1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/sock.h> 16 #include <net/inet_common.h> 17 #include <net/inet_hashtables.h> 18 #include <net/protocol.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/hotdata.h> 25 #include <net/xfrm.h> 26 #include <asm/ioctls.h> 27 #include "protocol.h" 28 #include "mib.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/mptcp.h> 32 33 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 34 struct mptcp6_sock { 35 struct mptcp_sock msk; 36 struct ipv6_pinfo np; 37 }; 38 #endif 39 40 enum { 41 MPTCP_CMSG_TS = BIT(0), 42 MPTCP_CMSG_INQ = BIT(1), 43 }; 44 45 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 46 47 static void __mptcp_destroy_sock(struct sock *sk); 48 static void mptcp_check_send_data_fin(struct sock *sk); 49 50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 51 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 52 }; 53 static struct net_device *mptcp_napi_dev; 54 55 /* Returns end sequence number of the receiver's advertised window */ 56 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 57 { 58 return READ_ONCE(msk->wnd_end); 59 } 60 61 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 62 { 63 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 64 if (sk->sk_prot == &tcpv6_prot) 65 return &inet6_stream_ops; 66 #endif 67 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 68 return &inet_stream_ops; 69 } 70 71 static int __mptcp_socket_create(struct mptcp_sock *msk) 72 { 73 struct mptcp_subflow_context *subflow; 74 struct sock *sk = (struct sock *)msk; 75 struct socket *ssock; 76 int err; 77 78 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 79 if (err) 80 return err; 81 82 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 83 WRITE_ONCE(msk->first, ssock->sk); 84 subflow = mptcp_subflow_ctx(ssock->sk); 85 list_add(&subflow->node, &msk->conn_list); 86 sock_hold(ssock->sk); 87 subflow->request_mptcp = 1; 88 subflow->subflow_id = msk->subflow_id++; 89 90 /* This is the first subflow, always with id 0 */ 91 WRITE_ONCE(subflow->local_id, 0); 92 mptcp_sock_graft(msk->first, sk->sk_socket); 93 iput(SOCK_INODE(ssock)); 94 95 return 0; 96 } 97 98 /* If the MPC handshake is not started, returns the first subflow, 99 * eventually allocating it. 100 */ 101 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 102 { 103 struct sock *sk = (struct sock *)msk; 104 int ret; 105 106 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 107 return ERR_PTR(-EINVAL); 108 109 if (!msk->first) { 110 ret = __mptcp_socket_create(msk); 111 if (ret) 112 return ERR_PTR(ret); 113 } 114 115 return msk->first; 116 } 117 118 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 119 { 120 sk_drops_add(sk, skb); 121 __kfree_skb(skb); 122 } 123 124 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 125 struct sk_buff *from) 126 { 127 bool fragstolen; 128 int delta; 129 130 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 131 MPTCP_SKB_CB(from)->offset || 132 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 133 !skb_try_coalesce(to, from, &fragstolen, &delta)) 134 return false; 135 136 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 137 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 138 to->len, MPTCP_SKB_CB(from)->end_seq); 139 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 140 141 /* note the fwd memory can reach a negative value after accounting 142 * for the delta, but the later skb free will restore a non 143 * negative one 144 */ 145 atomic_add(delta, &sk->sk_rmem_alloc); 146 sk_mem_charge(sk, delta); 147 kfree_skb_partial(from, fragstolen); 148 149 return true; 150 } 151 152 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 153 struct sk_buff *from) 154 { 155 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 156 return false; 157 158 return mptcp_try_coalesce((struct sock *)msk, to, from); 159 } 160 161 /* "inspired" by tcp_data_queue_ofo(), main differences: 162 * - use mptcp seqs 163 * - don't cope with sacks 164 */ 165 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 166 { 167 struct sock *sk = (struct sock *)msk; 168 struct rb_node **p, *parent; 169 u64 seq, end_seq, max_seq; 170 struct sk_buff *skb1; 171 172 seq = MPTCP_SKB_CB(skb)->map_seq; 173 end_seq = MPTCP_SKB_CB(skb)->end_seq; 174 max_seq = atomic64_read(&msk->rcv_wnd_sent); 175 176 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 177 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 178 if (after64(end_seq, max_seq)) { 179 /* out of window */ 180 mptcp_drop(sk, skb); 181 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 182 (unsigned long long)end_seq - (unsigned long)max_seq, 183 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 184 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 185 return; 186 } 187 188 p = &msk->out_of_order_queue.rb_node; 189 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 190 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 191 rb_link_node(&skb->rbnode, NULL, p); 192 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 193 msk->ooo_last_skb = skb; 194 goto end; 195 } 196 197 /* with 2 subflows, adding at end of ooo queue is quite likely 198 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 199 */ 200 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 201 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 202 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 203 return; 204 } 205 206 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 207 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 208 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 209 parent = &msk->ooo_last_skb->rbnode; 210 p = &parent->rb_right; 211 goto insert; 212 } 213 214 /* Find place to insert this segment. Handle overlaps on the way. */ 215 parent = NULL; 216 while (*p) { 217 parent = *p; 218 skb1 = rb_to_skb(parent); 219 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 220 p = &parent->rb_left; 221 continue; 222 } 223 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 224 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 225 /* All the bits are present. Drop. */ 226 mptcp_drop(sk, skb); 227 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 228 return; 229 } 230 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 231 /* partial overlap: 232 * | skb | 233 * | skb1 | 234 * continue traversing 235 */ 236 } else { 237 /* skb's seq == skb1's seq and skb covers skb1. 238 * Replace skb1 with skb. 239 */ 240 rb_replace_node(&skb1->rbnode, &skb->rbnode, 241 &msk->out_of_order_queue); 242 mptcp_drop(sk, skb1); 243 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 244 goto merge_right; 245 } 246 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 248 return; 249 } 250 p = &parent->rb_right; 251 } 252 253 insert: 254 /* Insert segment into RB tree. */ 255 rb_link_node(&skb->rbnode, parent, p); 256 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 257 258 merge_right: 259 /* Remove other segments covered by skb. */ 260 while ((skb1 = skb_rb_next(skb)) != NULL) { 261 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 262 break; 263 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 264 mptcp_drop(sk, skb1); 265 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 266 } 267 /* If there is no skb after us, we are the last_skb ! */ 268 if (!skb1) 269 msk->ooo_last_skb = skb; 270 271 end: 272 skb_condense(skb); 273 skb_set_owner_r(skb, sk); 274 } 275 276 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 277 struct sk_buff *skb, unsigned int offset, 278 size_t copy_len) 279 { 280 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 281 struct sock *sk = (struct sock *)msk; 282 struct sk_buff *tail; 283 bool has_rxtstamp; 284 285 __skb_unlink(skb, &ssk->sk_receive_queue); 286 287 skb_ext_reset(skb); 288 skb_orphan(skb); 289 290 /* try to fetch required memory from subflow */ 291 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 292 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 293 goto drop; 294 } 295 296 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 297 298 /* the skb map_seq accounts for the skb offset: 299 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 300 * value 301 */ 302 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 303 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 304 MPTCP_SKB_CB(skb)->offset = offset; 305 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 306 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 307 308 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 309 /* in sequence */ 310 msk->bytes_received += copy_len; 311 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 312 tail = skb_peek_tail(&sk->sk_receive_queue); 313 if (tail && mptcp_try_coalesce(sk, tail, skb)) 314 return true; 315 316 skb_set_owner_r(skb, sk); 317 __skb_queue_tail(&sk->sk_receive_queue, skb); 318 return true; 319 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 320 mptcp_data_queue_ofo(msk, skb); 321 return false; 322 } 323 324 /* old data, keep it simple and drop the whole pkt, sender 325 * will retransmit as needed, if needed. 326 */ 327 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 328 drop: 329 mptcp_drop(sk, skb); 330 return false; 331 } 332 333 static void mptcp_stop_rtx_timer(struct sock *sk) 334 { 335 struct inet_connection_sock *icsk = inet_csk(sk); 336 337 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 338 mptcp_sk(sk)->timer_ival = 0; 339 } 340 341 static void mptcp_close_wake_up(struct sock *sk) 342 { 343 if (sock_flag(sk, SOCK_DEAD)) 344 return; 345 346 sk->sk_state_change(sk); 347 if (sk->sk_shutdown == SHUTDOWN_MASK || 348 sk->sk_state == TCP_CLOSE) 349 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 350 else 351 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 352 } 353 354 /* called under the msk socket lock */ 355 static bool mptcp_pending_data_fin_ack(struct sock *sk) 356 { 357 struct mptcp_sock *msk = mptcp_sk(sk); 358 359 return ((1 << sk->sk_state) & 360 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 361 msk->write_seq == READ_ONCE(msk->snd_una); 362 } 363 364 static void mptcp_check_data_fin_ack(struct sock *sk) 365 { 366 struct mptcp_sock *msk = mptcp_sk(sk); 367 368 /* Look for an acknowledged DATA_FIN */ 369 if (mptcp_pending_data_fin_ack(sk)) { 370 WRITE_ONCE(msk->snd_data_fin_enable, 0); 371 372 switch (sk->sk_state) { 373 case TCP_FIN_WAIT1: 374 mptcp_set_state(sk, TCP_FIN_WAIT2); 375 break; 376 case TCP_CLOSING: 377 case TCP_LAST_ACK: 378 mptcp_set_state(sk, TCP_CLOSE); 379 break; 380 } 381 382 mptcp_close_wake_up(sk); 383 } 384 } 385 386 /* can be called with no lock acquired */ 387 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 388 { 389 struct mptcp_sock *msk = mptcp_sk(sk); 390 391 if (READ_ONCE(msk->rcv_data_fin) && 392 ((1 << inet_sk_state_load(sk)) & 393 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 394 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 395 396 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 397 if (seq) 398 *seq = rcv_data_fin_seq; 399 400 return true; 401 } 402 } 403 404 return false; 405 } 406 407 static void mptcp_set_datafin_timeout(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 u32 retransmits; 411 412 retransmits = min_t(u32, icsk->icsk_retransmits, 413 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 414 415 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 416 } 417 418 static void __mptcp_set_timeout(struct sock *sk, long tout) 419 { 420 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 421 } 422 423 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 424 { 425 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 426 427 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 428 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 429 } 430 431 static void mptcp_set_timeout(struct sock *sk) 432 { 433 struct mptcp_subflow_context *subflow; 434 long tout = 0; 435 436 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 437 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 438 __mptcp_set_timeout(sk, tout); 439 } 440 441 static inline bool tcp_can_send_ack(const struct sock *ssk) 442 { 443 return !((1 << inet_sk_state_load(ssk)) & 444 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 445 } 446 447 void __mptcp_subflow_send_ack(struct sock *ssk) 448 { 449 if (tcp_can_send_ack(ssk)) 450 tcp_send_ack(ssk); 451 } 452 453 static void mptcp_subflow_send_ack(struct sock *ssk) 454 { 455 bool slow; 456 457 slow = lock_sock_fast(ssk); 458 __mptcp_subflow_send_ack(ssk); 459 unlock_sock_fast(ssk, slow); 460 } 461 462 static void mptcp_send_ack(struct mptcp_sock *msk) 463 { 464 struct mptcp_subflow_context *subflow; 465 466 mptcp_for_each_subflow(msk, subflow) 467 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 468 } 469 470 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 471 { 472 bool slow; 473 474 slow = lock_sock_fast(ssk); 475 if (tcp_can_send_ack(ssk)) 476 tcp_cleanup_rbuf(ssk, copied); 477 unlock_sock_fast(ssk, slow); 478 } 479 480 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 481 { 482 const struct inet_connection_sock *icsk = inet_csk(ssk); 483 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 484 const struct tcp_sock *tp = tcp_sk(ssk); 485 486 return (ack_pending & ICSK_ACK_SCHED) && 487 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 488 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 489 (rx_empty && ack_pending & 490 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 491 } 492 493 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 494 { 495 int old_space = READ_ONCE(msk->old_wspace); 496 struct mptcp_subflow_context *subflow; 497 struct sock *sk = (struct sock *)msk; 498 int space = __mptcp_space(sk); 499 bool cleanup, rx_empty; 500 501 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 502 rx_empty = !sk_rmem_alloc_get(sk) && copied; 503 504 mptcp_for_each_subflow(msk, subflow) { 505 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 506 507 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 508 mptcp_subflow_cleanup_rbuf(ssk, copied); 509 } 510 } 511 512 static bool mptcp_check_data_fin(struct sock *sk) 513 { 514 struct mptcp_sock *msk = mptcp_sk(sk); 515 u64 rcv_data_fin_seq; 516 bool ret = false; 517 518 /* Need to ack a DATA_FIN received from a peer while this side 519 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 520 * msk->rcv_data_fin was set when parsing the incoming options 521 * at the subflow level and the msk lock was not held, so this 522 * is the first opportunity to act on the DATA_FIN and change 523 * the msk state. 