xref: /linux/net/mptcp/protocol.c (revision a126eca844353360ebafa9088d22865cb8e022e3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/hotdata.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 	}
111 
112 	return msk->first;
113 }
114 
115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 	sk_drops_add(sk, skb);
118 	__kfree_skb(skb);
119 }
120 
121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
122 {
123 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
124 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
125 }
126 
127 static void mptcp_rmem_charge(struct sock *sk, int size)
128 {
129 	mptcp_rmem_fwd_alloc_add(sk, -size);
130 }
131 
132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
133 			       struct sk_buff *from)
134 {
135 	bool fragstolen;
136 	int delta;
137 
138 	if (MPTCP_SKB_CB(from)->offset ||
139 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
140 		return false;
141 
142 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
143 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
144 		 to->len, MPTCP_SKB_CB(from)->end_seq);
145 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
146 
147 	/* note the fwd memory can reach a negative value after accounting
148 	 * for the delta, but the later skb free will restore a non
149 	 * negative one
150 	 */
151 	atomic_add(delta, &sk->sk_rmem_alloc);
152 	mptcp_rmem_charge(sk, delta);
153 	kfree_skb_partial(from, fragstolen);
154 
155 	return true;
156 }
157 
158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
159 				   struct sk_buff *from)
160 {
161 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
162 		return false;
163 
164 	return mptcp_try_coalesce((struct sock *)msk, to, from);
165 }
166 
167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
168 {
169 	amount >>= PAGE_SHIFT;
170 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
171 	__sk_mem_reduce_allocated(sk, amount);
172 }
173 
174 static void mptcp_rmem_uncharge(struct sock *sk, int size)
175 {
176 	struct mptcp_sock *msk = mptcp_sk(sk);
177 	int reclaimable;
178 
179 	mptcp_rmem_fwd_alloc_add(sk, size);
180 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
181 
182 	/* see sk_mem_uncharge() for the rationale behind the following schema */
183 	if (unlikely(reclaimable >= PAGE_SIZE))
184 		__mptcp_rmem_reclaim(sk, reclaimable);
185 }
186 
187 static void mptcp_rfree(struct sk_buff *skb)
188 {
189 	unsigned int len = skb->truesize;
190 	struct sock *sk = skb->sk;
191 
192 	atomic_sub(len, &sk->sk_rmem_alloc);
193 	mptcp_rmem_uncharge(sk, len);
194 }
195 
196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
197 {
198 	skb_orphan(skb);
199 	skb->sk = sk;
200 	skb->destructor = mptcp_rfree;
201 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
202 	mptcp_rmem_charge(sk, skb->truesize);
203 }
204 
205 /* "inspired" by tcp_data_queue_ofo(), main differences:
206  * - use mptcp seqs
207  * - don't cope with sacks
208  */
209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
210 {
211 	struct sock *sk = (struct sock *)msk;
212 	struct rb_node **p, *parent;
213 	u64 seq, end_seq, max_seq;
214 	struct sk_buff *skb1;
215 
216 	seq = MPTCP_SKB_CB(skb)->map_seq;
217 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
218 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
219 
220 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
221 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
222 	if (after64(end_seq, max_seq)) {
223 		/* out of window */
224 		mptcp_drop(sk, skb);
225 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
226 			 (unsigned long long)end_seq - (unsigned long)max_seq,
227 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
228 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
229 		return;
230 	}
231 
232 	p = &msk->out_of_order_queue.rb_node;
233 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
234 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
235 		rb_link_node(&skb->rbnode, NULL, p);
236 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
237 		msk->ooo_last_skb = skb;
238 		goto end;
239 	}
240 
241 	/* with 2 subflows, adding at end of ooo queue is quite likely
242 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
243 	 */
244 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
247 		return;
248 	}
249 
250 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
251 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
252 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
253 		parent = &msk->ooo_last_skb->rbnode;
254 		p = &parent->rb_right;
255 		goto insert;
256 	}
257 
258 	/* Find place to insert this segment. Handle overlaps on the way. */
259 	parent = NULL;
260 	while (*p) {
261 		parent = *p;
262 		skb1 = rb_to_skb(parent);
263 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
264 			p = &parent->rb_left;
265 			continue;
266 		}
267 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
268 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 				/* All the bits are present. Drop. */
270 				mptcp_drop(sk, skb);
271 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
272 				return;
273 			}
274 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
275 				/* partial overlap:
276 				 *     |     skb      |
277 				 *  |     skb1    |
278 				 * continue traversing
279 				 */
280 			} else {
281 				/* skb's seq == skb1's seq and skb covers skb1.
282 				 * Replace skb1 with skb.
283 				 */
284 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
285 						&msk->out_of_order_queue);
286 				mptcp_drop(sk, skb1);
287 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 				goto merge_right;
289 			}
290 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
291 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
292 			return;
293 		}
294 		p = &parent->rb_right;
295 	}
296 
297 insert:
298 	/* Insert segment into RB tree. */
299 	rb_link_node(&skb->rbnode, parent, p);
300 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
301 
302 merge_right:
303 	/* Remove other segments covered by skb. */
304 	while ((skb1 = skb_rb_next(skb)) != NULL) {
305 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
306 			break;
307 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
308 		mptcp_drop(sk, skb1);
309 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
310 	}
311 	/* If there is no skb after us, we are the last_skb ! */
312 	if (!skb1)
313 		msk->ooo_last_skb = skb;
314 
315 end:
316 	skb_condense(skb);
317 	mptcp_set_owner_r(skb, sk);
318 }
319 
320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
321 {
322 	struct mptcp_sock *msk = mptcp_sk(sk);
323 	int amt, amount;
324 
325 	if (size <= msk->rmem_fwd_alloc)
326 		return true;
327 
328 	size -= msk->rmem_fwd_alloc;
329 	amt = sk_mem_pages(size);
330 	amount = amt << PAGE_SHIFT;
331 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
332 		return false;
333 
334 	mptcp_rmem_fwd_alloc_add(sk, amount);
335 	return true;
336 }
337 
338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
339 			     struct sk_buff *skb, unsigned int offset,
340 			     size_t copy_len)
341 {
342 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
343 	struct sock *sk = (struct sock *)msk;
344 	struct sk_buff *tail;
345 	bool has_rxtstamp;
346 
347 	__skb_unlink(skb, &ssk->sk_receive_queue);
348 
349 	skb_ext_reset(skb);
350 	skb_orphan(skb);
351 
352 	/* try to fetch required memory from subflow */
353 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
354 		goto drop;
355 
356 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
357 
358 	/* the skb map_seq accounts for the skb offset:
359 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
360 	 * value
361 	 */
362 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
363 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
364 	MPTCP_SKB_CB(skb)->offset = offset;
365 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
366 
367 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
368 		/* in sequence */
369 		msk->bytes_received += copy_len;
370 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
371 		tail = skb_peek_tail(&sk->sk_receive_queue);
372 		if (tail && mptcp_try_coalesce(sk, tail, skb))
373 			return true;
374 
375 		mptcp_set_owner_r(skb, sk);
376 		__skb_queue_tail(&sk->sk_receive_queue, skb);
377 		return true;
378 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
379 		mptcp_data_queue_ofo(msk, skb);
380 		return false;
381 	}
382 
383 	/* old data, keep it simple and drop the whole pkt, sender
384 	 * will retransmit as needed, if needed.
385 	 */
386 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
387 drop:
388 	mptcp_drop(sk, skb);
389 	return false;
390 }
391 
392 static void mptcp_stop_rtx_timer(struct sock *sk)
393 {
394 	struct inet_connection_sock *icsk = inet_csk(sk);
395 
396 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
397 	mptcp_sk(sk)->timer_ival = 0;
398 }
399 
400 static void mptcp_close_wake_up(struct sock *sk)
401 {
402 	if (sock_flag(sk, SOCK_DEAD))
403 		return;
404 
405 	sk->sk_state_change(sk);
406 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
407 	    sk->sk_state == TCP_CLOSE)
408 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
409 	else
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
411 }
412 
413 /* called under the msk socket lock */
414 static bool mptcp_pending_data_fin_ack(struct sock *sk)
415 {
416 	struct mptcp_sock *msk = mptcp_sk(sk);
417 
418 	return ((1 << sk->sk_state) &
419 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
420 	       msk->write_seq == READ_ONCE(msk->snd_una);
421 }
422 
423 static void mptcp_check_data_fin_ack(struct sock *sk)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	/* Look for an acknowledged DATA_FIN */
428 	if (mptcp_pending_data_fin_ack(sk)) {
429 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
430 
431 		switch (sk->sk_state) {
432 		case TCP_FIN_WAIT1:
433 			mptcp_set_state(sk, TCP_FIN_WAIT2);
434 			break;
435 		case TCP_CLOSING:
436 		case TCP_LAST_ACK:
437 			mptcp_set_state(sk, TCP_CLOSE);
438 			break;
439 		}
440 
441 		mptcp_close_wake_up(sk);
442 	}
443 }
444 
445 /* can be called with no lock acquired */
446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
447 {
448 	struct mptcp_sock *msk = mptcp_sk(sk);
449 
450 	if (READ_ONCE(msk->rcv_data_fin) &&
451 	    ((1 << inet_sk_state_load(sk)) &
452 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
453 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
454 
455 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
456 			if (seq)
457 				*seq = rcv_data_fin_seq;
458 
459 			return true;
460 		}
461 	}
462 
463 	return false;
464 }
465 
466 static void mptcp_set_datafin_timeout(struct sock *sk)
467 {
468 	struct inet_connection_sock *icsk = inet_csk(sk);
469 	u32 retransmits;
470 
471 	retransmits = min_t(u32, icsk->icsk_retransmits,
472 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
473 
474 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
475 }
476 
477 static void __mptcp_set_timeout(struct sock *sk, long tout)
478 {
479 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
480 }
481 
482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
483 {
484 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
485 
486 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
487 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
488 }
489 
490 static void mptcp_set_timeout(struct sock *sk)
491 {
492 	struct mptcp_subflow_context *subflow;
493 	long tout = 0;
494 
495 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
496 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
497 	__mptcp_set_timeout(sk, tout);
498 }
499 
500 static inline bool tcp_can_send_ack(const struct sock *ssk)
501 {
502 	return !((1 << inet_sk_state_load(ssk)) &
503 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
504 }
505 
506 void __mptcp_subflow_send_ack(struct sock *ssk)
507 {
508 	if (tcp_can_send_ack(ssk))
509 		tcp_send_ack(ssk);
510 }
511 
512 static void mptcp_subflow_send_ack(struct sock *ssk)
513 {
514 	bool slow;
515 
516 	slow = lock_sock_fast(ssk);
517 	__mptcp_subflow_send_ack(ssk);
518 	unlock_sock_fast(ssk, slow);
519 }
520 
521 static void mptcp_send_ack(struct mptcp_sock *msk)
522 {
523 	struct mptcp_subflow_context *subflow;
524 
525 	mptcp_for_each_subflow(msk, subflow)
526 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
527 }
528 
529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
530 {
531 	bool slow;
532 
533 	slow = lock_sock_fast(ssk);
534 	if (tcp_can_send_ack(ssk))
535 		tcp_cleanup_rbuf(ssk, 1);
536 	unlock_sock_fast(ssk, slow);
537 }
538 
539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
540 {
541 	const struct inet_connection_sock *icsk = inet_csk(ssk);
542 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
543 	const struct tcp_sock *tp = tcp_sk(ssk);
544 
545 	return (ack_pending & ICSK_ACK_SCHED) &&
546 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
547 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
548 		 (rx_empty && ack_pending &
549 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
550 }
551 
552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
553 {
554 	int old_space = READ_ONCE(msk->old_wspace);
555 	struct mptcp_subflow_context *subflow;
556 	struct sock *sk = (struct sock *)msk;
557 	int space =  __mptcp_space(sk);
558 	bool cleanup, rx_empty;
559 
560 	cleanup = (space > 0) && (space >= (old_space << 1));
561 	rx_empty = !__mptcp_rmem(sk);
562 
563 	mptcp_for_each_subflow(msk, subflow) {
564 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
565 
566 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
567 			mptcp_subflow_cleanup_rbuf(ssk);
568 	}
569 }
570 
571 static bool mptcp_check_data_fin(struct sock *sk)
572 {
573 	struct mptcp_sock *msk = mptcp_sk(sk);
574 	u64 rcv_data_fin_seq;
575 	bool ret = false;
576 
577 	/* Need to ack a DATA_FIN received from a peer while this side
578 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
579 	 * msk->rcv_data_fin was set when parsing the incoming options
580 	 * at the subflow level and the msk lock was not held, so this
581 	 * is the first opportunity to act on the DATA_FIN and change
582 	 * the msk state.
583 	 *
584 	 * If we are caught up to the sequence number of the incoming
585 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
586 	 * not caught up, do nothing and let the recv code send DATA_ACK
587 	 * when catching up.
588 	 */
589 
590 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
591 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
592 		WRITE_ONCE(msk->rcv_data_fin, 0);
593 
594 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
595 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
596 
597 		switch (sk->sk_state) {
598 		case TCP_ESTABLISHED:
599 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
600 			break;
601 		case TCP_FIN_WAIT1:
602 			mptcp_set_state(sk, TCP_CLOSING);
603 			break;
604 		case TCP_FIN_WAIT2:
605 			mptcp_set_state(sk, TCP_CLOSE);
606 			break;
607 		default:
608 			/* Other states not expected */
609 			WARN_ON_ONCE(1);
610 			break;
611 		}
612 
613 		ret = true;
614 		if (!__mptcp_check_fallback(msk))
615 			mptcp_send_ack(msk);
616 		mptcp_close_wake_up(sk);
617 	}
618 	return ret;
619 }
620 
621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
622 					   struct sock *ssk,
623 					   unsigned int *bytes)
624 {
625 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
626 	struct sock *sk = (struct sock *)msk;
627 	unsigned int moved = 0;
628 	bool more_data_avail;
629 	struct tcp_sock *tp;
630 	bool done = false;
631 	int sk_rbuf;
632 
633 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
634 
635 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
636 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
637 
638 		if (unlikely(ssk_rbuf > sk_rbuf)) {
639 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
640 			sk_rbuf = ssk_rbuf;
641 		}
642 	}
643 
644 	pr_debug("msk=%p ssk=%p", msk, ssk);
645 	tp = tcp_sk(ssk);
646 	do {
647 		u32 map_remaining, offset;
648 		u32 seq = tp->copied_seq;
649 		struct sk_buff *skb;
650 		bool fin;
651 
652 		/* try to move as much data as available */
653 		map_remaining = subflow->map_data_len -
654 				mptcp_subflow_get_map_offset(subflow);
655 
656 		skb = skb_peek(&ssk->sk_receive_queue);
657 		if (!skb) {
658 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
659 			 * a different CPU can have already processed the pending
660 			 * data, stop here or we can enter an infinite loop
661 			 */
662 			if (!moved)
663 				done = true;
664 			break;
665 		}
666 
667 		if (__mptcp_check_fallback(msk)) {
668 			/* Under fallback skbs have no MPTCP extension and TCP could
669 			 * collapse them between the dummy map creation and the
670 			 * current dequeue. Be sure to adjust the map size.
