451 } 2452 2453 dispose_it = msk->free_first || ssk != msk->first; 2454 if (dispose_it) 2455 list_del(&subflow->node); 2456 2457 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2458 2459 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2460 /* be sure to force the tcp_close path 2461 * to generate the egress reset 2462 */ 2463 ssk->sk_lingertime = 0; 2464 sock_set_flag(ssk, SOCK_LINGER); 2465 subflow->send_fastclose = 1; 2466 } 2467 2468 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2469 if (!dispose_it) { 2470 __mptcp_subflow_disconnect(ssk, subflow, flags); 2471 release_sock(ssk); 2472 2473 goto out; 2474 } 2475 2476 subflow->disposable = 1; 2477 2478 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2479 * the ssk has been already destroyed, we just need to release the 2480 * reference owned by msk; 2481 */ 2482 if (!inet_csk(ssk)->icsk_ulp_ops) { 2483 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2484 kfree_rcu(subflow, rcu); 2485 } else { 2486 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2487 __tcp_close(ssk, 0); 2488 2489 /* close acquired an extra ref */ 2490 __sock_put(ssk); 2491 } 2492 2493 out_release: 2494 __mptcp_subflow_error_report(sk, ssk); 2495 release_sock(ssk); 2496 2497 sock_put(ssk); 2498 2499 if (ssk == msk->first) 2500 WRITE_ONCE(msk->first, NULL); 2501 2502 out: 2503 __mptcp_sync_sndbuf(sk); 2504 if (need_push) 2505 __mptcp_push_pending(sk, 0); 2506 2507 /* Catch every 'all subflows closed' scenario, including peers silently 2508 * closing them, e.g. due to timeout. 2509 * For established sockets, allow an additional timeout before closing, 2510 * as the protocol can still create more subflows. 2511 */ 2512 if (list_is_singular(&msk->conn_list) && msk->first && 2513 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2514 if (sk->sk_state != TCP_ESTABLISHED || 2515 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2516 mptcp_set_state(sk, TCP_CLOSE); 2517 mptcp_close_wake_up(sk); 2518 } else { 2519 mptcp_start_tout_timer(sk); 2520 } 2521 } 2522 } 2523 2524 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2525 struct mptcp_subflow_context *subflow) 2526 { 2527 /* The first subflow can already be closed and still in the list */ 2528 if (subflow->close_event_done) 2529 return; 2530 2531 subflow->close_event_done = true; 2532 2533 if (sk->sk_state == TCP_ESTABLISHED) 2534 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2535 2536 /* subflow aborted before reaching the fully_established status 2537 * attempt the creation of the next subflow 2538 */ 2539 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2540 2541 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2542 } 2543 2544 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2545 { 2546 return 0; 2547 } 2548 2549 static void __mptcp_close_subflow(struct sock *sk) 2550 { 2551 struct mptcp_subflow_context *subflow, *tmp; 2552 struct mptcp_sock *msk = mptcp_sk(sk); 2553 2554 might_sleep(); 2555 2556 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2557 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2558 int ssk_state = inet_sk_state_load(ssk); 2559 2560 if (ssk_state != TCP_CLOSE && 2561 (ssk_state != TCP_CLOSE_WAIT || 2562 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2563 continue; 2564 2565 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2566 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2567 continue; 2568 2569 mptcp_close_ssk(sk, ssk, subflow); 2570 } 2571 2572 } 2573 2574 static bool mptcp_close_tout_expired(const struct sock *sk) 2575 { 2576 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2577 sk->sk_state == TCP_CLOSE) 2578 return false; 2579 2580 return time_after32(tcp_jiffies32, 2581 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2582 } 2583 2584 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2585 { 2586 struct mptcp_subflow_context *subflow, *tmp; 2587 struct sock *sk = (struct sock *)msk; 2588 2589 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2590 return; 2591 2592 mptcp_token_destroy(msk); 2593 2594 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2595 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2596 bool slow; 2597 2598 slow = lock_sock_fast(tcp_sk); 2599 if (tcp_sk->sk_state != TCP_CLOSE) { 2600 mptcp_send_active_reset_reason(tcp_sk); 2601 tcp_set_state(tcp_sk, TCP_CLOSE); 2602 } 2603 unlock_sock_fast(tcp_sk, slow); 2604 } 2605 2606 /* Mirror the tcp_reset() error propagation */ 2607 switch (sk->sk_state) { 2608 case TCP_SYN_SENT: 2609 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2610 break; 2611 case TCP_CLOSE_WAIT: 2612 WRITE_ONCE(sk->sk_err, EPIPE); 2613 break; 2614 case TCP_CLOSE: 2615 return; 2616 default: 2617 WRITE_ONCE(sk->sk_err, ECONNRESET); 2618 } 2619 2620 mptcp_set_state(sk, TCP_CLOSE); 2621 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2622 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2623 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2624 2625 /* the calling mptcp_worker will properly destroy the socket */ 2626 if (sock_flag(sk, SOCK_DEAD)) 2627 return; 2628 2629 sk->sk_state_change(sk); 2630 sk_error_report(sk); 2631 } 2632 2633 static void __mptcp_retrans(struct sock *sk) 2634 { 2635 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2636 struct mptcp_sock *msk = mptcp_sk(sk); 2637 struct mptcp_subflow_context *subflow; 2638 struct mptcp_data_frag *dfrag; 2639 struct sock *ssk; 2640 int ret, err; 2641 u16 len = 0; 2642 2643 mptcp_clean_una_wakeup(sk); 2644 2645 /* first check ssk: need to kick "stale" logic */ 2646 err = mptcp_sched_get_retrans(msk); 2647 dfrag = mptcp_rtx_head(sk); 2648 if (!dfrag) { 2649 if (mptcp_data_fin_enabled(msk)) { 2650 struct inet_connection_sock *icsk = inet_csk(sk); 2651 2652 WRITE_ONCE(icsk->icsk_retransmits, 2653 icsk->icsk_retransmits + 1); 2654 mptcp_set_datafin_timeout(sk); 2655 mptcp_send_ack(msk); 2656 2657 goto reset_timer; 2658 } 2659 2660 if (!mptcp_send_head(sk)) 2661 return; 2662 2663 goto reset_timer; 2664 } 2665 2666 if (err) 2667 goto reset_timer; 2668 2669 mptcp_for_each_subflow(msk, subflow) { 2670 if (READ_ONCE(subflow->scheduled)) { 2671 u16 copied = 0; 2672 2673 mptcp_subflow_set_scheduled(subflow, false); 2674 2675 ssk = mptcp_subflow_tcp_sock(subflow); 2676 2677 lock_sock(ssk); 2678 2679 /* limit retransmission to the bytes already sent on some subflows */ 2680 info.sent = 0; 2681 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2682 