xref: /linux/net/mptcp/protocol.c (revision a7ddedc84c59a645ef970b992f7cda5bffc70cc0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
65 	if (sk->sk_prot == &tcpv6_prot)
66 		return &inet6_stream_ops;
67 #endif
68 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69 	return &inet_stream_ops;
70 }
71 
72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73 {
74 	struct net *net = sock_net((struct sock *)msk);
75 
76 	if (__mptcp_check_fallback(msk))
77 		return true;
78 
79 	spin_lock_bh(&msk->fallback_lock);
80 	if (!msk->allow_infinite_fallback) {
81 		spin_unlock_bh(&msk->fallback_lock);
82 		return false;
83 	}
84 
85 	msk->allow_subflows = false;
86 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87 	__MPTCP_INC_STATS(net, fb_mib);
88 	spin_unlock_bh(&msk->fallback_lock);
89 	return true;
90 }
91 
92 static int __mptcp_socket_create(struct mptcp_sock *msk)
93 {
94 	struct mptcp_subflow_context *subflow;
95 	struct sock *sk = (struct sock *)msk;
96 	struct socket *ssock;
97 	int err;
98 
99 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100 	if (err)
101 		return err;
102 
103 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104 	WRITE_ONCE(msk->first, ssock->sk);
105 	subflow = mptcp_subflow_ctx(ssock->sk);
106 	list_add(&subflow->node, &msk->conn_list);
107 	sock_hold(ssock->sk);
108 	subflow->request_mptcp = 1;
109 	subflow->subflow_id = msk->subflow_id++;
110 
111 	/* This is the first subflow, always with id 0 */
112 	WRITE_ONCE(subflow->local_id, 0);
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 	iput(SOCK_INODE(ssock));
115 
116 	return 0;
117 }
118 
119 /* If the MPC handshake is not started, returns the first subflow,
120  * eventually allocating it.
121  */
122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123 {
124 	struct sock *sk = (struct sock *)msk;
125 	int ret;
126 
127 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128 		return ERR_PTR(-EINVAL);
129 
130 	if (!msk->first) {
131 		ret = __mptcp_socket_create(msk);
132 		if (ret)
133 			return ERR_PTR(ret);
134 	}
135 
136 	return msk->first;
137 }
138 
139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140 {
141 	sk_drops_skbadd(sk, skb);
142 	__kfree_skb(skb);
143 }
144 
145 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 			       struct sk_buff *from)
147 {
148 	bool fragstolen;
149 	int delta;
150 
151 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152 	    MPTCP_SKB_CB(from)->offset ||
153 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
154 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
155 		return false;
156 
157 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159 		 to->len, MPTCP_SKB_CB(from)->end_seq);
160 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161 
162 	/* note the fwd memory can reach a negative value after accounting
163 	 * for the delta, but the later skb free will restore a non
164 	 * negative one
165 	 */
166 	atomic_add(delta, &sk->sk_rmem_alloc);
167 	sk_mem_charge(sk, delta);
168 	kfree_skb_partial(from, fragstolen);
169 
170 	return true;
171 }
172 
173 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
174 				   struct sk_buff *from)
175 {
176 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
177 		return false;
178 
179 	return mptcp_try_coalesce((struct sock *)msk, to, from);
180 }
181 
182 /* "inspired" by tcp_data_queue_ofo(), main differences:
183  * - use mptcp seqs
184  * - don't cope with sacks
185  */
186 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
187 {
188 	struct sock *sk = (struct sock *)msk;
189 	struct rb_node **p, *parent;
190 	u64 seq, end_seq, max_seq;
191 	struct sk_buff *skb1;
192 
193 	seq = MPTCP_SKB_CB(skb)->map_seq;
194 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
195 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
196 
197 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
198 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
199 	if (after64(end_seq, max_seq)) {
200 		/* out of window */
201 		mptcp_drop(sk, skb);
202 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
203 			 (unsigned long long)end_seq - (unsigned long)max_seq,
204 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
206 		return;
207 	}
208 
209 	p = &msk->out_of_order_queue.rb_node;
210 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
211 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
212 		rb_link_node(&skb->rbnode, NULL, p);
213 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
214 		msk->ooo_last_skb = skb;
215 		goto end;
216 	}
217 
218 	/* with 2 subflows, adding at end of ooo queue is quite likely
219 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
220 	 */
221 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
222 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
223 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
224 		return;
225 	}
226 
227 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
228 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
229 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
230 		parent = &msk->ooo_last_skb->rbnode;
231 		p = &parent->rb_right;
232 		goto insert;
233 	}
234 
235 	/* Find place to insert this segment. Handle overlaps on the way. */
236 	parent = NULL;
237 	while (*p) {
238 		parent = *p;
239 		skb1 = rb_to_skb(parent);
240 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
241 			p = &parent->rb_left;
242 			continue;
243 		}
244 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
245 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
246 				/* All the bits are present. Drop. */
247 				mptcp_drop(sk, skb);
248 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
249 				return;
250 			}
251 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
252 				/* partial overlap:
253 				 *     |     skb      |
254 				 *  |     skb1    |
255 				 * continue traversing
256 				 */
257 			} else {
258 				/* skb's seq == skb1's seq and skb covers skb1.
259 				 * Replace skb1 with skb.
260 				 */
261 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
262 						&msk->out_of_order_queue);
263 				mptcp_drop(sk, skb1);
264 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
265 				goto merge_right;
266 			}
267 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
268 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
269 			return;
270 		}
271 		p = &parent->rb_right;
272 	}
273 
274 insert:
275 	/* Insert segment into RB tree. */
276 	rb_link_node(&skb->rbnode, parent, p);
277 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
278 
279 merge_right:
280 	/* Remove other segments covered by skb. */
281 	while ((skb1 = skb_rb_next(skb)) != NULL) {
282 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
283 			break;
284 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
285 		mptcp_drop(sk, skb1);
286 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
287 	}
288 	/* If there is no skb after us, we are the last_skb ! */
289 	if (!skb1)
290 		msk->ooo_last_skb = skb;
291 
292 end:
293 	skb_condense(skb);
294 	skb_set_owner_r(skb, sk);
295 }
296 
297 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
298 			     struct sk_buff *skb, unsigned int offset,
299 			     size_t copy_len)
300 {
301 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
302 	struct sock *sk = (struct sock *)msk;
303 	struct sk_buff *tail;
304 	bool has_rxtstamp;
305 
306 	__skb_unlink(skb, &ssk->sk_receive_queue);
307 
308 	skb_ext_reset(skb);
309 	skb_orphan(skb);
310 
311 	/* try to fetch required memory from subflow */
312 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
313 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
314 		goto drop;
315 	}
316 
317 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
318 
319 	/* the skb map_seq accounts for the skb offset:
320 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
321 	 * value
322 	 */
323 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
324 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
325 	MPTCP_SKB_CB(skb)->offset = offset;
326 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
327 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
328 
329 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
330 		/* in sequence */
331 		msk->bytes_received += copy_len;
332 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
333 		tail = skb_peek_tail(&sk->sk_receive_queue);
334 		if (tail && mptcp_try_coalesce(sk, tail, skb))
335 			return true;
336 
337 		skb_set_owner_r(skb, sk);
338 		__skb_queue_tail(&sk->sk_receive_queue, skb);
339 		return true;
340 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
341 		mptcp_data_queue_ofo(msk, skb);
342 		return false;
343 	}
344 
345 	/* old data, keep it simple and drop the whole pkt, sender
346 	 * will retransmit as needed, if needed.
347 	 */
348 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
349 drop:
350 	mptcp_drop(sk, skb);
351 	return false;
352 }
353 
354 static void mptcp_stop_rtx_timer(struct sock *sk)
355 {
356 	struct inet_connection_sock *icsk = inet_csk(sk);
357 
358 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
359 	mptcp_sk(sk)->timer_ival = 0;
360 }
361 
362 static void mptcp_close_wake_up(struct sock *sk)
363 {
364 	if (sock_flag(sk, SOCK_DEAD))
365 		return;
366 
367 	sk->sk_state_change(sk);
368 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
369 	    sk->sk_state == TCP_CLOSE)
370 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
371 	else
372 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
373 }
374 
375 /* called under the msk socket lock */
376 static bool mptcp_pending_data_fin_ack(struct sock *sk)
377 {
378 	struct mptcp_sock *msk = mptcp_sk(sk);
379 
380 	return ((1 << sk->sk_state) &
381 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
382 	       msk->write_seq == READ_ONCE(msk->snd_una);
383 }
384 
385 static void mptcp_check_data_fin_ack(struct sock *sk)
386 {
387 	struct mptcp_sock *msk = mptcp_sk(sk);
388 
389 	/* Look for an acknowledged DATA_FIN */
390 	if (mptcp_pending_data_fin_ack(sk)) {
391 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
392 
393 		switch (sk->sk_state) {
394 		case TCP_FIN_WAIT1:
395 			mptcp_set_state(sk, TCP_FIN_WAIT2);
396 			break;
397 		case TCP_CLOSING:
398 		case TCP_LAST_ACK:
399 			mptcp_set_state(sk, TCP_CLOSE);
400 			break;
401 		}
402 
403 		mptcp_close_wake_up(sk);
404 	}
405 }
406 
407 /* can be called with no lock acquired */
408 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
409 {
410 	struct mptcp_sock *msk = mptcp_sk(sk);
411 
412 	if (READ_ONCE(msk->rcv_data_fin) &&
413 	    ((1 << inet_sk_state_load(sk)) &
414 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
415 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
416 
417 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
418 			if (seq)
419 				*seq = rcv_data_fin_seq;
420 
421 			return true;
422 		}
423 	}
424 
425 	return false;
426 }
427 
428 static void mptcp_set_datafin_timeout(struct sock *sk)
429 {
430 	struct inet_connection_sock *icsk = inet_csk(sk);
431 	u32 retransmits;
432 
433 	retransmits = min_t(u32, icsk->icsk_retransmits,
434 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
435 
436 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
437 }
438 
439 static void __mptcp_set_timeout(struct sock *sk, long tout)
440 {
441 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
442 }
443 
444 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
445 {
446 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
447 
448 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
449 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
450 }
451 
452 static void mptcp_set_timeout(struct sock *sk)
453 {
454 	struct mptcp_subflow_context *subflow;
455 	long tout = 0;
456 
457 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
458 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
459 	__mptcp_set_timeout(sk, tout);
460 }
461 
462 static inline bool tcp_can_send_ack(const struct sock *ssk)
463 {
464 	return !((1 << inet_sk_state_load(ssk)) &
465 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
466 }
467 
468 void __mptcp_subflow_send_ack(struct sock *ssk)
469 {
470 	if (tcp_can_send_ack(ssk))
471 		tcp_send_ack(ssk);
472 }
473 
474 static void mptcp_subflow_send_ack(struct sock *ssk)
475 {
476 	bool slow;
477 
478 	slow = lock_sock_fast(ssk);
479 	__mptcp_subflow_send_ack(ssk);
480 	unlock_sock_fast(ssk, slow);
481 }
482 
483 static void mptcp_send_ack(struct mptcp_sock *msk)
484 {
485 	struct mptcp_subflow_context *subflow;
486 
487 	mptcp_for_each_subflow(msk, subflow)
488 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
489 }
490 
491 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
492 {
493 	bool slow;
494 
495 	slow = lock_sock_fast(ssk);
496 	if (tcp_can_send_ack(ssk))
497 		tcp_cleanup_rbuf(ssk, copied);
498 	unlock_sock_fast(ssk, slow);
499 }
500 
501 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
502 {
503 	const struct inet_connection_sock *icsk = inet_csk(ssk);
504 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
505 	const struct tcp_sock *tp = tcp_sk(ssk);
506 
507 	return (ack_pending & ICSK_ACK_SCHED) &&
508 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
509 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
510 		 (rx_empty && ack_pending &
511 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
512 }
513 
514 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
515 {
516 	int old_space = READ_ONCE(msk->old_wspace);
517 	struct mptcp_subflow_context *subflow;
518 	struct sock *sk = (struct sock *)msk;
519 	int space =  __mptcp_space(sk);
520 	bool cleanup, rx_empty;
521 
522 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
523 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
524 
525 	mptcp_for_each_subflow(msk, subflow) {
526 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
527 
528 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
529 			mptcp_subflow_cleanup_rbuf(ssk, copied);
530 	}
531 }
532 
533 static bool mptcp_check_data_fin(struct sock *sk)
534 {
535 	struct mptcp_sock *msk = mptcp_sk(sk);
536 	u64 rcv_data_fin_seq;
537 	bool ret = false;
538 
539 	/* Need to ack a DATA_FIN received from a peer while this side
540 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
541 	 * msk->rcv_data_fin was set when parsing the incoming options
542 	 * at the subflow level and the msk lock was not held, so this
543 	 * is the first opportunity to act on the DATA_FIN and change
544 	 * the msk state.
545 	 *
546 	 * If we are caught up to the sequence number of the incoming
547 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
548 	 * not caught up, do nothing and let the recv code send DATA_ACK
549 	 * when catching up.
550 	 */
551 
552 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
553 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
554 		WRITE_ONCE(msk->rcv_data_fin, 0);
555 
556 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
557 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
558 
559 		switch (sk->sk_state) {
560 		case TCP_ESTABLISHED:
561 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
562 			break;
563 		case TCP_FIN_WAIT1:
564 			mptcp_set_state(sk, TCP_CLOSING);
565 			break;
566 		case TCP_FIN_WAIT2:
567 			mptcp_set_state(sk, TCP_CLOSE);
568 			break;
569 		default:
570 			/* Other states not expected */
571 			WARN_ON_ONCE(1);
572 			break;
573 		}
574 
575 		ret = true;
576 		if (!__mptcp_check_fallback(msk))
577 			mptcp_send_ack(msk);
578 		mptcp_close_wake_up(sk);
579 	}
580 	return ret;
581 }
582 
583 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
584 {
585 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
586 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
587 		mptcp_subflow_reset(ssk);
588 	}
589 }
590 
591 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
592 					   struct sock *ssk)
593 {
594 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
595 	struct sock *sk = (struct sock *)msk;
596 	bool more_data_avail;
597 	struct tcp_sock *tp;
598 	bool ret = false;
599 
600 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
601 	tp = tcp_sk(ssk);
602 	do {
603 		u32 map_remaining, offset;
604 		u32 seq = tp->copied_seq;
605 		struct sk_buff *skb;
606 		bool fin;
607 
608 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
609 			break;
610 
611 		/* try to move as much data as available */
612 		map_remaining = subflow->map_data_len -
613 				mptcp_subflow_get_map_offset(subflow);
614 
615 		skb = skb_peek(&ssk->sk_receive_queue);
616 		if (unlikely(!skb))
617 			break;
618 
619 		if (__mptcp_check_fallback(msk)) {
620 			/* Under fallback skbs have no MPTCP extension and TCP could
621 			 * collapse them between the dummy map creation and the
622 			 * current dequeue. Be sure to adjust the map size.