671 			 */
672 			map_remaining = skb->len;
673 			subflow->map_data_len = skb->len;
674 		}
675 
676 		offset = seq - TCP_SKB_CB(skb)->seq;
677 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
678 		if (fin) {
679 			done = true;
680 			seq++;
681 		}
682 
683 		if (offset < skb->len) {
684 			size_t len = skb->len - offset;
685 
686 			if (tp->urg_data)
687 				done = true;
688 
689 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
690 				moved += len;
691 			seq += len;
692 
693 			if (WARN_ON_ONCE(map_remaining < len))
694 				break;
695 		} else {
696 			WARN_ON_ONCE(!fin);
697 			sk_eat_skb(ssk, skb);
698 			done = true;
699 		}
700 
701 		WRITE_ONCE(tp->copied_seq, seq);
702 		more_data_avail = mptcp_subflow_data_available(ssk);
703 
704 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
705 			done = true;
706 			break;
707 		}
708 	} while (more_data_avail);
709 
710 	if (moved > 0)
711 		msk->last_data_recv = tcp_jiffies32;
712 	*bytes += moved;
713 	return done;
714 }
715 
716 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
717 {
718 	struct sock *sk = (struct sock *)msk;
719 	struct sk_buff *skb, *tail;
720 	bool moved = false;
721 	struct rb_node *p;
722 	u64 end_seq;
723 
724 	p = rb_first(&msk->out_of_order_queue);
725 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
726 	while (p) {
727 		skb = rb_to_skb(p);
728 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
729 			break;
730 
731 		p = rb_next(p);
732 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
733 
734 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
735 				      msk->ack_seq))) {
736 			mptcp_drop(sk, skb);
737 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
738 			continue;
739 		}
740 
741 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
742 		tail = skb_peek_tail(&sk->sk_receive_queue);
743 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
744 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
745 
746 			/* skip overlapping data, if any */
747 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
748 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
749 				 delta);
750 			MPTCP_SKB_CB(skb)->offset += delta;
751 			MPTCP_SKB_CB(skb)->map_seq += delta;
752 			__skb_queue_tail(&sk->sk_receive_queue, skb);
753 		}
754 		msk->bytes_received += end_seq - msk->ack_seq;
755 		WRITE_ONCE(msk->ack_seq, end_seq);
756 		moved = true;
757 	}
758 	return moved;
759 }
760 
761 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
762 {
763 	int err = sock_error(ssk);
764 	int ssk_state;
765 
766 	if (!err)
767 		return false;
768 
769 	/* only propagate errors on fallen-back sockets or
770 	 * on MPC connect
771 	 */
772 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
773 		return false;
774 
775 	/* We need to propagate only transition to CLOSE state.
776 	 * Orphaned socket will see such state change via
777 	 * subflow_sched_work_if_closed() and that path will properly
778 	 * destroy the msk as needed.
779 	 */
780 	ssk_state = inet_sk_state_load(ssk);
781 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
782 		mptcp_set_state(sk, ssk_state);
783 	WRITE_ONCE(sk->sk_err, -err);
784 
785 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
786 	smp_wmb();
787 	sk_error_report(sk);
788 	return true;
789 }
790 
791 void __mptcp_error_report(struct sock *sk)
792 {
793 	struct mptcp_subflow_context *subflow;
794 	struct mptcp_sock *msk = mptcp_sk(sk);
795 
796 	mptcp_for_each_subflow(msk, subflow)
797 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
798 			break;
799 }
800 
801 /* In most cases we will be able to lock the mptcp socket.  If its already
802  * owned, we need to defer to the work queue to avoid ABBA deadlock.
803  */
804 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
805 {
806 	struct sock *sk = (struct sock *)msk;
807 	unsigned int moved = 0;
808 
809 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
810 	__mptcp_ofo_queue(msk);
811 	if (unlikely(ssk->sk_err)) {
812 		if (!sock_owned_by_user(sk))
813 			__mptcp_error_report(sk);
814 		else
815 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
816 	}
817 
818 	/* If the moves have caught up with the DATA_FIN sequence number
819 	 * it's time to ack the DATA_FIN and change socket state, but
820 	 * this is not a good place to change state. Let the workqueue
821 	 * do it.
822 	 */
823 	if (mptcp_pending_data_fin(sk, NULL))
824 		mptcp_schedule_work(sk);
825 	return moved > 0;
826 }
827 
828 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
829 {
830 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
831 	struct mptcp_sock *msk = mptcp_sk(sk);
832 	int sk_rbuf, ssk_rbuf;
833 
834 	/* The peer can send data while we are shutting down this
835 	 * subflow at msk destruction time, but we must avoid enqueuing
836 	 * more data to the msk receive queue
837 	 */
838 	if (unlikely(subflow->disposable))
839 		return;
840 
841 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
842 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
843 	if (unlikely(ssk_rbuf > sk_rbuf))
844 		sk_rbuf = ssk_rbuf;
845 
846 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
847 	if (__mptcp_rmem(sk) > sk_rbuf) {
848 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
849 		return;
850 	}
851 
852 	/* Wake-up the reader only for in-sequence data */
853 	mptcp_data_lock(sk);
854 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
855 		sk->sk_data_ready(sk);
856 	mptcp_data_unlock(sk);
857 }
858 
859 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
860 {
861 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
862 	WRITE_ONCE(msk->allow_infinite_fallback, false);
863 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
864 }
865 
866 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
867 {
868 	struct sock *sk = (struct sock *)msk;
869 
870 	if (sk->sk_state != TCP_ESTABLISHED)
871 		return false;
872 
873 	/* attach to msk socket only after we are sure we will deal with it
874 	 * at close time
875 	 */
876 	if (sk->sk_socket && !ssk->sk_socket)
877 		mptcp_sock_graft(ssk, sk->sk_socket);
878 
879 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
880 	mptcp_sockopt_sync_locked(msk, ssk);
881 	mptcp_subflow_joined(msk, ssk);
882 	mptcp_stop_tout_timer(sk);
883 	__mptcp_propagate_sndbuf(sk, ssk);
884 	return true;
885 }
886 
887 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
888 {
889 	struct mptcp_subflow_context *tmp, *subflow;
890 	struct mptcp_sock *msk = mptcp_sk(sk);
891 
892 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
893 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
894 		bool slow = lock_sock_fast(ssk);
895 
896 		list_move_tail(&subflow->node, &msk->conn_list);
897 		if (!__mptcp_finish_join(msk, ssk))
898 			mptcp_subflow_reset(ssk);
899 		unlock_sock_fast(ssk, slow);
900 	}
901 }
902 
903 static bool mptcp_rtx_timer_pending(struct sock *sk)
904 {
905 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
906 }
907 
908 static void mptcp_reset_rtx_timer(struct sock *sk)
909 {
910 	struct inet_connection_sock *icsk = inet_csk(sk);
911 	unsigned long tout;
912 
913 	/* prevent rescheduling on close */
914 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
915 		return;
916 
917 	tout = mptcp_sk(sk)->timer_ival;
918 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
919 }
920 
921 bool mptcp_schedule_work(struct sock *sk)
922 {
923 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
924 	    schedule_work(&mptcp_sk(sk)->work)) {
925 		/* each subflow already holds a reference to the sk, and the
926 		 * workqueue is invoked by a subflow, so sk can't go away here.
927 		 */
928 		sock_hold(sk);
929 		return true;
930 	}
931 	return false;
932 }
933 
934 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
935 {
936 	struct mptcp_subflow_context *subflow;
937 
938 	msk_owned_by_me(msk);
939 
940 	mptcp_for_each_subflow(msk, subflow) {
941 		if (READ_ONCE(subflow->data_avail))
942 			return mptcp_subflow_tcp_sock(subflow);
943 	}
944 
945 	return NULL;
946 }
947 
948 static bool mptcp_skb_can_collapse_to(u64 write_seq,
949 				      const struct sk_buff *skb,
950 				      const struct mptcp_ext *mpext)
951 {
952 	if (!tcp_skb_can_collapse_to(skb))
953 		return false;
954 
955 	/* can collapse only if MPTCP level sequence is in order and this
956 	 * mapping has not been xmitted yet
957 	 */
958 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
959 	       !mpext->frozen;
960 }
961 
962 /* we can append data to the given data frag if:
963  * - there is space available in the backing page_frag
964  * - the data frag tail matches the current page_frag free offset
965  * - the data frag end sequence number matches the current write seq
966  */
967 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
968 				       const struct page_frag *pfrag,
969 				       const struct mptcp_data_frag *df)
970 {
971 	return df && pfrag->page == df->page &&
972 		pfrag->size - pfrag->offset > 0 &&
973 		pfrag->offset == (df->offset + df->data_len) &&
974 		df->data_seq + df->data_len == msk->write_seq;
975 }
976 
977 static void dfrag_uncharge(struct sock *sk, int len)
978 {
979 	sk_mem_uncharge(sk, len);
980 	sk_wmem_queued_add(sk, -len);
981 }
982 
983 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
984 {
985 	int len = dfrag->data_len + dfrag->overhead;
986 
987 	list_del(&dfrag->list);
988 	dfrag_uncharge(sk, len);
989 	put_page(dfrag->page);
990 }
991 
992 /* called under both the msk socket lock and the data lock */
993 static void __mptcp_clean_una(struct sock *sk)
994 {
995 	struct mptcp_sock *msk = mptcp_sk(sk);
996 	struct mptcp_data_frag *dtmp, *dfrag;
997 	u64 snd_una;
998 
999 	snd_una = msk->snd_una;
1000 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1001 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1002 			break;
1003 
1004 		if (unlikely(dfrag == msk->first_pending)) {
1005 			/* in recovery mode can see ack after the current snd head */
1006 			if (WARN_ON_ONCE(!msk->recovery))
1007 				break;
1008 
1009 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1010 		}
1011 
1012 		dfrag_clear(sk, dfrag);
1013 	}
1014 
1015 	dfrag = mptcp_rtx_head(sk);
1016 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1017 		u64 delta = snd_una - dfrag->data_seq;
1018 
1019 		/* prevent wrap around in recovery mode */
1020 		if (unlikely(delta > dfrag->already_sent)) {
1021 			if (WARN_ON_ONCE(!msk->recovery))
1022 				goto out;
1023 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1024 				goto out;
1025 			dfrag->already_sent += delta - dfrag->already_sent;
1026 		}
1027 
1028 		dfrag->data_seq += delta;
1029 		dfrag->offset += delta;
1030 		dfrag->data_len -= delta;
1031 		dfrag->already_sent -= delta;
1032 
1033 		dfrag_uncharge(sk, delta);
1034 	}
1035 
1036 	/* all retransmitted data acked, recovery completed */
1037 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1038 		msk->recovery = false;
1039 
1040 out:
1041 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1042 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1043 			mptcp_stop_rtx_timer(sk);
1044 	} else {
1045 		mptcp_reset_rtx_timer(sk);
1046 	}
1047 
1048 	if (mptcp_pending_data_fin_ack(sk))
1049 		mptcp_schedule_work(sk);
1050 }
1051 
1052 static void __mptcp_clean_una_wakeup(struct sock *sk)
1053 {
1054 	lockdep_assert_held_once(&sk->sk_lock.slock);
1055 
1056 	__mptcp_clean_una(sk);
1057 	mptcp_write_space(sk);
1058 }
1059 
1060 static void mptcp_clean_una_wakeup(struct sock *sk)
1061 {
1062 	mptcp_data_lock(sk);
1063 	__mptcp_clean_una_wakeup(sk);
1064 	mptcp_data_unlock(sk);
1065 }
1066 
1067 static void mptcp_enter_memory_pressure(struct sock *sk)
1068 {
1069 	struct mptcp_subflow_context *subflow;
1070 	struct mptcp_sock *msk = mptcp_sk(sk);
1071 	bool first = true;
1072 
1073 	mptcp_for_each_subflow(msk, subflow) {
1074 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1075 
1076 		if (first)
1077 			tcp_enter_memory_pressure(ssk);
1078 		sk_stream_moderate_sndbuf(ssk);
1079 
1080 		first = false;
1081 	}
1082 	__mptcp_sync_sndbuf(sk);
1083 }
1084 
1085 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1086  * data
1087  */
1088 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1089 {
1090 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1091 					pfrag, sk->sk_allocation)))
1092 		return true;
1093 
1094 	mptcp_enter_memory_pressure(sk);
1095 	return false;
1096 }
1097 
1098 static struct mptcp_data_frag *
1099 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1100 		      int orig_offset)
1101 {
1102 	int offset = ALIGN(orig_offset, sizeof(long));
1103 	struct mptcp_data_frag *dfrag;
1104 
1105 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1106 	dfrag->data_len = 0;
1107 	dfrag->data_seq = msk->write_seq;
1108 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1109 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1110 	dfrag->already_sent = 0;
1111 	dfrag->page = pfrag->page;
1112 
1113 	return dfrag;
1114 }
1115 
1116 struct mptcp_sendmsg_info {
1117 	int mss_now;
1118 	int size_goal;
1119 	u16 limit;
1120 	u16 sent;
1121 	unsigned int flags;
1122 	bool data_lock_held;
1123 };
1124 
1125 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1126 				    u64 data_seq, int avail_size)
1127 {
1128 	u64 window_end = mptcp_wnd_end(msk);
1129 	u64 mptcp_snd_wnd;
1130 
1131 	if (__mptcp_check_fallback(msk))
1132 		return avail_size;
1133 
1134 	mptcp_snd_wnd = window_end - data_seq;
1135 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1136 
1137 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1138 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1139 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1140 	}
1141 
1142 	return avail_size;
1143 }
1144 
1145 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1146 {
1147 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1148 
1149 	if (!mpext)
1150 		return false;
1151 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1152 	return true;
1153 }
1154 
1155 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1156 {
1157 	struct sk_buff *skb;
1158 
1159 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1160 	if (likely(skb)) {
1161 		if (likely(__mptcp_add_ext(skb, gfp))) {
1162 			skb_reserve(skb, MAX_TCP_HEADER);
1163 			skb->ip_summed = CHECKSUM_PARTIAL;
1164 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1165 			return skb;
1166 		}
1167 		__kfree_skb(skb);
1168 	} else {
1169 		mptcp_enter_memory_pressure(sk);
1170 	}
1171 	return NULL;
1172 }
1173 
1174 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1175 {
1176 	struct sk_buff *skb;
1177 
1178 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1179 	if (!skb)
1180 		return NULL;
1181 
1182 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1183 		tcp_skb_entail(ssk, skb);
1184 		return skb;
1185 	}
1186 	tcp_skb_tsorted_anchor_cleanup(skb);
1187 	kfree_skb(skb);
1188 	return NULL;
1189 }
1190 
1191 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1192 {
1193 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1194 
1195 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1196 }
1197 
1198 /* note: this always recompute the csum on the whole skb, even
1199  * if we just appended a single frag. More status info needed
1200  */
1201 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1202 {
1203 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1204 	__wsum csum = ~csum_unfold(mpext->csum);
1205 	int offset = skb->len - added;
1206 
1207 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1208 }
1209 
1210 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1211 				      struct sock *ssk,
1212 				      struct mptcp_ext *mpext)
1213 {
1214 	if (!mpext)
1215 		return;
1216 
1217 	mpext->infinite_map = 1;
1218 	mpext->data_len = 0;
1219 
1220 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1221 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1222 	pr_fallback(msk);
1223 	mptcp_do_fallback(ssk);
1224 }
1225 
1226 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1227 
1228 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1229 			      struct mptcp_data_frag *dfrag,
1230 			      struct mptcp_sendmsg_info *info)
1231 {
1232 	u64 data_seq = dfrag->data_seq + info->sent;
1233 	int offset = dfrag->offset + info->sent;
1234 	struct mptcp_sock *msk = mptcp_sk(sk);
1235 	bool zero_window_probe = false;
1236 	struct mptcp_ext *mpext = NULL;
1237 	bool can_coalesce = false;
1238 	bool reuse_skb = true;
1239 	struct sk_buff *skb;
1240 	size_t copy;
1241 	int i;
1242 
1243 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1244 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1245 
1246 	if (WARN_ON_ONCE(info->sent > info->limit ||
1247 			 info->limit > dfrag->data_len))
1248 		return 0;
1249 
1250 	if (unlikely(!__tcp_can_send(ssk)))
1251 		return -EAGAIN;
1252 
1253 	/* compute send limit */
1254 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1255 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1256 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1257 	copy = info->size_goal;
1258 
1259 	skb = tcp_write_queue_tail(ssk);
1260 	if (skb && copy > skb->len) {
1261 		/* Limit the write to the size available in the
1262 		 * current skb, if any, so that we create at most a new skb.
