1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 65 if (sk->sk_prot == &tcpv6_prot) 66 return &inet6_stream_ops; 67 #endif 68 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 69 return &inet_stream_ops; 70 } 71 72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 73 { 74 struct net *net = sock_net((struct sock *)msk); 75 76 if (__mptcp_check_fallback(msk)) 77 return true; 78 79 spin_lock_bh(&msk->fallback_lock); 80 if (!msk->allow_infinite_fallback) { 81 spin_unlock_bh(&msk->fallback_lock); 82 return false; 83 } 84 85 msk->allow_subflows = false; 86 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 87 __MPTCP_INC_STATS(net, fb_mib); 88 spin_unlock_bh(&msk->fallback_lock); 89 return true; 90 } 91 92 static int __mptcp_socket_create(struct mptcp_sock *msk) 93 { 94 struct mptcp_subflow_context *subflow; 95 struct sock *sk = (struct sock *)msk; 96 struct socket *ssock; 97 int err; 98 99 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 100 if (err) 101 return err; 102 103 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 104 WRITE_ONCE(msk->first, ssock->sk); 105 subflow = mptcp_subflow_ctx(ssock->sk); 106 list_add(&subflow->node, &msk->conn_list); 107 sock_hold(ssock->sk); 108 subflow->request_mptcp = 1; 109 subflow->subflow_id = msk->subflow_id++; 110 111 /* This is the first subflow, always with id 0 */ 112 WRITE_ONCE(subflow->local_id, 0); 113 mptcp_sock_graft(msk->first, sk->sk_socket); 114 iput(SOCK_INODE(ssock)); 115 116 return 0; 117 } 118 119 /* If the MPC handshake is not started, returns the first subflow, 120 * eventually allocating it. 121 */ 122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 123 { 124 struct sock *sk = (struct sock *)msk; 125 int ret; 126 127 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 128 return ERR_PTR(-EINVAL); 129 130 if (!msk->first) { 131 ret = __mptcp_socket_create(msk); 132 if (ret) 133 return ERR_PTR(ret); 134 } 135 136 return msk->first; 137 } 138 139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 140 { 141 sk_drops_skbadd(sk, skb); 142 __kfree_skb(skb); 143 } 144 145 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 146 struct sk_buff *from) 147 { 148 bool fragstolen; 149 int delta; 150 151 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 152 MPTCP_SKB_CB(from)->offset || 153 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 154 !skb_try_coalesce(to, from, &fragstolen, &delta)) 155 return false; 156 157 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 158 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 159 to->len, MPTCP_SKB_CB(from)->end_seq); 160 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 161 162 /* note the fwd memory can reach a negative value after accounting 163 * for the delta, but the later skb free will restore a non 164 * negative one 165 */ 166 atomic_add(delta, &sk->sk_rmem_alloc); 167 sk_mem_charge(sk, delta); 168 kfree_skb_partial(from, fragstolen); 169 170 return true; 171 } 172 173 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 174 struct sk_buff *from) 175 { 176 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 177 return false; 178 179 return mptcp_try_coalesce((struct sock *)msk, to, from); 180 } 181 182 /* "inspired" by tcp_data_queue_ofo(), main differences: 183 * - use mptcp seqs 184 * - don't cope with sacks 185 */ 186 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 187 { 188 struct sock *sk = (struct sock *)msk; 189 struct rb_node **p, *parent; 190 u64 seq, end_seq, max_seq; 191 struct sk_buff *skb1; 192 193 seq = MPTCP_SKB_CB(skb)->map_seq; 194 end_seq = MPTCP_SKB_CB(skb)->end_seq; 195 max_seq = atomic64_read(&msk->rcv_wnd_sent); 196 197 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 198 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 199 if (after64(end_seq, max_seq)) { 200 /* out of window */ 201 mptcp_drop(sk, skb); 202 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 203 (unsigned long long)end_seq - (unsigned long)max_seq, 204 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 205 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 206 return; 207 } 208 209 p = &msk->out_of_order_queue.rb_node; 210 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 211 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 212 rb_link_node(&skb->rbnode, NULL, p); 213 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 214 msk->ooo_last_skb = skb; 215 goto end; 216 } 217 218 /* with 2 subflows, adding at end of ooo queue is quite likely 219 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 220 */ 221 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 222 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 223 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 224 return; 225 } 226 227 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 228 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 230 parent = &msk->ooo_last_skb->rbnode; 231 p = &parent->rb_right; 232 goto insert; 233 } 234 235 /* Find place to insert this segment. Handle overlaps on the way. */ 236 parent = NULL; 237 while (*p) { 238 parent = *p; 239 skb1 = rb_to_skb(parent); 240 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 241 p = &parent->rb_left; 242 continue; 243 } 244 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 245 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 246 /* All the bits are present. Drop. */ 247 mptcp_drop(sk, skb); 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 249 return; 250 } 251 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 252 /* partial overlap: 253 * | skb | 254 * | skb1 | 255 * continue traversing 256 */ 257 } else { 258 /* skb's seq == skb1's seq and skb covers skb1. 259 * Replace skb1 with skb. 260 */ 261 rb_replace_node(&skb1->rbnode, &skb->rbnode, 262 &msk->out_of_order_queue); 263 mptcp_drop(sk, skb1); 264 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 265 goto merge_right; 266 } 267 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 269 return; 270 } 271 p = &parent->rb_right; 272 } 273 274 insert: 275 /* Insert segment into RB tree. */ 276 rb_link_node(&skb->rbnode, parent, p); 277 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 278 279 merge_right: 280 /* Remove other segments covered by skb. */ 281 while ((skb1 = skb_rb_next(skb)) != NULL) { 282 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 283 break; 284 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 285 mptcp_drop(sk, skb1); 286 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 287 } 288 /* If there is no skb after us, we are the last_skb ! */ 289 if (!skb1) 290 msk->ooo_last_skb = skb; 291 292 end: 293 skb_condense(skb); 294 skb_set_owner_r(skb, sk); 295 } 296 297 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 298 struct sk_buff *skb, unsigned int offset, 299 size_t copy_len) 300 { 301 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 302 struct sock *sk = (struct sock *)msk; 303 struct sk_buff *tail; 304 bool has_rxtstamp; 305 306 __skb_unlink(skb, &ssk->sk_receive_queue); 307 308 skb_ext_reset(skb); 309 skb_orphan(skb); 310 311 /* try to fetch required memory from subflow */ 312 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 313 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 314 goto drop; 315 } 316 317 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 318 319 /* the skb map_seq accounts for the skb offset: 320 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 321 * value 322 */ 323 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 324 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 325 MPTCP_SKB_CB(skb)->offset = offset; 326 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 327 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 328 329 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 330 /* in sequence */ 331 msk->bytes_received += copy_len; 332 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 333 tail = skb_peek_tail(&sk->sk_receive_queue); 334 if (tail && mptcp_try_coalesce(sk, tail, skb)) 335 return true; 336 337 skb_set_owner_r(skb, sk); 338 __skb_queue_tail(&sk->sk_receive_queue, skb); 339 return true; 340 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 341 mptcp_data_queue_ofo(msk, skb); 342 return false; 343 } 344 345 /* old data, keep it simple and drop the whole pkt, sender 346 * will retransmit as needed, if needed. 347 */ 348 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 349 drop: 350 mptcp_drop(sk, skb); 351 return false; 352 } 353 354 static void mptcp_stop_rtx_timer(struct sock *sk) 355 { 356 struct inet_connection_sock *icsk = inet_csk(sk); 357 358 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 359 mptcp_sk(sk)->timer_ival = 0; 360 } 361 362 static void mptcp_close_wake_up(struct sock *sk) 363 { 364 if (sock_flag(sk, SOCK_DEAD)) 365 return; 366 367 sk->sk_state_change(sk); 368 if (sk->sk_shutdown == SHUTDOWN_MASK || 369 sk->sk_state == TCP_CLOSE) 370 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 371 else 372 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 373 } 374 375 /* called under the msk socket lock */ 376 static bool mptcp_pending_data_fin_ack(struct sock *sk) 377 { 378 struct mptcp_sock *msk = mptcp_sk(sk); 379 380 return ((1 << sk->sk_state) & 381 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 382 msk->write_seq == READ_ONCE(msk->snd_una); 383 } 384 385 static void mptcp_check_data_fin_ack(struct sock *sk) 386 { 387 struct mptcp_sock *msk = mptcp_sk(sk); 388 389 /* Look for an acknowledged DATA_FIN */ 390 if (mptcp_pending_data_fin_ack(sk)) { 391 WRITE_ONCE(msk->snd_data_fin_enable, 0); 392 393 switch (sk->sk_state) { 394 case TCP_FIN_WAIT1: 395 mptcp_set_state(sk, TCP_FIN_WAIT2); 396 break; 397 case TCP_CLOSING: 398 case TCP_LAST_ACK: 399 mptcp_set_state(sk, TCP_CLOSE); 400 break; 401 } 402 403 mptcp_close_wake_up(sk); 404 } 405 } 406 407 /* can be called with no lock acquired */ 408 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 409 { 410 struct mptcp_sock *msk = mptcp_sk(sk); 411 412 if (READ_ONCE(msk->rcv_data_fin) && 413 ((1 << inet_sk_state_load(sk)) & 414 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 415 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 416 417 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 418 if (seq) 419 *seq = rcv_data_fin_seq; 420 421 return true; 422 } 423 } 424 425 return false; 426 } 427 428 static void mptcp_set_datafin_timeout(struct sock *sk) 429 { 430 struct inet_connection_sock *icsk = inet_csk(sk); 431 u32 retransmits; 432 433 retransmits = min_t(u32, icsk->icsk_retransmits, 434 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 435 436 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 437 } 438 439 static void __mptcp_set_timeout(struct sock *sk, long tout) 440 { 441 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 442 } 443 444 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 445 { 446 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 447 448 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 449 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 450 } 451 452 static void mptcp_set_timeout(struct sock *sk) 453 { 454 struct mptcp_subflow_context *subflow; 455 long tout = 0; 456 457 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 458 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 459 __mptcp_set_timeout(sk, tout); 460 } 461 462 static inline bool tcp_can_send_ack(const struct sock *ssk) 463 { 464 return !((1 << inet_sk_state_load(ssk)) & 465 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 466 } 467 468 void __mptcp_subflow_send_ack(struct sock *ssk) 469 { 470 if (tcp_can_send_ack(ssk)) 471 tcp_send_ack(ssk); 472 } 473 474 static void mptcp_subflow_send_ack(struct sock *ssk) 475 { 476 bool slow; 477 478 slow = lock_sock_fast(ssk); 479 __mptcp_subflow_send_ack(ssk); 480 unlock_sock_fast(ssk, slow); 481 } 482 483 static void mptcp_send_ack(struct mptcp_sock *msk) 484 { 485 struct mptcp_subflow_context *subflow; 486 487 mptcp_for_each_subflow(msk, subflow) 488 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 489 } 490 491 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 492 { 493 bool slow; 494 495 slow = lock_sock_fast(ssk); 496 if (tcp_can_send_ack(ssk)) 497 tcp_cleanup_rbuf(ssk, copied); 498 unlock_sock_fast(ssk, slow); 499 } 500 501 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 502 { 503 const struct inet_connection_sock *icsk = inet_csk(ssk); 504 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 505 const struct tcp_sock *tp = tcp_sk(ssk); 506 507 return (ack_pending & ICSK_ACK_SCHED) && 508 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 509 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 510 (rx_empty && ack_pending & 511 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 512 } 513 514 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 515 { 516 int old_space = READ_ONCE(msk->old_wspace); 517 struct mptcp_subflow_context *subflow; 518 struct sock *sk = (struct sock *)msk; 519 int space = __mptcp_space(sk); 520 bool cleanup, rx_empty; 521 522 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 523 rx_empty = !sk_rmem_alloc_get(sk) && copied; 524 525 mptcp_for_each_subflow(msk, subflow) { 526 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 527 528 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 529 mptcp_subflow_cleanup_rbuf(ssk, copied); 530 } 531 } 532 533 static bool mptcp_check_data_fin(struct sock *sk) 534 { 535 struct mptcp_sock *msk = mptcp_sk(sk); 536 u64 rcv_data_fin_seq; 537 bool ret = false; 538 539 /* Need to ack a DATA_FIN received from a peer while this side 540 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 541 * msk->rcv_data_fin was set when parsing the incoming options 542 * at the subflow level and the msk lock was not held, so this 543 * is the first opportunity to act on the DATA_FIN and change 544 * the msk state. 545 * 546 * If we are caught up to the sequence number of the incoming 547 * DATA_FIN, send the DATA_ACK now and do state transition. If 548 * not caught up, do nothing and let the recv code send DATA_ACK 549 * when catching up. 550 */ 551 552 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 553 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 554 WRITE_ONCE(msk->rcv_data_fin, 0); 555 556 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 557 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 558 559 switch (sk->sk_state) { 560 case TCP_ESTABLISHED: 561 mptcp_set_state(sk, TCP_CLOSE_WAIT); 562 break; 563 case TCP_FIN_WAIT1: 564 mptcp_set_state(sk, TCP_CLOSING); 565 break; 566 case TCP_FIN_WAIT2: 567 mptcp_set_state(sk, TCP_CLOSE); 568 break; 569 default: 570 /* Other states not expected */ 571 WARN_ON_ONCE(1); 572 break; 573 } 574 575 ret = true; 576 if (!