623 			 */
624 			map_remaining = skb->len;
625 			subflow->map_data_len = skb->len;
626 		}
627 
628 		offset = seq - TCP_SKB_CB(skb)->seq;
629 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
630 		if (fin)
631 			seq++;
632 
633 		if (offset < skb->len) {
634 			size_t len = skb->len - offset;
635 
636 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
637 			seq += len;
638 
639 			if (unlikely(map_remaining < len)) {
640 				DEBUG_NET_WARN_ON_ONCE(1);
641 				mptcp_dss_corruption(msk, ssk);
642 			}
643 		} else {
644 			if (unlikely(!fin)) {
645 				DEBUG_NET_WARN_ON_ONCE(1);
646 				mptcp_dss_corruption(msk, ssk);
647 			}
648 
649 			sk_eat_skb(ssk, skb);
650 		}
651 
652 		WRITE_ONCE(tp->copied_seq, seq);
653 		more_data_avail = mptcp_subflow_data_available(ssk);
654 
655 	} while (more_data_avail);
656 
657 	if (ret)
658 		msk->last_data_recv = tcp_jiffies32;
659 	return ret;
660 }
661 
662 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
663 {
664 	struct sock *sk = (struct sock *)msk;
665 	struct sk_buff *skb, *tail;
666 	bool moved = false;
667 	struct rb_node *p;
668 	u64 end_seq;
669 
670 	p = rb_first(&msk->out_of_order_queue);
671 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
672 	while (p) {
673 		skb = rb_to_skb(p);
674 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
675 			break;
676 
677 		p = rb_next(p);
678 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
679 
680 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
681 				      msk->ack_seq))) {
682 			mptcp_drop(sk, skb);
683 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
684 			continue;
685 		}
686 
687 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
688 		tail = skb_peek_tail(&sk->sk_receive_queue);
689 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
690 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
691 
692 			/* skip overlapping data, if any */
693 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
694 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
695 				 delta);
696 			MPTCP_SKB_CB(skb)->offset += delta;
697 			MPTCP_SKB_CB(skb)->map_seq += delta;
698 			__skb_queue_tail(&sk->sk_receive_queue, skb);
699 		}
700 		msk->bytes_received += end_seq - msk->ack_seq;
701 		WRITE_ONCE(msk->ack_seq, end_seq);
702 		moved = true;
703 	}
704 	return moved;
705 }
706 
707 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
708 {
709 	int err = sock_error(ssk);
710 	int ssk_state;
711 
712 	if (!err)
713 		return false;
714 
715 	/* only propagate errors on fallen-back sockets or
716 	 * on MPC connect
717 	 */
718 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
719 		return false;
720 
721 	/* We need to propagate only transition to CLOSE state.
722 	 * Orphaned socket will see such state change via
723 	 * subflow_sched_work_if_closed() and that path will properly
724 	 * destroy the msk as needed.
725 	 */
726 	ssk_state = inet_sk_state_load(ssk);
727 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
728 		mptcp_set_state(sk, ssk_state);
729 	WRITE_ONCE(sk->sk_err, -err);
730 
731 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
732 	smp_wmb();
733 	sk_error_report(sk);
734 	return true;
735 }
736 
737 void __mptcp_error_report(struct sock *sk)
738 {
739 	struct mptcp_subflow_context *subflow;
740 	struct mptcp_sock *msk = mptcp_sk(sk);
741 
742 	mptcp_for_each_subflow(msk, subflow)
743 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
744 			break;
745 }
746 
747 /* In most cases we will be able to lock the mptcp socket.  If its already
748  * owned, we need to defer to the work queue to avoid ABBA deadlock.
749  */
750 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
751 {
752 	struct sock *sk = (struct sock *)msk;
753 	bool moved;
754 
755 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
756 	__mptcp_ofo_queue(msk);
757 	if (unlikely(ssk->sk_err)) {
758 		if (!sock_owned_by_user(sk))
759 			__mptcp_error_report(sk);
760 		else
761 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
762 	}
763 
764 	/* If the moves have caught up with the DATA_FIN sequence number
765 	 * it's time to ack the DATA_FIN and change socket state, but
766 	 * this is not a good place to change state. Let the workqueue
767 	 * do it.
768 	 */
769 	if (mptcp_pending_data_fin(sk, NULL))
770 		mptcp_schedule_work(sk);
771 	return moved;
772 }
773 
774 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
775 {
776 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
777 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
778 }
779 
780 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
781 {
782 	struct mptcp_sock *msk = mptcp_sk(sk);
783 
784 	__mptcp_rcvbuf_update(sk, ssk);
785 
786 	/* Wake-up the reader only for in-sequence data */
787 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
788 		sk->sk_data_ready(sk);
789 }
790 
791 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
792 {
793 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
794 
795 	/* The peer can send data while we are shutting down this
796 	 * subflow at msk destruction time, but we must avoid enqueuing
797 	 * more data to the msk receive queue
798 	 */
799 	if (unlikely(subflow->disposable))
800 		return;
801 
802 	mptcp_data_lock(sk);
803 	if (!sock_owned_by_user(sk))
804 		__mptcp_data_ready(sk, ssk);
805 	else
806 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
807 	mptcp_data_unlock(sk);
808 }
809 
810 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
811 {
812 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
813 	msk->allow_infinite_fallback = false;
814 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
815 }
816 
817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
818 {
819 	struct sock *sk = (struct sock *)msk;
820 
821 	if (sk->sk_state != TCP_ESTABLISHED)
822 		return false;
823 
824 	spin_lock_bh(&msk->fallback_lock);
825 	if (!msk->allow_subflows) {
826 		spin_unlock_bh(&msk->fallback_lock);
827 		return false;
828 	}
829 	mptcp_subflow_joined(msk, ssk);
830 	spin_unlock_bh(&msk->fallback_lock);
831 
832 	/* attach to msk socket only after we are sure we will deal with it
833 	 * at close time
834 	 */
835 	if (sk->sk_socket && !ssk->sk_socket)
836 		mptcp_sock_graft(ssk, sk->sk_socket);
837 
838 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
839 	mptcp_sockopt_sync_locked(msk, ssk);
840 	mptcp_stop_tout_timer(sk);
841 	__mptcp_propagate_sndbuf(sk, ssk);
842 	return true;
843 }
844 
845 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
846 {
847 	struct mptcp_subflow_context *tmp, *subflow;
848 	struct mptcp_sock *msk = mptcp_sk(sk);
849 
850 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
851 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
852 		bool slow = lock_sock_fast(ssk);
853 
854 		list_move_tail(&subflow->node, &msk->conn_list);
855 		if (!__mptcp_finish_join(msk, ssk))
856 			mptcp_subflow_reset(ssk);
857 		unlock_sock_fast(ssk, slow);
858 	}
859 }
860 
861 static bool mptcp_rtx_timer_pending(struct sock *sk)
862 {
863 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
864 }
865 
866 static void mptcp_reset_rtx_timer(struct sock *sk)
867 {
868 	struct inet_connection_sock *icsk = inet_csk(sk);
869 	unsigned long tout;
870 
871 	/* prevent rescheduling on close */
872 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
873 		return;
874 
875 	tout = mptcp_sk(sk)->timer_ival;
876 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
877 }
878 
879 bool mptcp_schedule_work(struct sock *sk)
880 {
881 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
882 	    schedule_work(&mptcp_sk(sk)->work)) {
883 		/* each subflow already holds a reference to the sk, and the
884 		 * workqueue is invoked by a subflow, so sk can't go away here.
885 		 */
886 		sock_hold(sk);
887 		return true;
888 	}
889 	return false;
890 }
891 
892 static bool mptcp_skb_can_collapse_to(u64 write_seq,
893 				      const struct sk_buff *skb,
894 				      const struct mptcp_ext *mpext)
895 {
896 	if (!tcp_skb_can_collapse_to(skb))
897 		return false;
898 
899 	/* can collapse only if MPTCP level sequence is in order and this
900 	 * mapping has not been xmitted yet
901 	 */
902 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
903 	       !mpext->frozen;
904 }
905 
906 /* we can append data to the given data frag if:
907  * - there is space available in the backing page_frag
908  * - the data frag tail matches the current page_frag free offset
909  * - the data frag end sequence number matches the current write seq
910  */
911 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
912 				       const struct page_frag *pfrag,
913 				       const struct mptcp_data_frag *df)
914 {
915 	return df && pfrag->page == df->page &&
916 		pfrag->size - pfrag->offset > 0 &&
917 		pfrag->offset == (df->offset + df->data_len) &&
918 		df->data_seq + df->data_len == msk->write_seq;
919 }
920 
921 static void dfrag_uncharge(struct sock *sk, int len)
922 {
923 	sk_mem_uncharge(sk, len);
924 	sk_wmem_queued_add(sk, -len);
925 }
926 
927 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
928 {
929 	int len = dfrag->data_len + dfrag->overhead;
930 
931 	list_del(&dfrag->list);
932 	dfrag_uncharge(sk, len);
933 	put_page(dfrag->page);
934 }
935 
936 /* called under both the msk socket lock and the data lock */
937 static void __mptcp_clean_una(struct sock *sk)
938 {
939 	struct mptcp_sock *msk = mptcp_sk(sk);
940 	struct mptcp_data_frag *dtmp, *dfrag;
941 	u64 snd_una;
942 
943 	snd_una = msk->snd_una;
944 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
945 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
946 			break;
947 
948 		if (unlikely(dfrag == msk->first_pending)) {
949 			/* in recovery mode can see ack after the current snd head */
950 			if (WARN_ON_ONCE(!msk->recovery))
951 				break;
952 
953 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
954 		}
955 
956 		dfrag_clear(sk, dfrag);
957 	}
958 
959 	dfrag = mptcp_rtx_head(sk);
960 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
961 		u64 delta = snd_una - dfrag->data_seq;
962 
963 		/* prevent wrap around in recovery mode */
964 		if (unlikely(delta > dfrag->already_sent)) {
965 			if (WARN_ON_ONCE(!msk->recovery))
966 				goto out;
967 			if (WARN_ON_ONCE(delta > dfrag->data_len))
968 				goto out;
969 			dfrag->already_sent += delta - dfrag->already_sent;
970 		}
971 
972 		dfrag->data_seq += delta;
973 		dfrag->offset += delta;
974 		dfrag->data_len -= delta;
975 		dfrag->already_sent -= delta;
976 
977 		dfrag_uncharge(sk, delta);
978 	}
979 
980 	/* all retransmitted data acked, recovery completed */
981 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
982 		msk->recovery = false;
983 
984 out:
985 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
986 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
987 			mptcp_stop_rtx_timer(sk);
988 	} else {
989 		mptcp_reset_rtx_timer(sk);
990 	}
991 
992 	if (mptcp_pending_data_fin_ack(sk))
993 		mptcp_schedule_work(sk);
994 }
995 
996 static void __mptcp_clean_una_wakeup(struct sock *sk)
997 {
998 	lockdep_assert_held_once(&sk->sk_lock.slock);
999 
1000 	__mptcp_clean_una(sk);
1001 	mptcp_write_space(sk);
1002 }
1003 
1004 static void mptcp_clean_una_wakeup(struct sock *sk)
1005 {
1006 	mptcp_data_lock(sk);
1007 	__mptcp_clean_una_wakeup(sk);
1008 	mptcp_data_unlock(sk);
1009 }
1010 
1011 static void mptcp_enter_memory_pressure(struct sock *sk)
1012 {
1013 	struct mptcp_subflow_context *subflow;
1014 	struct mptcp_sock *msk = mptcp_sk(sk);
1015 	bool first = true;
1016 
1017 	mptcp_for_each_subflow(msk, subflow) {
1018 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1019 
1020 		if (first)
1021 			tcp_enter_memory_pressure(ssk);
1022 		sk_stream_moderate_sndbuf(ssk);
1023 
1024 		first = false;
1025 	}
1026 	__mptcp_sync_sndbuf(sk);
1027 }
1028 
1029 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1030  * data
1031  */
1032 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1033 {
1034 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1035 					pfrag, sk->sk_allocation)))
1036 		return true;
1037 
1038 	mptcp_enter_memory_pressure(sk);
1039 	return false;
1040 }
1041 
1042 static struct mptcp_data_frag *
1043 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1044 		      int orig_offset)
1045 {
1046 	int offset = ALIGN(orig_offset, sizeof(long));
1047 	struct mptcp_data_frag *dfrag;
1048 
1049 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1050 	dfrag->data_len = 0;
1051 	dfrag->data_seq = msk->write_seq;
1052 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1053 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1054 	dfrag->already_sent = 0;
1055 	dfrag->page = pfrag->page;
1056 
1057 	return dfrag;
1058 }
1059 
1060 struct mptcp_sendmsg_info {
1061 	int mss_now;
1062 	int size_goal;
1063 	u16 limit;
1064 	u16 sent;
1065 	unsigned int flags;
1066 	bool data_lock_held;
1067 };
1068 
1069 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1070 				    u64 data_seq, int avail_size)
1071 {
1072 	u64 window_end = mptcp_wnd_end(msk);
1073 	u64 mptcp_snd_wnd;
1074 
1075 	if (__mptcp_check_fallback(msk))
1076 		return avail_size;
1077 
1078 	mptcp_snd_wnd = window_end - data_seq;
1079 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1080 
1081 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1082 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1083 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1084 	}
1085 
1086 	return avail_size;
1087 }
1088 
1089 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1090 {
1091 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1092 
1093 	if (!mpext)
1094 		return false;
1095 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1096 	return true;
1097 }
1098 
1099 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1100 {
1101 	struct sk_buff *skb;
1102 
1103 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1104 	if (likely(skb)) {
1105 		if (likely(__mptcp_add_ext(skb, gfp))) {
1106 			skb_reserve(skb, MAX_TCP_HEADER);
1107 			skb->ip_summed = CHECKSUM_PARTIAL;
1108 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1109 			return skb;
1110 		}
1111 		__kfree_skb(skb);
1112 	} else {
1113 		mptcp_enter_memory_pressure(sk);
1114 	}
1115 	return NULL;
1116 }
1117 
1118 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1119 {
1120 	struct sk_buff *skb;
1121 
1122 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1123 	if (!skb)
1124 		return NULL;
1125 
1126 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1127 		tcp_skb_entail(ssk, skb);
1128 		return skb;
1129 	}
1130 	tcp_skb_tsorted_anchor_cleanup(skb);
1131 	kfree_skb(skb);
1132 	return NULL;
1133 }
1134 
1135 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1136 {
1137 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1138 
1139 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1140 }
1141 
1142 /* note: this always recompute the csum on the whole skb, even
1143  * if we just appended a single frag. More status info needed
1144  */
1145 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1146 {
1147 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1148 	__wsum csum = ~csum_unfold(mpext->csum);
1149 	int offset = skb->len - added;
1150 
1151 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1152 }
1153 
1154 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1155 				      struct sock *ssk,
1156 				      struct mptcp_ext *mpext)
1157 {
1158 	if (!mpext)
1159 		return;
1160 
1161 	mpext->infinite_map = 1;
1162 	mpext->data_len = 0;
1163 
1164 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1165 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1166 		mptcp_subflow_reset(ssk);
1167 		return;
1168 	}
1169 
1170 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1171 }
1172 
1173 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1174 
1175 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1176 			      struct mptcp_data_frag *dfrag,
1177 			      struct mptcp_sendmsg_info *info)
1178 {
1179 	u64 data_seq = dfrag->data_seq + info->sent;
1180 	int offset = dfrag->offset + info->sent;
1181 	struct mptcp_sock *msk = mptcp_sk(sk);
1182 	bool zero_window_probe = false;
1183 	struct mptcp_ext *mpext = NULL;
1184 	bool can_coalesce = false;
1185 	bool reuse_skb = true;
1186 	struct sk_buff *skb;
1187 	size_t copy;
1188 	int i;
1189 
1190 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1191 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1192 
1193 	if (WARN_ON_ONCE(info->sent > info->limit ||
1194 			 info->limit > dfrag->data_len))
1195 		return 0;
1196 
1197 	if (unlikely(!__tcp_can_send(ssk)))
1198 		return -EAGAIN;
1199 
1200 	/* compute send limit */
1201 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1202 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1203 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1204 	copy = info->size_goal;
1205 
1206 	skb = tcp_write_queue_tail(ssk);
1207 	if (skb && copy > skb->len) {
1208 		/* Limit the write to the size available in the
1209 		 * current skb, if any, so that we create at most a new skb.