1263 		 * Explicitly tells TCP internals to avoid collapsing on later
1264 		 * queue management operation, to avoid breaking the ext <->
1265 		 * SSN association set here
1266 		 */
1267 		mpext = mptcp_get_ext(skb);
1268 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1269 			TCP_SKB_CB(skb)->eor = 1;
1270 			tcp_mark_push(tcp_sk(ssk), skb);
1271 			goto alloc_skb;
1272 		}
1273 
1274 		i = skb_shinfo(skb)->nr_frags;
1275 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1276 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1277 			tcp_mark_push(tcp_sk(ssk), skb);
1278 			goto alloc_skb;
1279 		}
1280 
1281 		copy -= skb->len;
1282 	} else {
1283 alloc_skb:
1284 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1285 		if (!skb)
1286 			return -ENOMEM;
1287 
1288 		i = skb_shinfo(skb)->nr_frags;
1289 		reuse_skb = false;
1290 		mpext = mptcp_get_ext(skb);
1291 	}
1292 
1293 	/* Zero window and all data acked? Probe. */
1294 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1295 	if (copy == 0) {
1296 		u64 snd_una = READ_ONCE(msk->snd_una);
1297 
1298 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1299 			tcp_remove_empty_skb(ssk);
1300 			return 0;
1301 		}
1302 
1303 		zero_window_probe = true;
1304 		data_seq = snd_una - 1;
1305 		copy = 1;
1306 	}
1307 
1308 	copy = min_t(size_t, copy, info->limit - info->sent);
1309 	if (!sk_wmem_schedule(ssk, copy)) {
1310 		tcp_remove_empty_skb(ssk);
1311 		return -ENOMEM;
1312 	}
1313 
1314 	if (can_coalesce) {
1315 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1316 	} else {
1317 		get_page(dfrag->page);
1318 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1319 	}
1320 
1321 	skb->len += copy;
1322 	skb->data_len += copy;
1323 	skb->truesize += copy;
1324 	sk_wmem_queued_add(ssk, copy);
1325 	sk_mem_charge(ssk, copy);
1326 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1327 	TCP_SKB_CB(skb)->end_seq += copy;
1328 	tcp_skb_pcount_set(skb, 0);
1329 
1330 	/* on skb reuse we just need to update the DSS len */
1331 	if (reuse_skb) {
1332 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1333 		mpext->data_len += copy;
1334 		goto out;
1335 	}
1336 
1337 	memset(mpext, 0, sizeof(*mpext));
1338 	mpext->data_seq = data_seq;
1339 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1340 	mpext->data_len = copy;
1341 	mpext->use_map = 1;
1342 	mpext->dsn64 = 1;
1343 
1344 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1345 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1346 		 mpext->dsn64);
1347 
1348 	if (zero_window_probe) {
1349 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1350 		mpext->frozen = 1;
1351 		if (READ_ONCE(msk->csum_enabled))
1352 			mptcp_update_data_checksum(skb, copy);
1353 		tcp_push_pending_frames(ssk);
1354 		return 0;
1355 	}
1356 out:
1357 	if (READ_ONCE(msk->csum_enabled))
1358 		mptcp_update_data_checksum(skb, copy);
1359 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1360 		mptcp_update_infinite_map(msk, ssk, mpext);
1361 	trace_mptcp_sendmsg_frag(mpext);
1362 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1363 	return copy;
1364 }
1365 
1366 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1367 					 sizeof(struct tcphdr) - \
1368 					 MAX_TCP_OPTION_SPACE - \
1369 					 sizeof(struct ipv6hdr) - \
1370 					 sizeof(struct frag_hdr))
1371 
1372 struct subflow_send_info {
1373 	struct sock *ssk;
1374 	u64 linger_time;
1375 };
1376 
1377 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1378 {
1379 	if (!subflow->stale)
1380 		return;
1381 
1382 	subflow->stale = 0;
1383 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1384 }
1385 
1386 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1387 {
1388 	if (unlikely(subflow->stale)) {
1389 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1390 
1391 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1392 			return false;
1393 
1394 		mptcp_subflow_set_active(subflow);
1395 	}
1396 	return __mptcp_subflow_active(subflow);
1397 }
1398 
1399 #define SSK_MODE_ACTIVE	0
1400 #define SSK_MODE_BACKUP	1
1401 #define SSK_MODE_MAX	2
1402 
1403 /* implement the mptcp packet scheduler;
1404  * returns the subflow that will transmit the next DSS
1405  * additionally updates the rtx timeout
1406  */
1407 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1408 {
1409 	struct subflow_send_info send_info[SSK_MODE_MAX];
1410 	struct mptcp_subflow_context *subflow;
1411 	struct sock *sk = (struct sock *)msk;
1412 	u32 pace, burst, wmem;
1413 	int i, nr_active = 0;
1414 	struct sock *ssk;
1415 	u64 linger_time;
1416 	long tout = 0;
1417 
1418 	/* pick the subflow with the lower wmem/wspace ratio */
1419 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1420 		send_info[i].ssk = NULL;
1421 		send_info[i].linger_time = -1;
1422 	}
1423 
1424 	mptcp_for_each_subflow(msk, subflow) {
1425 		trace_mptcp_subflow_get_send(subflow);
1426 		ssk =  mptcp_subflow_tcp_sock(subflow);
1427 		if (!mptcp_subflow_active(subflow))
1428 			continue;
1429 
1430 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1431 		nr_active += !subflow->backup;
1432 		pace = subflow->avg_pacing_rate;
1433 		if (unlikely(!pace)) {
1434 			/* init pacing rate from socket */
1435 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1436 			pace = subflow->avg_pacing_rate;
1437 			if (!pace)
1438 				continue;
1439 		}
1440 
1441 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1442 		if (linger_time < send_info[subflow->backup].linger_time) {
1443 			send_info[subflow->backup].ssk = ssk;
1444 			send_info[subflow->backup].linger_time = linger_time;
1445 		}
1446 	}
1447 	__mptcp_set_timeout(sk, tout);
1448 
1449 	/* pick the best backup if no other subflow is active */
1450 	if (!nr_active)
1451 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1452 
1453 	/* According to the blest algorithm, to avoid HoL blocking for the
1454 	 * faster flow, we need to:
1455 	 * - estimate the faster flow linger time
1456 	 * - use the above to estimate the amount of byte transferred
1457 	 *   by the faster flow
1458 	 * - check that the amount of queued data is greter than the above,
1459 	 *   otherwise do not use the picked, slower, subflow
1460 	 * We select the subflow with the shorter estimated time to flush
1461 	 * the queued mem, which basically ensure the above. We just need
1462 	 * to check that subflow has a non empty cwin.
1463 	 */
1464 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1465 	if (!ssk || !sk_stream_memory_free(ssk))
1466 		return NULL;
1467 
1468 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1469 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1470 	if (!burst)
1471 		return ssk;
1472 
1473 	subflow = mptcp_subflow_ctx(ssk);
1474 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1475 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1476 					   burst + wmem);
1477 	msk->snd_burst = burst;
1478 	return ssk;
1479 }
1480 
1481 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1482 {
1483 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1484 	release_sock(ssk);
1485 }
1486 
1487 static void mptcp_update_post_push(struct mptcp_sock *msk,
1488 				   struct mptcp_data_frag *dfrag,
1489 				   u32 sent)
1490 {
1491 	u64 snd_nxt_new = dfrag->data_seq;
1492 
1493 	dfrag->already_sent += sent;
1494 
1495 	msk->snd_burst -= sent;
1496 
1497 	snd_nxt_new += dfrag->already_sent;
1498 
1499 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1500 	 * is recovering after a failover. In that event, this re-sends
1501 	 * old segments.
1502 	 *
1503 	 * Thus compute snd_nxt_new candidate based on
1504 	 * the dfrag->data_seq that was sent and the data
1505 	 * that has been handed to the subflow for transmission
1506 	 * and skip update in case it was old dfrag.
1507 	 */
1508 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1509 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1510 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1511 	}
1512 }
1513 
1514 void mptcp_check_and_set_pending(struct sock *sk)
1515 {
1516 	if (mptcp_send_head(sk)) {
1517 		mptcp_data_lock(sk);
1518 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1519 		mptcp_data_unlock(sk);
1520 	}
1521 }
1522 
1523 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1524 				  struct mptcp_sendmsg_info *info)
1525 {
1526 	struct mptcp_sock *msk = mptcp_sk(sk);
1527 	struct mptcp_data_frag *dfrag;
1528 	int len, copied = 0, err = 0;
1529 
1530 	while ((dfrag = mptcp_send_head(sk))) {
1531 		info->sent = dfrag->already_sent;
1532 		info->limit = dfrag->data_len;
1533 		len = dfrag->data_len - dfrag->already_sent;
1534 		while (len > 0) {
1535 			int ret = 0;
1536 
1537 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1538 			if (ret <= 0) {
1539 				err = copied ? : ret;
1540 				goto out;
1541 			}
1542 
1543 			info->sent += ret;
1544 			copied += ret;
1545 			len -= ret;
1546 
1547 			mptcp_update_post_push(msk, dfrag, ret);
1548 		}
1549 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1550 
1551 		if (msk->snd_burst <= 0 ||
1552 		    !sk_stream_memory_free(ssk) ||
1553 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1554 			err = copied;
1555 			goto out;
1556 		}
1557 		mptcp_set_timeout(sk);
1558 	}
1559 	err = copied;
1560 
1561 out:
1562 	if (err > 0)
1563 		msk->last_data_sent = tcp_jiffies32;
1564 	return err;
1565 }
1566 
1567 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1568 {
1569 	struct sock *prev_ssk = NULL, *ssk = NULL;
1570 	struct mptcp_sock *msk = mptcp_sk(sk);
1571 	struct mptcp_sendmsg_info info = {
1572 				.flags = flags,
1573 	};
1574 	bool do_check_data_fin = false;
1575 	int push_count = 1;
1576 
1577 	while (mptcp_send_head(sk) && (push_count > 0)) {
1578 		struct mptcp_subflow_context *subflow;
1579 		int ret = 0;
1580 
1581 		if (mptcp_sched_get_send(msk))
1582 			break;
1583 
1584 		push_count = 0;
1585 
1586 		mptcp_for_each_subflow(msk, subflow) {
1587 			if (READ_ONCE(subflow->scheduled)) {
1588 				mptcp_subflow_set_scheduled(subflow, false);
1589 
1590 				prev_ssk = ssk;
1591 				ssk = mptcp_subflow_tcp_sock(subflow);
1592 				if (ssk != prev_ssk) {
1593 					/* First check. If the ssk has changed since
1594 					 * the last round, release prev_ssk
1595 					 */
1596 					if (prev_ssk)
1597 						mptcp_push_release(prev_ssk, &info);
1598 
1599 					/* Need to lock the new subflow only if different
1600 					 * from the previous one, otherwise we are still
1601 					 * helding the relevant lock
1602 					 */
1603 					lock_sock(ssk);
1604 				}
1605 
1606 				push_count++;
1607 
1608 				ret = __subflow_push_pending(sk, ssk, &info);
1609 				if (ret <= 0) {
1610 					if (ret != -EAGAIN ||
1611 					    (1 << ssk->sk_state) &
1612 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1613 						push_count--;
1614 					continue;
1615 				}
1616 				do_check_data_fin = true;
1617 			}
1618 		}
1619 	}
1620 
1621 	/* at this point we held the socket lock for the last subflow we used */
1622 	if (ssk)
1623 		mptcp_push_release(ssk, &info);
1624 
1625 	/* ensure the rtx timer is running */
1626 	if (!mptcp_rtx_timer_pending(sk))
1627 		mptcp_reset_rtx_timer(sk);
1628 	if (do_check_data_fin)
1629 		mptcp_check_send_data_fin(sk);
1630 }
1631 
1632 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1633 {
1634 	struct mptcp_sock *msk = mptcp_sk(sk);
1635 	struct mptcp_sendmsg_info info = {
1636 		.data_lock_held = true,
1637 	};
1638 	bool keep_pushing = true;
1639 	struct sock *xmit_ssk;
1640 	int copied = 0;
1641 
1642 	info.flags = 0;
1643 	while (mptcp_send_head(sk) && keep_pushing) {
1644 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1645 		int ret = 0;
1646 
1647 		/* check for a different subflow usage only after
1648 		 * spooling the first chunk of data
1649 		 */
1650 		if (first) {
1651 			mptcp_subflow_set_scheduled(subflow, false);
1652 			ret = __subflow_push_pending(sk, ssk, &info);
1653 			first = false;
1654 			if (ret <= 0)
1655 				break;
1656 			copied += ret;
1657 			continue;
1658 		}
1659 
1660 		if (mptcp_sched_get_send(msk))
1661 			goto out;
1662 
1663 		if (READ_ONCE(subflow->scheduled)) {
1664 			mptcp_subflow_set_scheduled(subflow, false);
1665 			ret = __subflow_push_pending(sk, ssk, &info);
1666 			if (ret <= 0)
1667 				keep_pushing = false;
1668 			copied += ret;
1669 		}
1670 
1671 		mptcp_for_each_subflow(msk, subflow) {
1672 			if (READ_ONCE(subflow->scheduled)) {
1673 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1674 				if (xmit_ssk != ssk) {
1675 					mptcp_subflow_delegate(subflow,
1676 							       MPTCP_DELEGATE_SEND);
1677 					keep_pushing = false;
1678 				}
1679 			}
1680 		}
1681 	}
1682 
1683 out:
1684 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1685 	 * not going to flush it via release_sock()
1686 	 */
1687 	if (copied) {
1688 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1689 			 info.size_goal);
1690 		if (!mptcp_rtx_timer_pending(sk))
1691 			mptcp_reset_rtx_timer(sk);
1692 
1693 		if (msk->snd_data_fin_enable &&
1694 		    msk->snd_nxt + 1 == msk->write_seq)
1695 			mptcp_schedule_work(sk);
1696 	}
1697 }
1698 
1699 static int mptcp_disconnect(struct sock *sk, int flags);
1700 
1701 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1702 				  size_t len, int *copied_syn)
1703 {
1704 	unsigned int saved_flags = msg->msg_flags;
1705 	struct mptcp_sock *msk = mptcp_sk(sk);
1706 	struct sock *ssk;
1707 	int ret;
1708 
1709 	/* on flags based fastopen the mptcp is supposed to create the
1710 	 * first subflow right now. Otherwise we are in the defer_connect
1711 	 * path, and the first subflow must be already present.