dfrag->already_sent; 2683 2684 /* 2685 * make the whole retrans decision, xmit, disallow 2686 * fallback atomic 2687 */ 2688 spin_lock_bh(&msk->fallback_lock); 2689 if (__mptcp_check_fallback(msk)) { 2690 spin_unlock_bh(&msk->fallback_lock); 2691 release_sock(ssk); 2692 return; 2693 } 2694 2695 while (info.sent < info.limit) { 2696 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2697 if (ret <= 0) 2698 break; 2699 2700 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2701 copied += ret; 2702 info.sent += ret; 2703 } 2704 if (copied) { 2705 len = max(copied, len); 2706 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2707 info.size_goal); 2708 msk->allow_infinite_fallback = false; 2709 } 2710 spin_unlock_bh(&msk->fallback_lock); 2711 2712 release_sock(ssk); 2713 } 2714 } 2715 2716 msk->bytes_retrans += len; 2717 dfrag->already_sent = max(dfrag->already_sent, len); 2718 2719 reset_timer: 2720 mptcp_check_and_set_pending(sk); 2721 2722 if (!mptcp_rtx_timer_pending(sk)) 2723 mptcp_reset_rtx_timer(sk); 2724 } 2725 2726 /* schedule the timeout timer for the relevant event: either close timeout 2727 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2728 */ 2729 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2730 { 2731 struct sock *sk = (struct sock *)msk; 2732 unsigned long timeout, close_timeout; 2733 2734 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2735 return; 2736 2737 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2738 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2739 2740 /* the close timeout takes precedence on the fail one, and here at least one of 2741 * them is active 2742 */ 2743 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2744 2745 sk_reset_timer(sk, &sk->sk_timer, timeout); 2746 } 2747 2748 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2749 { 2750 struct sock *ssk = msk->first; 2751 bool slow; 2752 2753 if (!ssk) 2754 return; 2755 2756 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2757 2758 slow = lock_sock_fast(ssk); 2759 mptcp_subflow_reset(ssk); 2760 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2761 unlock_sock_fast(ssk, slow); 2762 } 2763 2764 static void mptcp_do_fastclose(struct sock *sk) 2765 { 2766 struct mptcp_subflow_context *subflow, *tmp; 2767 struct mptcp_sock *msk = mptcp_sk(sk); 2768 2769 mptcp_set_state(sk, TCP_CLOSE); 2770 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2771 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2772 subflow, MPTCP_CF_FASTCLOSE); 2773 } 2774 2775 static void mptcp_worker(struct work_struct *work) 2776 { 2777 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2778 struct sock *sk = (struct sock *)msk; 2779 unsigned long fail_tout; 2780 int state; 2781 2782 lock_sock(sk); 2783 state = sk->sk_state; 2784 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2785 goto unlock; 2786 2787 mptcp_check_fastclose(msk); 2788 2789 mptcp_pm_worker(msk); 2790 2791 mptcp_check_send_data_fin(sk); 2792 mptcp_check_data_fin_ack(sk); 2793 mptcp_check_data_fin(sk); 2794 2795 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2796 __mptcp_close_subflow(sk); 2797 2798 if (mptcp_close_tout_expired(sk)) { 2799 mptcp_do_fastclose(sk); 2800 mptcp_close_wake_up(sk); 2801 } 2802 2803 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2804 __mptcp_destroy_sock(sk); 2805 goto unlock; 2806 } 2807 2808 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2809 __mptcp_retrans(sk); 2810 2811 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2812 if (fail_tout && time_after(jiffies, fail_tout)) 2813 mptcp_mp_fail_no_response(msk); 2814 2815 unlock: 2816 release_sock(sk); 2817 sock_put(sk); 2818 } 2819 2820 static void __mptcp_init_sock(struct sock *sk) 2821 { 2822 struct mptcp_sock *msk = mptcp_sk(sk); 2823 2824 INIT_LIST_HEAD(&msk->conn_list); 2825 INIT_LIST_HEAD(&msk->join_list); 2826 INIT_LIST_HEAD(&msk->rtx_queue); 2827 INIT_WORK(&msk->work, mptcp_worker); 2828 msk->out_of_order_queue = RB_ROOT; 2829 msk->first_pending = NULL; 2830 msk->timer_ival = TCP_RTO_MIN; 2831 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2832 2833 WRITE_ONCE(msk->first, NULL); 2834 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2835 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2836 msk->allow_infinite_fallback = true; 2837 msk->allow_subflows = true; 2838 msk->recovery = false; 2839 msk->subflow_id = 1; 2840 msk->last_data_sent = tcp_jiffies32; 2841 msk->last_data_recv = tcp_jiffies32; 2842 msk->last_ack_recv = tcp_jiffies32; 2843 2844 mptcp_pm_data_init(msk); 2845 spin_lock_init(&msk->fallback_lock); 2846 2847 /* re-use the csk retrans timer for MPTCP-level retrans */ 2848 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2849 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2850 } 2851 2852 static void mptcp_ca_reset(struct sock *sk) 2853 { 2854 struct inet_connection_sock *icsk = inet_csk(sk); 2855 2856 tcp_assign_congestion_control(sk); 2857 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2858 sizeof(mptcp_sk(sk)->ca_name)); 2859 2860 /* no need to keep a reference to the ops, the name will suffice */ 2861 tcp_cleanup_congestion_control(sk); 2862 icsk->icsk_ca_ops = NULL; 2863 } 2864 2865 static int mptcp_init_sock(struct sock *sk) 2866 { 2867 struct net *net = sock_net(sk); 2868 int ret; 2869 2870 __mptcp_init_sock(sk); 2871 2872 if (!mptcp_is_enabled(net)) 2873 return -ENOPROTOOPT; 2874 2875 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2876 return -ENOMEM; 2877 2878 rcu_read_lock(); 2879 ret = mptcp_init_sched(mptcp_sk(sk), 2880 mptcp_sched_find(mptcp_get_scheduler(net))); 2881 rcu_read_unlock(); 2882 if (ret) 2883 return ret; 2884 2885 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2886 2887 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2888 * propagate the correct value 2889 */ 2890 mptcp_ca_reset(sk); 2891 2892 sk_sockets_allocated_inc(sk); 2893 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2894 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2895 2896 return 0; 2897 } 2898 2899 static void __mptcp_clear_xmit(struct sock *sk) 2900 { 2901 struct mptcp_sock *msk = mptcp_sk(sk); 2902 struct mptcp_data_frag *dtmp, *dfrag; 2903 2904 msk->first_pending = NULL; 2905 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2906 dfrag_clear(sk, dfrag); 2907 } 2908 2909 void mptcp_cancel_work(struct sock *sk) 2910 { 2911 struct mptcp_sock *msk = mptcp_sk(sk); 2912 2913 if (cancel_work_sync(&msk->work)) 2914 __sock_put(sk); 2915 } 2916 2917 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2918 { 2919 lock_sock(ssk); 2920 2921 switch (ssk->sk_state) { 2922 case TCP_LISTEN: 2923 if (!