1210 		 * Explicitly tells TCP internals to avoid collapsing on later
1211 		 * queue management operation, to avoid breaking the ext <->
1212 		 * SSN association set here
1213 		 */
1214 		mpext = mptcp_get_ext(skb);
1215 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1216 			TCP_SKB_CB(skb)->eor = 1;
1217 			tcp_mark_push(tcp_sk(ssk), skb);
1218 			goto alloc_skb;
1219 		}
1220 
1221 		i = skb_shinfo(skb)->nr_frags;
1222 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1223 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1224 			tcp_mark_push(tcp_sk(ssk), skb);
1225 			goto alloc_skb;
1226 		}
1227 
1228 		copy -= skb->len;
1229 	} else {
1230 alloc_skb:
1231 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1232 		if (!skb)
1233 			return -ENOMEM;
1234 
1235 		i = skb_shinfo(skb)->nr_frags;
1236 		reuse_skb = false;
1237 		mpext = mptcp_get_ext(skb);
1238 	}
1239 
1240 	/* Zero window and all data acked? Probe. */
1241 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1242 	if (copy == 0) {
1243 		u64 snd_una = READ_ONCE(msk->snd_una);
1244 
1245 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1246 			tcp_remove_empty_skb(ssk);
1247 			return 0;
1248 		}
1249 
1250 		zero_window_probe = true;
1251 		data_seq = snd_una - 1;
1252 		copy = 1;
1253 	}
1254 
1255 	copy = min_t(size_t, copy, info->limit - info->sent);
1256 	if (!sk_wmem_schedule(ssk, copy)) {
1257 		tcp_remove_empty_skb(ssk);
1258 		return -ENOMEM;
1259 	}
1260 
1261 	if (can_coalesce) {
1262 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1263 	} else {
1264 		get_page(dfrag->page);
1265 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1266 	}
1267 
1268 	skb->len += copy;
1269 	skb->data_len += copy;
1270 	skb->truesize += copy;
1271 	sk_wmem_queued_add(ssk, copy);
1272 	sk_mem_charge(ssk, copy);
1273 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1274 	TCP_SKB_CB(skb)->end_seq += copy;
1275 	tcp_skb_pcount_set(skb, 0);
1276 
1277 	/* on skb reuse we just need to update the DSS len */
1278 	if (reuse_skb) {
1279 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1280 		mpext->data_len += copy;
1281 		goto out;
1282 	}
1283 
1284 	memset(mpext, 0, sizeof(*mpext));
1285 	mpext->data_seq = data_seq;
1286 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1287 	mpext->data_len = copy;
1288 	mpext->use_map = 1;
1289 	mpext->dsn64 = 1;
1290 
1291 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1292 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1293 		 mpext->dsn64);
1294 
1295 	if (zero_window_probe) {
1296 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1297 		mpext->frozen = 1;
1298 		if (READ_ONCE(msk->csum_enabled))
1299 			mptcp_update_data_checksum(skb, copy);
1300 		tcp_push_pending_frames(ssk);
1301 		return 0;
1302 	}
1303 out:
1304 	if (READ_ONCE(msk->csum_enabled))
1305 		mptcp_update_data_checksum(skb, copy);
1306 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1307 		mptcp_update_infinite_map(msk, ssk, mpext);
1308 	trace_mptcp_sendmsg_frag(mpext);
1309 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1310 	return copy;
1311 }
1312 
1313 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1314 					 sizeof(struct tcphdr) - \
1315 					 MAX_TCP_OPTION_SPACE - \
1316 					 sizeof(struct ipv6hdr) - \
1317 					 sizeof(struct frag_hdr))
1318 
1319 struct subflow_send_info {
1320 	struct sock *ssk;
1321 	u64 linger_time;
1322 };
1323 
1324 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1325 {
1326 	if (!subflow->stale)
1327 		return;
1328 
1329 	subflow->stale = 0;
1330 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1331 }
1332 
1333 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1334 {
1335 	if (unlikely(subflow->stale)) {
1336 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1337 
1338 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1339 			return false;
1340 
1341 		mptcp_subflow_set_active(subflow);
1342 	}
1343 	return __mptcp_subflow_active(subflow);
1344 }
1345 
1346 #define SSK_MODE_ACTIVE	0
1347 #define SSK_MODE_BACKUP	1
1348 #define SSK_MODE_MAX	2
1349 
1350 /* implement the mptcp packet scheduler;
1351  * returns the subflow that will transmit the next DSS
1352  * additionally updates the rtx timeout
1353  */
1354 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1355 {
1356 	struct subflow_send_info send_info[SSK_MODE_MAX];
1357 	struct mptcp_subflow_context *subflow;
1358 	struct sock *sk = (struct sock *)msk;
1359 	u32 pace, burst, wmem;
1360 	int i, nr_active = 0;
1361 	struct sock *ssk;
1362 	u64 linger_time;
1363 	long tout = 0;
1364 
1365 	/* pick the subflow with the lower wmem/wspace ratio */
1366 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1367 		send_info[i].ssk = NULL;
1368 		send_info[i].linger_time = -1;
1369 	}
1370 
1371 	mptcp_for_each_subflow(msk, subflow) {
1372 		bool backup = subflow->backup || subflow->request_bkup;
1373 
1374 		trace_mptcp_subflow_get_send(subflow);
1375 		ssk =  mptcp_subflow_tcp_sock(subflow);
1376 		if (!mptcp_subflow_active(subflow))
1377 			continue;
1378 
1379 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1380 		nr_active += !backup;
1381 		pace = subflow->avg_pacing_rate;
1382 		if (unlikely(!pace)) {
1383 			/* init pacing rate from socket */
1384 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1385 			pace = subflow->avg_pacing_rate;
1386 			if (!pace)
1387 				continue;
1388 		}
1389 
1390 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1391 		if (linger_time < send_info[backup].linger_time) {
1392 			send_info[backup].ssk = ssk;
1393 			send_info[backup].linger_time = linger_time;
1394 		}
1395 	}
1396 	__mptcp_set_timeout(sk, tout);
1397 
1398 	/* pick the best backup if no other subflow is active */
1399 	if (!nr_active)
1400 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1401 
1402 	/* According to the blest algorithm, to avoid HoL blocking for the
1403 	 * faster flow, we need to:
1404 	 * - estimate the faster flow linger time
1405 	 * - use the above to estimate the amount of byte transferred
1406 	 *   by the faster flow
1407 	 * - check that the amount of queued data is greater than the above,
1408 	 *   otherwise do not use the picked, slower, subflow
1409 	 * We select the subflow with the shorter estimated time to flush
1410 	 * the queued mem, which basically ensure the above. We just need
1411 	 * to check that subflow has a non empty cwin.
1412 	 */
1413 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1414 	if (!ssk || !sk_stream_memory_free(ssk))
1415 		return NULL;
1416 
1417 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1418 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1419 	if (!burst)
1420 		return ssk;
1421 
1422 	subflow = mptcp_subflow_ctx(ssk);
1423 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1424 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1425 					   burst + wmem);
1426 	msk->snd_burst = burst;
1427 	return ssk;
1428 }
1429 
1430 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1431 {
1432 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1433 	release_sock(ssk);
1434 }
1435 
1436 static void mptcp_update_post_push(struct mptcp_sock *msk,
1437 				   struct mptcp_data_frag *dfrag,
1438 				   u32 sent)
1439 {
1440 	u64 snd_nxt_new = dfrag->data_seq;
1441 
1442 	dfrag->already_sent += sent;
1443 
1444 	msk->snd_burst -= sent;
1445 
1446 	snd_nxt_new += dfrag->already_sent;
1447 
1448 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1449 	 * is recovering after a failover. In that event, this re-sends
1450 	 * old segments.
1451 	 *
1452 	 * Thus compute snd_nxt_new candidate based on
1453 	 * the dfrag->data_seq that was sent and the data
1454 	 * that has been handed to the subflow for transmission
1455 	 * and skip update in case it was old dfrag.
1456 	 */
1457 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1458 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1459 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1460 	}
1461 }
1462 
1463 void mptcp_check_and_set_pending(struct sock *sk)
1464 {
1465 	if (mptcp_send_head(sk)) {
1466 		mptcp_data_lock(sk);
1467 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1468 		mptcp_data_unlock(sk);
1469 	}
1470 }
1471 
1472 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1473 				  struct mptcp_sendmsg_info *info)
1474 {
1475 	struct mptcp_sock *msk = mptcp_sk(sk);
1476 	struct mptcp_data_frag *dfrag;
1477 	int len, copied = 0, err = 0;
1478 
1479 	while ((dfrag = mptcp_send_head(sk))) {
1480 		info->sent = dfrag->already_sent;
1481 		info->limit = dfrag->data_len;
1482 		len = dfrag->data_len - dfrag->already_sent;
1483 		while (len > 0) {
1484 			int ret = 0;
1485 
1486 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1487 			if (ret <= 0) {
1488 				err = copied ? : ret;
1489 				goto out;
1490 			}
1491 
1492 			info->sent += ret;
1493 			copied += ret;
1494 			len -= ret;
1495 
1496 			mptcp_update_post_push(msk, dfrag, ret);
1497 		}
1498 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1499 
1500 		if (msk->snd_burst <= 0 ||
1501 		    !sk_stream_memory_free(ssk) ||
1502 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1503 			err = copied;
1504 			goto out;
1505 		}
1506 		mptcp_set_timeout(sk);
1507 	}
1508 	err = copied;
1509 
1510 out:
1511 	if (err > 0)
1512 		msk->last_data_sent = tcp_jiffies32;
1513 	return err;
1514 }
1515 
1516 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1517 {
1518 	struct sock *prev_ssk = NULL, *ssk = NULL;
1519 	struct mptcp_sock *msk = mptcp_sk(sk);
1520 	struct mptcp_sendmsg_info info = {
1521 				.flags = flags,
1522 	};
1523 	bool do_check_data_fin = false;
1524 	int push_count = 1;
1525 
1526 	while (mptcp_send_head(sk) && (push_count > 0)) {
1527 		struct mptcp_subflow_context *subflow;
1528 		int ret = 0;
1529 
1530 		if (mptcp_sched_get_send(msk))
1531 			break;
1532 
1533 		push_count = 0;
1534 
1535 		mptcp_for_each_subflow(msk, subflow) {
1536 			if (READ_ONCE(subflow->scheduled)) {
1537 				mptcp_subflow_set_scheduled(subflow, false);
1538 
1539 				prev_ssk = ssk;
1540 				ssk = mptcp_subflow_tcp_sock(subflow);
1541 				if (ssk != prev_ssk) {
1542 					/* First check. If the ssk has changed since
1543 					 * the last round, release prev_ssk
1544 					 */
1545 					if (prev_ssk)
1546 						mptcp_push_release(prev_ssk, &info);
1547 
1548 					/* Need to lock the new subflow only if different
1549 					 * from the previous one, otherwise we are still
1550 					 * helding the relevant lock
1551 					 */
1552 					lock_sock(ssk);
1553 				}
1554 
1555 				push_count++;
1556 
1557 				ret = __subflow_push_pending(sk, ssk, &info);
1558 				if (ret <= 0) {
1559 					if (ret != -EAGAIN ||
1560 					    (1 << ssk->sk_state) &
1561 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1562 						push_count--;
1563 					continue;
1564 				}
1565 				do_check_data_fin = true;
1566 			}
1567 		}
1568 	}
1569 
1570 	/* at this point we held the socket lock for the last subflow we used */
1571 	if (ssk)
1572 		mptcp_push_release(ssk, &info);
1573 
1574 	/* ensure the rtx timer is running */
1575 	if (!mptcp_rtx_timer_pending(sk))
1576 		mptcp_reset_rtx_timer(sk);
1577 	if (do_check_data_fin)
1578 		mptcp_check_send_data_fin(sk);
1579 }
1580 
1581 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1582 {
1583 	struct mptcp_sock *msk = mptcp_sk(sk);
1584 	struct mptcp_sendmsg_info info = {
1585 		.data_lock_held = true,
1586 	};
1587 	bool keep_pushing = true;
1588 	struct sock *xmit_ssk;
1589 	int copied = 0;
1590 
1591 	info.flags = 0;
1592 	while (mptcp_send_head(sk) && keep_pushing) {
1593 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1594 		int ret = 0;
1595 
1596 		/* check for a different subflow usage only after
1597 		 * spooling the first chunk of data
1598 		 */
1599 		if (first) {
1600 			mptcp_subflow_set_scheduled(subflow, false);
1601 			ret = __subflow_push_pending(sk, ssk, &info);
1602 			first = false;
1603 			if (ret <= 0)
1604 				break;
1605 			copied += ret;
1606 			continue;
1607 		}
1608 
1609 		if (mptcp_sched_get_send(msk))
1610 			goto out;
1611 
1612 		if (READ_ONCE(subflow->scheduled)) {
1613 			mptcp_subflow_set_scheduled(subflow, false);
1614 			ret = __subflow_push_pending(sk, ssk, &info);
1615 			if (ret <= 0)
1616 				keep_pushing = false;
1617 			copied += ret;
1618 		}
1619 
1620 		mptcp_for_each_subflow(msk, subflow) {
1621 			if (READ_ONCE(subflow->scheduled)) {
1622 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1623 				if (xmit_ssk != ssk) {
1624 					mptcp_subflow_delegate(subflow,
1625 							       MPTCP_DELEGATE_SEND);
1626 					keep_pushing = false;
1627 				}
1628 			}
1629 		}
1630 	}
1631 
1632 out:
1633 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1634 	 * not going to flush it via release_sock()
1635 	 */
1636 	if (copied) {
1637 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1638 			 info.size_goal);
1639 		if (!mptcp_rtx_timer_pending(sk))
1640 			mptcp_reset_rtx_timer(sk);
1641 
1642 		if (msk->snd_data_fin_enable &&
1643 		    msk->snd_nxt + 1 == msk->write_seq)
1644 			mptcp_schedule_work(sk);
1645 	}
1646 }
1647 
1648 static int mptcp_disconnect(struct sock *sk, int flags);
1649 
1650 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1651 				  size_t len, int *copied_syn)
1652 {
1653 	unsigned int saved_flags = msg->msg_flags;
1654 	struct mptcp_sock *msk = mptcp_sk(sk);
1655 	struct sock *ssk;
1656 	int ret;
1657 
1658 	/* on flags based fastopen the mptcp is supposed to create the
1659 	 * first subflow right now. Otherwise we are in the defer_connect
1660 	 * path, and the first subflow must be already present.
1661 	 * Since the defer_connect flag is cleared after the first succsful
1662 	 * fastopen attempt, no need to check for additional subflow status.
1663 	 */
1664 	if (msg->msg_flags & MSG_FASTOPEN) {
1665 		ssk = __mptcp_nmpc_sk(msk);
1666 		if (IS_ERR(ssk))
1667 			return PTR_ERR(ssk);
1668 	}
1669 	if (!msk->first)
1670 		return -EINVAL;
1671 
1672 	ssk = msk->first;
1673 
1674 	lock_sock(ssk);
1675 	msg->msg_flags |= MSG_DONTWAIT;
1676 	msk->fastopening = 1;
1677 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1678 	msk->fastopening = 0;
1679 	msg->msg_flags = saved_flags;
1680 	release_sock(ssk);
1681 
1682 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1683 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1684 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1685 					    msg->msg_namelen, msg->msg_flags, 1);
1686 
1687 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1688 		 * case of any error, except timeout or signal
1689 		 */
1690 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1691 			*copied_syn = 0;
1692 	} else if (ret && ret != -EINPROGRESS) {
1693 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1694 		 * __inet_stream_connect() can fail, due to looking check,
1695 		 * see mptcp_disconnect().
