xref: /linux/net/mptcp/protocol.c (revision c31783c2b5ae2399388b349f48fa89818b66f6d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
65 	if (sk->sk_prot == &tcpv6_prot)
66 		return &inet6_stream_ops;
67 #endif
68 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69 	return &inet_stream_ops;
70 }
71 
72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73 {
74 	struct net *net = sock_net((struct sock *)msk);
75 
76 	if (__mptcp_check_fallback(msk))
77 		return true;
78 
79 	spin_lock_bh(&msk->fallback_lock);
80 	if (!msk->allow_infinite_fallback) {
81 		spin_unlock_bh(&msk->fallback_lock);
82 		return false;
83 	}
84 
85 	msk->allow_subflows = false;
86 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87 	__MPTCP_INC_STATS(net, fb_mib);
88 	spin_unlock_bh(&msk->fallback_lock);
89 	return true;
90 }
91 
92 static int __mptcp_socket_create(struct mptcp_sock *msk)
93 {
94 	struct mptcp_subflow_context *subflow;
95 	struct sock *sk = (struct sock *)msk;
96 	struct socket *ssock;
97 	int err;
98 
99 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100 	if (err)
101 		return err;
102 
103 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104 	WRITE_ONCE(msk->first, ssock->sk);
105 	subflow = mptcp_subflow_ctx(ssock->sk);
106 	list_add(&subflow->node, &msk->conn_list);
107 	sock_hold(ssock->sk);
108 	subflow->request_mptcp = 1;
109 	subflow->subflow_id = msk->subflow_id++;
110 
111 	/* This is the first subflow, always with id 0 */
112 	WRITE_ONCE(subflow->local_id, 0);
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 	iput(SOCK_INODE(ssock));
115 
116 	return 0;
117 }
118 
119 /* If the MPC handshake is not started, returns the first subflow,
120  * eventually allocating it.
121  */
122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123 {
124 	struct sock *sk = (struct sock *)msk;
125 	int ret;
126 
127 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128 		return ERR_PTR(-EINVAL);
129 
130 	if (!msk->first) {
131 		ret = __mptcp_socket_create(msk);
132 		if (ret)
133 			return ERR_PTR(ret);
134 	}
135 
136 	return msk->first;
137 }
138 
139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140 {
141 	sk_drops_skbadd(sk, skb);
142 	__kfree_skb(skb);
143 }
144 
145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 				 struct sk_buff *from, bool *fragstolen,
147 				 int *delta)
148 {
149 	int limit = READ_ONCE(sk->sk_rcvbuf);
150 
151 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152 	    MPTCP_SKB_CB(from)->offset ||
153 	    ((to->len + from->len) > (limit >> 3)) ||
154 	    !skb_try_coalesce(to, from, fragstolen, delta))
155 		return false;
156 
157 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159 		 to->len, MPTCP_SKB_CB(from)->end_seq);
160 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161 	return true;
162 }
163 
164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
165 			       struct sk_buff *from)
166 {
167 	bool fragstolen;
168 	int delta;
169 
170 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
171 		return false;
172 
173 	/* note the fwd memory can reach a negative value after accounting
174 	 * for the delta, but the later skb free will restore a non
175 	 * negative one
176 	 */
177 	atomic_add(delta, &sk->sk_rmem_alloc);
178 	sk_mem_charge(sk, delta);
179 	kfree_skb_partial(from, fragstolen);
180 
181 	return true;
182 }
183 
184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
185 				   struct sk_buff *from)
186 {
187 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
188 		return false;
189 
190 	return mptcp_try_coalesce((struct sock *)msk, to, from);
191 }
192 
193 /* "inspired" by tcp_rcvbuf_grow(), main difference:
194  * - mptcp does not maintain a msk-level window clamp
195  * - returns true when  the receive buffer is actually updated
196  */
197 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
198 {
199 	struct mptcp_sock *msk = mptcp_sk(sk);
200 	const struct net *net = sock_net(sk);
201 	u32 rcvwin, rcvbuf, cap, oldval;
202 	u64 grow;
203 
204 	oldval = msk->rcvq_space.space;
205 	msk->rcvq_space.space = newval;
206 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
207 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
208 		return false;
209 
210 	/* DRS is always one RTT late. */
211 	rcvwin = newval << 1;
212 
213 	/* slow start: allow the sender to double its rate. */
214 	grow = (u64)rcvwin * (newval - oldval);
215 	do_div(grow, oldval);
216 	rcvwin += grow << 1;
217 
218 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
219 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
220 
221 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
222 
223 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
224 	if (rcvbuf > sk->sk_rcvbuf) {
225 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
226 		return true;
227 	}
228 	return false;
229 }
230 
231 /* "inspired" by tcp_data_queue_ofo(), main differences:
232  * - use mptcp seqs
233  * - don't cope with sacks
234  */
235 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
236 {
237 	struct sock *sk = (struct sock *)msk;
238 	struct rb_node **p, *parent;
239 	u64 seq, end_seq, max_seq;
240 	struct sk_buff *skb1;
241 
242 	seq = MPTCP_SKB_CB(skb)->map_seq;
243 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
244 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
245 
246 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
247 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
248 	if (after64(end_seq, max_seq)) {
249 		/* out of window */
250 		mptcp_drop(sk, skb);
251 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
252 			 (unsigned long long)end_seq - (unsigned long)max_seq,
253 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
254 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
255 		return;
256 	}
257 
258 	p = &msk->out_of_order_queue.rb_node;
259 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
260 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
261 		rb_link_node(&skb->rbnode, NULL, p);
262 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
263 		msk->ooo_last_skb = skb;
264 		goto end;
265 	}
266 
267 	/* with 2 subflows, adding at end of ooo queue is quite likely
268 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
269 	 */
270 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
271 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
272 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
273 		return;
274 	}
275 
276 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
277 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
278 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
279 		parent = &msk->ooo_last_skb->rbnode;
280 		p = &parent->rb_right;
281 		goto insert;
282 	}
283 
284 	/* Find place to insert this segment. Handle overlaps on the way. */
285 	parent = NULL;
286 	while (*p) {
287 		parent = *p;
288 		skb1 = rb_to_skb(parent);
289 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
290 			p = &parent->rb_left;
291 			continue;
292 		}
293 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
294 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
295 				/* All the bits are present. Drop. */
296 				mptcp_drop(sk, skb);
297 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
298 				return;
299 			}
300 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
301 				/* partial overlap:
302 				 *     |     skb      |
303 				 *  |     skb1    |
304 				 * continue traversing
305 				 */
306 			} else {
307 				/* skb's seq == skb1's seq and skb covers skb1.
308 				 * Replace skb1 with skb.
309 				 */
310 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
311 						&msk->out_of_order_queue);
312 				mptcp_drop(sk, skb1);
313 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
314 				goto merge_right;
315 			}
316 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
317 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
318 			return;
319 		}
320 		p = &parent->rb_right;
321 	}
322 
323 insert:
324 	/* Insert segment into RB tree. */
325 	rb_link_node(&skb->rbnode, parent, p);
326 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
327 
328 merge_right:
329 	/* Remove other segments covered by skb. */
330 	while ((skb1 = skb_rb_next(skb)) != NULL) {
331 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
332 			break;
333 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
334 		mptcp_drop(sk, skb1);
335 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
336 	}
337 	/* If there is no skb after us, we are the last_skb ! */
338 	if (!skb1)
339 		msk->ooo_last_skb = skb;
340 
341 end:
342 	skb_condense(skb);
343 	skb_set_owner_r(skb, sk);
344 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
345 	if (sk->sk_socket)
346 		mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
347 }
348 
349 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
350 			   int copy_len)
351 {
352 	const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
353 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
354 
355 	/* the skb map_seq accounts for the skb offset:
356 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
357 	 * value
358 	 */
359 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
360 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
361 	MPTCP_SKB_CB(skb)->offset = offset;
362 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
363 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
364 
365 	__skb_unlink(skb, &ssk->sk_receive_queue);
366 
367 	skb_ext_reset(skb);
368 	skb_dst_drop(skb);
369 }
370 
371 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
372 {
373 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
374 	struct mptcp_sock *msk = mptcp_sk(sk);
375 	struct sk_buff *tail;
376 
377 	/* try to fetch required memory from subflow */
378 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
379 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
380 		goto drop;
381 	}
382 
383 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
384 		/* in sequence */
385 		msk->bytes_received += copy_len;
386 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
387 		tail = skb_peek_tail(&sk->sk_receive_queue);
388 		if (tail && mptcp_try_coalesce(sk, tail, skb))
389 			return true;
390 
391 		skb_set_owner_r(skb, sk);
392 		__skb_queue_tail(&sk->sk_receive_queue, skb);
393 		return true;
394 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
395 		mptcp_data_queue_ofo(msk, skb);
396 		return false;
397 	}
398 
399 	/* old data, keep it simple and drop the whole pkt, sender
400 	 * will retransmit as needed, if needed.
401 	 */
402 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
403 drop:
404 	mptcp_drop(sk, skb);
405 	return false;
406 }
407 
408 static void mptcp_stop_rtx_timer(struct sock *sk)
409 {
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 
412 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
413 	mptcp_sk(sk)->timer_ival = 0;
414 }
415 
416 static void mptcp_close_wake_up(struct sock *sk)
417 {
418 	if (sock_flag(sk, SOCK_DEAD))
419 		return;
420 
421 	sk->sk_state_change(sk);
422 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
423 	    sk->sk_state == TCP_CLOSE)
424 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
425 	else
426 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
427 }
428 
429 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
430 {
431 	struct mptcp_subflow_context *subflow;
432 
433 	mptcp_for_each_subflow(msk, subflow) {
434 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
435 		bool slow;
436 
437 		slow = lock_sock_fast(ssk);
438 		tcp_shutdown(ssk, SEND_SHUTDOWN);
439 		unlock_sock_fast(ssk, slow);
440 	}
441 }
442 
443 /* called under the msk socket lock */
444 static bool mptcp_pending_data_fin_ack(struct sock *sk)
445 {
446 	struct mptcp_sock *msk = mptcp_sk(sk);
447 
448 	return ((1 << sk->sk_state) &
449 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
450 	       msk->write_seq == READ_ONCE(msk->snd_una);
451 }
452 
453 static void mptcp_check_data_fin_ack(struct sock *sk)
454 {
455 	struct mptcp_sock *msk = mptcp_sk(sk);
456 
457 	/* Look for an acknowledged DATA_FIN */
458 	if (mptcp_pending_data_fin_ack(sk)) {
459 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
460 
461 		switch (sk->sk_state) {
462 		case TCP_FIN_WAIT1:
463 			mptcp_set_state(sk, TCP_FIN_WAIT2);
464 			break;
465 		case TCP_CLOSING:
466 		case TCP_LAST_ACK:
467 			mptcp_shutdown_subflows(msk);
468 			mptcp_set_state(sk, TCP_CLOSE);
469 			break;
470 		}
471 
472 		mptcp_close_wake_up(sk);
473 	}
474 }
475 
476 /* can be called with no lock acquired */
477 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
478 {
479 	struct mptcp_sock *msk = mptcp_sk(sk);
480 
481 	if (READ_ONCE(msk->rcv_data_fin) &&
482 	    ((1 << inet_sk_state_load(sk)) &
483 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
484 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
485 
486 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
487 			if (seq)
488 				*seq = rcv_data_fin_seq;
489 
490 			return true;
491 		}
492 	}
493 
494 	return false;
495 }
496 
497 static void mptcp_set_datafin_timeout(struct sock *sk)
498 {
499 	struct inet_connection_sock *icsk = inet_csk(sk);
500 	u32 retransmits;
501 
502 	retransmits = min_t(u32, icsk->icsk_retransmits,
503 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
504 
505 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
506 }
507 
508 static void __mptcp_set_timeout(struct sock *sk, long tout)
509 {
510 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
511 }
512 
513 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
514 {
515 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
516 
517 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
518 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
519 }
520 
521 static void mptcp_set_timeout(struct sock *sk)
522 {
523 	struct mptcp_subflow_context *subflow;
524 	long tout = 0;
525 
526 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
527 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
528 	__mptcp_set_timeout(sk, tout);
529 }
530 
531 static inline bool tcp_can_send_ack(const struct sock *ssk)
532 {
533 	return !((1 << inet_sk_state_load(ssk)) &
534 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
535 }
536 
537 void __mptcp_subflow_send_ack(struct sock *ssk)
538 {
539 	if (tcp_can_send_ack(ssk))
540 		tcp_send_ack(ssk);
541 }
542 
543 static void mptcp_subflow_send_ack(struct sock *ssk)
544 {
545 	bool slow;
546 
547 	slow = lock_sock_fast(ssk);
548 	__mptcp_subflow_send_ack(ssk);
549 	unlock_sock_fast(ssk, slow);
550 }
551 
552 static void mptcp_send_ack(struct mptcp_sock *msk)
553 {
554 	struct mptcp_subflow_context *subflow;
555 
556 	mptcp_for_each_subflow(msk, subflow)
557 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
558 }
559 
560 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
561 {
562 	bool slow;
563 
564 	slow = lock_sock_fast(ssk);
565 	if (tcp_can_send_ack(ssk))
566 		tcp_cleanup_rbuf(ssk, copied);
567 	unlock_sock_fast(ssk, slow);
568 }
569 
570 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
571 {
572 	const struct inet_connection_sock *icsk = inet_csk(ssk);
573 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
574 	const struct tcp_sock *tp = tcp_sk(ssk);
575 
576 	return (ack_pending & ICSK_ACK_SCHED) &&
577 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
578 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
579 		 (rx_empty && ack_pending &
580 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
581 }
582 
583 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
584 {
585 	int old_space = READ_ONCE(msk->old_wspace);
586 	struct mptcp_subflow_context *subflow;
587 	struct sock *sk = (struct sock *)msk;
588 	int space =  __mptcp_space(sk);
589 	bool cleanup, rx_empty;
590 
591 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
592 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
593 
594 	mptcp_for_each_subflow(msk, subflow) {
595 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
596 
597 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
598 			mptcp_subflow_cleanup_rbuf(ssk, copied);
599 	}
600 }
601 
602 static void mptcp_check_data_fin(struct sock *sk)
603 {
604 	struct mptcp_sock *msk = mptcp_sk(sk);
605 	u64 rcv_data_fin_seq;
606 
607 	/* Need to ack a DATA_FIN received from a peer while this side
608 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
609 	 * msk->rcv_data_fin was set when parsing the incoming options
610 	 * at the subflow level and the msk lock was not held, so this
611 	 * is the first opportunity to act on the DATA_FIN and change
612 	 * the msk state.
613 	 *
614 	 * If we are caught up to the sequence number of the incoming
615 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
616 	 * not caught up, do nothing and let the recv code send DATA_ACK
617 	 * when catching up.
618 	 */
619 
620 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
621 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
622 		WRITE_ONCE(msk->rcv_data_fin, 0);
623 
624 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
625 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
626 
627 		switch (sk->sk_state) {
628 		case TCP_ESTABLISHED:
629 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
630 			break;
631 		case TCP_FIN_WAIT1:
632 			mptcp_set_state(sk, TCP_CLOSING);
633 			break;
634 		case TCP_FIN_WAIT2:
635 			mptcp_shutdown_subflows(msk);
636 			mptcp_set_state(sk, TCP_CLOSE);
637 			break;
638 		default:
639 			/* Other states not expected */
640 			WARN_ON_ONCE(1);
641 			break;
642 		}
643 
644 		if (!__mptcp_check_fallback(msk))
645 			mptcp_send_ack(msk);
646 		mptcp_close_wake_up(sk);
647 	}
648 }
649 
650 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
651 {
652 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
653 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
654 		mptcp_subflow_reset(ssk);
655 	}
656 }
657 
658 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
659 					   struct sock *ssk)
660 {
661 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
662 	struct sock *sk = (struct sock *)msk;
663 	bool more_data_avail;
664 	struct tcp_sock *tp;
665 	bool ret = false;
666 
667 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
668 	tp = tcp_sk(ssk);
669 	do {
670 		u32 map_remaining, offset;
671 		u32 seq = tp->copied_seq;
672 		struct sk_buff *skb;
673 		bool fin;
674 
675 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
676 			break;
677 
678 		/* try to move as much data as available */
679 		map_remaining = subflow->map_data_len -
680 				mptcp_subflow_get_map_offset(subflow);
681 
682 		skb = skb_peek(&ssk->sk_receive_queue);
683 		if (unlikely(!skb))
684 			break;
685 
686 		if (__mptcp_check_fallback(msk)) {
687 			/* Under fallback skbs have no MPTCP extension and TCP could
688 			 * collapse them between the dummy map creation and the
689 			 * current dequeue. Be sure to adjust the map size.