1712 	 * Since the defer_connect flag is cleared after the first succsful
1713 	 * fastopen attempt, no need to check for additional subflow status.
1714 	 */
1715 	if (msg->msg_flags & MSG_FASTOPEN) {
1716 		ssk = __mptcp_nmpc_sk(msk);
1717 		if (IS_ERR(ssk))
1718 			return PTR_ERR(ssk);
1719 	}
1720 	if (!msk->first)
1721 		return -EINVAL;
1722 
1723 	ssk = msk->first;
1724 
1725 	lock_sock(ssk);
1726 	msg->msg_flags |= MSG_DONTWAIT;
1727 	msk->fastopening = 1;
1728 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1729 	msk->fastopening = 0;
1730 	msg->msg_flags = saved_flags;
1731 	release_sock(ssk);
1732 
1733 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1734 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1735 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1736 					    msg->msg_namelen, msg->msg_flags, 1);
1737 
1738 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1739 		 * case of any error, except timeout or signal
1740 		 */
1741 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1742 			*copied_syn = 0;
1743 	} else if (ret && ret != -EINPROGRESS) {
1744 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1745 		 * __inet_stream_connect() can fail, due to looking check,
1746 		 * see mptcp_disconnect().
1747 		 * Attempt it again outside the problematic scope.
1748 		 */
1749 		if (!mptcp_disconnect(sk, 0))
1750 			sk->sk_socket->state = SS_UNCONNECTED;
1751 	}
1752 	inet_clear_bit(DEFER_CONNECT, sk);
1753 
1754 	return ret;
1755 }
1756 
1757 static int do_copy_data_nocache(struct sock *sk, int copy,
1758 				struct iov_iter *from, char *to)
1759 {
1760 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1761 		if (!copy_from_iter_full_nocache(to, copy, from))
1762 			return -EFAULT;
1763 	} else if (!copy_from_iter_full(to, copy, from)) {
1764 		return -EFAULT;
1765 	}
1766 	return 0;
1767 }
1768 
1769 /* open-code sk_stream_memory_free() plus sent limit computation to
1770  * avoid indirect calls in fast-path.
1771  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1772  * annotations.
1773  */
1774 static u32 mptcp_send_limit(const struct sock *sk)
1775 {
1776 	const struct mptcp_sock *msk = mptcp_sk(sk);
1777 	u32 limit, not_sent;
1778 
1779 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1780 		return 0;
1781 
1782 	limit = mptcp_notsent_lowat(sk);
1783 	if (limit == UINT_MAX)
1784 		return UINT_MAX;
1785 
1786 	not_sent = msk->write_seq - msk->snd_nxt;
1787 	if (not_sent >= limit)
1788 		return 0;
1789 
1790 	return limit - not_sent;
1791 }
1792 
1793 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1794 {
1795 	struct mptcp_sock *msk = mptcp_sk(sk);
1796 	struct page_frag *pfrag;
1797 	size_t copied = 0;
1798 	int ret = 0;
1799 	long timeo;
1800 
1801 	/* silently ignore everything else */
1802 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1803 
1804 	lock_sock(sk);
1805 
1806 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1807 		     msg->msg_flags & MSG_FASTOPEN)) {
1808 		int copied_syn = 0;
1809 
1810 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1811 		copied += copied_syn;
1812 		if (ret == -EINPROGRESS && copied_syn > 0)
1813 			goto out;
1814 		else if (ret)
1815 			goto do_error;
1816 	}
1817 
1818 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1819 
1820 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1821 		ret = sk_stream_wait_connect(sk, &timeo);
1822 		if (ret)
1823 			goto do_error;
1824 	}
1825 
1826 	ret = -EPIPE;
1827 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1828 		goto do_error;
1829 
1830 	pfrag = sk_page_frag(sk);
1831 
1832 	while (msg_data_left(msg)) {
1833 		int total_ts, frag_truesize = 0;
1834 		struct mptcp_data_frag *dfrag;
1835 		bool dfrag_collapsed;
1836 		size_t psize, offset;
1837 		u32 copy_limit;
1838 
1839 		/* ensure fitting the notsent_lowat() constraint */
1840 		copy_limit = mptcp_send_limit(sk);
1841 		if (!copy_limit)
1842 			goto wait_for_memory;
1843 
1844 		/* reuse tail pfrag, if possible, or carve a new one from the
1845 		 * page allocator
1846 		 */
1847 		dfrag = mptcp_pending_tail(sk);
1848 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1849 		if (!dfrag_collapsed) {
1850 			if (!mptcp_page_frag_refill(sk, pfrag))
1851 				goto wait_for_memory;
1852 
1853 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1854 			frag_truesize = dfrag->overhead;
1855 		}
1856 
1857 		/* we do not bound vs wspace, to allow a single packet.
1858 		 * memory accounting will prevent execessive memory usage
1859 		 * anyway
1860 		 */
1861 		offset = dfrag->offset + dfrag->data_len;
1862 		psize = pfrag->size - offset;
1863 		psize = min_t(size_t, psize, msg_data_left(msg));
1864 		psize = min_t(size_t, psize, copy_limit);
1865 		total_ts = psize + frag_truesize;
1866 
1867 		if (!sk_wmem_schedule(sk, total_ts))
1868 			goto wait_for_memory;
1869 
1870 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1871 					   page_address(dfrag->page) + offset);
1872 		if (ret)
1873 			goto do_error;
1874 
1875 		/* data successfully copied into the write queue */
1876 		sk_forward_alloc_add(sk, -total_ts);
1877 		copied += psize;
1878 		dfrag->data_len += psize;
1879 		frag_truesize += psize;
1880 		pfrag->offset += frag_truesize;
1881 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1882 
1883 		/* charge data on mptcp pending queue to the msk socket
1884 		 * Note: we charge such data both to sk and ssk
1885 		 */
1886 		sk_wmem_queued_add(sk, frag_truesize);
1887 		if (!dfrag_collapsed) {
1888 			get_page(dfrag->page);
1889 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1890 			if (!msk->first_pending)
1891 				WRITE_ONCE(msk->first_pending, dfrag);
1892 		}
1893 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1894 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1895 			 !dfrag_collapsed);
1896 
1897 		continue;
1898 
1899 wait_for_memory:
1900 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1901 		__mptcp_push_pending(sk, msg->msg_flags);
1902 		ret = sk_stream_wait_memory(sk, &timeo);
1903 		if (ret)
1904 			goto do_error;
1905 	}
1906 
1907 	if (copied)
1908 		__mptcp_push_pending(sk, msg->msg_flags);
1909 
1910 out:
1911 	release_sock(sk);
1912 	return copied;
1913 
1914 do_error:
1915 	if (copied)
1916 		goto out;
1917 
1918 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1919 	goto out;
1920 }
1921 
1922 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1923 				struct msghdr *msg,
1924 				size_t len, int flags,
1925 				struct scm_timestamping_internal *tss,
1926 				int *cmsg_flags)
1927 {
1928 	struct sk_buff *skb, *tmp;
1929 	int copied = 0;
1930 
1931 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1932 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1933 		u32 data_len = skb->len - offset;
1934 		u32 count = min_t(size_t, len - copied, data_len);
1935 		int err;
1936 
1937 		if (!(flags & MSG_TRUNC)) {
1938 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1939 			if (unlikely(err < 0)) {
1940 				if (!copied)
1941 					return err;
1942 				break;
1943 			}
1944 		}
1945 
1946 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1947 			tcp_update_recv_tstamps(skb, tss);
1948 			*cmsg_flags |= MPTCP_CMSG_TS;
1949 		}
1950 
1951 		copied += count;
1952 
1953 		if (count < data_len) {
1954 			if (!(flags & MSG_PEEK)) {
1955 				MPTCP_SKB_CB(skb)->offset += count;
1956 				MPTCP_SKB_CB(skb)->map_seq += count;
1957 				msk->bytes_consumed += count;
1958 			}
1959 			break;
1960 		}
1961 
1962 		if (!(flags & MSG_PEEK)) {
1963 			/* we will bulk release the skb memory later */
1964 			skb->destructor = NULL;
1965 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1966 			__skb_unlink(skb, &msk->receive_queue);
1967 			__kfree_skb(skb);
1968 			msk->bytes_consumed += count;
1969 		}
1970 
1971 		if (copied >= len)
1972 			break;
1973 	}
1974 
1975 	return copied;
1976 }
1977 
1978 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1979  *
1980  * Only difference: Use highest rtt estimate of the subflows in use.
1981  */
1982 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1983 {
1984 	struct mptcp_subflow_context *subflow;
1985 	struct sock *sk = (struct sock *)msk;
1986 	u8 scaling_ratio = U8_MAX;
1987 	u32 time, advmss = 1;
1988 	u64 rtt_us, mstamp;
1989 
1990 	msk_owned_by_me(msk);
1991 
1992 	if (copied <= 0)
1993 		return;
1994 
1995 	if (!msk->rcvspace_init)
1996 		mptcp_rcv_space_init(msk, msk->first);
1997 
1998 	msk->rcvq_space.copied += copied;
1999 
2000 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2001 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2002 
2003 	rtt_us = msk->rcvq_space.rtt_us;
2004 	if (rtt_us && time < (rtt_us >> 3))
2005 		return;
2006 
2007 	rtt_us = 0;
2008 	mptcp_for_each_subflow(msk, subflow) {
2009 		const struct tcp_sock *tp;
2010 		u64 sf_rtt_us;
2011 		u32 sf_advmss;
2012 
2013 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2014 
2015 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2016 		sf_advmss = READ_ONCE(tp->advmss);
2017 
2018 		rtt_us = max(sf_rtt_us, rtt_us);
2019 		advmss = max(sf_advmss, advmss);
2020 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2021 	}
2022 
2023 	msk->rcvq_space.rtt_us = rtt_us;
2024 	msk->scaling_ratio = scaling_ratio;
2025 	if (time < (rtt_us >> 3) || rtt_us == 0)
2026 		return;
2027 
2028 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2029 		goto new_measure;
2030 
2031 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2032 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2033 		u64 rcvwin, grow;
2034 		int rcvbuf;
2035 
2036 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2037 
2038 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2039 
2040 		do_div(grow, msk->rcvq_space.space);
2041 		rcvwin += (grow << 1);
2042 
2043 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2044 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2045 
2046 		if (rcvbuf > sk->sk_rcvbuf) {
2047 			u32 window_clamp;
2048 
2049 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2050 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2051 
2052 			/* Make subflows follow along.  If we do not do this, we
2053 			 * get drops at subflow level if skbs can't be moved to
2054 			 * the mptcp rx queue fast enough (announced rcv_win can
2055 			 * exceed ssk->sk_rcvbuf).
2056 			 */
2057 			mptcp_for_each_subflow(msk, subflow) {
2058 				struct sock *ssk;
2059 				bool slow;
2060 
2061 				ssk = mptcp_subflow_tcp_sock(subflow);
2062 				slow = lock_sock_fast(ssk);
2063 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2064 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2065 				tcp_cleanup_rbuf(ssk, 1);
2066 				unlock_sock_fast(ssk, slow);
2067 			}
2068 		}
2069 	}
2070 
2071 	msk->rcvq_space.space = msk->rcvq_space.copied;
2072 new_measure:
2073 	msk->rcvq_space.copied = 0;
2074 	msk->rcvq_space.time = mstamp;
2075 }
2076 
2077 static void __mptcp_update_rmem(struct sock *sk)
2078 {
2079 	struct mptcp_sock *msk = mptcp_sk(sk);
2080 
2081 	if (!msk->rmem_released)
2082 		return;
2083 
2084 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2085 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2086 	WRITE_ONCE(msk->rmem_released, 0);
2087 }
2088 
2089 static void __mptcp_splice_receive_queue(struct sock *sk)
2090 {
2091 	struct mptcp_sock *msk = mptcp_sk(sk);
2092 
2093 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2094 }
2095 
2096 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2097 {
2098 	struct sock *sk = (struct sock *)msk;
2099 	unsigned int moved = 0;
2100 	bool ret, done;
2101 
2102 	do {
2103 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2104 		bool slowpath;
2105 
2106 		/* we can have data pending in the subflows only if the msk
2107 		 * receive buffer was full at subflow_data_ready() time,
2108 		 * that is an unlikely slow path.
2109 		 */
2110 		if (likely(!ssk))
2111 			break;
2112 
2113 		slowpath = lock_sock_fast(ssk);
2114 		mptcp_data_lock(sk);
2115 		__mptcp_update_rmem(sk);
2116 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2117 		mptcp_data_unlock(sk);
2118 
2119 		if (unlikely(ssk->sk_err))
2120 			__mptcp_error_report(sk);
2121 		unlock_sock_fast(ssk, slowpath);
2122 	} while (!done);
2123 
2124 	/* acquire the data lock only if some input data is pending */
2125 	ret = moved > 0;
2126 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2127 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2128 		mptcp_data_lock(sk);
2129 		__mptcp_update_rmem(sk);
2130 		ret |= __mptcp_ofo_queue(msk);
2131 		__mptcp_splice_receive_queue(sk);
2132 		mptcp_data_unlock(sk);
2133 	}
2134 	if (ret)
2135 		mptcp_check_data_fin((struct sock *)msk);
2136 	return !skb_queue_empty(&msk->receive_queue);
2137 }
2138 
2139 static unsigned int mptcp_inq_hint(const struct sock *sk)
2140 {
2141 	const struct mptcp_sock *msk = mptcp_sk(sk);
2142 	const struct sk_buff *skb;
2143 
2144 	skb = skb_peek(&msk->receive_queue);
2145 	if (skb) {
2146 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2147 
2148 		if (hint_val >= INT_MAX)
2149 			return INT_MAX;
2150 
2151 		return (unsigned int)hint_val;
2152 	}
2153 
2154 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2155 		return 1;
2156 
2157 	return 0;
2158 }
2159 
2160 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2161 			 int flags, int *addr_len)
2162 {
2163 	struct mptcp_sock *msk = mptcp_sk(sk);
2164 	struct scm_timestamping_internal tss;
2165 	int copied = 0, cmsg_flags = 0;
2166 	int target;
2167 	long timeo;
2168 
2169 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2170 	if (unlikely(flags & MSG_ERRQUEUE))
2171 		return inet_recv_error(sk, msg, len, addr_len);
2172 
2173 	lock_sock(sk);
2174 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2175 		copied = -ENOTCONN;
2176 		goto out_err;
2177 	}
2178 
2179 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2180 
2181 	len = min_t(size_t, len, INT_MAX);
2182 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2183 
2184 	if (unlikely(msk->recvmsg_inq))
2185 		cmsg_flags = MPTCP_CMSG_INQ;
2186 
2187 	while (copied < len) {
2188 		int bytes_read;
2189 
2190 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2191 		if (unlikely(bytes_read < 0)) {
2192 			if (!copied)
2193 				copied = bytes_read;
2194 			goto out_err;
2195 		}
2196 
2197 		copied += bytes_read;
2198 
2199 		/* be sure to advertise window change */
2200 		mptcp_cleanup_rbuf(msk);
2201 
2202 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2203 			continue;
2204 
2205 		/* only the master socket status is relevant here. The exit
2206 		 * conditions mirror closely tcp_recvmsg()
2207 		 */
2208 		if (copied >= target)
2209 			break;
2210 
2211 		if (copied) {
2212 			if (sk->sk_err ||
2213 			    sk->sk_state == TCP_CLOSE ||
2214 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2215 			    !timeo ||
2216 			    signal_pending(current))
2217 				break;
2218 		} else {
2219 			if (sk->sk_err) {
2220 				copied = sock_error(sk);
2221 				break;
2222 			}
2223 
2224 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2225 				/* race breaker: the shutdown could be after the
2226 				 * previous receive queue check
2227 				 */
2228 				if (__mptcp_move_skbs(msk))
2229 					continue;
2230 				break;
2231 			}
2232 
2233 			if (sk->sk_state == TCP_CLOSE) {
2234 				copied = -ENOTCONN;
2235 				break;
2236 			}
2237 
2238 			if (!timeo) {
2239 				copied = -EAGAIN;
2240 				break;
2241 			}
2242 
2243 			if (signal_pending(current)) {
2244 				copied = sock_intr_errno(timeo);
2245 				break;
2246 			}
2247 		}
2248 
2249 		pr_debug("block timeout %ld", timeo);
2250 		sk_wait_data(sk, &timeo, NULL);
2251 	}
2252 
2253 out_err:
2254 	if (cmsg_flags && copied >= 0) {
2255 		if (cmsg_flags & MPTCP_CMSG_TS)
2256 			tcp_recv_timestamp(msg, sk, &tss);
2257 
2258 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2259 			unsigned int inq = mptcp_inq_hint(sk);
2260 
2261 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2262 		}
2263 	}
2264 
2265 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2266 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2267 		 skb_queue_empty(&msk->receive_queue), copied);
2268 	if (!(flags & MSG_PEEK))
2269 		mptcp_rcv_space_adjust(msk, copied);
2270 
2271 	release_sock(sk);
2272 	return copied;
2273 }
2274 
2275 static void mptcp_retransmit_timer(struct timer_list *t)
2276 {
2277 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2278 						       icsk_retransmit_timer);
2279 	struct sock *sk = &icsk->icsk_inet.sk;
2280 	struct mptcp_sock *msk = mptcp_sk(sk);
2281 
2282 	bh_lock_sock(sk);
2283 	if (!sock_owned_by_user(sk)) {
2284 		/* we need a process context to retransmit */
2285 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2286 			mptcp_schedule_work(sk);
2287 	} else {
2288 		/* delegate our work to tcp_release_cb() */
2289 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2290 	}
2291 	bh_unlock_sock(sk);
2292 	sock_put(sk);
2293 }
2294 
2295 static void mptcp_tout_timer(struct timer_list *t)
2296 {
2297 	struct sock *sk = from_timer(sk, t, sk_timer);
2298 
2299 	mptcp_schedule_work(sk);
2300 	sock_put(sk);
2301 }
2302 
2303 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2304  * level.