__mptcp_check_fallback(msk)) 577 mptcp_send_ack(msk); 578 mptcp_close_wake_up(sk); 579 } 580 return ret; 581 } 582 583 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 584 { 585 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 586 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 587 mptcp_subflow_reset(ssk); 588 } 589 } 590 591 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 592 struct sock *ssk) 593 { 594 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 595 struct sock *sk = (struct sock *)msk; 596 bool more_data_avail; 597 struct tcp_sock *tp; 598 bool ret = false; 599 600 pr_debug("msk=%p ssk=%p\n", msk, ssk); 601 tp = tcp_sk(ssk); 602 do { 603 u32 map_remaining, offset; 604 u32 seq = tp->copied_seq; 605 struct sk_buff *skb; 606 bool fin; 607 608 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 609 break; 610 611 /* try to move as much data as available */ 612 map_remaining = subflow->map_data_len - 613 mptcp_subflow_get_map_offset(subflow); 614 615 skb = skb_peek(&ssk->sk_receive_queue); 616 if (unlikely(!skb)) 617 break; 618 619 if (__mptcp_check_fallback(msk)) { 620 /* Under fallback skbs have no MPTCP extension and TCP could 621 * collapse them between the dummy map creation and the 622 * current dequeue. Be sure to adjust the map size. 623 */ 624 map_remaining = skb->len; 625 subflow->map_data_len = skb->len; 626 } 627 628 offset = seq - TCP_SKB_CB(skb)->seq; 629 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 630 if (fin) 631 seq++; 632 633 if (offset < skb->len) { 634 size_t len = skb->len - offset; 635 636 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret; 637 seq += len; 638 639 if (unlikely(map_remaining < len)) { 640 DEBUG_NET_WARN_ON_ONCE(1); 641 mptcp_dss_corruption(msk, ssk); 642 } 643 } else { 644 if (unlikely(!fin)) { 645 DEBUG_NET_WARN_ON_ONCE(1); 646 mptcp_dss_corruption(msk, ssk); 647 } 648 649 sk_eat_skb(ssk, skb); 650 } 651 652 WRITE_ONCE(tp->copied_seq, seq); 653 more_data_avail = mptcp_subflow_data_available(ssk); 654 655 } while (more_data_avail); 656 657 if (ret) 658 msk->last_data_recv = tcp_jiffies32; 659 return ret; 660 } 661 662 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 663 { 664 struct sock *sk = (struct sock *)msk; 665 struct sk_buff *skb, *tail; 666 bool moved = false; 667 struct rb_node *p; 668 u64 end_seq; 669 670 p = rb_first(&msk->out_of_order_queue); 671 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 672 while (p) { 673 skb = rb_to_skb(p); 674 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 675 break; 676 677 p = rb_next(p); 678 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 679 680 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 681 msk->ack_seq))) { 682 mptcp_drop(sk, skb); 683 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 684 continue; 685 } 686 687 end_seq = MPTCP_SKB_CB(skb)->end_seq; 688 tail = skb_peek_tail(&sk->sk_receive_queue); 689 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 690 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 691 692 /* skip overlapping data, if any */ 693 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 694 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 695 delta); 696 MPTCP_SKB_CB(skb)->offset += delta; 697 MPTCP_SKB_CB(skb)->map_seq += delta; 698 __skb_queue_tail(&sk->sk_receive_queue, skb); 699 } 700 msk->bytes_received += end_seq - msk->ack_seq; 701 WRITE_ONCE(msk->ack_seq, end_seq); 702 moved = true; 703 } 704 return moved; 705 } 706 707 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 708 { 709 int err = sock_error(ssk); 710 int ssk_state; 711 712 if (!err) 713 return false; 714 715 /* only propagate errors on fallen-back sockets or 716 * on MPC connect 717 */ 718 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 719 return false; 720 721 /* We need to propagate only transition to CLOSE state. 722 * Orphaned socket will see such state change via 723 * subflow_sched_work_if_closed() and that path will properly 724 * destroy the msk as needed. 725 */ 726 ssk_state = inet_sk_state_load(ssk); 727 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 728 mptcp_set_state(sk, ssk_state); 729 WRITE_ONCE(sk->sk_err, -err); 730 731 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 732 smp_wmb(); 733 sk_error_report(sk); 734 return true; 735 } 736 737 void __mptcp_error_report(struct sock *sk) 738 { 739 struct mptcp_subflow_context *subflow; 740 struct mptcp_sock *msk = mptcp_sk(sk); 741 742 mptcp_for_each_subflow(msk, subflow) 743 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 744 break; 745 } 746 747 /* In most cases we will be able to lock the mptcp socket. If its already 748 * owned, we need to defer to the work queue to avoid ABBA deadlock. 749 */ 750 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 751 { 752 struct sock *sk = (struct sock *)msk; 753 bool moved; 754 755 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 756 __mptcp_ofo_queue(msk); 757 if (unlikely(ssk->sk_err)) { 758 if (!sock_owned_by_user(sk)) 759 __mptcp_error_report(sk); 760 else 761 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 762 } 763 764 /* If the moves have caught up with the DATA_FIN sequence number 765 * it's time to ack the DATA_FIN and change socket state, but 766 * this is not a good place to change state. Let the workqueue 767 * do it. 768 */ 769 if (mptcp_pending_data_fin(sk, NULL)) 770 mptcp_schedule_work(sk); 771 return moved; 772 } 773 774 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk) 775 { 776 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf)) 777 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf); 778 } 779 780 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 781 { 782 struct mptcp_sock *msk = mptcp_sk(sk); 783 784 __mptcp_rcvbuf_update(sk, ssk); 785 786 /* Wake-up the reader only for in-sequence data */ 787 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 788 sk->sk_data_ready(sk); 789 } 790 791 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 792 { 793 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 794 795 /* The peer can send data while we are shutting down this 796 * subflow at msk destruction time, but we must avoid enqueuing 797 * more data to the msk receive queue 798 */ 799 if (unlikely(subflow->disposable)) 800 return; 801 802 mptcp_data_lock(sk); 803 if (!sock_owned_by_user(sk)) 804 __mptcp_data_ready(sk, ssk); 805 else 806 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 807 mptcp_data_unlock(sk); 808 } 809 810 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 811 { 812 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 813 msk->allow_infinite_fallback = false; 814 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 815 } 816 817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 818 { 819 struct sock *sk = (struct sock *)msk; 820 821 if (sk->sk_state != TCP_ESTABLISHED) 822 return false; 823 824 spin_lock_bh(&msk->fallback_lock); 825 if (!msk->allow_subflows) { 826 spin_unlock_bh(&msk->fallback_lock); 827 return false; 828 } 829 mptcp_subflow_joined(msk, ssk); 830 spin_unlock_bh(&msk->fallback_lock); 831 832 /* attach to msk socket only after we are sure we will deal with it 833 * at close time 834 */ 835 if (sk->sk_socket && !ssk->sk_socket) 836 mptcp_sock_graft(ssk, sk->sk_socket); 837 838 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 839 mptcp_sockopt_sync_locked(msk, ssk); 840 mptcp_stop_tout_timer(sk); 841 __mptcp_propagate_sndbuf(sk, ssk); 842 return true; 843 } 844 845 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 846 { 847 struct mptcp_subflow_context *tmp, *subflow; 848 struct mptcp_sock *msk = mptcp_sk(sk); 849 850 list_for_each_entry_safe(subflow, tmp, join_list, node) { 851 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 852 bool slow = lock_sock_fast(ssk); 853 854 list_move_tail(&subflow->node, &msk->conn_list); 855 if (!__mptcp_finish_join(msk, ssk)) 856 mptcp_subflow_reset(ssk); 857 unlock_sock_fast(ssk, slow); 858 } 859 } 860 861 static bool mptcp_rtx_timer_pending(struct sock *sk) 862 { 863 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 864 } 865 866 static void mptcp_reset_rtx_timer(struct sock *sk) 867 { 868 struct inet_connection_sock *icsk = inet_csk(sk); 869 unsigned long tout; 870 871 /* prevent rescheduling on close */ 872 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 873 return; 874 875 tout = mptcp_sk(sk)->timer_ival; 876 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 877 } 878 879 bool mptcp_schedule_work(struct sock *sk) 880 { 881 if (inet_sk_state_load(sk) != TCP_CLOSE && 882 schedule_work(&mptcp_sk(sk)->work)) { 883 /* each subflow already holds a reference to the sk, and the 884 * workqueue is invoked by a subflow, so sk can't go away here. 885 */ 886 sock_hold(sk); 887 return true; 888 } 889 return false; 890 } 891 892 static bool mptcp_skb_can_collapse_to(u64 write_seq, 893 const struct sk_buff *skb, 894 const struct mptcp_ext *mpext) 895 { 896 if (!tcp_skb_can_collapse_to(skb)) 897 return false; 898 899 /* can collapse only if MPTCP level sequence is in order and this 900 * mapping has not been xmitted yet 901 */ 902 return mpext && mpext->data_seq + mpext->data_len == write_seq && 903 !mpext->frozen; 904 } 905 906 /* we can append data to the given data frag if: 907 * - there is space available in the backing page_frag 908 * - the data frag tail matches the current page_frag free offset 909 * - the data frag end sequence number matches the current write seq 910 */ 911 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 912 const struct page_frag *pfrag, 913 const struct mptcp_data_frag *df) 914 { 915 return df && pfrag->page == df->page && 916 pfrag->size - pfrag->offset > 0 && 917 pfrag->offset == (df->offset + df->data_len) && 918 df->data_seq + df->data_len == msk->write_seq; 919 } 920 921 static void dfrag_uncharge(struct sock *sk, int len) 922 { 923 sk_mem_uncharge(sk, len); 924 sk_wmem_queued_add(sk, -len); 925 } 926 927 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 928 { 929 int len = dfrag->data_len + dfrag->overhead; 930 931 list_del(&dfrag->list); 932 dfrag_uncharge(sk, len); 933 put_page(dfrag->page); 934 } 935 936 /* called under both the msk socket lock and the data lock */ 937 static void __mptcp_clean_una(struct sock *sk) 938 { 939 struct mptcp_sock *msk = mptcp_sk(sk); 940 struct mptcp_data_frag *dtmp, *dfrag; 941 u64 snd_una; 942 943 snd_una = msk->snd_una; 944 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 945 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 946 break; 947 948 if (unlikely(dfrag == msk->first_pending)) { 949 /* in recovery mode can see ack after the current snd head */ 950 if (WARN_ON_ONCE(!msk->recovery)) 951 break; 952 953 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 954 } 955 956 dfrag_clear(sk, dfrag); 957 } 958 959 dfrag = mptcp_rtx_head(sk); 960 if (dfrag && after64(snd_una, dfrag->data_seq)) { 961 u64 delta = snd_una - dfrag->data_seq; 962 963 /* prevent wrap around in recovery mode */ 964 if (unlikely(delta > dfrag->already_sent)) { 965 if (WARN_ON_ONCE(!msk->recovery)) 966 goto out; 967 if (WARN_ON_ONCE(delta > dfrag->data_len)) 968 goto out; 969 dfrag->already_sent += delta - dfrag->already_sent; 970 } 971 972 dfrag->data_seq += delta; 973 dfrag->offset += delta; 974 dfrag->data_len -= delta; 975 dfrag->already_sent -= delta; 976 977 dfrag_uncharge(sk, delta); 978 } 979 980 /* all retransmitted data acked, recovery completed */ 981 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 982 msk->recovery = false; 983 984 out: 985 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 986 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 987 mptcp_stop_rtx_timer(sk); 988 } else { 989 mptcp_reset_rtx_timer(sk); 990 } 991 992 if (mptcp_pending_data_fin_ack(sk)) 993 mptcp_schedule_work(sk); 994 } 995 996 static void __mptcp_clean_una_wakeup(struct sock *sk) 997 { 998 lockdep_assert_held_once(&sk->sk_lock.slock); 999 1000 __mptcp_clean_una(sk); 1001 mptcp_write_space(sk); 1002 } 1003 1004 static void mptcp_clean_una_wakeup(struct sock *sk) 1005 { 1006 mptcp_data_lock(sk); 1007 __mptcp_clean_una_wakeup(sk); 1008 mptcp_data_unlock(sk); 1009 } 1010 1011 static void mptcp_enter_memory_pressure(struct sock *sk) 1012 { 1013 struct mptcp_subflow_context *subflow; 1014 struct mptcp_sock *msk = mptcp_sk(sk); 1015 bool first = true; 1016 1017 mptcp_for_each_subflow(msk, subflow) { 1018 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1019 1020 if (first) 1021 tcp_enter_memory_pressure(ssk); 1022 sk_stream_moderate_sndbuf(ssk); 1023 1024 first = false; 1025 } 1026 __mptcp_sync_sndbuf(sk); 1027 } 1028 1029 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1030 * data 1031 */ 1032 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1033 { 1034 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1035 pfrag, sk->sk_allocation))) 1036 return true; 1037 1038 mptcp_enter_memory_pressure(sk); 1039 return false; 1040 } 1041 1042 static struct mptcp_data_frag * 1043 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1044 int orig_offset) 1045 { 1046 int offset = ALIGN(orig_offset, sizeof(long)); 1047 struct mptcp_data_frag *dfrag; 1048 1049 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1050 dfrag->data_len = 0; 1051 dfrag->data_seq = msk->write_seq; 1052 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1053 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1054 dfrag->already_sent = 0; 1055 dfrag->page = pfrag->page; 1056 1057 return dfrag; 1058 } 1059 1060 struct mptcp_sendmsg_info { 1061 int mss_now; 1062 int size_goal; 1063 u16 limit; 1064 u16 sent; 1065 unsigned int flags; 1066 bool data_lock_held; 1067 }; 1068 1069 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1070 u64 data_seq, int avail_size) 1071 { 1072 u64 window_end = mptcp_wnd_end(msk); 1073 u64 mptcp_snd_wnd; 1074 1075 if (__mptcp_check_fallback(msk)) 1076 return avail_size; 1077 1078 mptcp_snd_wnd = window_end - data_seq; 1079 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1080 1081 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1082 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1083 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1084 } 1085 1086 return avail_size; 1087 } 1088 1089 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1090 { 1091 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1092 1093 if (!mpext) 1094 return false; 1095 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1096 return true; 1097 } 1098 1099 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1100 { 1101 struct sk_buff *skb; 1102 1103 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1104 if (likely(skb)) { 1105 if (likely(__mptcp_add_ext(skb, gfp))) { 