1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 subflow->local_id_valid = 1; 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 } 111 112 return msk->first; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 122 { 123 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 124 mptcp_sk(sk)->rmem_fwd_alloc + size); 125 } 126 127 static void mptcp_rmem_charge(struct sock *sk, int size) 128 { 129 mptcp_rmem_fwd_alloc_add(sk, -size); 130 } 131 132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 133 struct sk_buff *from) 134 { 135 bool fragstolen; 136 int delta; 137 138 if (MPTCP_SKB_CB(from)->offset || 139 !skb_try_coalesce(to, from, &fragstolen, &delta)) 140 return false; 141 142 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 143 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 144 to->len, MPTCP_SKB_CB(from)->end_seq); 145 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 146 147 /* note the fwd memory can reach a negative value after accounting 148 * for the delta, but the later skb free will restore a non 149 * negative one 150 */ 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 kfree_skb_partial(from, fragstolen); 154 155 return true; 156 } 157 158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 159 struct sk_buff *from) 160 { 161 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 162 return false; 163 164 return mptcp_try_coalesce((struct sock *)msk, to, from); 165 } 166 167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 168 { 169 amount >>= PAGE_SHIFT; 170 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 171 __sk_mem_reduce_allocated(sk, amount); 172 } 173 174 static void mptcp_rmem_uncharge(struct sock *sk, int size) 175 { 176 struct mptcp_sock *msk = mptcp_sk(sk); 177 int reclaimable; 178 179 mptcp_rmem_fwd_alloc_add(sk, size); 180 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 181 182 /* see sk_mem_uncharge() for the rationale behind the following schema */ 183 if (unlikely(reclaimable >= PAGE_SIZE)) 184 __mptcp_rmem_reclaim(sk, reclaimable); 185 } 186 187 static void mptcp_rfree(struct sk_buff *skb) 188 { 189 unsigned int len = skb->truesize; 190 struct sock *sk = skb->sk; 191 192 atomic_sub(len, &sk->sk_rmem_alloc); 193 mptcp_rmem_uncharge(sk, len); 194 } 195 196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 197 { 198 skb_orphan(skb); 199 skb->sk = sk; 200 skb->destructor = mptcp_rfree; 201 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 202 mptcp_rmem_charge(sk, skb->truesize); 203 } 204 205 /* "inspired" by tcp_data_queue_ofo(), main differences: 206 * - use mptcp seqs 207 * - don't cope with sacks 208 */ 209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 210 { 211 struct sock *sk = (struct sock *)msk; 212 struct rb_node **p, *parent; 213 u64 seq, end_seq, max_seq; 214 struct sk_buff *skb1; 215 216 seq = MPTCP_SKB_CB(skb)->map_seq; 217 end_seq = MPTCP_SKB_CB(skb)->end_seq; 218 max_seq = atomic64_read(&msk->rcv_wnd_sent); 219 220 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 221 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 222 if (after64(end_seq, max_seq)) { 223 /* out of window */ 224 mptcp_drop(sk, skb); 225 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 226 (unsigned long long)end_seq - (unsigned long)max_seq, 227 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 229 return; 230 } 231 232 p = &msk->out_of_order_queue.rb_node; 233 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 234 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 235 rb_link_node(&skb->rbnode, NULL, p); 236 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 237 msk->ooo_last_skb = skb; 238 goto end; 239 } 240 241 /* with 2 subflows, adding at end of ooo queue is quite likely 242 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 243 */ 244 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 247 return; 248 } 249 250 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 251 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 253 parent = &msk->ooo_last_skb->rbnode; 254 p = &parent->rb_right; 255 goto insert; 256 } 257 258 /* Find place to insert this segment. Handle overlaps on the way. */ 259 parent = NULL; 260 while (*p) { 261 parent = *p; 262 skb1 = rb_to_skb(parent); 263 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 264 p = &parent->rb_left; 265 continue; 266 } 267 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 /* All the bits are present. Drop. */ 270 mptcp_drop(sk, skb); 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 272 return; 273 } 274 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 275 /* partial overlap: 276 * | skb | 277 * | skb1 | 278 * continue traversing 279 */ 280 } else { 281 /* skb's seq == skb1's seq and skb covers skb1. 282 * Replace skb1 with skb. 283 */ 284 rb_replace_node(&skb1->rbnode, &skb->rbnode, 285 &msk->out_of_order_queue); 286 mptcp_drop(sk, skb1); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 goto merge_right; 289 } 290 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 292 return; 293 } 294 p = &parent->rb_right; 295 } 296 297 insert: 298 /* Insert segment into RB tree. */ 299 rb_link_node(&skb->rbnode, parent, p); 300 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 301 302 merge_right: 303 /* Remove other segments covered by skb. */ 304 while ((skb1 = skb_rb_next(skb)) != NULL) { 305 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 306 break; 307 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 308 mptcp_drop(sk, skb1); 309 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 310 } 311 /* If there is no skb after us, we are the last_skb ! */ 312 if (!skb1) 313 msk->ooo_last_skb = skb; 314 315 end: 316 skb_condense(skb); 317 mptcp_set_owner_r(skb, sk); 318 } 319 320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 321 { 322 struct mptcp_sock *msk = mptcp_sk(sk); 323 int amt, amount; 324 325 if (size <= msk->rmem_fwd_alloc) 326 return true; 327 328 size -= msk->rmem_fwd_alloc; 329 amt = sk_mem_pages(size); 330 amount = amt << PAGE_SHIFT; 331 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 332 return false; 333 334 mptcp_rmem_fwd_alloc_add(sk, amount); 335 return true; 336 } 337 338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 339 struct sk_buff *skb, unsigned int offset, 340 size_t copy_len) 341 { 342 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 343 struct sock *sk = (struct sock *)msk; 344 struct sk_buff *tail; 345 bool has_rxtstamp; 346 347 __skb_unlink(skb, &ssk->sk_receive_queue); 348 349 skb_ext_reset(skb); 350 skb_orphan(skb); 351 352 /* try to fetch required memory from subflow */ 353 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 354 goto drop; 355 356 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 357 358 /* the skb map_seq accounts for the skb offset: 359 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 360 * value 361 */ 362 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 363 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 364 MPTCP_SKB_CB(skb)->offset = offset; 365 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 366 367 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 368 /* in sequence */ 369 msk->bytes_received += copy_len; 370 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 371 tail = skb_peek_tail(&sk->sk_receive_queue); 372 if (tail && mptcp_try_coalesce(sk, tail, skb)) 373 return true; 374 375 mptcp_set_owner_r(skb, sk); 376 __skb_queue_tail(&sk->sk_receive_queue, skb); 377 return true; 378 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 379 mptcp_data_queue_ofo(msk, skb); 380 return false; 381 } 382 383 /* old data, keep it simple and drop the whole pkt, sender 384 * will retransmit as needed, if needed. 385 */ 386 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 387 drop: 388 mptcp_drop(sk, skb); 389 return false; 390 } 391 392 static void mptcp_stop_rtx_timer(struct sock *sk) 393 { 394 struct inet_connection_sock *icsk = inet_csk(sk); 395 396 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 397 mptcp_sk(sk)->timer_ival = 0; 398 } 399 400 static void mptcp_close_wake_up(struct sock *sk) 401 { 402 if (sock_flag(sk, SOCK_DEAD)) 403 return; 404 405 sk->sk_state_change(sk); 406 if (sk->sk_shutdown == SHUTDOWN_MASK || 407 sk->sk_state == TCP_CLOSE) 408 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 409 else 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 411 } 412 413 static bool mptcp_pending_data_fin_ack(struct sock *sk) 414 { 415 struct mptcp_sock *msk = mptcp_sk(sk); 416 417 return ((1 << sk->sk_state) & 418 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 419 msk->write_seq == READ_ONCE(msk->snd_una); 420 } 421 422 static void mptcp_check_data_fin_ack(struct sock *sk) 423 { 424 struct mptcp_sock *msk = mptcp_sk(sk); 425 426 /* Look for an acknowledged DATA_FIN */ 427 if (mptcp_pending_data_fin_ack(sk)) { 428 WRITE_ONCE(msk->snd_data_fin_enable, 0); 429 430 switch (sk->sk_state) { 431 case TCP_FIN_WAIT1: 432 mptcp_set_state(sk, TCP_FIN_WAIT2); 433 break; 434 case TCP_CLOSING: 435 case TCP_LAST_ACK: 436 mptcp_set_state(sk, TCP_CLOSE); 437 break; 438 } 439 440 mptcp_close_wake_up(sk); 441 } 442 } 443 444 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 445 { 446 struct mptcp_sock *msk = mptcp_sk(sk); 447 448 if (READ_ONCE(msk->rcv_data_fin) && 449 ((1 << sk->sk_state) & 450 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 451 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 452 453 if (msk->ack_seq == rcv_data_fin_seq) { 454 if (seq) 455 *seq = rcv_data_fin_seq; 456 457 return true; 458 } 459 } 460 461 return false; 462 } 463 464 static void mptcp_set_datafin_timeout(struct sock *sk) 465 { 466 struct inet_connection_sock *icsk = inet_csk(sk); 467 u32 retransmits; 468 469 retransmits = min_t(u32, icsk->icsk_retransmits, 470 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 471 472 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 473 } 474 475 static void __mptcp_set_timeout(struct sock *sk, long tout) 476 { 477 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 478 } 479 480 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 481 { 482 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 483 484 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 485 inet_csk(ssk)->icsk_timeout - jiffies : 0; 486 } 487 488 static void mptcp_set_timeout(struct sock *sk) 489 { 490 struct mptcp_subflow_context *subflow; 491 long tout = 0; 492 493 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 494 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 495 __mptcp_set_timeout(sk, tout); 496 } 497 498 static inline bool tcp_can_send_ack(const struct sock *ssk) 499 { 500 return !((1 << inet_sk_state_load(ssk)) & 501 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 502 } 503 504 void __mptcp_subflow_send_ack(struct sock *ssk) 505 { 506 if (tcp_can_send_ack(ssk)) 507 tcp_send_ack(ssk); 508 } 509 510 static void mptcp_subflow_send_ack(struct sock *ssk) 511 { 512 bool slow; 513 514 slow = lock_sock_fast(ssk); 515 __mptcp_subflow_send_ack(ssk); 516 unlock_sock_fast(ssk, slow); 517 } 518 519 static void mptcp_send_ack(struct mptcp_sock *msk) 520 { 521 struct mptcp_subflow_context *subflow; 522 523 mptcp_for_each_subflow(msk, subflow) 524 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 525 } 526 527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 528 { 529 bool slow; 530 531 slow = lock_sock_fast(ssk); 532 if (tcp_can_send_ack(ssk)) 533 tcp_cleanup_rbuf(ssk, 1); 534 unlock_sock_fast(ssk, slow); 535 } 536 537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 538 { 539 const struct inet_connection_sock *icsk = inet_csk(ssk); 540 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 541 const struct tcp_sock *tp = tcp_sk(ssk); 542 543 return (ack_pending & ICSK_ACK_SCHED) && 544 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 545 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 546 (rx_empty && ack_pending & 547 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 548 } 549 550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 551 { 552 int old_space = READ_ONCE(msk->old_wspace); 553 struct mptcp_subflow_context *subflow; 554 struct sock *sk = (struct sock *)msk; 555 int space = __mptcp_space(sk); 556 bool cleanup, rx_empty; 557 558 cleanup = (space > 0) && (space >= (old_space << 1)); 559 rx_empty = !__mptcp_rmem(sk); 560 561 mptcp_for_each_subflow(msk, subflow) { 562 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 563 564 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 565 mptcp_subflow_cleanup_rbuf(ssk); 566 } 567 } 568 569 static bool mptcp_check_data_fin(struct sock *sk) 570 { 571 struct mptcp_sock *msk = mptcp_sk(sk); 572 u64 rcv_data_fin_seq; 573 bool ret = false; 574 575 /* Need to ack a DATA_FIN received from a peer while this side 576 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 577 * msk->rcv_data_fin was set when parsing the incoming options 578 * at the subflow level and the msk lock was not held, so this 579 * is the first opportunity to act on the DATA_FIN and change 580 * the msk state. 581 * 582 * If we are caught up to the sequence number of the incoming 583 * DATA_FIN, send the DATA_ACK now and do state transition. If 584 * not caught up, do nothing and let the recv code send DATA_ACK 585 * when catching up. 586 */ 587 588 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 589 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 590 WRITE_ONCE(msk->rcv_data_fin, 0); 591 592 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 593 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 594 595 switch (sk->sk_state) { 596 case TCP_ESTABLISHED: 597 mptcp_set_state(sk, TCP_CLOSE_WAIT); 598 break; 599 case TCP_FIN_WAIT1: 600 mptcp_set_state(sk, TCP_CLOSING); 601 break; 602 case TCP_FIN_WAIT2: 603 mptcp_set_state(sk, TCP_CLOSE); 604 break; 605 default: 606 /* Other states not expected */ 607 WARN_ON_ONCE(1); 608 break; 609 } 610 611 ret = true; 612 if (!