1696 		 * Attempt it again outside the problematic scope.
1697 		 */
1698 		if (!mptcp_disconnect(sk, 0)) {
1699 			sk->sk_disconnects++;
1700 			sk->sk_socket->state = SS_UNCONNECTED;
1701 		}
1702 	}
1703 	inet_clear_bit(DEFER_CONNECT, sk);
1704 
1705 	return ret;
1706 }
1707 
1708 static int do_copy_data_nocache(struct sock *sk, int copy,
1709 				struct iov_iter *from, char *to)
1710 {
1711 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1712 		if (!copy_from_iter_full_nocache(to, copy, from))
1713 			return -EFAULT;
1714 	} else if (!copy_from_iter_full(to, copy, from)) {
1715 		return -EFAULT;
1716 	}
1717 	return 0;
1718 }
1719 
1720 /* open-code sk_stream_memory_free() plus sent limit computation to
1721  * avoid indirect calls in fast-path.
1722  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1723  * annotations.
1724  */
1725 static u32 mptcp_send_limit(const struct sock *sk)
1726 {
1727 	const struct mptcp_sock *msk = mptcp_sk(sk);
1728 	u32 limit, not_sent;
1729 
1730 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1731 		return 0;
1732 
1733 	limit = mptcp_notsent_lowat(sk);
1734 	if (limit == UINT_MAX)
1735 		return UINT_MAX;
1736 
1737 	not_sent = msk->write_seq - msk->snd_nxt;
1738 	if (not_sent >= limit)
1739 		return 0;
1740 
1741 	return limit - not_sent;
1742 }
1743 
1744 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1745 {
1746 	struct mptcp_subflow_context *subflow;
1747 
1748 	if (!rfs_is_needed())
1749 		return;
1750 
1751 	mptcp_for_each_subflow(msk, subflow) {
1752 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1753 
1754 		sock_rps_record_flow(ssk);
1755 	}
1756 }
1757 
1758 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1759 {
1760 	struct mptcp_sock *msk = mptcp_sk(sk);
1761 	struct page_frag *pfrag;
1762 	size_t copied = 0;
1763 	int ret = 0;
1764 	long timeo;
1765 
1766 	/* silently ignore everything else */
1767 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1768 
1769 	lock_sock(sk);
1770 
1771 	mptcp_rps_record_subflows(msk);
1772 
1773 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1774 		     msg->msg_flags & MSG_FASTOPEN)) {
1775 		int copied_syn = 0;
1776 
1777 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1778 		copied += copied_syn;
1779 		if (ret == -EINPROGRESS && copied_syn > 0)
1780 			goto out;
1781 		else if (ret)
1782 			goto do_error;
1783 	}
1784 
1785 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1786 
1787 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1788 		ret = sk_stream_wait_connect(sk, &timeo);
1789 		if (ret)
1790 			goto do_error;
1791 	}
1792 
1793 	ret = -EPIPE;
1794 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1795 		goto do_error;
1796 
1797 	pfrag = sk_page_frag(sk);
1798 
1799 	while (msg_data_left(msg)) {
1800 		int total_ts, frag_truesize = 0;
1801 		struct mptcp_data_frag *dfrag;
1802 		bool dfrag_collapsed;
1803 		size_t psize, offset;
1804 		u32 copy_limit;
1805 
1806 		/* ensure fitting the notsent_lowat() constraint */
1807 		copy_limit = mptcp_send_limit(sk);
1808 		if (!copy_limit)
1809 			goto wait_for_memory;
1810 
1811 		/* reuse tail pfrag, if possible, or carve a new one from the
1812 		 * page allocator
1813 		 */
1814 		dfrag = mptcp_pending_tail(sk);
1815 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1816 		if (!dfrag_collapsed) {
1817 			if (!mptcp_page_frag_refill(sk, pfrag))
1818 				goto wait_for_memory;
1819 
1820 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1821 			frag_truesize = dfrag->overhead;
1822 		}
1823 
1824 		/* we do not bound vs wspace, to allow a single packet.
1825 		 * memory accounting will prevent execessive memory usage
1826 		 * anyway
1827 		 */
1828 		offset = dfrag->offset + dfrag->data_len;
1829 		psize = pfrag->size - offset;
1830 		psize = min_t(size_t, psize, msg_data_left(msg));
1831 		psize = min_t(size_t, psize, copy_limit);
1832 		total_ts = psize + frag_truesize;
1833 
1834 		if (!sk_wmem_schedule(sk, total_ts))
1835 			goto wait_for_memory;
1836 
1837 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1838 					   page_address(dfrag->page) + offset);
1839 		if (ret)
1840 			goto do_error;
1841 
1842 		/* data successfully copied into the write queue */
1843 		sk_forward_alloc_add(sk, -total_ts);
1844 		copied += psize;
1845 		dfrag->data_len += psize;
1846 		frag_truesize += psize;
1847 		pfrag->offset += frag_truesize;
1848 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1849 
1850 		/* charge data on mptcp pending queue to the msk socket
1851 		 * Note: we charge such data both to sk and ssk
1852 		 */
1853 		sk_wmem_queued_add(sk, frag_truesize);
1854 		if (!dfrag_collapsed) {
1855 			get_page(dfrag->page);
1856 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1857 			if (!msk->first_pending)
1858 				WRITE_ONCE(msk->first_pending, dfrag);
1859 		}
1860 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1861 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1862 			 !dfrag_collapsed);
1863 
1864 		continue;
1865 
1866 wait_for_memory:
1867 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1868 		__mptcp_push_pending(sk, msg->msg_flags);
1869 		ret = sk_stream_wait_memory(sk, &timeo);
1870 		if (ret)
1871 			goto do_error;
1872 	}
1873 
1874 	if (copied)
1875 		__mptcp_push_pending(sk, msg->msg_flags);
1876 
1877 out:
1878 	release_sock(sk);
1879 	return copied;
1880 
1881 do_error:
1882 	if (copied)
1883 		goto out;
1884 
1885 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1886 	goto out;
1887 }
1888 
1889 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1890 
1891 static int __mptcp_recvmsg_mskq(struct sock *sk,
1892 				struct msghdr *msg,
1893 				size_t len, int flags,
1894 				struct scm_timestamping_internal *tss,
1895 				int *cmsg_flags)
1896 {
1897 	struct mptcp_sock *msk = mptcp_sk(sk);
1898 	struct sk_buff *skb, *tmp;
1899 	int copied = 0;
1900 
1901 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1902 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1903 		u32 data_len = skb->len - offset;
1904 		u32 count = min_t(size_t, len - copied, data_len);
1905 		int err;
1906 
1907 		if (!(flags & MSG_TRUNC)) {
1908 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1909 			if (unlikely(err < 0)) {
1910 				if (!copied)
1911 					return err;
1912 				break;
1913 			}
1914 		}
1915 
1916 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1917 			tcp_update_recv_tstamps(skb, tss);
1918 			*cmsg_flags |= MPTCP_CMSG_TS;
1919 		}
1920 
1921 		copied += count;
1922 
1923 		if (count < data_len) {
1924 			if (!(flags & MSG_PEEK)) {
1925 				MPTCP_SKB_CB(skb)->offset += count;
1926 				MPTCP_SKB_CB(skb)->map_seq += count;
1927 				msk->bytes_consumed += count;
1928 			}
1929 			break;
1930 		}
1931 
1932 		if (!(flags & MSG_PEEK)) {
1933 			/* avoid the indirect call, we know the destructor is sock_wfree */
1934 			skb->destructor = NULL;
1935 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1936 			sk_mem_uncharge(sk, skb->truesize);
1937 			__skb_unlink(skb, &sk->sk_receive_queue);
1938 			__kfree_skb(skb);
1939 			msk->bytes_consumed += count;
1940 		}
1941 
1942 		if (copied >= len)
1943 			break;
1944 	}
1945 
1946 	mptcp_rcv_space_adjust(msk, copied);
1947 	return copied;
1948 }
1949 
1950 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1951  *
1952  * Only difference: Use highest rtt estimate of the subflows in use.
1953  */
1954 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1955 {
1956 	struct mptcp_subflow_context *subflow;
1957 	struct sock *sk = (struct sock *)msk;
1958 	u8 scaling_ratio = U8_MAX;
1959 	u32 time, advmss = 1;
1960 	u64 rtt_us, mstamp;
1961 
1962 	msk_owned_by_me(msk);
1963 
1964 	if (copied <= 0)
1965 		return;
1966 
1967 	if (!msk->rcvspace_init)
1968 		mptcp_rcv_space_init(msk, msk->first);
1969 
1970 	msk->rcvq_space.copied += copied;
1971 
1972 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1973 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1974 
1975 	rtt_us = msk->rcvq_space.rtt_us;
1976 	if (rtt_us && time < (rtt_us >> 3))
1977 		return;
1978 
1979 	rtt_us = 0;
1980 	mptcp_for_each_subflow(msk, subflow) {
1981 		const struct tcp_sock *tp;
1982 		u64 sf_rtt_us;
1983 		u32 sf_advmss;
1984 
1985 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1986 
1987 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1988 		sf_advmss = READ_ONCE(tp->advmss);
1989 
1990 		rtt_us = max(sf_rtt_us, rtt_us);
1991 		advmss = max(sf_advmss, advmss);
1992 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1993 	}
1994 
1995 	msk->rcvq_space.rtt_us = rtt_us;
1996 	msk->scaling_ratio = scaling_ratio;
1997 	if (time < (rtt_us >> 3) || rtt_us == 0)
1998 		return;
1999 
2000 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2001 		goto new_measure;
2002 
2003 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2004 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2005 		u64 rcvwin, grow;
2006 		int rcvbuf;
2007 
2008 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2009 
2010 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2011 
2012 		do_div(grow, msk->rcvq_space.space);
2013 		rcvwin += (grow << 1);
2014 
2015 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
2016 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2017 
2018 		if (rcvbuf > sk->sk_rcvbuf) {
2019 			u32 window_clamp;
2020 
2021 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
2022 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2023 
2024 			/* Make subflows follow along.  If we do not do this, we
2025 			 * get drops at subflow level if skbs can't be moved to
2026 			 * the mptcp rx queue fast enough (announced rcv_win can
2027 			 * exceed ssk->sk_rcvbuf).
2028 			 */
2029 			mptcp_for_each_subflow(msk, subflow) {
2030 				struct sock *ssk;
2031 				bool slow;
2032 
2033 				ssk = mptcp_subflow_tcp_sock(subflow);
2034 				slow = lock_sock_fast(ssk);
2035 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2036 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2037 				if (tcp_can_send_ack(ssk))
2038 					tcp_cleanup_rbuf(ssk, 1);
2039 				unlock_sock_fast(ssk, slow);
2040 			}
2041 		}
2042 	}
2043 
2044 	msk->rcvq_space.space = msk->rcvq_space.copied;
2045 new_measure:
2046 	msk->rcvq_space.copied = 0;
2047 	msk->rcvq_space.time = mstamp;
2048 }
2049 
2050 static struct mptcp_subflow_context *
2051 __mptcp_first_ready_from(struct mptcp_sock *msk,
2052 			 struct mptcp_subflow_context *subflow)
2053 {
2054 	struct mptcp_subflow_context *start_subflow = subflow;
2055 
2056 	while (!READ_ONCE(subflow->data_avail)) {
2057 		subflow = mptcp_next_subflow(msk, subflow);
2058 		if (subflow == start_subflow)
2059 			return NULL;
2060 	}
2061 	return subflow;
2062 }
2063 
2064 static bool __mptcp_move_skbs(struct sock *sk)
2065 {
2066 	struct mptcp_subflow_context *subflow;
2067 	struct mptcp_sock *msk = mptcp_sk(sk);
2068 	bool ret = false;
2069 
2070 	if (list_empty(&msk->conn_list))
2071 		return false;
2072 
2073 	/* verify we can move any data from the subflow, eventually updating */
2074 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2075 		mptcp_for_each_subflow(msk, subflow)
2076 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2077 
2078 	subflow = list_first_entry(&msk->conn_list,
2079 				   struct mptcp_subflow_context, node);
2080 	for (;;) {
2081 		struct sock *ssk;
2082 		bool slowpath;
2083 
2084 		/*
2085 		 * As an optimization avoid traversing the subflows list
2086 		 * and ev. acquiring the subflow socket lock before baling out
2087 		 */
2088 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2089 			break;
2090 
2091 		subflow = __mptcp_first_ready_from(msk, subflow);
2092 		if (!subflow)
2093 			break;
2094 
2095 		ssk = mptcp_subflow_tcp_sock(subflow);
2096 		slowpath = lock_sock_fast(ssk);
2097 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2098 		if (unlikely(ssk->sk_err))
2099 			__mptcp_error_report(sk);
2100 		unlock_sock_fast(ssk, slowpath);
2101 
2102 		subflow = mptcp_next_subflow(msk, subflow);
2103 	}
2104 
2105 	__mptcp_ofo_queue(msk);
2106 	if (ret)
2107 		mptcp_check_data_fin((struct sock *)msk);
2108 	return ret;
2109 }
2110 
2111 static unsigned int mptcp_inq_hint(const struct sock *sk)
2112 {
2113 	const struct mptcp_sock *msk = mptcp_sk(sk);
2114 	const struct sk_buff *skb;
2115 
2116 	skb = skb_peek(&sk->sk_receive_queue);
2117 	if (skb) {
2118 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2119 
2120 		if (hint_val >= INT_MAX)
2121 			return INT_MAX;
2122 
2123 		return (unsigned int)hint_val;
2124 	}
2125 
2126 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2127 		return 1;
2128 
2129 	return 0;
2130 }
2131 
2132 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2133 			 int flags, int *addr_len)
2134 {
2135 	struct mptcp_sock *msk = mptcp_sk(sk);
2136 	struct scm_timestamping_internal tss;
2137 	int copied = 0, cmsg_flags = 0;
2138 	int target;
2139 	long timeo;
2140 
2141 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2142 	if (unlikely(flags & MSG_ERRQUEUE))
2143 		return inet_recv_error(sk, msg, len, addr_len);
2144 
2145 	lock_sock(sk);
2146 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2147 		copied = -ENOTCONN;
2148 		goto out_err;
2149 	}
2150 
2151 	mptcp_rps_record_subflows(msk);
2152 
2153 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2154 
2155 	len = min_t(size_t, len, INT_MAX);
2156 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2157 
2158 	if (unlikely(msk->recvmsg_inq))
2159 		cmsg_flags = MPTCP_CMSG_INQ;
2160 
2161 	while (copied < len) {
2162 		int err, bytes_read;
2163 
2164 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2165 		if (unlikely(bytes_read < 0)) {
2166 			if (!copied)
2167 				copied = bytes_read;
2168 			goto out_err;
2169 		}
2170 
2171 		copied += bytes_read;
2172 
2173 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2174 			continue;
2175 
2176 		/* only the MPTCP socket status is relevant here. The exit
2177 		 * conditions mirror closely tcp_recvmsg()
2178 		 */
2179 		if (copied >= target)
2180 			break;
2181 
2182 		if (copied) {
2183 			if (sk->sk_err ||
2184 			    sk->sk_state == TCP_CLOSE ||
2185 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2186 			    !timeo ||
2187 			    signal_pending(current))
2188 				break;
2189 		} else {
2190 			if (sk->sk_err) {
2191 				copied = sock_error(sk);
2192 				break;
2193 			}
2194 
2195 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2196 				/* race breaker: the shutdown could be after the
2197 				 * previous receive queue check
2198 				 */
2199 				if (__mptcp_move_skbs(sk))
2200 					continue;
2201 				break;
2202 			}
2203 
2204 			if (sk->sk_state == TCP_CLOSE) {
2205 				copied = -ENOTCONN;
2206 				break;
2207 			}
2208 
2209 			if (!timeo) {
2210 				copied = -EAGAIN;
2211 				break;
2212 			}
2213 
2214 			if (signal_pending(current)) {
2215 				copied = sock_intr_errno(timeo);
2216 				break;
2217 			}
2218 		}
2219 
2220 		pr_debug("block timeout %ld\n", timeo);
2221 		mptcp_cleanup_rbuf(msk, copied);
2222 		err = sk_wait_data(sk, &timeo, NULL);
2223 		if (err < 0) {
2224 			err = copied ? : err;
2225 			goto out_err;
2226 		}
2227 	}
2228 
2229 	mptcp_cleanup_rbuf(msk, copied);
2230 
2231 out_err:
2232 	if (cmsg_flags && copied >= 0) {
2233 		if (cmsg_flags & MPTCP_CMSG_TS)
2234 			tcp_recv_timestamp(msg, sk, &tss);
2235 
2236 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2237 			unsigned int inq = mptcp_inq_hint(sk);
2238 
2239 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2240 		}
2241 	}
2242 
2243 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2244 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2245 
2246 	release_sock(sk);
2247 	return copied;
2248 }
2249 
2250 static void mptcp_retransmit_timer(struct timer_list *t)
2251 {
2252 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2253 							       icsk_retransmit_timer);
2254 	struct sock *sk = &icsk->icsk_inet.sk;
2255 	struct mptcp_sock *msk = mptcp_sk(sk);
2256 
2257 	bh_lock_sock(sk);
2258 	if (!sock_owned_by_user(sk)) {
2259 		/* we need a process context to retransmit */
2260 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2261 			mptcp_schedule_work(sk);
2262 	} else {
2263 		/* delegate our work to tcp_release_cb() */
2264 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2265 	}
2266 	bh_unlock_sock(sk);
2267 	sock_put(sk);
2268 }
2269 
2270 static void mptcp_tout_timer(struct timer_list *t)
2271 {
2272 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2273 
2274 	mptcp_schedule_work(sk);
2275 	sock_put(sk);
2276 }
2277 
2278 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2279  * level.
