xref: /linux/net/mptcp/protocol.c (revision 94737ef56b610d94a24fadfb8386fc17dbd79ddd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 struct mptcp_skb_cb {
40 	u64 map_seq;
41 	u64 end_seq;
42 	u32 offset;
43 	u8  has_rxtstamp:1;
44 };
45 
46 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
47 
48 enum {
49 	MPTCP_CMSG_TS = BIT(0),
50 	MPTCP_CMSG_INQ = BIT(1),
51 };
52 
53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
54 
55 static void __mptcp_destroy_sock(struct sock *sk);
56 static void __mptcp_check_send_data_fin(struct sock *sk);
57 
58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
59 static struct net_device mptcp_napi_dev;
60 
61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
62  * completed yet or has failed, return the subflow socket.
63  * Otherwise return NULL.
64  */
65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
66 {
67 	if (!msk->subflow || READ_ONCE(msk->can_ack))
68 		return NULL;
69 
70 	return msk->subflow;
71 }
72 
73 /* Returns end sequence number of the receiver's advertised window */
74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
75 {
76 	return READ_ONCE(msk->wnd_end);
77 }
78 
79 static bool mptcp_is_tcpsk(struct sock *sk)
80 {
81 	struct socket *sock = sk->sk_socket;
82 
83 	if (unlikely(sk->sk_prot == &tcp_prot)) {
84 		/* we are being invoked after mptcp_accept() has
85 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
86 		 * not an mptcp one.
87 		 *
88 		 * Hand the socket over to tcp so all further socket ops
89 		 * bypass mptcp.
90 		 */
91 		sock->ops = &inet_stream_ops;
92 		return true;
93 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
94 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
95 		sock->ops = &inet6_stream_ops;
96 		return true;
97 #endif
98 	}
99 
100 	return false;
101 }
102 
103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 	struct mptcp_subflow_context *subflow;
106 	struct sock *sk = (struct sock *)msk;
107 	struct socket *ssock;
108 	int err;
109 
110 	err = mptcp_subflow_create_socket(sk, &ssock);
111 	if (err)
112 		return err;
113 
114 	msk->first = ssock->sk;
115 	msk->subflow = ssock;
116 	subflow = mptcp_subflow_ctx(ssock->sk);
117 	list_add(&subflow->node, &msk->conn_list);
118 	sock_hold(ssock->sk);
119 	subflow->request_mptcp = 1;
120 
121 	/* This is the first subflow, always with id 0 */
122 	subflow->local_id_valid = 1;
123 	mptcp_sock_graft(msk->first, sk->sk_socket);
124 
125 	return 0;
126 }
127 
128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
129 {
130 	sk_drops_add(sk, skb);
131 	__kfree_skb(skb);
132 }
133 
134 static void mptcp_rmem_charge(struct sock *sk, int size)
135 {
136 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
137 }
138 
139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
140 			       struct sk_buff *from)
141 {
142 	bool fragstolen;
143 	int delta;
144 
145 	if (MPTCP_SKB_CB(from)->offset ||
146 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
147 		return false;
148 
149 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
150 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
151 		 to->len, MPTCP_SKB_CB(from)->end_seq);
152 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
153 	kfree_skb_partial(from, fragstolen);
154 	atomic_add(delta, &sk->sk_rmem_alloc);
155 	mptcp_rmem_charge(sk, delta);
156 	return true;
157 }
158 
159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
160 				   struct sk_buff *from)
161 {
162 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
163 		return false;
164 
165 	return mptcp_try_coalesce((struct sock *)msk, to, from);
166 }
167 
168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
169 {
170 	amount >>= SK_MEM_QUANTUM_SHIFT;
171 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
172 	__sk_mem_reduce_allocated(sk, amount);
173 }
174 
175 static void mptcp_rmem_uncharge(struct sock *sk, int size)
176 {
177 	struct mptcp_sock *msk = mptcp_sk(sk);
178 	int reclaimable;
179 
180 	msk->rmem_fwd_alloc += size;
181 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
182 
183 	/* see sk_mem_uncharge() for the rationale behind the following schema */
184 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
185 		__mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK);
186 }
187 
188 static void mptcp_rfree(struct sk_buff *skb)
189 {
190 	unsigned int len = skb->truesize;
191 	struct sock *sk = skb->sk;
192 
193 	atomic_sub(len, &sk->sk_rmem_alloc);
194 	mptcp_rmem_uncharge(sk, len);
195 }
196 
197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
198 {
199 	skb_orphan(skb);
200 	skb->sk = sk;
201 	skb->destructor = mptcp_rfree;
202 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
203 	mptcp_rmem_charge(sk, skb->truesize);
204 }
205 
206 /* "inspired" by tcp_data_queue_ofo(), main differences:
207  * - use mptcp seqs
208  * - don't cope with sacks
209  */
210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
211 {
212 	struct sock *sk = (struct sock *)msk;
213 	struct rb_node **p, *parent;
214 	u64 seq, end_seq, max_seq;
215 	struct sk_buff *skb1;
216 
217 	seq = MPTCP_SKB_CB(skb)->map_seq;
218 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
219 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
220 
221 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
222 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
223 	if (after64(end_seq, max_seq)) {
224 		/* out of window */
225 		mptcp_drop(sk, skb);
226 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
227 			 (unsigned long long)end_seq - (unsigned long)max_seq,
228 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
229 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
230 		return;
231 	}
232 
233 	p = &msk->out_of_order_queue.rb_node;
234 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
235 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
236 		rb_link_node(&skb->rbnode, NULL, p);
237 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
238 		msk->ooo_last_skb = skb;
239 		goto end;
240 	}
241 
242 	/* with 2 subflows, adding at end of ooo queue is quite likely
243 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
244 	 */
245 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
248 		return;
249 	}
250 
251 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
252 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
253 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
254 		parent = &msk->ooo_last_skb->rbnode;
255 		p = &parent->rb_right;
256 		goto insert;
257 	}
258 
259 	/* Find place to insert this segment. Handle overlaps on the way. */
260 	parent = NULL;
261 	while (*p) {
262 		parent = *p;
263 		skb1 = rb_to_skb(parent);
264 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
265 			p = &parent->rb_left;
266 			continue;
267 		}
268 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 				/* All the bits are present. Drop. */
271 				mptcp_drop(sk, skb);
272 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
273 				return;
274 			}
275 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
276 				/* partial overlap:
277 				 *     |     skb      |
278 				 *  |     skb1    |
279 				 * continue traversing
280 				 */
281 			} else {
282 				/* skb's seq == skb1's seq and skb covers skb1.