__mptcp_check_fallback(msk)) 613 mptcp_send_ack(msk); 614 mptcp_close_wake_up(sk); 615 } 616 return ret; 617 } 618 619 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 620 struct sock *ssk, 621 unsigned int *bytes) 622 { 623 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 624 struct sock *sk = (struct sock *)msk; 625 unsigned int moved = 0; 626 bool more_data_avail; 627 struct tcp_sock *tp; 628 bool done = false; 629 int sk_rbuf; 630 631 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 632 633 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 634 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 635 636 if (unlikely(ssk_rbuf > sk_rbuf)) { 637 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 638 sk_rbuf = ssk_rbuf; 639 } 640 } 641 642 pr_debug("msk=%p ssk=%p", msk, ssk); 643 tp = tcp_sk(ssk); 644 do { 645 u32 map_remaining, offset; 646 u32 seq = tp->copied_seq; 647 struct sk_buff *skb; 648 bool fin; 649 650 /* try to move as much data as available */ 651 map_remaining = subflow->map_data_len - 652 mptcp_subflow_get_map_offset(subflow); 653 654 skb = skb_peek(&ssk->sk_receive_queue); 655 if (!skb) { 656 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 657 * a different CPU can have already processed the pending 658 * data, stop here or we can enter an infinite loop 659 */ 660 if (!moved) 661 done = true; 662 break; 663 } 664 665 if (__mptcp_check_fallback(msk)) { 666 /* Under fallback skbs have no MPTCP extension and TCP could 667 * collapse them between the dummy map creation and the 668 * current dequeue. Be sure to adjust the map size. 669 */ 670 map_remaining = skb->len; 671 subflow->map_data_len = skb->len; 672 } 673 674 offset = seq - TCP_SKB_CB(skb)->seq; 675 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 676 if (fin) { 677 done = true; 678 seq++; 679 } 680 681 if (offset < skb->len) { 682 size_t len = skb->len - offset; 683 684 if (tp->urg_data) 685 done = true; 686 687 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 688 moved += len; 689 seq += len; 690 691 if (WARN_ON_ONCE(map_remaining < len)) 692 break; 693 } else { 694 WARN_ON_ONCE(!fin); 695 sk_eat_skb(ssk, skb); 696 done = true; 697 } 698 699 WRITE_ONCE(tp->copied_seq, seq); 700 more_data_avail = mptcp_subflow_data_available(ssk); 701 702 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 703 done = true; 704 break; 705 } 706 } while (more_data_avail); 707 708 *bytes += moved; 709 return done; 710 } 711 712 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 713 { 714 struct sock *sk = (struct sock *)msk; 715 struct sk_buff *skb, *tail; 716 bool moved = false; 717 struct rb_node *p; 718 u64 end_seq; 719 720 p = rb_first(&msk->out_of_order_queue); 721 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 722 while (p) { 723 skb = rb_to_skb(p); 724 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 725 break; 726 727 p = rb_next(p); 728 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 729 730 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 731 msk->ack_seq))) { 732 mptcp_drop(sk, skb); 733 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 734 continue; 735 } 736 737 end_seq = MPTCP_SKB_CB(skb)->end_seq; 738 tail = skb_peek_tail(&sk->sk_receive_queue); 739 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 740 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 741 742 /* skip overlapping data, if any */ 743 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 744 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 745 delta); 746 MPTCP_SKB_CB(skb)->offset += delta; 747 MPTCP_SKB_CB(skb)->map_seq += delta; 748 __skb_queue_tail(&sk->sk_receive_queue, skb); 749 } 750 msk->bytes_received += end_seq - msk->ack_seq; 751 msk->ack_seq = end_seq; 752 moved = true; 753 } 754 return moved; 755 } 756 757 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 758 { 759 int err = sock_error(ssk); 760 int ssk_state; 761 762 if (!err) 763 return false; 764 765 /* only propagate errors on fallen-back sockets or 766 * on MPC connect 767 */ 768 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 769 return false; 770 771 /* We need to propagate only transition to CLOSE state. 772 * Orphaned socket will see such state change via 773 * subflow_sched_work_if_closed() and that path will properly 774 * destroy the msk as needed. 775 */ 776 ssk_state = inet_sk_state_load(ssk); 777 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 778 mptcp_set_state(sk, ssk_state); 779 WRITE_ONCE(sk->sk_err, -err); 780 781 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 782 smp_wmb(); 783 sk_error_report(sk); 784 return true; 785 } 786 787 void __mptcp_error_report(struct sock *sk) 788 { 789 struct mptcp_subflow_context *subflow; 790 struct mptcp_sock *msk = mptcp_sk(sk); 791 792 mptcp_for_each_subflow(msk, subflow) 793 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 794 break; 795 } 796 797 /* In most cases we will be able to lock the mptcp socket. If its already 798 * owned, we need to defer to the work queue to avoid ABBA deadlock. 799 */ 800 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 801 { 802 struct sock *sk = (struct sock *)msk; 803 unsigned int moved = 0; 804 805 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 806 __mptcp_ofo_queue(msk); 807 if (unlikely(ssk->sk_err)) { 808 if (!sock_owned_by_user(sk)) 809 __mptcp_error_report(sk); 810 else 811 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 812 } 813 814 /* If the moves have caught up with the DATA_FIN sequence number 815 * it's time to ack the DATA_FIN and change socket state, but 816 * this is not a good place to change state. Let the workqueue 817 * do it. 818 */ 819 if (mptcp_pending_data_fin(sk, NULL)) 820 mptcp_schedule_work(sk); 821 return moved > 0; 822 } 823 824 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 825 { 826 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 827 struct mptcp_sock *msk = mptcp_sk(sk); 828 int sk_rbuf, ssk_rbuf; 829 830 /* The peer can send data while we are shutting down this 831 * subflow at msk destruction time, but we must avoid enqueuing 832 * more data to the msk receive queue 833 */ 834 if (unlikely(subflow->disposable)) 835 return; 836 837 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 838 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 839 if (unlikely(ssk_rbuf > sk_rbuf)) 840 sk_rbuf = ssk_rbuf; 841 842 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 843 if (__mptcp_rmem(sk) > sk_rbuf) { 844 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 845 return; 846 } 847 848 /* Wake-up the reader only for in-sequence data */ 849 mptcp_data_lock(sk); 850 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 851 sk->sk_data_ready(sk); 852 mptcp_data_unlock(sk); 853 } 854 855 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 856 { 857 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 858 WRITE_ONCE(msk->allow_infinite_fallback, false); 859 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 860 } 861 862 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 863 { 864 struct sock *sk = (struct sock *)msk; 865 866 if (sk->sk_state != TCP_ESTABLISHED) 867 return false; 868 869 /* attach to msk socket only after we are sure we will deal with it 870 * at close time 871 */ 872 if (sk->sk_socket && !ssk->sk_socket) 873 mptcp_sock_graft(ssk, sk->sk_socket); 874 875 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 876 mptcp_sockopt_sync_locked(msk, ssk); 877 mptcp_subflow_joined(msk, ssk); 878 mptcp_stop_tout_timer(sk); 879 __mptcp_propagate_sndbuf(sk, ssk); 880 return true; 881 } 882 883 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 884 { 885 struct mptcp_subflow_context *tmp, *subflow; 886 struct mptcp_sock *msk = mptcp_sk(sk); 887 888 list_for_each_entry_safe(subflow, tmp, join_list, node) { 889 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 890 bool slow = lock_sock_fast(ssk); 891 892 list_move_tail(&subflow->node, &msk->conn_list); 893 if (!__mptcp_finish_join(msk, ssk)) 894 mptcp_subflow_reset(ssk); 895 unlock_sock_fast(ssk, slow); 896 } 897 } 898 899 static bool mptcp_rtx_timer_pending(struct sock *sk) 900 { 901 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 902 } 903 904 static void mptcp_reset_rtx_timer(struct sock *sk) 905 { 906 struct inet_connection_sock *icsk = inet_csk(sk); 907 unsigned long tout; 908 909 /* prevent rescheduling on close */ 910 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 911 return; 912 913 tout = mptcp_sk(sk)->timer_ival; 914 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 915 } 916 917 bool mptcp_schedule_work(struct sock *sk) 918 { 919 if (inet_sk_state_load(sk) != TCP_CLOSE && 920 schedule_work(&mptcp_sk(sk)->work)) { 921 /* each subflow already holds a reference to the sk, and the 922 * workqueue is invoked by a subflow, so sk can't go away here. 923 */ 924 sock_hold(sk); 925 return true; 926 } 927 return false; 928 } 929 930 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 931 { 932 struct mptcp_subflow_context *subflow; 933 934 msk_owned_by_me(msk); 935 936 mptcp_for_each_subflow(msk, subflow) { 937 if (READ_ONCE(subflow->data_avail)) 938 return mptcp_subflow_tcp_sock(subflow); 939 } 940 941 return NULL; 942 } 943 944 static bool mptcp_skb_can_collapse_to(u64 write_seq, 945 const struct sk_buff *skb, 946 const struct mptcp_ext *mpext) 947 { 948 if (!tcp_skb_can_collapse_to(skb)) 949 return false; 950 951 /* can collapse only if MPTCP level sequence is in order and this 952 * mapping has not been xmitted yet 953 */ 954 return mpext && mpext->data_seq + mpext->data_len == write_seq && 955 !mpext->frozen; 956 } 957 958 /* we can append data to the given data frag if: 959 * - there is space available in the backing page_frag 960 * - the data frag tail matches the current page_frag free offset 961 * - the data frag end sequence number matches the current write seq 962 */ 963 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 964 const struct page_frag *pfrag, 965 const struct mptcp_data_frag *df) 966 { 967 return df && pfrag->page == df->page && 968 pfrag->size - pfrag->offset > 0 && 969 pfrag->offset == (df->offset + df->data_len) && 970 df->data_seq + df->data_len == msk->write_seq; 971 } 972 973 static void dfrag_uncharge(struct sock *sk, int len) 974 { 975 sk_mem_uncharge(sk, len); 976 sk_wmem_queued_add(sk, -len); 977 } 978 979 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 980 { 981 int len = dfrag->data_len + dfrag->overhead; 982 983 list_del(&dfrag->list); 984 dfrag_uncharge(sk, len); 985 put_page(dfrag->page); 986 } 987 988 static void __mptcp_clean_una(struct sock *sk) 989 { 990 struct mptcp_sock *msk = mptcp_sk(sk); 991 struct mptcp_data_frag *dtmp, *dfrag; 992 u64 snd_una; 993 994 snd_una = msk->snd_una; 995 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 996 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 997 break; 998 999 if (unlikely(dfrag == msk->first_pending)) { 1000 /* in recovery mode can see ack after the current snd head */ 1001 if (WARN_ON_ONCE(!msk->recovery)) 1002 break; 1003 1004 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1005 } 1006 1007 dfrag_clear(sk, dfrag); 1008 } 1009 1010 dfrag = mptcp_rtx_head(sk); 1011 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1012 u64 delta = snd_una - dfrag->data_seq; 1013 1014 /* prevent wrap around in recovery mode */ 1015 if (unlikely(delta > dfrag->already_sent)) { 1016 if (WARN_ON_ONCE(!msk->recovery)) 1017 goto out; 1018 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1019 goto out; 1020 dfrag->already_sent += delta - dfrag->already_sent; 1021 } 1022 1023 dfrag->data_seq += delta; 1024 dfrag->offset += delta; 1025 dfrag->data_len -= delta; 1026 dfrag->already_sent -= delta; 1027 1028 dfrag_uncharge(sk, delta); 1029 } 1030 1031 /* all retransmitted data acked, recovery completed */ 1032 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1033 msk->recovery = false; 1034 1035 out: 1036 if (snd_una == READ_ONCE(msk->snd_nxt) && 1037 snd_una == READ_ONCE(msk->write_seq)) { 1038 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1039 mptcp_stop_rtx_timer(sk); 1040 } else { 1041 mptcp_reset_rtx_timer(sk); 1042 } 1043 } 1044 1045 static void __mptcp_clean_una_wakeup(struct sock *sk) 1046 { 1047 lockdep_assert_held_once(&sk->sk_lock.slock); 1048 1049 __mptcp_clean_una(sk); 1050 mptcp_write_space(sk); 1051 } 1052 1053 static void mptcp_clean_una_wakeup(struct sock *sk) 1054 { 1055 mptcp_data_lock(sk); 1056 __mptcp_clean_una_wakeup(sk); 1057 mptcp_data_unlock(sk); 1058 } 1059 1060 static void mptcp_enter_memory_pressure(struct sock *sk) 1061 { 1062 struct mptcp_subflow_context *subflow; 1063 struct mptcp_sock *msk = mptcp_sk(sk); 1064 bool first = true; 1065 1066 mptcp_for_each_subflow(msk, subflow) { 1067 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1068 1069 if (first) 1070 tcp_enter_memory_pressure(ssk); 1071 sk_stream_moderate_sndbuf(ssk); 1072 1073 first = false; 1074 } 1075 __mptcp_sync_sndbuf(sk); 1076 } 1077 1078 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1079 * data 1080 */ 1081 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1082 { 1083 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1084 pfrag, sk->sk_allocation))) 1085 return true; 1086 1087 mptcp_enter_memory_pressure(sk); 1088 return false; 1089 } 1090 1091 static struct mptcp_data_frag * 1092 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1093 int orig_offset) 1094 { 1095 int offset = ALIGN(orig_offset, sizeof(long)); 1096 struct mptcp_data_frag *dfrag; 1097 1098 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1099 dfrag->data_len = 0; 1100 dfrag->data_seq = msk->write_seq; 1101 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1102 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1103 dfrag->already_sent = 0; 1104 dfrag->page = pfrag->page; 1105 1106 return dfrag; 1107 } 1108 1109 struct mptcp_sendmsg_info { 1110 int mss_now; 1111 int size_goal; 1112 u16 limit; 1113 u16 sent; 1114 unsigned int flags; 1115 bool data_lock_held; 1116 }; 1117 1118 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1119 u64 data_seq, int avail_size) 1120 { 1121 u64 window_end = mptcp_wnd_end(msk); 1122 u64 mptcp_snd_wnd; 1123 1124 if (__mptcp_check_fallback(msk)) 1125 return avail_size; 1126 1127 mptcp_snd_wnd = window_end - data_seq; 1128 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1129 