2305  *
2306  * A backup subflow is returned only if that is the only kind available.
2307  */
2308 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2309 {
2310 	struct sock *backup = NULL, *pick = NULL;
2311 	struct mptcp_subflow_context *subflow;
2312 	int min_stale_count = INT_MAX;
2313 
2314 	mptcp_for_each_subflow(msk, subflow) {
2315 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2316 
2317 		if (!__mptcp_subflow_active(subflow))
2318 			continue;
2319 
2320 		/* still data outstanding at TCP level? skip this */
2321 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2322 			mptcp_pm_subflow_chk_stale(msk, ssk);
2323 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2324 			continue;
2325 		}
2326 
2327 		if (subflow->backup) {
2328 			if (!backup)
2329 				backup = ssk;
2330 			continue;
2331 		}
2332 
2333 		if (!pick)
2334 			pick = ssk;
2335 	}
2336 
2337 	if (pick)
2338 		return pick;
2339 
2340 	/* use backup only if there are no progresses anywhere */
2341 	return min_stale_count > 1 ? backup : NULL;
2342 }
2343 
2344 bool __mptcp_retransmit_pending_data(struct sock *sk)
2345 {
2346 	struct mptcp_data_frag *cur, *rtx_head;
2347 	struct mptcp_sock *msk = mptcp_sk(sk);
2348 
2349 	if (__mptcp_check_fallback(msk))
2350 		return false;
2351 
2352 	/* the closing socket has some data untransmitted and/or unacked:
2353 	 * some data in the mptcp rtx queue has not really xmitted yet.
2354 	 * keep it simple and re-inject the whole mptcp level rtx queue
2355 	 */
2356 	mptcp_data_lock(sk);
2357 	__mptcp_clean_una_wakeup(sk);
2358 	rtx_head = mptcp_rtx_head(sk);
2359 	if (!rtx_head) {
2360 		mptcp_data_unlock(sk);
2361 		return false;
2362 	}
2363 
2364 	msk->recovery_snd_nxt = msk->snd_nxt;
2365 	msk->recovery = true;
2366 	mptcp_data_unlock(sk);
2367 
2368 	msk->first_pending = rtx_head;
2369 	msk->snd_burst = 0;
2370 
2371 	/* be sure to clear the "sent status" on all re-injected fragments */
2372 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2373 		if (!cur->already_sent)
2374 			break;
2375 		cur->already_sent = 0;
2376 	}
2377 
2378 	return true;
2379 }
2380 
2381 /* flags for __mptcp_close_ssk() */
2382 #define MPTCP_CF_PUSH		BIT(1)
2383 #define MPTCP_CF_FASTCLOSE	BIT(2)
2384 
2385 /* be sure to send a reset only if the caller asked for it, also
2386  * clean completely the subflow status when the subflow reaches
2387  * TCP_CLOSE state
2388  */
2389 static void __mptcp_subflow_disconnect(struct sock *ssk,
2390 				       struct mptcp_subflow_context *subflow,
2391 				       unsigned int flags)
2392 {
2393 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2394 	    (flags & MPTCP_CF_FASTCLOSE)) {
2395 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2396 		 * disconnect should never fail
2397 		 */
2398 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2399 		mptcp_subflow_ctx_reset(subflow);
2400 	} else {
2401 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2402 	}
2403 }
2404 
2405 /* subflow sockets can be either outgoing (connect) or incoming
2406  * (accept).
2407  *
2408  * Outgoing subflows use in-kernel sockets.
2409  * Incoming subflows do not have their own 'struct socket' allocated,
2410  * so we need to use tcp_close() after detaching them from the mptcp
2411  * parent socket.
2412  */
2413 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2414 			      struct mptcp_subflow_context *subflow,
2415 			      unsigned int flags)
2416 {
2417 	struct mptcp_sock *msk = mptcp_sk(sk);
2418 	bool dispose_it, need_push = false;
2419 
2420 	/* If the first subflow moved to a close state before accept, e.g. due
2421 	 * to an incoming reset or listener shutdown, the subflow socket is
2422 	 * already deleted by inet_child_forget() and the mptcp socket can't
2423 	 * survive too.
2424 	 */
2425 	if (msk->in_accept_queue && msk->first == ssk &&
2426 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2427 		/* ensure later check in mptcp_worker() will dispose the msk */
2428 		sock_set_flag(sk, SOCK_DEAD);
2429 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2430 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2431 		mptcp_subflow_drop_ctx(ssk);
2432 		goto out_release;
2433 	}
2434 
2435 	dispose_it = msk->free_first || ssk != msk->first;
2436 	if (dispose_it)
2437 		list_del(&subflow->node);
2438 
2439 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2440 
2441 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2442 		/* be sure to force the tcp_close path
2443 		 * to generate the egress reset
2444 		 */
2445 		ssk->sk_lingertime = 0;
2446 		sock_set_flag(ssk, SOCK_LINGER);
2447 		subflow->send_fastclose = 1;
2448 	}
2449 
2450 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2451 	if (!dispose_it) {
2452 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2453 		release_sock(ssk);
2454 
2455 		goto out;
2456 	}
2457 
2458 	subflow->disposable = 1;
2459 
2460 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2461 	 * the ssk has been already destroyed, we just need to release the
2462 	 * reference owned by msk;
2463 	 */
2464 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2465 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2466 		kfree_rcu(subflow, rcu);
2467 	} else {
2468 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2469 		__tcp_close(ssk, 0);
2470 
2471 		/* close acquired an extra ref */
2472 		__sock_put(ssk);
2473 	}
2474 
2475 out_release:
2476 	__mptcp_subflow_error_report(sk, ssk);
2477 	release_sock(ssk);
2478 
2479 	sock_put(ssk);
2480 
2481 	if (ssk == msk->first)
2482 		WRITE_ONCE(msk->first, NULL);
2483 
2484 out:
2485 	__mptcp_sync_sndbuf(sk);
2486 	if (need_push)
2487 		__mptcp_push_pending(sk, 0);
2488 
2489 	/* Catch every 'all subflows closed' scenario, including peers silently
2490 	 * closing them, e.g. due to timeout.
2491 	 * For established sockets, allow an additional timeout before closing,
2492 	 * as the protocol can still create more subflows.
2493 	 */
2494 	if (list_is_singular(&msk->conn_list) && msk->first &&
2495 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2496 		if (sk->sk_state != TCP_ESTABLISHED ||
2497 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2498 			mptcp_set_state(sk, TCP_CLOSE);
2499 			mptcp_close_wake_up(sk);
2500 		} else {
2501 			mptcp_start_tout_timer(sk);
2502 		}
2503 	}
2504 }
2505 
2506 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2507 		     struct mptcp_subflow_context *subflow)
2508 {
2509 	if (sk->sk_state == TCP_ESTABLISHED)
2510 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2511 
2512 	/* subflow aborted before reaching the fully_established status
2513 	 * attempt the creation of the next subflow
2514 	 */
2515 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2516 
2517 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2518 }
2519 
2520 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2521 {
2522 	return 0;
2523 }
2524 
2525 static void __mptcp_close_subflow(struct sock *sk)
2526 {
2527 	struct mptcp_subflow_context *subflow, *tmp;
2528 	struct mptcp_sock *msk = mptcp_sk(sk);
2529 
2530 	might_sleep();
2531 
2532 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2533 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2534 
2535 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2536 			continue;
2537 
2538 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2539 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2540 			continue;
2541 
2542 		mptcp_close_ssk(sk, ssk, subflow);
2543 	}
2544 
2545 }
2546 
2547 static bool mptcp_close_tout_expired(const struct sock *sk)
2548 {
2549 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2550 	    sk->sk_state == TCP_CLOSE)
2551 		return false;
2552 
2553 	return time_after32(tcp_jiffies32,
2554 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2555 }
2556 
2557 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2558 {
2559 	struct mptcp_subflow_context *subflow, *tmp;
2560 	struct sock *sk = (struct sock *)msk;
2561 
2562 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2563 		return;
2564 
2565 	mptcp_token_destroy(msk);
2566 
2567 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2568 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2569 		bool slow;
2570 
2571 		slow = lock_sock_fast(tcp_sk);
2572 		if (tcp_sk->sk_state != TCP_CLOSE) {
2573 			mptcp_send_active_reset_reason(tcp_sk);
2574 			tcp_set_state(tcp_sk, TCP_CLOSE);
2575 		}
2576 		unlock_sock_fast(tcp_sk, slow);
2577 	}
2578 
2579 	/* Mirror the tcp_reset() error propagation */
2580 	switch (sk->sk_state) {
2581 	case TCP_SYN_SENT:
2582 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2583 		break;
2584 	case TCP_CLOSE_WAIT:
2585 		WRITE_ONCE(sk->sk_err, EPIPE);
2586 		break;
2587 	case TCP_CLOSE:
2588 		return;
2589 	default:
2590 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2591 	}
2592 
2593 	mptcp_set_state(sk, TCP_CLOSE);
2594 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2595 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2596 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2597 
2598 	/* the calling mptcp_worker will properly destroy the socket */
2599 	if (sock_flag(sk, SOCK_DEAD))
2600 		return;
2601 
2602 	sk->sk_state_change(sk);
2603 	sk_error_report(sk);
2604 }
2605 
2606 static void __mptcp_retrans(struct sock *sk)
2607 {
2608 	struct mptcp_sock *msk = mptcp_sk(sk);
2609 	struct mptcp_subflow_context *subflow;
2610 	struct mptcp_sendmsg_info info = {};
2611 	struct mptcp_data_frag *dfrag;
2612 	struct sock *ssk;
2613 	int ret, err;
2614 	u16 len = 0;
2615 
2616 	mptcp_clean_una_wakeup(sk);
2617 
2618 	/* first check ssk: need to kick "stale" logic */
2619 	err = mptcp_sched_get_retrans(msk);
2620 	dfrag = mptcp_rtx_head(sk);
2621 	if (!dfrag) {
2622 		if (mptcp_data_fin_enabled(msk)) {
2623 			struct inet_connection_sock *icsk = inet_csk(sk);
2624 
2625 			icsk->icsk_retransmits++;
2626 			mptcp_set_datafin_timeout(sk);
2627 			mptcp_send_ack(msk);
2628 
2629 			goto reset_timer;
2630 		}
2631 
2632 		if (!mptcp_send_head(sk))
2633 			return;
2634 
2635 		goto reset_timer;
2636 	}
2637 
2638 	if (err)
2639 		goto reset_timer;
2640 
2641 	mptcp_for_each_subflow(msk, subflow) {
2642 		if (READ_ONCE(subflow->scheduled)) {
2643 			u16 copied = 0;
2644 
2645 			mptcp_subflow_set_scheduled(subflow, false);
2646 
2647 			ssk = mptcp_subflow_tcp_sock(subflow);
2648 
2649 			lock_sock(ssk);
2650 
2651 			/* limit retransmission to the bytes already sent on some subflows */
2652 			info.sent = 0;
2653 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2654 								    dfrag->already_sent;
2655 			while (info.sent < info.limit) {
2656 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2657 				if (ret <= 0)
2658 					break;
2659 
2660 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2661 				copied += ret;
2662 				info.sent += ret;
2663 			}
2664 			if (copied) {
2665 				len = max(copied, len);
2666 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2667 					 info.size_goal);
2668 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2669 			}
2670 
2671 			release_sock(ssk);
2672 		}
2673 	}
2674 
2675 	msk->bytes_retrans += len;
2676 	dfrag->already_sent = max(dfrag->already_sent, len);
2677 
2678 reset_timer:
2679 	mptcp_check_and_set_pending(sk);
2680 
2681 	if (!mptcp_rtx_timer_pending(sk))
2682 		mptcp_reset_rtx_timer(sk);
2683 }
2684 
2685 /* schedule the timeout timer for the relevant event: either close timeout
2686  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2687  */
2688 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2689 {
2690 	struct sock *sk = (struct sock *)msk;
2691 	unsigned long timeout, close_timeout;
2692 
2693 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2694 		return;
2695 
2696 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2697 			mptcp_close_timeout(sk);
2698 
2699 	/* the close timeout takes precedence on the fail one, and here at least one of
2700 	 * them is active
2701 	 */
2702 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2703 
2704 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2705 }
2706 
2707 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2708 {
2709 	struct sock *ssk = msk->first;
2710 	bool slow;
2711 
2712 	if (!ssk)
2713 		return;
2714 
2715 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2716 
2717 	slow = lock_sock_fast(ssk);
2718 	mptcp_subflow_reset(ssk);
2719 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2720 	unlock_sock_fast(ssk, slow);
2721 }
2722 
2723 static void mptcp_do_fastclose(struct sock *sk)
2724 {
2725 	struct mptcp_subflow_context *subflow, *tmp;
2726 	struct mptcp_sock *msk = mptcp_sk(sk);
2727 
2728 	mptcp_set_state(sk, TCP_CLOSE);
2729 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2730 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2731 				  subflow, MPTCP_CF_FASTCLOSE);
2732 }
2733 
2734 static void mptcp_worker(struct work_struct *work)
2735 {