283 				 * Replace skb1 with skb.
284 				 */
285 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
286 						&msk->out_of_order_queue);
287 				mptcp_drop(sk, skb1);
288 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 				goto merge_right;
290 			}
291 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
292 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
293 			return;
294 		}
295 		p = &parent->rb_right;
296 	}
297 
298 insert:
299 	/* Insert segment into RB tree. */
300 	rb_link_node(&skb->rbnode, parent, p);
301 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
302 
303 merge_right:
304 	/* Remove other segments covered by skb. */
305 	while ((skb1 = skb_rb_next(skb)) != NULL) {
306 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
307 			break;
308 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
309 		mptcp_drop(sk, skb1);
310 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
311 	}
312 	/* If there is no skb after us, we are the last_skb ! */
313 	if (!skb1)
314 		msk->ooo_last_skb = skb;
315 
316 end:
317 	skb_condense(skb);
318 	mptcp_set_owner_r(skb, sk);
319 }
320 
321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
322 {
323 	struct mptcp_sock *msk = mptcp_sk(sk);
324 	int amt, amount;
325 
326 	if (size < msk->rmem_fwd_alloc)
327 		return true;
328 
329 	amt = sk_mem_pages(size);
330 	amount = amt << SK_MEM_QUANTUM_SHIFT;
331 	msk->rmem_fwd_alloc += amount;
332 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) {
333 		if (ssk->sk_forward_alloc < amount) {
334 			msk->rmem_fwd_alloc -= amount;
335 			return false;
336 		}
337 
338 		ssk->sk_forward_alloc -= amount;
339 	}
340 	return true;
341 }
342 
343 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
344 			     struct sk_buff *skb, unsigned int offset,
345 			     size_t copy_len)
346 {
347 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
348 	struct sock *sk = (struct sock *)msk;
349 	struct sk_buff *tail;
350 	bool has_rxtstamp;
351 
352 	__skb_unlink(skb, &ssk->sk_receive_queue);
353 
354 	skb_ext_reset(skb);
355 	skb_orphan(skb);
356 
357 	/* try to fetch required memory from subflow */
358 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
359 		goto drop;
360 
361 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
362 
363 	/* the skb map_seq accounts for the skb offset:
364 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
365 	 * value
366 	 */
367 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
368 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
369 	MPTCP_SKB_CB(skb)->offset = offset;
370 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
371 
372 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
373 		/* in sequence */
374 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
375 		tail = skb_peek_tail(&sk->sk_receive_queue);
376 		if (tail && mptcp_try_coalesce(sk, tail, skb))
377 			return true;
378 
379 		mptcp_set_owner_r(skb, sk);
380 		__skb_queue_tail(&sk->sk_receive_queue, skb);
381 		return true;
382 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
383 		mptcp_data_queue_ofo(msk, skb);
384 		return false;
385 	}
386 
387 	/* old data, keep it simple and drop the whole pkt, sender
388 	 * will retransmit as needed, if needed.
389 	 */
390 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
391 drop:
392 	mptcp_drop(sk, skb);
393 	return false;
394 }
395 
396 static void mptcp_stop_timer(struct sock *sk)
397 {
398 	struct inet_connection_sock *icsk = inet_csk(sk);
399 
400 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
401 	mptcp_sk(sk)->timer_ival = 0;
402 }
403 
404 static void mptcp_close_wake_up(struct sock *sk)
405 {
406 	if (sock_flag(sk, SOCK_DEAD))
407 		return;
408 
409 	sk->sk_state_change(sk);
410 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
411 	    sk->sk_state == TCP_CLOSE)
412 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
413 	else
414 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
415 }
416 
417 static bool mptcp_pending_data_fin_ack(struct sock *sk)
418 {
419 	struct mptcp_sock *msk = mptcp_sk(sk);
420 
421 	return !__mptcp_check_fallback(msk) &&
422 	       ((1 << sk->sk_state) &
423 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
424 	       msk->write_seq == READ_ONCE(msk->snd_una);
425 }
426 
427 static void mptcp_check_data_fin_ack(struct sock *sk)
428 {
429 	struct mptcp_sock *msk = mptcp_sk(sk);
430 
431 	/* Look for an acknowledged DATA_FIN */
432 	if (mptcp_pending_data_fin_ack(sk)) {
433 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
434 
435 		switch (sk->sk_state) {
436 		case TCP_FIN_WAIT1:
437 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
438 			break;
439 		case TCP_CLOSING:
440 		case TCP_LAST_ACK:
441 			inet_sk_state_store(sk, TCP_CLOSE);
442 			break;
443 		}
444 
445 		mptcp_close_wake_up(sk);
446 	}
447 }
448 
449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
450 {
451 	struct mptcp_sock *msk = mptcp_sk(sk);
452 
453 	if (READ_ONCE(msk->rcv_data_fin) &&
454 	    ((1 << sk->sk_state) &
455 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
456 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
457 
458 		if (msk->ack_seq == rcv_data_fin_seq) {
459 			if (seq)
460 				*seq = rcv_data_fin_seq;
461 
462 			return true;
463 		}
464 	}
465 
466 	return false;
467 }
468 
469 static void mptcp_set_datafin_timeout(const struct sock *sk)
470 {
471 	struct inet_connection_sock *icsk = inet_csk(sk);
472 	u32 retransmits;
473 
474 	retransmits = min_t(u32, icsk->icsk_retransmits,
475 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
476 
477 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
478 }
479 
480 static void __mptcp_set_timeout(struct sock *sk, long tout)
481 {
482 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