690 			 */
691 			map_remaining = skb->len;
692 			subflow->map_data_len = skb->len;
693 		}
694 
695 		offset = seq - TCP_SKB_CB(skb)->seq;
696 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
697 		if (fin)
698 			seq++;
699 
700 		if (offset < skb->len) {
701 			size_t len = skb->len - offset;
702 
703 			mptcp_init_skb(ssk, skb, offset, len);
704 			skb_orphan(skb);
705 			ret = __mptcp_move_skb(sk, skb) || ret;
706 			seq += len;
707 
708 			if (unlikely(map_remaining < len)) {
709 				DEBUG_NET_WARN_ON_ONCE(1);
710 				mptcp_dss_corruption(msk, ssk);
711 			}
712 		} else {
713 			if (unlikely(!fin)) {
714 				DEBUG_NET_WARN_ON_ONCE(1);
715 				mptcp_dss_corruption(msk, ssk);
716 			}
717 
718 			sk_eat_skb(ssk, skb);
719 		}
720 
721 		WRITE_ONCE(tp->copied_seq, seq);
722 		more_data_avail = mptcp_subflow_data_available(ssk);
723 
724 	} while (more_data_avail);
725 
726 	if (ret)
727 		msk->last_data_recv = tcp_jiffies32;
728 	return ret;
729 }
730 
731 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
732 {
733 	struct sock *sk = (struct sock *)msk;
734 	struct sk_buff *skb, *tail;
735 	bool moved = false;
736 	struct rb_node *p;
737 	u64 end_seq;
738 
739 	p = rb_first(&msk->out_of_order_queue);
740 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
741 	while (p) {
742 		skb = rb_to_skb(p);
743 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
744 			break;
745 
746 		p = rb_next(p);
747 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
748 
749 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
750 				      msk->ack_seq))) {
751 			mptcp_drop(sk, skb);
752 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
753 			continue;
754 		}
755 
756 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
757 		tail = skb_peek_tail(&sk->sk_receive_queue);
758 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
759 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
760 
761 			/* skip overlapping data, if any */
762 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
763 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
764 				 delta);
765 			MPTCP_SKB_CB(skb)->offset += delta;
766 			MPTCP_SKB_CB(skb)->map_seq += delta;
767 			__skb_queue_tail(&sk->sk_receive_queue, skb);
768 		}
769 		msk->bytes_received += end_seq - msk->ack_seq;
770 		WRITE_ONCE(msk->ack_seq, end_seq);
771 		moved = true;
772 	}
773 	return moved;
774 }
775 
776 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
777 {
778 	int err = sock_error(ssk);
779 	int ssk_state;
780 
781 	if (!err)
782 		return false;
783 
784 	/* only propagate errors on fallen-back sockets or
785 	 * on MPC connect
786 	 */
787 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
788 		return false;
789 
790 	/* We need to propagate only transition to CLOSE state.
791 	 * Orphaned socket will see such state change via
792 	 * subflow_sched_work_if_closed() and that path will properly
793 	 * destroy the msk as needed.
794 	 */
795 	ssk_state = inet_sk_state_load(ssk);
796 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
797 		mptcp_set_state(sk, ssk_state);
798 	WRITE_ONCE(sk->sk_err, -err);
799 
800 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
801 	smp_wmb();
802 	sk_error_report(sk);
803 	return true;
804 }
805 
806 void __mptcp_error_report(struct sock *sk)
807 {
808 	struct mptcp_subflow_context *subflow;
809 	struct mptcp_sock *msk = mptcp_sk(sk);
810 
811 	mptcp_for_each_subflow(msk, subflow)
812 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
813 			break;
814 }
815 
816 /* In most cases we will be able to lock the mptcp socket.  If its already
817  * owned, we need to defer to the work queue to avoid ABBA deadlock.
818  */
819 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
820 {
821 	struct sock *sk = (struct sock *)msk;
822 	bool moved;
823 
824 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
825 	__mptcp_ofo_queue(msk);
826 	if (unlikely(ssk->sk_err))
827 		__mptcp_subflow_error_report(sk, ssk);
828 
829 	/* If the moves have caught up with the DATA_FIN sequence number
830 	 * it's time to ack the DATA_FIN and change socket state, but
831 	 * this is not a good place to change state. Let the workqueue
832 	 * do it.
833 	 */
834 	if (mptcp_pending_data_fin(sk, NULL))
835 		mptcp_schedule_work(sk);
836 	return moved;
837 }
838 
839 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
840 {
841 	struct mptcp_sock *msk = mptcp_sk(sk);
842 
843 	/* Wake-up the reader only for in-sequence data */
844 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
845 		sk->sk_data_ready(sk);
846 }
847 
848 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
849 {
850 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
851 
852 	/* The peer can send data while we are shutting down this
853 	 * subflow at msk destruction time, but we must avoid enqueuing
854 	 * more data to the msk receive queue
855 	 */
856 	if (unlikely(subflow->disposable))
857 		return;
858 
859 	mptcp_data_lock(sk);
860 	if (!sock_owned_by_user(sk))
861 		__mptcp_data_ready(sk, ssk);
862 	else
863 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
864 	mptcp_data_unlock(sk);
865 }
866 
867 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
868 {
869 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
870 	msk->allow_infinite_fallback = false;
871 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
872 }
873 
874 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
875 {
876 	struct sock *sk = (struct sock *)msk;
877 
878 	if (sk->sk_state != TCP_ESTABLISHED)
879 		return false;
880 
881 	spin_lock_bh(&msk->fallback_lock);
882 	if (!msk->allow_subflows) {
883 		spin_unlock_bh(&msk->fallback_lock);
884 		return false;
885 	}
886 	mptcp_subflow_joined(msk, ssk);
887 	spin_unlock_bh(&msk->fallback_lock);
888 
889 	/* attach to msk socket only after we are sure we will deal with it
890 	 * at close time
891 	 */
892 	if (sk->sk_socket && !ssk->sk_socket)
893 		mptcp_sock_graft(ssk, sk->sk_socket);
894 
895 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
896 	mptcp_sockopt_sync_locked(msk, ssk);
897 	mptcp_stop_tout_timer(sk);
898 	__mptcp_propagate_sndbuf(sk, ssk);
899 	return true;
900 }
901 
902 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
903 {
904 	struct mptcp_subflow_context *tmp, *subflow;
905 	struct mptcp_sock *msk = mptcp_sk(sk);
906 
907 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
908 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
909 		bool slow = lock_sock_fast(ssk);
910 
911 		list_move_tail(&subflow->node, &msk->conn_list);
912 		if (!__mptcp_finish_join(msk, ssk))
913 			mptcp_subflow_reset(ssk);
914 		unlock_sock_fast(ssk, slow);
915 	}
916 }
917 
918 static bool mptcp_rtx_timer_pending(struct sock *sk)
919 {
920 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
921 }
922 
923 static void mptcp_reset_rtx_timer(struct sock *sk)
924 {
925 	struct inet_connection_sock *icsk = inet_csk(sk);
926 	unsigned long tout;
927 
928 	/* prevent rescheduling on close */
929 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
930 		return;
931 
932 	tout = mptcp_sk(sk)->timer_ival;
933 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
934 }
935 
936 bool mptcp_schedule_work(struct sock *sk)
937 {
938 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
939 	    schedule_work(&mptcp_sk(sk)->work)) {
940 		/* each subflow already holds a reference to the sk, and the
941 		 * workqueue is invoked by a subflow, so sk can't go away here.
942 		 */
943 		sock_hold(sk);
944 		return true;
945 	}
946 	return false;
947 }
948 
949 static bool mptcp_skb_can_collapse_to(u64 write_seq,
950 				      const struct sk_buff *skb,
951 				      const struct mptcp_ext *mpext)
952 {
953 	if (!tcp_skb_can_collapse_to(skb))
954 		return false;
955 
956 	/* can collapse only if MPTCP level sequence is in order and this
957 	 * mapping has not been xmitted yet
958 	 */
959 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
960 	       !mpext->frozen;
961 }
962 
963 /* we can append data to the given data frag if:
964  * - there is space available in the backing page_frag
965  * - the data frag tail matches the current page_frag free offset
966  * - the data frag end sequence number matches the current write seq
967  */
968 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
969 				       const struct page_frag *pfrag,
970 				       const struct mptcp_data_frag *df)
971 {
972 	return df && pfrag->page == df->page &&
973 		pfrag->size - pfrag->offset > 0 &&
974 		pfrag->offset == (df->offset + df->data_len) &&
975 		df->data_seq + df->data_len == msk->write_seq;
976 }
977 
978 static void dfrag_uncharge(struct sock *sk, int len)
979 {
980 	sk_mem_uncharge(sk, len);
981 	sk_wmem_queued_add(sk, -len);
982 }
983 
984 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
985 {
986 	int len = dfrag->data_len + dfrag->overhead;
987 
988 	list_del(&dfrag->list);
989 	dfrag_uncharge(sk, len);
990 	put_page(dfrag->page);
991 }
992 
993 /* called under both the msk socket lock and the data lock */
994 static void __mptcp_clean_una(struct sock *sk)
995 {
996 	struct mptcp_sock *msk = mptcp_sk(sk);
997 	struct mptcp_data_frag *dtmp, *dfrag;
998 	u64 snd_una;
999 
1000 	snd_una = msk->snd_una;
1001 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1002 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1003 			break;
1004 
1005 		if (unlikely(dfrag == msk->first_pending)) {
1006 			/* in recovery mode can see ack after the current snd head */
1007 			if (WARN_ON_ONCE(!msk->recovery))
1008 				break;
1009 
1010 			msk->first_pending = mptcp_send_next(sk);
1011 		}
1012 
1013 		dfrag_clear(sk, dfrag);
1014 	}
1015 
1016 	dfrag = mptcp_rtx_head(sk);
1017 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1018 		u64 delta = snd_una - dfrag->data_seq;
1019 
1020 		/* prevent wrap around in recovery mode */
1021 		if (unlikely(delta > dfrag->already_sent)) {
1022 			if (WARN_ON_ONCE(!msk->recovery))
1023 				goto out;
1024 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1025 				goto out;
1026 			dfrag->already_sent += delta - dfrag->already_sent;
1027 		}
1028 
1029 		dfrag->data_seq += delta;
1030 		dfrag->offset += delta;
1031 		dfrag->data_len -= delta;
1032 		dfrag->already_sent -= delta;
1033 
1034 		dfrag_uncharge(sk, delta);
1035 	}
1036 
1037 	/* all retransmitted data acked, recovery completed */
1038 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1039 		msk->recovery = false;
1040 
1041 out:
1042 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1043 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1044 			mptcp_stop_rtx_timer(sk);
1045 	} else {
1046 		mptcp_reset_rtx_timer(sk);
1047 	}
1048 
1049 	if (mptcp_pending_data_fin_ack(sk))
1050 		mptcp_schedule_work(sk);
1051 }
1052 
1053 static void __mptcp_clean_una_wakeup(struct sock *sk)
1054 {
1055 	lockdep_assert_held_once(&sk->sk_lock.slock);
1056 
1057 	__mptcp_clean_una(sk);
1058 	mptcp_write_space(sk);
1059 }
1060 
1061 static void mptcp_clean_una_wakeup(struct sock *sk)
1062 {
1063 	mptcp_data_lock(sk);
1064 	__mptcp_clean_una_wakeup(sk);
1065 	mptcp_data_unlock(sk);
1066 }
1067 
1068 static void mptcp_enter_memory_pressure(struct sock *sk)
1069 {
1070 	struct mptcp_subflow_context *subflow;
1071 	struct mptcp_sock *msk = mptcp_sk(sk);
1072 	bool first = true;
1073 
1074 	mptcp_for_each_subflow(msk, subflow) {
1075 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1076 
1077 		if (first && !ssk->sk_bypass_prot_mem) {
1078 			tcp_enter_memory_pressure(ssk);
1079 			first = false;
1080 		}
1081 
1082 		sk_stream_moderate_sndbuf(ssk);
1083 	}
1084 	__mptcp_sync_sndbuf(sk);
1085 }
1086 
1087 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1088  * data
1089  */
1090 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1091 {
1092 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1093 					pfrag, sk->sk_allocation)))
1094 		return true;
1095 
1096 	mptcp_enter_memory_pressure(sk);
1097 	return false;
1098 }
1099 
1100 static struct mptcp_data_frag *
1101 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1102 		      int orig_offset)
1103 {
1104 	int offset = ALIGN(orig_offset, sizeof(long));
1105 	struct mptcp_data_frag *dfrag;
1106 
1107 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1108 	dfrag->data_len = 0;
1109 	dfrag->data_seq = msk->write_seq;
1110 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1111 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1112 	dfrag->already_sent = 0;
1113 	dfrag->page = pfrag->page;
1114 
1115 	return dfrag;
1116 }
1117 
1118 struct mptcp_sendmsg_info {
1119 	int mss_now;
1120 	int size_goal;
1121 	u16 limit;
1122 	u16 sent;
1123 	unsigned int flags;
1124 	bool data_lock_held;
1125 };
1126 
1127 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1128 				    u64 data_seq, int avail_size)
1129 {
1130 	u64 window_end = mptcp_wnd_end(msk);
1131 	u64 mptcp_snd_wnd;
1132 
1133 	if (__mptcp_check_fallback(msk))
1134 		return avail_size;
1135 
1136 	mptcp_snd_wnd = window_end - data_seq;
1137 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1138 
1139 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1140 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1141 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1142 	}
1143 
1144 	return avail_size;
1145 }
1146 
1147 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1148 {
1149 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1150 
1151 	if (!mpext)
1152 		return false;
1153 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1154 	return true;
1155 }
1156 
1157 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1158 {
1159 	struct sk_buff *skb;
1160 
1161 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1162 	if (likely(skb)) {
1163 		if (likely(__mptcp_add_ext(skb, gfp))) {
1164 			skb_reserve(skb, MAX_TCP_HEADER);
1165 			skb->ip_summed = CHECKSUM_PARTIAL;
1166 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1167 			return skb;
1168 		}
1169 		__kfree_skb(skb);
1170 	} else {
1171 		mptcp_enter_memory_pressure(sk);
1172 	}
1173 	return NULL;
1174 }
1175 
1176 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1177 {
1178 	struct sk_buff *skb;
1179 
1180 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1181 	if (!skb)
1182 		return NULL;
1183 
1184 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1185 		tcp_skb_entail(ssk, skb);
1186 		return skb;
1187 	}
1188 	tcp_skb_tsorted_anchor_cleanup(skb);
1189 	kfree_skb(skb);
1190 	return NULL;
1191 }
1192 
1193 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1194 {
1195 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1196 
1197 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1198 }
1199 
1200 /* note: this always recompute the csum on the whole skb, even
1201  * if we just appended a single frag. More status info needed
1202  */
1203 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1204 {
1205 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1206 	__wsum csum = ~csum_unfold(mpext->csum);
1207 	int offset = skb->len - added;
1208 
1209 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1210 }
1211 
1212 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1213 				      struct sock *ssk,
1214 				      struct mptcp_ext *mpext)
1215 {
1216 	if (!mpext)
1217 		return;
1218 
1219 	mpext->infinite_map = 1;
1220 	mpext->data_len = 0;
1221 
1222 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1223 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1224 		mptcp_subflow_reset(ssk);
1225 		return;
1226 	}
1227 
1228 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1229 }
1230 
1231 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1232 
1233 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1234 			      struct mptcp_data_frag *dfrag,
1235 			      struct mptcp_sendmsg_info *info)
1236 {
1237 	u64 data_seq = dfrag->data_seq + info->sent;
1238 	int offset = dfrag->offset + info->sent;
1239 	struct mptcp_sock *msk = mptcp_sk(sk);
1240 	bool zero_window_probe = false;
1241 	struct mptcp_ext *mpext = NULL;
1242 	bool can_coalesce = false;
1243 	bool reuse_skb = true;
1244 	struct sk_buff *skb;
1245 	size_t copy;
1246 	int i;
1247 
1248 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1249 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1250 
1251 	if (WARN_ON_ONCE(info->sent > info->limit ||
1252 			 info->limit > dfrag->data_len))
1253 		return 0;
1254 
1255 	if (unlikely(!__tcp_can_send(ssk)))
1256 		return -EAGAIN;
1257 
1258 	/* compute send limit */
1259 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1260 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1261 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1262 	copy = info->size_goal;
1263 
1264 	skb = tcp_write_queue_tail(ssk);
1265 	if (skb && copy > skb->len) {
1266 		/* Limit the write to the size available in the
1267 		 * current skb, if any, so that we create at most a new skb.