524 * 525 * If we are caught up to the sequence number of the incoming 526 * DATA_FIN, send the DATA_ACK now and do state transition. If 527 * not caught up, do nothing and let the recv code send DATA_ACK 528 * when catching up. 529 */ 530 531 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 532 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 533 WRITE_ONCE(msk->rcv_data_fin, 0); 534 535 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 536 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 537 538 switch (sk->sk_state) { 539 case TCP_ESTABLISHED: 540 mptcp_set_state(sk, TCP_CLOSE_WAIT); 541 break; 542 case TCP_FIN_WAIT1: 543 mptcp_set_state(sk, TCP_CLOSING); 544 break; 545 case TCP_FIN_WAIT2: 546 mptcp_set_state(sk, TCP_CLOSE); 547 break; 548 default: 549 /* Other states not expected */ 550 WARN_ON_ONCE(1); 551 break; 552 } 553 554 ret = true; 555 if (!__mptcp_check_fallback(msk)) 556 mptcp_send_ack(msk); 557 mptcp_close_wake_up(sk); 558 } 559 return ret; 560 } 561 562 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 563 { 564 if (mptcp_try_fallback(ssk)) { 565 MPTCP_INC_STATS(sock_net(ssk), 566 MPTCP_MIB_DSSCORRUPTIONFALLBACK); 567 } else { 568 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 569 mptcp_subflow_reset(ssk); 570 } 571 } 572 573 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 574 struct sock *ssk) 575 { 576 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 577 struct sock *sk = (struct sock *)msk; 578 bool more_data_avail; 579 struct tcp_sock *tp; 580 bool ret = false; 581 582 pr_debug("msk=%p ssk=%p\n", msk, ssk); 583 tp = tcp_sk(ssk); 584 do { 585 u32 map_remaining, offset; 586 u32 seq = tp->copied_seq; 587 struct sk_buff *skb; 588 bool fin; 589 590 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 591 break; 592 593 /* try to move as much data as available */ 594 map_remaining = subflow->map_data_len - 595 mptcp_subflow_get_map_offset(subflow); 596 597 skb = skb_peek(&ssk->sk_receive_queue); 598 if (unlikely(!skb)) 599 break; 600 601 if (__mptcp_check_fallback(msk)) { 602 /* Under fallback skbs have no MPTCP extension and TCP could 603 * collapse them between the dummy map creation and the 604 * current dequeue. Be sure to adjust the map size. 605 */ 606 map_remaining = skb->len; 607 subflow->map_data_len = skb->len; 608 } 609 610 offset = seq - TCP_SKB_CB(skb)->seq; 611 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 612 if (fin) 613 seq++; 614 615 if (offset < skb->len) { 616 size_t len = skb->len - offset; 617 618 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret; 619 seq += len; 620 621 if (unlikely(map_remaining < len)) { 622 DEBUG_NET_WARN_ON_ONCE(1); 623 mptcp_dss_corruption(msk, ssk); 624 } 625 } else { 626 if (unlikely(!fin)) { 627 DEBUG_NET_WARN_ON_ONCE(1); 628 mptcp_dss_corruption(msk, ssk); 629 } 630 631 sk_eat_skb(ssk, skb); 632 } 633 634 WRITE_ONCE(tp->copied_seq, seq); 635 more_data_avail = mptcp_subflow_data_available(ssk); 636 637 } while (more_data_avail); 638 639 if (ret) 640 msk->last_data_recv = tcp_jiffies32; 641 return ret; 642 } 643 644 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 645 { 646 struct sock *sk = (struct sock *)msk; 647 struct sk_buff *skb, *tail; 648 bool moved = false; 649 struct rb_node *p; 650 u64 end_seq; 651 652 p = rb_first(&msk->out_of_order_queue); 653 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 654 while (p) { 655 skb = rb_to_skb(p); 656 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 657 break; 658 659 p = rb_next(p); 660 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 661 662 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 663 msk->ack_seq))) { 664 mptcp_drop(sk, skb); 665 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 666 continue; 667 } 668 669 end_seq = MPTCP_SKB_CB(skb)->end_seq; 670 tail = skb_peek_tail(&sk->sk_receive_queue); 671 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 672 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 673 674 /* skip overlapping data, if any */ 675 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 676 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 677 delta); 678 MPTCP_SKB_CB(skb)->offset += delta; 679 MPTCP_SKB_CB(skb)->map_seq += delta; 680 __skb_queue_tail(&sk->sk_receive_queue, skb); 681 } 682 msk->bytes_received += end_seq - msk->ack_seq; 683 WRITE_ONCE(msk->ack_seq, end_seq); 684 moved = true; 685 } 686 return moved; 687 } 688 689 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 690 { 691 int err = sock_error(ssk); 692 int ssk_state; 693 694 if (!err) 695 return false; 696 697 /* only propagate errors on fallen-back sockets or 698 * on MPC connect 699 */ 700 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 701 return false; 702 703 /* We need to propagate only transition to CLOSE state. 704 * Orphaned socket will see such state change via 705 * subflow_sched_work_if_closed() and that path will properly 706 * destroy the msk as needed. 707 */ 708 ssk_state = inet_sk_state_load(ssk); 709 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 710 mptcp_set_state(sk, ssk_state); 711 WRITE_ONCE(sk->sk_err, -err); 712 713 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 714 smp_wmb(); 715 sk_error_report(sk); 716 return true; 717 } 718 719 void __mptcp_error_report(struct sock *sk) 720 { 721 struct mptcp_subflow_context *subflow; 722 struct mptcp_sock *msk = mptcp_sk(sk); 723 724 mptcp_for_each_subflow(msk, subflow) 725 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 726 break; 727 } 728 729 /* In most cases we will be able to lock the mptcp socket. If its already 730 * owned, we need to defer to the work queue to avoid ABBA deadlock. 731 */ 732 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 733 { 734 struct sock *sk = (struct sock *)msk; 735 bool moved; 736 737 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 738 __mptcp_ofo_queue(msk); 739 if (unlikely(ssk->sk_err)) { 740 if (!sock_owned_by_user(sk)) 741 __mptcp_error_report(sk); 742 else 743 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 744 } 745 746 /* If the moves have caught up with the DATA_FIN sequence number 747 * it's time to ack the DATA_FIN and change socket state, but 748 * this is not a good place to change state. Let the workqueue 749 * do it. 750 */ 751 if (mptcp_pending_data_fin(sk, NULL)) 752 mptcp_schedule_work(sk); 753 return moved; 754 } 755 756 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk) 757 { 758 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf)) 759 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf); 760 } 761 762 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 763 { 764 struct mptcp_sock *msk = mptcp_sk(sk); 765 766 __mptcp_rcvbuf_update(sk, ssk); 767 768 /* Wake-up the reader only for in-sequence data */ 769 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 770 sk->sk_data_ready(sk); 771 } 772 773 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 774 { 775 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 776 777 /* The peer can send data while we are shutting down this 778 * subflow at msk destruction time, but we must avoid enqueuing 779 * more data to the msk receive queue 780 */ 781 if (unlikely(subflow->disposable)) 782 return; 783 784 mptcp_data_lock(sk); 785 if (!sock_owned_by_user(sk)) 786 __mptcp_data_ready(sk, ssk); 787 else 788 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 789 mptcp_data_unlock(sk); 790 } 791 792 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 793 { 794 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 795 msk->allow_infinite_fallback = false; 796 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 797 } 798 799 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 800 { 801 struct sock *sk = (struct sock *)msk; 802 803 if (sk->sk_state != TCP_ESTABLISHED) 804 return false; 805 806 spin_lock_bh(&msk->fallback_lock); 807 if (!msk->allow_subflows) { 808 spin_unlock_bh(&msk->fallback_lock); 809 return false; 810 } 811 mptcp_subflow_joined(msk, ssk); 812 spin_unlock_bh(&msk->fallback_lock); 813 814 /* attach to msk socket only after we are sure we will deal with it 815 * at close time 816 */ 817 if (sk->sk_socket && !ssk->sk_socket) 818 mptcp_sock_graft(ssk, sk->sk_socket); 819 820 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 821 mptcp_sockopt_sync_locked(msk, ssk); 822 mptcp_stop_tout_timer(sk); 823 __mptcp_propagate_sndbuf(sk, ssk); 824 return true; 825 } 826 827 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 828 { 829 struct mptcp_subflow_context *tmp, *subflow; 830 struct mptcp_sock *msk = mptcp_sk(sk); 831 832 list_for_each_entry_safe(subflow, tmp, join_list, node) { 833 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 834 bool slow = lock_sock_fast(ssk); 835 836 list_move_tail(&subflow->node, &msk->conn_list); 837 if (!__mptcp_finish_join(msk, ssk)) 838 mptcp_subflow_reset(ssk); 839 unlock_sock_fast(ssk, slow); 840 } 841 } 842 843 static bool mptcp_rtx_timer_pending(struct sock *sk) 844 { 845 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 846 } 847 848 static void mptcp_reset_rtx_timer(struct sock *sk) 849 { 850 struct inet_connection_sock *icsk = inet_csk(sk); 851 unsigned long tout; 852 853 /* prevent rescheduling on close */ 854 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 855 return; 856 857 tout = mptcp_sk(sk)->timer_ival; 858 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 859 } 860 861 bool mptcp_schedule_work(struct sock *sk) 862 { 863 if (inet_sk_state_load(sk) != TCP_CLOSE && 864 schedule_work(&mptcp_sk(sk)->work)) { 865 /* each subflow already holds a reference to the sk, and the 866 * workqueue is invoked by a subflow, so sk can't go away here. 867 */ 868 sock_hold(sk); 869 return true; 870 } 871 return false; 872 } 873 874 static bool mptcp_skb_can_collapse_to(u64 write_seq, 875 const struct sk_buff *skb, 876 const struct mptcp_ext *mpext) 877 { 878 if (!tcp_skb_can_collapse_to(skb)) 879 return false; 880 881 /* can collapse only if MPTCP level sequence is in order and this 882 * mapping has not been xmitted yet 883 */ 884 return mpext && mpext->data_seq + mpext->data_len == write_seq && 885 !mpext->frozen; 886 } 887 888 /* we can append data to the given data frag if: 889 * - there is space available in the backing page_frag 890 * - the data frag tail matches the current page_frag free offset 891 * - the data frag end sequence number matches the current write seq 892 */ 893 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 894 const struct page_frag *pfrag, 895 const struct mptcp_data_frag *df) 896 { 897 return df && pfrag->page == df->page && 898 pfrag->size - pfrag->offset > 0 && 899 pfrag->offset == (df->offset + df->data_len) && 900 df->data_seq + df->data_len == msk->write_seq; 901 } 902 903 static void dfrag_uncharge(struct sock *sk, int len) 904 { 905 sk_mem_uncharge(sk, len); 906 sk_wmem_queued_add(sk, -len); 907 } 908 909 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 910 { 911 int len = dfrag->data_len + dfrag->overhead; 912 913 list_del(&dfrag->list); 914 dfrag_uncharge(sk, len); 915 put_page(dfrag->page); 916 } 917 918 /* called under both the msk socket lock and the data lock */ 919 static void __mptcp_clean_una(struct sock *sk) 920 { 921 struct mptcp_sock *msk = mptcp_sk(sk); 922 struct mptcp_data_frag *dtmp, *dfrag; 923 u64 snd_una; 924 925 snd_una = msk->snd_una; 926 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 927 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 928 break; 929 930 if (unlikely(dfrag == msk->first_pending)) { 931 /* in recovery mode can see ack after the current snd head */ 932 if (WARN_ON_ONCE(!msk->recovery)) 933 break; 934 935 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 936 } 937 938 dfrag_clear(sk, dfrag); 939 } 940 941 dfrag = mptcp_rtx_head(sk); 942 if (dfrag && after64(snd_una, dfrag->data_seq)) { 943 u64 delta = snd_una - dfrag->data_seq; 944 945 /* prevent wrap around in recovery mode */ 946 if (unlikely(delta > dfrag->already_sent)) { 947 if (WARN_ON_ONCE(!msk->recovery)) 948 goto out; 949 if (WARN_ON_ONCE(delta > dfrag->data_len)) 950 goto out; 951 dfrag->already_sent += delta - dfrag->already_sent; 952 } 953 954 dfrag->data_seq += delta; 955 dfrag->offset += delta; 956 dfrag->data_len -= delta; 957 dfrag->already_sent -= delta; 958 959 dfrag_uncharge(sk, delta); 960 } 961 962 /* all retransmitted data acked, recovery completed */ 963 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 964 msk->recovery = false; 965 966 out: 967 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 968 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 969 mptcp_stop_rtx_timer(sk); 970 } else { 971 mptcp_reset_rtx_timer(sk); 972 } 973 974 if (mptcp_pending_data_fin_ack(sk)) 975 mptcp_schedule_work(sk); 976 } 977 978 static void __mptcp_clean_una_wakeup(struct sock *sk) 979 { 980 lockdep_assert_held_once(&sk->sk_lock.slock); 981 982 __mptcp_clean_una(sk); 983 mptcp_write_space(sk); 984 } 985 986 static void mptcp_clean_una_wakeup(struct sock *sk) 987 { 988 mptcp_data_lock(sk); 989 __mptcp_clean_una_wakeup(sk); 990 mptcp_data_unlock(sk); 991 } 992 993 static void mptcp_enter_memory_pressure(struct sock *sk) 994 { 995 struct mptcp_subflow_context *subflow; 996 struct mptcp_sock *msk = mptcp_sk(sk); 997 bool first = true; 998 999 mptcp_for_each_subflow(msk, subflow) { 1000 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1001 1002 if (first) 1003 tcp_enter_memory_pressure(ssk); 1004 sk_stream_moderate_sndbuf(ssk); 1005 1006 first = false; 1007 } 1008 __mptcp_sync_sndbuf(sk); 1009 } 1010 1011 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1012 * data 1013 */ 1014 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1015 { 1016 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1017 pfrag, sk->sk_allocation))) 1018 return true; 1019 1020 mptcp_enter_memory_pressure(sk); 1021 return false; 1022 } 1023 1024 static struct mptcp_data_frag * 1025 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1026 int orig_offset) 1027 { 1028 int offset = ALIGN(orig_offset, sizeof(long)); 1029 struct mptcp_data_frag *dfrag; 1030 1031 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1032 dfrag->data_len = 0; 1033 dfrag->data_seq = msk->write_seq; 1034 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1035 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1036 dfrag->already_sent = 0; 1037 dfrag->page = pfrag->page; 1038 1039 return dfrag; 1040 } 1041 1042 struct mptcp_sendmsg_info { 1043 int mss_now; 1044 int size_goal; 1045 u16 limit; 1046 u16 sent; 1047 unsigned int flags; 1048 bool data_lock_held; 1049 }; 1050 1051 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1052 u64 data_seq, int avail_size) 1053 { 1054 u64 window_end = mptcp_wnd_end(msk); 1055 u64 mptcp_snd_wnd; 1056 1057 if (__mptcp_check_fallback(msk)) 1058 return avail_size; 1059 1060 mptcp_snd_wnd = window_end - data_seq; 1061 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1062 1063 