2280  *
2281  * A backup subflow is returned only if that is the only kind available.
2282  */
2283 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2284 {
2285 	struct sock *backup = NULL, *pick = NULL;
2286 	struct mptcp_subflow_context *subflow;
2287 	int min_stale_count = INT_MAX;
2288 
2289 	mptcp_for_each_subflow(msk, subflow) {
2290 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2291 
2292 		if (!__mptcp_subflow_active(subflow))
2293 			continue;
2294 
2295 		/* still data outstanding at TCP level? skip this */
2296 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2297 			mptcp_pm_subflow_chk_stale(msk, ssk);
2298 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2299 			continue;
2300 		}
2301 
2302 		if (subflow->backup || subflow->request_bkup) {
2303 			if (!backup)
2304 				backup = ssk;
2305 			continue;
2306 		}
2307 
2308 		if (!pick)
2309 			pick = ssk;
2310 	}
2311 
2312 	if (pick)
2313 		return pick;
2314 
2315 	/* use backup only if there are no progresses anywhere */
2316 	return min_stale_count > 1 ? backup : NULL;
2317 }
2318 
2319 bool __mptcp_retransmit_pending_data(struct sock *sk)
2320 {
2321 	struct mptcp_data_frag *cur, *rtx_head;
2322 	struct mptcp_sock *msk = mptcp_sk(sk);
2323 
2324 	if (__mptcp_check_fallback(msk))
2325 		return false;
2326 
2327 	/* the closing socket has some data untransmitted and/or unacked:
2328 	 * some data in the mptcp rtx queue has not really xmitted yet.
2329 	 * keep it simple and re-inject the whole mptcp level rtx queue
2330 	 */
2331 	mptcp_data_lock(sk);
2332 	__mptcp_clean_una_wakeup(sk);
2333 	rtx_head = mptcp_rtx_head(sk);
2334 	if (!rtx_head) {
2335 		mptcp_data_unlock(sk);
2336 		return false;
2337 	}
2338 
2339 	msk->recovery_snd_nxt = msk->snd_nxt;
2340 	msk->recovery = true;
2341 	mptcp_data_unlock(sk);
2342 
2343 	msk->first_pending = rtx_head;
2344 	msk->snd_burst = 0;
2345 
2346 	/* be sure to clear the "sent status" on all re-injected fragments */
2347 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2348 		if (!cur->already_sent)
2349 			break;
2350 		cur->already_sent = 0;
2351 	}
2352 
2353 	return true;
2354 }
2355 
2356 /* flags for __mptcp_close_ssk() */
2357 #define MPTCP_CF_PUSH		BIT(1)
2358 #define MPTCP_CF_FASTCLOSE	BIT(2)
2359 
2360 /* be sure to send a reset only if the caller asked for it, also
2361  * clean completely the subflow status when the subflow reaches
2362  * TCP_CLOSE state
2363  */
2364 static void __mptcp_subflow_disconnect(struct sock *ssk,
2365 				       struct mptcp_subflow_context *subflow,
2366 				       unsigned int flags)
2367 {
2368 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2369 	    (flags & MPTCP_CF_FASTCLOSE)) {
2370 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2371 		 * disconnect should never fail
2372 		 */
2373 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2374 		mptcp_subflow_ctx_reset(subflow);
2375 	} else {
2376 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2377 	}
2378 }
2379 
2380 /* subflow sockets can be either outgoing (connect) or incoming
2381  * (accept).
2382  *
2383  * Outgoing subflows use in-kernel sockets.
2384  * Incoming subflows do not have their own 'struct socket' allocated,
2385  * so we need to use tcp_close() after detaching them from the mptcp
2386  * parent socket.
2387  */
2388 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2389 			      struct mptcp_subflow_context *subflow,
2390 			      unsigned int flags)
2391 {
2392 	struct mptcp_sock *msk = mptcp_sk(sk);
2393 	bool dispose_it, need_push = false;
2394 
2395 	/* If the first subflow moved to a close state before accept, e.g. due
2396 	 * to an incoming reset or listener shutdown, the subflow socket is
2397 	 * already deleted by inet_child_forget() and the mptcp socket can't
2398 	 * survive too.
2399 	 */
2400 	if (msk->in_accept_queue && msk->first == ssk &&
2401 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2402 		/* ensure later check in mptcp_worker() will dispose the msk */
2403 		sock_set_flag(sk, SOCK_DEAD);
2404 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2405 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2406 		mptcp_subflow_drop_ctx(ssk);
2407 		goto out_release;
2408 	}
2409 
2410 	dispose_it = msk->free_first || ssk != msk->first;
2411 	if (dispose_it)
2412 		list_del(&subflow->node);
2413 
2414 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2415 
2416 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2417 		/* be sure to force the tcp_close path
2418 		 * to generate the egress reset
2419 		 */
2420 		ssk->sk_lingertime = 0;
2421 		sock_set_flag(ssk, SOCK_LINGER);
2422 		subflow->send_fastclose = 1;
2423 	}
2424 
2425 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2426 	if (!dispose_it) {
2427 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2428 		release_sock(ssk);
2429 
2430 		goto out;
2431 	}
2432 
2433 	subflow->disposable = 1;
2434 
2435 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2436 	 * the ssk has been already destroyed, we just need to release the
2437 	 * reference owned by msk;
2438 	 */
2439 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2440 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2441 		kfree_rcu(subflow, rcu);
2442 	} else {
2443 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2444 		__tcp_close(ssk, 0);
2445 
2446 		/* close acquired an extra ref */
2447 		__sock_put(ssk);
2448 	}
2449 
2450 out_release:
2451 	__mptcp_subflow_error_report(sk, ssk);
2452 	release_sock(ssk);
2453 
2454 	sock_put(ssk);
2455 
2456 	if (ssk == msk->first)
2457 		WRITE_ONCE(msk->first, NULL);
2458 
2459 out:
2460 	__mptcp_sync_sndbuf(sk);
2461 	if (need_push)
2462 		__mptcp_push_pending(sk, 0);
2463 
2464 	/* Catch every 'all subflows closed' scenario, including peers silently
2465 	 * closing them, e.g. due to timeout.
2466 	 * For established sockets, allow an additional timeout before closing,
2467 	 * as the protocol can still create more subflows.
2468 	 */
2469 	if (list_is_singular(&msk->conn_list) && msk->first &&
2470 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2471 		if (sk->sk_state != TCP_ESTABLISHED ||
2472 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2473 			mptcp_set_state(sk, TCP_CLOSE);
2474 			mptcp_close_wake_up(sk);
2475 		} else {
2476 			mptcp_start_tout_timer(sk);
2477 		}
2478 	}
2479 }
2480 
2481 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2482 		     struct mptcp_subflow_context *subflow)
2483 {
2484 	/* The first subflow can already be closed and still in the list */
2485 	if (subflow->close_event_done)
2486 		return;
2487 
2488 	subflow->close_event_done = true;
2489 
2490 	if (sk->sk_state == TCP_ESTABLISHED)
2491 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2492 
2493 	/* subflow aborted before reaching the fully_established status
2494 	 * attempt the creation of the next subflow
2495 	 */
2496 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2497 
2498 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2499 }
2500 
2501 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2502 {
2503 	return 0;
2504 }
2505 
2506 static void __mptcp_close_subflow(struct sock *sk)
2507 {
2508 	struct mptcp_subflow_context *subflow, *tmp;
2509 	struct mptcp_sock *msk = mptcp_sk(sk);
2510 
2511 	might_sleep();
2512 
2513 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2514 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2515 		int ssk_state = inet_sk_state_load(ssk);
2516 
2517 		if (ssk_state != TCP_CLOSE &&
2518 		    (ssk_state != TCP_CLOSE_WAIT ||
2519 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2520 			continue;
2521 
2522 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2523 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2524 			continue;
2525 
2526 		mptcp_close_ssk(sk, ssk, subflow);
2527 	}
2528 
2529 }
2530 
2531 static bool mptcp_close_tout_expired(const struct sock *sk)
2532 {
2533 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2534 	    sk->sk_state == TCP_CLOSE)
2535 		return false;
2536 
2537 	return time_after32(tcp_jiffies32,
2538 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2539 }
2540 
2541 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2542 {
2543 	struct mptcp_subflow_context *subflow, *tmp;
2544 	struct sock *sk = (struct sock *)msk;
2545 
2546 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2547 		return;
2548 
2549 	mptcp_token_destroy(msk);
2550 
2551 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2552 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2553 		bool slow;
2554 
2555 		slow = lock_sock_fast(tcp_sk);
2556 		if (tcp_sk->sk_state != TCP_CLOSE) {
2557 			mptcp_send_active_reset_reason(tcp_sk);
2558 			tcp_set_state(tcp_sk, TCP_CLOSE);
2559 		}
2560 		unlock_sock_fast(tcp_sk, slow);
2561 	}
2562 
2563 	/* Mirror the tcp_reset() error propagation */
2564 	switch (sk->sk_state) {
2565 	case TCP_SYN_SENT:
2566 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2567 		break;
2568 	case TCP_CLOSE_WAIT:
2569 		WRITE_ONCE(sk->sk_err, EPIPE);
2570 		break;
2571 	case TCP_CLOSE:
2572 		return;
2573 	default:
2574 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2575 	}
2576 
2577 	mptcp_set_state(sk, TCP_CLOSE);
2578 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2579 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2580 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2581 
2582 	/* the calling mptcp_worker will properly destroy the socket */
2583 	if (sock_flag(sk, SOCK_DEAD))
2584 		return;
2585 
2586 	sk->sk_state_change(sk);
2587 	sk_error_report(sk);
2588 }
2589 
2590 static void __mptcp_retrans(struct sock *sk)
2591 {
2592 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2593 	struct mptcp_sock *msk = mptcp_sk(sk);
2594 	struct mptcp_subflow_context *subflow;
2595 	struct mptcp_data_frag *dfrag;
2596 	struct sock *ssk;
2597 	int ret, err;
2598 	u16 len = 0;
2599 
2600 	mptcp_clean_una_wakeup(sk);
2601 
2602 	/* first check ssk: need to kick "stale" logic */
2603 	err = mptcp_sched_get_retrans(msk);
2604 	dfrag = mptcp_rtx_head(sk);
2605 	if (!dfrag) {
2606 		if (mptcp_data_fin_enabled(msk)) {
2607 			struct inet_connection_sock *icsk = inet_csk(sk);
2608 
2609 			WRITE_ONCE(icsk->icsk_retransmits,
2610 				   icsk->icsk_retransmits + 1);
2611 			mptcp_set_datafin_timeout(sk);
2612 			mptcp_send_ack(msk);
2613 
2614 			goto reset_timer;
2615 		}
2616 
2617 		if (!mptcp_send_head(sk))
2618 			return;
2619 
2620 		goto reset_timer;
2621 	}
2622 
2623 	if (err)
2624 		goto reset_timer;
2625 
2626 	mptcp_for_each_subflow(msk, subflow) {
2627 		if (READ_ONCE(subflow->scheduled)) {
2628 			u16 copied = 0;
2629 
2630 			mptcp_subflow_set_scheduled(subflow, false);
2631 
2632 			ssk = mptcp_subflow_tcp_sock(subflow);
2633 
2634 			lock_sock(ssk);
2635 
2636 			/* limit retransmission to the bytes already sent on some subflows */
2637 			info.sent = 0;
2638 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2639 								    dfrag->already_sent;
2640 
2641 			/*
2642 			 * make the whole retrans decision, xmit, disallow
2643 			 * fallback atomic
2644 			 */
2645 			spin_lock_bh(&msk->fallback_lock);
2646 			if (__mptcp_check_fallback(msk)) {
2647 				spin_unlock_bh(&msk->fallback_lock);
2648 				release_sock(ssk);
2649 				return;
2650 			}
2651 
2652 			while (info.sent < info.limit) {
2653 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2654 				if (ret <= 0)
2655 					break;
2656 
2657 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2658 				copied += ret;
2659 				info.sent += ret;
2660 			}
2661 			if (copied) {
2662 				len = max(copied, len);
2663 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2664 					 info.size_goal);
2665 				msk->allow_infinite_fallback = false;
2666 			}
2667 			spin_unlock_bh(&msk->fallback_lock);
2668 
2669 			release_sock(ssk);
2670 		}
2671 	}
2672 
2673 	msk->bytes_retrans += len;
2674 	dfrag->already_sent = max(dfrag->already_sent, len);
2675 
2676 reset_timer:
2677 	mptcp_check_and_set_pending(sk);
2678 
2679 	if (!mptcp_rtx_timer_pending(sk))
2680 		mptcp_reset_rtx_timer(sk);
2681 }
2682 
2683 /* schedule the timeout timer for the relevant event: either close timeout
2684  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2685  */
2686 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2687 {
2688 	struct sock *sk = (struct sock *)msk;
2689 	unsigned long timeout, close_timeout;
2690 
2691 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2692 		return;
2693 
2694 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2695 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2696 
2697 	/* the close timeout takes precedence on the fail one, and here at least one of
2698 	 * them is active
2699 	 */
2700 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2701 
2702 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2703 }
2704 
2705 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2706 {
2707 	struct sock *ssk = msk->first;
2708 	bool slow;
2709 
2710 	if (!ssk)
2711 		return;
2712 
2713 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2714 
2715 	slow = lock_sock_fast(ssk);
2716 	mptcp_subflow_reset(ssk);
2717 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2718 	unlock_sock_fast(ssk, slow);
2719 }
2720 