1130 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1131 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1132 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1133 } 1134 1135 return avail_size; 1136 } 1137 1138 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1139 { 1140 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1141 1142 if (!mpext) 1143 return false; 1144 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1145 return true; 1146 } 1147 1148 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1149 { 1150 struct sk_buff *skb; 1151 1152 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1153 if (likely(skb)) { 1154 if (likely(__mptcp_add_ext(skb, gfp))) { 1155 skb_reserve(skb, MAX_TCP_HEADER); 1156 skb->ip_summed = CHECKSUM_PARTIAL; 1157 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1158 return skb; 1159 } 1160 __kfree_skb(skb); 1161 } else { 1162 mptcp_enter_memory_pressure(sk); 1163 } 1164 return NULL; 1165 } 1166 1167 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1168 { 1169 struct sk_buff *skb; 1170 1171 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1172 if (!skb) 1173 return NULL; 1174 1175 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1176 tcp_skb_entail(ssk, skb); 1177 return skb; 1178 } 1179 tcp_skb_tsorted_anchor_cleanup(skb); 1180 kfree_skb(skb); 1181 return NULL; 1182 } 1183 1184 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1185 { 1186 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1187 1188 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1189 } 1190 1191 /* note: this always recompute the csum on the whole skb, even 1192 * if we just appended a single frag. More status info needed 1193 */ 1194 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1195 { 1196 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1197 __wsum csum = ~csum_unfold(mpext->csum); 1198 int offset = skb->len - added; 1199 1200 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1201 } 1202 1203 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1204 struct sock *ssk, 1205 struct mptcp_ext *mpext) 1206 { 1207 if (!mpext) 1208 return; 1209 1210 mpext->infinite_map = 1; 1211 mpext->data_len = 0; 1212 1213 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1214 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1215 pr_fallback(msk); 1216 mptcp_do_fallback(ssk); 1217 } 1218 1219 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1220 1221 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1222 struct mptcp_data_frag *dfrag, 1223 struct mptcp_sendmsg_info *info) 1224 { 1225 u64 data_seq = dfrag->data_seq + info->sent; 1226 int offset = dfrag->offset + info->sent; 1227 struct mptcp_sock *msk = mptcp_sk(sk); 1228 bool zero_window_probe = false; 1229 struct mptcp_ext *mpext = NULL; 1230 bool can_coalesce = false; 1231 bool reuse_skb = true; 1232 struct sk_buff *skb; 1233 size_t copy; 1234 int i; 1235 1236 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1237 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1238 1239 if (WARN_ON_ONCE(info->sent > info->limit || 1240 info->limit > dfrag->data_len)) 1241 return 0; 1242 1243 if (unlikely(!__tcp_can_send(ssk))) 1244 return -EAGAIN; 1245 1246 /* compute send limit */ 1247 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1248 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1249 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1250 copy = info->size_goal; 1251 1252 skb = tcp_write_queue_tail(ssk); 1253 if (skb && copy > skb->len) { 1254 /* Limit the write to the size available in the 1255 * current skb, if any, so that we create at most a new skb. 1256 * Explicitly tells TCP internals to avoid collapsing on later 1257 * queue management operation, to avoid breaking the ext <-> 1258 * SSN association set here 1259 */ 1260 mpext = mptcp_get_ext(skb); 1261 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1262 TCP_SKB_CB(skb)->eor = 1; 1263 goto alloc_skb; 1264 } 1265 1266 i = skb_shinfo(skb)->nr_frags; 1267 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1268 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1269 tcp_mark_push(tcp_sk(ssk), skb); 1270 goto alloc_skb; 1271 } 1272 1273 copy -= skb->len; 1274 } else { 1275 alloc_skb: 1276 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1277 if (!skb) 1278 return -ENOMEM; 1279 1280 i = skb_shinfo(skb)->nr_frags; 1281 reuse_skb = false; 1282 mpext = mptcp_get_ext(skb); 1283 } 1284 1285 /* Zero window and all data acked? Probe. */ 1286 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1287 if (copy == 0) { 1288 u64 snd_una = READ_ONCE(msk->snd_una); 1289 1290 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1291 tcp_remove_empty_skb(ssk); 1292 return 0; 1293 } 1294 1295 zero_window_probe = true; 1296 data_seq = snd_una - 1; 1297 copy = 1; 1298 } 1299 1300 copy = min_t(size_t, copy, info->limit - info->sent); 1301 if (!sk_wmem_schedule(ssk, copy)) { 1302 tcp_remove_empty_skb(ssk); 1303 return -ENOMEM; 1304 } 1305 1306 if (can_coalesce) { 1307 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1308 } else { 1309 get_page(dfrag->page); 1310 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1311 } 1312 1313 skb->len += copy; 1314 skb->data_len += copy; 1315 skb->truesize += copy; 1316 sk_wmem_queued_add(ssk, copy); 1317 sk_mem_charge(ssk, copy); 1318 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1319 TCP_SKB_CB(skb)->end_seq += copy; 1320 tcp_skb_pcount_set(skb, 0); 1321 1322 /* on skb reuse we just need to update the DSS len */ 1323 if (reuse_skb) { 1324 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1325 mpext->data_len += copy; 1326 goto out; 1327 } 1328 1329 memset(mpext, 0, sizeof(*mpext)); 1330 mpext->data_seq = data_seq; 1331 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1332 mpext->data_len = copy; 1333 mpext->use_map = 1; 1334 mpext->dsn64 = 1; 1335 1336 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1337 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1338 mpext->dsn64); 1339 1340 if (zero_window_probe) { 1341 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1342 mpext->frozen = 1; 1343 if (READ_ONCE(msk->csum_enabled)) 1344 mptcp_update_data_checksum(skb, copy); 1345 tcp_push_pending_frames(ssk); 1346 return 0; 1347 } 1348 out: 1349 if (READ_ONCE(msk->csum_enabled)) 1350 mptcp_update_data_checksum(skb, copy); 1351 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1352 mptcp_update_infinite_map(msk, ssk, mpext); 1353 trace_mptcp_sendmsg_frag(mpext); 1354 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1355 return copy; 1356 } 1357 1358 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1359 sizeof(struct tcphdr) - \ 1360 MAX_TCP_OPTION_SPACE - \ 1361 sizeof(struct ipv6hdr) - \ 1362 sizeof(struct frag_hdr)) 1363 1364 struct subflow_send_info { 1365 struct sock *ssk; 1366 u64 linger_time; 1367 }; 1368 1369 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1370 { 1371 if (!subflow->stale) 1372 return; 1373 1374 subflow->stale = 0; 1375 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1376 } 1377 1378 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1379 { 1380 if (unlikely(subflow->stale)) { 1381 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1382 1383 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1384 return false; 1385 1386 mptcp_subflow_set_active(subflow); 1387 } 1388 return __mptcp_subflow_active(subflow); 1389 } 1390 1391 #define SSK_MODE_ACTIVE 0 1392 #define SSK_MODE_BACKUP 1 1393 #define SSK_MODE_MAX 2 1394 1395 /* implement the mptcp packet scheduler; 1396 * returns the subflow that will transmit the next DSS 1397 * additionally updates the rtx timeout 1398 */ 1399 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1400 { 1401 struct subflow_send_info send_info[SSK_MODE_MAX]; 1402 struct mptcp_subflow_context *subflow; 1403 struct sock *sk = (struct sock *)msk; 1404 u32 pace, burst, wmem; 1405 int i, nr_active = 0; 1406 struct sock *ssk; 1407 u64 linger_time; 1408 long tout = 0; 1409 1410 /* pick the subflow with the lower wmem/wspace ratio */ 1411 for (i = 0; i < SSK_MODE_MAX; ++i) { 1412 send_info[i].ssk = NULL; 1413 send_info[i].linger_time = -1; 1414 } 1415 1416 mptcp_for_each_subflow(msk, subflow) { 1417 trace_mptcp_subflow_get_send(subflow); 1418 ssk = mptcp_subflow_tcp_sock(subflow); 1419 if (!mptcp_subflow_active(subflow)) 1420 continue; 1421 1422 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1423 nr_active += !subflow->backup; 1424 pace = subflow->avg_pacing_rate; 1425 if (unlikely(!pace)) { 1426 /* init pacing rate from socket */ 1427 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1428 pace = subflow->avg_pacing_rate; 1429 if (!pace) 1430 continue; 1431 } 1432 1433 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1434 if (linger_time < send_info[subflow->backup].linger_time) { 1435 send_info[subflow->backup].ssk = ssk; 1436 send_info[subflow->backup].linger_time = linger_time; 1437 } 1438 } 1439 __mptcp_set_timeout(sk, tout); 1440 1441 /* pick the best backup if no other subflow is active */ 1442 if (!nr_active) 1443 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1444 1445 /* According to the blest algorithm, to avoid HoL blocking for the 1446 * faster flow, we need to: 1447 * - estimate the faster flow linger time 1448 * - use the above to estimate the amount of byte transferred 1449 * by the faster flow 1450 * - check that the amount of queued data is greter than the above, 1451 * otherwise do not use the picked, slower, subflow 1452 * We select the subflow with the shorter estimated time to flush 1453 * the queued mem, which basically ensure the above. We just need 1454 * to check that subflow has a non empty cwin. 1455 */ 1456 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1457 if (!ssk || !sk_stream_memory_free(ssk)) 1458 return NULL; 1459 1460 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1461 wmem = READ_ONCE(ssk->sk_wmem_queued); 1462 if (!burst) 1463 return ssk; 1464 1465 subflow = mptcp_subflow_ctx(ssk); 1466 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1467 READ_ONCE(ssk->sk_pacing_rate) * burst, 1468 burst + wmem); 1469 msk->snd_burst = burst; 1470 return ssk; 1471 } 1472 1473 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1474 { 1475 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1476 release_sock(ssk); 1477 } 1478 1479 static void mptcp_update_post_push(struct mptcp_sock *msk, 1480 struct mptcp_data_frag *dfrag, 1481 u32 sent) 1482 { 1483 u64 snd_nxt_new = dfrag->data_seq; 1484 1485 dfrag->already_sent += sent; 1486 1487 msk->snd_burst -= sent; 1488 1489 snd_nxt_new += dfrag->already_sent; 1490 1491 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1492 * is recovering after a failover. In that event, this re-sends 1493 * old segments. 1494 * 1495 * Thus compute snd_nxt_new candidate based on 1496 * the dfrag->data_seq that was sent and the data 1497 * that has been handed to the subflow for transmission 1498 * and skip update in case it was old dfrag. 1499 */ 1500 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1501 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1502 msk->snd_nxt = snd_nxt_new; 1503 } 1504 } 1505 1506 void mptcp_check_and_set_pending(struct sock *sk) 1507 { 1508 if (mptcp_send_head(sk)) 1509 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1510 } 1511 1512 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1513 struct mptcp_sendmsg_info *info) 1514 { 1515 struct mptcp_sock *msk = mptcp_sk(sk); 1516 struct mptcp_data_frag *dfrag; 1517 int len, copied = 0, err = 0; 1518 1519 while ((dfrag = mptcp_send_head(sk))) { 1520 info->sent = dfrag->already_sent; 1521 info->limit = dfrag->data_len; 1522 len = dfrag->data_len - dfrag->already_sent; 1523 while (len > 0) { 1524 int ret = 0; 1525 1526 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1527 if (ret <= 0) { 1528 err = copied ? : ret; 1529 goto out; 1530 } 1531 1532 info->sent += ret; 1533 copied += ret; 1534 len -= ret; 1535 1536 mptcp_update_post_push(msk, dfrag, ret); 1537 } 1538 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1539 1540 if (msk->snd_burst <= 0 || 1541 !sk_stream_memory_free(ssk) || 1542 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1543 err = copied; 1544 goto out; 1545 } 1546 mptcp_set_timeout(sk); 1547 } 1548 err = copied; 1549 1550 out: 1551 return err; 1552 } 1553 1554 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1555 { 1556 struct sock *prev_ssk = NULL, *ssk = NULL; 1557 struct mptcp_sock *msk = mptcp_sk(sk); 1558 struct mptcp_sendmsg_info info = { 1559 .flags = flags, 1560 }; 1561 bool do_check_data_fin = false; 1562 int push_count = 1; 1563 1564 while (mptcp_send_head(sk) && (push_count > 0)) { 1565 struct mptcp_subflow_context *subflow; 1566 int ret = 0; 1567 1568 if (mptcp_sched_get_send(msk)) 1569 break; 1570 1571 push_count = 0; 1572 1573 mptcp_for_each_subflow(msk, subflow) { 1574 if (READ_ONCE(subflow->scheduled)) { 1575 mptcp_subflow_set_scheduled(subflow, false); 1576 1577 prev_ssk = ssk; 1578 ssk = mptcp_subflow_tcp_sock(subflow); 1579 if (ssk != prev_ssk) { 1580 /* First check. If the ssk has changed since 1581 * the last round, release prev_ssk 1582 */ 1583 if (prev_ssk) 1584 mptcp_push_release(prev_ssk, &info); 1585 1586 /* Need to lock the new subflow only if different 1587 * from the previous one, otherwise we are still 1588 * helding the relevant lock 1589 */ 1590 lock_sock(ssk); 1591 } 1592 1593 push_count++; 1594 1595 ret = __subflow_push_pending(sk, ssk, &info); 1596 if (ret <= 0) { 1597 if (ret != -EAGAIN || 1598 (1 << ssk->sk_state) & 1599 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1600 push_count--; 1601 continue; 1602 } 1603 do_check_data_fin = true; 1604 } 1605 } 1606 } 1607 1608 /* at this point we held the socket lock for the last subflow we used */ 1609 if (ssk) 1610 mptcp_push_release(ssk, &info); 1611 1612 /* ensure the rtx timer is running */ 1613 if (!mptcp_rtx_timer_pending(sk)) 1614 mptcp_reset_rtx_timer(sk); 1615 if (do_check_data_fin) 1616 mptcp_check_send_data_fin(sk); 1617 } 1618 1619 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1620 { 1621 struct mptcp_sock *msk = mptcp_sk(sk); 