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1064 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1065 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1066 } 1067 1068 return avail_size; 1069 } 1070 1071 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1072 { 1073 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1074 1075 if (!mpext) 1076 return false; 1077 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1078 return true; 1079 } 1080 1081 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1082 { 1083 struct sk_buff *skb; 1084 1085 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1086 if (likely(skb)) { 1087 if (likely(__mptcp_add_ext(skb, gfp))) { 1088 skb_reserve(skb, MAX_TCP_HEADER); 1089 skb->ip_summed = CHECKSUM_PARTIAL; 1090 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1091 return skb; 1092 } 1093 __kfree_skb(skb); 1094 } else { 1095 mptcp_enter_memory_pressure(sk); 1096 } 1097 return NULL; 1098 } 1099 1100 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1101 { 1102 struct sk_buff *skb; 1103 1104 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1105 if (!skb) 1106 return NULL; 1107 1108 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1109 tcp_skb_entail(ssk, skb); 1110 return skb; 1111 } 1112 tcp_skb_tsorted_anchor_cleanup(skb); 1113 kfree_skb(skb); 1114 return NULL; 1115 } 1116 1117 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1118 { 1119 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1120 1121 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1122 } 1123 1124 /* note: this always recompute the csum on the whole skb, even 1125 * if we just appended a single frag. More status info needed 1126 */ 1127 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1128 { 1129 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1130 __wsum csum = ~csum_unfold(mpext->csum); 1131 int offset = skb->len - added; 1132 1133 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1134 } 1135 1136 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1137 struct sock *ssk, 1138 struct mptcp_ext *mpext) 1139 { 1140 if (!mpext) 1141 return; 1142 1143 mpext->infinite_map = 1; 1144 mpext->data_len = 0; 1145 1146 if (!mptcp_try_fallback(ssk)) { 1147 mptcp_subflow_reset(ssk); 1148 return; 1149 } 1150 1151 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1152 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1153 pr_fallback(msk); 1154 } 1155 1156 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1157 1158 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1159 struct mptcp_data_frag *dfrag, 1160 struct mptcp_sendmsg_info *info) 1161 { 1162 u64 data_seq = dfrag->data_seq + info->sent; 1163 int offset = dfrag->offset + info->sent; 1164 struct mptcp_sock *msk = mptcp_sk(sk); 1165 bool zero_window_probe = false; 1166 struct mptcp_ext *mpext = NULL; 1167 bool can_coalesce = false; 1168 bool reuse_skb = true; 1169 struct sk_buff *skb; 1170 size_t copy; 1171 int i; 1172 1173 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1174 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1175 1176 if (WARN_ON_ONCE(info->sent > info->limit || 1177 info->limit > dfrag->data_len)) 1178 return 0; 1179 1180 if (unlikely(!__tcp_can_send(ssk))) 1181 return -EAGAIN; 1182 1183 /* compute send limit */ 1184 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1185 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1186 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1187 copy = info->size_goal; 1188 1189 skb = tcp_write_queue_tail(ssk); 1190 if (skb && copy > skb->len) { 1191 /* Limit the write to the size available in the 1192 * current skb, if any, so that we create at most a new skb. 1193 * Explicitly tells TCP internals to avoid collapsing on later 1194 * queue management operation, to avoid breaking the ext <-> 1195 * SSN association set here 1196 */ 1197 mpext = mptcp_get_ext(skb); 1198 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1199 TCP_SKB_CB(skb)->eor = 1; 1200 tcp_mark_push(tcp_sk(ssk), skb); 1201 goto alloc_skb; 1202 } 1203 1204 i = skb_shinfo(skb)->nr_frags; 1205 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1206 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1207 tcp_mark_push(tcp_sk(ssk), skb); 1208 goto alloc_skb; 1209 } 1210 1211 copy -= skb->len; 1212 } else { 1213 alloc_skb: 1214 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1215 if (!skb) 1216 return -ENOMEM; 1217 1218 i = skb_shinfo(skb)->nr_frags; 1219 reuse_skb = false; 1220 mpext = mptcp_get_ext(skb); 1221 } 1222 1223 /* Zero window and all data acked? Probe. */ 1224 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1225 if (copy == 0) { 1226 u64 snd_una = READ_ONCE(msk->snd_una); 1227 1228 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1229 tcp_remove_empty_skb(ssk); 1230 return 0; 1231 } 1232 1233 zero_window_probe = true; 1234 data_seq = snd_una - 1; 1235 copy = 1; 1236 } 1237 1238 copy = min_t(size_t, copy, info->limit - info->sent); 1239 if (!sk_wmem_schedule(ssk, copy)) { 1240 tcp_remove_empty_skb(ssk); 1241 return -ENOMEM; 1242 } 1243 1244 if (can_coalesce) { 1245 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1246 } else { 1247 get_page(dfrag->page); 1248 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1249 } 1250 1251 skb->len += copy; 1252 skb->data_len += copy; 1253 skb->truesize += copy; 1254 sk_wmem_queued_add(ssk, copy); 1255 sk_mem_charge(ssk, copy); 1256 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1257 TCP_SKB_CB(skb)->end_seq += copy; 1258 tcp_skb_pcount_set(skb, 0); 1259 1260 /* on skb reuse we just need to update the DSS len */ 1261 if (reuse_skb) { 1262 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1263 mpext->data_len += copy; 1264 goto out; 1265 } 1266 1267 memset(mpext, 0, sizeof(*mpext)); 1268 mpext->data_seq = data_seq; 1269 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1270 mpext->data_len = copy; 1271 mpext->use_map = 1; 1272 mpext->dsn64 = 1; 1273 1274 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1275 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1276 mpext->dsn64); 1277 1278 if (zero_window_probe) { 1279 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1280 mpext->frozen = 1; 1281 if (READ_ONCE(msk->csum_enabled)) 1282 mptcp_update_data_checksum(skb, copy); 1283 tcp_push_pending_frames(ssk); 1284 return 0; 1285 } 1286 out: 1287 if (READ_ONCE(msk->csum_enabled)) 1288 mptcp_update_data_checksum(skb, copy); 1289 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1290 mptcp_update_infinite_map(msk, ssk, mpext); 1291 trace_mptcp_sendmsg_frag(mpext); 1292 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1293 return copy; 1294 } 1295 1296 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1297 sizeof(struct tcphdr) - \ 1298 MAX_TCP_OPTION_SPACE - \ 1299 sizeof(struct ipv6hdr) - \ 1300 sizeof(struct frag_hdr)) 1301 1302 struct subflow_send_info { 1303 struct sock *ssk; 1304 u64 linger_time; 1305 }; 1306 1307 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1308 { 1309 if (!subflow->stale) 1310 return; 1311 1312 subflow->stale = 0; 1313 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1314 } 1315 1316 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1317 { 1318 if (unlikely(subflow->stale)) { 1319 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1320 1321 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1322 return false; 1323 1324 mptcp_subflow_set_active(subflow); 1325 } 1326 return __mptcp_subflow_active(subflow); 1327 } 1328 1329 #define SSK_MODE_ACTIVE 0 1330 #define SSK_MODE_BACKUP 1 1331 #define SSK_MODE_MAX 2 1332 1333 /* implement the mptcp packet scheduler; 1334 * returns the subflow that will transmit the next DSS 1335 * additionally updates the rtx timeout 1336 */ 1337 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1338 { 1339 struct subflow_send_info send_info[SSK_MODE_MAX]; 1340 struct mptcp_subflow_context *subflow; 1341 struct sock *sk = (struct sock *)msk; 1342 u32 pace, burst, wmem; 1343 int i, nr_active = 0; 1344 struct sock *ssk; 1345 u64 linger_time; 1346 long tout = 0; 1347 1348 /* pick the subflow with the lower wmem/wspace ratio */ 1349 for (i = 0; i < SSK_MODE_MAX; ++i) { 1350 send_info[i].ssk = NULL; 1351 send_info[i].linger_time = -1; 1352 } 1353 1354 mptcp_for_each_subflow(msk, subflow) { 1355 bool backup = subflow->backup || subflow->request_bkup; 1356 1357 trace_mptcp_subflow_get_send(subflow); 1358 ssk = mptcp_subflow_tcp_sock(subflow); 1359 if (!mptcp_subflow_active(subflow)) 1360 continue; 1361 1362 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1363 nr_active += !backup; 1364 pace = subflow->avg_pacing_rate; 1365 if (unlikely(!pace)) { 1366 /* init pacing rate from socket */ 1367 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1368 pace = subflow->avg_pacing_rate; 1369 if (!pace) 1370 continue; 1371 } 1372 1373 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1374 if (linger_time < send_info[backup].linger_time) { 1375 send_info[backup].ssk = ssk; 1376 send_info[backup].linger_time = linger_time; 1377 } 1378 } 1379 __mptcp_set_timeout(sk, tout); 1380 1381 /* pick the best backup if no other subflow is active */ 1382 if (!nr_active) 1383 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1384 1385 /* According to the blest algorithm, to avoid HoL blocking for the 1386 * faster flow, we need to: 1387 * - estimate the faster flow linger time 1388 * - use the above to estimate the amount of byte transferred 1389 * by the faster flow 1390 * - check that the amount of queued data is greater than the above, 1391 * otherwise do not use the picked, slower, subflow 1392 * We select the subflow with the shorter estimated time to flush 1393 * the queued mem, which basically ensure the above. We just need 1394 * to check that subflow has a non empty cwin. 1395 */ 1396 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1397 if (!ssk || !sk_stream_memory_free(ssk)) 1398 return NULL; 1399 1400 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1401 wmem = READ_ONCE(ssk->sk_wmem_queued); 1402 if (!burst) 1403 return ssk; 1404 1405 subflow = mptcp_subflow_ctx(ssk); 1406 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1407 READ_ONCE(ssk->sk_pacing_rate) * burst, 1408 burst + wmem); 1409 msk->snd_burst = burst; 1410 return ssk; 1411 } 1412 1413 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1414 { 1415 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1416 release_sock(ssk); 1417 } 1418 1419 static void mptcp_update_post_push(struct mptcp_sock *msk, 1420 struct mptcp_data_frag *dfrag, 1421 u32 sent) 1422 { 1423 u64 snd_nxt_new = dfrag->data_seq; 1424 1425 dfrag->already_sent += sent; 1426 1427 msk->snd_burst -= sent; 1428 1429 snd_nxt_new += dfrag->already_sent; 1430 1431 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1432 * is recovering after a failover. In that event, this re-sends 1433 * old segments. 1434 * 1435 * Thus compute snd_nxt_new candidate based on 1436 * the dfrag->data_seq that was sent and the data 1437 * that has been handed to the subflow for transmission 1438 * and skip update in case it was old dfrag. 1439 */ 1440 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1441 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1442 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1443 } 1444 } 1445 1446 void mptcp_check_and_set_pending(struct sock *sk) 1447 { 1448 if (mptcp_send_head(sk)) { 1449 mptcp_data_lock(sk); 1450 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1451 mptcp_data_unlock(sk); 1452 } 1453 } 1454 1455 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1456 struct mptcp_sendmsg_info *info) 1457 { 1458 struct mptcp_sock *msk = mptcp_sk(sk); 1459 struct mptcp_data_frag *dfrag; 1460 int len, copied = 0, err = 0; 1461 1462 while ((dfrag = mptcp_send_head(sk))) { 1463 info->sent = dfrag->already_sent; 1464 info->limit = dfrag->data_len; 1465 len = dfrag->data_len - dfrag->already_sent; 1466 while (len > 0) { 1467 int ret = 0; 1468 1469 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1470 if (ret <= 0) { 1471 err = copied ? : ret; 1472 goto out; 1473 } 1474 1475 info->sent += ret; 1476 copied += ret; 1477 len -= ret; 1478 1479 mptcp_update_post_push(msk, dfrag, ret); 1480 } 1481 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1482 1483 if (msk->snd_burst <= 0 || 1484 !sk_stream_memory_free(ssk) || 1485 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1486 err = copied; 1487 goto out; 1488 } 1489 mptcp_set_timeout(sk); 1490 } 1491 err = copied; 1492 1493 out: 1494 if (err > 0) 1495 msk->last_data_sent = tcp_jiffies32; 1496 return err; 1497 } 1498 1499 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1500 { 1501 struct sock *prev_ssk = NULL, *ssk = NULL; 1502 struct mptcp_sock *msk = mptcp_sk(sk); 1503 struct mptcp_sendmsg_info info = { 1504 .flags = flags, 1505 }; 1506 bool do_check_data_fin = false; 1507 int push_count = 1; 1508 1509 while (mptcp_send_head(sk) && (push_count > 0)) { 1510 struct mptcp_subflow_context *subflow; 1511 int ret = 0; 1512 1513 if (mptcp_sched_get_send(msk)) 1514 break; 1515 1516 push_count = 0; 1517 1518 mptcp_for_each_subflow(msk, subflow) { 1519 if (READ_ONCE(subflow->scheduled)) { 1520 mptcp_subflow_set_scheduled(subflow, false); 1521 1522 prev_ssk = ssk; 1523 ssk = mptcp_subflow_tcp_sock(subflow); 1524 if (ssk != prev_ssk) { 1525 /* First check. If the ssk has changed since 1526 * the last round, release prev_ssk 1527 */ 1528 if (prev_ssk) 1529 mptcp_push_release(prev_ssk, &info); 1530 1531 /* Need to lock the new subflow only if different 1532 * from the previous one, otherwise we are still 1533 * helding the relevant lock 1534 */ 1535 lock_sock(ssk); 1536 } 1537 1538 push_count++; 1539 1540 ret = __subflow_push_pending(sk, ssk, &info); 1541 if (ret <= 0) { 1542 if (ret != -EAGAIN || 1543 (1 << ssk->sk_state) & 1544 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1545 push_count--; 1546 continue; 1547 } 1548 do_check_data_fin = true; 1549 } 1550 } 1551 } 1552 1553 /* at this point we held the socket lock for the last subflow we used */ 1554 if (ssk) 1555 mptcp_push_release(ssk, &info); 1556 1557 /* ensure the rtx timer is running */ 1558 if (!mptcp_rtx_timer_pending(sk)) 1559 mptcp_reset_rtx_timer(sk); 1560 if (do_check_data_fin) 1561 mptcp_check_send_data_fin(sk); 1562 } 1563 1564 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1565 { 1566 struct mptcp_sock *msk = mptcp_sk(sk); 1567 struct mptcp_sendmsg_info info = { 1568 .data_lock_held = true, 1569 }; 1570 bool keep_pushing = true; 1571 struct sock *xmit_ssk; 1572 int copied = 0; 1573 1574 info.flags = 0; 1575 while (mptcp_send_head(sk) && keep_pushing) { 1576 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1577 int ret = 0; 1578 1579 /* check for a different subflow usage only after 1580 * spooling the first chunk of data 1581 */ 1582 if (first) { 1583 mptcp_subflow_set_scheduled(subflow, false); 1584 ret = __subflow_push_pending(sk, ssk, &info); 1585 first = false; 1586 if (ret <= 0) 1587 break; 1588 copied += ret; 1589 continue; 1590 } 1591 1592 if (mptcp_sched_get_send(msk)) 1593 goto out; 1594 1595 if (READ_ONCE(subflow->scheduled)) { 1596 mptcp_subflow_set_scheduled(subflow, false); 1597 ret = __subflow_push_pending(sk, ssk, &info); 1598 if (ret <= 0) 1599 keep_pushing = false; 1600 copied += ret; 1601 } 1602 1603 mptcp_for_each_subflow(msk, subflow) { 1604 if (READ_ONCE(subflow->scheduled)) { 1605 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1606 if (xmit_ssk != ssk) { 1607 mptcp_subflow_delegate(subflow, 1608 MPTCP_DELEGATE_SEND); 1609 keep_pushing = false; 1610 } 1611 } 1612 } 1613 } 1614 1615 out: 1616 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1617 * not going to flush it via release_sock() 1618 */ 1619 if (copied) { 1620 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1621 info.size_goal); 1622 if (!mptcp_rtx_timer_pending(sk)) 1623 mptcp_reset_rtx_timer(sk); 1624 1625 if (msk->snd_data_fin_enable && 1626 msk->snd_nxt + 1 == msk->write_seq) 1627 mptcp_schedule_work(sk); 1628 } 1629 } 1630 1631 static int mptcp_disconnect(struct sock *sk, int flags); 1632 1633 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1634 size_t len, int *copied_syn) 1635 { 1636 unsigned int saved_flags = msg->msg_flags; 1637 struct mptcp_sock *msk = mptcp_sk(sk); 1638 struct sock *ssk; 1639 int ret; 1640 1641 /* on flags based fastopen the mptcp is supposed to create the 1642 * first subflow right now. Otherwise we are in the defer_connect 1643 * path, and the first subflow must be already present. 