(how & RCV_SHUTDOWN)) 2924 break; 2925 fallthrough; 2926 case TCP_SYN_SENT: 2927 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2928 break; 2929 default: 2930 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2931 pr_debug("Fallback\n"); 2932 ssk->sk_shutdown |= how; 2933 tcp_shutdown(ssk, how); 2934 2935 /* simulate the data_fin ack reception to let the state 2936 * machine move forward 2937 */ 2938 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2939 mptcp_schedule_work(sk); 2940 } else { 2941 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2942 tcp_send_ack(ssk); 2943 if (!mptcp_rtx_timer_pending(sk)) 2944 mptcp_reset_rtx_timer(sk); 2945 } 2946 break; 2947 } 2948 2949 release_sock(ssk); 2950 } 2951 2952 void mptcp_set_state(struct sock *sk, int state) 2953 { 2954 int oldstate = sk->sk_state; 2955 2956 switch (state) { 2957 case TCP_ESTABLISHED: 2958 if (oldstate != TCP_ESTABLISHED) 2959 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2960 break; 2961 case TCP_CLOSE_WAIT: 2962 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2963 * MPTCP "accepted" sockets will be created later on. So no 2964 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2965 */ 2966 break; 2967 default: 2968 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2969 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2970 } 2971 2972 inet_sk_state_store(sk, state); 2973 } 2974 2975 static const unsigned char new_state[16] = { 2976 /* current state: new state: action: */ 2977 [0 /* (Invalid) */] = TCP_CLOSE, 2978 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2979 [TCP_SYN_SENT] = TCP_CLOSE, 2980 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2981 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2982 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2983 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2984 [TCP_CLOSE] = TCP_CLOSE, 2985 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2986 [TCP_LAST_ACK] = TCP_LAST_ACK, 2987 [TCP_LISTEN] = TCP_CLOSE, 2988 [TCP_CLOSING] = TCP_CLOSING, 2989 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2990 }; 2991 2992 static int mptcp_close_state(struct sock *sk) 2993 { 2994 int next = (int)new_state[sk->sk_state]; 2995 int ns = next & TCP_STATE_MASK; 2996 2997 mptcp_set_state(sk, ns); 2998 2999 return next & TCP_ACTION_FIN; 3000 } 3001 3002 static void mptcp_check_send_data_fin(struct sock *sk) 3003 { 3004 struct mptcp_subflow_context *subflow; 3005 struct mptcp_sock *msk = mptcp_sk(sk); 3006 3007 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3008 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3009 msk->snd_nxt, msk->write_seq); 3010 3011 /* we still need to enqueue subflows or not really shutting down, 3012 * skip this 3013 */ 3014 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3015 mptcp_send_head(sk)) 3016 return; 3017 3018 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3019 3020 mptcp_for_each_subflow(msk, subflow) { 3021 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3022 3023 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3024 } 3025 } 3026 3027 static void __mptcp_wr_shutdown(struct sock *sk) 3028 { 3029 struct mptcp_sock *msk = mptcp_sk(sk); 3030 3031 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3032 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3033 !!mptcp_send_head(sk)); 3034 3035 /* will be ignored by fallback sockets */ 3036 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3037 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3038 3039 mptcp_check_send_data_fin(sk); 3040 } 3041 3042 static void __mptcp_destroy_sock(struct sock *sk) 3043 { 3044 struct mptcp_sock *msk = mptcp_sk(sk); 3045 3046 pr_debug("msk=%p\n", msk); 3047 3048 might_sleep(); 3049 3050 mptcp_stop_rtx_timer(sk); 3051 sk_stop_timer(sk, &sk->sk_timer); 3052 msk->pm.status = 0; 3053 mptcp_release_sched(msk); 3054 3055 sk->sk_prot->destroy(sk); 3056 3057 sk_stream_kill_queues(sk); 3058 xfrm_sk_free_policy(sk); 3059 3060 sock_put(sk); 3061 } 3062 3063 void __mptcp_unaccepted_force_close(struct sock *sk) 3064 { 3065 sock_set_flag(sk, SOCK_DEAD); 3066 mptcp_do_fastclose(sk); 3067 __mptcp_destroy_sock(sk); 3068 } 3069 3070 static __poll_t mptcp_check_readable(struct sock *sk) 3071 { 3072 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3073 } 3074 3075 static void mptcp_check_listen_stop(struct sock *sk) 3076 { 3077 struct sock *ssk; 3078 3079 if (inet_sk_state_load(sk) != TCP_LISTEN) 3080 return; 3081 3082 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3083 ssk = mptcp_sk(sk)->first; 3084 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3085 return; 3086 3087 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3088 tcp_set_state(ssk, TCP_CLOSE); 3089 mptcp_subflow_queue_clean(sk, ssk); 3090 inet_csk_listen_stop(ssk); 3091 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3092 release_sock(ssk); 3093 } 3094 3095 bool __mptcp_close(struct sock *sk, long timeout) 3096 { 3097 struct mptcp_subflow_context *subflow; 3098 struct mptcp_sock *msk = mptcp_sk(sk); 3099 bool do_cancel_work = false; 3100 int subflows_alive = 0; 3101 3102 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3103 3104 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3105 mptcp_check_listen_stop(sk); 3106 mptcp_set_state(sk, TCP_CLOSE); 3107 goto cleanup; 3108 } 3109 3110 if (mptcp_data_avail(msk) || timeout < 0) { 3111 /* If the msk has read data, or the caller explicitly ask it, 3112 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3113 */ 3114 mptcp_do_fastclose(sk); 3115 timeout = 0; 3116 } else if (mptcp_close_state(sk)) { 3117 __mptcp_wr_shutdown(sk); 3118 } 3119 3120 sk_stream_wait_close(sk, timeout); 3121 3122 cleanup: 3123 /* orphan all the subflows */ 3124 mptcp_for_each_subflow(msk, subflow) { 3125 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3126 bool slow = lock_sock_fast_nested(ssk); 3127 3128 subflows_alive += ssk->sk_state != TCP_CLOSE; 3129 3130 /* since the close timeout takes precedence on the fail one, 3131 * cancel the latter 3132 */ 3133 if (ssk == msk->first) 3134 subflow->fail_tout = 0; 3135 3136 /* detach from the parent socket, but allow data_ready to 3137 * push incoming data into the mptcp stack, to