1622 struct mptcp_sendmsg_info info = { 1623 .data_lock_held = true, 1624 }; 1625 bool keep_pushing = true; 1626 struct sock *xmit_ssk; 1627 int copied = 0; 1628 1629 info.flags = 0; 1630 while (mptcp_send_head(sk) && keep_pushing) { 1631 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1632 int ret = 0; 1633 1634 /* check for a different subflow usage only after 1635 * spooling the first chunk of data 1636 */ 1637 if (first) { 1638 mptcp_subflow_set_scheduled(subflow, false); 1639 ret = __subflow_push_pending(sk, ssk, &info); 1640 first = false; 1641 if (ret <= 0) 1642 break; 1643 copied += ret; 1644 continue; 1645 } 1646 1647 if (mptcp_sched_get_send(msk)) 1648 goto out; 1649 1650 if (READ_ONCE(subflow->scheduled)) { 1651 mptcp_subflow_set_scheduled(subflow, false); 1652 ret = __subflow_push_pending(sk, ssk, &info); 1653 if (ret <= 0) 1654 keep_pushing = false; 1655 copied += ret; 1656 } 1657 1658 mptcp_for_each_subflow(msk, subflow) { 1659 if (READ_ONCE(subflow->scheduled)) { 1660 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1661 if (xmit_ssk != ssk) { 1662 mptcp_subflow_delegate(subflow, 1663 MPTCP_DELEGATE_SEND); 1664 keep_pushing = false; 1665 } 1666 } 1667 } 1668 } 1669 1670 out: 1671 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1672 * not going to flush it via release_sock() 1673 */ 1674 if (copied) { 1675 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1676 info.size_goal); 1677 if (!mptcp_rtx_timer_pending(sk)) 1678 mptcp_reset_rtx_timer(sk); 1679 1680 if (msk->snd_data_fin_enable && 1681 msk->snd_nxt + 1 == msk->write_seq) 1682 mptcp_schedule_work(sk); 1683 } 1684 } 1685 1686 static void mptcp_set_nospace(struct sock *sk) 1687 { 1688 /* enable autotune */ 1689 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1690 1691 /* will be cleared on avail space */ 1692 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1693 } 1694 1695 static int mptcp_disconnect(struct sock *sk, int flags); 1696 1697 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1698 size_t len, int *copied_syn) 1699 { 1700 unsigned int saved_flags = msg->msg_flags; 1701 struct mptcp_sock *msk = mptcp_sk(sk); 1702 struct sock *ssk; 1703 int ret; 1704 1705 /* on flags based fastopen the mptcp is supposed to create the 1706 * first subflow right now. Otherwise we are in the defer_connect 1707 * path, and the first subflow must be already present. 1708 * Since the defer_connect flag is cleared after the first succsful 1709 * fastopen attempt, no need to check for additional subflow status. 1710 */ 1711 if (msg->msg_flags & MSG_FASTOPEN) { 1712 ssk = __mptcp_nmpc_sk(msk); 1713 if (IS_ERR(ssk)) 1714 return PTR_ERR(ssk); 1715 } 1716 if (!msk->first) 1717 return -EINVAL; 1718 1719 ssk = msk->first; 1720 1721 lock_sock(ssk); 1722 msg->msg_flags |= MSG_DONTWAIT; 1723 msk->fastopening = 1; 1724 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1725 msk->fastopening = 0; 1726 msg->msg_flags = saved_flags; 1727 release_sock(ssk); 1728 1729 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1730 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1731 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1732 msg->msg_namelen, msg->msg_flags, 1); 1733 1734 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1735 * case of any error, except timeout or signal 1736 */ 1737 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1738 *copied_syn = 0; 1739 } else if (ret && ret != -EINPROGRESS) { 1740 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1741 * __inet_stream_connect() can fail, due to looking check, 1742 * see mptcp_disconnect(). 1743 * Attempt it again outside the problematic scope. 1744 */ 1745 if (!mptcp_disconnect(sk, 0)) 1746 sk->sk_socket->state = SS_UNCONNECTED; 1747 } 1748 inet_clear_bit(DEFER_CONNECT, sk); 1749 1750 return ret; 1751 } 1752 1753 static int do_copy_data_nocache(struct sock *sk, int copy, 1754 struct iov_iter *from, char *to) 1755 { 1756 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1757 if (!copy_from_iter_full_nocache(to, copy, from)) 1758 return -EFAULT; 1759 } else if (!copy_from_iter_full(to, copy, from)) { 1760 return -EFAULT; 1761 } 1762 return 0; 1763 } 1764 1765 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1766 { 1767 struct mptcp_sock *msk = mptcp_sk(sk); 1768 struct page_frag *pfrag; 1769 size_t copied = 0; 1770 int ret = 0; 1771 long timeo; 1772 1773 /* silently ignore everything else */ 1774 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1775 1776 lock_sock(sk); 1777 1778 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1779 msg->msg_flags & MSG_FASTOPEN)) { 1780 int copied_syn = 0; 1781 1782 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1783 copied += copied_syn; 1784 if (ret == -EINPROGRESS && copied_syn > 0) 1785 goto out; 1786 else if (ret) 1787 goto do_error; 1788 } 1789 1790 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1791 1792 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1793 ret = sk_stream_wait_connect(sk, &timeo); 1794 if (ret) 1795 goto do_error; 1796 } 1797 1798 ret = -EPIPE; 1799 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1800 goto do_error; 1801 1802 pfrag = sk_page_frag(sk); 1803 1804 while (msg_data_left(msg)) { 1805 int total_ts, frag_truesize = 0; 1806 struct mptcp_data_frag *dfrag; 1807 bool dfrag_collapsed; 1808 size_t psize, offset; 1809 1810 /* reuse tail pfrag, if possible, or carve a new one from the 1811 * page allocator 1812 */ 1813 dfrag = mptcp_pending_tail(sk); 1814 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1815 if (!dfrag_collapsed) { 1816 if (!sk_stream_memory_free(sk)) 1817 goto wait_for_memory; 1818 1819 if (!mptcp_page_frag_refill(sk, pfrag)) 1820 goto wait_for_memory; 1821 1822 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1823 frag_truesize = dfrag->overhead; 1824 } 1825 1826 /* we do not bound vs wspace, to allow a single packet. 1827 * memory accounting will prevent execessive memory usage 1828 * anyway 1829 */ 1830 offset = dfrag->offset + dfrag->data_len; 1831 psize = pfrag->size - offset; 1832 psize = min_t(size_t, psize, msg_data_left(msg)); 1833 total_ts = psize + frag_truesize; 1834 1835 if (!sk_wmem_schedule(sk, total_ts)) 1836 goto wait_for_memory; 1837 1838 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1839 page_address(dfrag->page) + offset); 1840 if (ret) 1841 goto do_error; 1842 1843 /* data successfully copied into the write queue */ 1844 sk_forward_alloc_add(sk, -total_ts); 1845 copied += psize; 1846 dfrag->data_len += psize; 1847 frag_truesize += psize; 1848 pfrag->offset += frag_truesize; 1849 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1850 1851 /* charge data on mptcp pending queue to the msk socket 1852 * Note: we charge such data both to sk and ssk 1853 */ 1854 sk_wmem_queued_add(sk, frag_truesize); 1855 if (!dfrag_collapsed) { 1856 get_page(dfrag->page); 1857 list_add_tail(&dfrag->list, &msk->rtx_queue); 1858 if (!msk->first_pending) 1859 WRITE_ONCE(msk->first_pending, dfrag); 1860 } 1861 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1862 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1863 !dfrag_collapsed); 1864 1865 continue; 1866 1867 wait_for_memory: 1868 mptcp_set_nospace(sk); 1869 __mptcp_push_pending(sk, msg->msg_flags); 1870 ret = sk_stream_wait_memory(sk, &timeo); 1871 if (ret) 1872 goto do_error; 1873 } 1874 1875 if (copied) 1876 __mptcp_push_pending(sk, msg->msg_flags); 1877 1878 out: 1879 release_sock(sk); 1880 return copied; 1881 1882 do_error: 1883 if (copied) 1884 goto out; 1885 1886 copied = sk_stream_error(sk, msg->msg_flags, ret); 1887 goto out; 1888 } 1889 1890 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1891 struct msghdr *msg, 1892 size_t len, int flags, 1893 struct scm_timestamping_internal *tss, 1894 int *cmsg_flags) 1895 { 1896 struct sk_buff *skb, *tmp; 1897 int copied = 0; 1898 1899 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1900 u32 offset = MPTCP_SKB_CB(skb)->offset; 1901 u32 data_len = skb->len - offset; 1902 u32 count = min_t(size_t, len - copied, data_len); 1903 int err; 1904 1905 if (!(flags & MSG_TRUNC)) { 1906 err = skb_copy_datagram_msg(skb, offset, msg, count); 1907 if (unlikely(err < 0)) { 1908 if (!copied) 1909 return err; 1910 break; 1911 } 1912 } 1913 1914 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1915 tcp_update_recv_tstamps(skb, tss); 1916 *cmsg_flags |= MPTCP_CMSG_TS; 1917 } 1918 1919 copied += count; 1920 1921 if (count < data_len) { 1922 if (!(flags & MSG_PEEK)) { 1923 MPTCP_SKB_CB(skb)->offset += count; 1924 MPTCP_SKB_CB(skb)->map_seq += count; 1925 msk->bytes_consumed += count; 1926 } 1927 break; 1928 } 1929 1930 if (!(flags & MSG_PEEK)) { 1931 /* we will bulk release the skb memory later */ 1932 skb->destructor = NULL; 1933 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1934 __skb_unlink(skb, &msk->receive_queue); 1935 __kfree_skb(skb); 1936 msk->bytes_consumed += count; 1937 } 1938 1939 if (copied >= len) 1940 break; 1941 } 1942 1943 return copied; 1944 } 1945 1946 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1947 * 1948 * Only difference: Use highest rtt estimate of the subflows in use. 1949 */ 1950 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1951 { 1952 struct mptcp_subflow_context *subflow; 1953 struct sock *sk = (struct sock *)msk; 1954 u8 scaling_ratio = U8_MAX; 1955 u32 time, advmss = 1; 1956 u64 rtt_us, mstamp; 1957 1958 msk_owned_by_me(msk); 1959 1960 if (copied <= 0) 1961 return; 1962 1963 msk->rcvq_space.copied += copied; 1964 1965 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1966 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1967 1968 rtt_us = msk->rcvq_space.rtt_us; 1969 if (rtt_us && time < (rtt_us >> 3)) 1970 return; 1971 1972 rtt_us = 0; 1973 mptcp_for_each_subflow(msk, subflow) { 1974 const struct tcp_sock *tp; 1975 u64 sf_rtt_us; 1976 u32 sf_advmss; 1977 1978 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1979 1980 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1981 sf_advmss = READ_ONCE(tp->advmss); 1982 1983 rtt_us = max(sf_rtt_us, rtt_us); 1984 advmss = max(sf_advmss, advmss); 1985 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1986 } 1987 1988 msk->rcvq_space.rtt_us = rtt_us; 1989 msk->scaling_ratio = scaling_ratio; 1990 if (time < (rtt_us >> 3) || rtt_us == 0) 1991 return; 1992 1993 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1994 goto new_measure; 1995 1996 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1997 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1998 u64 rcvwin, grow; 1999 int rcvbuf; 2000 2001 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2002 2003 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2004 2005 do_div(grow, msk->rcvq_space.space); 2006 rcvwin += (grow << 1); 2007 2008 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2009 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2010 2011 if (rcvbuf > sk->sk_rcvbuf) { 2012 u32 window_clamp; 2013 2014 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2015 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2016 2017 /* Make subflows follow along. If we do not do this, we 2018 * get drops at subflow level if skbs can't be moved to 2019 * the mptcp rx queue fast enough (announced rcv_win can 2020 * exceed ssk->sk_rcvbuf). 2021 */ 2022 mptcp_for_each_subflow(msk, subflow) { 2023 struct sock *ssk; 2024 bool slow; 2025 2026 ssk = mptcp_subflow_tcp_sock(subflow); 2027 slow = lock_sock_fast(ssk); 2028 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2029 tcp_sk(ssk)->window_clamp = window_clamp; 2030 tcp_cleanup_rbuf(ssk, 1); 2031 unlock_sock_fast(ssk, slow); 2032 } 2033 } 2034 } 2035 2036 msk->rcvq_space.space = msk->rcvq_space.copied; 2037 new_measure: 2038 msk->rcvq_space.copied = 0; 2039 msk->rcvq_space.time = mstamp; 2040 } 2041 2042 static void __mptcp_update_rmem(struct sock *sk) 2043 { 2044 struct mptcp_sock *msk = mptcp_sk(sk); 2045 2046 if (!msk->rmem_released) 2047 return; 2048 2049 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2050 mptcp_rmem_uncharge(sk, msk->rmem_released); 2051 WRITE_ONCE(msk->rmem_released, 0); 2052 } 2053 2054 static void __mptcp_splice_receive_queue(struct sock *sk) 2055 { 2056 struct mptcp_sock *msk = mptcp_sk(sk); 2057 2058 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2059 } 2060 2061 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2062 { 2063 struct sock *sk = (struct sock *)msk; 2064 unsigned int moved = 0; 2065 bool ret, done; 2066 2067 do { 2068 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2069 bool slowpath; 2070 2071 /* we can have data pending in the subflows only if the msk 2072 * receive buffer was full at subflow_data_ready() time, 2073 * that is an unlikely slow path. 2074 */ 2075 if (likely(!ssk)) 2076 break; 2077 2078 slowpath = lock_sock_fast(ssk); 2079 mptcp_data_lock(sk); 2080 __mptcp_update_rmem(sk); 2081 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2082 mptcp_data_unlock(sk); 2083 2084 if (unlikely(ssk->sk_err)) 2085 __mptcp_error_report(sk); 2086 unlock_sock_fast(ssk, slowpath); 2087 } while (!done); 2088 2089 /* acquire the data lock only if some input data is pending */ 2090 ret = moved > 0; 2091 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2092 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2093 mptcp_data_lock(sk); 2094 __mptcp_update_rmem(sk); 2095 ret |= __mptcp_ofo_queue(msk); 2096 __mptcp_splice_receive_queue(sk); 2097 mptcp_data_unlock(sk); 2098 } 2099 if (ret) 2100 mptcp_check_data_fin((struct sock *)msk); 2101 return !skb_queue_empty(&msk->receive_queue); 2102 } 2103 2104 static unsigned int mptcp_inq_hint(const struct sock *sk) 2105 { 2106 const struct mptcp_sock *msk = mptcp_sk(sk); 2107 const struct sk_buff *skb; 2108 2109 skb = skb_peek(&msk->receive_queue); 2110 if (skb) { 2111 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2112 2113 if (hint_val >= INT_MAX) 2114 return INT_MAX; 2115 2116 return (unsigned int)hint_val; 2117 } 2118 2119 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2120 return 1; 2121 2122 return 0; 2123 } 2124 2125 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2126 int flags, int *addr_len) 2127 { 2128 struct mptcp_sock *msk = mptcp_sk(sk); 2129 struct scm_timestamping_internal tss; 2130 int copied = 0, cmsg_flags = 0; 2131 int target; 2132 long timeo; 2133 2134 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2135 if (unlikely(flags & MSG_ERRQUEUE)) 2136 return inet_recv_error(sk, msg, len, addr_len); 2137 2138 lock_sock(sk); 2139 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2140 copied = -ENOTCONN; 2141 goto out_err; 2142 } 2143 2144 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2145 2146 len = min_t(size_t, len, INT_MAX); 2147 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2148 2149 if (unlikely(msk->recvmsg_inq)) 2150 cmsg_flags = MPTCP_CMSG_INQ; 2151 2152 while (copied < len) { 2153 int bytes_read; 2154 2155 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2156 if (unlikely(bytes_read < 0)) { 2157 if (!copied) 2158 copied = bytes_read; 2159 goto out_err; 2160 } 2161 2162 copied += bytes_read; 2163 2164 /* be sure to advertise window change */ 2165 mptcp_cleanup_rbuf(msk); 2166 2167 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2168 continue; 2169 2170 /* only the master socket status is relevant here. The exit 2171 * conditions mirror closely tcp_recvmsg() 2172 */ 2173 if (copied >= target) 2174 break; 2175 2176 if (copied) { 2177 if (sk->sk_err || 2178 sk->sk_state == TCP_CLOSE || 2179 (sk->sk_shutdown & RCV_SHUTDOWN) || 2180 !timeo || 2181 signal_pending(current)) 2182 break; 2183 } else { 2184 if (sk->sk_err) { 2185 copied = sock_error(sk); 2186 break; 2187 } 2188 2189 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2190 /* race breaker: the shutdown could be after the 2191 * previous receive queue check 2192 */ 2193 if (__mptcp_move_skbs(msk)) 2194 continue; 2195 break; 2196 } 2197 2198 if (sk->sk_state == TCP_CLOSE) { 2199 copied = -ENOTCONN; 2200 break; 2201 } 2202 2203 if (!timeo) { 2204 copied = -EAGAIN; 2205 break; 2206 } 2207 2208 if (signal_pending(current)) { 2209 copied = sock_intr_errno(timeo); 2210 break; 2211 } 2212 } 2213 2214 pr_debug("block timeout %ld", timeo); 2215 sk_wait_data(sk, &timeo, NULL); 2216 } 2217 2218 out_err: 2219 if (cmsg_flags && copied >= 0) { 2220 if (cmsg_flags & MPTCP_CMSG_TS) 2221 tcp_recv_timestamp(msg, sk, &tss); 2222 2223 if (cmsg_flags & MPTCP_CMSG_INQ) { 2224 unsigned int inq = mptcp_inq_hint(sk); 2225 2226 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2227 } 2228 } 2229 2230 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2231 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2232 skb_queue_empty(&msk->receive_queue), copied); 2233 if (!(flags & MSG_PEEK)) 2234 mptcp_rcv_space_adjust(msk, copied); 2235 2236 release_sock(sk); 2237 return copied; 2238 } 2239 2240 static void mptcp_retransmit_timer(struct timer_list *t) 2241 { 2242 struct inet_connection_sock *icsk = from_timer(icsk, t, 2243 icsk_retransmit_timer); 2244 struct sock *sk = &icsk->icsk_inet.sk; 2245 struct mptcp_sock *msk = mptcp_sk(sk); 2246 2247 bh_lock_sock(sk); 2248 if (!sock_owned_by_user(sk)) { 2249 /* we need a process context to retransmit */ 2250 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2251 mptcp_schedule_work(sk); 2252 } else { 2253 /* delegate our work to tcp_release_cb() */ 2254 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2255 } 2256 bh_unlock_sock(sk); 2257 sock_put(sk); 2258 } 2259 2260 static void mptcp_tout_timer(struct timer_list *t) 2261 { 2262 struct sock *sk = from_timer(sk, t, sk_timer); 2263 2264 mptcp_schedule_work(sk); 2265 sock_put(sk); 2266 } 2267 2268 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2269 * level. 2270 * 2271 * A backup subflow is returned only if that is the only kind available. 2272 */ 2273 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2274 { 2275 struct sock *backup = NULL, *pick = NULL; 2276 struct mptcp_subflow_context *subflow; 2277 int min_stale_count = INT_MAX; 2278 2279 mptcp_for_each_subflow(msk, subflow) { 2280 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2281 2282 if (!__mptcp_subflow_active(subflow)) 2283 continue; 2284 2285 /* still data outstanding at TCP level? skip this */ 2286 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2287 mptcp_pm_subflow_chk_stale(msk, ssk); 2288 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2289 continue; 2290 } 2291 2292 if (subflow->backup) { 2293 if (!backup) 2294 backup = ssk; 2295 continue; 2296 } 2297 2298 if (!pick) 2299 pick = ssk; 2300 } 2301 2302 if (pick) 2303 return pick; 2304 2305 /* use backup only if there are no progresses anywhere */ 2306 return min_stale_count > 1 ? backup : NULL; 2307 } 2308 2309 bool __mptcp_retransmit_pending_data(struct sock *sk) 2310 { 2311 struct mptcp_data_frag *cur, *rtx_head; 2312 struct mptcp_sock *msk = mptcp_sk(sk); 2313 2314 if (__mptcp_check_fallback(msk)) 2315 return false; 2316 2317 if (tcp_rtx_and_write_queues_empty(sk)) 2318 return false; 2319 2320 /* the closing socket has some data untransmitted and/or unacked: 2321 * some data in the mptcp rtx queue has not really xmitted yet. 2322 * keep it simple and re-inject the whole mptcp level rtx queue 2323 */ 2324 mptcp_data_lock(sk); 2325 __mptcp_clean_una_wakeup(sk); 2326 rtx_head = mptcp_rtx_head(sk); 2327 if (!rtx_head) { 2328 mptcp_data_unlock(sk); 2329 return false; 2330 } 2331 2332 msk->recovery_snd_nxt = msk->snd_nxt; 2333 msk->recovery = true; 2334 mptcp_data_unlock(sk); 2335 2336 msk->first_pending = rtx_head; 2337 msk->snd_burst = 0; 2338 2339 /* be sure to clear the "sent status" on all re-injected fragments */ 2340 list_for_each_entry(cur, &msk->rtx_queue, list) { 2341 if (!cur->already_sent) 2342 break; 2343 cur->already_sent = 0; 2344 } 2345 2346 return true; 2347 } 2348 2349 /* flags for __mptcp_close_ssk() */ 2350 #define MPTCP_CF_PUSH BIT(1) 2351 #define MPTCP_CF_FASTCLOSE BIT(2) 2352 2353 /* be sure to send a reset only if the caller asked for it, also 2354 * clean completely the subflow status when the subflow reaches 2355 * TCP_CLOSE state 2356 */ 2357 static void __mptcp_subflow_disconnect(struct sock *ssk, 2358 struct mptcp_subflow_context *subflow, 2359 unsigned int flags) 2360 { 2361 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2362 (flags & MPTCP_CF_FASTCLOSE)) { 2363 /* The MPTCP code never wait on the subflow sockets, TCP-level 2364 * disconnect should never fail 2365 */ 2366 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2367 mptcp_subflow_ctx_reset(subflow); 2368 } else { 2369 tcp_shutdown(ssk, SEND_SHUTDOWN); 2370 } 2371 } 2372 2373 /* subflow sockets can be either outgoing (connect) or incoming 2374 * (accept). 2375 * 2376 * Outgoing subflows use in-kernel sockets. 2377 * Incoming subflows do not have their own 'struct socket' allocated, 2378 * so we need to use tcp_close() after detaching them from the mptcp 2379 * parent socket. 2380 */ 2381 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2382 struct mptcp_subflow_context *subflow, 2383 unsigned int flags) 2384 { 2385 struct mptcp_sock *msk = mptcp_sk(sk); 2386 bool dispose_it, need_push = false; 2387 2388 /* If the first subflow moved to a close state before accept, e.g. due 2389 * to an incoming reset or listener shutdown, the subflow socket is 2390 * already deleted by inet_child_forget() and the mptcp socket can't 2391 * survive too. 2392 */ 2393 if (msk->in_accept_queue && msk->first == ssk && 2394 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2395 /* ensure later check in mptcp_worker() will dispose the msk */ 2396 sock_set_flag(sk, SOCK_DEAD); 2397 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2398 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2399 mptcp_subflow_drop_ctx(ssk); 2400 goto out_release; 2401 } 2402 2403 dispose_it = msk->free_first || ssk != msk->first; 2404 if (dispose_it) 2405 list_del(&subflow->node); 2406 2407 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2408 2409 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2410 /* be sure to force the tcp_close path 2411 * to generate the egress reset 2412 */ 2413 ssk->sk_lingertime = 0; 2414 sock_set_flag(ssk, SOCK_LINGER); 2415 subflow->send_fastclose = 1; 2416 } 2417 2418 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2419 if (!dispose_it) { 2420 __mptcp_subflow_disconnect(ssk, subflow, flags); 2421 release_sock(ssk); 2422 2423 goto out; 2424 } 2425 2426 subflow->disposable = 1; 2427 2428 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2429 * the ssk has been already destroyed, we just need to release the 2430 * reference owned by msk; 2431 */ 2432 if (!inet_csk(ssk)->icsk_ulp_ops) { 2433 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2434 kfree_rcu(subflow, rcu); 2435 } else { 2436 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2437 __tcp_close(ssk, 0); 2438 2439 /* close acquired an extra ref */ 2440 __sock_put(ssk); 2441 } 2442 2443 out_release: 2444 __mptcp_subflow_error_report(sk, ssk); 2445 release_sock(ssk); 2446 2447 sock_put(ssk); 2448 2449 if (ssk == msk->first) 2450 WRITE_ONCE(msk->first, NULL); 2451 2452 out: 2453 __mptcp_sync_sndbuf(sk); 2454 if (need_push) 2455 __mptcp_push_pending(sk, 0); 2456 2457 /* Catch every 'all subflows closed' scenario, including peers silently 2458 * closing them, e.g. due to timeout. 2459 * For established sockets, allow an additional timeout before closing, 2460 * as the protocol can still create more subflows. 2461 */ 2462 if (list_is_singular(&msk->conn_list) && msk->first && 2463 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2464 if (sk->sk_state != TCP_ESTABLISHED || 2465 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2466 mptcp_set_state(sk, TCP_CLOSE); 2467 mptcp_close_wake_up(sk); 2468 } else { 2469 mptcp_start_tout_timer(sk); 2470 } 2471 } 2472 } 2473 2474 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2475 struct mptcp_subflow_context *subflow) 2476 { 2477 if (sk->sk_state == TCP_ESTABLISHED) 2478 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2479 2480 /* subflow aborted before reaching the fully_established status 2481 * attempt the creation of the next subflow 2482 */ 2483 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2484 2485 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2486 } 2487 2488 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2489 { 2490 return 0; 2491 } 2492 2493 static void __mptcp_close_subflow(struct sock *sk) 2494 { 2495 struct mptcp_subflow_context *subflow, *tmp; 2496 struct mptcp_sock *msk = mptcp_sk(sk); 2497 2498 might_sleep(); 2499 2500 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2501 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2502 2503 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2504 continue; 2505 2506 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2507 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2508 continue; 2509 2510 mptcp_close_ssk(sk, ssk, subflow); 2511 } 2512 2513 } 2514 2515 static bool mptcp_close_tout_expired(const struct sock *sk) 2516 { 2517 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2518 sk->sk_state == TCP_CLOSE) 2519 return false; 2520 2521 return time_after32(tcp_jiffies32, 2522 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2523 } 2524 2525 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2526 { 2527 struct mptcp_subflow_context *subflow, *tmp; 2528 struct sock *sk = (struct sock *)msk; 2529 2530 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2531 return; 2532 2533 mptcp_token_destroy(msk); 2534 2535 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2536 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2537 bool slow; 2538 2539 slow = lock_sock_fast(tcp_sk); 2540 if (tcp_sk->sk_state != TCP_CLOSE) { 2541 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2542 tcp_set_state(tcp_sk, TCP_CLOSE); 2543 } 2544 unlock_sock_fast(tcp_sk, slow); 2545 } 2546 2547 /* Mirror the tcp_reset() error propagation */ 2548 switch (sk->sk_state) { 2549 case TCP_SYN_SENT: 2550 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2551 break; 2552 case TCP_CLOSE_WAIT: 2553 WRITE_ONCE(sk->sk_err, EPIPE); 2554 break; 2555 case TCP_CLOSE: 2556 return; 2557 default: 2558 WRITE_ONCE(sk->sk_err, ECONNRESET); 2559 } 2560 2561 mptcp_set_state(sk, TCP_CLOSE); 2562 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2563 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2564 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2565 2566 /* the calling mptcp_worker will properly destroy the socket */ 2567 if (sock_flag(sk, SOCK_DEAD)) 2568 return; 2569 2570 sk->sk_state_change(sk); 2571 sk_error_report(sk); 2572 } 2573 2574 static void __mptcp_retrans(struct sock *sk) 2575 { 2576 struct mptcp_sock *msk = mptcp_sk(sk); 2577 struct mptcp_subflow_context *subflow; 2578 struct mptcp_sendmsg_info info = {}; 2579 struct mptcp_data_frag *dfrag; 2580 struct sock *ssk; 2581 int ret, err; 2582 u16 len = 0; 2583 2584 mptcp_clean_una_wakeup(sk); 2585 2586 /* first check ssk: need to kick "stale" logic */ 2587 err = mptcp_sched_get_retrans(msk); 2588 dfrag = mptcp_rtx_head(sk); 2589 if (!dfrag) { 2590 if (mptcp_data_fin_enabled(msk)) { 2591 struct inet_connection_sock *icsk = inet_csk(sk); 2592 2593 icsk->icsk_retransmits++; 2594 mptcp_set_datafin_timeout(sk); 2595 mptcp_send_ack(msk); 2596 2597 goto reset_timer; 2598 } 2599 2600 if (!mptcp_send_head(sk)) 2601 return; 2602 2603 goto reset_timer; 2604 } 2605 2606 if (err) 2607 goto reset_timer; 2608 2609 mptcp_for_each_subflow(msk, subflow) { 2610 if (READ_ONCE(subflow->scheduled)) { 2611 u16 copied = 0; 2612 2613 mptcp_subflow_set_scheduled(subflow, false); 2614 2615 ssk = mptcp_subflow_tcp_sock(subflow); 2616 2617 lock_sock(ssk); 2618 2619 /* limit retransmission to the bytes already sent on some subflows */ 2620 info.sent = 0; 2621 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2622 dfrag->already_sent; 2623 while (info.sent < info.limit) { 2624 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2625 if (ret <= 0) 2626 break; 2627 2628 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2629 copied += ret; 2630 info.sent += ret; 2631 } 2632 if (copied) { 2633 len = max(copied, len); 2634 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2635 info.size_goal); 2636 