1644 * Since the defer_connect flag is cleared after the first succsful 1645 * fastopen attempt, no need to check for additional subflow status. 1646 */ 1647 if (msg->msg_flags & MSG_FASTOPEN) { 1648 ssk = __mptcp_nmpc_sk(msk); 1649 if (IS_ERR(ssk)) 1650 return PTR_ERR(ssk); 1651 } 1652 if (!msk->first) 1653 return -EINVAL; 1654 1655 ssk = msk->first; 1656 1657 lock_sock(ssk); 1658 msg->msg_flags |= MSG_DONTWAIT; 1659 msk->fastopening = 1; 1660 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1661 msk->fastopening = 0; 1662 msg->msg_flags = saved_flags; 1663 release_sock(ssk); 1664 1665 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1666 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1667 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1668 msg->msg_namelen, msg->msg_flags, 1); 1669 1670 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1671 * case of any error, except timeout or signal 1672 */ 1673 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1674 *copied_syn = 0; 1675 } else if (ret && ret != -EINPROGRESS) { 1676 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1677 * __inet_stream_connect() can fail, due to looking check, 1678 * see mptcp_disconnect(). 1679 * Attempt it again outside the problematic scope. 1680 */ 1681 if (!mptcp_disconnect(sk, 0)) { 1682 sk->sk_disconnects++; 1683 sk->sk_socket->state = SS_UNCONNECTED; 1684 } 1685 } 1686 inet_clear_bit(DEFER_CONNECT, sk); 1687 1688 return ret; 1689 } 1690 1691 static int do_copy_data_nocache(struct sock *sk, int copy, 1692 struct iov_iter *from, char *to) 1693 { 1694 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1695 if (!copy_from_iter_full_nocache(to, copy, from)) 1696 return -EFAULT; 1697 } else if (!copy_from_iter_full(to, copy, from)) { 1698 return -EFAULT; 1699 } 1700 return 0; 1701 } 1702 1703 /* open-code sk_stream_memory_free() plus sent limit computation to 1704 * avoid indirect calls in fast-path. 1705 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1706 * annotations. 1707 */ 1708 static u32 mptcp_send_limit(const struct sock *sk) 1709 { 1710 const struct mptcp_sock *msk = mptcp_sk(sk); 1711 u32 limit, not_sent; 1712 1713 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1714 return 0; 1715 1716 limit = mptcp_notsent_lowat(sk); 1717 if (limit == UINT_MAX) 1718 return UINT_MAX; 1719 1720 not_sent = msk->write_seq - msk->snd_nxt; 1721 if (not_sent >= limit) 1722 return 0; 1723 1724 return limit - not_sent; 1725 } 1726 1727 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1728 { 1729 struct mptcp_sock *msk = mptcp_sk(sk); 1730 struct page_frag *pfrag; 1731 size_t copied = 0; 1732 int ret = 0; 1733 long timeo; 1734 1735 /* silently ignore everything else */ 1736 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1737 1738 lock_sock(sk); 1739 1740 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1741 msg->msg_flags & MSG_FASTOPEN)) { 1742 int copied_syn = 0; 1743 1744 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1745 copied += copied_syn; 1746 if (ret == -EINPROGRESS && copied_syn > 0) 1747 goto out; 1748 else if (ret) 1749 goto do_error; 1750 } 1751 1752 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1753 1754 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1755 ret = sk_stream_wait_connect(sk, &timeo); 1756 if (ret) 1757 goto do_error; 1758 } 1759 1760 ret = -EPIPE; 1761 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1762 goto do_error; 1763 1764 pfrag = sk_page_frag(sk); 1765 1766 while (msg_data_left(msg)) { 1767 int total_ts, frag_truesize = 0; 1768 struct mptcp_data_frag *dfrag; 1769 bool dfrag_collapsed; 1770 size_t psize, offset; 1771 u32 copy_limit; 1772 1773 /* ensure fitting the notsent_lowat() constraint */ 1774 copy_limit = mptcp_send_limit(sk); 1775 if (!copy_limit) 1776 goto wait_for_memory; 1777 1778 /* reuse tail pfrag, if possible, or carve a new one from the 1779 * page allocator 1780 */ 1781 dfrag = mptcp_pending_tail(sk); 1782 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1783 if (!dfrag_collapsed) { 1784 if (!mptcp_page_frag_refill(sk, pfrag)) 1785 goto wait_for_memory; 1786 1787 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1788 frag_truesize = dfrag->overhead; 1789 } 1790 1791 /* we do not bound vs wspace, to allow a single packet. 1792 * memory accounting will prevent execessive memory usage 1793 * anyway 1794 */ 1795 offset = dfrag->offset + dfrag->data_len; 1796 psize = pfrag->size - offset; 1797 psize = min_t(size_t, psize, msg_data_left(msg)); 1798 psize = min_t(size_t, psize, copy_limit); 1799 total_ts = psize + frag_truesize; 1800 1801 if (!sk_wmem_schedule(sk, total_ts)) 1802 goto wait_for_memory; 1803 1804 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1805 page_address(dfrag->page) + offset); 1806 if (ret) 1807 goto do_error; 1808 1809 /* data successfully copied into the write queue */ 1810 sk_forward_alloc_add(sk, -total_ts); 1811 copied += psize; 1812 dfrag->data_len += psize; 1813 frag_truesize += psize; 1814 pfrag->offset += frag_truesize; 1815 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1816 1817 /* charge data on mptcp pending queue to the msk socket 1818 * Note: we charge such data both to sk and ssk 1819 */ 1820 sk_wmem_queued_add(sk, frag_truesize); 1821 if (!dfrag_collapsed) { 1822 get_page(dfrag->page); 1823 list_add_tail(&dfrag->list, &msk->rtx_queue); 1824 if (!msk->first_pending) 1825 WRITE_ONCE(msk->first_pending, dfrag); 1826 } 1827 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1828 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1829 !dfrag_collapsed); 1830 1831 continue; 1832 1833 wait_for_memory: 1834 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1835 __mptcp_push_pending(sk, msg->msg_flags); 1836 ret = sk_stream_wait_memory(sk, &timeo); 1837 if (ret) 1838 goto do_error; 1839 } 1840 1841 if (copied) 1842 __mptcp_push_pending(sk, msg->msg_flags); 1843 1844 out: 1845 release_sock(sk); 1846 return copied; 1847 1848 do_error: 1849 if (copied) 1850 goto out; 1851 1852 copied = sk_stream_error(sk, msg->msg_flags, ret); 1853 goto out; 1854 } 1855 1856 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1857 1858 static int __mptcp_recvmsg_mskq(struct sock *sk, 1859 struct msghdr *msg, 1860 size_t len, int flags, 1861 struct scm_timestamping_internal *tss, 1862 int *cmsg_flags) 1863 { 1864 struct mptcp_sock *msk = mptcp_sk(sk); 1865 struct sk_buff *skb, *tmp; 1866 int copied = 0; 1867 1868 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1869 u32 offset = MPTCP_SKB_CB(skb)->offset; 1870 u32 data_len = skb->len - offset; 1871 u32 count = min_t(size_t, len - copied, data_len); 1872 int err; 1873 1874 if (!(flags & MSG_TRUNC)) { 1875 err = skb_copy_datagram_msg(skb, offset, msg, count); 1876 if (unlikely(err < 0)) { 1877 if (!copied) 1878 return err; 1879 break; 1880 } 1881 } 1882 1883 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1884 tcp_update_recv_tstamps(skb, tss); 1885 *cmsg_flags |= MPTCP_CMSG_TS; 1886 } 1887 1888 copied += count; 1889 1890 if (count < data_len) { 1891 if (!(flags & MSG_PEEK)) { 1892 MPTCP_SKB_CB(skb)->offset += count; 1893 MPTCP_SKB_CB(skb)->map_seq += count; 1894 msk->bytes_consumed += count; 1895 } 1896 break; 1897 } 1898 1899 if (!(flags & MSG_PEEK)) { 1900 /* avoid the indirect call, we know the destructor is sock_wfree */ 1901 skb->destructor = NULL; 1902 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1903 sk_mem_uncharge(sk, skb->truesize); 1904 __skb_unlink(skb, &sk->sk_receive_queue); 1905 __kfree_skb(skb); 1906 msk->bytes_consumed += count; 1907 } 1908 1909 if (copied >= len) 1910 break; 1911 } 1912 1913 mptcp_rcv_space_adjust(msk, copied); 1914 return copied; 1915 } 1916 1917 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1918 * 1919 * Only difference: Use highest rtt estimate of the subflows in use. 1920 */ 1921 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1922 { 1923 struct mptcp_subflow_context *subflow; 1924 struct sock *sk = (struct sock *)msk; 1925 u8 scaling_ratio = U8_MAX; 1926 u32 time, advmss = 1; 1927 u64 rtt_us, mstamp; 1928 1929 msk_owned_by_me(msk); 1930 1931 if (copied <= 0) 1932 return; 1933 1934 if (!msk->rcvspace_init) 1935 mptcp_rcv_space_init(msk, msk->first); 1936 1937 msk->rcvq_space.copied += copied; 1938 1939 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1940 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1941 1942 rtt_us = msk->rcvq_space.rtt_us; 1943 if (rtt_us && time < (rtt_us >> 3)) 1944 return; 1945 1946 rtt_us = 0; 1947 mptcp_for_each_subflow(msk, subflow) { 1948 const struct tcp_sock *tp; 1949 u64 sf_rtt_us; 1950 u32 sf_advmss; 1951 1952 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1953 1954 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1955 sf_advmss = READ_ONCE(tp->advmss); 1956 1957 rtt_us = max(sf_rtt_us, rtt_us); 1958 advmss = max(sf_advmss, advmss); 1959 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1960 } 1961 1962 msk->rcvq_space.rtt_us = rtt_us; 1963 msk->scaling_ratio = scaling_ratio; 1964 if (time < (rtt_us >> 3) || rtt_us == 0) 1965 return; 1966 1967 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1968 goto new_measure; 1969 1970 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1971 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1972 u64 rcvwin, grow; 1973 int rcvbuf; 1974 1975 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1976 1977 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1978 1979 do_div(grow, msk->rcvq_space.space); 1980 rcvwin += (grow << 1); 1981 1982 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 1983 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1984 1985 if (rcvbuf > sk->sk_rcvbuf) { 1986 u32 window_clamp; 1987 1988 window_clamp = mptcp_win_from_space(sk, rcvbuf); 1989 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1990 1991 /* Make subflows follow along. If we do not do this, we 1992 * get drops at subflow level if skbs can't be moved to 1993 * the mptcp rx queue fast enough (announced rcv_win can 1994 * exceed ssk->sk_rcvbuf). 1995 */ 1996 mptcp_for_each_subflow(msk, subflow) { 1997 struct sock *ssk; 1998 bool slow; 1999 2000 ssk = mptcp_subflow_tcp_sock(subflow); 2001 slow = lock_sock_fast(ssk); 2002 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2003 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2004 if (tcp_can_send_ack(ssk)) 2005 tcp_cleanup_rbuf(ssk, 1); 2006 unlock_sock_fast(ssk, slow); 2007 } 2008 } 2009 } 2010 2011 msk->rcvq_space.space = msk->rcvq_space.copied; 2012 new_measure: 2013 msk->rcvq_space.copied = 0; 2014 msk->rcvq_space.time = mstamp; 2015 } 2016 2017 static struct mptcp_subflow_context * 2018 __mptcp_first_ready_from(struct mptcp_sock *msk, 2019 struct mptcp_subflow_context *subflow) 2020 { 2021 struct mptcp_subflow_context *start_subflow = subflow; 2022 2023 while (!READ_ONCE(subflow->data_avail)) { 2024 subflow = mptcp_next_subflow(msk, subflow); 2025 if (subflow == start_subflow) 2026 return NULL; 2027 } 2028 return subflow; 2029 } 2030 2031 static bool __mptcp_move_skbs(struct sock *sk) 2032 { 2033 struct mptcp_subflow_context *subflow; 2034 struct mptcp_sock *msk = mptcp_sk(sk); 2035 bool ret = false; 2036 2037 if (list_empty(&msk->conn_list)) 2038 return false; 2039 2040 /* verify we can move any data from the subflow, eventually updating */ 2041 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 2042 mptcp_for_each_subflow(msk, subflow) 2043 __mptcp_rcvbuf_update(sk, subflow->tcp_sock); 2044 2045 subflow = list_first_entry(&msk->conn_list, 2046 struct mptcp_subflow_context, node); 2047 for (;;) { 2048 struct sock *ssk; 2049 bool slowpath; 2050 2051 /* 2052 * As an optimization avoid traversing the subflows list 2053 * and ev. acquiring the subflow socket lock before baling out 2054 */ 2055 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2056 break; 2057 2058 subflow = __mptcp_first_ready_from(msk, subflow); 2059 if (!subflow) 2060 break; 2061 2062 ssk = mptcp_subflow_tcp_sock(subflow); 2063 slowpath = lock_sock_fast(ssk); 2064 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2065 if (unlikely(ssk->sk_err)) 2066 __mptcp_error_report(sk); 2067 unlock_sock_fast(ssk, slowpath); 2068 2069 subflow = mptcp_next_subflow(msk, subflow); 2070 } 2071 2072 __mptcp_ofo_queue(msk); 2073 if (ret) 2074 mptcp_check_data_fin((struct sock *)msk); 2075 return ret; 2076 } 2077 2078 static unsigned int mptcp_inq_hint(const struct sock *sk) 2079 { 2080 const struct mptcp_sock *msk = mptcp_sk(sk); 2081 const struct sk_buff *skb; 2082 2083 skb = skb_peek(&sk->sk_receive_queue); 2084 if (skb) { 2085 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2086 2087 if (hint_val >= INT_MAX) 2088 return INT_MAX; 2089 2090 return (unsigned int)hint_val; 2091 } 2092 2093 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2094 return 1; 2095 2096 return 0; 2097 } 2098 2099 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2100 int flags, int *addr_len) 2101 { 2102 struct mptcp_sock *msk = mptcp_sk(sk); 2103 struct