properly ack it 3138 */ 3139 ssk->sk_socket = NULL; 3140 ssk->sk_wq = NULL; 3141 unlock_sock_fast(ssk, slow); 3142 } 3143 sock_orphan(sk); 3144 3145 /* all the subflows are closed, only timeout can change the msk 3146 * state, let's not keep resources busy for no reasons 3147 */ 3148 if (subflows_alive == 0) 3149 mptcp_set_state(sk, TCP_CLOSE); 3150 3151 sock_hold(sk); 3152 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3153 mptcp_pm_connection_closed(msk); 3154 3155 if (sk->sk_state == TCP_CLOSE) { 3156 __mptcp_destroy_sock(sk); 3157 do_cancel_work = true; 3158 } else { 3159 mptcp_start_tout_timer(sk); 3160 } 3161 3162 return do_cancel_work; 3163 } 3164 3165 static void mptcp_close(struct sock *sk, long timeout) 3166 { 3167 bool do_cancel_work; 3168 3169 lock_sock(sk); 3170 3171 do_cancel_work = __mptcp_close(sk, timeout); 3172 release_sock(sk); 3173 if (do_cancel_work) 3174 mptcp_cancel_work(sk); 3175 3176 sock_put(sk); 3177 } 3178 3179 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3180 { 3181 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3182 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3183 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3184 3185 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3186 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3187 3188 if (msk6 && ssk6) { 3189 msk6->saddr = ssk6->saddr; 3190 msk6->flow_label = ssk6->flow_label; 3191 } 3192 #endif 3193 3194 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3195 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3196 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3197 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3198 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3199 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3200 } 3201 3202 static int mptcp_disconnect(struct sock *sk, int flags) 3203 { 3204 struct mptcp_sock *msk = mptcp_sk(sk); 3205 3206 /* We are on the fastopen error path. We can't call straight into the 3207 * subflows cleanup code due to lock nesting (we are already under 3208 * msk->firstsocket lock). 3209 */ 3210 if (msk->fastopening) 3211 return -EBUSY; 3212 3213 mptcp_check_listen_stop(sk); 3214 mptcp_set_state(sk, TCP_CLOSE); 3215 3216 mptcp_stop_rtx_timer(sk); 3217 mptcp_stop_tout_timer(sk); 3218 3219 mptcp_pm_connection_closed(msk); 3220 3221 /* msk->subflow is still intact, the following will not free the first 3222 * subflow 3223 */ 3224 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3225 3226 /* The first subflow is already in TCP_CLOSE status, the following 3227 * can't overlap with a fallback anymore 3228 */ 3229 spin_lock_bh(&msk->fallback_lock); 3230 msk->allow_subflows = true; 3231 msk->allow_infinite_fallback = true; 3232 WRITE_ONCE(msk->flags, 0); 3233 spin_unlock_bh(&msk->fallback_lock); 3234 3235 msk->cb_flags = 0; 3236 msk->recovery = false; 3237 WRITE_ONCE(msk->can_ack, false); 3238 WRITE_ONCE(msk->fully_established, false); 3239 WRITE_ONCE(msk->rcv_data_fin, false); 3240 WRITE_ONCE(msk->snd_data_fin_enable, false); 3241 WRITE_ONCE(msk->rcv_fastclose, false); 3242 WRITE_ONCE(msk->use_64bit_ack, false); 3243 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3244 mptcp_pm_data_reset(msk); 3245 mptcp_ca_reset(sk); 3246 msk->bytes_consumed = 0; 3247 msk->bytes_acked = 0; 3248 msk->bytes_received = 0; 3249 msk->bytes_sent = 0; 3250 msk->bytes_retrans = 0; 3251 msk->rcvspace_init = 0; 3252 3253 WRITE_ONCE(sk->sk_shutdown, 0); 3254 sk_error_report(sk); 3255 return 0; 3256 } 3257 3258 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3259 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3260 { 3261 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3262 3263 return &msk6->np; 3264 } 3265 3266 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3267 { 3268 const struct ipv6_pinfo *np = inet6_sk(sk); 3269 struct ipv6_txoptions *opt; 3270 struct ipv6_pinfo *newnp; 3271 3272 newnp = inet6_sk(newsk); 3273 3274 rcu_read_lock(); 3275 opt = rcu_dereference(np->opt); 3276 if (opt) { 3277 opt = ipv6_dup_options(newsk, opt); 3278 if (!opt) 3279 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3280 } 3281 RCU_INIT_POINTER(newnp->opt, opt); 3282 rcu_read_unlock(); 3283 } 3284 #endif 3285 3286 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3287 { 3288 struct ip_options_rcu *inet_opt, *newopt = NULL; 3289 const struct inet_sock *inet = inet_sk(sk); 3290 struct inet_sock *newinet; 3291 3292 newinet = inet_sk(newsk); 3293 3294 rcu_read_lock(); 3295 inet_opt = rcu_dereference(inet->inet_opt); 3296 if (inet_opt) { 3297 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3298 inet_opt->opt.optlen, GFP_ATOMIC); 3299 if (!newopt) 3300 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3301 } 3302 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3303 rcu_read_unlock(); 3304 } 3305 3306 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3307 const struct mptcp_options_received *mp_opt, 3308 struct sock *ssk, 3309 struct request_sock *req) 3310 { 3311 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3312 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3313 struct mptcp_subflow_context *subflow; 3314 struct mptcp_sock *msk; 3315 3316 if (!nsk) 3317 return NULL; 3318 3319 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3320 if (nsk->sk_family == AF_INET6) 3321 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3322 #endif 3323 3324 __mptcp_init_sock(nsk); 3325 3326 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3327 if (nsk->sk_family == AF_INET6) 3328 mptcp_copy_ip6_options(nsk, sk); 3329 else 3330 #endif 3331 mptcp_copy_ip_options(nsk, sk); 3332 3333 msk = mptcp_sk(nsk); 3334 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3335 WRITE_ONCE(msk->token, subflow_req->token); 3336 msk->in_accept_queue = 1; 3337 WRITE_ONCE(msk->fully_established, false); 3338 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3339 WRITE_ONCE(msk->csum_enabled, true); 3340 3341 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3342 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3343 WRITE_ONCE(msk->snd_una, msk->write_seq); 3344 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3345 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3346 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3347 3348 /* passive msk is created after the first/MPC subflow */ 3349 msk->subflow_id = 2; 3350 3351 sock_reset_flag(nsk, SOCK_RCU_FREE); 