WRITE_ONCE(msk->allow_infinite_fallback, false); 2637 } 2638 2639 release_sock(ssk); 2640 } 2641 } 2642 2643 msk->bytes_retrans += len; 2644 dfrag->already_sent = max(dfrag->already_sent, len); 2645 2646 reset_timer: 2647 mptcp_check_and_set_pending(sk); 2648 2649 if (!mptcp_rtx_timer_pending(sk)) 2650 mptcp_reset_rtx_timer(sk); 2651 } 2652 2653 /* schedule the timeout timer for the relevant event: either close timeout 2654 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2655 */ 2656 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2657 { 2658 struct sock *sk = (struct sock *)msk; 2659 unsigned long timeout, close_timeout; 2660 2661 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2662 return; 2663 2664 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2665 mptcp_close_timeout(sk); 2666 2667 /* the close timeout takes precedence on the fail one, and here at least one of 2668 * them is active 2669 */ 2670 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2671 2672 sk_reset_timer(sk, &sk->sk_timer, timeout); 2673 } 2674 2675 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2676 { 2677 struct sock *ssk = msk->first; 2678 bool slow; 2679 2680 if (!ssk) 2681 return; 2682 2683 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2684 2685 slow = lock_sock_fast(ssk); 2686 mptcp_subflow_reset(ssk); 2687 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2688 unlock_sock_fast(ssk, slow); 2689 } 2690 2691 static void mptcp_do_fastclose(struct sock *sk) 2692 { 2693 struct mptcp_subflow_context *subflow, *tmp; 2694 struct mptcp_sock *msk = mptcp_sk(sk); 2695 2696 mptcp_set_state(sk, TCP_CLOSE); 2697 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2698 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2699 subflow, MPTCP_CF_FASTCLOSE); 2700 } 2701 2702 static void mptcp_worker(struct work_struct *work) 2703 { 2704 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2705 struct sock *sk = (struct sock *)msk; 2706 unsigned long fail_tout; 2707 int state; 2708 2709 lock_sock(sk); 2710 state = sk->sk_state; 2711 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2712 goto unlock; 2713 2714 mptcp_check_fastclose(msk); 2715 2716 mptcp_pm_nl_work(msk); 2717 2718 mptcp_check_send_data_fin(sk); 2719 mptcp_check_data_fin_ack(sk); 2720 mptcp_check_data_fin(sk); 2721 2722 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2723 __mptcp_close_subflow(sk); 2724 2725 if (mptcp_close_tout_expired(sk)) { 2726 mptcp_do_fastclose(sk); 2727 mptcp_close_wake_up(sk); 2728 } 2729 2730 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2731 __mptcp_destroy_sock(sk); 2732 goto unlock; 2733 } 2734 2735 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2736 __mptcp_retrans(sk); 2737 2738 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2739 if (fail_tout && time_after(jiffies, fail_tout)) 2740 mptcp_mp_fail_no_response(msk); 2741 2742 unlock: 2743 release_sock(sk); 2744 sock_put(sk); 2745 } 2746 2747 static void __mptcp_init_sock(struct sock *sk) 2748 { 2749 struct mptcp_sock *msk = mptcp_sk(sk); 2750 2751 INIT_LIST_HEAD(&msk->conn_list); 2752 INIT_LIST_HEAD(&msk->join_list); 2753 INIT_LIST_HEAD(&msk->rtx_queue); 2754 INIT_WORK(&msk->work, mptcp_worker); 2755 __skb_queue_head_init(&msk->receive_queue); 2756 msk->out_of_order_queue = RB_ROOT; 2757 msk->first_pending = NULL; 2758 msk->rmem_fwd_alloc = 0; 2759 WRITE_ONCE(msk->rmem_released, 0); 2760 msk->timer_ival = TCP_RTO_MIN; 2761 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2762 2763 WRITE_ONCE(msk->first, NULL); 2764 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2765 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2766 WRITE_ONCE(msk->allow_infinite_fallback, true); 2767 msk->recovery = false; 2768 msk->subflow_id = 1; 2769 2770 mptcp_pm_data_init(msk); 2771 2772 /* re-use the csk retrans timer for MPTCP-level retrans */ 2773 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2774 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2775 } 2776 2777 static void mptcp_ca_reset(struct sock *sk) 2778 { 2779 struct inet_connection_sock *icsk = inet_csk(sk); 2780 2781 tcp_assign_congestion_control(sk); 2782 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2783 2784 /* no need to keep a reference to the ops, the name will suffice */ 2785 tcp_cleanup_congestion_control(sk); 2786 icsk->icsk_ca_ops = NULL; 2787 } 2788 2789 static int mptcp_init_sock(struct sock *sk) 2790 { 2791 struct net *net = sock_net(sk); 2792 int ret; 2793 2794 __mptcp_init_sock(sk); 2795 2796 if (!mptcp_is_enabled(net)) 2797 return -ENOPROTOOPT; 2798 2799 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2800 return -ENOMEM; 2801 2802 ret = mptcp_init_sched(mptcp_sk(sk), 2803 mptcp_sched_find(mptcp_get_scheduler(net))); 2804 if (ret) 2805 return ret; 2806 2807 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2808 2809 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2810 * propagate the correct value 2811 */ 2812 mptcp_ca_reset(sk); 2813 2814 sk_sockets_allocated_inc(sk); 2815 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2816 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2817 2818 return 0; 2819 } 2820 2821 static void __mptcp_clear_xmit(struct sock *sk) 2822 { 2823 struct mptcp_sock *msk = mptcp_sk(sk); 2824 struct mptcp_data_frag *dtmp, *dfrag; 2825 2826 WRITE_ONCE(msk->first_pending, NULL); 2827 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2828 dfrag_clear(sk, dfrag); 2829 } 2830 2831 void mptcp_cancel_work(struct sock *sk) 2832 { 2833 struct mptcp_sock *msk = mptcp_sk(sk); 2834 2835 if (cancel_work_sync(&msk->work)) 2836 __sock_put(sk); 2837 } 2838 2839 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2840 { 2841 lock_sock(ssk); 2842 2843 switch (ssk->sk_state) { 2844 case TCP_LISTEN: 2845 if (!(how & RCV_SHUTDOWN)) 2846 break; 2847 fallthrough; 2848 case TCP_SYN_SENT: 2849 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2850 break; 2851 default: 2852 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2853 pr_debug("Fallback"); 2854 ssk->sk_shutdown |= how; 2855 tcp_shutdown(ssk, how); 2856 2857 /* simulate the data_fin ack reception to let the state 2858 * machine move forward 2859 */ 2860 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2861 mptcp_schedule_work(sk); 2862 } else { 2863 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2864 tcp_send_ack(ssk); 2865 if (!mptcp_rtx_timer_pending(sk)) 2866 mptcp_reset_rtx_timer(sk); 2867 } 2868 break; 2869 } 2870 2871 release_sock(ssk); 2872 } 2873 2874 void mptcp_set_state(struct sock *sk, int state) 2875 { 2876 int oldstate = sk->sk_state; 2877 2878 switch (state) { 2879 case TCP_ESTABLISHED: 2880 if (oldstate != TCP_ESTABLISHED) 2881 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2882 break; 2883 2884 default: 2885 if (oldstate == TCP_ESTABLISHED) 2886 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2887 } 2888 2889 inet_sk_state_store(sk, state); 2890 } 2891 2892 static const unsigned char new_state[16] = { 2893 /* current state: new state: action: */ 2894 [0 /* (Invalid) */] = TCP_CLOSE, 2895 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2896 [TCP_SYN_SENT] = TCP_CLOSE, 2897 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2898 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2899 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2900 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2901 [TCP_CLOSE] = TCP_CLOSE, 2902 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2903 [TCP_LAST_ACK] = TCP_LAST_ACK, 2904 [TCP_LISTEN] = TCP_CLOSE, 2905 [TCP_CLOSING] = TCP_CLOSING, 2906 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2907 }; 2908 2909 static int mptcp_close_state(struct sock *sk) 2910 { 2911 int next = (int)new_state[sk->sk_state]; 2912 int ns = next & TCP_STATE_MASK; 2913 2914 mptcp_set_state(sk, ns); 2915 2916 return next & TCP_ACTION_FIN; 2917 } 2918 2919 static void mptcp_check_send_data_fin(struct sock *sk) 2920 { 2921 struct mptcp_subflow_context *subflow; 2922 struct mptcp_sock *msk = mptcp_sk(sk); 2923 2924 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2925 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2926 msk->snd_nxt, msk->write_seq); 2927 2928 /* we still need to enqueue subflows or not really shutting down, 2929 * skip this 2930 */ 2931 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2932 mptcp_send_head(sk)) 2933 return; 2934 2935 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2936 2937 mptcp_for_each_subflow(msk, subflow) { 2938 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2939 2940 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2941 } 2942 } 2943 2944 static void __mptcp_wr_shutdown(struct sock *sk) 2945 { 2946 struct mptcp_sock *msk = mptcp_sk(sk); 2947 2948 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2949 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2950 !!mptcp_send_head(sk)); 2951 2952 /* will be ignored by fallback sockets */ 2953 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2954 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2955 2956 mptcp_check_send_data_fin(sk); 2957 } 2958 2959 static void __mptcp_destroy_sock(struct sock *sk) 2960 { 2961 struct mptcp_sock *msk = mptcp_sk(sk); 2962 2963 pr_debug("msk=%p", msk); 2964 2965 might_sleep(); 2966 2967 mptcp_stop_rtx_timer(sk); 2968 sk_stop_timer(sk, &sk->sk_timer); 2969 msk->pm.status = 0; 2970 mptcp_release_sched(msk); 2971 2972 sk->sk_prot->destroy(sk); 2973 2974 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2975 WARN_ON_ONCE(msk->rmem_released); 2976 sk_stream_kill_queues(sk); 2977 xfrm_sk_free_policy(sk); 2978 2979 sock_put(sk); 2980 } 2981 2982 void __mptcp_unaccepted_force_close(struct sock *sk) 2983 { 2984 sock_set_flag(sk, SOCK_DEAD); 2985 mptcp_do_fastclose(sk); 2986 __mptcp_destroy_sock(sk); 2987 } 2988 2989 static __poll_t mptcp_check_readable(struct sock *sk) 2990 { 2991 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2992 } 2993 2994 static void mptcp_check_listen_stop(struct sock *sk) 2995 { 2996 struct sock *ssk; 2997 2998 if (inet_sk_state_load(sk) != TCP_LISTEN) 2999 return; 3000 3001 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3002 ssk = mptcp_sk(sk)->first; 3003 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3004 return; 3005 3006 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3007 tcp_set_state(ssk, TCP_CLOSE); 3008 mptcp_subflow_queue_clean(sk, ssk); 3009 inet_csk_listen_stop(ssk); 3010 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3011 release_sock(ssk); 3012 } 3013 3014 bool __mptcp_close(struct sock *sk, long timeout) 3015 { 3016 struct mptcp_subflow_context *subflow; 3017 struct mptcp_sock *msk = mptcp_sk(sk); 3018 bool do_cancel_work = false; 3019 int subflows_alive = 0; 3020 3021 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3022 3023 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3024 mptcp_check_listen_stop(sk); 3025 mptcp_set_state(sk, TCP_CLOSE); 3026 goto cleanup; 3027 } 3028 3029 if (mptcp_data_avail(msk) || timeout < 0) { 3030 /* If the msk has read data, or the caller explicitly ask it, 3031 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3032 */ 3033 mptcp_do_fastclose(sk); 3034 timeout = 0; 3035 } else if (mptcp_close_state(sk)) { 3036 __mptcp_wr_shutdown(sk); 3037 } 3038 3039 sk_stream_wait_close(sk, timeout); 3040 3041 cleanup: 3042 /* orphan all the subflows */ 3043 mptcp_for_each_subflow(msk, subflow) { 3044 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3045 bool slow = lock_sock_fast_nested(ssk); 3046 3047 subflows_alive += ssk->sk_state != TCP_CLOSE; 3048 3049 /* since the close timeout takes precedence on the fail one, 3050 * cancel the latter 3051 */ 3052 if (ssk == msk->first) 3053 subflow->fail_tout = 0; 3054 3055 /* detach from the parent socket, but allow data_ready to 3056 * push incoming data into the mptcp stack, to properly ack it 3057 */ 3058 ssk->sk_socket = NULL; 3059 ssk->sk_wq = NULL; 3060 unlock_sock_fast(ssk, slow); 3061 } 3062 sock_orphan(sk); 3063 3064 /* all the subflows are closed, only timeout can change the msk 3065 * state, let's not keep resources busy for no reasons 3066 */ 3067 if (subflows_alive == 0) 3068 mptcp_set_state(sk, TCP_CLOSE); 3069 3070 sock_hold(sk); 3071 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3072 if (msk->token) 3073 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3074 3075 if (sk->sk_state == TCP_CLOSE) { 3076 __mptcp_destroy_sock(sk); 3077 do_cancel_work = true; 3078 } else { 3079 mptcp_start_tout_timer(sk); 3080 } 3081 3082 return do_cancel_work; 3083 } 3084 3085 static void mptcp_close(struct sock *sk, long timeout) 3086 { 3087 bool do_cancel_work; 3088 3089 lock_sock(sk); 3090 3091 do_cancel_work = __mptcp_close(sk, timeout); 3092 release_sock(sk); 3093 if (do_cancel_work) 3094 mptcp_cancel_work(sk); 3095 3096 sock_put(sk); 3097 } 3098 3099 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3100 { 3101 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3102 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3103 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3104 3105 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3106 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3107 3108 if (msk6 && ssk6) { 3109 msk6->saddr = ssk6->saddr; 3110 msk6->flow_label = ssk6->flow_label; 3111 } 3112 #endif 3113 3114 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3115 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3116 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3117 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3118 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3119 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3120 } 3121 3122 static int mptcp_disconnect(struct sock *sk, int flags) 3123 { 3124 struct mptcp_sock *msk = mptcp_sk(sk); 3125 3126 /* We are on the fastopen error path. We can't call straight into the 3127 * subflows cleanup code due to lock nesting (we are already under 3128 * msk->firstsocket lock). 