1268 		 * Explicitly tells TCP internals to avoid collapsing on later
1269 		 * queue management operation, to avoid breaking the ext <->
1270 		 * SSN association set here
1271 		 */
1272 		mpext = mptcp_get_ext(skb);
1273 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1274 			TCP_SKB_CB(skb)->eor = 1;
1275 			tcp_mark_push(tcp_sk(ssk), skb);
1276 			goto alloc_skb;
1277 		}
1278 
1279 		i = skb_shinfo(skb)->nr_frags;
1280 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1281 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1282 			tcp_mark_push(tcp_sk(ssk), skb);
1283 			goto alloc_skb;
1284 		}
1285 
1286 		copy -= skb->len;
1287 	} else {
1288 alloc_skb:
1289 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1290 		if (!skb)
1291 			return -ENOMEM;
1292 
1293 		i = skb_shinfo(skb)->nr_frags;
1294 		reuse_skb = false;
1295 		mpext = mptcp_get_ext(skb);
1296 	}
1297 
1298 	/* Zero window and all data acked? Probe. */
1299 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1300 	if (copy == 0) {
1301 		u64 snd_una = READ_ONCE(msk->snd_una);
1302 
1303 		/* No need for zero probe if there are any data pending
1304 		 * either at the msk or ssk level; skb is the current write
1305 		 * queue tail and can be empty at this point.
1306 		 */
1307 		if (snd_una != msk->snd_nxt || skb->len ||
1308 		    skb != tcp_send_head(ssk)) {
1309 			tcp_remove_empty_skb(ssk);
1310 			return 0;
1311 		}
1312 
1313 		zero_window_probe = true;
1314 		data_seq = snd_una - 1;
1315 		copy = 1;
1316 	}
1317 
1318 	copy = min_t(size_t, copy, info->limit - info->sent);
1319 	if (!sk_wmem_schedule(ssk, copy)) {
1320 		tcp_remove_empty_skb(ssk);
1321 		return -ENOMEM;
1322 	}
1323 
1324 	if (can_coalesce) {
1325 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1326 	} else {
1327 		get_page(dfrag->page);
1328 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1329 	}
1330 
1331 	skb->len += copy;
1332 	skb->data_len += copy;
1333 	skb->truesize += copy;
1334 	sk_wmem_queued_add(ssk, copy);
1335 	sk_mem_charge(ssk, copy);
1336 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1337 	TCP_SKB_CB(skb)->end_seq += copy;
1338 	tcp_skb_pcount_set(skb, 0);
1339 
1340 	/* on skb reuse we just need to update the DSS len */
1341 	if (reuse_skb) {
1342 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1343 		mpext->data_len += copy;
1344 		goto out;
1345 	}
1346 
1347 	memset(mpext, 0, sizeof(*mpext));
1348 	mpext->data_seq = data_seq;
1349 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1350 	mpext->data_len = copy;
1351 	mpext->use_map = 1;
1352 	mpext->dsn64 = 1;
1353 
1354 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1355 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1356 		 mpext->dsn64);
1357 
1358 	if (zero_window_probe) {
1359 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1360 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1361 		mpext->frozen = 1;
1362 		if (READ_ONCE(msk->csum_enabled))
1363 			mptcp_update_data_checksum(skb, copy);
1364 		tcp_push_pending_frames(ssk);
1365 		return 0;
1366 	}
1367 out:
1368 	if (READ_ONCE(msk->csum_enabled))
1369 		mptcp_update_data_checksum(skb, copy);
1370 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1371 		mptcp_update_infinite_map(msk, ssk, mpext);
1372 	trace_mptcp_sendmsg_frag(mpext);
1373 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1374 	return copy;
1375 }
1376 
1377 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1378 					 sizeof(struct tcphdr) - \
1379 					 MAX_TCP_OPTION_SPACE - \
1380 					 sizeof(struct ipv6hdr) - \
1381 					 sizeof(struct frag_hdr))
1382 
1383 struct subflow_send_info {
1384 	struct sock *ssk;
1385 	u64 linger_time;
1386 };
1387 
1388 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1389 {
1390 	if (!subflow->stale)
1391 		return;
1392 
1393 	subflow->stale = 0;
1394 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1395 }
1396 
1397 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1398 {
1399 	if (unlikely(subflow->stale)) {
1400 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1401 
1402 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1403 			return false;
1404 
1405 		mptcp_subflow_set_active(subflow);
1406 	}
1407 	return __mptcp_subflow_active(subflow);
1408 }
1409 
1410 #define SSK_MODE_ACTIVE	0
1411 #define SSK_MODE_BACKUP	1
1412 #define SSK_MODE_MAX	2
1413 
1414 /* implement the mptcp packet scheduler;
1415  * returns the subflow that will transmit the next DSS
1416  * additionally updates the rtx timeout
1417  */
1418 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1419 {
1420 	struct subflow_send_info send_info[SSK_MODE_MAX];
1421 	struct mptcp_subflow_context *subflow;
1422 	struct sock *sk = (struct sock *)msk;
1423 	u32 pace, burst, wmem;
1424 	int i, nr_active = 0;
1425 	struct sock *ssk;
1426 	u64 linger_time;
1427 	long tout = 0;
1428 
1429 	/* pick the subflow with the lower wmem/wspace ratio */
1430 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1431 		send_info[i].ssk = NULL;
1432 		send_info[i].linger_time = -1;
1433 	}
1434 
1435 	mptcp_for_each_subflow(msk, subflow) {
1436 		bool backup = subflow->backup || subflow->request_bkup;
1437 
1438 		trace_mptcp_subflow_get_send(subflow);
1439 		ssk =  mptcp_subflow_tcp_sock(subflow);
1440 		if (!mptcp_subflow_active(subflow))
1441 			continue;
1442 
1443 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1444 		nr_active += !backup;
1445 		pace = subflow->avg_pacing_rate;
1446 		if (unlikely(!pace)) {
1447 			/* init pacing rate from socket */
1448 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1449 			pace = subflow->avg_pacing_rate;
1450 			if (!pace)
1451 				continue;
1452 		}
1453 
1454 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1455 		if (linger_time < send_info[backup].linger_time) {
1456 			send_info[backup].ssk = ssk;
1457 			send_info[backup].linger_time = linger_time;
1458 		}
1459 	}
1460 	__mptcp_set_timeout(sk, tout);
1461 
1462 	/* pick the best backup if no other subflow is active */
1463 	if (!nr_active)
1464 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1465 
1466 	/* According to the blest algorithm, to avoid HoL blocking for the
1467 	 * faster flow, we need to:
1468 	 * - estimate the faster flow linger time
1469 	 * - use the above to estimate the amount of byte transferred
1470 	 *   by the faster flow
1471 	 * - check that the amount of queued data is greater than the above,
1472 	 *   otherwise do not use the picked, slower, subflow
1473 	 * We select the subflow with the shorter estimated time to flush
1474 	 * the queued mem, which basically ensure the above. We just need
1475 	 * to check that subflow has a non empty cwin.
1476 	 */
1477 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1478 	if (!ssk || !sk_stream_memory_free(ssk))
1479 		return NULL;
1480 
1481 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1482 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1483 	if (!burst)
1484 		return ssk;
1485 
1486 	subflow = mptcp_subflow_ctx(ssk);
1487 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1488 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1489 					   burst + wmem);
1490 	msk->snd_burst = burst;
1491 	return ssk;
1492 }
1493 
1494 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1495 {
1496 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1497 	release_sock(ssk);
1498 }
1499 
1500 static void mptcp_update_post_push(struct mptcp_sock *msk,
1501 				   struct mptcp_data_frag *dfrag,
1502 				   u32 sent)
1503 {
1504 	u64 snd_nxt_new = dfrag->data_seq;
1505 
1506 	dfrag->already_sent += sent;
1507 
1508 	msk->snd_burst -= sent;
1509 
1510 	snd_nxt_new += dfrag->already_sent;
1511 
1512 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1513 	 * is recovering after a failover. In that event, this re-sends
1514 	 * old segments.
1515 	 *
1516 	 * Thus compute snd_nxt_new candidate based on
1517 	 * the dfrag->data_seq that was sent and the data
1518 	 * that has been handed to the subflow for transmission
1519 	 * and skip update in case it was old dfrag.
1520 	 */
1521 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1522 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1523 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1524 	}
1525 }
1526 
1527 void mptcp_check_and_set_pending(struct sock *sk)
1528 {
1529 	if (mptcp_send_head(sk)) {
1530 		mptcp_data_lock(sk);
1531 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1532 		mptcp_data_unlock(sk);
1533 	}
1534 }
1535 
1536 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1537 				  struct mptcp_sendmsg_info *info)
1538 {
1539 	struct mptcp_sock *msk = mptcp_sk(sk);
1540 	struct mptcp_data_frag *dfrag;
1541 	int len, copied = 0, err = 0;
1542 
1543 	while ((dfrag = mptcp_send_head(sk))) {
1544 		info->sent = dfrag->already_sent;
1545 		info->limit = dfrag->data_len;
1546 		len = dfrag->data_len - dfrag->already_sent;
1547 		while (len > 0) {
1548 			int ret = 0;
1549 
1550 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1551 			if (ret <= 0) {
1552 				err = copied ? : ret;
1553 				goto out;
1554 			}
1555 
1556 			info->sent += ret;
1557 			copied += ret;
1558 			len -= ret;
1559 
1560 			mptcp_update_post_push(msk, dfrag, ret);
1561 		}
1562 		msk->first_pending = mptcp_send_next(sk);
1563 
1564 		if (msk->snd_burst <= 0 ||
1565 		    !sk_stream_memory_free(ssk) ||
1566 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1567 			err = copied;
1568 			goto out;
1569 		}
1570 		mptcp_set_timeout(sk);
1571 	}
1572 	err = copied;
1573 
1574 out:
1575 	if (err > 0)
1576 		msk->last_data_sent = tcp_jiffies32;
1577 	return err;
1578 }
1579 
1580 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1581 {
1582 	struct sock *prev_ssk = NULL, *ssk = NULL;
1583 	struct mptcp_sock *msk = mptcp_sk(sk);
1584 	struct mptcp_sendmsg_info info = {
1585 				.flags = flags,
1586 	};
1587 	bool do_check_data_fin = false;
1588 	int push_count = 1;
1589 
1590 	while (mptcp_send_head(sk) && (push_count > 0)) {
1591 		struct mptcp_subflow_context *subflow;
1592 		int ret = 0;
1593 
1594 		if (mptcp_sched_get_send(msk))
1595 			break;
1596 
1597 		push_count = 0;
1598 
1599 		mptcp_for_each_subflow(msk, subflow) {
1600 			if (READ_ONCE(subflow->scheduled)) {
1601 				mptcp_subflow_set_scheduled(subflow, false);
1602 
1603 				prev_ssk = ssk;
1604 				ssk = mptcp_subflow_tcp_sock(subflow);
1605 				if (ssk != prev_ssk) {
1606 					/* First check. If the ssk has changed since
1607 					 * the last round, release prev_ssk
1608 					 */
1609 					if (prev_ssk)
1610 						mptcp_push_release(prev_ssk, &info);
1611 
1612 					/* Need to lock the new subflow only if different
1613 					 * from the previous one, otherwise we are still
1614 					 * helding the relevant lock
1615 					 */
1616 					lock_sock(ssk);
1617 				}
1618 
1619 				push_count++;
1620 
1621 				ret = __subflow_push_pending(sk, ssk, &info);
1622 				if (ret <= 0) {
1623 					if (ret != -EAGAIN ||
1624 					    (1 << ssk->sk_state) &
1625 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1626 						push_count--;
1627 					continue;
1628 				}
1629 				do_check_data_fin = true;
1630 			}
1631 		}
1632 	}
1633 
1634 	/* at this point we held the socket lock for the last subflow we used */
1635 	if (ssk)
1636 		mptcp_push_release(ssk, &info);
1637 
1638 	/* ensure the rtx timer is running */
1639 	if (!mptcp_rtx_timer_pending(sk))
1640 		mptcp_reset_rtx_timer(sk);
1641 	if (do_check_data_fin)
1642 		mptcp_check_send_data_fin(sk);
1643 }
1644 
1645 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1646 {
1647 	struct mptcp_sock *msk = mptcp_sk(sk);
1648 	struct mptcp_sendmsg_info info = {
1649 		.data_lock_held = true,
1650 	};
1651 	bool keep_pushing = true;
1652 	struct sock *xmit_ssk;
1653 	int copied = 0;
1654 
1655 	info.flags = 0;
1656 	while (mptcp_send_head(sk) && keep_pushing) {
1657 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1658 		int ret = 0;
1659 
1660 		/* check for a different subflow usage only after
1661 		 * spooling the first chunk of data
1662 		 */
1663 		if (first) {
1664 			mptcp_subflow_set_scheduled(subflow, false);
1665 			ret = __subflow_push_pending(sk, ssk, &info);
1666 			first = false;
1667 			if (ret <= 0)
1668 				break;
1669 			copied += ret;
1670 			continue;
1671 		}
1672 
1673 		if (mptcp_sched_get_send(msk))
1674 			goto out;
1675 
1676 		if (READ_ONCE(subflow->scheduled)) {
1677 			mptcp_subflow_set_scheduled(subflow, false);
1678 			ret = __subflow_push_pending(sk, ssk, &info);
1679 			if (ret <= 0)
1680 				keep_pushing = false;
1681 			copied += ret;
1682 		}
1683 
1684 		mptcp_for_each_subflow(msk, subflow) {
1685 			if (READ_ONCE(subflow->scheduled)) {
1686 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1687 				if (xmit_ssk != ssk) {
1688 					mptcp_subflow_delegate(subflow,
1689 							       MPTCP_DELEGATE_SEND);
1690 					keep_pushing = false;
1691 				}
1692 			}
1693 		}
1694 	}
1695 
1696 out:
1697 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1698 	 * not going to flush it via release_sock()
1699 	 */
1700 	if (copied) {
1701 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1702 			 info.size_goal);
1703 		if (!mptcp_rtx_timer_pending(sk))
1704 			mptcp_reset_rtx_timer(sk);
1705 
1706 		if (msk->snd_data_fin_enable &&
1707 		    msk->snd_nxt + 1 == msk->write_seq)
1708 			mptcp_schedule_work(sk);
1709 	}
1710 }
1711 
1712 static int mptcp_disconnect(struct sock *sk, int flags);
1713 
1714 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1715 				  size_t len, int *copied_syn)
1716 {
1717 	unsigned int saved_flags = msg->msg_flags;
1718 	struct mptcp_sock *msk = mptcp_sk(sk);
1719 	struct sock *ssk;
1720 	int ret;
1721 
1722 	/* on flags based fastopen the mptcp is supposed to create the
1723 	 * first subflow right now. Otherwise we are in the defer_connect
1724 	 * path, and the first subflow must be already present.