3352 security_inet_csk_clone(nsk, req); 3353 3354 /* this can't race with mptcp_close(), as the msk is 3355 * not yet exposted to user-space 3356 */ 3357 mptcp_set_state(nsk, TCP_ESTABLISHED); 3358 3359 /* The msk maintain a ref to each subflow in the connections list */ 3360 WRITE_ONCE(msk->first, ssk); 3361 subflow = mptcp_subflow_ctx(ssk); 3362 list_add(&subflow->node, &msk->conn_list); 3363 sock_hold(ssk); 3364 3365 /* new mpc subflow takes ownership of the newly 3366 * created mptcp socket 3367 */ 3368 mptcp_token_accept(subflow_req, msk); 3369 3370 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3371 * uses the correct data 3372 */ 3373 mptcp_copy_inaddrs(nsk, ssk); 3374 __mptcp_propagate_sndbuf(nsk, ssk); 3375 3376 mptcp_rcv_space_init(msk, ssk); 3377 3378 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3379 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3380 bh_unlock_sock(nsk); 3381 3382 /* note: the newly allocated socket refcount is 2 now */ 3383 return nsk; 3384 } 3385 3386 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3387 { 3388 const struct tcp_sock *tp = tcp_sk(ssk); 3389 3390 msk->rcvspace_init = 1; 3391 msk->rcvq_space.copied = 0; 3392 msk->rcvq_space.rtt_us = 0; 3393 3394 msk->rcvq_space.time = tp->tcp_mstamp; 3395 3396 /* initial rcv_space offering made to peer */ 3397 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3398 TCP_INIT_CWND * tp->advmss); 3399 if (msk->rcvq_space.space == 0) 3400 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3401 } 3402 3403 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3404 { 3405 struct mptcp_subflow_context *subflow, *tmp; 3406 struct sock *sk = (struct sock *)msk; 3407 3408 __mptcp_clear_xmit(sk); 3409 3410 /* join list will be eventually flushed (with rst) at sock lock release time */ 3411 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3412 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3413 3414 __skb_queue_purge(&sk->sk_receive_queue); 3415 skb_rbtree_purge(&msk->out_of_order_queue); 3416 3417 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3418 * inet_sock_destruct() will dispose it 3419 */ 3420 mptcp_token_destroy(msk); 3421 mptcp_pm_destroy(msk); 3422 } 3423 3424 static void mptcp_destroy(struct sock *sk) 3425 { 3426 struct mptcp_sock *msk = mptcp_sk(sk); 3427 3428 /* allow the following to close even the initial subflow */ 3429 msk->free_first = 1; 3430 mptcp_destroy_common(msk, 0); 3431 sk_sockets_allocated_dec(sk); 3432 } 3433 3434 void __mptcp_data_acked(struct sock *sk) 3435 { 3436 if (!sock_owned_by_user(sk)) 3437 __mptcp_clean_una(sk); 3438 else 3439 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3440 } 3441 3442 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3443 { 3444 if (!sock_owned_by_user(sk)) 3445 __mptcp_subflow_push_pending(sk, ssk, false); 3446 else 3447 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3448 } 3449 3450 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3451 BIT(MPTCP_RETRANSMIT) | \ 3452 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3453 BIT(MPTCP_DEQUEUE)) 3454 3455 /* processes deferred events and flush wmem */ 3456 static void mptcp_release_cb(struct sock *sk) 3457 __must_hold(&sk->sk_lock.slock) 3458 { 3459 struct mptcp_sock *msk = mptcp_sk(sk); 3460 3461 for (;;) { 3462 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3463 struct list_head join_list; 3464 3465 if (!flags) 3466 break; 3467 3468 INIT_LIST_HEAD(&join_list); 3469 list_splice_init(&msk->join_list, &join_list); 3470 3471 /* the following actions acquire the subflow socket lock 3472 * 3473 * 1) can't be invoked in atomic scope 3474 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3475 * datapath acquires the msk socket spinlock while helding 3476 * the subflow socket lock 3477 */ 3478 msk->cb_flags &= ~flags; 3479 spin_unlock_bh(&sk->sk_lock.slock); 3480 3481 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3482 __mptcp_flush_join_list(sk, &join_list); 3483 if (flags & BIT(MPTCP_PUSH_PENDING)) 3484 __mptcp_push_pending(sk, 0); 3485 if (flags & BIT(MPTCP_RETRANSMIT)) 3486 __mptcp_retrans(sk); 3487 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3488 /* notify ack seq update */ 3489 mptcp_cleanup_rbuf(msk, 0); 3490 sk->sk_data_ready(sk); 3491 } 3492 3493 cond_resched(); 3494 spin_lock_bh(&sk->sk_lock.slock); 3495 } 3496 3497 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3498 __mptcp_clean_una_wakeup(sk); 3499 if (unlikely(msk->cb_flags)) { 3500 /* be sure to sync the msk state before taking actions 3501 * depending on sk_state (MPTCP_ERROR_REPORT) 3502 * On sk release avoid actions depending on the first subflow 3503 */ 3504 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3505 __mptcp_sync_state(sk, msk->pending_state); 3506 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3507 __mptcp_error_report(sk); 3508 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3509 __mptcp_sync_sndbuf(sk); 3510 } 3511 } 3512 3513 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3514 * TCP can't schedule delack timer before the subflow is fully established. 3515 * MPTCP uses the delack timer to do 3rd ack retransmissions 3516 */ 3517 static void schedule_3rdack_retransmission(struct sock *ssk) 3518 { 3519 struct inet_connection_sock *icsk = inet_csk(ssk); 3520 struct tcp_sock *tp = tcp_sk(ssk); 3521 unsigned long timeout; 3522 3523 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3524 return; 3525 3526 /* reschedule with a timeout above RTT, as we must look only for drop */ 3527 if (tp->srtt_us) 3528 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3529 else 3530 timeout = TCP_TIMEOUT_INIT; 3531 timeout += jiffies; 3532 3533 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3534 smp_store_release(&icsk->icsk_ack.pending, 3535 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3536 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3537 } 3538 3539 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3540 { 3541 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3542 struct sock *sk = subflow->conn; 3543 3544 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3545 mptcp_data_lock(sk); 3546 if (!sock_owned_by_user(sk)) 3547 __mptcp_subflow_push_pending(sk, ssk, true); 3548 else 3549 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3550 mptcp_data_unlock(sk); 3551 } 3552 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3553 mptcp_data_lock(sk); 3554 if (!sock_owned_by_user(sk)) 3555 __mptcp_sync_sndbuf(sk); 3556 else 3557 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3558 mptcp_data_unlock(sk); 3559 } 3560 if (status & BIT(MPTCP_DELEGATE_ACK)) 3561 schedule_3rdack_retransmission(ssk); 3562 } 3563 3564 static int mptcp_hash(struct sock *sk) 3565 { 3566 /* should never be called, 3567 * we hash the TCP subflows not the MPTCP socket 3568 */ 3569 WARN_ON_ONCE(1); 3570 return 0; 3571 } 3572 3573 static void mptcp_unhash(struct sock *sk) 3574 { 3575 /* called from sk_common_release(), but nothing to do here */ 3576 } 3577 3578 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3579 { 3580 struct mptcp_sock *msk = mptcp_sk(sk); 3581 3582 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3583 if (WARN_ON_ONCE(!msk->first)) 3584 return -EINVAL; 3585 3586 return inet_csk_get_port(msk->first, snum); 3587 } 3588 3589 void mptcp_finish_connect(struct sock *ssk) 3590 { 3591 struct mptcp_subflow_context *subflow; 3592 struct mptcp_sock *msk; 3593 struct sock *sk; 3594 3595 subflow = mptcp_subflow_ctx(ssk); 3596 sk = subflow->conn; 3597 msk = mptcp_sk(sk); 3598 3599 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3600 3601 subflow->map_seq = subflow->iasn; 3602 subflow->map_subflow_seq = 1; 3603 3604 /* the socket is not connected yet, no msk/subflow ops can access/race 3605 * accessing the field below 3606 */ 3607 WRITE_ONCE(msk->local_key, subflow->local_key); 3608 3609 mptcp_pm_new_connection(msk, ssk, 0); 3610 } 3611 3612 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3613 { 3614 write_lock_bh(&sk->sk_callback_lock); 3615 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3616 sk_set_socket(sk, parent); 3617 write_unlock_bh(&sk->sk_callback_lock); 3618 } 3619 3620 bool mptcp_finish_join(struct sock *ssk) 3621 { 3622 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3623 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3624 struct sock *parent = (void *)msk; 3625 bool ret = true; 3626 3627 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3628 3629 /* mptcp socket already closing? */ 3630 if (!mptcp_is_fully_established(parent)) { 3631 subflow->reset_reason = MPTCP_RST_EMPTCP; 3632 return false; 3633 } 3634 3635 /* active subflow, already present inside the conn_list */ 3636 if (!list_empty(&subflow->node)) { 3637 spin_lock_bh(&msk->fallback_lock); 3638 if (!msk->allow_subflows) { 3639 spin_unlock_bh(&msk->fallback_lock); 3640 return false; 3641 } 3642 mptcp_subflow_joined(msk, ssk); 3643 spin_unlock_bh(&msk->fallback_lock); 3644 mptcp_propagate_sndbuf(parent, ssk); 3645 return true; 3646 } 3647 3648 if (!mptcp_pm_allow_new_subflow(msk)) { 3649 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3650 goto err_prohibited; 3651 } 3652 3653 /* If we can't acquire msk socket lock here, let the release callback 3654 * handle it 3655 */ 3656 mptcp_data_lock(parent); 3657 if (!sock_owned_by_user(parent)) { 3658 ret = __mptcp_finish_join(msk, ssk); 3659 if (ret) { 3660 sock_hold(ssk); 3661 list_add_tail(&subflow->node, &msk->conn_list); 3662 } 3663 } else { 3664 sock_hold(ssk); 3665 list_add_tail(&subflow->node, &msk->join_list); 3666 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3667 } 3668 mptcp_data_unlock(parent); 3669 3670 if (!ret) { 3671 err_prohibited: 3672 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3673 return false; 3674 } 3675 3676 return true; 3677 } 3678 3679 static void mptcp_shutdown(struct sock *sk, int how) 3680 { 3681 pr_debug("sk=%p, how=%d\n", sk, how); 3682 3683 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3684 __mptcp_wr_shutdown(sk); 3685 } 3686 3687 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3688 { 3689 const struct sock *sk = (void *)msk; 3690 u64 delta; 3691 3692 if (sk->sk_state == TCP_LISTEN) 3693 return -EINVAL; 3694 3695 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3696 return 0; 3697 3698 delta = msk->write_seq - v; 3699 if (__mptcp_check_fallback(msk) && msk->first) { 3700 struct tcp_sock *tp = tcp_sk(msk->first); 3701 3702 /* the first subflow is disconnected after close - see 3703 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3704 * so ignore that status, too. 3705 */ 3706 if (!((1 << msk->first->sk_state) & 3707 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3708 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3709 } 3710 if (delta > INT_MAX) 3711 delta = INT_MAX; 3712 3713 return (int)delta; 3714 } 3715 3716 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3717 { 3718 struct mptcp_sock *msk = mptcp_sk(sk); 3719 bool slow; 3720 3721 switch (cmd) { 3722 case SIOCINQ: 3723 if (sk->sk_state == TCP_LISTEN) 3724 return -EINVAL; 3725 3726 lock_sock(sk); 3727 if (__mptcp_move_skbs(sk)) 3728 mptcp_cleanup_rbuf(msk, 0); 3729 *karg = mptcp_inq_hint(sk); 3730 release_sock(sk); 3731 break; 3732 case SIOCOUTQ: 3733 slow = lock_sock_fast(sk); 3734 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3735 unlock_sock_fast(sk, slow); 3736 break; 3737 case SIOCOUTQNSD: 3738 slow = lock_sock_fast(sk); 3739 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3740 unlock_sock_fast(sk, slow); 3741 break; 3742 default: 3743 return -ENOIOCTLCMD; 3744 } 3745 3746 return 0; 3747 } 3748 3749 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 3750 int addr_len) 3751 { 3752 struct mptcp_subflow_context *subflow; 3753 struct mptcp_sock *msk = mptcp_sk(sk); 3754 int err = -EINVAL; 3755 struct sock *ssk; 3756 3757 ssk = __mptcp_nmpc_sk(msk); 3758 if (IS_ERR(ssk)) 3759 return PTR_ERR(ssk); 3760 3761 mptcp_set_state(sk, TCP_SYN_SENT); 3762 subflow = mptcp_subflow_ctx(ssk); 3763 #ifdef CONFIG_TCP_MD5SIG 3764 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3765 * TCP option space. 3766 */ 3767 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3768 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3769 #endif 3770 if (subflow->request_mptcp) { 3771 if (mptcp_active_should_disable(sk)) 3772 mptcp_early_fallback(msk, subflow, 3773 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3774 else if (mptcp_token_new_connect(ssk) < 0) 3775 mptcp_early_fallback(msk, subflow, 3776 MPTCP_MIB_TOKENFALLBACKINIT); 3777 } 3778 3779 WRITE_ONCE(msk->write_seq, subflow->idsn); 3780 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3781 WRITE_ONCE(msk->snd_una, subflow->idsn); 3782 if (likely(!