3129 */ 3130 if (msk->fastopening) 3131 return -EBUSY; 3132 3133 mptcp_check_listen_stop(sk); 3134 mptcp_set_state(sk, TCP_CLOSE); 3135 3136 mptcp_stop_rtx_timer(sk); 3137 mptcp_stop_tout_timer(sk); 3138 3139 if (msk->token) 3140 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3141 3142 /* msk->subflow is still intact, the following will not free the first 3143 * subflow 3144 */ 3145 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3146 WRITE_ONCE(msk->flags, 0); 3147 msk->cb_flags = 0; 3148 msk->push_pending = 0; 3149 msk->recovery = false; 3150 msk->can_ack = false; 3151 msk->fully_established = false; 3152 msk->rcv_data_fin = false; 3153 msk->snd_data_fin_enable = false; 3154 msk->rcv_fastclose = false; 3155 msk->use_64bit_ack = false; 3156 msk->bytes_consumed = 0; 3157 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3158 mptcp_pm_data_reset(msk); 3159 mptcp_ca_reset(sk); 3160 msk->bytes_acked = 0; 3161 msk->bytes_received = 0; 3162 msk->bytes_sent = 0; 3163 msk->bytes_retrans = 0; 3164 3165 WRITE_ONCE(sk->sk_shutdown, 0); 3166 sk_error_report(sk); 3167 return 0; 3168 } 3169 3170 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3171 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3172 { 3173 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3174 3175 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3176 } 3177 #endif 3178 3179 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3180 const struct mptcp_options_received *mp_opt, 3181 struct sock *ssk, 3182 struct request_sock *req) 3183 { 3184 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3185 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3186 struct mptcp_sock *msk; 3187 3188 if (!nsk) 3189 return NULL; 3190 3191 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3192 if (nsk->sk_family == AF_INET6) 3193 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3194 #endif 3195 3196 __mptcp_init_sock(nsk); 3197 3198 msk = mptcp_sk(nsk); 3199 msk->local_key = subflow_req->local_key; 3200 msk->token = subflow_req->token; 3201 msk->in_accept_queue = 1; 3202 WRITE_ONCE(msk->fully_established, false); 3203 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3204 WRITE_ONCE(msk->csum_enabled, true); 3205 3206 msk->write_seq = subflow_req->idsn + 1; 3207 msk->snd_nxt = msk->write_seq; 3208 msk->snd_una = msk->write_seq; 3209 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3210 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3211 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3212 3213 /* passive msk is created after the first/MPC subflow */ 3214 msk->subflow_id = 2; 3215 3216 sock_reset_flag(nsk, SOCK_RCU_FREE); 3217 security_inet_csk_clone(nsk, req); 3218 3219 /* this can't race with mptcp_close(), as the msk is 3220 * not yet exposted to user-space 3221 */ 3222 mptcp_set_state(nsk, TCP_ESTABLISHED); 3223 3224 /* The msk maintain a ref to each subflow in the connections list */ 3225 WRITE_ONCE(msk->first, ssk); 3226 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3227 sock_hold(ssk); 3228 3229 /* new mpc subflow takes ownership of the newly 3230 * created mptcp socket 3231 */ 3232 mptcp_token_accept(subflow_req, msk); 3233 3234 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3235 * uses the correct data 3236 */ 3237 mptcp_copy_inaddrs(nsk, ssk); 3238 __mptcp_propagate_sndbuf(nsk, ssk); 3239 3240 mptcp_rcv_space_init(msk, ssk); 3241 bh_unlock_sock(nsk); 3242 3243 /* note: the newly allocated socket refcount is 2 now */ 3244 return nsk; 3245 } 3246 3247 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3248 { 3249 const struct tcp_sock *tp = tcp_sk(ssk); 3250 3251 msk->rcvq_space.copied = 0; 3252 msk->rcvq_space.rtt_us = 0; 3253 3254 msk->rcvq_space.time = tp->tcp_mstamp; 3255 3256 /* initial rcv_space offering made to peer */ 3257 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3258 TCP_INIT_CWND * tp->advmss); 3259 if (msk->rcvq_space.space == 0) 3260 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3261 3262 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3263 } 3264 3265 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3266 { 3267 struct mptcp_subflow_context *subflow, *tmp; 3268 struct sock *sk = (struct sock *)msk; 3269 3270 __mptcp_clear_xmit(sk); 3271 3272 /* join list will be eventually flushed (with rst) at sock lock release time */ 3273 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3274 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3275 3276 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3277 mptcp_data_lock(sk); 3278 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3279 __skb_queue_purge(&sk->sk_receive_queue); 3280 skb_rbtree_purge(&msk->out_of_order_queue); 3281 mptcp_data_unlock(sk); 3282 3283 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3284 * inet_sock_destruct() will dispose it 3285 */ 3286 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3287 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3288 mptcp_token_destroy(msk); 3289 mptcp_pm_free_anno_list(msk); 3290 mptcp_free_local_addr_list(msk); 3291 } 3292 3293 static void mptcp_destroy(struct sock *sk) 3294 { 3295 struct mptcp_sock *msk = mptcp_sk(sk); 3296 3297 /* allow the following to close even the initial subflow */ 3298 msk->free_first = 1; 3299 mptcp_destroy_common(msk, 0); 3300 sk_sockets_allocated_dec(sk); 3301 } 3302 3303 void __mptcp_data_acked(struct sock *sk) 3304 { 3305 if (!sock_owned_by_user(sk)) 3306 __mptcp_clean_una(sk); 3307 else 3308 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3309 3310 if (mptcp_pending_data_fin_ack(sk)) 3311 mptcp_schedule_work(sk); 3312 } 3313 3314 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3315 { 3316 if (!mptcp_send_head(sk)) 3317 return; 3318 3319 if (!sock_owned_by_user(sk)) 3320 __mptcp_subflow_push_pending(sk, ssk, false); 3321 else 3322 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3323 } 3324 3325 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3326 BIT(MPTCP_RETRANSMIT) | \ 3327 BIT(MPTCP_FLUSH_JOIN_LIST)) 3328 3329 /* processes deferred events and flush wmem */ 3330 static void mptcp_release_cb(struct sock *sk) 3331 __must_hold(&sk->sk_lock.slock) 3332 { 3333 struct mptcp_sock *msk = mptcp_sk(sk); 3334 3335 for (;;) { 3336 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3337 msk->push_pending; 3338 struct list_head join_list; 3339 3340 if (!flags) 3341 break; 3342 3343 INIT_LIST_HEAD(&join_list); 3344 list_splice_init(&msk->join_list, &join_list); 3345 3346 /* the following actions acquire the subflow socket lock 3347 * 3348 * 1) can't be invoked in atomic scope 3349 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3350 * datapath acquires the msk socket spinlock while helding 3351 * the subflow socket lock 3352 */ 3353 msk->push_pending = 0; 3354 msk->cb_flags &= ~flags; 3355 spin_unlock_bh(&sk->sk_lock.slock); 3356 3357 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3358 __mptcp_flush_join_list(sk, &join_list); 3359 if (flags & BIT(MPTCP_PUSH_PENDING)) 3360 __mptcp_push_pending(sk, 0); 3361 if (flags & BIT(MPTCP_RETRANSMIT)) 3362 __mptcp_retrans(sk); 3363 3364 cond_resched(); 3365 spin_lock_bh(&sk->sk_lock.slock); 3366 } 3367 3368 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3369 __mptcp_clean_una_wakeup(sk); 3370 if (unlikely(msk->cb_flags)) { 3371 /* be sure to sync the msk state before taking actions 3372 * depending on sk_state (MPTCP_ERROR_REPORT) 3373 * On sk release avoid actions depending on the first subflow 3374 */ 3375 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3376 __mptcp_sync_state(sk, msk->pending_state); 3377 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3378 __mptcp_error_report(sk); 3379 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3380 __mptcp_sync_sndbuf(sk); 3381 } 3382 3383 __mptcp_update_rmem(sk); 3384 } 3385 3386 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3387 * TCP can't schedule delack timer before the subflow is fully established. 3388 * MPTCP uses the delack timer to do 3rd ack retransmissions 3389 */ 3390 static void schedule_3rdack_retransmission(struct sock *ssk) 3391 { 3392 struct inet_connection_sock *icsk = inet_csk(ssk); 3393 struct tcp_sock *tp = tcp_sk(ssk); 3394 unsigned long timeout; 3395 3396 if (mptcp_subflow_ctx(ssk)->fully_established) 3397 return; 3398 3399 /* reschedule with a timeout above RTT, as we must look only for drop */ 3400 if (tp->srtt_us) 3401 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3402 else 3403 timeout = TCP_TIMEOUT_INIT; 3404 timeout += jiffies; 3405 3406 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3407 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3408 icsk->icsk_ack.timeout = timeout; 3409 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3410 } 3411 3412 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3413 { 3414 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3415 struct sock *sk = subflow->conn; 3416 3417 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3418 mptcp_data_lock(sk); 3419 if (!sock_owned_by_user(sk)) 3420 __mptcp_subflow_push_pending(sk, ssk, true); 3421 else 3422 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3423 mptcp_data_unlock(sk); 3424 } 3425 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3426 mptcp_data_lock(sk); 3427 if (!sock_owned_by_user(sk)) 3428 __mptcp_sync_sndbuf(sk); 3429 else 3430 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3431 mptcp_data_unlock(sk); 3432 } 3433 if (status & BIT(MPTCP_DELEGATE_ACK)) 3434 schedule_3rdack_retransmission(ssk); 3435 } 3436 3437 static int mptcp_hash(struct sock *sk) 3438 { 3439 /* should never be called, 3440 * we hash the TCP subflows not the master socket 3441 */ 3442 WARN_ON_ONCE(1); 3443 return 0; 3444 } 3445 3446 static void mptcp_unhash(struct sock *sk) 3447 { 3448 /* called from sk_common_release(), but nothing to do here */ 3449 } 3450 3451 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3452 { 3453 struct mptcp_sock *msk = mptcp_sk(sk); 3454 3455 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3456 if (WARN_ON_ONCE(!msk->first)) 3457 return -EINVAL; 3458 3459 return inet_csk_get_port(msk->first, snum); 3460 } 3461 3462 void mptcp_finish_connect(struct sock *ssk) 3463 { 3464 struct mptcp_subflow_context *subflow; 3465 struct mptcp_sock *msk; 3466 struct sock *sk; 3467 3468 subflow = mptcp_subflow_ctx(ssk); 3469 sk = subflow->conn; 3470 msk = mptcp_sk(sk); 3471 3472 pr_debug("msk=%p, token=%u", sk, subflow->token); 3473 3474 subflow->map_seq = subflow->iasn; 3475 subflow->map_subflow_seq = 1; 3476 3477 /* the socket is not connected yet, no msk/subflow ops can access/race 3478 * accessing the field below 3479 */ 3480 WRITE_ONCE(msk->local_key, subflow->local_key); 3481 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3482 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3483 WRITE_ONCE(msk->snd_una, msk->write_seq); 3484 3485 mptcp_pm_new_connection(msk, ssk, 0); 3486 3487 mptcp_rcv_space_init(msk, ssk); 3488 } 3489 3490 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3491 { 3492 write_lock_bh(&sk->sk_callback_lock); 3493 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3494 sk_set_socket(sk, parent); 3495 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3496 write_unlock_bh(&sk->sk_callback_lock); 3497 } 3498 3499 bool mptcp_finish_join(struct sock *ssk) 3500 { 3501 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3502 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3503 struct sock *parent = (void *)msk; 3504 bool ret = true; 3505 3506 pr_debug("msk=%p, subflow=%p", msk, subflow); 3507 3508 /* mptcp socket already closing? */ 3509 if (!mptcp_is_fully_established(parent)) { 3510 subflow->reset_reason = MPTCP_RST_EMPTCP; 3511 return false; 3512 } 3513 3514 /* active subflow, already present inside the conn_list */ 3515 if (!list_empty(&subflow->node)) { 3516 mptcp_subflow_joined(msk, ssk); 3517 mptcp_propagate_sndbuf(parent, ssk); 3518 return true; 3519 } 3520 3521 if (!mptcp_pm_allow_new_subflow(msk)) 3522 goto err_prohibited; 3523 3524 /* If we can't acquire msk socket lock here, let the release callback 3525 * handle it 3526 */ 3527 mptcp_data_lock(parent); 3528 if (!sock_owned_by_user(parent)) { 3529 ret = __mptcp_finish_join(msk, ssk); 3530 if (ret) { 3531 sock_hold(ssk); 3532 list_add_tail(&subflow->node, &msk->conn_list); 3533 } 3534 } else { 3535 sock_hold(ssk); 3536 list_add_tail(&subflow->node, &msk->join_list); 3537 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3538 } 3539 mptcp_data_unlock(parent); 3540 3541 if (!ret) { 3542 err_prohibited: 3543 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3544 return false; 3545 } 3546 3547 return true; 3548 } 3549 3550 static void mptcp_shutdown(struct sock *sk, int how) 3551 { 3552 pr_debug("sk=%p, how=%d", sk, how); 3553 3554 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3555 __mptcp_wr_shutdown(sk); 3556 } 3557 3558 static int mptcp_forward_alloc_get(const struct sock *sk) 3559 { 3560 return READ_ONCE(sk->sk_forward_alloc) + 3561 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3562 } 3563 3564 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3565 { 3566 const struct sock *sk = (void *)msk; 3567 u64 delta; 3568 3569 if (sk->sk_state == TCP_LISTEN) 3570 return -EINVAL; 3571 3572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3573 return 0; 3574 3575 delta = msk->write_seq - v; 3576 if (__mptcp_check_fallback(msk) && msk->first) { 3577 struct tcp_sock *tp = tcp_sk(msk->first); 3578 3579 /* the first subflow is disconnected after close - see 3580 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3581 * so ignore that status, too. 3582 */ 3583 if (!