1106 skb_reserve(skb, MAX_TCP_HEADER); 1107 skb->ip_summed = CHECKSUM_PARTIAL; 1108 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1109 return skb; 1110 } 1111 __kfree_skb(skb); 1112 } else { 1113 mptcp_enter_memory_pressure(sk); 1114 } 1115 return NULL; 1116 } 1117 1118 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1119 { 1120 struct sk_buff *skb; 1121 1122 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1123 if (!skb) 1124 return NULL; 1125 1126 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1127 tcp_skb_entail(ssk, skb); 1128 return skb; 1129 } 1130 tcp_skb_tsorted_anchor_cleanup(skb); 1131 kfree_skb(skb); 1132 return NULL; 1133 } 1134 1135 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1136 { 1137 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1138 1139 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1140 } 1141 1142 /* note: this always recompute the csum on the whole skb, even 1143 * if we just appended a single frag. More status info needed 1144 */ 1145 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1146 { 1147 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1148 __wsum csum = ~csum_unfold(mpext->csum); 1149 int offset = skb->len - added; 1150 1151 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1152 } 1153 1154 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1155 struct sock *ssk, 1156 struct mptcp_ext *mpext) 1157 { 1158 if (!mpext) 1159 return; 1160 1161 mpext->infinite_map = 1; 1162 mpext->data_len = 0; 1163 1164 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1165 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1166 mptcp_subflow_reset(ssk); 1167 return; 1168 } 1169 1170 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1171 } 1172 1173 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1174 1175 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1176 struct mptcp_data_frag *dfrag, 1177 struct mptcp_sendmsg_info *info) 1178 { 1179 u64 data_seq = dfrag->data_seq + info->sent; 1180 int offset = dfrag->offset + info->sent; 1181 struct mptcp_sock *msk = mptcp_sk(sk); 1182 bool zero_window_probe = false; 1183 struct mptcp_ext *mpext = NULL; 1184 bool can_coalesce = false; 1185 bool reuse_skb = true; 1186 struct sk_buff *skb; 1187 size_t copy; 1188 int i; 1189 1190 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1191 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1192 1193 if (WARN_ON_ONCE(info->sent > info->limit || 1194 info->limit > dfrag->data_len)) 1195 return 0; 1196 1197 if (unlikely(!__tcp_can_send(ssk))) 1198 return -EAGAIN; 1199 1200 /* compute send limit */ 1201 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1202 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1203 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1204 copy = info->size_goal; 1205 1206 skb = tcp_write_queue_tail(ssk); 1207 if (skb && copy > skb->len) { 1208 /* Limit the write to the size available in the 1209 * current skb, if any, so that we create at most a new skb. 1210 * Explicitly tells TCP internals to avoid collapsing on later 1211 * queue management operation, to avoid breaking the ext <-> 1212 * SSN association set here 1213 */ 1214 mpext = mptcp_get_ext(skb); 1215 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1216 TCP_SKB_CB(skb)->eor = 1; 1217 tcp_mark_push(tcp_sk(ssk), skb); 1218 goto alloc_skb; 1219 } 1220 1221 i = skb_shinfo(skb)->nr_frags; 1222 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1223 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1224 tcp_mark_push(tcp_sk(ssk), skb); 1225 goto alloc_skb; 1226 } 1227 1228 copy -= skb->len; 1229 } else { 1230 alloc_skb: 1231 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1232 if (!skb) 1233 return -ENOMEM; 1234 1235 i = skb_shinfo(skb)->nr_frags; 1236 reuse_skb = false; 1237 mpext = mptcp_get_ext(skb); 1238 } 1239 1240 /* Zero window and all data acked? Probe. */ 1241 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1242 if (copy == 0) { 1243 u64 snd_una = READ_ONCE(msk->snd_una); 1244 1245 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1246 tcp_remove_empty_skb(ssk); 1247 return 0; 1248 } 1249 1250 zero_window_probe = true; 1251 data_seq = snd_una - 1; 1252 copy = 1; 1253 } 1254 1255 copy = min_t(size_t, copy, info->limit - info->sent); 1256 if (!sk_wmem_schedule(ssk, copy)) { 1257 tcp_remove_empty_skb(ssk); 1258 return -ENOMEM; 1259 } 1260 1261 if (can_coalesce) { 1262 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1263 } else { 1264 get_page(dfrag->page); 1265 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1266 } 1267 1268 skb->len += copy; 1269 skb->data_len += copy; 1270 skb->truesize += copy; 1271 sk_wmem_queued_add(ssk, copy); 1272 sk_mem_charge(ssk, copy); 1273 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1274 TCP_SKB_CB(skb)->end_seq += copy; 1275 tcp_skb_pcount_set(skb, 0); 1276 1277 /* on skb reuse we just need to update the DSS len */ 1278 if (reuse_skb) { 1279 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1280 mpext->data_len += copy; 1281 goto out; 1282 } 1283 1284 memset(mpext, 0, sizeof(*mpext)); 1285 mpext->data_seq = data_seq; 1286 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1287 mpext->data_len = copy; 1288 mpext->use_map = 1; 1289 mpext->dsn64 = 1; 1290 1291 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1292 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1293 mpext->dsn64); 1294 1295 if (zero_window_probe) { 1296 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1297 mpext->frozen = 1; 1298 if (READ_ONCE(msk->csum_enabled)) 1299 mptcp_update_data_checksum(skb, copy); 1300 tcp_push_pending_frames(ssk); 1301 return 0; 1302 } 1303 out: 1304 if (READ_ONCE(msk->csum_enabled)) 1305 mptcp_update_data_checksum(skb, copy); 1306 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1307 mptcp_update_infinite_map(msk, ssk, mpext); 1308 trace_mptcp_sendmsg_frag(mpext); 1309 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1310 return copy; 1311 } 1312 1313 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1314 sizeof(struct tcphdr) - \ 1315 MAX_TCP_OPTION_SPACE - \ 1316 sizeof(struct ipv6hdr) - \ 1317 sizeof(struct frag_hdr)) 1318 1319 struct subflow_send_info { 1320 struct sock *ssk; 1321 u64 linger_time; 1322 }; 1323 1324 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1325 { 1326 if (!subflow->stale) 1327 return; 1328 1329 subflow->stale = 0; 1330 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1331 } 1332 1333 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1334 { 1335 if (unlikely(subflow->stale)) { 1336 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1337 1338 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1339 return false; 1340 1341 mptcp_subflow_set_active(subflow); 1342 } 1343 return __mptcp_subflow_active(subflow); 1344 } 1345 1346 #define SSK_MODE_ACTIVE 0 1347 #define SSK_MODE_BACKUP 1 1348 #define SSK_MODE_MAX 2 1349 1350 /* implement the mptcp packet scheduler; 1351 * returns the subflow that will transmit the next DSS 1352 * additionally updates the rtx timeout 1353 */ 1354 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1355 { 1356 struct subflow_send_info send_info[SSK_MODE_MAX]; 1357 struct mptcp_subflow_context *subflow; 1358 struct sock *sk = (struct sock *)msk; 1359 u32 pace, burst, wmem; 1360 int i, nr_active = 0; 1361 struct sock *ssk; 1362 u64 linger_time; 1363 long tout = 0; 1364 1365 /* pick the subflow with the lower wmem/wspace ratio */ 1366 for (i = 0; i < SSK_MODE_MAX; ++i) { 1367 send_info[i].ssk = NULL; 1368 send_info[i].linger_time = -1; 1369 } 1370 1371 mptcp_for_each_subflow(msk, subflow) { 1372 bool backup = subflow->backup || subflow->request_bkup; 1373 1374 trace_mptcp_subflow_get_send(subflow); 1375 ssk = mptcp_subflow_tcp_sock(subflow); 1376 if (!mptcp_subflow_active(subflow)) 1377 continue; 1378 1379 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1380 nr_active += !backup; 1381 pace = subflow->avg_pacing_rate; 1382 if (unlikely(!pace)) { 1383 /* init pacing rate from socket */ 1384 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1385 pace = subflow->avg_pacing_rate; 1386 if (!pace) 1387 continue; 1388 } 1389 1390 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1391 if (linger_time < send_info[backup].linger_time) { 1392 send_info[backup].ssk = ssk; 1393 send_info[backup].linger_time = linger_time; 1394 } 1395 } 1396 __mptcp_set_timeout(sk, tout); 1397 1398 /* pick the best backup if no other subflow is active */ 1399 if (!nr_active) 1400 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1401 1402 /* According to the blest algorithm, to avoid HoL blocking for the 1403 * faster flow, we need to: 1404 * - estimate the faster flow linger time 1405 * - use the above to estimate the amount of byte transferred 1406 * by the faster flow 1407 * - check that the amount of queued data is greater than the above, 1408 * otherwise do not use the picked, slower, subflow 1409 * We select the subflow with the shorter estimated time to flush 1410 * the queued mem, which basically ensure the above. We just need 1411 * to check that subflow has a non empty cwin. 1412 */ 1413 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1414 if (!ssk || !sk_stream_memory_free(ssk)) 1415 return NULL; 1416 1417 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1418 wmem = READ_ONCE(ssk->sk_wmem_queued); 1419 if (!burst) 1420 return ssk; 1421 1422 subflow = mptcp_subflow_ctx(ssk); 1423 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1424 READ_ONCE(ssk->sk_pacing_rate) * burst, 1425 burst + wmem); 1426 msk->snd_burst = burst; 1427 return ssk; 1428 } 1429 1430 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1431 { 1432 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1433 release_sock(ssk); 1434 } 1435 1436 static void mptcp_update_post_push(struct mptcp_sock *msk, 1437 struct mptcp_data_frag *dfrag, 1438 u32 sent) 1439 { 1440 u64 snd_nxt_new = dfrag->data_seq; 1441 1442 dfrag->already_sent += sent; 1443 1444 msk->snd_burst -= sent; 1445 1446 snd_nxt_new += dfrag->already_sent; 1447 1448 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1449 * is recovering after a failover. In that event, this re-sends 1450 * old segments. 1451 * 1452 * Thus compute snd_nxt_new candidate based on 1453 * the dfrag->data_seq that was sent and the data 1454 * that has been handed to the subflow for transmission 1455 * and skip update in case it was old dfrag. 1456 */ 1457 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1458 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1459 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1460 } 1461 } 1462 1463 void mptcp_check_and_set_pending(struct sock *sk) 1464 { 1465 if (mptcp_send_head(sk)) { 1466 mptcp_data_lock(sk); 1467 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1468 mptcp_data_unlock(sk); 1469 } 1470 } 1471 1472 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1473 struct mptcp_sendmsg_info *info) 1474 { 1475 struct mptcp_sock *msk = mptcp_sk(sk); 1476 struct mptcp_data_frag *dfrag; 1477 int len, copied = 0, err = 0; 1478 1479 while ((dfrag = mptcp_send_head(sk))) { 1480 info->sent = dfrag->already_sent; 1481 info->limit = dfrag->data_len; 1482 len = dfrag->data_len - dfrag->already_sent; 1483 while (len > 0) { 1484 int ret = 0; 1485 1486 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1487 if (ret <= 0) { 1488 err = copied ? : ret; 1489 goto out; 1490 } 1491 1492 info->sent += ret; 1493 copied += ret; 1494 len -= ret; 1495 1496 mptcp_update_post_push(msk, dfrag, ret); 1497 } 1498 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1499 1500 if (msk->snd_burst <= 0 || 1501 !sk_stream_memory_free(ssk) || 1502 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1503 err = copied; 1504 goto out; 1505 } 1506 mptcp_set_timeout(sk); 1507 } 1508 err = copied; 1509 1510 out: 1511 if (err > 0) 1512 msk->last_data_sent = tcp_jiffies32; 1513 return err; 1514 } 1515 1516 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1517 { 1518 struct sock *prev_ssk = NULL, *ssk = NULL; 1519 struct mptcp_sock *msk = mptcp_sk(sk); 1520 struct mptcp_sendmsg_info info = { 1521 .flags = flags, 1522 }; 1523 bool do_check_data_fin = false; 1524 int push_count = 1; 1525 1526 while (mptcp_send_head(sk) && (push_count > 0)) { 1527 struct mptcp_subflow_context *subflow; 1528 int ret = 0; 1529 1530 if (mptcp_sched_get_send(msk)) 1531 break; 1532 1533 push_count = 0; 1534 1535 mptcp_for_each_subflow(msk, subflow) { 1536 if (READ_ONCE(subflow->scheduled)) { 1537 mptcp_subflow_set_scheduled(subflow, false); 1538 1539 prev_ssk = ssk; 1540 ssk = mptcp_subflow_tcp_sock(subflow); 1541 if (ssk != prev_ssk) { 1542 /* First check. If the ssk has changed since 1543 * the last round, release prev_ssk 1544 */ 1545 if (prev_ssk) 1546 mptcp_push_release(prev_ssk, &info); 1547 1548 /* Need to lock the new subflow only if different 1549 * from the previous one, otherwise we are still 1550 * helding the relevant lock 1551 */ 1552 lock_sock(ssk); 1553 } 1554 1555 push_count++; 1556 1557 ret = __subflow_push_pending(sk, ssk, &info); 1558 if (ret <= 0) { 1559 if (ret != -EAGAIN || 1560 (1 << ssk->sk_state) & 1561 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1562 push_count--; 1563 continue; 1564 } 1565 do_check_data_fin = true; 1566 } 1567 } 1568 } 1569 1570 /* at this point we held the socket lock for the last subflow we used */ 1571 if (ssk) 1572 mptcp_push_release(ssk, &info); 1573 1574 /* ensure the rtx timer is running */ 1575 if (!mptcp_rtx_timer_pending(sk)) 1576 mptcp_reset_rtx_timer(sk); 1577 if (do_check_data_fin) 1578 mptcp_check_send_data_fin(sk); 1579 } 1580 1581 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1582 { 1583 struct mptcp_sock *msk = mptcp_sk(sk); 1584 struct mptcp_sendmsg_info info = { 1585 .data_lock_held = true, 1586 }; 1587 bool keep_pushing = true; 1588 struct sock *xmit_ssk; 1589 int copied = 0; 1590 1591 info.flags = 0; 1592 while (mptcp_send_head(sk) && keep_pushing) { 1593 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1594 int ret = 0; 1595 1596 /* check for a different subflow usage only after 1597 * spooling the first chunk of data 1598 */ 1599 if (first) { 1600 mptcp_subflow_set_scheduled(subflow, false); 1601 ret = __subflow_push_pending(sk, ssk, &info); 1602 first = false; 1603 if (ret <= 0) 1604 break; 1605 copied += ret; 1606 continue; 1607 } 1608 1609 if (mptcp_sched_get_send(msk)) 1610 goto out; 1611 1612 if (READ_ONCE(subflow->scheduled)) { 1613 mptcp_subflow_set_scheduled(subflow, false); 1614 ret = __subflow_push_pending(sk, ssk, &info); 1615 if (ret <= 0) 1616 keep_pushing = false; 1617 copied += ret; 1618 } 1619 1620 mptcp_for_each_subflow(msk, subflow) { 1621 if (READ_ONCE(subflow->scheduled)) { 1622 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1623 if (xmit_ssk != ssk) { 1624 mptcp_subflow_delegate(subflow, 1625 MPTCP_DELEGATE_SEND); 1626 keep_pushing = false; 1627 } 1628 } 1629 } 1630 } 1631 1632 out: 1633 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1634 * not going to flush it via release_sock() 1635 */ 1636 if (copied) { 1637 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1638 info.size_goal); 1639 if (!mptcp_rtx_timer_pending(sk)) 1640 mptcp_reset_rtx_timer(sk); 1641 1642 if (msk->snd_data_fin_enable && 1643 msk->snd_nxt + 1 == msk->write_seq) 1644 mptcp_schedule_work(sk); 1645 } 1646 } 1647 1648 static int mptcp_disconnect(struct sock *sk, int flags); 1649 1650 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1651 size_t len, int *copied_syn) 1652 { 1653 unsigned int saved_flags = msg->msg_flags; 1654 struct mptcp_sock *msk = mptcp_sk(sk); 1655 struct sock *ssk; 1656 int ret; 1657 1658 /* on flags based fastopen the mptcp is supposed to create the 1659 * first subflow right now. Otherwise we are in the defer_connect 1660 * path, and the first subflow must be already present. 