483 }
484 
485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
486 {
487 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
488 
489 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
490 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
491 }
492 
493 static void mptcp_set_timeout(struct sock *sk)
494 {
495 	struct mptcp_subflow_context *subflow;
496 	long tout = 0;
497 
498 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
499 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
500 	__mptcp_set_timeout(sk, tout);
501 }
502 
503 static bool tcp_can_send_ack(const struct sock *ssk)
504 {
505 	return !((1 << inet_sk_state_load(ssk)) &
506 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
507 }
508 
509 void mptcp_subflow_send_ack(struct sock *ssk)
510 {
511 	bool slow;
512 
513 	slow = lock_sock_fast(ssk);
514 	if (tcp_can_send_ack(ssk))
515 		tcp_send_ack(ssk);
516 	unlock_sock_fast(ssk, slow);
517 }
518 
519 static void mptcp_send_ack(struct mptcp_sock *msk)
520 {
521 	struct mptcp_subflow_context *subflow;
522 
523 	mptcp_for_each_subflow(msk, subflow)
524 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
525 }
526 
527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
528 {
529 	bool slow;
530 
531 	slow = lock_sock_fast(ssk);
532 	if (tcp_can_send_ack(ssk))
533 		tcp_cleanup_rbuf(ssk, 1);
534 	unlock_sock_fast(ssk, slow);
535 }
536 
537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
538 {
539 	const struct inet_connection_sock *icsk = inet_csk(ssk);
540 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
541 	const struct tcp_sock *tp = tcp_sk(ssk);
542 
543 	return (ack_pending & ICSK_ACK_SCHED) &&
544 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
545 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
546 		 (rx_empty && ack_pending &
547 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
548 }
549 
550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
551 {
552 	int old_space = READ_ONCE(msk->old_wspace);
553 	struct mptcp_subflow_context *subflow;
554 	struct sock *sk = (struct sock *)msk;
555 	int space =  __mptcp_space(sk);
556 	bool cleanup, rx_empty;
557 
558 	cleanup = (space > 0) && (space >= (old_space << 1));
559 	rx_empty = !__mptcp_rmem(sk);
560 
561 	mptcp_for_each_subflow(msk, subflow) {
562 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
563 
564 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
565 			mptcp_subflow_cleanup_rbuf(ssk);
566 	}
567 }
568 
569 static bool mptcp_check_data_fin(struct sock *sk)
570 {
571 	struct mptcp_sock *msk = mptcp_sk(sk);
572 	u64 rcv_data_fin_seq;
573 	bool ret = false;
574 
575 	if (__mptcp_check_fallback(msk))
576 		return ret;
577 
578 	/* Need to ack a DATA_FIN received from a peer while this side
579 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
580 	 * msk->rcv_data_fin was set when parsing the incoming options
581 	 * at the subflow level and the msk lock was not held, so this
582 	 * is the first opportunity to act on the DATA_FIN and change
583 	 * the msk state.
584 	 *
585 	 * If we are caught up to the sequence number of the incoming
586 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
587 	 * not caught up, do nothing and let the recv code send DATA_ACK
588 	 * when catching up.
589 	 */
590 
591 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
592 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
593 		WRITE_ONCE(msk->rcv_data_fin, 0);
594 
595 		sk->sk_shutdown |= RCV_SHUTDOWN;
596 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
597 
598 		switch (sk->sk_state) {
599 		case TCP_ESTABLISHED:
600 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
601 			break;
602 		case TCP_FIN_WAIT1:
603 			inet_sk_state_store(sk, TCP_CLOSING);
604 			break;
605 		case TCP_FIN_WAIT2:
606 			inet_sk_state_store(sk, TCP_CLOSE);
607 			break;
608 		default:
609 			/* Other states not expected */
610 			WARN_ON_ONCE(1);
611 			break;
612 		}
613 
614 		ret = true;
615 		mptcp_send_ack(msk);
616 		mptcp_close_wake_up(sk);
617 	}
618 	return ret;
619 }
620 
621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
622 					   struct sock *ssk,
623 					   unsigned int *bytes)
624 {
625 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
626 	struct sock *sk = (struct sock *)msk;
627 	unsigned int moved = 0;
628 	bool more_data_avail;
629 	struct tcp_sock *tp;
630 	bool done = false;
631 	int sk_rbuf;
632 
633 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
634 
635 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
636 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
637 
638 		if (unlikely(ssk_rbuf > sk_rbuf)) {
639 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
640 			sk_rbuf = ssk_rbuf;
641 		}
642 	}
643 
644 	pr_debug("msk=%p ssk=%p", msk, ssk);
645 	tp = tcp_sk(ssk);
646 	do {
647 		u32 map_remaining, offset;
648 		u32 seq = tp->copied_seq;
649 		struct sk_buff *skb;
650 		bool fin;
651 
652 		/* try to move as much data as available */
653 		map_remaining = subflow->map_data_len -
654 				mptcp_subflow_get_map_offset(subflow);
655 
656 		skb = skb_peek(&ssk->sk_receive_queue);
657 		if (!skb) {
658 			/* if no data is found, a racing workqueue/recvmsg
659 			 * already processed the new data, stop here or we
660 			 * can enter an infinite loop
661 			 */
662 			if (!moved)
663 				done = true;
664 			break;
665 		}
666 
667 		if (__mptcp_check_fallback(msk)) {
668 			/* if we are running under the workqueue, TCP could have
669 			 * collapsed skbs between dummy map creation and now
670 			 * be sure to adjust the size
671 			 */
672 			map_remaining = skb->len;
673 			subflow->map_data_len = skb->len;
674 		}
675 
676 		offset = seq - TCP_SKB_CB(skb)->seq;
677 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
678 		if (fin) {