2736 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2737 	struct sock *sk = (struct sock *)msk;
2738 	unsigned long fail_tout;
2739 	int state;
2740 
2741 	lock_sock(sk);
2742 	state = sk->sk_state;
2743 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2744 		goto unlock;
2745 
2746 	mptcp_check_fastclose(msk);
2747 
2748 	mptcp_pm_nl_work(msk);
2749 
2750 	mptcp_check_send_data_fin(sk);
2751 	mptcp_check_data_fin_ack(sk);
2752 	mptcp_check_data_fin(sk);
2753 
2754 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2755 		__mptcp_close_subflow(sk);
2756 
2757 	if (mptcp_close_tout_expired(sk)) {
2758 		mptcp_do_fastclose(sk);
2759 		mptcp_close_wake_up(sk);
2760 	}
2761 
2762 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2763 		__mptcp_destroy_sock(sk);
2764 		goto unlock;
2765 	}
2766 
2767 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2768 		__mptcp_retrans(sk);
2769 
2770 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2771 	if (fail_tout && time_after(jiffies, fail_tout))
2772 		mptcp_mp_fail_no_response(msk);
2773 
2774 unlock:
2775 	release_sock(sk);
2776 	sock_put(sk);
2777 }
2778 
2779 static void __mptcp_init_sock(struct sock *sk)
2780 {
2781 	struct mptcp_sock *msk = mptcp_sk(sk);
2782 
2783 	INIT_LIST_HEAD(&msk->conn_list);
2784 	INIT_LIST_HEAD(&msk->join_list);
2785 	INIT_LIST_HEAD(&msk->rtx_queue);
2786 	INIT_WORK(&msk->work, mptcp_worker);
2787 	__skb_queue_head_init(&msk->receive_queue);
2788 	msk->out_of_order_queue = RB_ROOT;
2789 	msk->first_pending = NULL;
2790 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
2791 	WRITE_ONCE(msk->rmem_released, 0);
2792 	msk->timer_ival = TCP_RTO_MIN;
2793 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2794 
2795 	WRITE_ONCE(msk->first, NULL);
2796 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2797 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2798 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2799 	msk->recovery = false;
2800 	msk->subflow_id = 1;
2801 	msk->last_data_sent = tcp_jiffies32;
2802 	msk->last_data_recv = tcp_jiffies32;
2803 	msk->last_ack_recv = tcp_jiffies32;
2804 
2805 	mptcp_pm_data_init(msk);
2806 
2807 	/* re-use the csk retrans timer for MPTCP-level retrans */
2808 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2809 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2810 }
2811 
2812 static void mptcp_ca_reset(struct sock *sk)
2813 {
2814 	struct inet_connection_sock *icsk = inet_csk(sk);
2815 
2816 	tcp_assign_congestion_control(sk);
2817 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2818 		sizeof(mptcp_sk(sk)->ca_name));
2819 
2820 	/* no need to keep a reference to the ops, the name will suffice */
2821 	tcp_cleanup_congestion_control(sk);
2822 	icsk->icsk_ca_ops = NULL;
2823 }
2824 
2825 static int mptcp_init_sock(struct sock *sk)
2826 {
2827 	struct net *net = sock_net(sk);
2828 	int ret;
2829 
2830 	__mptcp_init_sock(sk);
2831 
2832 	if (!mptcp_is_enabled(net))
2833 		return -ENOPROTOOPT;
2834 
2835 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2836 		return -ENOMEM;
2837 
2838 	ret = mptcp_init_sched(mptcp_sk(sk),
2839 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2840 	if (ret)
2841 		return ret;
2842 
2843 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2844 
2845 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2846 	 * propagate the correct value
2847 	 */
2848 	mptcp_ca_reset(sk);
2849 
2850 	sk_sockets_allocated_inc(sk);
2851 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2852 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2853 
2854 	return 0;
2855 }
2856 
2857 static void __mptcp_clear_xmit(struct sock *sk)
2858 {
2859 	struct mptcp_sock *msk = mptcp_sk(sk);
2860 	struct mptcp_data_frag *dtmp, *dfrag;
2861 
2862 	WRITE_ONCE(msk->first_pending, NULL);
2863 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2864 		dfrag_clear(sk, dfrag);
2865 }
2866 
2867 void mptcp_cancel_work(struct sock *sk)
2868 {
2869 	struct mptcp_sock *msk = mptcp_sk(sk);
2870 
2871 	if (cancel_work_sync(&msk->work))
2872 		__sock_put(sk);
2873 }
2874 
2875 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2876 {
2877 	lock_sock(ssk);
2878 
2879 	switch (ssk->sk_state) {
2880 	case TCP_LISTEN:
2881 		if (!(how & RCV_SHUTDOWN))
2882 			break;
2883 		fallthrough;
2884 	case TCP_SYN_SENT:
2885 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2886 		break;
2887 	default:
2888 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2889 			pr_debug("Fallback");
2890 			ssk->sk_shutdown |= how;
2891 			tcp_shutdown(ssk, how);
2892 
2893 			/* simulate the data_fin ack reception to let the state
2894 			 * machine move forward
2895 			 */
2896 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2897 			mptcp_schedule_work(sk);
2898 		} else {
2899 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2900 			tcp_send_ack(ssk);
2901 			if (!mptcp_rtx_timer_pending(sk))
2902 				mptcp_reset_rtx_timer(sk);
2903 		}
2904 		break;
2905 	}
2906 
2907 	release_sock(ssk);
2908 }
2909 
2910 void mptcp_set_state(struct sock *sk, int state)
2911 {
2912 	int oldstate = sk->sk_state;
2913 
2914 	switch (state) {
2915 	case TCP_ESTABLISHED:
2916 		if (oldstate != TCP_ESTABLISHED)
2917 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2918 		break;
2919 	case TCP_CLOSE_WAIT:
2920 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2921 		 * MPTCP "accepted" sockets will be created later on. So no
2922 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2923 		 */
2924 		break;
2925 	default:
2926 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2927 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2928 	}
2929 
2930 	inet_sk_state_store(sk, state);
2931 }
2932 
2933 static const unsigned char new_state[16] = {
2934 	/* current state:     new state:      action:	*/
2935 	[0 /* (Invalid) */] = TCP_CLOSE,
2936 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2937 	[TCP_SYN_SENT]      = TCP_CLOSE,
2938 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2939 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2940 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2941 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2942 	[TCP_CLOSE]         = TCP_CLOSE,
2943 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2944 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2945 	[TCP_LISTEN]        = TCP_CLOSE,
2946 	[TCP_CLOSING]       = TCP_CLOSING,
2947 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2948 };
2949 
2950 static int mptcp_close_state(struct sock *sk)
2951 {
2952 	int next = (int)new_state[sk->sk_state];
2953 	int ns = next & TCP_STATE_MASK;
2954 
2955 	mptcp_set_state(sk, ns);
2956 
2957 	return next & TCP_ACTION_FIN;
2958 }
2959 
2960 static void mptcp_check_send_data_fin(struct sock *sk)
2961 {
2962 	struct mptcp_subflow_context *subflow;
2963 	struct mptcp_sock *msk = mptcp_sk(sk);
2964 
2965 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2966 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2967 		 msk->snd_nxt, msk->write_seq);
2968 
2969 	/* we still need to enqueue subflows or not really shutting down,
2970 	 * skip this
2971 	 */
2972 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2973 	    mptcp_send_head(sk))
2974 		return;
2975 
2976 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2977 
2978 	mptcp_for_each_subflow(msk, subflow) {
2979 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2980 
2981 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2982 	}
2983 }
2984 
2985 static void __mptcp_wr_shutdown(struct sock *sk)
2986 {
2987 	struct mptcp_sock *msk = mptcp_sk(sk);
2988 
2989 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2990 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2991 		 !!mptcp_send_head(sk));
2992 
2993 	/* will be ignored by fallback sockets */
2994 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2995 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2996 
2997 	mptcp_check_send_data_fin(sk);
2998 }
2999 
3000 static void __mptcp_destroy_sock(struct sock *sk)
3001 {
3002 	struct mptcp_sock *msk = mptcp_sk(sk);
3003 
3004 	pr_debug("msk=%p", msk);
3005 
3006 	might_sleep();
3007 
3008 	mptcp_stop_rtx_timer(sk);
3009 	sk_stop_timer(sk, &sk->sk_timer);
3010 	msk->pm.status = 0;
3011 	mptcp_release_sched(msk);
3012 
3013 	sk->sk_prot->destroy(sk);
3014 
3015 	WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
3016 	WARN_ON_ONCE(msk->rmem_released);
3017 	sk_stream_kill_queues(sk);
3018 	xfrm_sk_free_policy(sk);
3019 
3020 	sock_put(sk);
3021 }
3022 
3023 void __mptcp_unaccepted_force_close(struct sock *sk)
3024 {
3025 	sock_set_flag(sk, SOCK_DEAD);
3026 	mptcp_do_fastclose(sk);
3027 	__mptcp_destroy_sock(sk);
3028 }
3029 
3030 static __poll_t mptcp_check_readable(struct sock *sk)
3031 {
3032 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3033 }
3034 
3035 static void mptcp_check_listen_stop(struct sock *sk)
3036 {
3037 	struct sock *ssk;
3038 
3039 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3040 		return;
3041 
3042 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3043 	ssk = mptcp_sk(sk)->first;
3044 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3045 		return;
3046 
3047 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3048 	tcp_set_state(ssk, TCP_CLOSE);
3049 	mptcp_subflow_queue_clean(sk, ssk);
3050 	inet_csk_listen_stop(ssk);
3051 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3052 	release_sock(ssk);
3053 }
3054 
3055 bool __mptcp_close(struct sock *sk, long timeout)
3056 {
3057 	struct mptcp_subflow_context *subflow;
3058 	struct mptcp_sock *msk = mptcp_sk(sk);
3059 	bool do_cancel_work = false;
3060 	int subflows_alive = 0;
3061 
3062 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3063 
3064 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3065 		mptcp_check_listen_stop(sk);
3066 		mptcp_set_state(sk, TCP_CLOSE);
3067 		goto cleanup;
3068 	}
3069 
3070 	if (mptcp_data_avail(msk) || timeout < 0) {
3071 		/* If the msk has read data, or the caller explicitly ask it,
3072 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3073 		 */
3074 		mptcp_do_fastclose(sk);
3075 		timeout = 0;
3076 	} else if (mptcp_close_state(sk)) {
3077 		__mptcp_wr_shutdown(sk);
3078 	}
3079 
3080 	sk_stream_wait_close(sk, timeout);
3081 
3082 cleanup:
3083 	/* orphan all the subflows */
3084 	mptcp_for_each_subflow(msk, subflow) {
3085 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3086 		bool slow = lock_sock_fast_nested(ssk);
3087 
3088 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3089 
3090 		/* since the close timeout takes precedence on the fail one,
3091 		 * cancel the latter
3092 		 */
3093 		if (ssk == msk->first)
3094 			subflow->fail_tout = 0;
3095 
3096 		/* detach from the parent socket, but allow data_ready to
3097 		 * push incoming data into the mptcp stack, to properly ack it
3098 		 */
3099 		ssk->sk_socket = NULL;
3100 		ssk->sk_wq = NULL;
3101 		unlock_sock_fast(ssk, slow);
3102 	}
3103 	sock_orphan(sk);
3104 
3105 	/* all the subflows are closed, only timeout can change the msk
3106 	 * state, let's not keep resources busy for no reasons
3107 	 */
3108 	if (subflows_alive == 0)
3109 		mptcp_set_state(sk, TCP_CLOSE);
3110 
3111 	sock_hold(sk);
3112 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3113 	if (msk->token)
3114 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3115 
3116 	if (sk->sk_state == TCP_CLOSE) {
3117 		__mptcp_destroy_sock(sk);
3118 		do_cancel_work = true;
3119 	} else {
3120 		mptcp_start_tout_timer(sk);
3121 	}
3122 
3123 	return do_cancel_work;
3124 }
3125 
3126 static void mptcp_close(struct sock *sk, long timeout)
3127 {
3128 	bool do_cancel_work;
3129 
3130 	lock_sock(sk);
3131 
3132 	do_cancel_work = __mptcp_close(sk, timeout);
3133 	release_sock(sk);
3134 	if (do_cancel_work)
3135 		mptcp_cancel_work(sk);
3136 
3137 	sock_put(sk);
3138 }
3139 
3140 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3141 {
3142 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3143 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3144 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3145 
3146 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3147 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3148 
3149 	if (msk6 && ssk6) {
3150 		msk6->saddr = ssk6->saddr;
3151 		msk6->flow_label = ssk6->flow_label;
3152 	}
3153 #endif
3154 
3155 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3156 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3157 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3158 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3159 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3160 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3161 }
3162 
3163 static int mptcp_disconnect(struct sock *sk, int flags)
3164 {
3165 	struct mptcp_sock *msk = mptcp_sk(sk);
3166 
3167 	/* We are on the fastopen error path. We can't call straight into the
3168 	 * subflows cleanup code due to lock nesting (we are already under
3169 	 * msk->firstsocket lock).