1661 * Since the defer_connect flag is cleared after the first succsful 1662 * fastopen attempt, no need to check for additional subflow status. 1663 */ 1664 if (msg->msg_flags & MSG_FASTOPEN) { 1665 ssk = __mptcp_nmpc_sk(msk); 1666 if (IS_ERR(ssk)) 1667 return PTR_ERR(ssk); 1668 } 1669 if (!msk->first) 1670 return -EINVAL; 1671 1672 ssk = msk->first; 1673 1674 lock_sock(ssk); 1675 msg->msg_flags |= MSG_DONTWAIT; 1676 msk->fastopening = 1; 1677 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1678 msk->fastopening = 0; 1679 msg->msg_flags = saved_flags; 1680 release_sock(ssk); 1681 1682 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1683 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1684 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1685 msg->msg_namelen, msg->msg_flags, 1); 1686 1687 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1688 * case of any error, except timeout or signal 1689 */ 1690 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1691 *copied_syn = 0; 1692 } else if (ret && ret != -EINPROGRESS) { 1693 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1694 * __inet_stream_connect() can fail, due to looking check, 1695 * see mptcp_disconnect(). 1696 * Attempt it again outside the problematic scope. 1697 */ 1698 if (!mptcp_disconnect(sk, 0)) { 1699 sk->sk_disconnects++; 1700 sk->sk_socket->state = SS_UNCONNECTED; 1701 } 1702 } 1703 inet_clear_bit(DEFER_CONNECT, sk); 1704 1705 return ret; 1706 } 1707 1708 static int do_copy_data_nocache(struct sock *sk, int copy, 1709 struct iov_iter *from, char *to) 1710 { 1711 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1712 if (!copy_from_iter_full_nocache(to, copy, from)) 1713 return -EFAULT; 1714 } else if (!copy_from_iter_full(to, copy, from)) { 1715 return -EFAULT; 1716 } 1717 return 0; 1718 } 1719 1720 /* open-code sk_stream_memory_free() plus sent limit computation to 1721 * avoid indirect calls in fast-path. 1722 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1723 * annotations. 1724 */ 1725 static u32 mptcp_send_limit(const struct sock *sk) 1726 { 1727 const struct mptcp_sock *msk = mptcp_sk(sk); 1728 u32 limit, not_sent; 1729 1730 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1731 return 0; 1732 1733 limit = mptcp_notsent_lowat(sk); 1734 if (limit == UINT_MAX) 1735 return UINT_MAX; 1736 1737 not_sent = msk->write_seq - msk->snd_nxt; 1738 if (not_sent >= limit) 1739 return 0; 1740 1741 return limit - not_sent; 1742 } 1743 1744 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1745 { 1746 struct mptcp_subflow_context *subflow; 1747 1748 if (!rfs_is_needed()) 1749 return; 1750 1751 mptcp_for_each_subflow(msk, subflow) { 1752 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1753 1754 sock_rps_record_flow(ssk); 1755 } 1756 } 1757 1758 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1759 { 1760 struct mptcp_sock *msk = mptcp_sk(sk); 1761 struct page_frag *pfrag; 1762 size_t copied = 0; 1763 int ret = 0; 1764 long timeo; 1765 1766 /* silently ignore everything else */ 1767 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1768 1769 lock_sock(sk); 1770 1771 mptcp_rps_record_subflows(msk); 1772 1773 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1774 msg->msg_flags & MSG_FASTOPEN)) { 1775 int copied_syn = 0; 1776 1777 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1778 copied += copied_syn; 1779 if (ret == -EINPROGRESS && copied_syn > 0) 1780 goto out; 1781 else if (ret) 1782 goto do_error; 1783 } 1784 1785 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1786 1787 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1788 ret = sk_stream_wait_connect(sk, &timeo); 1789 if (ret) 1790 goto do_error; 1791 } 1792 1793 ret = -EPIPE; 1794 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1795 goto do_error; 1796 1797 pfrag = sk_page_frag(sk); 1798 1799 while (msg_data_left(msg)) { 1800 int total_ts, frag_truesize = 0; 1801 struct mptcp_data_frag *dfrag; 1802 bool dfrag_collapsed; 1803 size_t psize, offset; 1804 u32 copy_limit; 1805 1806 /* ensure fitting the notsent_lowat() constraint */ 1807 copy_limit = mptcp_send_limit(sk); 1808 if (!copy_limit) 1809 goto wait_for_memory; 1810 1811 /* reuse tail pfrag, if possible, or carve a new one from the 1812 * page allocator 1813 */ 1814 dfrag = mptcp_pending_tail(sk); 1815 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1816 if (!dfrag_collapsed) { 1817 if (!mptcp_page_frag_refill(sk, pfrag)) 1818 goto wait_for_memory; 1819 1820 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1821 frag_truesize = dfrag->overhead; 1822 } 1823 1824 /* we do not bound vs wspace, to allow a single packet. 1825 * memory accounting will prevent execessive memory usage 1826 * anyway 1827 */ 1828 offset = dfrag->offset + dfrag->data_len; 1829 psize = pfrag->size - offset; 1830 psize = min_t(size_t, psize, msg_data_left(msg)); 1831 psize = min_t(size_t, psize, copy_limit); 1832 total_ts = psize + frag_truesize; 1833 1834 if (!sk_wmem_schedule(sk, total_ts)) 1835 goto wait_for_memory; 1836 1837 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1838 page_address(dfrag->page) + offset); 1839 if (ret) 1840 goto do_error; 1841 1842 /* data successfully copied into the write queue */ 1843 sk_forward_alloc_add(sk, -total_ts); 1844 copied += psize; 1845 dfrag->data_len += psize; 1846 frag_truesize += psize; 1847 pfrag->offset += frag_truesize; 1848 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1849 1850 /* charge data on mptcp pending queue to the msk socket 1851 * Note: we charge such data both to sk and ssk 1852 */ 1853 sk_wmem_queued_add(sk, frag_truesize); 1854 if (!dfrag_collapsed) { 1855 get_page(dfrag->page); 1856 list_add_tail(&dfrag->list, &msk->rtx_queue); 1857 if (!msk->first_pending) 1858 WRITE_ONCE(msk->first_pending, dfrag); 1859 } 1860 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1861 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1862 !dfrag_collapsed); 1863 1864 continue; 1865 1866 wait_for_memory: 1867 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1868 __mptcp_push_pending(sk, msg->msg_flags); 1869 ret = sk_stream_wait_memory(sk, &timeo); 1870 if (ret) 1871 goto do_error; 1872 } 1873 1874 if (copied) 1875 __mptcp_push_pending(sk, msg->msg_flags); 1876 1877 out: 1878 release_sock(sk); 1879 return copied; 1880 1881 do_error: 1882 if (copied) 1883 goto out; 1884 1885 copied = sk_stream_error(sk, msg->msg_flags, ret); 1886 goto out; 1887 } 1888 1889 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1890 1891 static int __mptcp_recvmsg_mskq(struct sock *sk, 1892 struct msghdr *msg, 1893 size_t len, int flags, 1894 struct scm_timestamping_internal *tss, 1895 int *cmsg_flags) 1896 { 1897 struct mptcp_sock *msk = mptcp_sk(sk); 1898 struct sk_buff *skb, *tmp; 1899 int copied = 0; 1900 1901 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1902 u32 offset = MPTCP_SKB_CB(skb)->offset; 1903 u32 data_len = skb->len - offset; 1904 u32 count = min_t(size_t, len - copied, data_len); 1905 int err; 1906 1907 if (!(flags & MSG_TRUNC)) { 1908 err = skb_copy_datagram_msg(skb, offset, msg, count); 1909 if (unlikely(err < 0)) { 1910 if (!copied) 1911 return err; 1912 break; 1913 } 1914 } 1915 1916 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1917 tcp_update_recv_tstamps(skb, tss); 1918 *cmsg_flags |= MPTCP_CMSG_TS; 1919 } 1920 1921 copied += count; 1922 1923 if (count < data_len) { 1924 if (!(flags & MSG_PEEK)) { 1925 MPTCP_SKB_CB(skb)->offset += count; 1926 MPTCP_SKB_CB(skb)->map_seq += count; 1927 msk->bytes_consumed += count; 1928 } 1929 break; 1930 } 1931 1932 if (!(flags & MSG_PEEK)) { 1933 /* avoid the indirect call, we know the destructor is sock_wfree */ 1934 skb->destructor = NULL; 1935 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1936 sk_mem_uncharge(sk, skb->truesize); 1937 __skb_unlink(skb, &sk->sk_receive_queue); 1938 __kfree_skb(skb); 1939 msk->bytes_consumed += count; 1940 } 1941 1942 if (copied >= len) 1943 break; 1944 } 1945 1946 mptcp_rcv_space_adjust(msk, copied); 1947 return copied; 1948 } 1949 1950 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1951 * 1952 * Only difference: Use highest rtt estimate of the subflows in use. 1953 */ 1954 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1955 { 1956 struct mptcp_subflow_context *subflow; 1957 struct sock *sk = (struct sock *)msk; 1958 u8 scaling_ratio = U8_MAX; 1959 u32 time, advmss = 1; 1960 u64 rtt_us, mstamp; 1961 1962 msk_owned_by_me(msk); 1963 1964 if (copied <= 0) 1965 return; 1966 1967 if (!msk->rcvspace_init) 1968 mptcp_rcv_space_init(msk, msk->first); 1969 1970 msk->rcvq_space.copied += copied; 1971 1972 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1973 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1974 1975 rtt_us = msk->rcvq_space.rtt_us; 1976 if (rtt_us && time < (rtt_us >> 3)) 1977 return; 1978 1979 rtt_us = 0; 1980 mptcp_for_each_subflow(msk, subflow) { 1981 const struct tcp_sock *tp; 1982 u64 sf_rtt_us; 1983 u32 sf_advmss; 1984 1985 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1986 1987 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1988 sf_advmss = READ_ONCE(tp->advmss); 1989 1990 rtt_us = max(sf_rtt_us, rtt_us); 1991 advmss = max(sf_advmss, advmss); 1992 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1993 } 1994 1995 msk->rcvq_space.rtt_us = rtt_us; 1996 msk->scaling_ratio = scaling_ratio; 1997 if (time < (rtt_us >> 3) || rtt_us == 0) 1998 return; 1999 2000 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2001 goto new_measure; 2002 2003 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2004 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2005 u64 rcvwin, grow; 2006 int rcvbuf; 2007 2008 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2009 2010 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2011 2012 do_div(grow, msk->rcvq_space.space); 2013 rcvwin += (grow << 1); 2014 2015 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 2016 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2017 2018 if (rcvbuf > sk->sk_rcvbuf) { 2019 u32 window_clamp; 2020 2021 window_clamp = mptcp_win_from_space(sk, rcvbuf); 2022 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2023 2024 /* Make subflows follow along. If we do not do this, we 2025 * get drops at subflow level if skbs can't be moved to 2026 * the mptcp rx queue fast enough (announced rcv_win can 2027 * exceed ssk->sk_rcvbuf). 2028 */ 2029 mptcp_for_each_subflow(msk, subflow) { 2030 struct sock *ssk; 2031 bool slow; 2032 2033 ssk = mptcp_subflow_tcp_sock(subflow); 2034 slow = lock_sock_fast(ssk); 2035 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2036 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2037 if (tcp_can_send_ack(ssk)) 2038 tcp_cleanup_rbuf(ssk, 1); 2039 unlock_sock_fast(ssk, slow); 2040 } 2041 } 2042 } 2043 2044 msk->rcvq_space.space = msk->rcvq_space.copied; 2045 new_measure: 2046 msk->rcvq_space.copied = 0; 2047 msk->rcvq_space.time = mstamp; 2048 } 2049 2050 static struct mptcp_subflow_context * 2051 __mptcp_first_ready_from(struct mptcp_sock *msk, 2052 struct mptcp_subflow_context *subflow) 2053 { 2054 struct mptcp_subflow_context *start_subflow = subflow; 2055 2056 while (!READ_ONCE(subflow->data_avail)) { 2057 subflow = mptcp_next_subflow(msk, subflow); 2058 if (subflow == start_subflow) 2059 return NULL; 2060 } 2061 return subflow; 2062 } 2063 2064 static bool __mptcp_move_skbs(struct sock *sk) 2065 { 2066 struct mptcp_subflow_context *subflow; 2067 struct mptcp_sock *msk = mptcp_sk(sk); 2068 bool ret = false; 2069 2070 if (list_empty(&msk->conn_list)) 2071 return false; 2072 2073 /* verify we can move any data from the subflow, eventually updating */ 2074 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 2075 mptcp_for_each_subflow(msk, subflow) 2076 __mptcp_rcvbuf_update(sk, subflow->tcp_sock); 2077 2078 subflow = list_first_entry(&msk->conn_list, 2079 struct mptcp_subflow_context, node); 2080 for (;;) { 2081 struct sock *ssk; 2082 bool slowpath; 2083 2084 /* 2085 * As an optimization avoid traversing the subflows list 2086 * and ev. acquiring the subflow socket lock before baling out 2087 */ 2088 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2089 break; 2090 2091 subflow = __mptcp_first_ready_from(msk, subflow); 2092 if (!subflow) 2093 break; 2094 2095 ssk = mptcp_subflow_tcp_sock(subflow); 2096 slowpath = lock_sock_fast(ssk); 2097 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2098 if (unlikely(ssk->sk_err)) 2099 __mptcp_error_report(sk); 2100 unlock_sock_fast(ssk, slowpath); 2101 2102 subflow = mptcp_next_subflow(msk, subflow); 2103 } 2104 2105 __mptcp_ofo_queue(msk); 2106 if (ret) 2107 mptcp_check_data_fin((struct sock *)msk); 2108 return ret; 2109 } 2110 2111 static unsigned int mptcp_inq_hint(const struct sock *sk) 2112 { 2113 const struct mptcp_sock *msk = mptcp_sk(sk); 2114 const struct sk_buff *skb; 2115 2116 skb = skb_peek(&sk->sk_receive_queue); 2117 if (skb) { 2118 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2119 2120 if (hint_val >= INT_MAX) 2121 return INT_MAX; 2122 2123 return (unsigned int)hint_val; 2124 } 2125 2126 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2127 return 1; 2128 2129 return 0; 2130 } 2131 2132 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2133 int flags, int *addr_len) 2134 { 2135 struct mptcp_sock *msk = mptcp_sk(sk); 2136 struct scm_timestamping_internal tss; 2137 int copied = 0, cmsg_flags = 0; 2138 int target; 2139 long timeo; 2140 2141 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2142 if (unlikely(flags & MSG_ERRQUEUE)) 2143 return