679 			done = true;
680 			seq++;
681 		}
682 
683 		if (offset < skb->len) {
684 			size_t len = skb->len - offset;
685 
686 			if (tp->urg_data)
687 				done = true;
688 
689 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
690 				moved += len;
691 			seq += len;
692 
693 			if (WARN_ON_ONCE(map_remaining < len))
694 				break;
695 		} else {
696 			WARN_ON_ONCE(!fin);
697 			sk_eat_skb(ssk, skb);
698 			done = true;
699 		}
700 
701 		WRITE_ONCE(tp->copied_seq, seq);
702 		more_data_avail = mptcp_subflow_data_available(ssk);
703 
704 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
705 			done = true;
706 			break;
707 		}
708 	} while (more_data_avail);
709 
710 	*bytes += moved;
711 	return done;
712 }
713 
714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
715 {
716 	struct sock *sk = (struct sock *)msk;
717 	struct sk_buff *skb, *tail;
718 	bool moved = false;
719 	struct rb_node *p;
720 	u64 end_seq;
721 
722 	p = rb_first(&msk->out_of_order_queue);
723 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
724 	while (p) {
725 		skb = rb_to_skb(p);
726 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
727 			break;
728 
729 		p = rb_next(p);
730 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
731 
732 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
733 				      msk->ack_seq))) {
734 			mptcp_drop(sk, skb);
735 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
736 			continue;
737 		}
738 
739 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
740 		tail = skb_peek_tail(&sk->sk_receive_queue);
741 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
742 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
743 
744 			/* skip overlapping data, if any */
745 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
746 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
747 				 delta);
748 			MPTCP_SKB_CB(skb)->offset += delta;
749 			MPTCP_SKB_CB(skb)->map_seq += delta;
750 			__skb_queue_tail(&sk->sk_receive_queue, skb);
751 		}
752 		msk->ack_seq = end_seq;
753 		moved = true;
754 	}
755 	return moved;
756 }
757 
758 /* In most cases we will be able to lock the mptcp socket.  If its already
759  * owned, we need to defer to the work queue to avoid ABBA deadlock.
760  */
761 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
762 {
763 	struct sock *sk = (struct sock *)msk;
764 	unsigned int moved = 0;
765 
766 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
767 	__mptcp_ofo_queue(msk);
768 	if (unlikely(ssk->sk_err)) {
769 		if (!sock_owned_by_user(sk))
770 			__mptcp_error_report(sk);
771 		else
772 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
773 	}
774 
775 	/* If the moves have caught up with the DATA_FIN sequence number
776 	 * it's time to ack the DATA_FIN and change socket state, but
777 	 * this is not a good place to change state. Let the workqueue
778 	 * do it.
779 	 */
780 	if (mptcp_pending_data_fin(sk, NULL))
781 		mptcp_schedule_work(sk);
782 	return moved > 0;
783 }
784 
785 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
786 {
787 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
788 	struct mptcp_sock *msk = mptcp_sk(sk);
789 	int sk_rbuf, ssk_rbuf;
790 
791 	/* The peer can send data while we are shutting down this
792 	 * subflow at msk destruction time, but we must avoid enqueuing
793 	 * more data to the msk receive queue
794 	 */
795 	if (unlikely(subflow->disposable))
796 		return;
797 
798 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
799 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
800 	if (unlikely(ssk_rbuf > sk_rbuf))
801 		sk_rbuf = ssk_rbuf;
802 
803 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
804 	if (__mptcp_rmem(sk) > sk_rbuf) {
805 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
806 		return;
807 	}
808 
809 	/* Wake-up the reader only for in-sequence data */
810 	mptcp_data_lock(sk);
811 	if (move_skbs_to_msk(msk, ssk))
812 		sk->sk_data_ready(sk);
813 
814 	mptcp_data_unlock(sk);
815 }
816 
817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
818 {
819 	struct sock *sk = (struct sock *)msk;
820 
821 	if (sk->sk_state != TCP_ESTABLISHED)
822 		return false;
823 
824 	/* attach to msk socket only after we are sure we will deal with it
825 	 * at close time
826 	 */
827 	if (sk->sk_socket && !ssk->sk_socket)
828 		mptcp_sock_graft(ssk, sk->sk_socket);
829 
830 	mptcp_propagate_sndbuf((struct sock *)msk, ssk);
831 	mptcp_sockopt_sync_locked(msk, ssk);
832 	return true;
833 }
834 
835 static void __mptcp_flush_join_list(struct sock *sk)
836 {
837 	struct mptcp_subflow_context *tmp, *subflow;
838 	struct mptcp_sock *msk = mptcp_sk(sk);
839 
840 	list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
841 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
842 		bool slow = lock_sock_fast(ssk);
843 
844 		list_move_tail(&subflow->node, &msk->conn_list);
845 		if (!__mptcp_finish_join(msk, ssk))
846 			mptcp_subflow_reset(ssk);
847 		unlock_sock_fast(ssk, slow);
848 	}
849 }
850 
851 static bool mptcp_timer_pending(struct sock *sk)
852 {
853 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
854 }
855 
856 static void mptcp_reset_timer(struct sock *sk)
857 {
858 	struct inet_connection_sock *icsk = inet_csk(sk);
859 	unsigned long tout;
860 
861 	/* prevent rescheduling on close */
862 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
863 		return;
864 
865 	tout = mptcp_sk(sk)->timer_ival;
866 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
867 }
868 
869 bool mptcp_schedule_work(struct sock *sk)
870 {
871 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
872 	    schedule_work(&mptcp_sk(sk)->work)) {
873 		/* each subflow already holds a reference to the sk, and the
874 		 * workqueue is invoked by a subflow, so sk can't go away here.