scm_timestamping_internal tss; 2104 int copied = 0, cmsg_flags = 0; 2105 int target; 2106 long timeo; 2107 2108 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2109 if (unlikely(flags & MSG_ERRQUEUE)) 2110 return inet_recv_error(sk, msg, len, addr_len); 2111 2112 lock_sock(sk); 2113 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2114 copied = -ENOTCONN; 2115 goto out_err; 2116 } 2117 2118 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2119 2120 len = min_t(size_t, len, INT_MAX); 2121 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2122 2123 if (unlikely(msk->recvmsg_inq)) 2124 cmsg_flags = MPTCP_CMSG_INQ; 2125 2126 while (copied < len) { 2127 int err, bytes_read; 2128 2129 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2130 if (unlikely(bytes_read < 0)) { 2131 if (!copied) 2132 copied = bytes_read; 2133 goto out_err; 2134 } 2135 2136 copied += bytes_read; 2137 2138 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2139 continue; 2140 2141 /* only the MPTCP socket status is relevant here. The exit 2142 * conditions mirror closely tcp_recvmsg() 2143 */ 2144 if (copied >= target) 2145 break; 2146 2147 if (copied) { 2148 if (sk->sk_err || 2149 sk->sk_state == TCP_CLOSE || 2150 (sk->sk_shutdown & RCV_SHUTDOWN) || 2151 !timeo || 2152 signal_pending(current)) 2153 break; 2154 } else { 2155 if (sk->sk_err) { 2156 copied = sock_error(sk); 2157 break; 2158 } 2159 2160 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2161 /* race breaker: the shutdown could be after the 2162 * previous receive queue check 2163 */ 2164 if (__mptcp_move_skbs(sk)) 2165 continue; 2166 break; 2167 } 2168 2169 if (sk->sk_state == TCP_CLOSE) { 2170 copied = -ENOTCONN; 2171 break; 2172 } 2173 2174 if (!timeo) { 2175 copied = -EAGAIN; 2176 break; 2177 } 2178 2179 if (signal_pending(current)) { 2180 copied = sock_intr_errno(timeo); 2181 break; 2182 } 2183 } 2184 2185 pr_debug("block timeout %ld\n", timeo); 2186 mptcp_cleanup_rbuf(msk, copied); 2187 err = sk_wait_data(sk, &timeo, NULL); 2188 if (err < 0) { 2189 err = copied ? : err; 2190 goto out_err; 2191 } 2192 } 2193 2194 mptcp_cleanup_rbuf(msk, copied); 2195 2196 out_err: 2197 if (cmsg_flags && copied >= 0) { 2198 if (cmsg_flags & MPTCP_CMSG_TS) 2199 tcp_recv_timestamp(msg, sk, &tss); 2200 2201 if (cmsg_flags & MPTCP_CMSG_INQ) { 2202 unsigned int inq = mptcp_inq_hint(sk); 2203 2204 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2205 } 2206 } 2207 2208 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2209 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2210 2211 release_sock(sk); 2212 return copied; 2213 } 2214 2215 static void mptcp_retransmit_timer(struct timer_list *t) 2216 { 2217 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2218 icsk_retransmit_timer); 2219 struct sock *sk = &icsk->icsk_inet.sk; 2220 struct mptcp_sock *msk = mptcp_sk(sk); 2221 2222 bh_lock_sock(sk); 2223 if (!sock_owned_by_user(sk)) { 2224 /* we need a process context to retransmit */ 2225 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2226 mptcp_schedule_work(sk); 2227 } else { 2228 /* delegate our work to tcp_release_cb() */ 2229 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2230 } 2231 bh_unlock_sock(sk); 2232 sock_put(sk); 2233 } 2234 2235 static void mptcp_tout_timer(struct timer_list *t) 2236 { 2237 struct sock *sk = timer_container_of(sk, t, sk_timer); 2238 2239 mptcp_schedule_work(sk); 2240 sock_put(sk); 2241 } 2242 2243 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2244 * level. 2245 * 2246 * A backup subflow is returned only if that is the only kind available. 2247 */ 2248 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2249 { 2250 struct sock *backup = NULL, *pick = NULL; 2251 struct mptcp_subflow_context *subflow; 2252 int min_stale_count = INT_MAX; 2253 2254 mptcp_for_each_subflow(msk, subflow) { 2255 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2256 2257 if (!__mptcp_subflow_active(subflow)) 2258 continue; 2259 2260 /* still data outstanding at TCP level? skip this */ 2261 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2262 mptcp_pm_subflow_chk_stale(msk, ssk); 2263 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2264 continue; 2265 } 2266 2267 if (subflow->backup || subflow->request_bkup) { 2268 if (!backup) 2269 backup = ssk; 2270 continue; 2271 } 2272 2273 if (!pick) 2274 pick = ssk; 2275 } 2276 2277 if (pick) 2278 return pick; 2279 2280 /* use backup only if there are no progresses anywhere */ 2281 return min_stale_count > 1 ? backup : NULL; 2282 } 2283 2284 bool __mptcp_retransmit_pending_data(struct sock *sk) 2285 { 2286 struct mptcp_data_frag *cur, *rtx_head; 2287 struct mptcp_sock *msk = mptcp_sk(sk); 2288 2289 if (__mptcp_check_fallback(msk)) 2290 return false; 2291 2292 /* the closing socket has some data untransmitted and/or unacked: 2293 * some data in the mptcp rtx queue has not really xmitted yet. 2294 * keep it simple and re-inject the whole mptcp level rtx queue 2295 */ 2296 mptcp_data_lock(sk); 2297 __mptcp_clean_una_wakeup(sk); 2298 rtx_head = mptcp_rtx_head(sk); 2299 if (!rtx_head) { 2300 mptcp_data_unlock(sk); 2301 return false; 2302 } 2303 2304 msk->recovery_snd_nxt = msk->snd_nxt; 2305 msk->recovery = true; 2306 mptcp_data_unlock(sk); 2307 2308 msk->first_pending = rtx_head; 2309 msk->snd_burst = 0; 2310 2311 /* be sure to clear the "sent status" on all re-injected fragments */ 2312 list_for_each_entry(cur, &msk->rtx_queue, list) { 2313 if (!cur->already_sent) 2314 break; 2315 cur->already_sent = 0; 2316 } 2317 2318 return true; 2319 } 2320 2321 /* flags for __mptcp_close_ssk() */ 2322 #define MPTCP_CF_PUSH BIT(1) 2323 #define MPTCP_CF_FASTCLOSE BIT(2) 2324 2325 /* be sure to send a reset only if the caller asked for it, also 2326 * clean completely the subflow status when the subflow reaches 2327 * TCP_CLOSE state 2328 */ 2329 static void __mptcp_subflow_disconnect(struct sock *ssk, 2330 struct mptcp_subflow_context *subflow, 2331 unsigned int flags) 2332 { 2333 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2334 (flags & MPTCP_CF_FASTCLOSE)) { 2335 /* The MPTCP code never wait on the subflow sockets, TCP-level 2336 * disconnect should never fail 2337 */ 2338 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2339 mptcp_subflow_ctx_reset(subflow); 2340 } else { 2341 tcp_shutdown(ssk, SEND_SHUTDOWN); 2342 } 2343 } 2344 2345 /* subflow sockets can be either outgoing (connect) or incoming 2346 * (accept). 2347 * 2348 * Outgoing subflows use in-kernel sockets. 2349 * Incoming subflows do not have their own 'struct socket' allocated, 2350 * so we need to use tcp_close() after detaching them from the mptcp 2351 * parent socket. 2352 */ 2353 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2354 struct mptcp_subflow_context *subflow, 2355 unsigned int flags) 2356 { 2357 struct mptcp_sock *msk = mptcp_sk(sk); 2358 bool dispose_it, need_push = false; 2359 2360 /* If the first subflow moved to a close state before accept, e.g. due 2361 * to an incoming reset or listener shutdown, the subflow socket is 2362 * already deleted by inet_child_forget() and the mptcp socket can't 2363 * survive too. 2364 */ 2365 if (msk->in_accept_queue && msk->first == ssk && 2366 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2367 /* ensure later check in mptcp_worker() will dispose the msk */ 2368 sock_set_flag(sk, SOCK_DEAD); 2369 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2370 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2371 mptcp_subflow_drop_ctx(ssk); 2372 goto out_release; 2373 } 2374 2375 dispose_it = msk->free_first || ssk != msk->first; 2376 if (dispose_it) 2377 list_del(&subflow->node); 2378 2379 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2380 2381 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2382 /* be sure to force the tcp_close path 2383 * to generate the egress reset 2384 */ 2385 ssk->sk_lingertime = 0; 2386 sock_set_flag(ssk, SOCK_LINGER); 2387 subflow->send_fastclose = 1; 2388 } 2389 2390 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2391 if (!dispose_it) { 2392 __mptcp_subflow_disconnect(ssk, subflow, flags); 2393 release_sock(ssk); 2394 2395 goto out; 2396 } 2397 2398 subflow->disposable = 1; 2399 2400 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2401 * the ssk has been already destroyed, we just need to release the 2402 * reference owned by msk; 2403 */ 2404 if (!inet_csk(ssk)->icsk_ulp_ops) { 2405 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2406 kfree_rcu(subflow, rcu); 2407 } else { 2408 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2409 __tcp_close(ssk, 0); 2410 2411 /* close acquired an extra ref */ 2412 __sock_put(ssk); 2413 } 2414 2415 out_release: 2416 __mptcp_subflow_error_report(sk, ssk); 2417 release_sock(ssk); 2418 2419 sock_put(ssk); 2420 2421 if (ssk == msk->first) 2422 WRITE_ONCE(msk->first, NULL); 2423 2424 out: 2425 __mptcp_sync_sndbuf(sk); 2426 if (need_push) 2427 __mptcp_push_pending(sk, 0); 2428 2429 /* Catch every 'all subflows closed' scenario, including peers silently 2430 * closing them, e.g. due to timeout. 2431 * For established sockets, allow an additional timeout before closing, 2432 * as the protocol can still create more subflows. 2433 */ 2434 if (list_is_singular(&msk->conn_list) && msk->first && 2435 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2436 if (sk->sk_state != TCP_ESTABLISHED || 2437 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2438 mptcp_set_state(sk, TCP_CLOSE); 2439 mptcp_close_wake_up(sk); 2440 } else { 2441 mptcp_start_tout_timer(sk); 2442 } 2443 } 2444 } 2445 2446 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2447 struct mptcp_subflow_context *subflow) 2448 { 2449 /* The first subflow can already be closed and still in the list */ 2450 if (subflow->close_event_done) 2451 return; 2452 2453 subflow->close_event_done = true; 2454 2455 if (sk->sk_state == TCP_ESTABLISHED) 2456 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2457 2458 /* subflow aborted before reaching the fully_established status 2459 * attempt the creation of the next subflow 2460 */ 2461 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2462 2463 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2464 } 2465 2466 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2467 { 2468 return 0; 2469 } 2470 2471 static void __mptcp_close_subflow(struct sock *sk) 2472 { 2473 struct mptcp_subflow_context *subflow, *tmp; 2474 struct mptcp_sock *msk = mptcp_sk(sk); 2475 2476 might_sleep(); 2477 2478 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2479 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2480 int ssk_state = inet_sk_state_load(ssk); 2481 2482 if (ssk_state != TCP_CLOSE && 2483 (ssk_state != TCP_CLOSE_WAIT || 2484 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2485 continue; 2486 2487 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2488 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2489 continue; 2490 2491 mptcp_close_ssk(sk, ssk, subflow); 2492 } 2493 2494 } 2495 2496 static bool mptcp_close_tout_expired(const struct sock *sk) 2497 { 2498 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2499 sk->sk_state == TCP_CLOSE) 2500 return false; 2501 2502 return time_after32(tcp_jiffies32, 2503 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2504 } 2505 2506 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2507 { 2508 struct mptcp_subflow_context *subflow, *tmp; 2509 struct sock *sk = (struct sock *)msk; 2510 2511 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2512 return; 2513 2514 mptcp_token_destroy(msk); 2515 2516 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2517 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2518 bool slow; 2519 2520 slow = lock_sock_fast(tcp_sk); 2521 if (tcp_sk->sk_state != TCP_CLOSE) { 2522 mptcp_send_active_reset_reason(tcp_sk); 2523 tcp_set_state(tcp_sk, TCP_CLOSE); 2524 } 2525 unlock_sock_fast(tcp_sk, slow); 2526 } 2527 2528 /* Mirror the tcp_reset() error propagation */ 2529 switch (sk->sk_state) { 2530 case TCP_SYN_SENT: 2531 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2532 break; 2533 case TCP_CLOSE_WAIT: 2534 WRITE_ONCE(sk->sk_err, EPIPE); 2535 break; 2536 case TCP_CLOSE: 2537 return; 2538 default: 2539 WRITE_ONCE(sk->sk_err, ECONNRESET); 2540 } 2541 2542 mptcp_set_state(sk, TCP_CLOSE); 2543 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2544 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2545 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2546 2547 /* the calling mptcp_worker will properly destroy the socket */ 2548 if (sock_flag(sk, SOCK_DEAD)) 2549 return; 2550 2551 sk->sk_state_change(sk); 2552 sk_error_report(sk); 2553 } 2554 2555 static void __mptcp_retrans(struct sock *sk) 2556 { 2557 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2558 struct mptcp_sock *msk = mptcp_sk(sk); 2559 struct mptcp_subflow_context *subflow; 2560 struct mptcp_data_frag *dfrag; 2561 struct sock *ssk; 2562 int ret, err; 2563 u16 len = 0; 2564 2565 mptcp_clean_una_wakeup(sk); 2566 2567 /* first check ssk: need to kick "stale" logic */ 2568 err = mptcp_sched_get_retrans(msk); 2569 dfrag = mptcp_rtx_head(sk); 2570 if (!dfrag) { 2571 if (mptcp_data_fin_enabled(msk)) { 2572 struct inet_connection_sock *icsk = inet_csk(sk); 2573 2574 icsk->icsk_retransmits++; 2575 mptcp_set_datafin_timeout(sk); 2576 mptcp_send_ack(msk); 2577 2578 goto reset_timer; 2579 } 2580 2581 if (!mptcp_send_head(sk)) 2582 return; 2583 2584 goto reset_timer; 2585 } 2586 2587 if (err) 2588 goto reset_timer; 2589 2590 mptcp_for_each_subflow(msk, subflow) { 2591 if (READ_ONCE(subflow->scheduled)) { 2592 u16 copied = 0; 2593 2594 mptcp_subflow_set_scheduled(subflow, false); 2595 2596 ssk = mptcp_subflow_tcp_sock(subflow); 2597 2598 lock_sock(ssk); 2599 2600 /* limit retransmission to the bytes already sent on some subflows */ 2601 info.sent = 0; 2602 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2603 dfrag->already_sent; 2604 2605 /* 2606 * make the whole retrans decision, xmit, disallow 2607 * fallback atomic 2608 */ 2609 spin_lock_bh(&msk->fallback_lock); 2610 if (__mptcp_check_fallback(msk)) { 2611 spin_unlock_bh(&msk->fallback_lock); 2612 release_sock(ssk); 2613 return; 2614 } 2615 2616 while (info.sent < info.limit) { 2617 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2618 if (ret <= 0) 2619 break; 2620 2621 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2622 copied += ret; 2623 info.sent += ret; 2624 } 2625 if (copied) { 2626 len = max(copied, len); 2627 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2628 info.size_goal); 2629 msk->allow_infinite_fallback = false; 2630 } 2631 spin_unlock_bh(&msk->fallback_lock); 2632 2633 release_sock(ssk); 2634 } 2635 } 2636 2637 msk->bytes_retrans += len; 2638 