inet_recv_error(sk, msg, len, addr_len); 2144 2145 lock_sock(sk); 2146 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2147 copied = -ENOTCONN; 2148 goto out_err; 2149 } 2150 2151 mptcp_rps_record_subflows(msk); 2152 2153 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2154 2155 len = min_t(size_t, len, INT_MAX); 2156 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2157 2158 if (unlikely(msk->recvmsg_inq)) 2159 cmsg_flags = MPTCP_CMSG_INQ; 2160 2161 while (copied < len) { 2162 int err, bytes_read; 2163 2164 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2165 if (unlikely(bytes_read < 0)) { 2166 if (!copied) 2167 copied = bytes_read; 2168 goto out_err; 2169 } 2170 2171 copied += bytes_read; 2172 2173 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2174 continue; 2175 2176 /* only the MPTCP socket status is relevant here. The exit 2177 * conditions mirror closely tcp_recvmsg() 2178 */ 2179 if (copied >= target) 2180 break; 2181 2182 if (copied) { 2183 if (sk->sk_err || 2184 sk->sk_state == TCP_CLOSE || 2185 (sk->sk_shutdown & RCV_SHUTDOWN) || 2186 !timeo || 2187 signal_pending(current)) 2188 break; 2189 } else { 2190 if (sk->sk_err) { 2191 copied = sock_error(sk); 2192 break; 2193 } 2194 2195 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2196 /* race breaker: the shutdown could be after the 2197 * previous receive queue check 2198 */ 2199 if (__mptcp_move_skbs(sk)) 2200 continue; 2201 break; 2202 } 2203 2204 if (sk->sk_state == TCP_CLOSE) { 2205 copied = -ENOTCONN; 2206 break; 2207 } 2208 2209 if (!timeo) { 2210 copied = -EAGAIN; 2211 break; 2212 } 2213 2214 if (signal_pending(current)) { 2215 copied = sock_intr_errno(timeo); 2216 break; 2217 } 2218 } 2219 2220 pr_debug("block timeout %ld\n", timeo); 2221 mptcp_cleanup_rbuf(msk, copied); 2222 err = sk_wait_data(sk, &timeo, NULL); 2223 if (err < 0) { 2224 err = copied ? : err; 2225 goto out_err; 2226 } 2227 } 2228 2229 mptcp_cleanup_rbuf(msk, copied); 2230 2231 out_err: 2232 if (cmsg_flags && copied >= 0) { 2233 if (cmsg_flags & MPTCP_CMSG_TS) 2234 tcp_recv_timestamp(msg, sk, &tss); 2235 2236 if (cmsg_flags & MPTCP_CMSG_INQ) { 2237 unsigned int inq = mptcp_inq_hint(sk); 2238 2239 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2240 } 2241 } 2242 2243 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2244 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2245 2246 release_sock(sk); 2247 return copied; 2248 } 2249 2250 static void mptcp_retransmit_timer(struct timer_list *t) 2251 { 2252 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2253 icsk_retransmit_timer); 2254 struct sock *sk = &icsk->icsk_inet.sk; 2255 struct mptcp_sock *msk = mptcp_sk(sk); 2256 2257 bh_lock_sock(sk); 2258 if (!sock_owned_by_user(sk)) { 2259 /* we need a process context to retransmit */ 2260 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2261 mptcp_schedule_work(sk); 2262 } else { 2263 /* delegate our work to tcp_release_cb() */ 2264 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2265 } 2266 bh_unlock_sock(sk); 2267 sock_put(sk); 2268 } 2269 2270 static void mptcp_tout_timer(struct timer_list *t) 2271 { 2272 struct sock *sk = timer_container_of(sk, t, sk_timer); 2273 2274 mptcp_schedule_work(sk); 2275 sock_put(sk); 2276 } 2277 2278 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2279 * level. 2280 * 2281 * A backup subflow is returned only if that is the only kind available. 2282 */ 2283 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2284 { 2285 struct sock *backup = NULL, *pick = NULL; 2286 struct mptcp_subflow_context *subflow; 2287 int min_stale_count = INT_MAX; 2288 2289 mptcp_for_each_subflow(msk, subflow) { 2290 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2291 2292 if (!__mptcp_subflow_active(subflow)) 2293 continue; 2294 2295 /* still data outstanding at TCP level? skip this */ 2296 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2297 mptcp_pm_subflow_chk_stale(msk, ssk); 2298 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2299 continue; 2300 } 2301 2302 if (subflow->backup || subflow->request_bkup) { 2303 if (!backup) 2304 backup = ssk; 2305 continue; 2306 } 2307 2308 if (!pick) 2309 pick = ssk; 2310 } 2311 2312 if (pick) 2313 return pick; 2314 2315 /* use backup only if there are no progresses anywhere */ 2316 return min_stale_count > 1 ? backup : NULL; 2317 } 2318 2319 bool __mptcp_retransmit_pending_data(struct sock *sk) 2320 { 2321 struct mptcp_data_frag *cur, *rtx_head; 2322 struct mptcp_sock *msk = mptcp_sk(sk); 2323 2324 if (__mptcp_check_fallback(msk)) 2325 return false; 2326 2327 /* the closing socket has some data untransmitted and/or unacked: 2328 * some data in the mptcp rtx queue has not really xmitted yet. 2329 * keep it simple and re-inject the whole mptcp level rtx queue 2330 */ 2331 mptcp_data_lock(sk); 2332 __mptcp_clean_una_wakeup(sk); 2333 rtx_head = mptcp_rtx_head(sk); 2334 if (!rtx_head) { 2335 mptcp_data_unlock(sk); 2336 return false; 2337 } 2338 2339 msk->recovery_snd_nxt = msk->snd_nxt; 2340 msk->recovery = true; 2341 mptcp_data_unlock(sk); 2342 2343 msk->first_pending = rtx_head; 2344 msk->snd_burst = 0; 2345 2346 /* be sure to clear the "sent status" on all re-injected fragments */ 2347 list_for_each_entry(cur, &msk->rtx_queue, list) { 2348 if (!cur->already_sent) 2349 break; 2350 cur->already_sent = 0; 2351 } 2352 2353 return true; 2354 } 2355 2356 /* flags for __mptcp_close_ssk() */ 2357 #define MPTCP_CF_PUSH BIT(1) 2358 #define MPTCP_CF_FASTCLOSE BIT(2) 2359 2360 /* be sure to send a reset only if the caller asked for it, also 2361 * clean completely the subflow status when the subflow reaches 2362 * TCP_CLOSE state 2363 */ 2364 static void __mptcp_subflow_disconnect(struct sock *ssk, 2365 struct mptcp_subflow_context *subflow, 2366 unsigned int flags) 2367 { 2368 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2369 (flags & MPTCP_CF_FASTCLOSE)) { 2370 /* The MPTCP code never wait on the subflow sockets, TCP-level 2371 * disconnect should never fail 2372 */ 2373 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2374 mptcp_subflow_ctx_reset(subflow); 2375 } else { 2376 tcp_shutdown(ssk, SEND_SHUTDOWN); 2377 } 2378 } 2379 2380 /* subflow sockets can be either outgoing (connect) or incoming 2381 * (accept). 2382 * 2383 * Outgoing subflows use in-kernel sockets. 2384 * Incoming subflows do not have their own 'struct socket' allocated, 2385 * so we need to use tcp_close() after detaching them from the mptcp 2386 * parent socket. 2387 */ 2388 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2389 struct mptcp_subflow_context *subflow, 2390 unsigned int flags) 2391 { 2392 struct mptcp_sock *msk = mptcp_sk(sk); 2393 bool dispose_it, need_push = false; 2394 2395 /* If the first subflow moved to a close state before accept, e.g. due 2396 * to an incoming reset or listener shutdown, the subflow socket is 2397 * already deleted by inet_child_forget() and the mptcp socket can't 2398 * survive too. 2399 */ 2400 if (msk->in_accept_queue && msk->first == ssk && 2401 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2402 /* ensure later check in mptcp_worker() will dispose the msk */ 2403 sock_set_flag(sk, SOCK_DEAD); 2404 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2405 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2406 mptcp_subflow_drop_ctx(ssk); 2407 goto out_release; 2408 } 2409 2410 dispose_it = msk->free_first || ssk != msk->first; 2411 if (dispose_it) 2412 list_del(&subflow->node); 2413 2414 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2415 2416 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2417 /* be sure to force the tcp_close path 2418 * to generate the egress reset 2419 */ 2420 ssk->sk_lingertime = 0; 2421 sock_set_flag(ssk, SOCK_LINGER); 2422 subflow->send_fastclose = 1; 2423 } 2424 2425 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2426 if (!dispose_it) { 2427 __mptcp_subflow_disconnect(ssk, subflow, flags); 2428 release_sock(ssk); 2429 2430 goto out; 2431 } 2432 2433 subflow->disposable = 1; 2434 2435 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2436 * the ssk has been already destroyed, we just need to release the 2437 * reference owned by msk; 2438 */ 2439 if (!inet_csk(ssk)->icsk_ulp_ops) { 2440 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2441 kfree_rcu(subflow, rcu); 2442 } else { 2443 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2444 __tcp_close(ssk, 0); 2445 2446 /* close acquired an extra ref */ 2447 __sock_put(ssk); 2448 } 2449 2450 out_release: 2451 __mptcp_subflow_error_report(sk, ssk); 2452 release_sock(ssk); 2453 2454 sock_put(ssk); 2455 2456 if (ssk == msk->first) 2457 WRITE_ONCE(msk->first, NULL); 2458 2459 out: 2460 __mptcp_sync_sndbuf(sk); 2461 if (need_push) 2462 __mptcp_push_pending(sk, 0); 2463 2464 /* Catch every 'all subflows closed' scenario, including peers silently 2465 * closing them, e.g. due to timeout. 2466 * For established sockets, allow an additional timeout before closing, 2467 * as the protocol can still create more subflows. 2468 */ 2469 if (list_is_singular(&msk->conn_list) && msk->first && 2470 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2471 if (sk->sk_state != TCP_ESTABLISHED || 2472 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2473 mptcp_set_state(sk, TCP_CLOSE); 2474 mptcp_close_wake_up(sk); 2475 } else { 2476 mptcp_start_tout_timer(sk); 2477 } 2478 } 2479 } 2480 2481 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2482 struct mptcp_subflow_context *subflow) 2483 { 2484 /* The first subflow can already be closed and still in the list */ 2485 if (subflow->close_event_done) 2486 return; 2487 2488 subflow->close_event_done = true; 2489 2490 if (sk->sk_state == TCP_ESTABLISHED) 2491 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2492 2493 /* subflow aborted before reaching the fully_established status 2494 * attempt the creation of the next subflow 2495 */ 2496 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2497 2498 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2499 } 2500 2501 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2502 { 2503 return 0; 2504 } 2505 2506 static void __mptcp_close_subflow(struct sock *sk) 2507 { 2508 struct mptcp_subflow_context *subflow, *tmp; 2509 struct mptcp_sock *msk = mptcp_sk(sk); 2510 2511 might_sleep(); 2512 2513 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2514 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2515 int ssk_state = inet_sk_state_load(ssk); 2516 2517 if (ssk_state != TCP_CLOSE && 2518 (ssk_state != TCP_CLOSE_WAIT || 2519 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2520 continue; 2521 2522 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2523 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2524 continue; 2525 2526 mptcp_close_ssk(sk, ssk, subflow); 2527 } 2528 2529 } 2530 2531 static bool mptcp_close_tout_expired(const struct sock *sk) 2532 { 2533 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2534 sk->sk_state == TCP_CLOSE) 2535 return false; 2536 2537 return time_after32(tcp_jiffies32, 2538 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2539 } 2540 2541 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2542 { 2543 struct mptcp_subflow_context *subflow, *tmp; 2544 struct sock *sk = (struct sock *)msk; 2545 2546 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2547 return; 2548 2549 mptcp_token_destroy(msk); 2550 2551 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2552 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2553 bool slow; 2554 2555 slow = lock_sock_fast(tcp_sk); 2556 if (tcp_sk->sk_state != TCP_CLOSE) { 2557 mptcp_send_active_reset_reason(tcp_sk); 2558 tcp_set_state(tcp_sk, TCP_CLOSE); 2559 } 2560 unlock_sock_fast(tcp_sk, slow); 2561 } 2562 2563 /* Mirror the tcp_reset() error propagation */ 2564 switch (sk->sk_state) { 2565 case TCP_SYN_SENT: 2566 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2567 break; 2568 case TCP_CLOSE_WAIT: 2569 WRITE_ONCE(sk->sk_err, EPIPE); 2570 break; 2571 case TCP_CLOSE: 2572 return; 2573 default: 2574 WRITE_ONCE(sk->sk_err, ECONNRESET); 2575 } 2576 2577 mptcp_set_state(sk, TCP_CLOSE); 2578 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2579 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2580 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2581 2582 /* the calling mptcp_worker will properly destroy the socket */ 2583 if (sock_flag(sk, SOCK_DEAD)) 2584 return; 2585 2586 sk->sk_state_change(sk); 2587 sk_error_report(sk); 2588 } 2589 2590 static void __mptcp_retrans(struct sock *sk) 2591 { 2592 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2593 struct mptcp_sock *msk = mptcp_sk(sk); 2594 struct mptcp_subflow_context *subflow; 2595 struct mptcp_data_frag *dfrag; 2596 struct sock *ssk; 2597 int ret, err; 2598 u16 len = 0; 2599 2600 mptcp_clean_una_wakeup(sk); 2601 2602 /* first check ssk: need to kick "stale" logic */ 2603 err = mptcp_sched_get_retrans(msk); 2604 dfrag = mptcp_rtx_head(sk); 2605 if (!dfrag) { 2606 if (mptcp_data_fin_enabled(msk)) { 2607 struct inet_connection_sock *icsk = inet_csk(sk); 2608 2609 WRITE_ONCE(icsk->icsk_retransmits, 2610 icsk->icsk_retransmits + 1); 2611 mptcp_set_datafin_timeout(sk); 2612 mptcp_send_ack(msk); 2613 2614 goto reset_timer; 2615 } 2616 2617 if (!mptcp_send_head(sk)) 2618 return; 2619 2620 goto reset_timer; 2621 } 2622 2623 if (err) 2624 goto reset_timer; 2625 2626 mptcp_for_each_subflow(msk, subflow) { 2627 if (READ_ONCE(subflow->scheduled)) { 2628 u16 copied = 0; 2629 2630 mptcp_subflow_set_scheduled(subflow, false); 2631 2632 ssk = mptcp_subflow_tcp_sock(subflow); 2633 2634 lock_sock(ssk); 2635 2636 /* limit retransmission to the bytes already sent on some subflows */ 2637 info.sent = 0; 2638 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2639 dfrag->already_sent; 2640 2641 /* 2642 * make the whole retrans decision, xmit, disallow 2643 * fallback atomic 2644 */ 2645 spin_lock_bh(&msk->fallback_lock); 2646 if (__mptcp_check_fallback(msk)) { 2647 spin_unlock_bh(&msk->fallback_lock); 2648 release_sock(ssk); 2649 return; 2650 } 2651 2652 while (info.sent < info.limit) { 2653 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2654 if (ret <= 0) 2655 break; 2656 2657 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2658 copied += ret; 2659 info.sent += ret; 2660 } 2661 if (copied) { 2662 len = max(copied, len); 2663 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2664 info.size_goal); 2665 msk->allow_infinite_fallback = false; 2666 } 2667 spin_unlock_bh(&msk->fallback_lock); 2668 2669 release_sock(ssk); 2670 } 2671 } 2672 2673 msk->bytes_retrans += len; 2674 dfrag->already_sent = max(dfrag->already_sent, len); 2675 2676 reset_timer: 2677 mptcp_check_and_set_pending(sk); 2678 