875 		 */
876 		sock_hold(sk);
877 		return true;
878 	}
879 	return false;
880 }
881 
882 void mptcp_subflow_eof(struct sock *sk)
883 {
884 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
885 		mptcp_schedule_work(sk);
886 }
887 
888 static void mptcp_check_for_eof(struct mptcp_sock *msk)
889 {
890 	struct mptcp_subflow_context *subflow;
891 	struct sock *sk = (struct sock *)msk;
892 	int receivers = 0;
893 
894 	mptcp_for_each_subflow(msk, subflow)
895 		receivers += !subflow->rx_eof;
896 	if (receivers)
897 		return;
898 
899 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
900 		/* hopefully temporary hack: propagate shutdown status
901 		 * to msk, when all subflows agree on it
902 		 */
903 		sk->sk_shutdown |= RCV_SHUTDOWN;
904 
905 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
906 		sk->sk_data_ready(sk);
907 	}
908 
909 	switch (sk->sk_state) {
910 	case TCP_ESTABLISHED:
911 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
912 		break;
913 	case TCP_FIN_WAIT1:
914 		inet_sk_state_store(sk, TCP_CLOSING);
915 		break;
916 	case TCP_FIN_WAIT2:
917 		inet_sk_state_store(sk, TCP_CLOSE);
918 		break;
919 	default:
920 		return;
921 	}
922 	mptcp_close_wake_up(sk);
923 }
924 
925 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
926 {
927 	struct mptcp_subflow_context *subflow;
928 	struct sock *sk = (struct sock *)msk;
929 
930 	sock_owned_by_me(sk);
931 
932 	mptcp_for_each_subflow(msk, subflow) {
933 		if (READ_ONCE(subflow->data_avail))
934 			return mptcp_subflow_tcp_sock(subflow);
935 	}
936 
937 	return NULL;
938 }
939 
940 static bool mptcp_skb_can_collapse_to(u64 write_seq,
941 				      const struct sk_buff *skb,
942 				      const struct mptcp_ext *mpext)
943 {
944 	if (!tcp_skb_can_collapse_to(skb))
945 		return false;
946 
947 	/* can collapse only if MPTCP level sequence is in order and this
948 	 * mapping has not been xmitted yet
949 	 */
950 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
951 	       !mpext->frozen;
952 }
953 
954 /* we can append data to the given data frag if:
955  * - there is space available in the backing page_frag
956  * - the data frag tail matches the current page_frag free offset
957  * - the data frag end sequence number matches the current write seq
958  */
959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
960 				       const struct page_frag *pfrag,
961 				       const struct mptcp_data_frag *df)
962 {
963 	return df && pfrag->page == df->page &&
964 		pfrag->size - pfrag->offset > 0 &&
965 		pfrag->offset == (df->offset + df->data_len) &&
966 		df->data_seq + df->data_len == msk->write_seq;
967 }
968 
969 static void __mptcp_mem_reclaim_partial(struct sock *sk)
970 {
971 	int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
972 
973 	lockdep_assert_held_once(&sk->sk_lock.slock);
974 
975 	if (reclaimable > SK_MEM_QUANTUM)
976 		__mptcp_rmem_reclaim(sk, reclaimable - 1);
977 
978 	sk_mem_reclaim_partial(sk);
979 }
980 
981 static void mptcp_mem_reclaim_partial(struct sock *sk)
982 {
983 	mptcp_data_lock(sk);
984 	__mptcp_mem_reclaim_partial(sk);
985 	mptcp_data_unlock(sk);
986 }
987 
988 static void dfrag_uncharge(struct sock *sk, int len)
989 {
990 	sk_mem_uncharge(sk, len);
991 	sk_wmem_queued_add(sk, -len);
992 }
993 
994 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
995 {
996 	int len = dfrag->data_len + dfrag->overhead;
997 
998 	list_del(&dfrag->list);
999 	dfrag_uncharge(sk, len);
1000 	put_page(dfrag->page);
1001 }
1002 
1003 static void __mptcp_clean_una(struct sock *sk)
1004 {
1005 	struct mptcp_sock *msk = mptcp_sk(sk);
1006 	struct mptcp_data_frag *dtmp, *dfrag;
1007 	bool cleaned = false;
1008 	u64 snd_una;
1009 
1010 	/* on fallback we just need to ignore snd_una, as this is really
1011 	 * plain TCP
1012 	 */
1013 	if (__mptcp_check_fallback(msk))
1014 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1015 
1016 	snd_una = msk->snd_una;
1017 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1018 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1019 			break;
1020 
1021 		if (unlikely(dfrag == msk->first_pending)) {
1022 			/* in recovery mode can see ack after the current snd head */
1023 			if (WARN_ON_ONCE(!msk->recovery))
1024 				break;
1025 
1026 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1027 		}
1028 
1029 		dfrag_clear(sk, dfrag);
1030 		cleaned = true;
1031 	}
1032 
1033 	dfrag = mptcp_rtx_head(sk);
1034 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1035 		u64 delta = snd_una - dfrag->data_seq;
1036 
1037 		/* prevent wrap around in recovery mode */
1038 		if (unlikely(delta > dfrag->already_sent)) {
1039 			if (WARN_ON_ONCE(!msk->recovery))
1040 				goto out;
1041 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1042 				goto out;
1043 			dfrag->already_sent += delta - dfrag->already_sent;
1044 		}
1045 
1046 		dfrag->data_seq += delta;
1047 		dfrag->offset += delta;
1048 		dfrag->data_len -= delta;
1049 		dfrag->already_sent -= delta;
1050 
1051 		dfrag_uncharge(sk, delta);
1052 		cleaned = true;
1053 	}
1054 
1055 	/* all retransmitted data acked, recovery completed */
1056 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1057 		msk->recovery = false;
1058 
1059 out:
1060 	if (cleaned && tcp_under_memory_pressure(sk))
1061 		__mptcp_mem_reclaim_partial(sk);
1062 
1063 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1064 	    snd_una == READ_ONCE(msk->write_seq)) {
1065 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1066 			mptcp_stop_timer(sk);
1067 	} else {
1068 		mptcp_reset_timer(sk);
1069 	}
1070 }
1071 
1072 static void __mptcp_clean_una_wakeup(struct sock *sk)
1073 {
1074 	lockdep_assert_held_once(&sk->sk_lock.slock);
1075 
1076 	__mptcp_clean_una(sk);
1077 	mptcp_write_space(sk);
1078 }
1079 