2721 static void mptcp_do_fastclose(struct sock *sk)
2722 {
2723 	struct mptcp_subflow_context *subflow, *tmp;
2724 	struct mptcp_sock *msk = mptcp_sk(sk);
2725 
2726 	mptcp_set_state(sk, TCP_CLOSE);
2727 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2728 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2729 				  subflow, MPTCP_CF_FASTCLOSE);
2730 }
2731 
2732 static void mptcp_worker(struct work_struct *work)
2733 {
2734 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2735 	struct sock *sk = (struct sock *)msk;
2736 	unsigned long fail_tout;
2737 	int state;
2738 
2739 	lock_sock(sk);
2740 	state = sk->sk_state;
2741 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2742 		goto unlock;
2743 
2744 	mptcp_check_fastclose(msk);
2745 
2746 	mptcp_pm_worker(msk);
2747 
2748 	mptcp_check_send_data_fin(sk);
2749 	mptcp_check_data_fin_ack(sk);
2750 	mptcp_check_data_fin(sk);
2751 
2752 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2753 		__mptcp_close_subflow(sk);
2754 
2755 	if (mptcp_close_tout_expired(sk)) {
2756 		mptcp_do_fastclose(sk);
2757 		mptcp_close_wake_up(sk);
2758 	}
2759 
2760 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2761 		__mptcp_destroy_sock(sk);
2762 		goto unlock;
2763 	}
2764 
2765 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2766 		__mptcp_retrans(sk);
2767 
2768 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2769 	if (fail_tout && time_after(jiffies, fail_tout))
2770 		mptcp_mp_fail_no_response(msk);
2771 
2772 unlock:
2773 	release_sock(sk);
2774 	sock_put(sk);
2775 }
2776 
2777 static void __mptcp_init_sock(struct sock *sk)
2778 {
2779 	struct mptcp_sock *msk = mptcp_sk(sk);
2780 
2781 	INIT_LIST_HEAD(&msk->conn_list);
2782 	INIT_LIST_HEAD(&msk->join_list);
2783 	INIT_LIST_HEAD(&msk->rtx_queue);
2784 	INIT_WORK(&msk->work, mptcp_worker);
2785 	msk->out_of_order_queue = RB_ROOT;
2786 	msk->first_pending = NULL;
2787 	msk->timer_ival = TCP_RTO_MIN;
2788 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2789 
2790 	WRITE_ONCE(msk->first, NULL);
2791 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2792 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2793 	msk->allow_infinite_fallback = true;
2794 	msk->allow_subflows = true;
2795 	msk->recovery = false;
2796 	msk->subflow_id = 1;
2797 	msk->last_data_sent = tcp_jiffies32;
2798 	msk->last_data_recv = tcp_jiffies32;
2799 	msk->last_ack_recv = tcp_jiffies32;
2800 
2801 	mptcp_pm_data_init(msk);
2802 	spin_lock_init(&msk->fallback_lock);
2803 
2804 	/* re-use the csk retrans timer for MPTCP-level retrans */
2805 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2806 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2807 }
2808 
2809 static void mptcp_ca_reset(struct sock *sk)
2810 {
2811 	struct inet_connection_sock *icsk = inet_csk(sk);
2812 
2813 	tcp_assign_congestion_control(sk);
2814 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2815 		sizeof(mptcp_sk(sk)->ca_name));
2816 
2817 	/* no need to keep a reference to the ops, the name will suffice */
2818 	tcp_cleanup_congestion_control(sk);
2819 	icsk->icsk_ca_ops = NULL;
2820 }
2821 
2822 static int mptcp_init_sock(struct sock *sk)
2823 {
2824 	struct net *net = sock_net(sk);
2825 	int ret;
2826 
2827 	__mptcp_init_sock(sk);
2828 
2829 	if (!mptcp_is_enabled(net))
2830 		return -ENOPROTOOPT;
2831 
2832 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2833 		return -ENOMEM;
2834 
2835 	rcu_read_lock();
2836 	ret = mptcp_init_sched(mptcp_sk(sk),
2837 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2838 	rcu_read_unlock();
2839 	if (ret)
2840 		return ret;
2841 
2842 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2843 
2844 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2845 	 * propagate the correct value
2846 	 */
2847 	mptcp_ca_reset(sk);
2848 
2849 	sk_sockets_allocated_inc(sk);
2850 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2851 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2852 
2853 	return 0;
2854 }
2855 
2856 static void __mptcp_clear_xmit(struct sock *sk)
2857 {
2858 	struct mptcp_sock *msk = mptcp_sk(sk);
2859 	struct mptcp_data_frag *dtmp, *dfrag;
2860 
2861 	WRITE_ONCE(msk->first_pending, NULL);
2862 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2863 		dfrag_clear(sk, dfrag);
2864 }
2865 
2866 void mptcp_cancel_work(struct sock *sk)
2867 {
2868 	struct mptcp_sock *msk = mptcp_sk(sk);
2869 
2870 	if (cancel_work_sync(&msk->work))
2871 		__sock_put(sk);
2872 }
2873 
2874 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2875 {
2876 	lock_sock(ssk);
2877 
2878 	switch (ssk->sk_state) {
2879 	case TCP_LISTEN:
2880 		if (!(how & RCV_SHUTDOWN))
2881 			break;
2882 		fallthrough;
2883 	case TCP_SYN_SENT:
2884 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2885 		break;
2886 	default:
2887 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2888 			pr_debug("Fallback\n");
2889 			ssk->sk_shutdown |= how;
2890 			tcp_shutdown(ssk, how);
2891 
2892 			/* simulate the data_fin ack reception to let the state
2893 			 * machine move forward
2894 			 */
2895 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2896 			mptcp_schedule_work(sk);
2897 		} else {
2898 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2899 			tcp_send_ack(ssk);
2900 			if (!mptcp_rtx_timer_pending(sk))
2901 				mptcp_reset_rtx_timer(sk);
2902 		}
2903 		break;
2904 	}
2905 
2906 	release_sock(ssk);
2907 }
2908 
2909 void mptcp_set_state(struct sock *sk, int state)
2910 {
2911 	int oldstate = sk->sk_state;
2912 
2913 	switch (state) {
2914 	case TCP_ESTABLISHED:
2915 		if (oldstate != TCP_ESTABLISHED)
2916 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2917 		break;
2918 	case TCP_CLOSE_WAIT:
2919 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2920 		 * MPTCP "accepted" sockets will be created later on. So no
2921 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2922 		 */
2923 		break;
2924 	default:
2925 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2926 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2927 	}
2928 
2929 	inet_sk_state_store(sk, state);
2930 }
2931 
2932 static const unsigned char new_state[16] = {
2933 	/* current state:     new state:      action:	*/
2934 	[0 /* (Invalid) */] = TCP_CLOSE,
2935 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2936 	[TCP_SYN_SENT]      = TCP_CLOSE,
2937 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2938 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2939 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2940 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2941 	[TCP_CLOSE]         = TCP_CLOSE,
2942 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2943 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2944 	[TCP_LISTEN]        = TCP_CLOSE,
2945 	[TCP_CLOSING]       = TCP_CLOSING,
2946 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2947 };
2948 
2949 static int mptcp_close_state(struct sock *sk)
2950 {
2951 	int next = (int)new_state[sk->sk_state];
2952 	int ns = next & TCP_STATE_MASK;
2953 
2954 	mptcp_set_state(sk, ns);
2955 
2956 	return next & TCP_ACTION_FIN;
2957 }
2958 
2959 static void mptcp_check_send_data_fin(struct sock *sk)
2960 {
2961 	struct mptcp_subflow_context *subflow;
2962 	struct mptcp_sock *msk = mptcp_sk(sk);
2963 
2964 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2965 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2966 		 msk->snd_nxt, msk->write_seq);
2967 
2968 	/* we still need to enqueue subflows or not really shutting down,
2969 	 * skip this
2970 	 */
2971 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2972 	    mptcp_send_head(sk))
2973 		return;
2974 
2975 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2976 
2977 	mptcp_for_each_subflow(msk, subflow) {
2978 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2979 
2980 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2981 	}
2982 }
2983 
2984 static void __mptcp_wr_shutdown(struct sock *sk)
2985 {
2986 	struct mptcp_sock *msk = mptcp_sk(sk);
2987 
2988 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2989 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2990 		 !!mptcp_send_head(sk));
2991 
2992 	/* will be ignored by fallback sockets */
2993 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2994 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2995 
2996 	mptcp_check_send_data_fin(sk);
2997 }
2998 
2999 static void __mptcp_destroy_sock(struct sock *sk)
3000 {
3001 	struct mptcp_sock *msk = mptcp_sk(sk);
3002 
3003 	pr_debug("msk=%p\n", msk);
3004 
3005 	might_sleep();
3006 
3007 	mptcp_stop_rtx_timer(sk);
3008 	sk_stop_timer(sk, &sk->sk_timer);
3009 	msk->pm.status = 0;
3010 	mptcp_release_sched(msk);
3011 
3012 	sk->sk_prot->destroy(sk);
3013 
3014 	sk_stream_kill_queues(sk);
3015 	xfrm_sk_free_policy(sk);
3016 
3017 	sock_put(sk);
3018 }
3019 
3020 void __mptcp_unaccepted_force_close(struct sock *sk)
3021 {
3022 	sock_set_flag(sk, SOCK_DEAD);
3023 	mptcp_do_fastclose(sk);
3024 	__mptcp_destroy_sock(sk);
3025 }
3026 
3027 static __poll_t mptcp_check_readable(struct sock *sk)
3028 {
3029 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3030 }
3031 
3032 static void mptcp_check_listen_stop(struct sock *sk)
3033 {
3034 	struct sock *ssk;
3035 
3036 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3037 		return;
3038 
3039 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3040 	ssk = mptcp_sk(sk)->first;
3041 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3042 		return;
3043 
3044 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3045 	tcp_set_state(ssk, TCP_CLOSE);
3046 	mptcp_subflow_queue_clean(sk, ssk);
3047 	inet_csk_listen_stop(ssk);
3048 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3049 	release_sock(ssk);
3050 }
3051 
3052 bool __mptcp_close(struct sock *sk, long timeout)
3053 {
3054 	struct mptcp_subflow_context *subflow;
3055 	struct mptcp_sock *msk = mptcp_sk(sk);
3056 	bool do_cancel_work = false;
3057 	int subflows_alive = 0;
3058 
3059 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3060 
3061 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3062 		mptcp_check_listen_stop(sk);
3063 		mptcp_set_state(sk, TCP_CLOSE);
3064 		goto cleanup;
3065 	}
3066 
3067 	if (mptcp_data_avail(msk) || timeout < 0) {
3068 		/* If the msk has read data, or the caller explicitly ask it,
3069 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3070 		 */
3071 		mptcp_do_fastclose(sk);
3072 		timeout = 0;
3073 	} else if (mptcp_close_state(sk)) {
3074 		__mptcp_wr_shutdown(sk);
3075 	}
3076 
3077 	sk_stream_wait_close(sk, timeout);
3078 
3079 cleanup:
3080 	/* orphan all the subflows */
3081 	mptcp_for_each_subflow(msk, subflow) {
3082 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3083 		bool slow = lock_sock_fast_nested(ssk);
3084 
3085 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3086 
3087 		/* since the close timeout takes precedence on the fail one,
3088 		 * cancel the latter
3089 		 */
3090 		if (ssk == msk->first)
3091 			subflow->fail_tout = 0;
3092 
3093 		/* detach from the parent socket, but allow data_ready to
3094 		 * push incoming data into the mptcp stack, to properly ack it
3095 		 */
3096 		ssk->sk_socket = NULL;
3097 		ssk->sk_wq = NULL;
3098 		unlock_sock_fast(ssk, slow);
3099 	}
3100 	sock_orphan(sk);
3101 
3102 	/* all the subflows are closed, only timeout can change the msk
3103 	 * state, let's not keep resources busy for no reasons
3104 	 */
3105 	if (subflows_alive == 0)
3106 		mptcp_set_state(sk, TCP_CLOSE);
3107 
3108 	sock_hold(sk);
3109 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3110 	mptcp_pm_connection_closed(msk);
3111 
3112 	if (sk->sk_state == TCP_CLOSE) {
3113 		__mptcp_destroy_sock(sk);
3114 		do_cancel_work = true;
3115 	} else {
3116 		mptcp_start_tout_timer(sk);
3117 	}
3118 
3119 	return do_cancel_work;
3120 }
3121 
3122 static void mptcp_close(struct sock *sk, long timeout)
3123 {
3124 	bool do_cancel_work;
3125 
3126 	lock_sock(sk);
3127 
3128 	do_cancel_work = __mptcp_close(sk, timeout);
3129 	release_sock(sk);
3130 	if (do_cancel_work)
3131 		mptcp_cancel_work(sk);
3132 
3133 	sock_put(sk);
3134 }
3135 
3136 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3137 {
3138 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3139 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3140 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3141 
3142 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3143 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3144 
3145 	if (msk6 && ssk6) {
3146 		msk6->saddr = ssk6->saddr;
3147 		msk6->flow_label = ssk6->flow_label;
3148 	}
3149 #endif
3150 
3151 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3152 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3153 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3154 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3155 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3156 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3157 }
3158 
3159 static int mptcp_disconnect(struct sock *sk, int flags)
3160 {
3161 	struct mptcp_sock *msk = mptcp_sk(sk);
3162 
3163 	/* We are on the fastopen error path. We can't call straight into the
3164 	 * subflows cleanup code due to lock nesting (we are already under
3165 	 * msk->firstsocket lock).