2679 if (!mptcp_rtx_timer_pending(sk)) 2680 mptcp_reset_rtx_timer(sk); 2681 } 2682 2683 /* schedule the timeout timer for the relevant event: either close timeout 2684 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2685 */ 2686 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2687 { 2688 struct sock *sk = (struct sock *)msk; 2689 unsigned long timeout, close_timeout; 2690 2691 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2692 return; 2693 2694 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2695 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2696 2697 /* the close timeout takes precedence on the fail one, and here at least one of 2698 * them is active 2699 */ 2700 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2701 2702 sk_reset_timer(sk, &sk->sk_timer, timeout); 2703 } 2704 2705 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2706 { 2707 struct sock *ssk = msk->first; 2708 bool slow; 2709 2710 if (!ssk) 2711 return; 2712 2713 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2714 2715 slow = lock_sock_fast(ssk); 2716 mptcp_subflow_reset(ssk); 2717 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2718 unlock_sock_fast(ssk, slow); 2719 } 2720 2721 static void mptcp_do_fastclose(struct sock *sk) 2722 { 2723 struct mptcp_subflow_context *subflow, *tmp; 2724 struct mptcp_sock *msk = mptcp_sk(sk); 2725 2726 mptcp_set_state(sk, TCP_CLOSE); 2727 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2728 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2729 subflow, MPTCP_CF_FASTCLOSE); 2730 } 2731 2732 static void mptcp_worker(struct work_struct *work) 2733 { 2734 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2735 struct sock *sk = (struct sock *)msk; 2736 unsigned long fail_tout; 2737 int state; 2738 2739 lock_sock(sk); 2740 state = sk->sk_state; 2741 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2742 goto unlock; 2743 2744 mptcp_check_fastclose(msk); 2745 2746 mptcp_pm_worker(msk); 2747 2748 mptcp_check_send_data_fin(sk); 2749 mptcp_check_data_fin_ack(sk); 2750 mptcp_check_data_fin(sk); 2751 2752 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2753 __mptcp_close_subflow(sk); 2754 2755 if (mptcp_close_tout_expired(sk)) { 2756 mptcp_do_fastclose(sk); 2757 mptcp_close_wake_up(sk); 2758 } 2759 2760 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2761 __mptcp_destroy_sock(sk); 2762 goto unlock; 2763 } 2764 2765 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2766 __mptcp_retrans(sk); 2767 2768 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2769 if (fail_tout && time_after(jiffies, fail_tout)) 2770 mptcp_mp_fail_no_response(msk); 2771 2772 unlock: 2773 release_sock(sk); 2774 sock_put(sk); 2775 } 2776 2777 static void __mptcp_init_sock(struct sock *sk) 2778 { 2779 struct mptcp_sock *msk = mptcp_sk(sk); 2780 2781 INIT_LIST_HEAD(&msk->conn_list); 2782 INIT_LIST_HEAD(&msk->join_list); 2783 INIT_LIST_HEAD(&msk->rtx_queue); 2784 INIT_WORK(&msk->work, mptcp_worker); 2785 msk->out_of_order_queue = RB_ROOT; 2786 msk->first_pending = NULL; 2787 msk->timer_ival = TCP_RTO_MIN; 2788 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2789 2790 WRITE_ONCE(msk->first, NULL); 2791 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2792 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2793 msk->allow_infinite_fallback = true; 2794 msk->allow_subflows = true; 2795 msk->recovery = false; 2796 msk->subflow_id = 1; 2797 msk->last_data_sent = tcp_jiffies32; 2798 msk->last_data_recv = tcp_jiffies32; 2799 msk->last_ack_recv = tcp_jiffies32; 2800 2801 mptcp_pm_data_init(msk); 2802 spin_lock_init(&msk->fallback_lock); 2803 2804 /* re-use the csk retrans timer for MPTCP-level retrans */ 2805 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2806 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2807 } 2808 2809 static void mptcp_ca_reset(struct sock *sk) 2810 { 2811 struct inet_connection_sock *icsk = inet_csk(sk); 2812 2813 tcp_assign_congestion_control(sk); 2814 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2815 sizeof(mptcp_sk(sk)->ca_name)); 2816 2817 /* no need to keep a reference to the ops, the name will suffice */ 2818 tcp_cleanup_congestion_control(sk); 2819 icsk->icsk_ca_ops = NULL; 2820 } 2821 2822 static int mptcp_init_sock(struct sock *sk) 2823 { 2824 struct net *net = sock_net(sk); 2825 int ret; 2826 2827 __mptcp_init_sock(sk); 2828 2829 if (!mptcp_is_enabled(net)) 2830 return -ENOPROTOOPT; 2831 2832 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2833 return -ENOMEM; 2834 2835 rcu_read_lock(); 2836 ret = mptcp_init_sched(mptcp_sk(sk), 2837 mptcp_sched_find(mptcp_get_scheduler(net))); 2838 rcu_read_unlock(); 2839 if (ret) 2840 return ret; 2841 2842 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2843 2844 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2845 * propagate the correct value 2846 */ 2847 mptcp_ca_reset(sk); 2848 2849 sk_sockets_allocated_inc(sk); 2850 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2851 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2852 2853 return 0; 2854 } 2855 2856 static void __mptcp_clear_xmit(struct sock *sk) 2857 { 2858 struct mptcp_sock *msk = mptcp_sk(sk); 2859 struct mptcp_data_frag *dtmp, *dfrag; 2860 2861 WRITE_ONCE(msk->first_pending, NULL); 2862 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2863 dfrag_clear(sk, dfrag); 2864 } 2865 2866 void mptcp_cancel_work(struct sock *sk) 2867 { 2868 struct mptcp_sock *msk = mptcp_sk(sk); 2869 2870 if (cancel_work_sync(&msk->work)) 2871 __sock_put(sk); 2872 } 2873 2874 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2875 { 2876 lock_sock(ssk); 2877 2878 switch (ssk->sk_state) { 2879 case TCP_LISTEN: 2880 if (!(how & RCV_SHUTDOWN)) 2881 break; 2882 fallthrough; 2883 case TCP_SYN_SENT: 2884 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2885 break; 2886 default: 2887 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2888 pr_debug("Fallback\n"); 2889 ssk->sk_shutdown |= how; 2890 tcp_shutdown(ssk, how); 2891 2892 /* simulate the data_fin ack reception to let the state 2893 * machine move forward 2894 */ 2895 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2896 mptcp_schedule_work(sk); 2897 } else { 2898 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2899 tcp_send_ack(ssk); 2900 if (!mptcp_rtx_timer_pending(sk)) 2901 mptcp_reset_rtx_timer(sk); 2902 } 2903 break; 2904 } 2905 2906 release_sock(ssk); 2907 } 2908 2909 void mptcp_set_state(struct sock *sk, int state) 2910 { 2911 int oldstate = sk->sk_state; 2912 2913 switch (state) { 2914 case TCP_ESTABLISHED: 2915 if (oldstate != TCP_ESTABLISHED) 2916 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2917 break; 2918 case TCP_CLOSE_WAIT: 2919 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2920 * MPTCP "accepted" sockets will be created later on. So no 2921 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2922 */ 2923 break; 2924 default: 2925 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2926 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2927 } 2928 2929 inet_sk_state_store(sk, state); 2930 } 2931 2932 static const unsigned char new_state[16] = { 2933 /* current state: new state: action: */ 2934 [0 /* (Invalid) */] = TCP_CLOSE, 2935 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2936 [TCP_SYN_SENT] = TCP_CLOSE, 2937 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2938 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2939 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2940 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2941 [TCP_CLOSE] = TCP_CLOSE, 2942 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2943 [TCP_LAST_ACK] = TCP_LAST_ACK, 2944 [TCP_LISTEN] = TCP_CLOSE, 2945 [TCP_CLOSING] = TCP_CLOSING, 2946 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2947 }; 2948 2949 static int mptcp_close_state(struct sock *sk) 2950 { 2951 int next = (int)new_state[sk->sk_state]; 2952 int ns = next & TCP_STATE_MASK; 2953 2954 mptcp_set_state(sk, ns); 2955 2956 return next & TCP_ACTION_FIN; 2957 } 2958 2959 static void mptcp_check_send_data_fin(struct sock *sk) 2960 { 2961 struct mptcp_subflow_context *subflow; 2962 struct mptcp_sock *msk = mptcp_sk(sk); 2963 2964 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2965 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2966 msk->snd_nxt, msk->write_seq); 2967 2968 /* we still need to enqueue subflows or not really shutting down, 2969 * skip this 2970 */ 2971 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2972 mptcp_send_head(sk)) 2973 return; 2974 2975 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2976 2977 mptcp_for_each_subflow(msk, subflow) { 2978 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2979 2980 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2981 } 2982 } 2983 2984 static void __mptcp_wr_shutdown(struct sock *sk) 2985 { 2986 struct mptcp_sock *msk = mptcp_sk(sk); 2987 2988 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2989 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2990 !!mptcp_send_head(sk)); 2991 2992 /* will be ignored by fallback sockets */ 2993 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2994 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2995 2996 mptcp_check_send_data_fin(sk); 2997 } 2998 2999 static void __mptcp_destroy_sock(struct sock *sk) 3000 { 3001 struct mptcp_sock *msk = mptcp_sk(sk); 3002 3003 pr_debug("msk=%p\n", msk); 3004 3005 might_sleep(); 3006 3007 mptcp_stop_rtx_timer(sk); 3008 sk_stop_timer(sk, &sk->sk_timer); 3009 msk->pm.status = 0; 3010 mptcp_release_sched(msk); 3011 3012 sk->sk_prot->destroy(sk); 3013 3014 sk_stream_kill_queues(sk); 3015 xfrm_sk_free_policy(sk); 3016 3017 sock_put(sk); 3018 } 3019 3020 void __mptcp_unaccepted_force_close(struct sock *sk) 3021 { 3022 sock_set_flag(sk, SOCK_DEAD); 3023 mptcp_do_fastclose(sk); 3024 __mptcp_destroy_sock(sk); 3025 } 3026 3027 static __poll_t mptcp_check_readable(struct sock *sk) 3028 { 3029 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3030 } 3031 3032 static void mptcp_check_listen_stop(struct sock *sk) 3033 { 3034 struct sock *ssk; 3035 3036 if (inet_sk_state_load(sk) != TCP_LISTEN) 3037 return; 3038 3039 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3040 ssk = mptcp_sk(sk)->first; 3041 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3042 return; 3043 3044 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3045 tcp_set_state(ssk, TCP_CLOSE); 3046 mptcp_subflow_queue_clean(sk, ssk); 3047 inet_csk_listen_stop(ssk); 3048 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3049 release_sock(ssk); 3050 } 3051 3052 bool __mptcp_close(struct sock *sk, long timeout) 3053 { 3054 struct mptcp_subflow_context *subflow; 3055 struct mptcp_sock *msk = mptcp_sk(sk); 3056 bool do_cancel_work = false; 3057 int subflows_alive = 0; 3058 3059 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3060 3061 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3062 mptcp_check_listen_stop(sk); 3063 mptcp_set_state(sk, TCP_CLOSE); 3064 goto cleanup; 3065 } 3066 3067 if (mptcp_data_avail(msk) || timeout < 0) { 3068 /* If the msk has read data, or the caller explicitly ask it, 3069 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3070 */ 3071 mptcp_do_fastclose(sk); 3072 timeout = 0; 3073 } else if (mptcp_close_state(sk)) { 3074 __mptcp_wr_shutdown(sk); 3075 } 3076 3077 sk_stream_wait_close(sk, timeout); 3078 3079 cleanup: 3080 /* orphan all the subflows */ 3081 mptcp_for_each_subflow(msk, subflow) { 3082 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3083 bool slow = lock_sock_fast_nested(ssk); 3084 3085 subflows_alive += ssk->sk_state != TCP_CLOSE; 3086 3087 /* since the close timeout takes precedence on the fail one, 3088 * cancel the latter 3089 */ 3090 if (ssk == msk->first) 3091 subflow->fail_tout = 0; 3092 3093 /* detach from the parent socket, but allow data_ready to 3094 * push incoming data into the mptcp stack, to properly ack it 3095 */ 3096 ssk->sk_socket = NULL; 3097 ssk->sk_wq = NULL; 3098 unlock_sock_fast(ssk, slow); 3099 } 3100 sock_orphan(sk); 3101 3102 /* all the subflows are closed, only timeout can change the msk 3103 * state, let's not keep resources busy for no reasons 3104 */ 3105 if (subflows_alive == 0) 3106 mptcp_set_state(sk, TCP_CLOSE); 3107 3108 sock_hold(sk); 3109 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3110 mptcp_pm_connection_closed(msk); 3111 3112 if (sk->sk_state == TCP_CLOSE) { 3113 __mptcp_destroy_sock(sk); 3114 do_cancel_work = true; 3115 } else { 3116 mptcp_start_tout_timer(sk); 3117 } 3118 3119 return do_cancel_work; 3120 } 3121 3122 static void mptcp_close(struct sock *sk, long timeout) 3123 { 3124 bool do_cancel_work; 3125 3126 lock_sock(sk); 3127 3128 do_cancel_work = __mptcp_close(sk, timeout); 3129 release_sock(sk); 3130 if (do_cancel_work) 3131 mptcp_cancel_work(sk); 3132 3133 sock_put(sk); 3134 } 3135 3136 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3137 { 3138 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3139 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3140 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3141 3142 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3143 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3144 3145 if (msk6 && ssk6) { 3146 msk6->saddr = ssk6->saddr; 3147 msk6->flow_label = ssk6->flow_label; 3148 } 3149 #endif 3150 3151 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3152 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3153 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3154 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3155 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3156 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3157 } 3158 3159 static int mptcp_disconnect(struct sock *sk, int flags) 3160 { 3161 struct mptcp_sock *msk = mptcp_sk(sk); 3162 3163 /* We are on the fastopen error path. We can't call straight into the 3164 * subflows cleanup code due to lock nesting (we are already under 3165 * msk->firstsocket lock). 