1080 static void mptcp_clean_una_wakeup(struct sock *sk)
1081 {
1082 	mptcp_data_lock(sk);
1083 	__mptcp_clean_una_wakeup(sk);
1084 	mptcp_data_unlock(sk);
1085 }
1086 
1087 static void mptcp_enter_memory_pressure(struct sock *sk)
1088 {
1089 	struct mptcp_subflow_context *subflow;
1090 	struct mptcp_sock *msk = mptcp_sk(sk);
1091 	bool first = true;
1092 
1093 	sk_stream_moderate_sndbuf(sk);
1094 	mptcp_for_each_subflow(msk, subflow) {
1095 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1096 
1097 		if (first)
1098 			tcp_enter_memory_pressure(ssk);
1099 		sk_stream_moderate_sndbuf(ssk);
1100 		first = false;
1101 	}
1102 }
1103 
1104 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1105  * data
1106  */
1107 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1108 {
1109 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1110 					pfrag, sk->sk_allocation)))
1111 		return true;
1112 
1113 	mptcp_enter_memory_pressure(sk);
1114 	return false;
1115 }
1116 
1117 static struct mptcp_data_frag *
1118 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1119 		      int orig_offset)
1120 {
1121 	int offset = ALIGN(orig_offset, sizeof(long));
1122 	struct mptcp_data_frag *dfrag;
1123 
1124 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1125 	dfrag->data_len = 0;
1126 	dfrag->data_seq = msk->write_seq;
1127 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1128 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1129 	dfrag->already_sent = 0;
1130 	dfrag->page = pfrag->page;
1131 
1132 	return dfrag;
1133 }
1134 
1135 struct mptcp_sendmsg_info {
1136 	int mss_now;
1137 	int size_goal;
1138 	u16 limit;
1139 	u16 sent;
1140 	unsigned int flags;
1141 	bool data_lock_held;
1142 };
1143 
1144 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1145 				    u64 data_seq, int avail_size)
1146 {
1147 	u64 window_end = mptcp_wnd_end(msk);
1148 	u64 mptcp_snd_wnd;
1149 
1150 	if (__mptcp_check_fallback(msk))
1151 		return avail_size;
1152 
1153 	mptcp_snd_wnd = window_end - data_seq;
1154 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1155 
1156 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1157 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1158 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1159 	}
1160 
1161 	return avail_size;
1162 }
1163 
1164 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1165 {
1166 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1167 
1168 	if (!mpext)
1169 		return false;
1170 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1171 	return true;
1172 }
1173 
1174 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1175 {
1176 	struct sk_buff *skb;
1177 
1178 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1179 	if (likely(skb)) {
1180 		if (likely(__mptcp_add_ext(skb, gfp))) {
1181 			skb_reserve(skb, MAX_TCP_HEADER);
1182 			skb->ip_summed = CHECKSUM_PARTIAL;
1183 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1184 			return skb;
1185 		}
1186 		__kfree_skb(skb);
1187 	} else {
1188 		mptcp_enter_memory_pressure(sk);
1189 	}
1190 	return NULL;
1191 }
1192 
1193 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1194 {
1195 	struct sk_buff *skb;
1196 
1197 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1198 	if (!skb)
1199 		return NULL;
1200 
1201 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1202 		tcp_skb_entail(ssk, skb);
1203 		return skb;
1204 	}
1205 	tcp_skb_tsorted_anchor_cleanup(skb);
1206 	kfree_skb(skb);
1207 	return NULL;
1208 }
1209 
1210 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1211 {
1212 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1213 
1214 	if (unlikely(tcp_under_memory_pressure(sk))) {
1215 		if (data_lock_held)
1216 			__mptcp_mem_reclaim_partial(sk);
1217 		else
1218 			mptcp_mem_reclaim_partial(sk);
1219 	}
1220 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1221 }
1222 
1223 /* note: this always recompute the csum on the whole skb, even
1224  * if we just appended a single frag. More status info needed
1225  */
1226 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1227 {
1228 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1229 	__wsum csum = ~csum_unfold(mpext->csum);
1230 	int offset = skb->len - added;
1231 
1232 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1233 }
1234 
1235 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1236 				      struct sock *ssk,
1237 				      struct mptcp_ext *mpext)
1238 {
1239 	if (!mpext)
1240 		return;
1241 
1242 	mpext->infinite_map = 1;
1243 	mpext->data_len = 0;
1244 
1245 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1246 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1247 	pr_fallback(msk);
1248 	__mptcp_do_fallback(msk);
1249 }
1250 
1251 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1252 			      struct mptcp_data_frag *dfrag,
1253 			      struct mptcp_sendmsg_info *info)
1254 {
1255 	u64 data_seq = dfrag->data_seq + info->sent;
1256 	int offset = dfrag->offset + info->sent;
1257 	struct mptcp_sock *msk = mptcp_sk(sk);
1258 	bool zero_window_probe = false;
1259 	struct mptcp_ext *mpext = NULL;
1260 	bool can_coalesce = false;
1261 	bool reuse_skb = true;
1262 	struct sk_buff *skb;
1263 	size_t copy;
1264 	int i;
1265 
1266 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1267 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1268 
1269 	if (WARN_ON_ONCE(info->sent > info->limit ||
1270 			 info->limit > dfrag->data_len))
1271 		return 0;
1272 
1273 	/* compute send limit */
1274 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1275 	copy = info->size_goal;
1276 
1277 	skb = tcp_write_queue_tail(ssk);
1278 	if (skb && copy > skb->len) {
1279 		/* Limit the write to the size available in the
1280 		 * current skb, if any, so that we create at most a new skb.