((1 << msk->first->sk_state) & 3584 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3585 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3586 } 3587 if (delta > INT_MAX) 3588 delta = INT_MAX; 3589 3590 return (int)delta; 3591 } 3592 3593 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3594 { 3595 struct mptcp_sock *msk = mptcp_sk(sk); 3596 bool slow; 3597 3598 switch (cmd) { 3599 case SIOCINQ: 3600 if (sk->sk_state == TCP_LISTEN) 3601 return -EINVAL; 3602 3603 lock_sock(sk); 3604 __mptcp_move_skbs(msk); 3605 *karg = mptcp_inq_hint(sk); 3606 release_sock(sk); 3607 break; 3608 case SIOCOUTQ: 3609 slow = lock_sock_fast(sk); 3610 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3611 unlock_sock_fast(sk, slow); 3612 break; 3613 case SIOCOUTQNSD: 3614 slow = lock_sock_fast(sk); 3615 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3616 unlock_sock_fast(sk, slow); 3617 break; 3618 default: 3619 return -ENOIOCTLCMD; 3620 } 3621 3622 return 0; 3623 } 3624 3625 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3626 struct mptcp_subflow_context *subflow) 3627 { 3628 subflow->request_mptcp = 0; 3629 __mptcp_do_fallback(msk); 3630 } 3631 3632 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3633 { 3634 struct mptcp_subflow_context *subflow; 3635 struct mptcp_sock *msk = mptcp_sk(sk); 3636 int err = -EINVAL; 3637 struct sock *ssk; 3638 3639 ssk = __mptcp_nmpc_sk(msk); 3640 if (IS_ERR(ssk)) 3641 return PTR_ERR(ssk); 3642 3643 mptcp_set_state(sk, TCP_SYN_SENT); 3644 subflow = mptcp_subflow_ctx(ssk); 3645 #ifdef CONFIG_TCP_MD5SIG 3646 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3647 * TCP option space. 3648 */ 3649 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3650 mptcp_subflow_early_fallback(msk, subflow); 3651 #endif 3652 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3653 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3654 mptcp_subflow_early_fallback(msk, subflow); 3655 } 3656 if (likely(!__mptcp_check_fallback(msk))) 3657 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3658 3659 /* if reaching here via the fastopen/sendmsg path, the caller already 3660 * acquired the subflow socket lock, too. 3661 */ 3662 if (!msk->fastopening) 3663 lock_sock(ssk); 3664 3665 /* the following mirrors closely a very small chunk of code from 3666 * __inet_stream_connect() 3667 */ 3668 if (ssk->sk_state != TCP_CLOSE) 3669 goto out; 3670 3671 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3672 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3673 if (err) 3674 goto out; 3675 } 3676 3677 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3678 if (err < 0) 3679 goto out; 3680 3681 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3682 3683 out: 3684 if (!msk->fastopening) 3685 release_sock(ssk); 3686 3687 /* on successful connect, the msk state will be moved to established by 3688 * subflow_finish_connect() 3689 */ 3690 if (unlikely(err)) { 3691 /* avoid leaving a dangling token in an unconnected socket */ 3692 mptcp_token_destroy(msk); 3693 mptcp_set_state(sk, TCP_CLOSE); 3694 return err; 3695 } 3696 3697 mptcp_copy_inaddrs(sk, ssk); 3698 return 0; 3699 } 3700 3701 static struct proto mptcp_prot = { 3702 .name = "MPTCP", 3703 .owner = THIS_MODULE, 3704 .init = mptcp_init_sock, 3705 .connect = mptcp_connect, 3706 .disconnect = mptcp_disconnect, 3707 .close = mptcp_close, 3708 .setsockopt = mptcp_setsockopt, 3709 .getsockopt = mptcp_getsockopt, 3710 .shutdown = mptcp_shutdown, 3711 .destroy = mptcp_destroy, 3712 .sendmsg = mptcp_sendmsg, 3713 .ioctl = mptcp_ioctl, 3714 .recvmsg = mptcp_recvmsg, 3715 .release_cb = mptcp_release_cb, 3716 .hash = mptcp_hash, 3717 .unhash = mptcp_unhash, 3718 .get_port = mptcp_get_port, 3719 .forward_alloc_get = mptcp_forward_alloc_get, 3720 .sockets_allocated = &mptcp_sockets_allocated, 3721 3722 .memory_allocated = &tcp_memory_allocated, 3723 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3724 3725 .memory_pressure = &tcp_memory_pressure, 3726 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3727 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3728 .sysctl_mem = sysctl_tcp_mem, 3729 .obj_size = sizeof(struct mptcp_sock), 3730 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3731 .no_autobind = true, 3732 }; 3733 3734 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3735 { 3736 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3737 struct sock *ssk, *sk = sock->sk; 3738 int err = -EINVAL; 3739 3740 lock_sock(sk); 3741 ssk = __mptcp_nmpc_sk(msk); 3742 if (IS_ERR(ssk)) { 3743 err = PTR_ERR(ssk); 3744 goto unlock; 3745 } 3746 3747 if (sk->sk_family == AF_INET) 3748 err = inet_bind_sk(ssk, uaddr, addr_len); 3749 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3750 else if (sk->sk_family == AF_INET6) 3751 err = inet6_bind_sk(ssk, uaddr, addr_len); 3752 #endif 3753 if (!err) 3754 mptcp_copy_inaddrs(sk, ssk); 3755 3756 unlock: 3757 release_sock(sk); 3758 return err; 3759 } 3760 3761 static int mptcp_listen(struct socket *sock, int backlog) 3762 { 3763 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3764 struct sock *sk = sock->sk; 3765 struct sock *ssk; 3766 int err; 3767 3768 pr_debug("msk=%p", msk); 3769 3770 lock_sock(sk); 3771 3772 err = -EINVAL; 3773 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3774 goto unlock; 3775 3776 ssk = __mptcp_nmpc_sk(msk); 3777 if (IS_ERR(ssk)) { 3778 err = PTR_ERR(ssk); 3779 goto unlock; 3780 } 3781 3782 mptcp_set_state(sk, TCP_LISTEN); 3783 sock_set_flag(sk, SOCK_RCU_FREE); 3784 3785 lock_sock(ssk); 3786 err = __inet_listen_sk(ssk, backlog); 3787 release_sock(ssk); 3788 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3789 3790 if (!err) { 3791 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3792 mptcp_copy_inaddrs(sk, ssk); 3793 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3794 } 3795 3796 unlock: 3797 release_sock(sk); 3798 return err; 3799 } 3800 3801 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3802 int flags, bool kern) 3803 { 3804 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3805 struct sock *ssk, *newsk; 3806 int err; 3807 3808 pr_debug("msk=%p", msk); 3809 3810 /* Buggy applications can call accept on socket states other then LISTEN 3811 * but no need to allocate the first subflow just to error out. 3812 */ 3813 ssk = READ_ONCE(msk->first); 3814 if (!ssk) 3815 return -EINVAL; 3816 3817 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3818 newsk = inet_csk_accept(ssk, flags, &err, kern); 3819 if (!newsk) 3820 return err; 3821 3822 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3823 if (sk_is_mptcp(newsk)) { 3824 struct mptcp_subflow_context *subflow; 3825 struct sock *new_mptcp_sock; 3826 3827 subflow = mptcp_subflow_ctx(newsk); 3828 new_mptcp_sock = subflow->conn; 3829 3830 /* is_mptcp should be false if subflow->conn is missing, see 3831 * subflow_syn_recv_sock() 3832 */ 3833 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3834 tcp_sk(newsk)->is_mptcp = 0; 3835 goto tcpfallback; 3836 } 3837 3838 newsk = new_mptcp_sock; 3839 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3840 3841 newsk->sk_kern_sock = kern; 3842 lock_sock(newsk); 3843 __inet_accept(sock, newsock, newsk); 3844 3845 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3846 msk = mptcp_sk(newsk); 3847 msk->in_accept_queue = 0; 3848 3849 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3850 * This is needed so NOSPACE flag can be set from tcp stack. 3851 */ 3852 mptcp_for_each_subflow(msk, subflow) { 3853 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3854 3855 if (!ssk->sk_socket) 3856 mptcp_sock_graft(ssk, newsock); 3857 } 3858 3859 /* Do late cleanup for the first subflow as necessary. Also 3860 * deal with bad peers not doing a complete shutdown. 3861 */ 3862 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3863 __mptcp_close_ssk(newsk, msk->first, 3864 mptcp_subflow_ctx(msk->first), 0); 3865 if (unlikely(list_is_singular(&msk->conn_list))) 3866 mptcp_set_state(newsk, TCP_CLOSE); 3867 } 3868 } else { 3869 MPTCP_INC_STATS(sock_net(ssk), 3870 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3871 tcpfallback: 3872 newsk->sk_kern_sock = kern; 3873 lock_sock(newsk); 3874 __inet_accept(sock, newsock, newsk); 3875 /* we are being invoked after accepting a non-mp-capable 3876 * flow: sk is a tcp_sk, not an mptcp one. 3877 * 3878 * Hand the socket over to tcp so all further socket ops 3879 * bypass mptcp. 3880 */ 3881 WRITE_ONCE(newsock->sk->sk_socket->ops, 3882 mptcp_fallback_tcp_ops(newsock->sk)); 3883 } 3884 release_sock(newsk); 3885 3886 return 0; 3887 } 3888 3889 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3890 { 3891 struct sock *sk = (struct sock *)msk; 3892 3893 if (sk_stream_is_writeable(sk)) 3894 return EPOLLOUT | EPOLLWRNORM; 3895 3896 mptcp_set_nospace(sk); 3897 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3898 if (sk_stream_is_writeable(sk)) 3899 return EPOLLOUT | EPOLLWRNORM; 3900 3901 return 0; 3902 } 3903 3904 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3905 struct poll_table_struct *wait) 3906 { 3907 struct sock *sk = sock->sk; 3908 struct mptcp_sock *msk; 3909 __poll_t mask = 0; 3910 u8 shutdown; 3911 int state; 3912 3913 msk = mptcp_sk(sk); 3914 sock_poll_wait(file, sock, wait); 3915 3916 state = inet_sk_state_load(sk); 3917 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3918 if (state == TCP_LISTEN) { 3919 struct sock *ssk = READ_ONCE(msk->first); 3920 3921 if (WARN_ON_ONCE(!ssk)) 3922 return 0; 3923 3924 return inet_csk_listen_poll(ssk); 3925 } 3926 3927 shutdown = READ_ONCE(sk->sk_shutdown); 3928 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3929 mask |= EPOLLHUP; 3930 if (shutdown & RCV_SHUTDOWN) 3931 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3932 3933 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3934 mask |= mptcp_check_readable(sk); 3935 if (shutdown & SEND_SHUTDOWN) 3936 mask |= EPOLLOUT | EPOLLWRNORM; 3937 else 3938 mask |= mptcp_check_writeable(msk); 3939 } else if (state == TCP_SYN_SENT && 3940 inet_test_bit(DEFER_CONNECT, sk)) { 3941 /* cf tcp_poll() note about TFO */ 3942 mask |= EPOLLOUT | EPOLLWRNORM; 3943 } 3944 3945 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3946 smp_rmb(); 3947 if (READ_ONCE(sk->sk_err)) 3948 mask |= EPOLLERR; 3949 3950 return mask; 3951 } 3952 3953 static const struct proto_ops mptcp_stream_ops = { 3954 .family = PF_INET, 3955 .owner = THIS_MODULE, 3956 .release = inet_release, 3957 .bind = mptcp_bind, 3958 .connect = inet_stream_connect, 3959 .socketpair = sock_no_socketpair, 3960 .accept = mptcp_stream_accept, 3961 .getname = inet_getname, 3962 .poll = mptcp_poll, 3963 .ioctl = inet_ioctl, 3964 .gettstamp = sock_gettstamp, 3965 .listen = mptcp_listen, 3966 .shutdown = inet_shutdown, 3967 .setsockopt = sock_common_setsockopt, 3968 .getsockopt = sock_common_getsockopt, 3969 .sendmsg = inet_sendmsg, 3970 .recvmsg = inet_recvmsg, 3971 .mmap = sock_no_mmap, 3972 .set_rcvlowat = mptcp_set_rcvlowat, 3973 }; 3974 3975 static struct inet_protosw mptcp_protosw = { 3976 .type = SOCK_STREAM, 3977 .protocol = IPPROTO_MPTCP, 3978 .prot = &mptcp_prot, 3979 .ops = &mptcp_stream_ops, 3980 .flags = INET_PROTOSW_ICSK, 3981 }; 3982 3983 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3984 { 3985 struct mptcp_delegated_action *delegated; 3986 struct mptcp_subflow_context *subflow; 3987 int work_done = 0; 3988 3989 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3990 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3991 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3992 3993 bh_lock_sock_nested(ssk); 3994 if (!sock_owned_by_user(ssk)) { 3995 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 3996 } else { 3997 /* tcp_release_cb_override already processed 3998 * the action or will do at next release_sock(). 3999 * In both case must dequeue the subflow here - on the same 4000 * CPU that scheduled it. 4001 */ 4002 smp_wmb(); 4003 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4004 } 4005 bh_unlock_sock(ssk); 4006 sock_put(ssk); 4007 4008 if (++work_done == budget) 4009 return budget; 4010 } 4011 4012 /* always provide a 0 'work_done' argument, so that napi_complete_done 4013 * will not try accessing the NULL napi->dev ptr 4014 */ 4015 napi_complete_done(napi, 0); 4016 return work_done; 4017 } 4018 4019 void __init mptcp_proto_init(void) 4020 { 4021 struct mptcp_delegated_action *delegated; 4022 int cpu; 4023 4024 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4025 4026 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4027 panic("Failed to allocate MPTCP pcpu counter\n"); 4028 4029 init_dummy_netdev(&mptcp_napi_dev); 4030 for_each_possible_cpu(cpu) { 4031 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4032 INIT_LIST_HEAD(&delegated->head); 4033 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4034 mptcp_napi_poll); 4035 napi_enable(&delegated->napi); 4036 } 4037 4038 mptcp_subflow_init(); 4039 mptcp_pm_init(); 4040 mptcp_sched_init(); 4041 mptcp_token_init(); 4042 4043 if (proto_register(&mptcp_prot, 1) != 0) 4044 panic("Failed to register MPTCP proto.\n"); 4045 4046 inet_register_protosw(&mptcp_protosw); 4047 4048 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4049 } 4050 4051 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4052 static const struct proto_ops mptcp_v6_stream_ops = { 4053 .family = PF_INET6, 4054 .owner = THIS_MODULE, 4055 .release = inet6_release, 4056 .bind = mptcp_bind, 4057 .connect = inet_stream_connect, 4058 .socketpair = sock_no_socketpair, 4059 .accept = mptcp_stream_accept, 4060 .getname = inet6_getname, 4061 .poll = mptcp_poll, 4062 .ioctl = inet6_ioctl, 4063 .gettstamp = sock_gettstamp, 4064 .listen = mptcp_listen, 4065 .shutdown = inet_shutdown, 4066 .setsockopt = sock_common_setsockopt, 4067 .getsockopt = sock_common_getsockopt, 4068 .sendmsg = inet6_sendmsg, 4069 .recvmsg = inet6_recvmsg, 4070 .mmap = sock_no_mmap, 4071 #ifdef CONFIG_COMPAT 4072 .compat_ioctl = inet6_compat_ioctl, 4073 #endif 4074 .set_rcvlowat = mptcp_set_rcvlowat, 4075 }; 4076 4077 static struct proto mptcp_v6_prot; 4078 4079 static struct inet_protosw mptcp_v6_protosw = { 4080 .type = SOCK_STREAM, 4081 .protocol = IPPROTO_MPTCP, 4082 .prot = &mptcp_v6_prot, 4083 .ops = &mptcp_v6_stream_ops, 4084 .flags = INET_PROTOSW_ICSK, 4085 }; 4086 4087 int __init mptcp_proto_v6_init(void) 4088 { 4089 int err; 4090 4091 mptcp_v6_prot = mptcp_prot; 4092 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4093 mptcp_v6_prot.slab = NULL; 4094 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4095 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4096 4097 err = proto_register(&mptcp_v6_prot, 1); 4098 if (err) 4099 return err; 4100 4101 err = inet6_register_protosw(&mptcp_v6_protosw); 4102 if (err) 4103 proto_unregister(&mptcp_v6_prot); 4104 4105 return err; 4106 } 4107 #endif 4108