3166 */ 3167 if (msk->fastopening) 3168 return -EBUSY; 3169 3170 mptcp_check_listen_stop(sk); 3171 mptcp_set_state(sk, TCP_CLOSE); 3172 3173 mptcp_stop_rtx_timer(sk); 3174 mptcp_stop_tout_timer(sk); 3175 3176 mptcp_pm_connection_closed(msk); 3177 3178 /* msk->subflow is still intact, the following will not free the first 3179 * subflow 3180 */ 3181 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3182 3183 /* The first subflow is already in TCP_CLOSE status, the following 3184 * can't overlap with a fallback anymore 3185 */ 3186 spin_lock_bh(&msk->fallback_lock); 3187 msk->allow_subflows = true; 3188 msk->allow_infinite_fallback = true; 3189 WRITE_ONCE(msk->flags, 0); 3190 spin_unlock_bh(&msk->fallback_lock); 3191 3192 msk->cb_flags = 0; 3193 msk->recovery = false; 3194 WRITE_ONCE(msk->can_ack, false); 3195 WRITE_ONCE(msk->fully_established, false); 3196 WRITE_ONCE(msk->rcv_data_fin, false); 3197 WRITE_ONCE(msk->snd_data_fin_enable, false); 3198 WRITE_ONCE(msk->rcv_fastclose, false); 3199 WRITE_ONCE(msk->use_64bit_ack, false); 3200 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3201 mptcp_pm_data_reset(msk); 3202 mptcp_ca_reset(sk); 3203 msk->bytes_consumed = 0; 3204 msk->bytes_acked = 0; 3205 msk->bytes_received = 0; 3206 msk->bytes_sent = 0; 3207 msk->bytes_retrans = 0; 3208 msk->rcvspace_init = 0; 3209 3210 WRITE_ONCE(sk->sk_shutdown, 0); 3211 sk_error_report(sk); 3212 return 0; 3213 } 3214 3215 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3216 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3217 { 3218 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3219 3220 return &msk6->np; 3221 } 3222 3223 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3224 { 3225 const struct ipv6_pinfo *np = inet6_sk(sk); 3226 struct ipv6_txoptions *opt; 3227 struct ipv6_pinfo *newnp; 3228 3229 newnp = inet6_sk(newsk); 3230 3231 rcu_read_lock(); 3232 opt = rcu_dereference(np->opt); 3233 if (opt) { 3234 opt = ipv6_dup_options(newsk, opt); 3235 if (!opt) 3236 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3237 } 3238 RCU_INIT_POINTER(newnp->opt, opt); 3239 rcu_read_unlock(); 3240 } 3241 #endif 3242 3243 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3244 { 3245 struct ip_options_rcu *inet_opt, *newopt = NULL; 3246 const struct inet_sock *inet = inet_sk(sk); 3247 struct inet_sock *newinet; 3248 3249 newinet = inet_sk(newsk); 3250 3251 rcu_read_lock(); 3252 inet_opt = rcu_dereference(inet->inet_opt); 3253 if (inet_opt) { 3254 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3255 inet_opt->opt.optlen, GFP_ATOMIC); 3256 if (!newopt) 3257 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3258 } 3259 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3260 rcu_read_unlock(); 3261 } 3262 3263 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3264 const struct mptcp_options_received *mp_opt, 3265 struct sock *ssk, 3266 struct request_sock *req) 3267 { 3268 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3269 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3270 struct mptcp_subflow_context *subflow; 3271 struct mptcp_sock *msk; 3272 3273 if (!nsk) 3274 return NULL; 3275 3276 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3277 if (nsk->sk_family == AF_INET6) 3278 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3279 #endif 3280 3281 __mptcp_init_sock(nsk); 3282 3283 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3284 if (nsk->sk_family == AF_INET6) 3285 mptcp_copy_ip6_options(nsk, sk); 3286 else 3287 #endif 3288 mptcp_copy_ip_options(nsk, sk); 3289 3290 msk = mptcp_sk(nsk); 3291 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3292 WRITE_ONCE(msk->token, subflow_req->token); 3293 msk->in_accept_queue = 1; 3294 WRITE_ONCE(msk->fully_established, false); 3295 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3296 WRITE_ONCE(msk->csum_enabled, true); 3297 3298 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3299 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3300 WRITE_ONCE(msk->snd_una, msk->write_seq); 3301 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3302 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3303 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3304 3305 /* passive msk is created after the first/MPC subflow */ 3306 msk->subflow_id = 2; 3307 3308 sock_reset_flag(nsk, SOCK_RCU_FREE); 3309 security_inet_csk_clone(nsk, req); 3310 3311 /* this can't race with mptcp_close(), as the msk is 3312 * not yet exposted to user-space 3313 */ 3314 mptcp_set_state(nsk, TCP_ESTABLISHED); 3315 3316 /* The msk maintain a ref to each subflow in the connections list */ 3317 WRITE_ONCE(msk->first, ssk); 3318 subflow = mptcp_subflow_ctx(ssk); 3319 list_add(&subflow->node, &msk->conn_list); 3320 sock_hold(ssk); 3321 3322 /* new mpc subflow takes ownership of the newly 3323 * created mptcp socket 3324 */ 3325 mptcp_token_accept(subflow_req, msk); 3326 3327 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3328 * uses the correct data 3329 */ 3330 mptcp_copy_inaddrs(nsk, ssk); 3331 __mptcp_propagate_sndbuf(nsk, ssk); 3332 3333 mptcp_rcv_space_init(msk, ssk); 3334 3335 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3336 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3337 bh_unlock_sock(nsk); 3338 3339 /* note: the newly allocated socket refcount is 2 now */ 3340 return nsk; 3341 } 3342 3343 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3344 { 3345 const struct tcp_sock *tp = tcp_sk(ssk); 3346 3347 msk->rcvspace_init = 1; 3348 msk->rcvq_space.copied = 0; 3349 msk->rcvq_space.rtt_us = 0; 3350 3351 msk->rcvq_space.time = tp->tcp_mstamp; 3352 3353 /* initial rcv_space offering made to peer */ 3354 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3355 TCP_INIT_CWND * tp->advmss); 3356 if (msk->rcvq_space.space == 0) 3357 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3358 } 3359 3360 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3361 { 3362 struct mptcp_subflow_context *subflow, *tmp; 3363 struct sock *sk = (struct sock *)msk; 3364 3365 __mptcp_clear_xmit(sk); 3366 3367 /* join list will be eventually flushed (with rst) at sock lock release time */ 3368 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3369 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3370 3371 __skb_queue_purge(&sk->sk_receive_queue); 3372 skb_rbtree_purge(&msk->out_of_order_queue); 3373 3374 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3375 * inet_sock_destruct() will dispose it 3376 */ 3377 mptcp_token_destroy(msk); 3378 mptcp_pm_destroy(msk); 3379 } 3380 3381 static void mptcp_destroy(struct sock *sk) 3382 { 3383 struct mptcp_sock *msk = mptcp_sk(sk); 3384 3385 /* allow the following to close even the initial subflow */ 3386 msk->free_first = 1; 3387 mptcp_destroy_common(msk, 0); 3388 sk_sockets_allocated_dec(sk); 3389 } 3390 3391 void __mptcp_data_acked(struct sock *sk) 3392 { 3393 if (!sock_owned_by_user(sk)) 3394 __mptcp_clean_una(sk); 3395 else 3396 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3397 } 3398 3399 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3400 { 3401 if (!mptcp_send_head(sk)) 3402 return; 3403 3404 if (!sock_owned_by_user(sk)) 3405 __mptcp_subflow_push_pending(sk, ssk, false); 3406 else 3407 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3408 } 3409 3410 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3411 BIT(MPTCP_RETRANSMIT) | \ 3412 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3413 BIT(MPTCP_DEQUEUE)) 3414 3415 /* processes deferred events and flush wmem */ 3416 static void mptcp_release_cb(struct sock *sk) 3417 __must_hold(&sk->sk_lock.slock) 3418 { 3419 struct mptcp_sock *msk = mptcp_sk(sk); 3420 3421 for (;;) { 3422 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3423 struct list_head join_list; 3424 3425 if (!flags) 3426 break; 3427 3428 INIT_LIST_HEAD(&join_list); 3429 list_splice_init(&msk->join_list, &join_list); 3430 3431 /* the following actions acquire the subflow socket lock 3432 * 3433 * 1) can't be invoked in atomic scope 3434 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3435 * datapath acquires the msk socket spinlock while helding 3436 * the subflow socket lock 3437 */ 3438 msk->cb_flags &= ~flags; 3439 spin_unlock_bh(&sk->sk_lock.slock); 3440 3441 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3442 __mptcp_flush_join_list(sk, &join_list); 3443 if (flags & BIT(MPTCP_PUSH_PENDING)) 3444 __mptcp_push_pending(sk, 0); 3445 if (flags & BIT(MPTCP_RETRANSMIT)) 3446 __mptcp_retrans(sk); 3447 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3448 /* notify ack seq update */ 3449 mptcp_cleanup_rbuf(msk, 0); 3450 sk->sk_data_ready(sk); 3451 } 3452 3453 cond_resched(); 3454 spin_lock_bh(&sk->sk_lock.slock); 3455 } 3456 3457 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3458 __mptcp_clean_una_wakeup(sk); 3459 if (unlikely(msk->cb_flags)) { 3460 /* be sure to sync the msk state before taking actions 3461 * depending on sk_state (MPTCP_ERROR_REPORT) 3462 * On sk release avoid actions depending on the first subflow 3463 */ 3464 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3465 __mptcp_sync_state(sk, msk->pending_state); 3466 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3467 __mptcp_error_report(sk); 3468 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3469 __mptcp_sync_sndbuf(sk); 3470 } 3471 } 3472 3473 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3474 * TCP can't schedule delack timer before the subflow is fully established. 3475 * MPTCP uses the delack timer to do 3rd ack retransmissions 3476 */ 3477 static void schedule_3rdack_retransmission(struct sock *ssk) 3478 { 3479 struct inet_connection_sock *icsk = inet_csk(ssk); 3480 struct tcp_sock *tp = tcp_sk(ssk); 3481 unsigned long timeout; 3482 3483 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3484 return; 3485 3486 /* reschedule with a timeout above RTT, as we must look only for drop */ 3487 if (tp->srtt_us) 3488 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3489 else 3490 timeout = TCP_TIMEOUT_INIT; 3491 timeout += jiffies; 3492 3493 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3494 smp_store_release(&icsk->icsk_ack.pending, 3495 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3496 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3497 } 3498 3499 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3500 { 3501 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3502 struct sock *sk = subflow->conn; 3503 3504 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3505 mptcp_data_lock(sk); 3506 if (!sock_owned_by_user(sk)) 3507 __mptcp_subflow_push_pending(sk, ssk, true); 3508 else 3509 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3510 mptcp_data_unlock(sk); 3511 } 3512 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3513 mptcp_data_lock(sk); 3514 if (!sock_owned_by_user(sk)) 3515 __mptcp_sync_sndbuf(sk); 3516 else 3517 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3518 mptcp_data_unlock(sk); 3519 } 3520 if (status & BIT(MPTCP_DELEGATE_ACK)) 3521 schedule_3rdack_retransmission(ssk); 3522 } 3523 3524 static int mptcp_hash(struct sock *sk) 3525 { 3526 /* should never be called, 3527 * we hash the TCP subflows not the MPTCP socket 3528 */ 3529 WARN_ON_ONCE(1); 3530 return 0; 3531 } 3532 3533 static void mptcp_unhash(struct sock *sk) 3534 { 3535 /* called from sk_common_release(), but nothing to do here */ 3536 } 3537 3538 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3539 { 3540 struct mptcp_sock *msk = mptcp_sk(sk); 3541 3542 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3543 if (WARN_ON_ONCE(!msk->first)) 3544 return -EINVAL; 3545 3546 return inet_csk_get_port(msk->first, snum); 3547 } 3548 3549 void mptcp_finish_connect(struct sock *ssk) 3550 { 3551 struct mptcp_subflow_context *subflow; 3552 struct mptcp_sock *msk; 3553 struct sock *sk; 3554 3555 subflow = mptcp_subflow_ctx(ssk); 3556 sk = subflow->conn; 3557 msk = mptcp_sk(sk); 3558 3559 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3560 3561 subflow->map_seq = subflow->iasn; 3562 subflow->map_subflow_seq = 1; 3563 3564 /* the socket is not connected yet, no msk/subflow ops can access/race 3565 * accessing the field below 3566 */ 3567 WRITE_ONCE(msk->local_key, subflow->local_key); 3568 3569 mptcp_pm_new_connection(msk, ssk, 0); 3570 } 3571 3572 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3573 { 3574 write_lock_bh(&sk->sk_callback_lock); 3575 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3576 sk_set_socket(sk, parent); 3577 WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid); 3578 write_unlock_bh(&sk->sk_callback_lock); 3579 } 3580 3581 bool mptcp_finish_join(struct sock *ssk) 3582 { 3583 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3584 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3585 struct sock *parent = (void *)msk; 3586 bool ret = true; 3587 3588 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3589 3590 /* mptcp socket already closing? */ 3591 if (!mptcp_is_fully_established(parent)) { 3592 subflow->reset_reason = MPTCP_RST_EMPTCP; 3593 return false; 3594 } 3595 3596 /* active subflow, already present inside the conn_list */ 3597 if (!list_empty(&subflow->node)) { 3598 spin_lock_bh(&msk->fallback_lock); 3599 if (!msk->allow_subflows) { 3600 spin_unlock_bh(&msk->fallback_lock); 3601 return false; 3602 } 3603 mptcp_subflow_joined(msk, ssk); 3604 spin_unlock_bh(&msk->fallback_lock); 3605 mptcp_propagate_sndbuf(parent, ssk); 3606 return true; 3607 } 3608 3609 if (!mptcp_pm_allow_new_subflow(msk)) { 3610 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3611 goto err_prohibited; 3612 } 3613 3614 /* If we can't acquire msk socket lock here, let the release callback 3615 * handle it 3616 */ 3617 mptcp_data_lock(parent); 3618 if (!sock_owned_by_user(parent)) { 3619 ret = __mptcp_finish_join(msk, ssk); 3620 if (ret) { 3621 sock_hold(ssk); 3622 list_add_tail(&subflow->node, &msk->conn_list); 3623 } 3624 } else { 3625 sock_hold(ssk); 3626 list_add_tail(&subflow->node, &msk->join_list); 3627 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3628 } 3629 mptcp_data_unlock(parent); 3630 3631 if (!ret) { 3632 err_prohibited: 3633 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3634 return false; 3635 } 3636 3637 return true; 3638 } 3639 3640 static void mptcp_shutdown(struct sock *sk, int how) 3641 { 3642 pr_debug("sk=%p, how=%d\n", sk, how); 3643 3644 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3645 __mptcp_wr_shutdown(sk); 3646 } 3647 3648 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3649 { 3650 const struct sock *sk = (void *)msk; 3651 u64 delta; 3652 3653 if (sk->sk_state == TCP_LISTEN) 3654 return -EINVAL; 3655 3656 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3657 return 0; 3658 3659 delta = msk->write_seq - v; 3660 if (__mptcp_check_fallback(msk) && msk->first) { 3661 struct tcp_sock *tp = tcp_sk(msk->first); 3662 3663 /* the first subflow is disconnected after close - see 3664 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3665 * so ignore that status, too. 3666 */ 3667 if (!