1281 		 * Explicitly tells TCP internals to avoid collapsing on later
1282 		 * queue management operation, to avoid breaking the ext <->
1283 		 * SSN association set here
1284 		 */
1285 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1286 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1287 			TCP_SKB_CB(skb)->eor = 1;
1288 			goto alloc_skb;
1289 		}
1290 
1291 		i = skb_shinfo(skb)->nr_frags;
1292 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1293 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1294 			tcp_mark_push(tcp_sk(ssk), skb);
1295 			goto alloc_skb;
1296 		}
1297 
1298 		copy -= skb->len;
1299 	} else {
1300 alloc_skb:
1301 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1302 		if (!skb)
1303 			return -ENOMEM;
1304 
1305 		i = skb_shinfo(skb)->nr_frags;
1306 		reuse_skb = false;
1307 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1308 	}
1309 
1310 	/* Zero window and all data acked? Probe. */
1311 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1312 	if (copy == 0) {
1313 		u64 snd_una = READ_ONCE(msk->snd_una);
1314 
1315 		if (snd_una != msk->snd_nxt) {
1316 			tcp_remove_empty_skb(ssk);
1317 			return 0;
1318 		}
1319 
1320 		zero_window_probe = true;
1321 		data_seq = snd_una - 1;
1322 		copy = 1;
1323 
1324 		/* all mptcp-level data is acked, no skbs should be present into the
1325 		 * ssk write queue
1326 		 */
1327 		WARN_ON_ONCE(reuse_skb);
1328 	}
1329 
1330 	copy = min_t(size_t, copy, info->limit - info->sent);
1331 	if (!sk_wmem_schedule(ssk, copy)) {
1332 		tcp_remove_empty_skb(ssk);
1333 		return -ENOMEM;
1334 	}
1335 
1336 	if (can_coalesce) {
1337 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1338 	} else {
1339 		get_page(dfrag->page);
1340 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1341 	}
1342 
1343 	skb->len += copy;
1344 	skb->data_len += copy;
1345 	skb->truesize += copy;
1346 	sk_wmem_queued_add(ssk, copy);
1347 	sk_mem_charge(ssk, copy);
1348 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1349 	TCP_SKB_CB(skb)->end_seq += copy;
1350 	tcp_skb_pcount_set(skb, 0);
1351 
1352 	/* on skb reuse we just need to update the DSS len */
1353 	if (reuse_skb) {
1354 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1355 		mpext->data_len += copy;
1356 		WARN_ON_ONCE(zero_window_probe);
1357 		goto out;
1358 	}
1359 
1360 	memset(mpext, 0, sizeof(*mpext));
1361 	mpext->data_seq = data_seq;
1362 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1363 	mpext->data_len = copy;
1364 	mpext->use_map = 1;
1365 	mpext->dsn64 = 1;
1366 
1367 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1368 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1369 		 mpext->dsn64);
1370 
1371 	if (zero_window_probe) {
1372 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1373 		mpext->frozen = 1;
1374 		if (READ_ONCE(msk->csum_enabled))
1375 			mptcp_update_data_checksum(skb, copy);
1376 		tcp_push_pending_frames(ssk);
1377 		return 0;
1378 	}
1379 out:
1380 	if (READ_ONCE(msk->csum_enabled))
1381 		mptcp_update_data_checksum(skb, copy);
1382 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1383 		mptcp_update_infinite_map(msk, ssk, mpext);
1384 	trace_mptcp_sendmsg_frag(mpext);
1385 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1386 	return copy;
1387 }
1388 
1389 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1390 					 sizeof(struct tcphdr) - \
1391 					 MAX_TCP_OPTION_SPACE - \
1392 					 sizeof(struct ipv6hdr) - \
1393 					 sizeof(struct frag_hdr))
1394 
1395 struct subflow_send_info {
1396 	struct sock *ssk;
1397 	u64 linger_time;
1398 };
1399 
1400 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1401 {
1402 	if (!subflow->stale)
1403 		return;
1404 
1405 	subflow->stale = 0;
1406 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1407 }
1408 
1409 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1410 {
1411 	if (unlikely(subflow->stale)) {
1412 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1413 
1414 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1415 			return false;
1416 
1417 		mptcp_subflow_set_active(subflow);
1418 	}
1419 	return __mptcp_subflow_active(subflow);
1420 }
1421 
1422 #define SSK_MODE_ACTIVE	0
1423 #define SSK_MODE_BACKUP	1
1424 #define SSK_MODE_MAX	2
1425 
1426 /* implement the mptcp packet scheduler;
1427  * returns the subflow that will transmit the next DSS
1428  * additionally updates the rtx timeout
1429  */
1430 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1431 {
1432 	struct subflow_send_info send_info[SSK_MODE_MAX];
1433 	struct mptcp_subflow_context *subflow;
1434 	struct sock *sk = (struct sock *)msk;
1435 	u32 pace, burst, wmem;
1436 	int i, nr_active = 0;
1437 	struct sock *ssk;
1438 	u64 linger_time;
1439 	long tout = 0;
1440 
1441 	sock_owned_by_me(sk);
1442 
1443 	if (__mptcp_check_fallback(msk)) {
1444 		if (!msk->first)
1445 			return NULL;
1446 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1447 	}
1448 
1449 	/* re-use last subflow, if the burst allow that */
1450 	if (msk->last_snd && msk->snd_burst > 0 &&
1451 	    sk_stream_memory_free(msk->last_snd) &&
1452 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1453 		mptcp_set_timeout(sk);
1454 		return msk->last_snd;
1455 	}