1725 	 * Since the defer_connect flag is cleared after the first succsful
1726 	 * fastopen attempt, no need to check for additional subflow status.
1727 	 */
1728 	if (msg->msg_flags & MSG_FASTOPEN) {
1729 		ssk = __mptcp_nmpc_sk(msk);
1730 		if (IS_ERR(ssk))
1731 			return PTR_ERR(ssk);
1732 	}
1733 	if (!msk->first)
1734 		return -EINVAL;
1735 
1736 	ssk = msk->first;
1737 
1738 	lock_sock(ssk);
1739 	msg->msg_flags |= MSG_DONTWAIT;
1740 	msk->fastopening = 1;
1741 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1742 	msk->fastopening = 0;
1743 	msg->msg_flags = saved_flags;
1744 	release_sock(ssk);
1745 
1746 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1747 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1748 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1749 					    msg->msg_namelen, msg->msg_flags, 1);
1750 
1751 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1752 		 * case of any error, except timeout or signal
1753 		 */
1754 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1755 			*copied_syn = 0;
1756 	} else if (ret && ret != -EINPROGRESS) {
1757 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1758 		 * __inet_stream_connect() can fail, due to looking check,
1759 		 * see mptcp_disconnect().
1760 		 * Attempt it again outside the problematic scope.
1761 		 */
1762 		if (!mptcp_disconnect(sk, 0)) {
1763 			sk->sk_disconnects++;
1764 			sk->sk_socket->state = SS_UNCONNECTED;
1765 		}
1766 	}
1767 	inet_clear_bit(DEFER_CONNECT, sk);
1768 
1769 	return ret;
1770 }
1771 
1772 static int do_copy_data_nocache(struct sock *sk, int copy,
1773 				struct iov_iter *from, char *to)
1774 {
1775 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1776 		if (!copy_from_iter_full_nocache(to, copy, from))
1777 			return -EFAULT;
1778 	} else if (!copy_from_iter_full(to, copy, from)) {
1779 		return -EFAULT;
1780 	}
1781 	return 0;
1782 }
1783 
1784 /* open-code sk_stream_memory_free() plus sent limit computation to
1785  * avoid indirect calls in fast-path.
1786  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1787  * annotations.
1788  */
1789 static u32 mptcp_send_limit(const struct sock *sk)
1790 {
1791 	const struct mptcp_sock *msk = mptcp_sk(sk);
1792 	u32 limit, not_sent;
1793 
1794 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1795 		return 0;
1796 
1797 	limit = mptcp_notsent_lowat(sk);
1798 	if (limit == UINT_MAX)
1799 		return UINT_MAX;
1800 
1801 	not_sent = msk->write_seq - msk->snd_nxt;
1802 	if (not_sent >= limit)
1803 		return 0;
1804 
1805 	return limit - not_sent;
1806 }
1807 
1808 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1809 {
1810 	struct mptcp_subflow_context *subflow;
1811 
1812 	if (!rfs_is_needed())
1813 		return;
1814 
1815 	mptcp_for_each_subflow(msk, subflow) {
1816 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1817 
1818 		sock_rps_record_flow(ssk);
1819 	}
1820 }
1821 
1822 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1823 {
1824 	struct mptcp_sock *msk = mptcp_sk(sk);
1825 	struct page_frag *pfrag;
1826 	size_t copied = 0;
1827 	int ret = 0;
1828 	long timeo;
1829 
1830 	/* silently ignore everything else */
1831 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1832 
1833 	lock_sock(sk);
1834 
1835 	mptcp_rps_record_subflows(msk);
1836 
1837 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1838 		     msg->msg_flags & MSG_FASTOPEN)) {
1839 		int copied_syn = 0;
1840 
1841 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1842 		copied += copied_syn;
1843 		if (ret == -EINPROGRESS && copied_syn > 0)
1844 			goto out;
1845 		else if (ret)
1846 			goto do_error;
1847 	}
1848 
1849 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1850 
1851 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1852 		ret = sk_stream_wait_connect(sk, &timeo);
1853 		if (ret)
1854 			goto do_error;
1855 	}
1856 
1857 	ret = -EPIPE;
1858 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1859 		goto do_error;
1860 
1861 	pfrag = sk_page_frag(sk);
1862 
1863 	while (msg_data_left(msg)) {
1864 		int total_ts, frag_truesize = 0;
1865 		struct mptcp_data_frag *dfrag;
1866 		bool dfrag_collapsed;
1867 		size_t psize, offset;
1868 		u32 copy_limit;
1869 
1870 		/* ensure fitting the notsent_lowat() constraint */
1871 		copy_limit = mptcp_send_limit(sk);
1872 		if (!copy_limit)
1873 			goto wait_for_memory;
1874 
1875 		/* reuse tail pfrag, if possible, or carve a new one from the
1876 		 * page allocator
1877 		 */
1878 		dfrag = mptcp_pending_tail(sk);
1879 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1880 		if (!dfrag_collapsed) {
1881 			if (!mptcp_page_frag_refill(sk, pfrag))
1882 				goto wait_for_memory;
1883 
1884 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1885 			frag_truesize = dfrag->overhead;
1886 		}
1887 
1888 		/* we do not bound vs wspace, to allow a single packet.
1889 		 * memory accounting will prevent execessive memory usage
1890 		 * anyway
1891 		 */
1892 		offset = dfrag->offset + dfrag->data_len;
1893 		psize = pfrag->size - offset;
1894 		psize = min_t(size_t, psize, msg_data_left(msg));
1895 		psize = min_t(size_t, psize, copy_limit);
1896 		total_ts = psize + frag_truesize;
1897 
1898 		if (!sk_wmem_schedule(sk, total_ts))
1899 			goto wait_for_memory;
1900 
1901 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1902 					   page_address(dfrag->page) + offset);
1903 		if (ret)
1904 			goto do_error;
1905 
1906 		/* data successfully copied into the write queue */
1907 		sk_forward_alloc_add(sk, -total_ts);
1908 		copied += psize;
1909 		dfrag->data_len += psize;
1910 		frag_truesize += psize;
1911 		pfrag->offset += frag_truesize;
1912 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1913 
1914 		/* charge data on mptcp pending queue to the msk socket
1915 		 * Note: we charge such data both to sk and ssk
1916 		 */
1917 		sk_wmem_queued_add(sk, frag_truesize);
1918 		if (!dfrag_collapsed) {
1919 			get_page(dfrag->page);
1920 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1921 			if (!msk->first_pending)
1922 				msk->first_pending = dfrag;
1923 		}
1924 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1925 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1926 			 !dfrag_collapsed);
1927 
1928 		continue;
1929 
1930 wait_for_memory:
1931 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1932 		__mptcp_push_pending(sk, msg->msg_flags);
1933 		ret = sk_stream_wait_memory(sk, &timeo);
1934 		if (ret)
1935 			goto do_error;
1936 	}
1937 
1938 	if (copied)
1939 		__mptcp_push_pending(sk, msg->msg_flags);
1940 
1941 out:
1942 	release_sock(sk);
1943 	return copied;
1944 
1945 do_error:
1946 	if (copied)
1947 		goto out;
1948 
1949 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1950 	goto out;
1951 }
1952 
1953 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1954 
1955 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1956 				size_t len, int flags, int copied_total,
1957 				struct scm_timestamping_internal *tss,
1958 				int *cmsg_flags)
1959 {
1960 	struct mptcp_sock *msk = mptcp_sk(sk);
1961 	struct sk_buff *skb, *tmp;
1962 	int total_data_len = 0;
1963 	int copied = 0;
1964 
1965 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1966 		u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
1967 		u32 data_len = skb->len - offset;
1968 		u32 count;
1969 		int err;
1970 
1971 		if (flags & MSG_PEEK) {
1972 			/* skip already peeked skbs */
1973 			if (total_data_len + data_len <= copied_total) {
1974 				total_data_len += data_len;
1975 				continue;
1976 			}
1977 
1978 			/* skip the already peeked data in the current skb */
1979 			delta = copied_total - total_data_len;
1980 			offset += delta;
1981 			data_len -= delta;
1982 		}
1983 
1984 		count = min_t(size_t, len - copied, data_len);
1985 		if (!(flags & MSG_TRUNC)) {
1986 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1987 			if (unlikely(err < 0)) {
1988 				if (!copied)
1989 					return err;
1990 				break;
1991 			}
1992 		}
1993 
1994 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1995 			tcp_update_recv_tstamps(skb, tss);
1996 			*cmsg_flags |= MPTCP_CMSG_TS;
1997 		}
1998 
1999 		copied += count;
2000 
2001 		if (!(flags & MSG_PEEK)) {
2002 			msk->bytes_consumed += count;
2003 			if (count < data_len) {
2004 				MPTCP_SKB_CB(skb)->offset += count;
2005 				MPTCP_SKB_CB(skb)->map_seq += count;
2006 				break;
2007 			}
2008 
2009 			/* avoid the indirect call, we know the destructor is sock_rfree */
2010 			skb->destructor = NULL;
2011 			skb->sk = NULL;
2012 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2013 			sk_mem_uncharge(sk, skb->truesize);
2014 			__skb_unlink(skb, &sk->sk_receive_queue);
2015 			skb_attempt_defer_free(skb);
2016 		}
2017 
2018 		if (copied >= len)
2019 			break;
2020 	}
2021 
2022 	mptcp_rcv_space_adjust(msk, copied);
2023 	return copied;
2024 }
2025 
2026 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2027  *
2028  * Only difference: Use highest rtt estimate of the subflows in use.
2029  */
2030 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2031 {
2032 	struct mptcp_subflow_context *subflow;
2033 	struct sock *sk = (struct sock *)msk;
2034 	u8 scaling_ratio = U8_MAX;
2035 	u32 time, advmss = 1;
2036 	u64 rtt_us, mstamp;
2037 
2038 	msk_owned_by_me(msk);
2039 
2040 	if (copied <= 0)
2041 		return;
2042 
2043 	if (!msk->rcvspace_init)
2044 		mptcp_rcv_space_init(msk, msk->first);
2045 
2046 	msk->rcvq_space.copied += copied;
2047 
2048 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2049 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2050 
2051 	rtt_us = msk->rcvq_space.rtt_us;
2052 	if (rtt_us && time < (rtt_us >> 3))
2053 		return;
2054 
2055 	rtt_us = 0;
2056 	mptcp_for_each_subflow(msk, subflow) {
2057 		const struct tcp_sock *tp;
2058 		u64 sf_rtt_us;
2059 		u32 sf_advmss;
2060 
2061 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2062 
2063 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2064 		sf_advmss = READ_ONCE(tp->advmss);
2065 
2066 		rtt_us = max(sf_rtt_us, rtt_us);
2067 		advmss = max(sf_advmss, advmss);
2068 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2069 	}
2070 
2071 	msk->rcvq_space.rtt_us = rtt_us;
2072 	msk->scaling_ratio = scaling_ratio;
2073 	if (time < (rtt_us >> 3) || rtt_us == 0)
2074 		return;
2075 
2076 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2077 		goto new_measure;
2078 
2079 	if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2080 		/* Make subflows follow along.  If we do not do this, we
2081 		 * get drops at subflow level if skbs can't be moved to
2082 		 * the mptcp rx queue fast enough (announced rcv_win can
2083 		 * exceed ssk->sk_rcvbuf).
2084 		 */
2085 		mptcp_for_each_subflow(msk, subflow) {
2086 			struct sock *ssk;
2087 			bool slow;
2088 
2089 			ssk = mptcp_subflow_tcp_sock(subflow);
2090 			slow = lock_sock_fast(ssk);
2091 			/* subflows can be added before tcp_init_transfer() */
2092 			if (tcp_sk(ssk)->rcvq_space.space)
2093 				tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2094 			unlock_sock_fast(ssk, slow);
2095 		}
2096 	}
2097 
2098 new_measure:
2099 	msk->rcvq_space.copied = 0;
2100 	msk->rcvq_space.time = mstamp;
2101 }
2102 
2103 static struct mptcp_subflow_context *
2104 __mptcp_first_ready_from(struct mptcp_sock *msk,
2105 			 struct mptcp_subflow_context *subflow)
2106 {
2107 	struct mptcp_subflow_context *start_subflow = subflow;
2108 
2109 	while (!READ_ONCE(subflow->data_avail)) {
2110 		subflow = mptcp_next_subflow(msk, subflow);
2111 		if (subflow == start_subflow)
2112 			return NULL;
2113 	}
2114 	return subflow;
2115 }
2116 
2117 static bool __mptcp_move_skbs(struct sock *sk)
2118 {
2119 	struct mptcp_subflow_context *subflow;
2120 	struct mptcp_sock *msk = mptcp_sk(sk);
2121 	bool ret = false;
2122 
2123 	if (list_empty(&msk->conn_list))
2124 		return false;
2125 
2126 	subflow = list_first_entry(&msk->conn_list,
2127 				   struct mptcp_subflow_context, node);
2128 	for (;;) {
2129 		struct sock *ssk;
2130 		bool slowpath;
2131 
2132 		/*
2133 		 * As an optimization avoid traversing the subflows list
2134 		 * and ev. acquiring the subflow socket lock before baling out
2135 		 */
2136 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2137 			break;
2138 
2139 		subflow = __mptcp_first_ready_from(msk, subflow);
2140 		if (!subflow)
2141 			break;
2142 
2143 		ssk = mptcp_subflow_tcp_sock(subflow);
2144 		slowpath = lock_sock_fast(ssk);
2145 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2146 		if (unlikely(ssk->sk_err))
2147 			__mptcp_error_report(sk);
2148 		unlock_sock_fast(ssk, slowpath);
2149 
2150 		subflow = mptcp_next_subflow(msk, subflow);
2151 	}
2152 
2153 	__mptcp_ofo_queue(msk);
2154 	if (ret)
2155 		mptcp_check_data_fin((struct sock *)msk);
2156 	return ret;
2157 }
2158 
2159 static unsigned int mptcp_inq_hint(const struct sock *sk)
2160 {
2161 	const struct mptcp_sock *msk = mptcp_sk(sk);
2162 	const struct sk_buff *skb;
2163 
2164 	skb = skb_peek(&sk->sk_receive_queue);
2165 	if (skb) {
2166 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2167 
2168 		if (hint_val >= INT_MAX)
2169 			return INT_MAX;
2170 
2171 		return (unsigned int)hint_val;
2172 	}
2173 
2174 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2175 		return 1;
2176 
2177 	return 0;
2178 }
2179 
2180 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2181 			 int flags, int *addr_len)
2182 {
2183 	struct mptcp_sock *msk = mptcp_sk(sk);
2184 	struct scm_timestamping_internal tss;
2185 	int copied = 0, cmsg_flags = 0;
2186 	int target;
2187 	long timeo;
2188 
2189 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2190 	if (unlikely(flags & MSG_ERRQUEUE))
2191 		return inet_recv_error(sk, msg, len, addr_len);
2192 
2193 	lock_sock(sk);
2194 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2195 		copied = -ENOTCONN;
2196 		goto out_err;
2197 	}
2198 
2199 	mptcp_rps_record_subflows(msk);
2200 
2201 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2202 
2203 	len = min_t(size_t, len, INT_MAX);
2204 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2205 
2206 	if (unlikely(msk->recvmsg_inq))
2207 		cmsg_flags = MPTCP_CMSG_INQ;
2208 
2209 	while (copied < len) {
2210 		int err, bytes_read;
2211 
2212 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2213 						  copied, &tss, &cmsg_flags);
2214 		if (unlikely(bytes_read < 0)) {
2215 			if (!copied)
2216 				copied = bytes_read;
2217 			goto out_err;
2218 		}
2219 
2220 		copied += bytes_read;
2221 
2222 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2223 			continue;
2224 
2225 		/* only the MPTCP socket status is relevant here. The exit
2226 		 * conditions mirror closely tcp_recvmsg()
2227 		 */
2228 		if (copied >= target)
2229 			break;
2230 
2231 		if (copied) {
2232 			if (sk->sk_err ||
2233 			    sk->sk_state == TCP_CLOSE ||
2234 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2235 			    !timeo ||
2236 			    signal_pending(current))
2237 				break;
2238 		} else {
2239 			if (sk->sk_err) {
2240 				copied = sock_error(sk);
2241 				break;
2242 			}
2243 
2244 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2245 				break;
2246 
2247 			if (sk->sk_state == TCP_CLOSE) {
2248 				copied = -ENOTCONN;
2249 				break;
2250 			}
2251 
2252 			if (!timeo) {
2253 				copied = -EAGAIN;
2254 				break;
2255 			}
2256 
2257 			if (signal_pending(current)) {
2258 				copied = sock_intr_errno(timeo);
2259 				break;
2260 			}
2261 		}
2262 
2263 		pr_debug("block timeout %ld\n", timeo);
2264 		mptcp_cleanup_rbuf(msk, copied);
2265 		err = sk_wait_data(sk, &timeo, NULL);
2266 		if (err < 0) {
2267 			err = copied ? : err;
2268 			goto out_err;
2269 		}
2270 	}
2271 
2272 	mptcp_cleanup_rbuf(msk, copied);
2273 
2274 out_err:
2275 	if (cmsg_flags && copied >= 0) {
2276 		if (cmsg_flags & MPTCP_CMSG_TS)
2277 			tcp_recv_timestamp(msg, sk, &tss);
2278 
2279 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2280 			unsigned int inq = mptcp_inq_hint(sk);
2281 
2282 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2283 		}
2284 	}
2285 
2286 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2287 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2288 
2289 	release_sock(sk);
2290 	return copied;
2291 }
2292 
2293 static void mptcp_retransmit_timer(struct timer_list *t)
2294 {
2295 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2296 							       icsk_retransmit_timer);
2297 	struct sock *sk = &icsk->icsk_inet.sk;
2298 	struct mptcp_sock *msk = mptcp_sk(sk);
2299 
2300 	bh_lock_sock(sk);
2301 	if (!sock_owned_by_user(sk)) {
2302 		/* we need a process context to retransmit */
2303 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2304 			mptcp_schedule_work(sk);
2305 	} else {
2306 		/* delegate our work to tcp_release_cb() */
2307 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2308 	}
2309 	bh_unlock_sock(sk);
2310 	sock_put(sk);
2311 }
2312 
2313 static void mptcp_tout_timer(struct timer_list *t)
2314 {
2315 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2316 
2317 	mptcp_schedule_work(sk);
2318 	sock_put(sk);
2319 }
2320 
2321 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2322  * level.