3170 	 */
3171 	if (msk->fastopening)
3172 		return -EBUSY;
3173 
3174 	mptcp_check_listen_stop(sk);
3175 	mptcp_set_state(sk, TCP_CLOSE);
3176 
3177 	mptcp_stop_rtx_timer(sk);
3178 	mptcp_stop_tout_timer(sk);
3179 
3180 	if (msk->token)
3181 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3182 
3183 	/* msk->subflow is still intact, the following will not free the first
3184 	 * subflow
3185 	 */
3186 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3187 	WRITE_ONCE(msk->flags, 0);
3188 	msk->cb_flags = 0;
3189 	msk->recovery = false;
3190 	WRITE_ONCE(msk->can_ack, false);
3191 	WRITE_ONCE(msk->fully_established, false);
3192 	WRITE_ONCE(msk->rcv_data_fin, false);
3193 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3194 	WRITE_ONCE(msk->rcv_fastclose, false);
3195 	WRITE_ONCE(msk->use_64bit_ack, false);
3196 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3197 	mptcp_pm_data_reset(msk);
3198 	mptcp_ca_reset(sk);
3199 	msk->bytes_consumed = 0;
3200 	msk->bytes_acked = 0;
3201 	msk->bytes_received = 0;
3202 	msk->bytes_sent = 0;
3203 	msk->bytes_retrans = 0;
3204 	msk->rcvspace_init = 0;
3205 
3206 	WRITE_ONCE(sk->sk_shutdown, 0);
3207 	sk_error_report(sk);
3208 	return 0;
3209 }
3210 
3211 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3212 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3213 {
3214 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3215 
3216 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3217 }
3218 
3219 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3220 {
3221 	const struct ipv6_pinfo *np = inet6_sk(sk);
3222 	struct ipv6_txoptions *opt;
3223 	struct ipv6_pinfo *newnp;
3224 
3225 	newnp = inet6_sk(newsk);
3226 
3227 	rcu_read_lock();
3228 	opt = rcu_dereference(np->opt);
3229 	if (opt) {
3230 		opt = ipv6_dup_options(newsk, opt);
3231 		if (!opt)
3232 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3233 	}
3234 	RCU_INIT_POINTER(newnp->opt, opt);
3235 	rcu_read_unlock();
3236 }
3237 #endif
3238 
3239 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3240 {
3241 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3242 	const struct inet_sock *inet = inet_sk(sk);
3243 	struct inet_sock *newinet;
3244 
3245 	newinet = inet_sk(newsk);
3246 
3247 	rcu_read_lock();
3248 	inet_opt = rcu_dereference(inet->inet_opt);
3249 	if (inet_opt) {
3250 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3251 				      inet_opt->opt.optlen, GFP_ATOMIC);
3252 		if (newopt)
3253 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3254 			       inet_opt->opt.optlen);
3255 		else
3256 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3257 	}
3258 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3259 	rcu_read_unlock();
3260 }
3261 
3262 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3263 				 const struct mptcp_options_received *mp_opt,
3264 				 struct sock *ssk,
3265 				 struct request_sock *req)
3266 {
3267 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3268 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3269 	struct mptcp_subflow_context *subflow;
3270 	struct mptcp_sock *msk;
3271 
3272 	if (!nsk)
3273 		return NULL;
3274 
3275 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3276 	if (nsk->sk_family == AF_INET6)
3277 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3278 #endif
3279 
3280 	__mptcp_init_sock(nsk);
3281 
3282 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3283 	if (nsk->sk_family == AF_INET6)
3284 		mptcp_copy_ip6_options(nsk, sk);
3285 	else
3286 #endif
3287 		mptcp_copy_ip_options(nsk, sk);
3288 
3289 	msk = mptcp_sk(nsk);
3290 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3291 	WRITE_ONCE(msk->token, subflow_req->token);
3292 	msk->in_accept_queue = 1;
3293 	WRITE_ONCE(msk->fully_established, false);
3294 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3295 		WRITE_ONCE(msk->csum_enabled, true);
3296 
3297 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3298 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3299 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3300 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3301 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3302 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3303 
3304 	/* passive msk is created after the first/MPC subflow */
3305 	msk->subflow_id = 2;
3306 
3307 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3308 	security_inet_csk_clone(nsk, req);
3309 
3310 	/* this can't race with mptcp_close(), as the msk is
3311 	 * not yet exposted to user-space
3312 	 */
3313 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3314 
3315 	/* The msk maintain a ref to each subflow in the connections list */
3316 	WRITE_ONCE(msk->first, ssk);
3317 	subflow = mptcp_subflow_ctx(ssk);
3318 	list_add(&subflow->node, &msk->conn_list);
3319 	sock_hold(ssk);
3320 
3321 	/* new mpc subflow takes ownership of the newly
3322 	 * created mptcp socket
3323 	 */
3324 	mptcp_token_accept(subflow_req, msk);
3325 
3326 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3327 	 * uses the correct data
3328 	 */
3329 	mptcp_copy_inaddrs(nsk, ssk);
3330 	__mptcp_propagate_sndbuf(nsk, ssk);
3331 
3332 	mptcp_rcv_space_init(msk, ssk);
3333 
3334 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3335 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3336 	bh_unlock_sock(nsk);
3337 
3338 	/* note: the newly allocated socket refcount is 2 now */
3339 	return nsk;
3340 }
3341 
3342 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3343 {
3344 	const struct tcp_sock *tp = tcp_sk(ssk);
3345 
3346 	msk->rcvspace_init = 1;
3347 	msk->rcvq_space.copied = 0;
3348 	msk->rcvq_space.rtt_us = 0;
3349 
3350 	msk->rcvq_space.time = tp->tcp_mstamp;
3351 
3352 	/* initial rcv_space offering made to peer */
3353 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3354 				      TCP_INIT_CWND * tp->advmss);
3355 	if (msk->rcvq_space.space == 0)
3356 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3357 }
3358 
3359 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3360 {
3361 	struct mptcp_subflow_context *subflow, *tmp;
3362 	struct sock *sk = (struct sock *)msk;
3363 
3364 	__mptcp_clear_xmit(sk);
3365 
3366 	/* join list will be eventually flushed (with rst) at sock lock release time */
3367 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3368 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3369 
3370 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3371 	mptcp_data_lock(sk);
3372 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3373 	__skb_queue_purge(&sk->sk_receive_queue);
3374 	skb_rbtree_purge(&msk->out_of_order_queue);
3375 	mptcp_data_unlock(sk);
3376 
3377 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3378 	 * inet_sock_destruct() will dispose it
3379 	 */
3380 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3381 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3382 	mptcp_token_destroy(msk);
3383 	mptcp_pm_free_anno_list(msk);
3384 	mptcp_free_local_addr_list(msk);
3385 }
3386 
3387 static void mptcp_destroy(struct sock *sk)
3388 {
3389 	struct mptcp_sock *msk = mptcp_sk(sk);
3390 
3391 	/* allow the following to close even the initial subflow */
3392 	msk->free_first = 1;
3393 	mptcp_destroy_common(msk, 0);
3394 	sk_sockets_allocated_dec(sk);
3395 }
3396 
3397 void __mptcp_data_acked(struct sock *sk)
3398 {
3399 	if (!sock_owned_by_user(sk))
3400 		__mptcp_clean_una(sk);
3401 	else
3402 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3403 }
3404 
3405 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3406 {
3407 	if (!mptcp_send_head(sk))
3408 		return;
3409 
3410 	if (!sock_owned_by_user(sk))
3411 		__mptcp_subflow_push_pending(sk, ssk, false);
3412 	else
3413 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3414 }
3415 
3416 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3417 				      BIT(MPTCP_RETRANSMIT) | \
3418 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3419 
3420 /* processes deferred events and flush wmem */
3421 static void mptcp_release_cb(struct sock *sk)
3422 	__must_hold(&sk->sk_lock.slock)
3423 {
3424 	struct mptcp_sock *msk = mptcp_sk(sk);
3425 
3426 	for (;;) {
3427 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3428 		struct list_head join_list;
3429 
3430 		if (!flags)
3431 			break;
3432 
3433 		INIT_LIST_HEAD(&join_list);
3434 		list_splice_init(&msk->join_list, &join_list);
3435 
3436 		/* the following actions acquire the subflow socket lock
3437 		 *
3438 		 * 1) can't be invoked in atomic scope
3439 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3440 		 *    datapath acquires the msk socket spinlock while helding
3441 		 *    the subflow socket lock
3442 		 */
3443 		msk->cb_flags &= ~flags;
3444 		spin_unlock_bh(&sk->sk_lock.slock);
3445 
3446 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3447 			__mptcp_flush_join_list(sk, &join_list);
3448 		if (flags & BIT(MPTCP_PUSH_PENDING))
3449 			__mptcp_push_pending(sk, 0);
3450 		if (flags & BIT(MPTCP_RETRANSMIT))
3451 			__mptcp_retrans(sk);
3452 
3453 		cond_resched();
3454 		spin_lock_bh(&sk->sk_lock.slock);
3455 	}
3456 
3457 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3458 		__mptcp_clean_una_wakeup(sk);
3459 	if (unlikely(msk->cb_flags)) {
3460 		/* be sure to sync the msk state before taking actions
3461 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3462 		 * On sk release avoid actions depending on the first subflow
3463 		 */
3464 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3465 			__mptcp_sync_state(sk, msk->pending_state);
3466 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3467 			__mptcp_error_report(sk);
3468 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3469 			__mptcp_sync_sndbuf(sk);
3470 	}
3471 
3472 	__mptcp_update_rmem(sk);
3473 }
3474 
3475 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3476  * TCP can't schedule delack timer before the subflow is fully established.
3477  * MPTCP uses the delack timer to do 3rd ack retransmissions
3478  */
3479 static void schedule_3rdack_retransmission(struct sock *ssk)
3480 {
3481 	struct inet_connection_sock *icsk = inet_csk(ssk);
3482 	struct tcp_sock *tp = tcp_sk(ssk);
3483 	unsigned long timeout;
3484 
3485 	if (mptcp_subflow_ctx(ssk)->fully_established)
3486 		return;
3487 
3488 	/* reschedule with a timeout above RTT, as we must look only for drop */
3489 	if (tp->srtt_us)
3490 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3491 	else
3492 		timeout = TCP_TIMEOUT_INIT;
3493 	timeout += jiffies;
3494 
3495 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3496 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3497 	icsk->icsk_ack.timeout = timeout;
3498 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3499 }
3500 
3501 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3502 {
3503 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3504 	struct sock *sk = subflow->conn;
3505 
3506 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3507 		mptcp_data_lock(sk);
3508 		if (!sock_owned_by_user(sk))
3509 			__mptcp_subflow_push_pending(sk, ssk, true);
3510 		else
3511 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3512 		mptcp_data_unlock(sk);
3513 	}
3514 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3515 		mptcp_data_lock(sk);
3516 		if (!sock_owned_by_user(sk))
3517 			__mptcp_sync_sndbuf(sk);
3518 		else
3519 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3520 		mptcp_data_unlock(sk);
3521 	}
3522 	if (status & BIT(MPTCP_DELEGATE_ACK))
3523 		schedule_3rdack_retransmission(ssk);
3524 }
3525 
3526 static int mptcp_hash(struct sock *sk)
3527 {
3528 	/* should never be called,
3529 	 * we hash the TCP subflows not the master socket
3530 	 */
3531 	WARN_ON_ONCE(1);
3532 	return 0;
3533 }
3534 
3535 static void mptcp_unhash(struct sock *sk)
3536 {
3537 	/* called from sk_common_release(), but nothing to do here */
3538 }
3539 
3540 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3541 {
3542 	struct mptcp_sock *msk = mptcp_sk(sk);
3543 
3544 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3545 	if (WARN_ON_ONCE(!msk->first))
3546 		return -EINVAL;
3547 
3548 	return inet_csk_get_port(msk->first, snum);
3549 }
3550 
3551 void mptcp_finish_connect(struct sock *ssk)
3552 {
3553 	struct mptcp_subflow_context *subflow;
3554 	struct mptcp_sock *msk;
3555 	struct sock *sk;
3556 
3557 	subflow = mptcp_subflow_ctx(ssk);
3558 	sk = subflow->conn;
3559 	msk = mptcp_sk(sk);
3560 
3561 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3562 
3563 	subflow->map_seq = subflow->iasn;
3564 	subflow->map_subflow_seq = 1;
3565 
3566 	/* the socket is not connected yet, no msk/subflow ops can access/race
3567 	 * accessing the field below
3568 	 */
3569 	WRITE_ONCE(msk->local_key, subflow->local_key);
3570 
3571 	mptcp_pm_new_connection(msk, ssk, 0);
3572 }
3573 
3574 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3575 {
3576 	write_lock_bh(&sk->sk_callback_lock);
3577 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3578 	sk_set_socket(sk, parent);
3579 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3580 	write_unlock_bh(&sk->sk_callback_lock);
3581 }
3582 
3583 bool mptcp_finish_join(struct sock *ssk)
3584 {
3585 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3586 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3587 	struct sock *parent = (void *)msk;
3588 	bool ret = true;
3589 
3590 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3591 
3592 	/* mptcp socket already closing? */
3593 	if (!mptcp_is_fully_established(parent)) {
3594 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3595 		return false;
3596 	}
3597 
3598 	/* active subflow, already present inside the conn_list */
3599 	if (!list_empty(&subflow->node)) {
3600 		mptcp_subflow_joined(msk, ssk);
3601 		mptcp_propagate_sndbuf(parent, ssk);
3602 		return true;
3603 	}
3604 
3605 	if (!mptcp_pm_allow_new_subflow(msk))
3606 		goto err_prohibited;
3607 
3608 	/* If we can't acquire msk socket lock here, let the release callback
3609 	 * handle it
3610 	 */
3611 	mptcp_data_lock(parent);
3612 	if (!sock_owned_by_user(parent)) {
3613 		ret = __mptcp_finish_join(msk, ssk);
3614 		if (ret) {
3615 			sock_hold(ssk);
3616 			list_add_tail(&subflow->node, &msk->conn_list);
3617 		}
3618 	} else {
3619 		sock_hold(ssk);
3620 		list_add_tail(&subflow->node, &msk->join_list);
3621 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3622 	}
3623 	mptcp_data_unlock(parent);
3624 
3625 	if (!ret) {
3626 err_prohibited:
3627 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3628 		return false;
3629 	}
3630 
3631 	return true;
3632 }
3633 
3634 static void mptcp_shutdown(struct sock *sk, int how)
3635 {
3636 	pr_debug("sk=%p, how=%d", sk, how);
3637 
3638 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3639 		__mptcp_wr_shutdown(sk);
3640 }
3641 
3642 static int mptcp_forward_alloc_get(const struct sock *sk)
3643 {
3644 	return READ_ONCE(sk->sk_forward_alloc) +
3645 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3646 }
3647 
3648 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3649 {
3650 	const struct sock *sk = (void *)msk;
3651 	u64 delta;
3652 
3653 	if (sk->sk_state == TCP_LISTEN)
3654 		return -EINVAL;
3655 
3656 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3657 		return 0;
3658 
3659 	delta = msk->write_seq - v;
3660 	if (__mptcp_check_fallback(msk) && msk->first) {
3661 		struct tcp_sock *tp = tcp_sk(msk->first);
3662 
3663 		/* the first subflow is disconnected after close - see
3664 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3665 		 * so ignore that status, too.
3666 		 */
3667 		if (!((1 << msk->first->sk_state) &
3668 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3669 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3670 	}
3671 	if (delta > INT_MAX)
3672 		delta = INT_MAX;
3673 
3674 	return (int)delta;
3675 }
3676 
3677 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3678 {
3679 	struct mptcp_sock *msk = mptcp_sk(sk);
3680 	bool slow;
3681 
3682 	switch (cmd) {
3683 	case SIOCINQ:
3684 		if (sk->sk_state == TCP_LISTEN)
3685 			return -EINVAL;
3686 
3687 		lock_sock(sk);
3688 		__mptcp_move_skbs(msk);
3689 		*karg = mptcp_inq_hint(sk);
3690 		release_sock(sk);
3691 		break;
3692 	case SIOCOUTQ:
3693 		slow = lock_sock_fast(sk);
3694 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3695 		unlock_sock_fast(sk, slow);
3696 		break;
3697 	case SIOCOUTQNSD:
3698 		slow = lock_sock_fast(sk);
3699 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3700 		unlock_sock_fast(sk, slow);
3701 		break;
3702 	default:
3703 		return -ENOIOCTLCMD;
3704 	}
3705 
3706 	return 0;
3707 }
3708 
3709 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3710 					 struct mptcp_subflow_context *subflow)
3711 {
3712 	subflow->request_mptcp = 0;
3713 	__mptcp_do_fallback(msk);
3714 }
3715 
3716 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3717 {
3718 	struct mptcp_subflow_context *subflow;
3719 	struct mptcp_sock *msk = mptcp_sk(sk);
3720 	int err = -EINVAL;
3721 	struct sock *ssk;
3722 
3723 	ssk = __mptcp_nmpc_sk(msk);
3724 	if (IS_ERR(ssk))
3725 		return PTR_ERR(ssk);
3726 
3727 	mptcp_set_state(sk, TCP_SYN_SENT);
3728 	subflow = mptcp_subflow_ctx(ssk);
3729 #ifdef CONFIG_TCP_MD5SIG
3730 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3731 	 * TCP option space.