3166 	 */
3167 	if (msk->fastopening)
3168 		return -EBUSY;
3169 
3170 	mptcp_check_listen_stop(sk);
3171 	mptcp_set_state(sk, TCP_CLOSE);
3172 
3173 	mptcp_stop_rtx_timer(sk);
3174 	mptcp_stop_tout_timer(sk);
3175 
3176 	mptcp_pm_connection_closed(msk);
3177 
3178 	/* msk->subflow is still intact, the following will not free the first
3179 	 * subflow
3180 	 */
3181 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3182 
3183 	/* The first subflow is already in TCP_CLOSE status, the following
3184 	 * can't overlap with a fallback anymore
3185 	 */
3186 	spin_lock_bh(&msk->fallback_lock);
3187 	msk->allow_subflows = true;
3188 	msk->allow_infinite_fallback = true;
3189 	WRITE_ONCE(msk->flags, 0);
3190 	spin_unlock_bh(&msk->fallback_lock);
3191 
3192 	msk->cb_flags = 0;
3193 	msk->recovery = false;
3194 	WRITE_ONCE(msk->can_ack, false);
3195 	WRITE_ONCE(msk->fully_established, false);
3196 	WRITE_ONCE(msk->rcv_data_fin, false);
3197 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3198 	WRITE_ONCE(msk->rcv_fastclose, false);
3199 	WRITE_ONCE(msk->use_64bit_ack, false);
3200 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3201 	mptcp_pm_data_reset(msk);
3202 	mptcp_ca_reset(sk);
3203 	msk->bytes_consumed = 0;
3204 	msk->bytes_acked = 0;
3205 	msk->bytes_received = 0;
3206 	msk->bytes_sent = 0;
3207 	msk->bytes_retrans = 0;
3208 	msk->rcvspace_init = 0;
3209 
3210 	WRITE_ONCE(sk->sk_shutdown, 0);
3211 	sk_error_report(sk);
3212 	return 0;
3213 }
3214 
3215 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3216 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3217 {
3218 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3219 
3220 	return &msk6->np;
3221 }
3222 
3223 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3224 {
3225 	const struct ipv6_pinfo *np = inet6_sk(sk);
3226 	struct ipv6_txoptions *opt;
3227 	struct ipv6_pinfo *newnp;
3228 
3229 	newnp = inet6_sk(newsk);
3230 
3231 	rcu_read_lock();
3232 	opt = rcu_dereference(np->opt);
3233 	if (opt) {
3234 		opt = ipv6_dup_options(newsk, opt);
3235 		if (!opt)
3236 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3237 	}
3238 	RCU_INIT_POINTER(newnp->opt, opt);
3239 	rcu_read_unlock();
3240 }
3241 #endif
3242 
3243 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3244 {
3245 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3246 	const struct inet_sock *inet = inet_sk(sk);
3247 	struct inet_sock *newinet;
3248 
3249 	newinet = inet_sk(newsk);
3250 
3251 	rcu_read_lock();
3252 	inet_opt = rcu_dereference(inet->inet_opt);
3253 	if (inet_opt) {
3254 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3255 				      inet_opt->opt.optlen, GFP_ATOMIC);
3256 		if (!newopt)
3257 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3258 	}
3259 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3260 	rcu_read_unlock();
3261 }
3262 
3263 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3264 				 const struct mptcp_options_received *mp_opt,
3265 				 struct sock *ssk,
3266 				 struct request_sock *req)
3267 {
3268 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3269 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3270 	struct mptcp_subflow_context *subflow;
3271 	struct mptcp_sock *msk;
3272 
3273 	if (!nsk)
3274 		return NULL;
3275 
3276 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3277 	if (nsk->sk_family == AF_INET6)
3278 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3279 #endif
3280 
3281 	__mptcp_init_sock(nsk);
3282 
3283 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3284 	if (nsk->sk_family == AF_INET6)
3285 		mptcp_copy_ip6_options(nsk, sk);
3286 	else
3287 #endif
3288 		mptcp_copy_ip_options(nsk, sk);
3289 
3290 	msk = mptcp_sk(nsk);
3291 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3292 	WRITE_ONCE(msk->token, subflow_req->token);
3293 	msk->in_accept_queue = 1;
3294 	WRITE_ONCE(msk->fully_established, false);
3295 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3296 		WRITE_ONCE(msk->csum_enabled, true);
3297 
3298 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3299 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3300 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3301 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3302 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3303 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3304 
3305 	/* passive msk is created after the first/MPC subflow */
3306 	msk->subflow_id = 2;
3307 
3308 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3309 	security_inet_csk_clone(nsk, req);
3310 
3311 	/* this can't race with mptcp_close(), as the msk is
3312 	 * not yet exposted to user-space
3313 	 */
3314 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3315 
3316 	/* The msk maintain a ref to each subflow in the connections list */
3317 	WRITE_ONCE(msk->first, ssk);
3318 	subflow = mptcp_subflow_ctx(ssk);
3319 	list_add(&subflow->node, &msk->conn_list);
3320 	sock_hold(ssk);
3321 
3322 	/* new mpc subflow takes ownership of the newly
3323 	 * created mptcp socket
3324 	 */
3325 	mptcp_token_accept(subflow_req, msk);
3326 
3327 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3328 	 * uses the correct data
3329 	 */
3330 	mptcp_copy_inaddrs(nsk, ssk);
3331 	__mptcp_propagate_sndbuf(nsk, ssk);
3332 
3333 	mptcp_rcv_space_init(msk, ssk);
3334 
3335 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3336 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3337 	bh_unlock_sock(nsk);
3338 
3339 	/* note: the newly allocated socket refcount is 2 now */
3340 	return nsk;
3341 }
3342 
3343 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3344 {
3345 	const struct tcp_sock *tp = tcp_sk(ssk);
3346 
3347 	msk->rcvspace_init = 1;
3348 	msk->rcvq_space.copied = 0;
3349 	msk->rcvq_space.rtt_us = 0;
3350 
3351 	msk->rcvq_space.time = tp->tcp_mstamp;
3352 
3353 	/* initial rcv_space offering made to peer */
3354 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3355 				      TCP_INIT_CWND * tp->advmss);
3356 	if (msk->rcvq_space.space == 0)
3357 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3358 }
3359 
3360 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3361 {
3362 	struct mptcp_subflow_context *subflow, *tmp;
3363 	struct sock *sk = (struct sock *)msk;
3364 
3365 	__mptcp_clear_xmit(sk);
3366 
3367 	/* join list will be eventually flushed (with rst) at sock lock release time */
3368 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3369 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3370 
3371 	__skb_queue_purge(&sk->sk_receive_queue);
3372 	skb_rbtree_purge(&msk->out_of_order_queue);
3373 
3374 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3375 	 * inet_sock_destruct() will dispose it
3376 	 */
3377 	mptcp_token_destroy(msk);
3378 	mptcp_pm_destroy(msk);
3379 }
3380 
3381 static void mptcp_destroy(struct sock *sk)
3382 {
3383 	struct mptcp_sock *msk = mptcp_sk(sk);
3384 
3385 	/* allow the following to close even the initial subflow */
3386 	msk->free_first = 1;
3387 	mptcp_destroy_common(msk, 0);
3388 	sk_sockets_allocated_dec(sk);
3389 }
3390 
3391 void __mptcp_data_acked(struct sock *sk)
3392 {
3393 	if (!sock_owned_by_user(sk))
3394 		__mptcp_clean_una(sk);
3395 	else
3396 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3397 }
3398 
3399 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3400 {
3401 	if (!mptcp_send_head(sk))
3402 		return;
3403 
3404 	if (!sock_owned_by_user(sk))
3405 		__mptcp_subflow_push_pending(sk, ssk, false);
3406 	else
3407 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3408 }
3409 
3410 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3411 				      BIT(MPTCP_RETRANSMIT) | \
3412 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3413 				      BIT(MPTCP_DEQUEUE))
3414 
3415 /* processes deferred events and flush wmem */
3416 static void mptcp_release_cb(struct sock *sk)
3417 	__must_hold(&sk->sk_lock.slock)
3418 {
3419 	struct mptcp_sock *msk = mptcp_sk(sk);
3420 
3421 	for (;;) {
3422 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3423 		struct list_head join_list;
3424 
3425 		if (!flags)
3426 			break;
3427 
3428 		INIT_LIST_HEAD(&join_list);
3429 		list_splice_init(&msk->join_list, &join_list);
3430 
3431 		/* the following actions acquire the subflow socket lock
3432 		 *
3433 		 * 1) can't be invoked in atomic scope
3434 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3435 		 *    datapath acquires the msk socket spinlock while helding
3436 		 *    the subflow socket lock
3437 		 */
3438 		msk->cb_flags &= ~flags;
3439 		spin_unlock_bh(&sk->sk_lock.slock);
3440 
3441 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3442 			__mptcp_flush_join_list(sk, &join_list);
3443 		if (flags & BIT(MPTCP_PUSH_PENDING))
3444 			__mptcp_push_pending(sk, 0);
3445 		if (flags & BIT(MPTCP_RETRANSMIT))
3446 			__mptcp_retrans(sk);
3447 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3448 			/* notify ack seq update */
3449 			mptcp_cleanup_rbuf(msk, 0);
3450 			sk->sk_data_ready(sk);
3451 		}
3452 
3453 		cond_resched();
3454 		spin_lock_bh(&sk->sk_lock.slock);
3455 	}
3456 
3457 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3458 		__mptcp_clean_una_wakeup(sk);
3459 	if (unlikely(msk->cb_flags)) {
3460 		/* be sure to sync the msk state before taking actions
3461 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3462 		 * On sk release avoid actions depending on the first subflow
3463 		 */
3464 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3465 			__mptcp_sync_state(sk, msk->pending_state);
3466 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3467 			__mptcp_error_report(sk);
3468 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3469 			__mptcp_sync_sndbuf(sk);
3470 	}
3471 }
3472 
3473 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3474  * TCP can't schedule delack timer before the subflow is fully established.
3475  * MPTCP uses the delack timer to do 3rd ack retransmissions
3476  */
3477 static void schedule_3rdack_retransmission(struct sock *ssk)
3478 {
3479 	struct inet_connection_sock *icsk = inet_csk(ssk);
3480 	struct tcp_sock *tp = tcp_sk(ssk);
3481 	unsigned long timeout;
3482 
3483 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3484 		return;
3485 
3486 	/* reschedule with a timeout above RTT, as we must look only for drop */
3487 	if (tp->srtt_us)
3488 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3489 	else
3490 		timeout = TCP_TIMEOUT_INIT;
3491 	timeout += jiffies;
3492 
3493 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3494 	smp_store_release(&icsk->icsk_ack.pending,
3495 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3496 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3497 }
3498 
3499 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3500 {
3501 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3502 	struct sock *sk = subflow->conn;
3503 
3504 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3505 		mptcp_data_lock(sk);
3506 		if (!sock_owned_by_user(sk))
3507 			__mptcp_subflow_push_pending(sk, ssk, true);
3508 		else
3509 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3510 		mptcp_data_unlock(sk);
3511 	}
3512 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3513 		mptcp_data_lock(sk);
3514 		if (!sock_owned_by_user(sk))
3515 			__mptcp_sync_sndbuf(sk);
3516 		else
3517 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3518 		mptcp_data_unlock(sk);
3519 	}
3520 	if (status & BIT(MPTCP_DELEGATE_ACK))
3521 		schedule_3rdack_retransmission(ssk);
3522 }
3523 
3524 static int mptcp_hash(struct sock *sk)
3525 {
3526 	/* should never be called,
3527 	 * we hash the TCP subflows not the MPTCP socket
3528 	 */
3529 	WARN_ON_ONCE(1);
3530 	return 0;
3531 }
3532 
3533 static void mptcp_unhash(struct sock *sk)
3534 {
3535 	/* called from sk_common_release(), but nothing to do here */
3536 }
3537 
3538 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3539 {
3540 	struct mptcp_sock *msk = mptcp_sk(sk);
3541 
3542 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3543 	if (WARN_ON_ONCE(!msk->first))
3544 		return -EINVAL;
3545 
3546 	return inet_csk_get_port(msk->first, snum);
3547 }
3548 
3549 void mptcp_finish_connect(struct sock *ssk)
3550 {
3551 	struct mptcp_subflow_context *subflow;
3552 	struct mptcp_sock *msk;
3553 	struct sock *sk;
3554 
3555 	subflow = mptcp_subflow_ctx(ssk);
3556 	sk = subflow->conn;
3557 	msk = mptcp_sk(sk);
3558 
3559 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3560 
3561 	subflow->map_seq = subflow->iasn;
3562 	subflow->map_subflow_seq = 1;
3563 
3564 	/* the socket is not connected yet, no msk/subflow ops can access/race
3565 	 * accessing the field below
3566 	 */
3567 	WRITE_ONCE(msk->local_key, subflow->local_key);
3568 
3569 	mptcp_pm_new_connection(msk, ssk, 0);
3570 }
3571 
3572 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3573 {
3574 	write_lock_bh(&sk->sk_callback_lock);
3575 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3576 	sk_set_socket(sk, parent);
3577 	WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid);
3578 	write_unlock_bh(&sk->sk_callback_lock);
3579 }
3580 
3581 bool mptcp_finish_join(struct sock *ssk)
3582 {
3583 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3584 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3585 	struct sock *parent = (void *)msk;
3586 	bool ret = true;
3587 
3588 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3589 
3590 	/* mptcp socket already closing? */
3591 	if (!mptcp_is_fully_established(parent)) {
3592 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3593 		return false;
3594 	}
3595 
3596 	/* active subflow, already present inside the conn_list */
3597 	if (!list_empty(&subflow->node)) {
3598 		spin_lock_bh(&msk->fallback_lock);
3599 		if (!msk->allow_subflows) {
3600 			spin_unlock_bh(&msk->fallback_lock);
3601 			return false;
3602 		}
3603 		mptcp_subflow_joined(msk, ssk);
3604 		spin_unlock_bh(&msk->fallback_lock);
3605 		mptcp_propagate_sndbuf(parent, ssk);
3606 		return true;
3607 	}
3608 
3609 	if (!mptcp_pm_allow_new_subflow(msk)) {
3610 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3611 		goto err_prohibited;
3612 	}
3613 
3614 	/* If we can't acquire msk socket lock here, let the release callback
3615 	 * handle it
3616 	 */
3617 	mptcp_data_lock(parent);
3618 	if (!sock_owned_by_user(parent)) {
3619 		ret = __mptcp_finish_join(msk, ssk);
3620 		if (ret) {
3621 			sock_hold(ssk);
3622 			list_add_tail(&subflow->node, &msk->conn_list);
3623 		}
3624 	} else {
3625 		sock_hold(ssk);
3626 		list_add_tail(&subflow->node, &msk->join_list);
3627 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3628 	}
3629 	mptcp_data_unlock(parent);
3630 
3631 	if (!ret) {
3632 err_prohibited:
3633 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3634 		return false;
3635 	}
3636 
3637 	return true;
3638 }
3639 
3640 static void mptcp_shutdown(struct sock *sk, int how)
3641 {
3642 	pr_debug("sk=%p, how=%d\n", sk, how);
3643 
3644 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3645 		__mptcp_wr_shutdown(sk);
3646 }
3647 
3648 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3649 {
3650 	const struct sock *sk = (void *)msk;
3651 	u64 delta;
3652 
3653 	if (sk->sk_state == TCP_LISTEN)
3654 		return -EINVAL;
3655 
3656 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3657 		return 0;
3658 
3659 	delta = msk->write_seq - v;
3660 	if (__mptcp_check_fallback(msk) && msk->first) {
3661 		struct tcp_sock *tp = tcp_sk(msk->first);
3662 
3663 		/* the first subflow is disconnected after close - see
3664 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3665 		 * so ignore that status, too.
3666 		 */
3667 		if (!((1 << msk->first->sk_state) &
3668 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3669 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3670 	}
3671 	if (delta > INT_MAX)
3672 		delta = INT_MAX;
3673 
3674 	return (int)delta;
3675 }
3676 
3677 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3678 {
3679 	struct mptcp_sock *msk = mptcp_sk(sk);
3680 	bool slow;
3681 
3682 	switch (cmd) {
3683 	case SIOCINQ:
3684 		if (sk->sk_state == TCP_LISTEN)
3685 			return -EINVAL;
3686 
3687 		lock_sock(sk);
3688 		if (__mptcp_move_skbs(sk))
3689 			mptcp_cleanup_rbuf(msk, 0);
3690 		*karg = mptcp_inq_hint(sk);
3691 		release_sock(sk);
3692 		break;
3693 	case SIOCOUTQ:
3694 		slow = lock_sock_fast(sk);
3695 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3696 		unlock_sock_fast(sk, slow);
3697 		break;
3698 	case SIOCOUTQNSD:
3699 		slow = lock_sock_fast(sk);
3700 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3701 		unlock_sock_fast(sk, slow);
3702 		break;
3703 	default:
3704 		return -ENOIOCTLCMD;
3705 	}
3706 
3707 	return 0;
3708 }
3709 
3710 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3711 {
3712 	struct mptcp_subflow_context *subflow;
3713 	struct mptcp_sock *msk = mptcp_sk(sk);
3714 	int err = -EINVAL;
3715 	struct sock *ssk;
3716 
3717 	ssk = __mptcp_nmpc_sk(msk);
3718 	if (IS_ERR(ssk))
3719 		return PTR_ERR(ssk);
3720 
3721 	mptcp_set_state(sk, TCP_SYN_SENT);
3722 	subflow = mptcp_subflow_ctx(ssk);
3723 #ifdef CONFIG_TCP_MD5SIG
3724 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3725 	 * TCP option space.