dfrag->already_sent = max(dfrag->already_sent, len); 2639 2640 reset_timer: 2641 mptcp_check_and_set_pending(sk); 2642 2643 if (!mptcp_rtx_timer_pending(sk)) 2644 mptcp_reset_rtx_timer(sk); 2645 } 2646 2647 /* schedule the timeout timer for the relevant event: either close timeout 2648 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2649 */ 2650 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2651 { 2652 struct sock *sk = (struct sock *)msk; 2653 unsigned long timeout, close_timeout; 2654 2655 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2656 return; 2657 2658 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2659 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2660 2661 /* the close timeout takes precedence on the fail one, and here at least one of 2662 * them is active 2663 */ 2664 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2665 2666 sk_reset_timer(sk, &sk->sk_timer, timeout); 2667 } 2668 2669 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2670 { 2671 struct sock *ssk = msk->first; 2672 bool slow; 2673 2674 if (!ssk) 2675 return; 2676 2677 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2678 2679 slow = lock_sock_fast(ssk); 2680 mptcp_subflow_reset(ssk); 2681 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2682 unlock_sock_fast(ssk, slow); 2683 } 2684 2685 static void mptcp_do_fastclose(struct sock *sk) 2686 { 2687 struct mptcp_subflow_context *subflow, *tmp; 2688 struct mptcp_sock *msk = mptcp_sk(sk); 2689 2690 mptcp_set_state(sk, TCP_CLOSE); 2691 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2692 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2693 subflow, MPTCP_CF_FASTCLOSE); 2694 } 2695 2696 static void mptcp_worker(struct work_struct *work) 2697 { 2698 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2699 struct sock *sk = (struct sock *)msk; 2700 unsigned long fail_tout; 2701 int state; 2702 2703 lock_sock(sk); 2704 state = sk->sk_state; 2705 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2706 goto unlock; 2707 2708 mptcp_check_fastclose(msk); 2709 2710 mptcp_pm_worker(msk); 2711 2712 mptcp_check_send_data_fin(sk); 2713 mptcp_check_data_fin_ack(sk); 2714 mptcp_check_data_fin(sk); 2715 2716 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2717 __mptcp_close_subflow(sk); 2718 2719 if (mptcp_close_tout_expired(sk)) { 2720 mptcp_do_fastclose(sk); 2721 mptcp_close_wake_up(sk); 2722 } 2723 2724 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2725 __mptcp_destroy_sock(sk); 2726 goto unlock; 2727 } 2728 2729 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2730 __mptcp_retrans(sk); 2731 2732 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2733 if (fail_tout && time_after(jiffies, fail_tout)) 2734 mptcp_mp_fail_no_response(msk); 2735 2736 unlock: 2737 release_sock(sk); 2738 sock_put(sk); 2739 } 2740 2741 static void __mptcp_init_sock(struct sock *sk) 2742 { 2743 struct mptcp_sock *msk = mptcp_sk(sk); 2744 2745 INIT_LIST_HEAD(&msk->conn_list); 2746 INIT_LIST_HEAD(&msk->join_list); 2747 INIT_LIST_HEAD(&msk->rtx_queue); 2748 INIT_WORK(&msk->work, mptcp_worker); 2749 msk->out_of_order_queue = RB_ROOT; 2750 msk->first_pending = NULL; 2751 msk->timer_ival = TCP_RTO_MIN; 2752 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2753 2754 WRITE_ONCE(msk->first, NULL); 2755 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2756 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2757 msk->allow_infinite_fallback = true; 2758 msk->allow_subflows = true; 2759 msk->recovery = false; 2760 msk->subflow_id = 1; 2761 msk->last_data_sent = tcp_jiffies32; 2762 msk->last_data_recv = tcp_jiffies32; 2763 msk->last_ack_recv = tcp_jiffies32; 2764 2765 mptcp_pm_data_init(msk); 2766 spin_lock_init(&msk->fallback_lock); 2767 2768 /* re-use the csk retrans timer for MPTCP-level retrans */ 2769 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2770 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2771 } 2772 2773 static void mptcp_ca_reset(struct sock *sk) 2774 { 2775 struct inet_connection_sock *icsk = inet_csk(sk); 2776 2777 tcp_assign_congestion_control(sk); 2778 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2779 sizeof(mptcp_sk(sk)->ca_name)); 2780 2781 /* no need to keep a reference to the ops, the name will suffice */ 2782 tcp_cleanup_congestion_control(sk); 2783 icsk->icsk_ca_ops = NULL; 2784 } 2785 2786 static int mptcp_init_sock(struct sock *sk) 2787 { 2788 struct net *net = sock_net(sk); 2789 int ret; 2790 2791 __mptcp_init_sock(sk); 2792 2793 if (!mptcp_is_enabled(net)) 2794 return -ENOPROTOOPT; 2795 2796 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2797 return -ENOMEM; 2798 2799 rcu_read_lock(); 2800 ret = mptcp_init_sched(mptcp_sk(sk), 2801 mptcp_sched_find(mptcp_get_scheduler(net))); 2802 rcu_read_unlock(); 2803 if (ret) 2804 return ret; 2805 2806 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2807 2808 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2809 * propagate the correct value 2810 */ 2811 mptcp_ca_reset(sk); 2812 2813 sk_sockets_allocated_inc(sk); 2814 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2815 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2816 2817 return 0; 2818 } 2819 2820 static void __mptcp_clear_xmit(struct sock *sk) 2821 { 2822 struct mptcp_sock *msk = mptcp_sk(sk); 2823 struct mptcp_data_frag *dtmp, *dfrag; 2824 2825 WRITE_ONCE(msk->first_pending, NULL); 2826 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2827 dfrag_clear(sk, dfrag); 2828 } 2829 2830 void mptcp_cancel_work(struct sock *sk) 2831 { 2832 struct mptcp_sock *msk = mptcp_sk(sk); 2833 2834 if (cancel_work_sync(&msk->work)) 2835 __sock_put(sk); 2836 } 2837 2838 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2839 { 2840 lock_sock(ssk); 2841 2842 switch (ssk->sk_state) { 2843 case TCP_LISTEN: 2844 if (!(how & RCV_SHUTDOWN)) 2845 break; 2846 fallthrough; 2847 case TCP_SYN_SENT: 2848 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2849 break; 2850 default: 2851 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2852 pr_debug("Fallback\n"); 2853 ssk->sk_shutdown |= how; 2854 tcp_shutdown(ssk, how); 2855 2856 /* simulate the data_fin ack reception to let the state 2857 * machine move forward 2858 */ 2859 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2860 mptcp_schedule_work(sk); 2861 } else { 2862 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2863 tcp_send_ack(ssk); 2864 if (!mptcp_rtx_timer_pending(sk)) 2865 mptcp_reset_rtx_timer(sk); 2866 } 2867 break; 2868 } 2869 2870 release_sock(ssk); 2871 } 2872 2873 void mptcp_set_state(struct sock *sk, int state) 2874 { 2875 int oldstate = sk->sk_state; 2876 2877 switch (state) { 2878 case TCP_ESTABLISHED: 2879 if (oldstate != TCP_ESTABLISHED) 2880 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2881 break; 2882 case TCP_CLOSE_WAIT: 2883 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2884 * MPTCP "accepted" sockets will be created later on. So no 2885 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2886 */ 2887 break; 2888 default: 2889 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2890 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2891 } 2892 2893 inet_sk_state_store(sk, state); 2894 } 2895 2896 static const unsigned char new_state[16] = { 2897 /* current state: new state: action: */ 2898 [0 /* (Invalid) */] = TCP_CLOSE, 2899 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2900 [TCP_SYN_SENT] = TCP_CLOSE, 2901 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2902 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2903 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2904 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2905 [TCP_CLOSE] = TCP_CLOSE, 2906 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2907 [TCP_LAST_ACK] = TCP_LAST_ACK, 2908 [TCP_LISTEN] = TCP_CLOSE, 2909 [TCP_CLOSING] = TCP_CLOSING, 2910 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2911 }; 2912 2913 static int mptcp_close_state(struct sock *sk) 2914 { 2915 int next = (int)new_state[sk->sk_state]; 2916 int ns = next & TCP_STATE_MASK; 2917 2918 mptcp_set_state(sk, ns); 2919 2920 return next & TCP_ACTION_FIN; 2921 } 2922 2923 static void mptcp_check_send_data_fin(struct sock *sk) 2924 { 2925 struct mptcp_subflow_context *subflow; 2926 struct mptcp_sock *msk = mptcp_sk(sk); 2927 2928 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2929 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2930 msk->snd_nxt, msk->write_seq); 2931 2932 /* we still need to enqueue subflows or not really shutting down, 2933 * skip this 2934 */ 2935 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2936 mptcp_send_head(sk)) 2937 return; 2938 2939 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2940 2941 mptcp_for_each_subflow(msk, subflow) { 2942 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2943 2944 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2945 } 2946 } 2947 2948 static void __mptcp_wr_shutdown(struct sock *sk) 2949 { 2950 struct mptcp_sock *msk = mptcp_sk(sk); 2951 2952 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2953 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2954 !!mptcp_send_head(sk)); 2955 2956 /* will be ignored by fallback sockets */ 2957 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2958 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2959 2960 mptcp_check_send_data_fin(sk); 2961 } 2962 2963 static void __mptcp_destroy_sock(struct sock *sk) 2964 { 2965 struct mptcp_sock *msk = mptcp_sk(sk); 2966 2967 pr_debug("msk=%p\n", msk); 2968 2969 might_sleep(); 2970 2971 mptcp_stop_rtx_timer(sk); 2972 sk_stop_timer(sk, &sk->sk_timer); 2973 msk->pm.status = 0; 2974 mptcp_release_sched(msk); 2975 2976 sk->sk_prot->destroy(sk); 2977 2978 sk_stream_kill_queues(sk); 2979 xfrm_sk_free_policy(sk); 2980 2981 sock_put(sk); 2982 } 2983 2984 void __mptcp_unaccepted_force_close(struct sock *sk) 2985 { 2986 sock_set_flag(sk, SOCK_DEAD); 2987 mptcp_do_fastclose(sk); 2988 __mptcp_destroy_sock(sk); 2989 } 2990 2991 static __poll_t mptcp_check_readable(struct sock *sk) 2992 { 2993 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2994 } 2995 2996 static void mptcp_check_listen_stop(struct sock *sk) 2997 { 2998 struct sock *ssk; 2999 3000 if (inet_sk_state_load(sk) != TCP_LISTEN) 3001 return; 3002 3003 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3004 ssk = mptcp_sk(sk)->first; 3005 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3006 return; 3007 3008 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3009 tcp_set_state(ssk, TCP_CLOSE); 3010 mptcp_subflow_queue_clean(sk, ssk); 3011 inet_csk_listen_stop(ssk); 3012 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3013 release_sock(ssk); 3014 } 3015 3016 bool __mptcp_close(struct sock *sk, long timeout) 3017 { 3018 struct mptcp_subflow_context *subflow; 3019 struct mptcp_sock *msk = mptcp_sk(sk); 3020 bool do_cancel_work = false; 3021 int subflows_alive = 0; 3022 3023 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3024 3025 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3026 mptcp_check_listen_stop(sk); 3027 mptcp_set_state(sk, TCP_CLOSE); 3028 goto cleanup; 3029 } 3030 3031 if (mptcp_data_avail(msk) || timeout < 0) { 3032 /* If the msk has read data, or the caller explicitly ask it, 3033 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3034 */ 3035 mptcp_do_fastclose(sk); 3036 timeout = 0; 3037 } else if (mptcp_close_state(sk)) { 3038 __mptcp_wr_shutdown(sk); 3039 } 3040 3041 sk_stream_wait_close(sk, timeout); 3042 3043 cleanup: 3044 /* orphan all the subflows */ 3045 mptcp_for_each_subflow(msk, subflow) { 3046 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3047 bool slow = lock_sock_fast_nested(ssk); 3048 3049 subflows_alive += ssk->sk_state != TCP_CLOSE; 3050 3051 /* since the close timeout takes precedence on the fail one, 3052 * cancel the latter 3053 */ 3054 if (ssk == msk->first) 3055 subflow->fail_tout = 0; 3056 3057 /* detach from the parent socket, but allow data_ready to 3058 * push incoming data into the mptcp stack, to properly ack it 3059 */ 3060 ssk->sk_socket = NULL; 3061 ssk->sk_wq = NULL; 3062 unlock_sock_fast(ssk, slow); 3063 } 3064 sock_orphan(sk); 3065 3066 /* all the subflows are closed, only timeout can change the msk 3067 * state, let's not keep resources busy for no reasons 3068 */ 3069 if (subflows_alive == 0) 3070 mptcp_set_state(sk, TCP_CLOSE); 3071 3072 sock_hold(sk); 3073 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3074 mptcp_pm_connection_closed(msk); 3075 3076 if (sk->sk_state == TCP_CLOSE) { 3077 __mptcp_destroy_sock(sk); 3078 do_cancel_work = true; 3079 } else { 3080 mptcp_start_tout_timer(sk); 3081 } 3082 3083 return do_cancel_work; 3084 } 3085 3086 static void mptcp_close(struct sock *sk, long timeout) 3087 { 3088 bool do_cancel_work; 3089 3090 lock_sock(sk); 3091 3092 do_cancel_work = __mptcp_close(sk, timeout); 3093 release_sock(sk); 3094 if (do_cancel_work) 3095 mptcp_cancel_work(sk); 3096 3097 sock_put(sk); 3098 } 3099 3100 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3101 { 3102 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3103 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3104 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3105 3106 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3107 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3108 3109 if (msk6 && ssk6) { 3110 msk6->saddr = ssk6->saddr; 3111 msk6->flow_label = ssk6->flow_label; 3112 } 3113 #endif 3114 3115 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3116 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3117 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3118 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3119 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3120 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3121 } 3122 3123 static int mptcp_disconnect(struct sock *sk, int flags) 3124 { 3125 struct mptcp_sock *msk = mptcp_sk(sk); 3126 3127 /* We are on the fastopen error path. We can't call straight into the 3128 * subflows cleanup code due to lock nesting (we are already under 3129 * msk->firstsocket lock). 