2323  *
2324  * A backup subflow is returned only if that is the only kind available.
2325  */
2326 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2327 {
2328 	struct sock *backup = NULL, *pick = NULL;
2329 	struct mptcp_subflow_context *subflow;
2330 	int min_stale_count = INT_MAX;
2331 
2332 	mptcp_for_each_subflow(msk, subflow) {
2333 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2334 
2335 		if (!__mptcp_subflow_active(subflow))
2336 			continue;
2337 
2338 		/* still data outstanding at TCP level? skip this */
2339 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2340 			mptcp_pm_subflow_chk_stale(msk, ssk);
2341 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2342 			continue;
2343 		}
2344 
2345 		if (subflow->backup || subflow->request_bkup) {
2346 			if (!backup)
2347 				backup = ssk;
2348 			continue;
2349 		}
2350 
2351 		if (!pick)
2352 			pick = ssk;
2353 	}
2354 
2355 	if (pick)
2356 		return pick;
2357 
2358 	/* use backup only if there are no progresses anywhere */
2359 	return min_stale_count > 1 ? backup : NULL;
2360 }
2361 
2362 bool __mptcp_retransmit_pending_data(struct sock *sk)
2363 {
2364 	struct mptcp_data_frag *cur, *rtx_head;
2365 	struct mptcp_sock *msk = mptcp_sk(sk);
2366 
2367 	if (__mptcp_check_fallback(msk))
2368 		return false;
2369 
2370 	/* the closing socket has some data untransmitted and/or unacked:
2371 	 * some data in the mptcp rtx queue has not really xmitted yet.
2372 	 * keep it simple and re-inject the whole mptcp level rtx queue
2373 	 */
2374 	mptcp_data_lock(sk);
2375 	__mptcp_clean_una_wakeup(sk);
2376 	rtx_head = mptcp_rtx_head(sk);
2377 	if (!rtx_head) {
2378 		mptcp_data_unlock(sk);
2379 		return false;
2380 	}
2381 
2382 	msk->recovery_snd_nxt = msk->snd_nxt;
2383 	msk->recovery = true;
2384 	mptcp_data_unlock(sk);
2385 
2386 	msk->first_pending = rtx_head;
2387 	msk->snd_burst = 0;
2388 
2389 	/* be sure to clear the "sent status" on all re-injected fragments */
2390 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2391 		if (!cur->already_sent)
2392 			break;
2393 		cur->already_sent = 0;
2394 	}
2395 
2396 	return true;
2397 }
2398 
2399 /* flags for __mptcp_close_ssk() */
2400 #define MPTCP_CF_PUSH		BIT(1)
2401 #define MPTCP_CF_FASTCLOSE	BIT(2)
2402 
2403 /* be sure to send a reset only if the caller asked for it, also
2404  * clean completely the subflow status when the subflow reaches
2405  * TCP_CLOSE state
2406  */
2407 static void __mptcp_subflow_disconnect(struct sock *ssk,
2408 				       struct mptcp_subflow_context *subflow,
2409 				       unsigned int flags)
2410 {
2411 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2412 	    (flags & MPTCP_CF_FASTCLOSE)) {
2413 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2414 		 * disconnect should never fail
2415 		 */
2416 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2417 		mptcp_subflow_ctx_reset(subflow);
2418 	} else {
2419 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2420 	}
2421 }
2422 
2423 /* subflow sockets can be either outgoing (connect) or incoming
2424  * (accept).
2425  *
2426  * Outgoing subflows use in-kernel sockets.
2427  * Incoming subflows do not have their own 'struct socket' allocated,
2428  * so we need to use tcp_close() after detaching them from the mptcp
2429  * parent socket.
2430  */
2431 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2432 			      struct mptcp_subflow_context *subflow,
2433 			      unsigned int flags)
2434 {
2435 	struct mptcp_sock *msk = mptcp_sk(sk);
2436 	bool dispose_it, need_push = false;
2437 
2438 	/* If the first subflow moved to a close state before accept, e.g. due
2439 	 * to an incoming reset or listener shutdown, the subflow socket is
2440 	 * already deleted by inet_child_forget() and the mptcp socket can't
2441 	 * survive too.
2442 	 */
2443 	if (msk->in_accept_queue && msk->first == ssk &&
2444 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2445 		/* ensure later check in mptcp_worker() will dispose the msk */
2446 		sock_set_flag(sk, SOCK_DEAD);
2447 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2448 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2449 		mptcp_subflow_drop_ctx(ssk);
2450 		goto out_release;
2451 	}
2452 
2453 	dispose_it = msk->free_first || ssk != msk->first;
2454 	if (dispose_it)
2455 		list_del(&subflow->node);
2456 
2457 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2458 
2459 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2460 		/* be sure to force the tcp_close path
2461 		 * to generate the egress reset
2462 		 */
2463 		ssk->sk_lingertime = 0;
2464 		sock_set_flag(ssk, SOCK_LINGER);
2465 		subflow->send_fastclose = 1;
2466 	}
2467 
2468 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2469 	if (!dispose_it) {
2470 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2471 		release_sock(ssk);
2472 
2473 		goto out;
2474 	}
2475 
2476 	subflow->disposable = 1;
2477 
2478 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2479 	 * the ssk has been already destroyed, we just need to release the
2480 	 * reference owned by msk;
2481 	 */
2482 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2483 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2484 		kfree_rcu(subflow, rcu);
2485 	} else {
2486 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2487 		__tcp_close(ssk, 0);
2488 
2489 		/* close acquired an extra ref */
2490 		__sock_put(ssk);
2491 	}
2492 
2493 out_release:
2494 	__mptcp_subflow_error_report(sk, ssk);
2495 	release_sock(ssk);
2496 
2497 	sock_put(ssk);
2498 
2499 	if (ssk == msk->first)
2500 		WRITE_ONCE(msk->first, NULL);
2501 
2502 out:
2503 	__mptcp_sync_sndbuf(sk);
2504 	if (need_push)
2505 		__mptcp_push_pending(sk, 0);
2506 
2507 	/* Catch every 'all subflows closed' scenario, including peers silently
2508 	 * closing them, e.g. due to timeout.
2509 	 * For established sockets, allow an additional timeout before closing,
2510 	 * as the protocol can still create more subflows.
2511 	 */
2512 	if (list_is_singular(&msk->conn_list) && msk->first &&
2513 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2514 		if (sk->sk_state != TCP_ESTABLISHED ||
2515 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2516 			mptcp_set_state(sk, TCP_CLOSE);
2517 			mptcp_close_wake_up(sk);
2518 		} else {
2519 			mptcp_start_tout_timer(sk);
2520 		}
2521 	}
2522 }
2523 
2524 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2525 		     struct mptcp_subflow_context *subflow)
2526 {
2527 	/* The first subflow can already be closed and still in the list */
2528 	if (subflow->close_event_done)
2529 		return;
2530 
2531 	subflow->close_event_done = true;
2532 
2533 	if (sk->sk_state == TCP_ESTABLISHED)
2534 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2535 
2536 	/* subflow aborted before reaching the fully_established status
2537 	 * attempt the creation of the next subflow
2538 	 */
2539 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2540 
2541 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2542 }
2543 
2544 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2545 {
2546 	return 0;
2547 }
2548 
2549 static void __mptcp_close_subflow(struct sock *sk)
2550 {
2551 	struct mptcp_subflow_context *subflow, *tmp;
2552 	struct mptcp_sock *msk = mptcp_sk(sk);
2553 
2554 	might_sleep();
2555 
2556 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2557 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2558 		int ssk_state = inet_sk_state_load(ssk);
2559 
2560 		if (ssk_state != TCP_CLOSE &&
2561 		    (ssk_state != TCP_CLOSE_WAIT ||
2562 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2563 			continue;
2564 
2565 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2566 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2567 			continue;
2568 
2569 		mptcp_close_ssk(sk, ssk, subflow);
2570 	}
2571 
2572 }
2573 
2574 static bool mptcp_close_tout_expired(const struct sock *sk)
2575 {
2576 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2577 	    sk->sk_state == TCP_CLOSE)
2578 		return false;
2579 
2580 	return time_after32(tcp_jiffies32,
2581 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2582 }
2583 
2584 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2585 {
2586 	struct mptcp_subflow_context *subflow, *tmp;
2587 	struct sock *sk = (struct sock *)msk;
2588 
2589 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2590 		return;
2591 
2592 	mptcp_token_destroy(msk);
2593 
2594 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2595 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2596 		bool slow;
2597 
2598 		slow = lock_sock_fast(tcp_sk);
2599 		if (tcp_sk->sk_state != TCP_CLOSE) {
2600 			mptcp_send_active_reset_reason(tcp_sk);
2601 			tcp_set_state(tcp_sk, TCP_CLOSE);
2602 		}
2603 		unlock_sock_fast(tcp_sk, slow);
2604 	}
2605 
2606 	/* Mirror the tcp_reset() error propagation */
2607 	switch (sk->sk_state) {
2608 	case TCP_SYN_SENT:
2609 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2610 		break;
2611 	case TCP_CLOSE_WAIT:
2612 		WRITE_ONCE(sk->sk_err, EPIPE);
2613 		break;
2614 	case TCP_CLOSE:
2615 		return;
2616 	default:
2617 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2618 	}
2619 
2620 	mptcp_set_state(sk, TCP_CLOSE);
2621 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2622 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2623 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2624 
2625 	/* the calling mptcp_worker will properly destroy the socket */
2626 	if (sock_flag(sk, SOCK_DEAD))
2627 		return;
2628 
2629 	sk->sk_state_change(sk);
2630 	sk_error_report(sk);
2631 }
2632 
2633 static void __mptcp_retrans(struct sock *sk)
2634 {
2635 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2636 	struct mptcp_sock *msk = mptcp_sk(sk);
2637 	struct mptcp_subflow_context *subflow;
2638 	struct mptcp_data_frag *dfrag;
2639 	struct sock *ssk;
2640 	int ret, err;
2641 	u16 len = 0;
2642 
2643 	mptcp_clean_una_wakeup(sk);
2644 
2645 	/* first check ssk: need to kick "stale" logic */
2646 	err = mptcp_sched_get_retrans(msk);
2647 	dfrag = mptcp_rtx_head(sk);
2648 	if (!dfrag) {
2649 		if (mptcp_data_fin_enabled(msk)) {
2650 			struct inet_connection_sock *icsk = inet_csk(sk);
2651 
2652 			WRITE_ONCE(icsk->icsk_retransmits,
2653 				   icsk->icsk_retransmits + 1);
2654 			mptcp_set_datafin_timeout(sk);
2655 			mptcp_send_ack(msk);
2656 
2657 			goto reset_timer;
2658 		}
2659 
2660 		if (!mptcp_send_head(sk))
2661 			return;
2662 
2663 		goto reset_timer;
2664 	}
2665 
2666 	if (err)
2667 		goto reset_timer;
2668 
2669 	mptcp_for_each_subflow(msk, subflow) {
2670 		if (READ_ONCE(subflow->scheduled)) {
2671 			u16 copied = 0;
2672 
2673 			mptcp_subflow_set_scheduled(subflow, false);
2674 
2675 			ssk = mptcp_subflow_tcp_sock(subflow);
2676 
2677 			lock_sock(ssk);
2678 
2679 			/* limit retransmission to the bytes already sent on some subflows */
2680 			info.sent = 0;
2681 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2682 								    dfrag->already_sent;
2683 
2684 			/*
2685 			 * make the whole retrans decision, xmit, disallow
2686 			 * fallback atomic
2687 			 */
2688 			spin_lock_bh(&msk->fallback_lock);
2689 			if (__mptcp_check_fallback(msk)) {
2690 				spin_unlock_bh(&msk->fallback_lock);
2691 				release_sock(ssk);
2692 				return;
2693 			}
2694 
2695 			while (info.sent < info.limit) {
2696 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2697 				if (ret <= 0)
2698 					break;
2699 
2700 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2701 				copied += ret;
2702 				info.sent += ret;
2703 			}
2704 			if (copied) {
2705 				len = max(copied, len);
2706 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2707 					 info.size_goal);
2708 				msk->allow_infinite_fallback = false;
2709 			}
2710 			spin_unlock_bh(&msk->fallback_lock);
2711 
2712 			release_sock(ssk);
2713 		}
2714 	}
2715 
2716 	msk->bytes_retrans += len;
2717 	dfrag->already_sent = max(dfrag->already_sent, len);
2718 
2719 reset_timer:
2720 	mptcp_check_and_set_pending(sk);
2721 
2722 	if (!mptcp_rtx_timer_pending(sk))
2723 		mptcp_reset_rtx_timer(sk);
2724 }
2725 
2726 /* schedule the timeout timer for the relevant event: either close timeout
2727  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2728  */
2729 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2730 {
2731 	struct sock *sk = (struct sock *)msk;
2732 	unsigned long timeout, close_timeout;
2733 
2734 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2735 		return;
2736 
2737 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2738 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2739 
2740 	/* the close timeout takes precedence on the fail one, and here at least one of
2741 	 * them is active
2742 	 */
2743 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2744 
2745 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2746 }
2747 
2748 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2749 {
2750 	struct sock *ssk = msk->first;
2751 	bool slow;
2752 
2753 	if (!ssk)
2754 		return;
2755 
2756 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2757 
2758 	slow = lock_sock_fast(ssk);
2759 	mptcp_subflow_reset(ssk);
2760 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2761 	unlock_sock_fast(ssk, slow);
2762 }
2763 