3726 	 */
3727 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3728 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3729 #endif
3730 	if (subflow->request_mptcp) {
3731 		if (mptcp_active_should_disable(sk))
3732 			mptcp_early_fallback(msk, subflow,
3733 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3734 		else if (mptcp_token_new_connect(ssk) < 0)
3735 			mptcp_early_fallback(msk, subflow,
3736 					     MPTCP_MIB_TOKENFALLBACKINIT);
3737 	}
3738 
3739 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3740 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3741 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3742 	if (likely(!__mptcp_check_fallback(msk)))
3743 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3744 
3745 	/* if reaching here via the fastopen/sendmsg path, the caller already
3746 	 * acquired the subflow socket lock, too.
3747 	 */
3748 	if (!msk->fastopening)
3749 		lock_sock(ssk);
3750 
3751 	/* the following mirrors closely a very small chunk of code from
3752 	 * __inet_stream_connect()
3753 	 */
3754 	if (ssk->sk_state != TCP_CLOSE)
3755 		goto out;
3756 
3757 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3758 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3759 		if (err)
3760 			goto out;
3761 	}
3762 
3763 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3764 	if (err < 0)
3765 		goto out;
3766 
3767 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3768 
3769 out:
3770 	if (!msk->fastopening)
3771 		release_sock(ssk);
3772 
3773 	/* on successful connect, the msk state will be moved to established by
3774 	 * subflow_finish_connect()
3775 	 */
3776 	if (unlikely(err)) {
3777 		/* avoid leaving a dangling token in an unconnected socket */
3778 		mptcp_token_destroy(msk);
3779 		mptcp_set_state(sk, TCP_CLOSE);
3780 		return err;
3781 	}
3782 
3783 	mptcp_copy_inaddrs(sk, ssk);
3784 	return 0;
3785 }
3786 
3787 static struct proto mptcp_prot = {
3788 	.name		= "MPTCP",
3789 	.owner		= THIS_MODULE,
3790 	.init		= mptcp_init_sock,
3791 	.connect	= mptcp_connect,
3792 	.disconnect	= mptcp_disconnect,
3793 	.close		= mptcp_close,
3794 	.setsockopt	= mptcp_setsockopt,
3795 	.getsockopt	= mptcp_getsockopt,
3796 	.shutdown	= mptcp_shutdown,
3797 	.destroy	= mptcp_destroy,
3798 	.sendmsg	= mptcp_sendmsg,
3799 	.ioctl		= mptcp_ioctl,
3800 	.recvmsg	= mptcp_recvmsg,
3801 	.release_cb	= mptcp_release_cb,
3802 	.hash		= mptcp_hash,
3803 	.unhash		= mptcp_unhash,
3804 	.get_port	= mptcp_get_port,
3805 	.stream_memory_free	= mptcp_stream_memory_free,
3806 	.sockets_allocated	= &mptcp_sockets_allocated,
3807 
3808 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3809 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3810 
3811 	.memory_pressure	= &tcp_memory_pressure,
3812 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3813 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3814 	.sysctl_mem	= sysctl_tcp_mem,
3815 	.obj_size	= sizeof(struct mptcp_sock),
3816 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3817 	.no_autobind	= true,
3818 };
3819 
3820 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3821 {
3822 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3823 	struct sock *ssk, *sk = sock->sk;
3824 	int err = -EINVAL;
3825 
3826 	lock_sock(sk);
3827 	ssk = __mptcp_nmpc_sk(msk);
3828 	if (IS_ERR(ssk)) {
3829 		err = PTR_ERR(ssk);
3830 		goto unlock;
3831 	}
3832 
3833 	if (sk->sk_family == AF_INET)
3834 		err = inet_bind_sk(ssk, uaddr, addr_len);
3835 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3836 	else if (sk->sk_family == AF_INET6)
3837 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3838 #endif
3839 	if (!err)
3840 		mptcp_copy_inaddrs(sk, ssk);
3841 
3842 unlock:
3843 	release_sock(sk);
3844 	return err;
3845 }
3846 
3847 static int mptcp_listen(struct socket *sock, int backlog)
3848 {
3849 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3850 	struct sock *sk = sock->sk;
3851 	struct sock *ssk;
3852 	int err;
3853 
3854 	pr_debug("msk=%p\n", msk);
3855 
3856 	lock_sock(sk);
3857 
3858 	err = -EINVAL;
3859 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3860 		goto unlock;
3861 
3862 	ssk = __mptcp_nmpc_sk(msk);
3863 	if (IS_ERR(ssk)) {
3864 		err = PTR_ERR(ssk);
3865 		goto unlock;
3866 	}
3867 
3868 	mptcp_set_state(sk, TCP_LISTEN);
3869 	sock_set_flag(sk, SOCK_RCU_FREE);
3870 
3871 	lock_sock(ssk);
3872 	err = __inet_listen_sk(ssk, backlog);
3873 	release_sock(ssk);
3874 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3875 
3876 	if (!err) {
3877 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3878 		mptcp_copy_inaddrs(sk, ssk);
3879 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3880 	}
3881 
3882 unlock:
3883 	release_sock(sk);
3884 	return err;
3885 }
3886 
3887 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3888 			       struct proto_accept_arg *arg)
3889 {
3890 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3891 	struct sock *ssk, *newsk;
3892 
3893 	pr_debug("msk=%p\n", msk);
3894 
3895 	/* Buggy applications can call accept on socket states other then LISTEN
3896 	 * but no need to allocate the first subflow just to error out.
3897 	 */
3898 	ssk = READ_ONCE(msk->first);
3899 	if (!ssk)
3900 		return -EINVAL;
3901 
3902 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3903 	newsk = inet_csk_accept(ssk, arg);
3904 	if (!newsk)
3905 		return arg->err;
3906 
3907 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3908 	if (sk_is_mptcp(newsk)) {
3909 		struct mptcp_subflow_context *subflow;
3910 		struct sock *new_mptcp_sock;
3911 
3912 		subflow = mptcp_subflow_ctx(newsk);
3913 		new_mptcp_sock = subflow->conn;
3914 
3915 		/* is_mptcp should be false if subflow->conn is missing, see
3916 		 * subflow_syn_recv_sock()
3917 		 */
3918 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3919 			tcp_sk(newsk)->is_mptcp = 0;
3920 			goto tcpfallback;
3921 		}
3922 
3923 		newsk = new_mptcp_sock;
3924 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3925 
3926 		newsk->sk_kern_sock = arg->kern;
3927 		lock_sock(newsk);
3928 		__inet_accept(sock, newsock, newsk);
3929 
3930 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3931 		msk = mptcp_sk(newsk);
3932 		msk->in_accept_queue = 0;
3933 
3934 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3935 		 * This is needed so NOSPACE flag can be set from tcp stack.
3936 		 */
3937 		mptcp_for_each_subflow(msk, subflow) {
3938 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3939 
3940 			if (!ssk->sk_socket)
3941 				mptcp_sock_graft(ssk, newsock);
3942 		}
3943 
3944 		mptcp_rps_record_subflows(msk);
3945 
3946 		/* Do late cleanup for the first subflow as necessary. Also
3947 		 * deal with bad peers not doing a complete shutdown.
3948 		 */
3949 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3950 			__mptcp_close_ssk(newsk, msk->first,
3951 					  mptcp_subflow_ctx(msk->first), 0);
3952 			if (unlikely(list_is_singular(&msk->conn_list)))
3953 				mptcp_set_state(newsk, TCP_CLOSE);
3954 		}
3955 	} else {
3956 tcpfallback:
3957 		newsk->sk_kern_sock = arg->kern;
3958 		lock_sock(newsk);
3959 		__inet_accept(sock, newsock, newsk);
3960 		/* we are being invoked after accepting a non-mp-capable
3961 		 * flow: sk is a tcp_sk, not an mptcp one.
3962 		 *
3963 		 * Hand the socket over to tcp so all further socket ops
3964 		 * bypass mptcp.
3965 		 */
3966 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3967 			   mptcp_fallback_tcp_ops(newsock->sk));
3968 	}
3969 	release_sock(newsk);
3970 
3971 	return 0;
3972 }
3973 
3974 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3975 {
3976 	struct sock *sk = (struct sock *)msk;
3977 
3978 	if (__mptcp_stream_is_writeable(sk, 1))
3979 		return EPOLLOUT | EPOLLWRNORM;
3980 
3981 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3982 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3983 	if (__mptcp_stream_is_writeable(sk, 1))
3984 		return EPOLLOUT | EPOLLWRNORM;
3985 
3986 	return 0;
3987 }
3988 
3989 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3990 			   struct poll_table_struct *wait)
3991 {
3992 	struct sock *sk = sock->sk;
3993 	struct mptcp_sock *msk;
3994 	__poll_t mask = 0;
3995 	u8 shutdown;
3996 	int state;
3997 
3998 	msk = mptcp_sk(sk);
3999 	sock_poll_wait(file, sock, wait);
4000 
4001 	state = inet_sk_state_load(sk);
4002 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4003 	if (state == TCP_LISTEN) {
4004 		struct sock *ssk = READ_ONCE(msk->first);
4005 
4006 		if (WARN_ON_ONCE(!ssk))
4007 			return 0;
4008 
4009 		return inet_csk_listen_poll(ssk);
4010 	}
4011 
4012 	shutdown = READ_ONCE(sk->sk_shutdown);
4013 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4014 		mask |= EPOLLHUP;
4015 	if (shutdown & RCV_SHUTDOWN)
4016 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4017 
4018 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4019 		mask |= mptcp_check_readable(sk);
4020 		if (shutdown & SEND_SHUTDOWN)
4021 			mask |= EPOLLOUT | EPOLLWRNORM;
4022 		else
4023 			mask |= mptcp_check_writeable(msk);
4024 	} else if (state == TCP_SYN_SENT &&
4025 		   inet_test_bit(DEFER_CONNECT, sk)) {
4026 		/* cf tcp_poll() note about TFO */
4027 		mask |= EPOLLOUT | EPOLLWRNORM;
4028 	}
4029 
4030 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4031 	smp_rmb();
4032 	if (READ_ONCE(sk->sk_err))
4033 		mask |= EPOLLERR;
4034 
4035 	return mask;
4036 }
4037 
4038 static const struct proto_ops mptcp_stream_ops = {
4039 	.family		   = PF_INET,
4040 	.owner		   = THIS_MODULE,
4041 	.release	   = inet_release,
4042 	.bind		   = mptcp_bind,
4043 	.connect	   = inet_stream_connect,
4044 	.socketpair	   = sock_no_socketpair,
4045 	.accept		   = mptcp_stream_accept,
4046 	.getname	   = inet_getname,
4047 	.poll		   = mptcp_poll,
4048 	.ioctl		   = inet_ioctl,
4049 	.gettstamp	   = sock_gettstamp,
4050 	.listen		   = mptcp_listen,
4051 	.shutdown	   = inet_shutdown,
4052 	.setsockopt	   = sock_common_setsockopt,
4053 	.getsockopt	   = sock_common_getsockopt,
4054 	.sendmsg	   = inet_sendmsg,
4055 	.recvmsg	   = inet_recvmsg,
4056 	.mmap		   = sock_no_mmap,
4057 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4058 };
4059 
4060 static struct inet_protosw mptcp_protosw = {
4061 	.type		= SOCK_STREAM,
4062 	.protocol	= IPPROTO_MPTCP,
4063 	.prot		= &mptcp_prot,
4064 	.ops		= &mptcp_stream_ops,
4065 	.flags		= INET_PROTOSW_ICSK,
4066 };
4067 
4068 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4069 {
4070 	struct mptcp_delegated_action *delegated;
4071 	struct mptcp_subflow_context *subflow;
4072 	int work_done = 0;
4073 
4074 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4075 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4076 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4077 
4078 		bh_lock_sock_nested(ssk);
4079 		if (!sock_owned_by_user(ssk)) {
4080 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4081 		} else {
4082 			/* tcp_release_cb_override already processed
4083 			 * the action or will do at next release_sock().
4084 			 * In both case must dequeue the subflow here - on the same
4085 			 * CPU that scheduled it.
4086 			 */
4087 			smp_wmb();
4088 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4089 		}
4090 		bh_unlock_sock(ssk);
4091 		sock_put(ssk);
4092 
4093 		if (++work_done == budget)
4094 			return budget;
4095 	}
4096 
4097 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4098 	 * will not try accessing the NULL napi->dev ptr
4099 	 */
4100 	napi_complete_done(napi, 0);
4101 	return work_done;
4102 }
4103 
4104 void __init mptcp_proto_init(void)
4105 {
4106 	struct mptcp_delegated_action *delegated;
4107 	int cpu;
4108 
4109 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4110 
4111 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4112 		panic("Failed to allocate MPTCP pcpu counter\n");
4113 
4114 	mptcp_napi_dev = alloc_netdev_dummy(0);
4115 	if (!mptcp_napi_dev)
4116 		panic("Failed to allocate MPTCP dummy netdev\n");
4117 	for_each_possible_cpu(cpu) {
4118 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4119 		INIT_LIST_HEAD(&delegated->head);
4120 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4121 				  mptcp_napi_poll);
4122 		napi_enable(&delegated->napi);
4123 	}
4124 
4125 	mptcp_subflow_init();
4126 	mptcp_pm_init();
4127 	mptcp_sched_init();
4128 	mptcp_token_init();
4129 
4130 	if (proto_register(&mptcp_prot, 1) != 0)
4131 		panic("Failed to register MPTCP proto.\n");
4132 
4133 	inet_register_protosw(&mptcp_protosw);
4134 
4135 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4136 }
4137 
4138 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4139 static const struct proto_ops mptcp_v6_stream_ops = {
4140 	.family		   = PF_INET6,
4141 	.owner		   = THIS_MODULE,
4142 	.release	   = inet6_release,
4143 	.bind		   = mptcp_bind,
4144 	.connect	   = inet_stream_connect,
4145 	.socketpair	   = sock_no_socketpair,
4146 	.accept		   = mptcp_stream_accept,
4147 	.getname	   = inet6_getname,
4148 	.poll		   = mptcp_poll,
4149 	.ioctl		   = inet6_ioctl,
4150 	.gettstamp	   = sock_gettstamp,
4151 	.listen		   = mptcp_listen,
4152 	.shutdown	   = inet_shutdown,
4153 	.setsockopt	   = sock_common_setsockopt,
4154 	.getsockopt	   = sock_common_getsockopt,
4155 	.sendmsg	   = inet6_sendmsg,
4156 	.recvmsg	   = inet6_recvmsg,
4157 	.mmap		   = sock_no_mmap,
4158 #ifdef CONFIG_COMPAT
4159 	.compat_ioctl	   = inet6_compat_ioctl,
4160 #endif
4161 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4162 };
4163 
4164 static struct proto mptcp_v6_prot;
4165 
4166 static struct inet_protosw mptcp_v6_protosw = {
4167 	.type		= SOCK_STREAM,
4168 	.protocol	= IPPROTO_MPTCP,
4169 	.prot		= &mptcp_v6_prot,
4170 	.ops		= &mptcp_v6_stream_ops,
4171 	.flags		= INET_PROTOSW_ICSK,
4172 };
4173 
4174 int __init mptcp_proto_v6_init(void)
4175 {
4176 	int err;
4177 
4178 	mptcp_v6_prot = mptcp_prot;
4179 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4180 	mptcp_v6_prot.slab = NULL;
4181 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4182 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4183 
4184 	err = proto_register(&mptcp_v6_prot, 1);
4185 	if (err)
4186 		return err;
4187 
4188 	err = inet6_register_protosw(&mptcp_v6_protosw);
4189 	if (err)
4190 		proto_unregister(&mptcp_v6_prot);
4191 
4192 	return err;
4193 }
4194 #endif
4195