3130 */ 3131 if (msk->fastopening) 3132 return -EBUSY; 3133 3134 mptcp_check_listen_stop(sk); 3135 mptcp_set_state(sk, TCP_CLOSE); 3136 3137 mptcp_stop_rtx_timer(sk); 3138 mptcp_stop_tout_timer(sk); 3139 3140 mptcp_pm_connection_closed(msk); 3141 3142 /* msk->subflow is still intact, the following will not free the first 3143 * subflow 3144 */ 3145 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3146 3147 /* The first subflow is already in TCP_CLOSE status, the following 3148 * can't overlap with a fallback anymore 3149 */ 3150 spin_lock_bh(&msk->fallback_lock); 3151 msk->allow_subflows = true; 3152 msk->allow_infinite_fallback = true; 3153 WRITE_ONCE(msk->flags, 0); 3154 spin_unlock_bh(&msk->fallback_lock); 3155 3156 msk->cb_flags = 0; 3157 msk->recovery = false; 3158 WRITE_ONCE(msk->can_ack, false); 3159 WRITE_ONCE(msk->fully_established, false); 3160 WRITE_ONCE(msk->rcv_data_fin, false); 3161 WRITE_ONCE(msk->snd_data_fin_enable, false); 3162 WRITE_ONCE(msk->rcv_fastclose, false); 3163 WRITE_ONCE(msk->use_64bit_ack, false); 3164 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3165 mptcp_pm_data_reset(msk); 3166 mptcp_ca_reset(sk); 3167 msk->bytes_consumed = 0; 3168 msk->bytes_acked = 0; 3169 msk->bytes_received = 0; 3170 msk->bytes_sent = 0; 3171 msk->bytes_retrans = 0; 3172 msk->rcvspace_init = 0; 3173 3174 WRITE_ONCE(sk->sk_shutdown, 0); 3175 sk_error_report(sk); 3176 return 0; 3177 } 3178 3179 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3180 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3181 { 3182 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3183 3184 return &msk6->np; 3185 } 3186 3187 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3188 { 3189 const struct ipv6_pinfo *np = inet6_sk(sk); 3190 struct ipv6_txoptions *opt; 3191 struct ipv6_pinfo *newnp; 3192 3193 newnp = inet6_sk(newsk); 3194 3195 rcu_read_lock(); 3196 opt = rcu_dereference(np->opt); 3197 if (opt) { 3198 opt = ipv6_dup_options(newsk, opt); 3199 if (!opt) 3200 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3201 } 3202 RCU_INIT_POINTER(newnp->opt, opt); 3203 rcu_read_unlock(); 3204 } 3205 #endif 3206 3207 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3208 { 3209 struct ip_options_rcu *inet_opt, *newopt = NULL; 3210 const struct inet_sock *inet = inet_sk(sk); 3211 struct inet_sock *newinet; 3212 3213 newinet = inet_sk(newsk); 3214 3215 rcu_read_lock(); 3216 inet_opt = rcu_dereference(inet->inet_opt); 3217 if (inet_opt) { 3218 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3219 inet_opt->opt.optlen, GFP_ATOMIC); 3220 if (!newopt) 3221 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3222 } 3223 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3224 rcu_read_unlock(); 3225 } 3226 3227 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3228 const struct mptcp_options_received *mp_opt, 3229 struct sock *ssk, 3230 struct request_sock *req) 3231 { 3232 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3233 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3234 struct mptcp_subflow_context *subflow; 3235 struct mptcp_sock *msk; 3236 3237 if (!nsk) 3238 return NULL; 3239 3240 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3241 if (nsk->sk_family == AF_INET6) 3242 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3243 #endif 3244 3245 __mptcp_init_sock(nsk); 3246 3247 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3248 if (nsk->sk_family == AF_INET6) 3249 mptcp_copy_ip6_options(nsk, sk); 3250 else 3251 #endif 3252 mptcp_copy_ip_options(nsk, sk); 3253 3254 msk = mptcp_sk(nsk); 3255 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3256 WRITE_ONCE(msk->token, subflow_req->token); 3257 msk->in_accept_queue = 1; 3258 WRITE_ONCE(msk->fully_established, false); 3259 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3260 WRITE_ONCE(msk->csum_enabled, true); 3261 3262 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3263 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3264 WRITE_ONCE(msk->snd_una, msk->write_seq); 3265 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3266 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3267 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3268 3269 /* passive msk is created after the first/MPC subflow */ 3270 msk->subflow_id = 2; 3271 3272 sock_reset_flag(nsk, SOCK_RCU_FREE); 3273 security_inet_csk_clone(nsk, req); 3274 3275 /* this can't race with mptcp_close(), as the msk is 3276 * not yet exposted to user-space 3277 */ 3278 mptcp_set_state(nsk, TCP_ESTABLISHED); 3279 3280 /* The msk maintain a ref to each subflow in the connections list */ 3281 WRITE_ONCE(msk->first, ssk); 3282 subflow = mptcp_subflow_ctx(ssk); 3283 list_add(&subflow->node, &msk->conn_list); 3284 sock_hold(ssk); 3285 3286 /* new mpc subflow takes ownership of the newly 3287 * created mptcp socket 3288 */ 3289 mptcp_token_accept(subflow_req, msk); 3290 3291 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3292 * uses the correct data 3293 */ 3294 mptcp_copy_inaddrs(nsk, ssk); 3295 __mptcp_propagate_sndbuf(nsk, ssk); 3296 3297 mptcp_rcv_space_init(msk, ssk); 3298 3299 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3300 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3301 bh_unlock_sock(nsk); 3302 3303 /* note: the newly allocated socket refcount is 2 now */ 3304 return nsk; 3305 } 3306 3307 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3308 { 3309 const struct tcp_sock *tp = tcp_sk(ssk); 3310 3311 msk->rcvspace_init = 1; 3312 msk->rcvq_space.copied = 0; 3313 msk->rcvq_space.rtt_us = 0; 3314 3315 msk->rcvq_space.time = tp->tcp_mstamp; 3316 3317 /* initial rcv_space offering made to peer */ 3318 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3319 TCP_INIT_CWND * tp->advmss); 3320 if (msk->rcvq_space.space == 0) 3321 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3322 } 3323 3324 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3325 { 3326 struct mptcp_subflow_context *subflow, *tmp; 3327 struct sock *sk = (struct sock *)msk; 3328 3329 __mptcp_clear_xmit(sk); 3330 3331 /* join list will be eventually flushed (with rst) at sock lock release time */ 3332 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3333 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3334 3335 __skb_queue_purge(&sk->sk_receive_queue); 3336 skb_rbtree_purge(&msk->out_of_order_queue); 3337 3338 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3339 * inet_sock_destruct() will dispose it 3340 */ 3341 mptcp_token_destroy(msk); 3342 mptcp_pm_destroy(msk); 3343 } 3344 3345 static void mptcp_destroy(struct sock *sk) 3346 { 3347 struct mptcp_sock *msk = mptcp_sk(sk); 3348 3349 /* allow the following to close even the initial subflow */ 3350 msk->free_first = 1; 3351 mptcp_destroy_common(msk, 0); 3352 sk_sockets_allocated_dec(sk); 3353 } 3354 3355 void __mptcp_data_acked(struct sock *sk) 3356 { 3357 if (!sock_owned_by_user(sk)) 3358 __mptcp_clean_una(sk); 3359 else 3360 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3361 } 3362 3363 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3364 { 3365 if (!mptcp_send_head(sk)) 3366 return; 3367 3368 if (!sock_owned_by_user(sk)) 3369 __mptcp_subflow_push_pending(sk, ssk, false); 3370 else 3371 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3372 } 3373 3374 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3375 BIT(MPTCP_RETRANSMIT) | \ 3376 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3377 BIT(MPTCP_DEQUEUE)) 3378 3379 /* processes deferred events and flush wmem */ 3380 static void mptcp_release_cb(struct sock *sk) 3381 __must_hold(&sk->sk_lock.slock) 3382 { 3383 struct mptcp_sock *msk = mptcp_sk(sk); 3384 3385 for (;;) { 3386 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3387 struct list_head join_list; 3388 3389 if (!flags) 3390 break; 3391 3392 INIT_LIST_HEAD(&join_list); 3393 list_splice_init(&msk->join_list, &join_list); 3394 3395 /* the following actions acquire the subflow socket lock 3396 * 3397 * 1) can't be invoked in atomic scope 3398 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3399 * datapath acquires the msk socket spinlock while helding 3400 * the subflow socket lock 3401 */ 3402 msk->cb_flags &= ~flags; 3403 spin_unlock_bh(&sk->sk_lock.slock); 3404 3405 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3406 __mptcp_flush_join_list(sk, &join_list); 3407 if (flags & BIT(MPTCP_PUSH_PENDING)) 3408 __mptcp_push_pending(sk, 0); 3409 if (flags & BIT(MPTCP_RETRANSMIT)) 3410 __mptcp_retrans(sk); 3411 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3412 /* notify ack seq update */ 3413 mptcp_cleanup_rbuf(msk, 0); 3414 sk->sk_data_ready(sk); 3415 } 3416 3417 cond_resched(); 3418 spin_lock_bh(&sk->sk_lock.slock); 3419 } 3420 3421 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3422 __mptcp_clean_una_wakeup(sk); 3423 if (unlikely(msk->cb_flags)) { 3424 /* be sure to sync the msk state before taking actions 3425 * depending on sk_state (MPTCP_ERROR_REPORT) 3426 * On sk release avoid actions depending on the first subflow 3427 */ 3428 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3429 __mptcp_sync_state(sk, msk->pending_state); 3430 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3431 __mptcp_error_report(sk); 3432 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3433 __mptcp_sync_sndbuf(sk); 3434 } 3435 } 3436 3437 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3438 * TCP can't schedule delack timer before the subflow is fully established. 3439 * MPTCP uses the delack timer to do 3rd ack retransmissions 3440 */ 3441 static void schedule_3rdack_retransmission(struct sock *ssk) 3442 { 3443 struct inet_connection_sock *icsk = inet_csk(ssk); 3444 struct tcp_sock *tp = tcp_sk(ssk); 3445 unsigned long timeout; 3446 3447 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3448 return; 3449 3450 /* reschedule with a timeout above RTT, as we must look only for drop */ 3451 if (tp->srtt_us) 3452 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3453 else 3454 timeout = TCP_TIMEOUT_INIT; 3455 timeout += jiffies; 3456 3457 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3458 smp_store_release(&icsk->icsk_ack.pending, 3459 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3460 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3461 } 3462 3463 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3464 { 3465 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3466 struct sock *sk = subflow->conn; 3467 3468 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3469 mptcp_data_lock(sk); 3470 if (!sock_owned_by_user(sk)) 3471 __mptcp_subflow_push_pending(sk, ssk, true); 3472 else 3473 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3474 mptcp_data_unlock(sk); 3475 } 3476 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3477 mptcp_data_lock(sk); 3478 if (!sock_owned_by_user(sk)) 3479 __mptcp_sync_sndbuf(sk); 3480 else 3481 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3482 mptcp_data_unlock(sk); 3483 } 3484 if (status & BIT(MPTCP_DELEGATE_ACK)) 3485 schedule_3rdack_retransmission(ssk); 3486 } 3487 3488 static int mptcp_hash(struct sock *sk) 3489 { 3490 /* should never be called, 3491 * we hash the TCP subflows not the MPTCP socket 3492 */ 3493 WARN_ON_ONCE(1); 3494 return 0; 3495 } 3496 3497 static void mptcp_unhash(struct sock *sk) 3498 { 3499 /* called from sk_common_release(), but nothing to do here */ 3500 } 3501 3502 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3503 { 3504 struct mptcp_sock *msk = mptcp_sk(sk); 3505 3506 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3507 if (WARN_ON_ONCE(!msk->first)) 3508 return -EINVAL; 3509 3510 return inet_csk_get_port(msk->first, snum); 3511 } 3512 3513 void mptcp_finish_connect(struct sock *ssk) 3514 { 3515 struct mptcp_subflow_context *subflow; 3516 struct mptcp_sock *msk; 3517 struct sock *sk; 3518 3519 subflow = mptcp_subflow_ctx(ssk); 3520 sk = subflow->conn; 3521 msk = mptcp_sk(sk); 3522 3523 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3524 3525 subflow->map_seq = subflow->iasn; 3526 subflow->map_subflow_seq = 1; 3527 3528 /* the socket is not connected yet, no msk/subflow ops can access/race 3529 * accessing the field below 3530 */ 3531 WRITE_ONCE(msk->local_key, subflow->local_key); 3532 3533 mptcp_pm_new_connection(msk, ssk, 0); 3534 } 3535 3536 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3537 { 3538 write_lock_bh(&sk->sk_callback_lock); 3539 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3540 sk_set_socket(sk, parent); 3541 WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid); 3542 write_unlock_bh(&sk->sk_callback_lock); 3543 } 3544 3545 bool mptcp_finish_join(struct sock *ssk) 3546 { 3547 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3548 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3549 struct sock *parent = (void *)msk; 3550 bool ret = true; 3551 3552 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3553 3554 /* mptcp socket already closing? */ 3555 if (!mptcp_is_fully_established(parent)) { 3556 subflow->reset_reason = MPTCP_RST_EMPTCP; 3557 return false; 3558 } 3559 3560 /* active subflow, already present inside the conn_list */ 3561 if (!list_empty(&subflow->node)) { 3562 spin_lock_bh(&msk->fallback_lock); 3563 if (!msk->allow_subflows) { 3564 spin_unlock_bh(&msk->fallback_lock); 3565 return false; 3566 } 3567 mptcp_subflow_joined(msk, ssk); 3568 spin_unlock_bh(&msk->fallback_lock); 3569 mptcp_propagate_sndbuf(parent, ssk); 3570 return true; 3571 } 3572 3573 if (!mptcp_pm_allow_new_subflow(msk)) { 3574 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3575 goto err_prohibited; 3576 } 3577 3578 /* If we can't acquire msk socket lock here, let the release callback 3579 * handle it 3580 */ 3581 mptcp_data_lock(parent); 3582 if (!sock_owned_by_user(parent)) { 3583 ret = __mptcp_finish_join(msk, ssk); 3584 if (ret) { 3585 sock_hold(ssk); 3586 list_add_tail(&subflow->node, &msk->conn_list); 3587 } 3588 } else { 3589 sock_hold(ssk); 3590 list_add_tail(&subflow->node, &msk->join_list); 3591 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3592 } 3593 mptcp_data_unlock(parent); 3594 3595 if (!ret) { 3596 err_prohibited: 3597 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3598 return false; 3599 } 3600 3601 return true; 3602 } 3603 3604 static void mptcp_shutdown(struct sock *sk, int how) 3605 { 3606 pr_debug("sk=%p, how=%d\n", sk, how); 3607 3608 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3609 __mptcp_wr_shutdown(sk); 3610 } 3611 3612 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3613 { 3614 const struct sock *sk = (void *)msk; 3615 u64 delta; 3616 3617 if (sk->sk_state == TCP_LISTEN) 3618 return -EINVAL; 3619 3620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3621 return 0; 3622 3623 delta = msk->write_seq - v; 3624 if (__mptcp_check_fallback(msk) && msk->first) { 3625 struct tcp_sock *tp = tcp_sk(msk->first); 3626 3627 /* the first subflow is disconnected after close - see 3628 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3629 * so ignore that status, too. 3630 */ 3631 if (!