2764 static void mptcp_do_fastclose(struct sock *sk)
2765 {
2766 	struct mptcp_subflow_context *subflow, *tmp;
2767 	struct mptcp_sock *msk = mptcp_sk(sk);
2768 
2769 	mptcp_set_state(sk, TCP_CLOSE);
2770 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2771 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2772 				  subflow, MPTCP_CF_FASTCLOSE);
2773 }
2774 
2775 static void mptcp_worker(struct work_struct *work)
2776 {
2777 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2778 	struct sock *sk = (struct sock *)msk;
2779 	unsigned long fail_tout;
2780 	int state;
2781 
2782 	lock_sock(sk);
2783 	state = sk->sk_state;
2784 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2785 		goto unlock;
2786 
2787 	mptcp_check_fastclose(msk);
2788 
2789 	mptcp_pm_worker(msk);
2790 
2791 	mptcp_check_send_data_fin(sk);
2792 	mptcp_check_data_fin_ack(sk);
2793 	mptcp_check_data_fin(sk);
2794 
2795 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2796 		__mptcp_close_subflow(sk);
2797 
2798 	if (mptcp_close_tout_expired(sk)) {
2799 		mptcp_do_fastclose(sk);
2800 		mptcp_close_wake_up(sk);
2801 	}
2802 
2803 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2804 		__mptcp_destroy_sock(sk);
2805 		goto unlock;
2806 	}
2807 
2808 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2809 		__mptcp_retrans(sk);
2810 
2811 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2812 	if (fail_tout && time_after(jiffies, fail_tout))
2813 		mptcp_mp_fail_no_response(msk);
2814 
2815 unlock:
2816 	release_sock(sk);
2817 	sock_put(sk);
2818 }
2819 
2820 static void __mptcp_init_sock(struct sock *sk)
2821 {
2822 	struct mptcp_sock *msk = mptcp_sk(sk);
2823 
2824 	INIT_LIST_HEAD(&msk->conn_list);
2825 	INIT_LIST_HEAD(&msk->join_list);
2826 	INIT_LIST_HEAD(&msk->rtx_queue);
2827 	INIT_WORK(&msk->work, mptcp_worker);
2828 	msk->out_of_order_queue = RB_ROOT;
2829 	msk->first_pending = NULL;
2830 	msk->timer_ival = TCP_RTO_MIN;
2831 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2832 
2833 	WRITE_ONCE(msk->first, NULL);
2834 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2835 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2836 	msk->allow_infinite_fallback = true;
2837 	msk->allow_subflows = true;
2838 	msk->recovery = false;
2839 	msk->subflow_id = 1;
2840 	msk->last_data_sent = tcp_jiffies32;
2841 	msk->last_data_recv = tcp_jiffies32;
2842 	msk->last_ack_recv = tcp_jiffies32;
2843 
2844 	mptcp_pm_data_init(msk);
2845 	spin_lock_init(&msk->fallback_lock);
2846 
2847 	/* re-use the csk retrans timer for MPTCP-level retrans */
2848 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2849 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2850 }
2851 
2852 static void mptcp_ca_reset(struct sock *sk)
2853 {
2854 	struct inet_connection_sock *icsk = inet_csk(sk);
2855 
2856 	tcp_assign_congestion_control(sk);
2857 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2858 		sizeof(mptcp_sk(sk)->ca_name));
2859 
2860 	/* no need to keep a reference to the ops, the name will suffice */
2861 	tcp_cleanup_congestion_control(sk);
2862 	icsk->icsk_ca_ops = NULL;
2863 }
2864 
2865 static int mptcp_init_sock(struct sock *sk)
2866 {
2867 	struct net *net = sock_net(sk);
2868 	int ret;
2869 
2870 	__mptcp_init_sock(sk);
2871 
2872 	if (!mptcp_is_enabled(net))
2873 		return -ENOPROTOOPT;
2874 
2875 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2876 		return -ENOMEM;
2877 
2878 	rcu_read_lock();
2879 	ret = mptcp_init_sched(mptcp_sk(sk),
2880 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2881 	rcu_read_unlock();
2882 	if (ret)
2883 		return ret;
2884 
2885 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2886 
2887 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2888 	 * propagate the correct value
2889 	 */
2890 	mptcp_ca_reset(sk);
2891 
2892 	sk_sockets_allocated_inc(sk);
2893 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2894 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2895 
2896 	return 0;
2897 }
2898 
2899 static void __mptcp_clear_xmit(struct sock *sk)
2900 {
2901 	struct mptcp_sock *msk = mptcp_sk(sk);
2902 	struct mptcp_data_frag *dtmp, *dfrag;
2903 
2904 	msk->first_pending = NULL;
2905 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2906 		dfrag_clear(sk, dfrag);
2907 }
2908 
2909 void mptcp_cancel_work(struct sock *sk)
2910 {
2911 	struct mptcp_sock *msk = mptcp_sk(sk);
2912 
2913 	if (cancel_work_sync(&msk->work))
2914 		__sock_put(sk);
2915 }
2916 
2917 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2918 {
2919 	lock_sock(ssk);
2920 
2921 	switch (ssk->sk_state) {
2922 	case TCP_LISTEN:
2923 		if (!(how & RCV_SHUTDOWN))
2924 			break;
2925 		fallthrough;
2926 	case TCP_SYN_SENT:
2927 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2928 		break;
2929 	default:
2930 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2931 			pr_debug("Fallback\n");
2932 			ssk->sk_shutdown |= how;
2933 			tcp_shutdown(ssk, how);
2934 
2935 			/* simulate the data_fin ack reception to let the state
2936 			 * machine move forward
2937 			 */
2938 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2939 			mptcp_schedule_work(sk);
2940 		} else {
2941 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2942 			tcp_send_ack(ssk);
2943 			if (!mptcp_rtx_timer_pending(sk))
2944 				mptcp_reset_rtx_timer(sk);
2945 		}
2946 		break;
2947 	}
2948 
2949 	release_sock(ssk);
2950 }
2951 
2952 void mptcp_set_state(struct sock *sk, int state)
2953 {
2954 	int oldstate = sk->sk_state;
2955 
2956 	switch (state) {
2957 	case TCP_ESTABLISHED:
2958 		if (oldstate != TCP_ESTABLISHED)
2959 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2960 		break;
2961 	case TCP_CLOSE_WAIT:
2962 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2963 		 * MPTCP "accepted" sockets will be created later on. So no
2964 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2965 		 */
2966 		break;
2967 	default:
2968 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2969 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2970 	}
2971 
2972 	inet_sk_state_store(sk, state);
2973 }
2974 
2975 static const unsigned char new_state[16] = {
2976 	/* current state:     new state:      action:	*/
2977 	[0 /* (Invalid) */] = TCP_CLOSE,
2978 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2979 	[TCP_SYN_SENT]      = TCP_CLOSE,
2980 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2981 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2982 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2983 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2984 	[TCP_CLOSE]         = TCP_CLOSE,
2985 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2986 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2987 	[TCP_LISTEN]        = TCP_CLOSE,
2988 	[TCP_CLOSING]       = TCP_CLOSING,
2989 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2990 };
2991 
2992 static int mptcp_close_state(struct sock *sk)
2993 {
2994 	int next = (int)new_state[sk->sk_state];
2995 	int ns = next & TCP_STATE_MASK;
2996 
2997 	mptcp_set_state(sk, ns);
2998 
2999 	return next & TCP_ACTION_FIN;
3000 }
3001 
3002 static void mptcp_check_send_data_fin(struct sock *sk)
3003 {
3004 	struct mptcp_subflow_context *subflow;
3005 	struct mptcp_sock *msk = mptcp_sk(sk);
3006 
3007 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3008 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3009 		 msk->snd_nxt, msk->write_seq);
3010 
3011 	/* we still need to enqueue subflows or not really shutting down,
3012 	 * skip this
3013 	 */
3014 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3015 	    mptcp_send_head(sk))
3016 		return;
3017 
3018 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3019 
3020 	mptcp_for_each_subflow(msk, subflow) {
3021 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3022 
3023 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3024 	}
3025 }
3026 
3027 static void __mptcp_wr_shutdown(struct sock *sk)
3028 {
3029 	struct mptcp_sock *msk = mptcp_sk(sk);
3030 
3031 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3032 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3033 		 !!mptcp_send_head(sk));
3034 
3035 	/* will be ignored by fallback sockets */
3036 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3037 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3038 
3039 	mptcp_check_send_data_fin(sk);
3040 }
3041 
3042 static void __mptcp_destroy_sock(struct sock *sk)
3043 {
3044 	struct mptcp_sock *msk = mptcp_sk(sk);
3045 
3046 	pr_debug("msk=%p\n", msk);
3047 
3048 	might_sleep();
3049 
3050 	mptcp_stop_rtx_timer(sk);
3051 	sk_stop_timer(sk, &sk->sk_timer);
3052 	msk->pm.status = 0;
3053 	mptcp_release_sched(msk);
3054 
3055 	sk->sk_prot->destroy(sk);
3056 
3057 	sk_stream_kill_queues(sk);
3058 	xfrm_sk_free_policy(sk);
3059 
3060 	sock_put(sk);
3061 }
3062 
3063 void __mptcp_unaccepted_force_close(struct sock *sk)
3064 {
3065 	sock_set_flag(sk, SOCK_DEAD);
3066 	mptcp_do_fastclose(sk);
3067 	__mptcp_destroy_sock(sk);
3068 }
3069 
3070 static __poll_t mptcp_check_readable(struct sock *sk)
3071 {
3072 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3073 }
3074 
3075 static void mptcp_check_listen_stop(struct sock *sk)
3076 {
3077 	struct sock *ssk;
3078 
3079 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3080 		return;
3081 
3082 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3083 	ssk = mptcp_sk(sk)->first;
3084 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3085 		return;
3086 
3087 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3088 	tcp_set_state(ssk, TCP_CLOSE);
3089 	mptcp_subflow_queue_clean(sk, ssk);
3090 	inet_csk_listen_stop(ssk);
3091 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3092 	release_sock(ssk);
3093 }
3094 
3095 bool __mptcp_close(struct sock *sk, long timeout)
3096 {
3097 	struct mptcp_subflow_context *subflow;
3098 	struct mptcp_sock *msk = mptcp_sk(sk);
3099 	bool do_cancel_work = false;
3100 	int subflows_alive = 0;
3101 
3102 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3103 
3104 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3105 		mptcp_check_listen_stop(sk);
3106 		mptcp_set_state(sk, TCP_CLOSE);
3107 		goto cleanup;
3108 	}
3109 
3110 	if (mptcp_data_avail(msk) || timeout < 0) {
3111 		/* If the msk has read data, or the caller explicitly ask it,
3112 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3113 		 */
3114 		mptcp_do_fastclose(sk);
3115 		timeout = 0;
3116 	} else if (mptcp_close_state(sk)) {
3117 		__mptcp_wr_shutdown(sk);
3118 	}
3119 
3120 	sk_stream_wait_close(sk, timeout);
3121 
3122 cleanup:
3123 	/* orphan all the subflows */
3124 	mptcp_for_each_subflow(msk, subflow) {
3125 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3126 		bool slow = lock_sock_fast_nested(ssk);
3127 
3128 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3129 
3130 		/* since the close timeout takes precedence on the fail one,
3131 		 * cancel the latter
3132 		 */
3133 		if (ssk == msk->first)
3134 			subflow->fail_tout = 0;
3135 
3136 		/* detach from the parent socket, but allow data_ready to
3137 		 * push incoming data into the mptcp stack, to properly ack it
3138 		 */
3139 		ssk->sk_socket = NULL;
3140 		ssk->sk_wq = NULL;
3141 		unlock_sock_fast(ssk, slow);
3142 	}
3143 	sock_orphan(sk);
3144 
3145 	/* all the subflows are closed, only timeout can change the msk
3146 	 * state, let's not keep resources busy for no reasons
3147 	 */
3148 	if (subflows_alive == 0)
3149 		mptcp_set_state(sk, TCP_CLOSE);
3150 
3151 	sock_hold(sk);
3152 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3153 	mptcp_pm_connection_closed(msk);
3154 
3155 	if (sk->sk_state == TCP_CLOSE) {
3156 		__mptcp_destroy_sock(sk);
3157 		do_cancel_work = true;
3158 	} else {
3159 		mptcp_start_tout_timer(sk);
3160 	}
3161 
3162 	return do_cancel_work;
3163 }
3164 
3165 static void mptcp_close(struct sock *sk, long timeout)
3166 {
3167 	bool do_cancel_work;
3168 
3169 	lock_sock(sk);
3170 
3171 	do_cancel_work = __mptcp_close(sk, timeout);
3172 	release_sock(sk);
3173 	if (do_cancel_work)
3174 		mptcp_cancel_work(sk);
3175 
3176 	sock_put(sk);
3177 }
3178 
3179 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3180 {
3181 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3182 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3183 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3184 
3185 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3186 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3187 
3188 	if (msk6 && ssk6) {
3189 		msk6->saddr = ssk6->saddr;
3190 		msk6->flow_label = ssk6->flow_label;
3191 	}
3192 #endif
3193 
3194 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3195 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3196 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3197 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3198 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3199 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3200 }
3201 
3202 static int mptcp_disconnect(struct sock *sk, int flags)
3203 {
3204 	struct mptcp_sock *msk = mptcp_sk(sk);
3205 
3206 	/* We are on the fastopen error path. We can't call straight into the
3207 	 * subflows cleanup code due to lock nesting (we are already under
3208 	 * msk->firstsocket lock).