((1 << msk->first->sk_state) & 3668 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3669 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3670 } 3671 if (delta > INT_MAX) 3672 delta = INT_MAX; 3673 3674 return (int)delta; 3675 } 3676 3677 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3678 { 3679 struct mptcp_sock *msk = mptcp_sk(sk); 3680 bool slow; 3681 3682 switch (cmd) { 3683 case SIOCINQ: 3684 if (sk->sk_state == TCP_LISTEN) 3685 return -EINVAL; 3686 3687 lock_sock(sk); 3688 if (__mptcp_move_skbs(sk)) 3689 mptcp_cleanup_rbuf(msk, 0); 3690 *karg = mptcp_inq_hint(sk); 3691 release_sock(sk); 3692 break; 3693 case SIOCOUTQ: 3694 slow = lock_sock_fast(sk); 3695 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3696 unlock_sock_fast(sk, slow); 3697 break; 3698 case SIOCOUTQNSD: 3699 slow = lock_sock_fast(sk); 3700 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3701 unlock_sock_fast(sk, slow); 3702 break; 3703 default: 3704 return -ENOIOCTLCMD; 3705 } 3706 3707 return 0; 3708 } 3709 3710 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3711 { 3712 struct mptcp_subflow_context *subflow; 3713 struct mptcp_sock *msk = mptcp_sk(sk); 3714 int err = -EINVAL; 3715 struct sock *ssk; 3716 3717 ssk = __mptcp_nmpc_sk(msk); 3718 if (IS_ERR(ssk)) 3719 return PTR_ERR(ssk); 3720 3721 mptcp_set_state(sk, TCP_SYN_SENT); 3722 subflow = mptcp_subflow_ctx(ssk); 3723 #ifdef CONFIG_TCP_MD5SIG 3724 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3725 * TCP option space. 3726 */ 3727 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3728 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3729 #endif 3730 if (subflow->request_mptcp) { 3731 if (mptcp_active_should_disable(sk)) 3732 mptcp_early_fallback(msk, subflow, 3733 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3734 else if (mptcp_token_new_connect(ssk) < 0) 3735 mptcp_early_fallback(msk, subflow, 3736 MPTCP_MIB_TOKENFALLBACKINIT); 3737 } 3738 3739 WRITE_ONCE(msk->write_seq, subflow->idsn); 3740 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3741 WRITE_ONCE(msk->snd_una, subflow->idsn); 3742 if (likely(!__mptcp_check_fallback(msk))) 3743 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3744 3745 /* if reaching here via the fastopen/sendmsg path, the caller already 3746 * acquired the subflow socket lock, too. 3747 */ 3748 if (!msk->fastopening) 3749 lock_sock(ssk); 3750 3751 /* the following mirrors closely a very small chunk of code from 3752 * __inet_stream_connect() 3753 */ 3754 if (ssk->sk_state != TCP_CLOSE) 3755 goto out; 3756 3757 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3758 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3759 if (err) 3760 goto out; 3761 } 3762 3763 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3764 if (err < 0) 3765 goto out; 3766 3767 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3768 3769 out: 3770 if (!msk->fastopening) 3771 release_sock(ssk); 3772 3773 /* on successful connect, the msk state will be moved to established by 3774 * subflow_finish_connect() 3775 */ 3776 if (unlikely(err)) { 3777 /* avoid leaving a dangling token in an unconnected socket */ 3778 mptcp_token_destroy(msk); 3779 mptcp_set_state(sk, TCP_CLOSE); 3780 return err; 3781 } 3782 3783 mptcp_copy_inaddrs(sk, ssk); 3784 return 0; 3785 } 3786 3787 static struct proto mptcp_prot = { 3788 .name = "MPTCP", 3789 .owner = THIS_MODULE, 3790 .init = mptcp_init_sock, 3791 .connect = mptcp_connect, 3792 .disconnect = mptcp_disconnect, 3793 .close = mptcp_close, 3794 .setsockopt = mptcp_setsockopt, 3795 .getsockopt = mptcp_getsockopt, 3796 .shutdown = mptcp_shutdown, 3797 .destroy = mptcp_destroy, 3798 .sendmsg = mptcp_sendmsg, 3799 .ioctl = mptcp_ioctl, 3800 .recvmsg = mptcp_recvmsg, 3801 .release_cb = mptcp_release_cb, 3802 .hash = mptcp_hash, 3803 .unhash = mptcp_unhash, 3804 .get_port = mptcp_get_port, 3805 .stream_memory_free = mptcp_stream_memory_free, 3806 .sockets_allocated = &mptcp_sockets_allocated, 3807 3808 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3809 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3810 3811 .memory_pressure = &tcp_memory_pressure, 3812 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3813 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3814 .sysctl_mem = sysctl_tcp_mem, 3815 .obj_size = sizeof(struct mptcp_sock), 3816 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3817 .no_autobind = true, 3818 }; 3819 3820 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3821 { 3822 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3823 struct sock *ssk, *sk = sock->sk; 3824 int err = -EINVAL; 3825 3826 lock_sock(sk); 3827 ssk = __mptcp_nmpc_sk(msk); 3828 if (IS_ERR(ssk)) { 3829 err = PTR_ERR(ssk); 3830 goto unlock; 3831 } 3832 3833 if (sk->sk_family == AF_INET) 3834 err = inet_bind_sk(ssk, uaddr, addr_len); 3835 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3836 else if (sk->sk_family == AF_INET6) 3837 err = inet6_bind_sk(ssk, uaddr, addr_len); 3838 #endif 3839 if (!err) 3840 mptcp_copy_inaddrs(sk, ssk); 3841 3842 unlock: 3843 release_sock(sk); 3844 return err; 3845 } 3846 3847 static int mptcp_listen(struct socket *sock, int backlog) 3848 { 3849 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3850 struct sock *sk = sock->sk; 3851 struct sock *ssk; 3852 int err; 3853 3854 pr_debug("msk=%p\n", msk); 3855 3856 lock_sock(sk); 3857 3858 err = -EINVAL; 3859 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3860 goto unlock; 3861 3862 ssk = __mptcp_nmpc_sk(msk); 3863 if (IS_ERR(ssk)) { 3864 err = PTR_ERR(ssk); 3865 goto unlock; 3866 } 3867 3868 mptcp_set_state(sk, TCP_LISTEN); 3869 sock_set_flag(sk, SOCK_RCU_FREE); 3870 3871 lock_sock(ssk); 3872 err = __inet_listen_sk(ssk, backlog); 3873 release_sock(ssk); 3874 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3875 3876 if (!err) { 3877 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3878 mptcp_copy_inaddrs(sk, ssk); 3879 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3880 } 3881 3882 unlock: 3883 release_sock(sk); 3884 return err; 3885 } 3886 3887 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3888 struct proto_accept_arg *arg) 3889 { 3890 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3891 struct sock *ssk, *newsk; 3892 3893 pr_debug("msk=%p\n", msk); 3894 3895 /* Buggy applications can call accept on socket states other then LISTEN 3896 * but no need to allocate the first subflow just to error out. 3897 */ 3898 ssk = READ_ONCE(msk->first); 3899 if (!ssk) 3900 return -EINVAL; 3901 3902 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3903 newsk = inet_csk_accept(ssk, arg); 3904 if (!newsk) 3905 return arg->err; 3906 3907 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3908 if (sk_is_mptcp(newsk)) { 3909 struct mptcp_subflow_context *subflow; 3910 struct sock *new_mptcp_sock; 3911 3912 subflow = mptcp_subflow_ctx(newsk); 3913 new_mptcp_sock = subflow->conn; 3914 3915 /* is_mptcp should be false if subflow->conn is missing, see 3916 * subflow_syn_recv_sock() 3917 */ 3918 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3919 tcp_sk(newsk)->is_mptcp = 0; 3920 goto tcpfallback; 3921 } 3922 3923 newsk = new_mptcp_sock; 3924 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3925 3926 newsk->sk_kern_sock = arg->kern; 3927 lock_sock(newsk); 3928 __inet_accept(sock, newsock, newsk); 3929 3930 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3931 msk = mptcp_sk(newsk); 3932 msk->in_accept_queue = 0; 3933 3934 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3935 * This is needed so NOSPACE flag can be set from tcp stack. 3936 */ 3937 mptcp_for_each_subflow(msk, subflow) { 3938 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3939 3940 if (!ssk->sk_socket) 3941 mptcp_sock_graft(ssk, newsock); 3942 } 3943 3944 mptcp_rps_record_subflows(msk); 3945 3946 /* Do late cleanup for the first subflow as necessary. Also 3947 * deal with bad peers not doing a complete shutdown. 3948 */ 3949 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3950 __mptcp_close_ssk(newsk, msk->first, 3951 mptcp_subflow_ctx(msk->first), 0); 3952 if (unlikely(list_is_singular(&msk->conn_list))) 3953 mptcp_set_state(newsk, TCP_CLOSE); 3954 } 3955 } else { 3956 tcpfallback: 3957 newsk->sk_kern_sock = arg->kern; 3958 lock_sock(newsk); 3959 __inet_accept(sock, newsock, newsk); 3960 /* we are being invoked after accepting a non-mp-capable 3961 * flow: sk is a tcp_sk, not an mptcp one. 3962 * 3963 * Hand the socket over to tcp so all further socket ops 3964 * bypass mptcp. 3965 */ 3966 WRITE_ONCE(newsock->sk->sk_socket->ops, 3967 mptcp_fallback_tcp_ops(newsock->sk)); 3968 } 3969 release_sock(newsk); 3970 3971 return 0; 3972 } 3973 3974 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3975 { 3976 struct sock *sk = (struct sock *)msk; 3977 3978 if (__mptcp_stream_is_writeable(sk, 1)) 3979 return EPOLLOUT | EPOLLWRNORM; 3980 3981 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3982 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3983 if (__mptcp_stream_is_writeable(sk, 1)) 3984 return EPOLLOUT | EPOLLWRNORM; 3985 3986 return 0; 3987 } 3988 3989 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3990 struct poll_table_struct *wait) 3991 { 3992 struct sock *sk = sock->sk; 3993 struct mptcp_sock *msk; 3994 __poll_t mask = 0; 3995 u8 shutdown; 3996 int state; 3997 3998 msk = mptcp_sk(sk); 3999 sock_poll_wait(file, sock, wait); 4000 4001 state = inet_sk_state_load(sk); 4002 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4003 if (state == TCP_LISTEN) { 4004 struct sock *ssk = READ_ONCE(msk->first); 4005 4006 if (WARN_ON_ONCE(!ssk)) 4007 return 0; 4008 4009 return inet_csk_listen_poll(ssk); 4010 } 4011 4012 shutdown = READ_ONCE(sk->sk_shutdown); 4013 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4014 mask |= EPOLLHUP; 4015 if (shutdown & RCV_SHUTDOWN) 4016 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4017 4018 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4019 mask |= mptcp_check_readable(sk); 4020 if (shutdown & SEND_SHUTDOWN) 4021 mask |= EPOLLOUT | EPOLLWRNORM; 4022 else 4023 mask |= mptcp_check_writeable(msk); 4024 } else if (state == TCP_SYN_SENT && 4025 inet_test_bit(DEFER_CONNECT, sk)) { 4026 /* cf tcp_poll() note about TFO */ 4027 mask |= EPOLLOUT | EPOLLWRNORM; 4028 } 4029 4030 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4031 smp_rmb(); 4032 if (READ_ONCE(sk->sk_err)) 4033 mask |= EPOLLERR; 4034 4035 return mask; 4036 } 4037 4038 static const struct proto_ops mptcp_stream_ops = { 4039 .family = PF_INET, 4040 .owner = THIS_MODULE, 4041 .release = inet_release, 4042 .bind = mptcp_bind, 4043 .connect = inet_stream_connect, 4044 .socketpair = sock_no_socketpair, 4045 .accept = mptcp_stream_accept, 4046 .getname = inet_getname, 4047 .poll = mptcp_poll, 4048 .ioctl = inet_ioctl, 4049 .gettstamp = sock_gettstamp, 4050 .listen = mptcp_listen, 4051 .shutdown = inet_shutdown, 4052 .setsockopt = sock_common_setsockopt, 4053 .getsockopt = sock_common_getsockopt, 4054 .sendmsg = inet_sendmsg, 4055 .recvmsg = inet_recvmsg, 4056 .mmap = sock_no_mmap, 4057 .set_rcvlowat = mptcp_set_rcvlowat, 4058 }; 4059 4060 static struct inet_protosw mptcp_protosw = { 4061 .type = SOCK_STREAM, 4062 .protocol = IPPROTO_MPTCP, 4063 .prot = &mptcp_prot, 4064 .ops = &mptcp_stream_ops, 4065 .flags = INET_PROTOSW_ICSK, 4066 }; 4067 4068 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4069 { 4070 struct mptcp_delegated_action *delegated; 4071 struct mptcp_subflow_context *subflow; 4072 int work_done = 0; 4073 4074 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4075 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4076 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4077 4078 bh_lock_sock_nested(ssk); 4079 if (!sock_owned_by_user(ssk)) { 4080 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4081 } else { 4082 /* tcp_release_cb_override already processed 4083 * the action or will do at next release_sock(). 4084 * In both case must dequeue the subflow here - on the same 4085 * CPU that scheduled it. 4086 */ 4087 smp_wmb(); 4088 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4089 } 4090 bh_unlock_sock(ssk); 4091 sock_put(ssk); 4092 4093 if (++work_done == budget) 4094 return budget; 4095 } 4096 4097 /* always provide a 0 'work_done' argument, so that napi_complete_done 4098 * will not try accessing the NULL napi->dev ptr 4099 */ 4100 napi_complete_done(napi, 0); 4101 return work_done; 4102 } 4103 4104 void __init mptcp_proto_init(void) 4105 { 4106 struct mptcp_delegated_action *delegated; 4107 int cpu; 4108 4109 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4110 4111 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4112 panic("Failed to allocate MPTCP pcpu counter\n"); 4113 4114 mptcp_napi_dev = alloc_netdev_dummy(0); 4115 if (!mptcp_napi_dev) 4116 panic("Failed to allocate MPTCP dummy netdev\n"); 4117 for_each_possible_cpu(cpu) { 4118 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4119 INIT_LIST_HEAD(&delegated->head); 4120 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4121 mptcp_napi_poll); 4122 napi_enable(&delegated->napi); 4123 } 4124 4125 mptcp_subflow_init(); 4126 mptcp_pm_init(); 4127 mptcp_sched_init(); 4128 mptcp_token_init(); 4129 4130 if (proto_register(&mptcp_prot, 1) != 0) 4131 panic("Failed to register MPTCP proto.\n"); 4132 4133 inet_register_protosw(&mptcp_protosw); 4134 4135 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4136 } 4137 4138 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4139 static const struct proto_ops mptcp_v6_stream_ops = { 4140 .family = PF_INET6, 4141 .owner = THIS_MODULE, 4142 .release = inet6_release, 4143 .bind = mptcp_bind, 4144 .connect = inet_stream_connect, 4145 .socketpair = sock_no_socketpair, 4146 .accept = mptcp_stream_accept, 4147 .getname = inet6_getname, 4148 .poll = mptcp_poll, 4149 .ioctl = inet6_ioctl, 4150 .gettstamp = sock_gettstamp, 4151 .listen = mptcp_listen, 4152 .shutdown = inet_shutdown, 4153 .setsockopt = sock_common_setsockopt, 4154 .getsockopt = sock_common_getsockopt, 4155 .sendmsg = inet6_sendmsg, 4156 .recvmsg = inet6_recvmsg, 4157 .mmap = sock_no_mmap, 4158 #ifdef CONFIG_COMPAT 4159 .compat_ioctl = inet6_compat_ioctl, 4160 #endif 4161 .set_rcvlowat = mptcp_set_rcvlowat, 4162 }; 4163 4164 static struct proto mptcp_v6_prot; 4165 4166 static struct inet_protosw mptcp_v6_protosw = { 4167 .type = SOCK_STREAM, 4168 .protocol = IPPROTO_MPTCP, 4169 .prot = &mptcp_v6_prot, 4170 .ops = &mptcp_v6_stream_ops, 4171 .flags = INET_PROTOSW_ICSK, 4172 }; 4173 4174 int __init mptcp_proto_v6_init(void) 4175 { 4176 int err; 4177 4178 mptcp_v6_prot = mptcp_prot; 4179 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4180 mptcp_v6_prot.slab = NULL; 4181 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4182 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4183 4184 err = proto_register(&mptcp_v6_prot, 1); 4185 if (err) 4186 return err; 4187 4188 err = inet6_register_protosw(&mptcp_v6_protosw); 4189 if (err) 4190 proto_unregister(&mptcp_v6_prot); 4191 4192 return err; 4193 } 4194 #endif 4195