((1 << msk->first->sk_state) & 3632 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3633 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3634 } 3635 if (delta > INT_MAX) 3636 delta = INT_MAX; 3637 3638 return (int)delta; 3639 } 3640 3641 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3642 { 3643 struct mptcp_sock *msk = mptcp_sk(sk); 3644 bool slow; 3645 3646 switch (cmd) { 3647 case SIOCINQ: 3648 if (sk->sk_state == TCP_LISTEN) 3649 return -EINVAL; 3650 3651 lock_sock(sk); 3652 if (__mptcp_move_skbs(sk)) 3653 mptcp_cleanup_rbuf(msk, 0); 3654 *karg = mptcp_inq_hint(sk); 3655 release_sock(sk); 3656 break; 3657 case SIOCOUTQ: 3658 slow = lock_sock_fast(sk); 3659 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3660 unlock_sock_fast(sk, slow); 3661 break; 3662 case SIOCOUTQNSD: 3663 slow = lock_sock_fast(sk); 3664 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3665 unlock_sock_fast(sk, slow); 3666 break; 3667 default: 3668 return -ENOIOCTLCMD; 3669 } 3670 3671 return 0; 3672 } 3673 3674 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3675 { 3676 struct mptcp_subflow_context *subflow; 3677 struct mptcp_sock *msk = mptcp_sk(sk); 3678 int err = -EINVAL; 3679 struct sock *ssk; 3680 3681 ssk = __mptcp_nmpc_sk(msk); 3682 if (IS_ERR(ssk)) 3683 return PTR_ERR(ssk); 3684 3685 mptcp_set_state(sk, TCP_SYN_SENT); 3686 subflow = mptcp_subflow_ctx(ssk); 3687 #ifdef CONFIG_TCP_MD5SIG 3688 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3689 * TCP option space. 3690 */ 3691 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3692 mptcp_subflow_early_fallback(msk, subflow); 3693 #endif 3694 if (subflow->request_mptcp) { 3695 if (mptcp_active_should_disable(sk)) { 3696 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3697 mptcp_subflow_early_fallback(msk, subflow); 3698 } else if (mptcp_token_new_connect(ssk) < 0) { 3699 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3700 mptcp_subflow_early_fallback(msk, subflow); 3701 } 3702 } 3703 3704 WRITE_ONCE(msk->write_seq, subflow->idsn); 3705 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3706 WRITE_ONCE(msk->snd_una, subflow->idsn); 3707 if (likely(!__mptcp_check_fallback(msk))) 3708 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3709 3710 /* if reaching here via the fastopen/sendmsg path, the caller already 3711 * acquired the subflow socket lock, too. 3712 */ 3713 if (!msk->fastopening) 3714 lock_sock(ssk); 3715 3716 /* the following mirrors closely a very small chunk of code from 3717 * __inet_stream_connect() 3718 */ 3719 if (ssk->sk_state != TCP_CLOSE) 3720 goto out; 3721 3722 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3723 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3724 if (err) 3725 goto out; 3726 } 3727 3728 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3729 if (err < 0) 3730 goto out; 3731 3732 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3733 3734 out: 3735 if (!msk->fastopening) 3736 release_sock(ssk); 3737 3738 /* on successful connect, the msk state will be moved to established by 3739 * subflow_finish_connect() 3740 */ 3741 if (unlikely(err)) { 3742 /* avoid leaving a dangling token in an unconnected socket */ 3743 mptcp_token_destroy(msk); 3744 mptcp_set_state(sk, TCP_CLOSE); 3745 return err; 3746 } 3747 3748 mptcp_copy_inaddrs(sk, ssk); 3749 return 0; 3750 } 3751 3752 static struct proto mptcp_prot = { 3753 .name = "MPTCP", 3754 .owner = THIS_MODULE, 3755 .init = mptcp_init_sock, 3756 .connect = mptcp_connect, 3757 .disconnect = mptcp_disconnect, 3758 .close = mptcp_close, 3759 .setsockopt = mptcp_setsockopt, 3760 .getsockopt = mptcp_getsockopt, 3761 .shutdown = mptcp_shutdown, 3762 .destroy = mptcp_destroy, 3763 .sendmsg = mptcp_sendmsg, 3764 .ioctl = mptcp_ioctl, 3765 .recvmsg = mptcp_recvmsg, 3766 .release_cb = mptcp_release_cb, 3767 .hash = mptcp_hash, 3768 .unhash = mptcp_unhash, 3769 .get_port = mptcp_get_port, 3770 .stream_memory_free = mptcp_stream_memory_free, 3771 .sockets_allocated = &mptcp_sockets_allocated, 3772 3773 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3774 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3775 3776 .memory_pressure = &tcp_memory_pressure, 3777 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3778 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3779 .sysctl_mem = sysctl_tcp_mem, 3780 .obj_size = sizeof(struct mptcp_sock), 3781 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3782 .no_autobind = true, 3783 }; 3784 3785 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3786 { 3787 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3788 struct sock *ssk, *sk = sock->sk; 3789 int err = -EINVAL; 3790 3791 lock_sock(sk); 3792 ssk = __mptcp_nmpc_sk(msk); 3793 if (IS_ERR(ssk)) { 3794 err = PTR_ERR(ssk); 3795 goto unlock; 3796 } 3797 3798 if (sk->sk_family == AF_INET) 3799 err = inet_bind_sk(ssk, uaddr, addr_len); 3800 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3801 else if (sk->sk_family == AF_INET6) 3802 err = inet6_bind_sk(ssk, uaddr, addr_len); 3803 #endif 3804 if (!err) 3805 mptcp_copy_inaddrs(sk, ssk); 3806 3807 unlock: 3808 release_sock(sk); 3809 return err; 3810 } 3811 3812 static int mptcp_listen(struct socket *sock, int backlog) 3813 { 3814 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3815 struct sock *sk = sock->sk; 3816 struct sock *ssk; 3817 int err; 3818 3819 pr_debug("msk=%p\n", msk); 3820 3821 lock_sock(sk); 3822 3823 err = -EINVAL; 3824 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3825 goto unlock; 3826 3827 ssk = __mptcp_nmpc_sk(msk); 3828 if (IS_ERR(ssk)) { 3829 err = PTR_ERR(ssk); 3830 goto unlock; 3831 } 3832 3833 mptcp_set_state(sk, TCP_LISTEN); 3834 sock_set_flag(sk, SOCK_RCU_FREE); 3835 3836 lock_sock(ssk); 3837 err = __inet_listen_sk(ssk, backlog); 3838 release_sock(ssk); 3839 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3840 3841 if (!err) { 3842 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3843 mptcp_copy_inaddrs(sk, ssk); 3844 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3845 } 3846 3847 unlock: 3848 release_sock(sk); 3849 return err; 3850 } 3851 3852 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3853 struct proto_accept_arg *arg) 3854 { 3855 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3856 struct sock *ssk, *newsk; 3857 3858 pr_debug("msk=%p\n", msk); 3859 3860 /* Buggy applications can call accept on socket states other then LISTEN 3861 * but no need to allocate the first subflow just to error out. 3862 */ 3863 ssk = READ_ONCE(msk->first); 3864 if (!ssk) 3865 return -EINVAL; 3866 3867 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3868 newsk = inet_csk_accept(ssk, arg); 3869 if (!newsk) 3870 return arg->err; 3871 3872 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3873 if (sk_is_mptcp(newsk)) { 3874 struct mptcp_subflow_context *subflow; 3875 struct sock *new_mptcp_sock; 3876 3877 subflow = mptcp_subflow_ctx(newsk); 3878 new_mptcp_sock = subflow->conn; 3879 3880 /* is_mptcp should be false if subflow->conn is missing, see 3881 * subflow_syn_recv_sock() 3882 */ 3883 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3884 tcp_sk(newsk)->is_mptcp = 0; 3885 goto tcpfallback; 3886 } 3887 3888 newsk = new_mptcp_sock; 3889 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3890 3891 newsk->sk_kern_sock = arg->kern; 3892 lock_sock(newsk); 3893 __inet_accept(sock, newsock, newsk); 3894 3895 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3896 msk = mptcp_sk(newsk); 3897 msk->in_accept_queue = 0; 3898 3899 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3900 * This is needed so NOSPACE flag can be set from tcp stack. 3901 */ 3902 mptcp_for_each_subflow(msk, subflow) { 3903 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3904 3905 if (!ssk->sk_socket) 3906 mptcp_sock_graft(ssk, newsock); 3907 } 3908 3909 /* Do late cleanup for the first subflow as necessary. Also 3910 * deal with bad peers not doing a complete shutdown. 3911 */ 3912 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3913 __mptcp_close_ssk(newsk, msk->first, 3914 mptcp_subflow_ctx(msk->first), 0); 3915 if (unlikely(list_is_singular(&msk->conn_list))) 3916 mptcp_set_state(newsk, TCP_CLOSE); 3917 } 3918 } else { 3919 tcpfallback: 3920 newsk->sk_kern_sock = arg->kern; 3921 lock_sock(newsk); 3922 __inet_accept(sock, newsock, newsk); 3923 /* we are being invoked after accepting a non-mp-capable 3924 * flow: sk is a tcp_sk, not an mptcp one. 3925 * 3926 * Hand the socket over to tcp so all further socket ops 3927 * bypass mptcp. 3928 */ 3929 WRITE_ONCE(newsock->sk->sk_socket->ops, 3930 mptcp_fallback_tcp_ops(newsock->sk)); 3931 } 3932 release_sock(newsk); 3933 3934 return 0; 3935 } 3936 3937 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3938 { 3939 struct sock *sk = (struct sock *)msk; 3940 3941 if (__mptcp_stream_is_writeable(sk, 1)) 3942 return EPOLLOUT | EPOLLWRNORM; 3943 3944 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3945 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3946 if (__mptcp_stream_is_writeable(sk, 1)) 3947 return EPOLLOUT | EPOLLWRNORM; 3948 3949 return 0; 3950 } 3951 3952 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3953 struct poll_table_struct *wait) 3954 { 3955 struct sock *sk = sock->sk; 3956 struct mptcp_sock *msk; 3957 __poll_t mask = 0; 3958 u8 shutdown; 3959 int state; 3960 3961 msk = mptcp_sk(sk); 3962 sock_poll_wait(file, sock, wait); 3963 3964 state = inet_sk_state_load(sk); 3965 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 3966 if (state == TCP_LISTEN) { 3967 struct sock *ssk = READ_ONCE(msk->first); 3968 3969 if (WARN_ON_ONCE(!ssk)) 3970 return 0; 3971 3972 return inet_csk_listen_poll(ssk); 3973 } 3974 3975 shutdown = READ_ONCE(sk->sk_shutdown); 3976 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3977 mask |= EPOLLHUP; 3978 if (shutdown & RCV_SHUTDOWN) 3979 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3980 3981 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3982 mask |= mptcp_check_readable(sk); 3983 if (shutdown & SEND_SHUTDOWN) 3984 mask |= EPOLLOUT | EPOLLWRNORM; 3985 else 3986 mask |= mptcp_check_writeable(msk); 3987 } else if (state == TCP_SYN_SENT && 3988 inet_test_bit(DEFER_CONNECT, sk)) { 3989 /* cf tcp_poll() note about TFO */ 3990 mask |= EPOLLOUT | EPOLLWRNORM; 3991 } 3992 3993 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3994 smp_rmb(); 3995 if (READ_ONCE(sk->sk_err)) 3996 mask |= EPOLLERR; 3997 3998 return mask; 3999 } 4000 4001 static const struct proto_ops mptcp_stream_ops = { 4002 .family = PF_INET, 4003 .owner = THIS_MODULE, 4004 .release = inet_release, 4005 .bind = mptcp_bind, 4006 .connect = inet_stream_connect, 4007 .socketpair = sock_no_socketpair, 4008 .accept = mptcp_stream_accept, 4009 .getname = inet_getname, 4010 .poll = mptcp_poll, 4011 .ioctl = inet_ioctl, 4012 .gettstamp = sock_gettstamp, 4013 .listen = mptcp_listen, 4014 .shutdown = inet_shutdown, 4015 .setsockopt = sock_common_setsockopt, 4016 .getsockopt = sock_common_getsockopt, 4017 .sendmsg = inet_sendmsg, 4018 .recvmsg = inet_recvmsg, 4019 .mmap = sock_no_mmap, 4020 .set_rcvlowat = mptcp_set_rcvlowat, 4021 }; 4022 4023 static struct inet_protosw mptcp_protosw = { 4024 .type = SOCK_STREAM, 4025 .protocol = IPPROTO_MPTCP, 4026 .prot = &mptcp_prot, 4027 .ops = &mptcp_stream_ops, 4028 .flags = INET_PROTOSW_ICSK, 4029 }; 4030 4031 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4032 { 4033 struct mptcp_delegated_action *delegated; 4034 struct mptcp_subflow_context *subflow; 4035 int work_done = 0; 4036 4037 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4038 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4039 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4040 4041 bh_lock_sock_nested(ssk); 4042 if (!sock_owned_by_user(ssk)) { 4043 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4044 } else { 4045 /* tcp_release_cb_override already processed 4046 * the action or will do at next release_sock(). 4047 * In both case must dequeue the subflow here - on the same 4048 * CPU that scheduled it. 4049 */ 4050 smp_wmb(); 4051 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4052 } 4053 bh_unlock_sock(ssk); 4054 sock_put(ssk); 4055 4056 if (++work_done == budget) 4057 return budget; 4058 } 4059 4060 /* always provide a 0 'work_done' argument, so that napi_complete_done 4061 * will not try accessing the NULL napi->dev ptr 4062 */ 4063 napi_complete_done(napi, 0); 4064 return work_done; 4065 } 4066 4067 void __init mptcp_proto_init(void) 4068 { 4069 struct mptcp_delegated_action *delegated; 4070 int cpu; 4071 4072 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4073 4074 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4075 panic("Failed to allocate MPTCP pcpu counter\n"); 4076 4077 mptcp_napi_dev = alloc_netdev_dummy(0); 4078 if (!mptcp_napi_dev) 4079 panic("Failed to allocate MPTCP dummy netdev\n"); 4080 for_each_possible_cpu(cpu) { 4081 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4082 INIT_LIST_HEAD(&delegated->head); 4083 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4084 mptcp_napi_poll); 4085 napi_enable(&delegated->napi); 4086 } 4087 4088 mptcp_subflow_init(); 4089 mptcp_pm_init(); 4090 mptcp_sched_init(); 4091 mptcp_token_init(); 4092 4093 if (proto_register(&mptcp_prot, 1) != 0) 4094 panic("Failed to register MPTCP proto.\n"); 4095 4096 inet_register_protosw(&mptcp_protosw); 4097 4098 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4099 } 4100 4101 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4102 static const struct proto_ops mptcp_v6_stream_ops = { 4103 .family = PF_INET6, 4104 .owner = THIS_MODULE, 4105 .release = inet6_release, 4106 .bind = mptcp_bind, 4107 .connect = inet_stream_connect, 4108 .socketpair = sock_no_socketpair, 4109 .accept = mptcp_stream_accept, 4110 .getname = inet6_getname, 4111 .poll = mptcp_poll, 4112 .ioctl = inet6_ioctl, 4113 .gettstamp = sock_gettstamp, 4114 .listen = mptcp_listen, 4115 .shutdown = inet_shutdown, 4116 .setsockopt = sock_common_setsockopt, 4117 .getsockopt = sock_common_getsockopt, 4118 .sendmsg = inet6_sendmsg, 4119 .recvmsg = inet6_recvmsg, 4120 .mmap = sock_no_mmap, 4121 #ifdef CONFIG_COMPAT 4122 .compat_ioctl = inet6_compat_ioctl, 4123 #endif 4124 .set_rcvlowat = mptcp_set_rcvlowat, 4125 }; 4126 4127 static struct proto mptcp_v6_prot; 4128 4129 static struct inet_protosw mptcp_v6_protosw = { 4130 .type = SOCK_STREAM, 4131 .protocol = IPPROTO_MPTCP, 4132 .prot = &mptcp_v6_prot, 4133 .ops = &mptcp_v6_stream_ops, 4134 .flags = INET_PROTOSW_ICSK, 4135 }; 4136 4137 int __init mptcp_proto_v6_init(void) 4138 { 4139 int err; 4140 4141 mptcp_v6_prot = mptcp_prot; 4142 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4143 mptcp_v6_prot.slab = NULL; 4144 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4145 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4146 4147 err = proto_register(&mptcp_v6_prot, 1); 4148 if (err) 4149 return err; 4150 4151 err = inet6_register_protosw(&mptcp_v6_protosw); 4152 if (err) 4153 proto_unregister(&mptcp_v6_prot); 4154 4155 return err; 4156 } 4157 #endif 4158