3209 	 */
3210 	if (msk->fastopening)
3211 		return -EBUSY;
3212 
3213 	mptcp_check_listen_stop(sk);
3214 	mptcp_set_state(sk, TCP_CLOSE);
3215 
3216 	mptcp_stop_rtx_timer(sk);
3217 	mptcp_stop_tout_timer(sk);
3218 
3219 	mptcp_pm_connection_closed(msk);
3220 
3221 	/* msk->subflow is still intact, the following will not free the first
3222 	 * subflow
3223 	 */
3224 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3225 
3226 	/* The first subflow is already in TCP_CLOSE status, the following
3227 	 * can't overlap with a fallback anymore
3228 	 */
3229 	spin_lock_bh(&msk->fallback_lock);
3230 	msk->allow_subflows = true;
3231 	msk->allow_infinite_fallback = true;
3232 	WRITE_ONCE(msk->flags, 0);
3233 	spin_unlock_bh(&msk->fallback_lock);
3234 
3235 	msk->cb_flags = 0;
3236 	msk->recovery = false;
3237 	WRITE_ONCE(msk->can_ack, false);
3238 	WRITE_ONCE(msk->fully_established, false);
3239 	WRITE_ONCE(msk->rcv_data_fin, false);
3240 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3241 	WRITE_ONCE(msk->rcv_fastclose, false);
3242 	WRITE_ONCE(msk->use_64bit_ack, false);
3243 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3244 	mptcp_pm_data_reset(msk);
3245 	mptcp_ca_reset(sk);
3246 	msk->bytes_consumed = 0;
3247 	msk->bytes_acked = 0;
3248 	msk->bytes_received = 0;
3249 	msk->bytes_sent = 0;
3250 	msk->bytes_retrans = 0;
3251 	msk->rcvspace_init = 0;
3252 
3253 	WRITE_ONCE(sk->sk_shutdown, 0);
3254 	sk_error_report(sk);
3255 	return 0;
3256 }
3257 
3258 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3259 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3260 {
3261 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3262 
3263 	return &msk6->np;
3264 }
3265 
3266 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3267 {
3268 	const struct ipv6_pinfo *np = inet6_sk(sk);
3269 	struct ipv6_txoptions *opt;
3270 	struct ipv6_pinfo *newnp;
3271 
3272 	newnp = inet6_sk(newsk);
3273 
3274 	rcu_read_lock();
3275 	opt = rcu_dereference(np->opt);
3276 	if (opt) {
3277 		opt = ipv6_dup_options(newsk, opt);
3278 		if (!opt)
3279 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3280 	}
3281 	RCU_INIT_POINTER(newnp->opt, opt);
3282 	rcu_read_unlock();
3283 }
3284 #endif
3285 
3286 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3287 {
3288 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3289 	const struct inet_sock *inet = inet_sk(sk);
3290 	struct inet_sock *newinet;
3291 
3292 	newinet = inet_sk(newsk);
3293 
3294 	rcu_read_lock();
3295 	inet_opt = rcu_dereference(inet->inet_opt);
3296 	if (inet_opt) {
3297 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3298 				      inet_opt->opt.optlen, GFP_ATOMIC);
3299 		if (!newopt)
3300 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3301 	}
3302 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3303 	rcu_read_unlock();
3304 }
3305 
3306 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3307 				 const struct mptcp_options_received *mp_opt,
3308 				 struct sock *ssk,
3309 				 struct request_sock *req)
3310 {
3311 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3312 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3313 	struct mptcp_subflow_context *subflow;
3314 	struct mptcp_sock *msk;
3315 
3316 	if (!nsk)
3317 		return NULL;
3318 
3319 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3320 	if (nsk->sk_family == AF_INET6)
3321 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3322 #endif
3323 
3324 	__mptcp_init_sock(nsk);
3325 
3326 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3327 	if (nsk->sk_family == AF_INET6)
3328 		mptcp_copy_ip6_options(nsk, sk);
3329 	else
3330 #endif
3331 		mptcp_copy_ip_options(nsk, sk);
3332 
3333 	msk = mptcp_sk(nsk);
3334 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3335 	WRITE_ONCE(msk->token, subflow_req->token);
3336 	msk->in_accept_queue = 1;
3337 	WRITE_ONCE(msk->fully_established, false);
3338 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3339 		WRITE_ONCE(msk->csum_enabled, true);
3340 
3341 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3342 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3343 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3344 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3345 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3346 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3347 
3348 	/* passive msk is created after the first/MPC subflow */
3349 	msk->subflow_id = 2;
3350 
3351 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3352 	security_inet_csk_clone(nsk, req);
3353 
3354 	/* this can't race with mptcp_close(), as the msk is
3355 	 * not yet exposted to user-space
3356 	 */
3357 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3358 
3359 	/* The msk maintain a ref to each subflow in the connections list */
3360 	WRITE_ONCE(msk->first, ssk);
3361 	subflow = mptcp_subflow_ctx(ssk);
3362 	list_add(&subflow->node, &msk->conn_list);
3363 	sock_hold(ssk);
3364 
3365 	/* new mpc subflow takes ownership of the newly
3366 	 * created mptcp socket
3367 	 */
3368 	mptcp_token_accept(subflow_req, msk);
3369 
3370 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3371 	 * uses the correct data
3372 	 */
3373 	mptcp_copy_inaddrs(nsk, ssk);
3374 	__mptcp_propagate_sndbuf(nsk, ssk);
3375 
3376 	mptcp_rcv_space_init(msk, ssk);
3377 
3378 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3379 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3380 	bh_unlock_sock(nsk);
3381 
3382 	/* note: the newly allocated socket refcount is 2 now */
3383 	return nsk;
3384 }
3385 
3386 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3387 {
3388 	const struct tcp_sock *tp = tcp_sk(ssk);
3389 
3390 	msk->rcvspace_init = 1;
3391 	msk->rcvq_space.copied = 0;
3392 	msk->rcvq_space.rtt_us = 0;
3393 
3394 	msk->rcvq_space.time = tp->tcp_mstamp;
3395 
3396 	/* initial rcv_space offering made to peer */
3397 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3398 				      TCP_INIT_CWND * tp->advmss);
3399 	if (msk->rcvq_space.space == 0)
3400 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3401 }
3402 
3403 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3404 {
3405 	struct mptcp_subflow_context *subflow, *tmp;
3406 	struct sock *sk = (struct sock *)msk;
3407 
3408 	__mptcp_clear_xmit(sk);
3409 
3410 	/* join list will be eventually flushed (with rst) at sock lock release time */
3411 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3412 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3413 
3414 	__skb_queue_purge(&sk->sk_receive_queue);
3415 	skb_rbtree_purge(&msk->out_of_order_queue);
3416 
3417 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3418 	 * inet_sock_destruct() will dispose it
3419 	 */
3420 	mptcp_token_destroy(msk);
3421 	mptcp_pm_destroy(msk);
3422 }
3423 
3424 static void mptcp_destroy(struct sock *sk)
3425 {
3426 	struct mptcp_sock *msk = mptcp_sk(sk);
3427 
3428 	/* allow the following to close even the initial subflow */
3429 	msk->free_first = 1;
3430 	mptcp_destroy_common(msk, 0);
3431 	sk_sockets_allocated_dec(sk);
3432 }
3433 
3434 void __mptcp_data_acked(struct sock *sk)
3435 {
3436 	if (!sock_owned_by_user(sk))
3437 		__mptcp_clean_una(sk);
3438 	else
3439 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3440 }
3441 
3442 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3443 {
3444 	if (!sock_owned_by_user(sk))
3445 		__mptcp_subflow_push_pending(sk, ssk, false);
3446 	else
3447 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3448 }
3449 
3450 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3451 				      BIT(MPTCP_RETRANSMIT) | \
3452 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3453 				      BIT(MPTCP_DEQUEUE))
3454 
3455 /* processes deferred events and flush wmem */
3456 static void mptcp_release_cb(struct sock *sk)
3457 	__must_hold(&sk->sk_lock.slock)
3458 {
3459 	struct mptcp_sock *msk = mptcp_sk(sk);
3460 
3461 	for (;;) {
3462 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3463 		struct list_head join_list;
3464 
3465 		if (!flags)
3466 			break;
3467 
3468 		INIT_LIST_HEAD(&join_list);
3469 		list_splice_init(&msk->join_list, &join_list);
3470 
3471 		/* the following actions acquire the subflow socket lock
3472 		 *
3473 		 * 1) can't be invoked in atomic scope
3474 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3475 		 *    datapath acquires the msk socket spinlock while helding
3476 		 *    the subflow socket lock
3477 		 */
3478 		msk->cb_flags &= ~flags;
3479 		spin_unlock_bh(&sk->sk_lock.slock);
3480 
3481 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3482 			__mptcp_flush_join_list(sk, &join_list);
3483 		if (flags & BIT(MPTCP_PUSH_PENDING))
3484 			__mptcp_push_pending(sk, 0);
3485 		if (flags & BIT(MPTCP_RETRANSMIT))
3486 			__mptcp_retrans(sk);
3487 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3488 			/* notify ack seq update */
3489 			mptcp_cleanup_rbuf(msk, 0);
3490 			sk->sk_data_ready(sk);
3491 		}
3492 
3493 		cond_resched();
3494 		spin_lock_bh(&sk->sk_lock.slock);
3495 	}
3496 
3497 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3498 		__mptcp_clean_una_wakeup(sk);
3499 	if (unlikely(msk->cb_flags)) {
3500 		/* be sure to sync the msk state before taking actions
3501 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3502 		 * On sk release avoid actions depending on the first subflow
3503 		 */
3504 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3505 			__mptcp_sync_state(sk, msk->pending_state);
3506 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3507 			__mptcp_error_report(sk);
3508 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3509 			__mptcp_sync_sndbuf(sk);
3510 	}
3511 }
3512 
3513 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3514  * TCP can't schedule delack timer before the subflow is fully established.
3515  * MPTCP uses the delack timer to do 3rd ack retransmissions
3516  */
3517 static void schedule_3rdack_retransmission(struct sock *ssk)
3518 {
3519 	struct inet_connection_sock *icsk = inet_csk(ssk);
3520 	struct tcp_sock *tp = tcp_sk(ssk);
3521 	unsigned long timeout;
3522 
3523 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3524 		return;
3525 
3526 	/* reschedule with a timeout above RTT, as we must look only for drop */
3527 	if (tp->srtt_us)
3528 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3529 	else
3530 		timeout = TCP_TIMEOUT_INIT;
3531 	timeout += jiffies;
3532 
3533 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3534 	smp_store_release(&icsk->icsk_ack.pending,
3535 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3536 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3537 }
3538 
3539 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3540 {
3541 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3542 	struct sock *sk = subflow->conn;
3543 
3544 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3545 		mptcp_data_lock(sk);
3546 		if (!sock_owned_by_user(sk))
3547 			__mptcp_subflow_push_pending(sk, ssk, true);
3548 		else
3549 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3550 		mptcp_data_unlock(sk);
3551 	}
3552 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3553 		mptcp_data_lock(sk);
3554 		if (!sock_owned_by_user(sk))
3555 			__mptcp_sync_sndbuf(sk);
3556 		else
3557 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3558 		mptcp_data_unlock(sk);
3559 	}
3560 	if (status & BIT(MPTCP_DELEGATE_ACK))
3561 		schedule_3rdack_retransmission(ssk);
3562 }
3563 
3564 static int mptcp_hash(struct sock *sk)
3565 {
3566 	/* should never be called,
3567 	 * we hash the TCP subflows not the MPTCP socket
3568 	 */
3569 	WARN_ON_ONCE(1);
3570 	return 0;
3571 }
3572 
3573 static void mptcp_unhash(struct sock *sk)
3574 {
3575 	/* called from sk_common_release(), but nothing to do here */
3576 }
3577 
3578 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3579 {
3580 	struct mptcp_sock *msk = mptcp_sk(sk);
3581 
3582 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3583 	if (WARN_ON_ONCE(!msk->first))
3584 		return -EINVAL;
3585 
3586 	return inet_csk_get_port(msk->first, snum);
3587 }
3588 
3589 void mptcp_finish_connect(struct sock *ssk)
3590 {
3591 	struct mptcp_subflow_context *subflow;
3592 	struct mptcp_sock *msk;
3593 	struct sock *sk;
3594 
3595 	subflow = mptcp_subflow_ctx(ssk);
3596 	sk = subflow->conn;
3597 	msk = mptcp_sk(sk);
3598 
3599 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3600 
3601 	subflow->map_seq = subflow->iasn;
3602 	subflow->map_subflow_seq = 1;
3603 
3604 	/* the socket is not connected yet, no msk/subflow ops can access/race
3605 	 * accessing the field below
3606 	 */
3607 	WRITE_ONCE(msk->local_key, subflow->local_key);
3608 
3609 	mptcp_pm_new_connection(msk, ssk, 0);
3610 }
3611 
3612 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3613 {
3614 	write_lock_bh(&sk->sk_callback_lock);
3615 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3616 	sk_set_socket(sk, parent);
3617 	write_unlock_bh(&sk->sk_callback_lock);
3618 }
3619 
3620 bool mptcp_finish_join(struct sock *ssk)
3621 {
3622 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3623 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3624 	struct sock *parent = (void *)msk;
3625 	bool ret = true;
3626 
3627 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3628 
3629 	/* mptcp socket already closing? */
3630 	if (!mptcp_is_fully_established(parent)) {
3631 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3632 		return false;
3633 	}
3634 
3635 	/* active subflow, already present inside the conn_list */
3636 	if (!list_empty(&subflow->node)) {
3637 		spin_lock_bh(&msk->fallback_lock);
3638 		if (!msk->allow_subflows) {
3639 			spin_unlock_bh(&msk->fallback_lock);
3640 			return false;
3641 		}
3642 		mptcp_subflow_joined(msk, ssk);
3643 		spin_unlock_bh(&msk->fallback_lock);
3644 		mptcp_propagate_sndbuf(parent, ssk);
3645 		return true;
3646 	}
3647 
3648 	if (!mptcp_pm_allow_new_subflow(msk)) {
3649 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3650 		goto err_prohibited;
3651 	}
3652 
3653 	/* If we can't acquire msk socket lock here, let the release callback
3654 	 * handle it
3655 	 */
3656 	mptcp_data_lock(parent);
3657 	if (!sock_owned_by_user(parent)) {
3658 		ret = __mptcp_finish_join(msk, ssk);
3659 		if (ret) {
3660 			sock_hold(ssk);
3661 			list_add_tail(&subflow->node, &msk->conn_list);
3662 		}
3663 	} else {
3664 		sock_hold(ssk);
3665 		list_add_tail(&subflow->node, &msk->join_list);
3666 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3667 	}
3668 	mptcp_data_unlock(parent);
3669 
3670 	if (!ret) {
3671 err_prohibited:
3672 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3673 		return false;
3674 	}
3675 
3676 	return true;
3677 }
3678 
3679 static void mptcp_shutdown(struct sock *sk, int how)
3680 {
3681 	pr_debug("sk=%p, how=%d\n", sk, how);
3682 
3683 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3684 		__mptcp_wr_shutdown(sk);
3685 }
3686 
3687 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3688 {
3689 	const struct sock *sk = (void *)msk;
3690 	u64 delta;
3691 
3692 	if (sk->sk_state == TCP_LISTEN)
3693 		return -EINVAL;
3694 
3695 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3696 		return 0;
3697 
3698 	delta = msk->write_seq - v;
3699 	if (__mptcp_check_fallback(msk) && msk->first) {
3700 		struct tcp_sock *tp = tcp_sk(msk->first);
3701 
3702 		/* the first subflow is disconnected after close - see
3703 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3704 		 * so ignore that status, too.
3705 		 */
3706 		if (!((1 << msk->first->sk_state) &
3707 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3708 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3709 	}
3710 	if (delta > INT_MAX)
3711 		delta = INT_MAX;
3712 
3713 	return (int)delta;
3714 }
3715 
3716 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3717 {
3718 	struct mptcp_sock *msk = mptcp_sk(sk);
3719 	bool slow;
3720 
3721 	switch (cmd) {
3722 	case SIOCINQ:
3723 		if (sk->sk_state == TCP_LISTEN)
3724 			return -EINVAL;
3725 
3726 		lock_sock(sk);
3727 		if (__mptcp_move_skbs(sk))
3728 			mptcp_cleanup_rbuf(msk, 0);
3729 		*karg = mptcp_inq_hint(sk);
3730 		release_sock(sk);
3731 		break;
3732 	case SIOCOUTQ:
3733 		slow = lock_sock_fast(sk);
3734 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3735 		unlock_sock_fast(sk, slow);
3736 		break;
3737 	case SIOCOUTQNSD:
3738 		slow = lock_sock_fast(sk);
3739 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3740 		unlock_sock_fast(sk, slow);
3741 		break;
3742 	default:
3743 		return -ENOIOCTLCMD;
3744 	}
3745 
3746 	return 0;
3747 }
3748 
3749 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
3750 			 int addr_len)
3751 {
3752 	struct mptcp_subflow_context *subflow;
3753 	struct mptcp_sock *msk = mptcp_sk(sk);
3754 	int err = -EINVAL;
3755 	struct sock *ssk;
3756 
3757 	ssk = __mptcp_nmpc_sk(msk);
3758 	if (IS_ERR(ssk))
3759 		return PTR_ERR(ssk);
3760 
3761 	mptcp_set_state(sk, TCP_SYN_SENT);
3762 	subflow = mptcp_subflow_ctx(ssk);
3763 #ifdef CONFIG_TCP_MD5SIG
3764 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3765 	 * TCP option space.