3732 	 */
3733 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3734 		mptcp_subflow_early_fallback(msk, subflow);
3735 #endif
3736 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3737 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3738 		mptcp_subflow_early_fallback(msk, subflow);
3739 	}
3740 
3741 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3742 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3743 	if (likely(!__mptcp_check_fallback(msk)))
3744 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3745 
3746 	/* if reaching here via the fastopen/sendmsg path, the caller already
3747 	 * acquired the subflow socket lock, too.
3748 	 */
3749 	if (!msk->fastopening)
3750 		lock_sock(ssk);
3751 
3752 	/* the following mirrors closely a very small chunk of code from
3753 	 * __inet_stream_connect()
3754 	 */
3755 	if (ssk->sk_state != TCP_CLOSE)
3756 		goto out;
3757 
3758 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3759 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3760 		if (err)
3761 			goto out;
3762 	}
3763 
3764 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3765 	if (err < 0)
3766 		goto out;
3767 
3768 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3769 
3770 out:
3771 	if (!msk->fastopening)
3772 		release_sock(ssk);
3773 
3774 	/* on successful connect, the msk state will be moved to established by
3775 	 * subflow_finish_connect()
3776 	 */
3777 	if (unlikely(err)) {
3778 		/* avoid leaving a dangling token in an unconnected socket */
3779 		mptcp_token_destroy(msk);
3780 		mptcp_set_state(sk, TCP_CLOSE);
3781 		return err;
3782 	}
3783 
3784 	mptcp_copy_inaddrs(sk, ssk);
3785 	return 0;
3786 }
3787 
3788 static struct proto mptcp_prot = {
3789 	.name		= "MPTCP",
3790 	.owner		= THIS_MODULE,
3791 	.init		= mptcp_init_sock,
3792 	.connect	= mptcp_connect,
3793 	.disconnect	= mptcp_disconnect,
3794 	.close		= mptcp_close,
3795 	.setsockopt	= mptcp_setsockopt,
3796 	.getsockopt	= mptcp_getsockopt,
3797 	.shutdown	= mptcp_shutdown,
3798 	.destroy	= mptcp_destroy,
3799 	.sendmsg	= mptcp_sendmsg,
3800 	.ioctl		= mptcp_ioctl,
3801 	.recvmsg	= mptcp_recvmsg,
3802 	.release_cb	= mptcp_release_cb,
3803 	.hash		= mptcp_hash,
3804 	.unhash		= mptcp_unhash,
3805 	.get_port	= mptcp_get_port,
3806 	.forward_alloc_get	= mptcp_forward_alloc_get,
3807 	.stream_memory_free	= mptcp_stream_memory_free,
3808 	.sockets_allocated	= &mptcp_sockets_allocated,
3809 
3810 	.memory_allocated	= &tcp_memory_allocated,
3811 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3812 
3813 	.memory_pressure	= &tcp_memory_pressure,
3814 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3815 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3816 	.sysctl_mem	= sysctl_tcp_mem,
3817 	.obj_size	= sizeof(struct mptcp_sock),
3818 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3819 	.no_autobind	= true,
3820 };
3821 
3822 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3823 {
3824 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3825 	struct sock *ssk, *sk = sock->sk;
3826 	int err = -EINVAL;
3827 
3828 	lock_sock(sk);
3829 	ssk = __mptcp_nmpc_sk(msk);
3830 	if (IS_ERR(ssk)) {
3831 		err = PTR_ERR(ssk);
3832 		goto unlock;
3833 	}
3834 
3835 	if (sk->sk_family == AF_INET)
3836 		err = inet_bind_sk(ssk, uaddr, addr_len);
3837 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3838 	else if (sk->sk_family == AF_INET6)
3839 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3840 #endif
3841 	if (!err)
3842 		mptcp_copy_inaddrs(sk, ssk);
3843 
3844 unlock:
3845 	release_sock(sk);
3846 	return err;
3847 }
3848 
3849 static int mptcp_listen(struct socket *sock, int backlog)
3850 {
3851 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3852 	struct sock *sk = sock->sk;
3853 	struct sock *ssk;
3854 	int err;
3855 
3856 	pr_debug("msk=%p", msk);
3857 
3858 	lock_sock(sk);
3859 
3860 	err = -EINVAL;
3861 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3862 		goto unlock;
3863 
3864 	ssk = __mptcp_nmpc_sk(msk);
3865 	if (IS_ERR(ssk)) {
3866 		err = PTR_ERR(ssk);
3867 		goto unlock;
3868 	}
3869 
3870 	mptcp_set_state(sk, TCP_LISTEN);
3871 	sock_set_flag(sk, SOCK_RCU_FREE);
3872 
3873 	lock_sock(ssk);
3874 	err = __inet_listen_sk(ssk, backlog);
3875 	release_sock(ssk);
3876 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3877 
3878 	if (!err) {
3879 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3880 		mptcp_copy_inaddrs(sk, ssk);
3881 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3882 	}
3883 
3884 unlock:
3885 	release_sock(sk);
3886 	return err;
3887 }
3888 
3889 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3890 			       struct proto_accept_arg *arg)
3891 {
3892 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3893 	struct sock *ssk, *newsk;
3894 
3895 	pr_debug("msk=%p", msk);
3896 
3897 	/* Buggy applications can call accept on socket states other then LISTEN
3898 	 * but no need to allocate the first subflow just to error out.
3899 	 */
3900 	ssk = READ_ONCE(msk->first);
3901 	if (!ssk)
3902 		return -EINVAL;
3903 
3904 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3905 	newsk = inet_csk_accept(ssk, arg);
3906 	if (!newsk)
3907 		return arg->err;
3908 
3909 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3910 	if (sk_is_mptcp(newsk)) {
3911 		struct mptcp_subflow_context *subflow;
3912 		struct sock *new_mptcp_sock;
3913 
3914 		subflow = mptcp_subflow_ctx(newsk);
3915 		new_mptcp_sock = subflow->conn;
3916 
3917 		/* is_mptcp should be false if subflow->conn is missing, see
3918 		 * subflow_syn_recv_sock()
3919 		 */
3920 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3921 			tcp_sk(newsk)->is_mptcp = 0;
3922 			goto tcpfallback;
3923 		}
3924 
3925 		newsk = new_mptcp_sock;
3926 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3927 
3928 		newsk->sk_kern_sock = arg->kern;
3929 		lock_sock(newsk);
3930 		__inet_accept(sock, newsock, newsk);
3931 
3932 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3933 		msk = mptcp_sk(newsk);
3934 		msk->in_accept_queue = 0;
3935 
3936 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3937 		 * This is needed so NOSPACE flag can be set from tcp stack.
3938 		 */
3939 		mptcp_for_each_subflow(msk, subflow) {
3940 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3941 
3942 			if (!ssk->sk_socket)
3943 				mptcp_sock_graft(ssk, newsock);
3944 		}
3945 
3946 		/* Do late cleanup for the first subflow as necessary. Also
3947 		 * deal with bad peers not doing a complete shutdown.
3948 		 */
3949 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3950 			__mptcp_close_ssk(newsk, msk->first,
3951 					  mptcp_subflow_ctx(msk->first), 0);
3952 			if (unlikely(list_is_singular(&msk->conn_list)))
3953 				mptcp_set_state(newsk, TCP_CLOSE);
3954 		}
3955 	} else {
3956 tcpfallback:
3957 		newsk->sk_kern_sock = arg->kern;
3958 		lock_sock(newsk);
3959 		__inet_accept(sock, newsock, newsk);
3960 		/* we are being invoked after accepting a non-mp-capable
3961 		 * flow: sk is a tcp_sk, not an mptcp one.
3962 		 *
3963 		 * Hand the socket over to tcp so all further socket ops
3964 		 * bypass mptcp.
3965 		 */
3966 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3967 			   mptcp_fallback_tcp_ops(newsock->sk));
3968 	}
3969 	release_sock(newsk);
3970 
3971 	return 0;
3972 }
3973 
3974 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3975 {
3976 	struct sock *sk = (struct sock *)msk;
3977 
3978 	if (__mptcp_stream_is_writeable(sk, 1))
3979 		return EPOLLOUT | EPOLLWRNORM;
3980 
3981 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3982 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3983 	if (__mptcp_stream_is_writeable(sk, 1))
3984 		return EPOLLOUT | EPOLLWRNORM;
3985 
3986 	return 0;
3987 }
3988 
3989 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3990 			   struct poll_table_struct *wait)
3991 {
3992 	struct sock *sk = sock->sk;
3993 	struct mptcp_sock *msk;
3994 	__poll_t mask = 0;
3995 	u8 shutdown;
3996 	int state;
3997 
3998 	msk = mptcp_sk(sk);
3999 	sock_poll_wait(file, sock, wait);
4000 
4001 	state = inet_sk_state_load(sk);
4002 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
4003 	if (state == TCP_LISTEN) {
4004 		struct sock *ssk = READ_ONCE(msk->first);
4005 
4006 		if (WARN_ON_ONCE(!ssk))
4007 			return 0;
4008 
4009 		return inet_csk_listen_poll(ssk);
4010 	}
4011 
4012 	shutdown = READ_ONCE(sk->sk_shutdown);
4013 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4014 		mask |= EPOLLHUP;
4015 	if (shutdown & RCV_SHUTDOWN)
4016 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4017 
4018 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4019 		mask |= mptcp_check_readable(sk);
4020 		if (shutdown & SEND_SHUTDOWN)
4021 			mask |= EPOLLOUT | EPOLLWRNORM;
4022 		else
4023 			mask |= mptcp_check_writeable(msk);
4024 	} else if (state == TCP_SYN_SENT &&
4025 		   inet_test_bit(DEFER_CONNECT, sk)) {
4026 		/* cf tcp_poll() note about TFO */
4027 		mask |= EPOLLOUT | EPOLLWRNORM;
4028 	}
4029 
4030 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4031 	smp_rmb();
4032 	if (READ_ONCE(sk->sk_err))
4033 		mask |= EPOLLERR;
4034 
4035 	return mask;
4036 }
4037 
4038 static const struct proto_ops mptcp_stream_ops = {
4039 	.family		   = PF_INET,
4040 	.owner		   = THIS_MODULE,
4041 	.release	   = inet_release,
4042 	.bind		   = mptcp_bind,
4043 	.connect	   = inet_stream_connect,
4044 	.socketpair	   = sock_no_socketpair,
4045 	.accept		   = mptcp_stream_accept,
4046 	.getname	   = inet_getname,
4047 	.poll		   = mptcp_poll,
4048 	.ioctl		   = inet_ioctl,
4049 	.gettstamp	   = sock_gettstamp,
4050 	.listen		   = mptcp_listen,
4051 	.shutdown	   = inet_shutdown,
4052 	.setsockopt	   = sock_common_setsockopt,
4053 	.getsockopt	   = sock_common_getsockopt,
4054 	.sendmsg	   = inet_sendmsg,
4055 	.recvmsg	   = inet_recvmsg,
4056 	.mmap		   = sock_no_mmap,
4057 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4058 };
4059 
4060 static struct inet_protosw mptcp_protosw = {
4061 	.type		= SOCK_STREAM,
4062 	.protocol	= IPPROTO_MPTCP,
4063 	.prot		= &mptcp_prot,
4064 	.ops		= &mptcp_stream_ops,
4065 	.flags		= INET_PROTOSW_ICSK,
4066 };
4067 
4068 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4069 {
4070 	struct mptcp_delegated_action *delegated;
4071 	struct mptcp_subflow_context *subflow;
4072 	int work_done = 0;
4073 
4074 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4075 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4076 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4077 
4078 		bh_lock_sock_nested(ssk);
4079 		if (!sock_owned_by_user(ssk)) {
4080 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4081 		} else {
4082 			/* tcp_release_cb_override already processed
4083 			 * the action or will do at next release_sock().
4084 			 * In both case must dequeue the subflow here - on the same
4085 			 * CPU that scheduled it.
4086 			 */
4087 			smp_wmb();
4088 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4089 		}
4090 		bh_unlock_sock(ssk);
4091 		sock_put(ssk);
4092 
4093 		if (++work_done == budget)
4094 			return budget;
4095 	}
4096 
4097 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4098 	 * will not try accessing the NULL napi->dev ptr
4099 	 */
4100 	napi_complete_done(napi, 0);
4101 	return work_done;
4102 }
4103 
4104 void __init mptcp_proto_init(void)
4105 {
4106 	struct mptcp_delegated_action *delegated;
4107 	int cpu;
4108 
4109 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4110 
4111 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4112 		panic("Failed to allocate MPTCP pcpu counter\n");
4113 
4114 	init_dummy_netdev(&mptcp_napi_dev);
4115 	for_each_possible_cpu(cpu) {
4116 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4117 		INIT_LIST_HEAD(&delegated->head);
4118 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4119 				  mptcp_napi_poll);
4120 		napi_enable(&delegated->napi);
4121 	}
4122 
4123 	mptcp_subflow_init();
4124 	mptcp_pm_init();
4125 	mptcp_sched_init();
4126 	mptcp_token_init();
4127 
4128 	if (proto_register(&mptcp_prot, 1) != 0)
4129 		panic("Failed to register MPTCP proto.\n");
4130 
4131 	inet_register_protosw(&mptcp_protosw);
4132 
4133 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4134 }
4135 
4136 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4137 static const struct proto_ops mptcp_v6_stream_ops = {
4138 	.family		   = PF_INET6,
4139 	.owner		   = THIS_MODULE,
4140 	.release	   = inet6_release,
4141 	.bind		   = mptcp_bind,
4142 	.connect	   = inet_stream_connect,
4143 	.socketpair	   = sock_no_socketpair,
4144 	.accept		   = mptcp_stream_accept,
4145 	.getname	   = inet6_getname,
4146 	.poll		   = mptcp_poll,
4147 	.ioctl		   = inet6_ioctl,
4148 	.gettstamp	   = sock_gettstamp,
4149 	.listen		   = mptcp_listen,
4150 	.shutdown	   = inet_shutdown,
4151 	.setsockopt	   = sock_common_setsockopt,
4152 	.getsockopt	   = sock_common_getsockopt,
4153 	.sendmsg	   = inet6_sendmsg,
4154 	.recvmsg	   = inet6_recvmsg,
4155 	.mmap		   = sock_no_mmap,
4156 #ifdef CONFIG_COMPAT
4157 	.compat_ioctl	   = inet6_compat_ioctl,
4158 #endif
4159 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4160 };
4161 
4162 static struct proto mptcp_v6_prot;
4163 
4164 static struct inet_protosw mptcp_v6_protosw = {
4165 	.type		= SOCK_STREAM,
4166 	.protocol	= IPPROTO_MPTCP,
4167 	.prot		= &mptcp_v6_prot,
4168 	.ops		= &mptcp_v6_stream_ops,
4169 	.flags		= INET_PROTOSW_ICSK,
4170 };
4171 
4172 int __init mptcp_proto_v6_init(void)
4173 {
4174 	int err;
4175 
4176 	mptcp_v6_prot = mptcp_prot;
4177 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4178 	mptcp_v6_prot.slab = NULL;
4179 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4180 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4181 
4182 	err = proto_register(&mptcp_v6_prot, 1);
4183 	if (err)
4184 		return err;
4185 
4186 	err = inet6_register_protosw(&mptcp_v6_protosw);
4187 	if (err)
4188 		proto_unregister(&mptcp_v6_prot);
4189 
4190 	return err;
4191 }
4192 #endif
4193