__mptcp_check_fallback(msk))) 3783 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3784 3785 /* if reaching here via the fastopen/sendmsg path, the caller already 3786 * acquired the subflow socket lock, too. 3787 */ 3788 if (!msk->fastopening) 3789 lock_sock(ssk); 3790 3791 /* the following mirrors closely a very small chunk of code from 3792 * __inet_stream_connect() 3793 */ 3794 if (ssk->sk_state != TCP_CLOSE) 3795 goto out; 3796 3797 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3798 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3799 if (err) 3800 goto out; 3801 } 3802 3803 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3804 if (err < 0) 3805 goto out; 3806 3807 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3808 3809 out: 3810 if (!msk->fastopening) 3811 release_sock(ssk); 3812 3813 /* on successful connect, the msk state will be moved to established by 3814 * subflow_finish_connect() 3815 */ 3816 if (unlikely(err)) { 3817 /* avoid leaving a dangling token in an unconnected socket */ 3818 mptcp_token_destroy(msk); 3819 mptcp_set_state(sk, TCP_CLOSE); 3820 return err; 3821 } 3822 3823 mptcp_copy_inaddrs(sk, ssk); 3824 return 0; 3825 } 3826 3827 static struct proto mptcp_prot = { 3828 .name = "MPTCP", 3829 .owner = THIS_MODULE, 3830 .init = mptcp_init_sock, 3831 .connect = mptcp_connect, 3832 .disconnect = mptcp_disconnect, 3833 .close = mptcp_close, 3834 .setsockopt = mptcp_setsockopt, 3835 .getsockopt = mptcp_getsockopt, 3836 .shutdown = mptcp_shutdown, 3837 .destroy = mptcp_destroy, 3838 .sendmsg = mptcp_sendmsg, 3839 .ioctl = mptcp_ioctl, 3840 .recvmsg = mptcp_recvmsg, 3841 .release_cb = mptcp_release_cb, 3842 .hash = mptcp_hash, 3843 .unhash = mptcp_unhash, 3844 .get_port = mptcp_get_port, 3845 .stream_memory_free = mptcp_stream_memory_free, 3846 .sockets_allocated = &mptcp_sockets_allocated, 3847 3848 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3849 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3850 3851 .memory_pressure = &tcp_memory_pressure, 3852 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3853 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3854 .sysctl_mem = sysctl_tcp_mem, 3855 .obj_size = sizeof(struct mptcp_sock), 3856 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3857 .no_autobind = true, 3858 }; 3859 3860 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len) 3861 { 3862 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3863 struct sock *ssk, *sk = sock->sk; 3864 int err = -EINVAL; 3865 3866 lock_sock(sk); 3867 ssk = __mptcp_nmpc_sk(msk); 3868 if (IS_ERR(ssk)) { 3869 err = PTR_ERR(ssk); 3870 goto unlock; 3871 } 3872 3873 if (sk->sk_family == AF_INET) 3874 err = inet_bind_sk(ssk, uaddr, addr_len); 3875 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3876 else if (sk->sk_family == AF_INET6) 3877 err = inet6_bind_sk(ssk, uaddr, addr_len); 3878 #endif 3879 if (!err) 3880 mptcp_copy_inaddrs(sk, ssk); 3881 3882 unlock: 3883 release_sock(sk); 3884 return err; 3885 } 3886 3887 static int mptcp_listen(struct socket *sock, int backlog) 3888 { 3889 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3890 struct sock *sk = sock->sk; 3891 struct sock *ssk; 3892 int err; 3893 3894 pr_debug("msk=%p\n", msk); 3895 3896 lock_sock(sk); 3897 3898 err = -EINVAL; 3899 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3900 goto unlock; 3901 3902 ssk = __mptcp_nmpc_sk(msk); 3903 if (IS_ERR(ssk)) { 3904 err = PTR_ERR(ssk); 3905 goto unlock; 3906 } 3907 3908 mptcp_set_state(sk, TCP_LISTEN); 3909 sock_set_flag(sk, SOCK_RCU_FREE); 3910 3911 lock_sock(ssk); 3912 err = __inet_listen_sk(ssk, backlog); 3913 release_sock(ssk); 3914 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3915 3916 if (!err) { 3917 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3918 mptcp_copy_inaddrs(sk, ssk); 3919 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3920 } 3921 3922 unlock: 3923 release_sock(sk); 3924 return err; 3925 } 3926 3927 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3928 struct proto_accept_arg *arg) 3929 { 3930 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3931 struct sock *ssk, *newsk; 3932 3933 pr_debug("msk=%p\n", msk); 3934 3935 /* Buggy applications can call accept on socket states other then LISTEN 3936 * but no need to allocate the first subflow just to error out. 3937 */ 3938 ssk = READ_ONCE(msk->first); 3939 if (!ssk) 3940 return -EINVAL; 3941 3942 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3943 newsk = inet_csk_accept(ssk, arg); 3944 if (!newsk) 3945 return arg->err; 3946 3947 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3948 if (sk_is_mptcp(newsk)) { 3949 struct mptcp_subflow_context *subflow; 3950 struct sock *new_mptcp_sock; 3951 3952 subflow = mptcp_subflow_ctx(newsk); 3953 new_mptcp_sock = subflow->conn; 3954 3955 /* is_mptcp should be false if subflow->conn is missing, see 3956 * subflow_syn_recv_sock() 3957 */ 3958 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3959 tcp_sk(newsk)->is_mptcp = 0; 3960 goto tcpfallback; 3961 } 3962 3963 newsk = new_mptcp_sock; 3964 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3965 3966 newsk->sk_kern_sock = arg->kern; 3967 lock_sock(newsk); 3968 __inet_accept(sock, newsock, newsk); 3969 3970 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3971 msk = mptcp_sk(newsk); 3972 msk->in_accept_queue = 0; 3973 3974 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3975 * This is needed so NOSPACE flag can be set from tcp stack. 3976 */ 3977 mptcp_for_each_subflow(msk, subflow) { 3978 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3979 3980 if (!ssk->sk_socket) 3981 mptcp_sock_graft(ssk, newsock); 3982 } 3983 3984 mptcp_rps_record_subflows(msk); 3985 3986 /* Do late cleanup for the first subflow as necessary. Also 3987 * deal with bad peers not doing a complete shutdown. 3988 */ 3989 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3990 __mptcp_close_ssk(newsk, msk->first, 3991 mptcp_subflow_ctx(msk->first), 0); 3992 if (unlikely(list_is_singular(&msk->conn_list))) 3993 mptcp_set_state(newsk, TCP_CLOSE); 3994 } 3995 } else { 3996 tcpfallback: 3997 newsk->sk_kern_sock = arg->kern; 3998 lock_sock(newsk); 3999 __inet_accept(sock, newsock, newsk); 4000 /* we are being invoked after accepting a non-mp-capable 4001 * flow: sk is a tcp_sk, not an mptcp one. 4002 * 4003 * Hand the socket over to tcp so all further socket ops 4004 * bypass mptcp. 