3766 	 */
3767 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3768 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3769 #endif
3770 	if (subflow->request_mptcp) {
3771 		if (mptcp_active_should_disable(sk))
3772 			mptcp_early_fallback(msk, subflow,
3773 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3774 		else if (mptcp_token_new_connect(ssk) < 0)
3775 			mptcp_early_fallback(msk, subflow,
3776 					     MPTCP_MIB_TOKENFALLBACKINIT);
3777 	}
3778 
3779 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3780 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3781 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3782 	if (likely(!__mptcp_check_fallback(msk)))
3783 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3784 
3785 	/* if reaching here via the fastopen/sendmsg path, the caller already
3786 	 * acquired the subflow socket lock, too.
3787 	 */
3788 	if (!msk->fastopening)
3789 		lock_sock(ssk);
3790 
3791 	/* the following mirrors closely a very small chunk of code from
3792 	 * __inet_stream_connect()
3793 	 */
3794 	if (ssk->sk_state != TCP_CLOSE)
3795 		goto out;
3796 
3797 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3798 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3799 		if (err)
3800 			goto out;
3801 	}
3802 
3803 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3804 	if (err < 0)
3805 		goto out;
3806 
3807 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3808 
3809 out:
3810 	if (!msk->fastopening)
3811 		release_sock(ssk);
3812 
3813 	/* on successful connect, the msk state will be moved to established by
3814 	 * subflow_finish_connect()
3815 	 */
3816 	if (unlikely(err)) {
3817 		/* avoid leaving a dangling token in an unconnected socket */
3818 		mptcp_token_destroy(msk);
3819 		mptcp_set_state(sk, TCP_CLOSE);
3820 		return err;
3821 	}
3822 
3823 	mptcp_copy_inaddrs(sk, ssk);
3824 	return 0;
3825 }
3826 
3827 static struct proto mptcp_prot = {
3828 	.name		= "MPTCP",
3829 	.owner		= THIS_MODULE,
3830 	.init		= mptcp_init_sock,
3831 	.connect	= mptcp_connect,
3832 	.disconnect	= mptcp_disconnect,
3833 	.close		= mptcp_close,
3834 	.setsockopt	= mptcp_setsockopt,
3835 	.getsockopt	= mptcp_getsockopt,
3836 	.shutdown	= mptcp_shutdown,
3837 	.destroy	= mptcp_destroy,
3838 	.sendmsg	= mptcp_sendmsg,
3839 	.ioctl		= mptcp_ioctl,
3840 	.recvmsg	= mptcp_recvmsg,
3841 	.release_cb	= mptcp_release_cb,
3842 	.hash		= mptcp_hash,
3843 	.unhash		= mptcp_unhash,
3844 	.get_port	= mptcp_get_port,
3845 	.stream_memory_free	= mptcp_stream_memory_free,
3846 	.sockets_allocated	= &mptcp_sockets_allocated,
3847 
3848 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3849 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3850 
3851 	.memory_pressure	= &tcp_memory_pressure,
3852 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3853 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3854 	.sysctl_mem	= sysctl_tcp_mem,
3855 	.obj_size	= sizeof(struct mptcp_sock),
3856 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3857 	.no_autobind	= true,
3858 };
3859 
3860 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len)
3861 {
3862 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3863 	struct sock *ssk, *sk = sock->sk;
3864 	int err = -EINVAL;
3865 
3866 	lock_sock(sk);
3867 	ssk = __mptcp_nmpc_sk(msk);
3868 	if (IS_ERR(ssk)) {
3869 		err = PTR_ERR(ssk);
3870 		goto unlock;
3871 	}
3872 
3873 	if (sk->sk_family == AF_INET)
3874 		err = inet_bind_sk(ssk, uaddr, addr_len);
3875 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3876 	else if (sk->sk_family == AF_INET6)
3877 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3878 #endif
3879 	if (!err)
3880 		mptcp_copy_inaddrs(sk, ssk);
3881 
3882 unlock:
3883 	release_sock(sk);
3884 	return err;
3885 }
3886 
3887 static int mptcp_listen(struct socket *sock, int backlog)
3888 {
3889 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3890 	struct sock *sk = sock->sk;
3891 	struct sock *ssk;
3892 	int err;
3893 
3894 	pr_debug("msk=%p\n", msk);
3895 
3896 	lock_sock(sk);
3897 
3898 	err = -EINVAL;
3899 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3900 		goto unlock;
3901 
3902 	ssk = __mptcp_nmpc_sk(msk);
3903 	if (IS_ERR(ssk)) {
3904 		err = PTR_ERR(ssk);
3905 		goto unlock;
3906 	}
3907 
3908 	mptcp_set_state(sk, TCP_LISTEN);
3909 	sock_set_flag(sk, SOCK_RCU_FREE);
3910 
3911 	lock_sock(ssk);
3912 	err = __inet_listen_sk(ssk, backlog);
3913 	release_sock(ssk);
3914 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3915 
3916 	if (!err) {
3917 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3918 		mptcp_copy_inaddrs(sk, ssk);
3919 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3920 	}
3921 
3922 unlock:
3923 	release_sock(sk);
3924 	return err;
3925 }
3926 
3927 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3928 			       struct proto_accept_arg *arg)
3929 {
3930 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3931 	struct sock *ssk, *newsk;
3932 
3933 	pr_debug("msk=%p\n", msk);
3934 
3935 	/* Buggy applications can call accept on socket states other then LISTEN
3936 	 * but no need to allocate the first subflow just to error out.
3937 	 */
3938 	ssk = READ_ONCE(msk->first);
3939 	if (!ssk)
3940 		return -EINVAL;
3941 
3942 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3943 	newsk = inet_csk_accept(ssk, arg);
3944 	if (!newsk)
3945 		return arg->err;
3946 
3947 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3948 	if (sk_is_mptcp(newsk)) {
3949 		struct mptcp_subflow_context *subflow;
3950 		struct sock *new_mptcp_sock;
3951 
3952 		subflow = mptcp_subflow_ctx(newsk);
3953 		new_mptcp_sock = subflow->conn;
3954 
3955 		/* is_mptcp should be false if subflow->conn is missing, see
3956 		 * subflow_syn_recv_sock()
3957 		 */
3958 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3959 			tcp_sk(newsk)->is_mptcp = 0;
3960 			goto tcpfallback;
3961 		}
3962 
3963 		newsk = new_mptcp_sock;
3964 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3965 
3966 		newsk->sk_kern_sock = arg->kern;
3967 		lock_sock(newsk);
3968 		__inet_accept(sock, newsock, newsk);
3969 
3970 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3971 		msk = mptcp_sk(newsk);
3972 		msk->in_accept_queue = 0;
3973 
3974 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3975 		 * This is needed so NOSPACE flag can be set from tcp stack.
3976 		 */
3977 		mptcp_for_each_subflow(msk, subflow) {
3978 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3979 
3980 			if (!ssk->sk_socket)
3981 				mptcp_sock_graft(ssk, newsock);
3982 		}
3983 
3984 		mptcp_rps_record_subflows(msk);
3985 
3986 		/* Do late cleanup for the first subflow as necessary. Also
3987 		 * deal with bad peers not doing a complete shutdown.
3988 		 */
3989 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3990 			__mptcp_close_ssk(newsk, msk->first,
3991 					  mptcp_subflow_ctx(msk->first), 0);
3992 			if (unlikely(list_is_singular(&msk->conn_list)))
3993 				mptcp_set_state(newsk, TCP_CLOSE);
3994 		}
3995 	} else {
3996 tcpfallback:
3997 		newsk->sk_kern_sock = arg->kern;
3998 		lock_sock(newsk);
3999 		__inet_accept(sock, newsock, newsk);
4000 		/* we are being invoked after accepting a non-mp-capable
4001 		 * flow: sk is a tcp_sk, not an mptcp one.
4002 		 *
4003 		 * Hand the socket over to tcp so all further socket ops
4004 		 * bypass mptcp.
4005 		 */
4006 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4007 			   mptcp_fallback_tcp_ops(newsock->sk));
4008 	}
4009 	release_sock(newsk);
4010 
4011 	return 0;
4012 }
4013 
4014 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4015 {
4016 	struct sock *sk = (struct sock *)msk;
4017 
4018 	if (__mptcp_stream_is_writeable(sk, 1))
4019 		return EPOLLOUT | EPOLLWRNORM;
4020 
4021 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4022 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4023 	if (__mptcp_stream_is_writeable(sk, 1))
4024 		return EPOLLOUT | EPOLLWRNORM;
4025 
4026 	return 0;
4027 }
4028 
4029 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4030 			   struct poll_table_struct *wait)
4031 {
4032 	struct sock *sk = sock->sk;
4033 	struct mptcp_sock *msk;
4034 	__poll_t mask = 0;
4035 	u8 shutdown;
4036 	int state;
4037 
4038 	msk = mptcp_sk(sk);
4039 	sock_poll_wait(file, sock, wait);
4040 
4041 	state = inet_sk_state_load(sk);
4042 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4043 	if (state == TCP_LISTEN) {
4044 		struct sock *ssk = READ_ONCE(msk->first);
4045 
4046 		if (WARN_ON_ONCE(!ssk))
4047 			return 0;
4048 
4049 		return inet_csk_listen_poll(ssk);
4050 	}
4051 
4052 	shutdown = READ_ONCE(sk->sk_shutdown);
4053 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4054 		mask |= EPOLLHUP;
4055 	if (shutdown & RCV_SHUTDOWN)
4056 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4057 
4058 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4059 		mask |= mptcp_check_readable(sk);
4060 		if (shutdown & SEND_SHUTDOWN)
4061 			mask |= EPOLLOUT | EPOLLWRNORM;
4062 		else
4063 			mask |= mptcp_check_writeable(msk);
4064 	} else if (state == TCP_SYN_SENT &&
4065 		   inet_test_bit(DEFER_CONNECT, sk)) {
4066 		/* cf tcp_poll() note about TFO */
4067 		mask |= EPOLLOUT | EPOLLWRNORM;
4068 	}
4069 
4070 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4071 	smp_rmb();
4072 	if (READ_ONCE(sk->sk_err))
4073 		mask |= EPOLLERR;
4074 
4075 	return mask;
4076 }
4077 
4078 static const struct proto_ops mptcp_stream_ops = {
4079 	.family		   = PF_INET,
4080 	.owner		   = THIS_MODULE,
4081 	.release	   = inet_release,
4082 	.bind		   = mptcp_bind,
4083 	.connect	   = inet_stream_connect,
4084 	.socketpair	   = sock_no_socketpair,
4085 	.accept		   = mptcp_stream_accept,
4086 	.getname	   = inet_getname,
4087 	.poll		   = mptcp_poll,
4088 	.ioctl		   = inet_ioctl,
4089 	.gettstamp	   = sock_gettstamp,
4090 	.listen		   = mptcp_listen,
4091 	.shutdown	   = inet_shutdown,
4092 	.setsockopt	   = sock_common_setsockopt,
4093 	.getsockopt	   = sock_common_getsockopt,
4094 	.sendmsg	   = inet_sendmsg,
4095 	.recvmsg	   = inet_recvmsg,
4096 	.mmap		   = sock_no_mmap,
4097 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4098 };
4099 
4100 static struct inet_protosw mptcp_protosw = {
4101 	.type		= SOCK_STREAM,
4102 	.protocol	= IPPROTO_MPTCP,
4103 	.prot		= &mptcp_prot,
4104 	.ops		= &mptcp_stream_ops,
4105 	.flags		= INET_PROTOSW_ICSK,
4106 };
4107 
4108 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4109 {
4110 	struct mptcp_delegated_action *delegated;
4111 	struct mptcp_subflow_context *subflow;
4112 	int work_done = 0;
4113 
4114 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4115 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4116 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4117 
4118 		bh_lock_sock_nested(ssk);
4119 		if (!sock_owned_by_user(ssk)) {
4120 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4121 		} else {
4122 			/* tcp_release_cb_override already processed
4123 			 * the action or will do at next release_sock().
4124 			 * In both case must dequeue the subflow here - on the same
4125 			 * CPU that scheduled it.
4126 			 */
4127 			smp_wmb();
4128 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4129 		}
4130 		bh_unlock_sock(ssk);
4131 		sock_put(ssk);
4132 
4133 		if (++work_done == budget)
4134 			return budget;
4135 	}
4136 
4137 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4138 	 * will not try accessing the NULL napi->dev ptr
4139 	 */
4140 	napi_complete_done(napi, 0);
4141 	return work_done;
4142 }
4143 
4144 void __init mptcp_proto_init(void)
4145 {
4146 	struct mptcp_delegated_action *delegated;
4147 	int cpu;
4148 
4149 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4150 
4151 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4152 		panic("Failed to allocate MPTCP pcpu counter\n");
4153 
4154 	mptcp_napi_dev = alloc_netdev_dummy(0);
4155 	if (!mptcp_napi_dev)
4156 		panic("Failed to allocate MPTCP dummy netdev\n");
4157 	for_each_possible_cpu(cpu) {
4158 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4159 		INIT_LIST_HEAD(&delegated->head);
4160 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4161 				  mptcp_napi_poll);
4162 		napi_enable(&delegated->napi);
4163 	}
4164 
4165 	mptcp_subflow_init();
4166 	mptcp_pm_init();
4167 	mptcp_sched_init();
4168 	mptcp_token_init();
4169 
4170 	if (proto_register(&mptcp_prot, 1) != 0)
4171 		panic("Failed to register MPTCP proto.\n");
4172 
4173 	inet_register_protosw(&mptcp_protosw);
4174 
4175 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4176 }
4177 
4178 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4179 static const struct proto_ops mptcp_v6_stream_ops = {
4180 	.family		   = PF_INET6,
4181 	.owner		   = THIS_MODULE,
4182 	.release	   = inet6_release,
4183 	.bind		   = mptcp_bind,
4184 	.connect	   = inet_stream_connect,
4185 	.socketpair	   = sock_no_socketpair,
4186 	.accept		   = mptcp_stream_accept,
4187 	.getname	   = inet6_getname,
4188 	.poll		   = mptcp_poll,
4189 	.ioctl		   = inet6_ioctl,
4190 	.gettstamp	   = sock_gettstamp,
4191 	.listen		   = mptcp_listen,
4192 	.shutdown	   = inet_shutdown,
4193 	.setsockopt	   = sock_common_setsockopt,
4194 	.getsockopt	   = sock_common_getsockopt,
4195 	.sendmsg	   = inet6_sendmsg,
4196 	.recvmsg	   = inet6_recvmsg,
4197 	.mmap		   = sock_no_mmap,
4198 #ifdef CONFIG_COMPAT
4199 	.compat_ioctl	   = inet6_compat_ioctl,
4200 #endif
4201 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4202 };
4203 
4204 static struct proto mptcp_v6_prot;
4205 
4206 static struct inet_protosw mptcp_v6_protosw = {
4207 	.type		= SOCK_STREAM,
4208 	.protocol	= IPPROTO_MPTCP,
4209 	.prot		= &mptcp_v6_prot,
4210 	.ops		= &mptcp_v6_stream_ops,
4211 	.flags		= INET_PROTOSW_ICSK,
4212 };
4213 
4214 int __init mptcp_proto_v6_init(void)
4215 {
4216 	int err;
4217 
4218 	mptcp_v6_prot = mptcp_prot;
4219 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4220 	mptcp_v6_prot.slab = NULL;
4221 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4222 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4223 
4224 	err = proto_register(&mptcp_v6_prot, 1);
4225 	if (err)
4226 		return err;
4227 
4228 	err = inet6_register_protosw(&mptcp_v6_protosw);
4229 	if (err)
4230 		proto_unregister(&mptcp_v6_prot);
4231 
4232 	return err;
4233 }
4234 #endif
4235