4005 */ 4006 WRITE_ONCE(newsock->sk->sk_socket->ops, 4007 mptcp_fallback_tcp_ops(newsock->sk)); 4008 } 4009 release_sock(newsk); 4010 4011 return 0; 4012 } 4013 4014 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4015 { 4016 struct sock *sk = (struct sock *)msk; 4017 4018 if (__mptcp_stream_is_writeable(sk, 1)) 4019 return EPOLLOUT | EPOLLWRNORM; 4020 4021 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4022 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4023 if (__mptcp_stream_is_writeable(sk, 1)) 4024 return EPOLLOUT | EPOLLWRNORM; 4025 4026 return 0; 4027 } 4028 4029 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4030 struct poll_table_struct *wait) 4031 { 4032 struct sock *sk = sock->sk; 4033 struct mptcp_sock *msk; 4034 __poll_t mask = 0; 4035 u8 shutdown; 4036 int state; 4037 4038 msk = mptcp_sk(sk); 4039 sock_poll_wait(file, sock, wait); 4040 4041 state = inet_sk_state_load(sk); 4042 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4043 if (state == TCP_LISTEN) { 4044 struct sock *ssk = READ_ONCE(msk->first); 4045 4046 if (WARN_ON_ONCE(!ssk)) 4047 return 0; 4048 4049 return inet_csk_listen_poll(ssk); 4050 } 4051 4052 shutdown = READ_ONCE(sk->sk_shutdown); 4053 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4054 mask |= EPOLLHUP; 4055 if (shutdown & RCV_SHUTDOWN) 4056 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4057 4058 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4059 mask |= mptcp_check_readable(sk); 4060 if (shutdown & SEND_SHUTDOWN) 4061 mask |= EPOLLOUT | EPOLLWRNORM; 4062 else 4063 mask |= mptcp_check_writeable(msk); 4064 } else if (state == TCP_SYN_SENT && 4065 inet_test_bit(DEFER_CONNECT, sk)) { 4066 /* cf tcp_poll() note about TFO */ 4067 mask |= EPOLLOUT | EPOLLWRNORM; 4068 } 4069 4070 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4071 smp_rmb(); 4072 if (READ_ONCE(sk->sk_err)) 4073 mask |= EPOLLERR; 4074 4075 return mask; 4076 } 4077 4078 static const struct proto_ops mptcp_stream_ops = { 4079 .family = PF_INET, 4080 .owner = THIS_MODULE, 4081 .release = inet_release, 4082 .bind = mptcp_bind, 4083 .connect = inet_stream_connect, 4084 .socketpair = sock_no_socketpair, 4085 .accept = mptcp_stream_accept, 4086 .getname = inet_getname, 4087 .poll = mptcp_poll, 4088 .ioctl = inet_ioctl, 4089 .gettstamp = sock_gettstamp, 4090 .listen = mptcp_listen, 4091 .shutdown = inet_shutdown, 4092 .setsockopt = sock_common_setsockopt, 4093 .getsockopt = sock_common_getsockopt, 4094 .sendmsg = inet_sendmsg, 4095 .recvmsg = inet_recvmsg, 4096 .mmap = sock_no_mmap, 4097 .set_rcvlowat = mptcp_set_rcvlowat, 4098 }; 4099 4100 static struct inet_protosw mptcp_protosw = { 4101 .type = SOCK_STREAM, 4102 .protocol = IPPROTO_MPTCP, 4103 .prot = &mptcp_prot, 4104 .ops = &mptcp_stream_ops, 4105 .flags = INET_PROTOSW_ICSK, 4106 }; 4107 4108 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4109 { 4110 struct mptcp_delegated_action *delegated; 4111 struct mptcp_subflow_context *subflow; 4112 int work_done = 0; 4113 4114 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4115 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4116 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4117 4118 bh_lock_sock_nested(ssk); 4119 if (!sock_owned_by_user(ssk)) { 4120 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4121 } else { 4122 /* tcp_release_cb_override already processed 4123 * the action or will do at next release_sock(). 4124 * In both case must dequeue the subflow here - on the same 4125 * CPU that scheduled it. 4126 */ 4127 smp_wmb(); 4128 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4129 } 4130 bh_unlock_sock(ssk); 4131 sock_put(ssk); 4132 4133 if (++work_done == budget) 4134 return budget; 4135 } 4136 4137 /* always provide a 0 'work_done' argument, so that napi_complete_done 4138 * will not try accessing the NULL napi->dev ptr 4139 */ 4140 napi_complete_done(napi, 0); 4141 return work_done; 4142 } 4143 4144 void __init mptcp_proto_init(void) 4145 { 4146 struct mptcp_delegated_action *delegated; 4147 int cpu; 4148 4149 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4150 4151 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4152 panic("Failed to allocate MPTCP pcpu counter\n"); 4153 4154 mptcp_napi_dev = alloc_netdev_dummy(0); 4155 if (!mptcp_napi_dev) 4156 panic("Failed to allocate MPTCP dummy netdev\n"); 4157 for_each_possible_cpu(cpu) { 4158 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4159 INIT_LIST_HEAD(&delegated->head); 4160 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4161 mptcp_napi_poll); 4162 napi_enable(&delegated->napi); 4163 } 4164 4165 mptcp_subflow_init(); 4166 mptcp_pm_init(); 4167 mptcp_sched_init(); 4168 mptcp_token_init(); 4169 4170 if (proto_register(&mptcp_prot, 1) != 0) 4171 panic("Failed to register MPTCP proto.\n"); 4172 4173 inet_register_protosw(&mptcp_protosw); 4174 4175 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4176 } 4177 4178 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4179 static const struct proto_ops mptcp_v6_stream_ops = { 4180 .family = PF_INET6, 4181 .owner = THIS_MODULE, 4182 .release = inet6_release, 4183 .bind = mptcp_bind, 4184 .connect = inet_stream_connect, 4185 .socketpair = sock_no_socketpair, 4186 .accept = mptcp_stream_accept, 4187 .getname = inet6_getname, 4188 .poll = mptcp_poll, 4189 .ioctl = inet6_ioctl, 4190 .gettstamp = sock_gettstamp, 4191 .listen = mptcp_listen, 4192 .shutdown = inet_shutdown, 4193 .setsockopt = sock_common_setsockopt, 4194 .getsockopt = sock_common_getsockopt, 4195 .sendmsg = inet6_sendmsg, 4196 .recvmsg = inet6_recvmsg, 4197 .mmap = sock_no_mmap, 4198 #ifdef CONFIG_COMPAT 4199 .compat_ioctl = inet6_compat_ioctl, 4200 #endif 4201 .set_rcvlowat = mptcp_set_rcvlowat, 4202 }; 4203 4204 static struct proto mptcp_v6_prot; 4205 4206 static struct inet_protosw mptcp_v6_protosw = { 4207 .type = SOCK_STREAM, 4208 .protocol = IPPROTO_MPTCP, 4209 .prot = &mptcp_v6_prot, 4210 .ops = &mptcp_v6_stream_ops, 4211 .flags = INET_PROTOSW_ICSK, 4212 }; 4213 4214 int __init mptcp_proto_v6_init(void) 4215 { 4216 int err; 4217 4218 mptcp_v6_prot = mptcp_prot; 4219 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4220 mptcp_v6_prot.slab = NULL; 4221 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4222 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4223 4224 err = proto_register(&mptcp_v6_prot, 1); 4225 if (err) 4226 return err; 4227 4228 err = inet6_register_protosw(&mptcp_v6_protosw); 4229 if (err) 4230 proto_unregister(&mptcp_v6_prot); 4231 4232 return err; 4233 } 4234 #endif 4235