1456 
1457 	/* pick the subflow with the lower wmem/wspace ratio */
1458 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1459 		send_info[i].ssk = NULL;
1460 		send_info[i].linger_time = -1;
1461 	}
1462 
1463 	mptcp_for_each_subflow(msk, subflow) {
1464 		trace_mptcp_subflow_get_send(subflow);
1465 		ssk =  mptcp_subflow_tcp_sock(subflow);
1466 		if (!mptcp_subflow_active(subflow))
1467 			continue;
1468 
1469 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1470 		nr_active += !subflow->backup;
1471 		pace = subflow->avg_pacing_rate;
1472 		if (unlikely(!pace)) {
1473 			/* init pacing rate from socket */
1474 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1475 			pace = subflow->avg_pacing_rate;
1476 			if (!pace)
1477 				continue;
1478 		}
1479 
1480 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1481 		if (linger_time < send_info[subflow->backup].linger_time) {
1482 			send_info[subflow->backup].ssk = ssk;
1483 			send_info[subflow->backup].linger_time = linger_time;
1484 		}
1485 	}
1486 	__mptcp_set_timeout(sk, tout);
1487 
1488 	/* pick the best backup if no other subflow is active */
1489 	if (!nr_active)
1490 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1491 
1492 	/* According to the blest algorithm, to avoid HoL blocking for the
1493 	 * faster flow, we need to:
1494 	 * - estimate the faster flow linger time
1495 	 * - use the above to estimate the amount of byte transferred
1496 	 *   by the faster flow
1497 	 * - check that the amount of queued data is greter than the above,
1498 	 *   otherwise do not use the picked, slower, subflow
1499 	 * We select the subflow with the shorter estimated time to flush
1500 	 * the queued mem, which basically ensure the above. We just need
1501 	 * to check that subflow has a non empty cwin.
1502 	 */
1503 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1504 	if (!ssk || !sk_stream_memory_free(ssk))
1505 		return NULL;
1506 
1507 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1508 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1509 	if (!burst) {
1510 		msk->last_snd = NULL;
1511 		return ssk;
1512 	}
1513 
1514 	subflow = mptcp_subflow_ctx(ssk);
1515 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1516 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1517 					   burst + wmem);
1518 	msk->last_snd = ssk;
1519 	msk->snd_burst = burst;
1520 	return ssk;
1521 }
1522 
1523 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1524 {
1525 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1526 	release_sock(ssk);
1527 }
1528 
1529 static void mptcp_update_post_push(struct mptcp_sock *msk,
1530 				   struct mptcp_data_frag *dfrag,
1531 				   u32 sent)
1532 {
1533 	u64 snd_nxt_new = dfrag->data_seq;
1534 
1535 	dfrag->already_sent += sent;
1536 
1537 	msk->snd_burst -= sent;
1538 
1539 	snd_nxt_new += dfrag->already_sent;
1540 
1541 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1542 	 * is recovering after a failover. In that event, this re-sends
1543 	 * old segments.
1544 	 *
1545 	 * Thus compute snd_nxt_new candidate based on
1546 	 * the dfrag->data_seq that was sent and the data
1547 	 * that has been handed to the subflow for transmission
1548 	 * and skip update in case it was old dfrag.
1549 	 */
1550 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1551 		msk->snd_nxt = snd_nxt_new;
1552 }
1553 
1554 void mptcp_check_and_set_pending(struct sock *sk)
1555 {
1556 	if (mptcp_send_head(sk))
1557 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1558 }
1559 
1560 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1561 {
1562 	struct sock *prev_ssk = NULL, *ssk = NULL;
1563 	struct mptcp_sock *msk = mptcp_sk(sk);
1564 	struct mptcp_sendmsg_info info = {
1565 				.flags = flags,
1566 	};
1567 	struct mptcp_data_frag *dfrag;
1568 	int len, copied = 0;
1569 
1570 	while ((dfrag = mptcp_send_head(sk))) {
1571 		info.sent = dfrag->already_sent;
1572 		info.limit = dfrag->data_len;
1573 		len = dfrag->data_len - dfrag->already_sent;
1574 		while (len > 0) {
1575 			int ret = 0;
1576 
1577 			prev_ssk = ssk;
1578 			ssk = mptcp_subflow_get_send(msk);
1579 
1580 			/* First check. If the ssk has changed since
1581 			 * the last round, release prev_ssk
1582 			 */
1583 			if (ssk != prev_ssk && prev_ssk)
1584 				mptcp_push_release(prev_ssk, &info);
1585 			if (!ssk)
1586 				goto out;
1587 
1588 			/* Need to lock the new subflow only if different
1589 			 * from the previous one, otherwise we are still
1590 			 * helding the relevant lock
1591 			 */
1592 			if (ssk != prev_ssk)
1593 				lock_sock(ssk);
1594 
1595 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1596 			if (ret <= 0) {
1597 				mptcp_push_release(ssk, &info);
1598 				goto out;
1599 			}
1600 
1601 			info.sent += ret;
1602 			copied += ret;
1603 			len -= ret;
1604 
1605 			mptcp_update_post_push(msk, dfrag, ret);
1606 		}
1607 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1608 	}
1609 
1610 	/* at this point we held the socket lock for the last subflow we used */
1611 	if (ssk)
1612 		mptcp_push_release(ssk, &info);
1613 
1614 out:
1615 	/* ensure the rtx timer is running */
1616 	mptcp_data_lock(sk);
1617 	if (!mptcp_timer_pending(sk))
1618 		mptcp_reset_timer(sk);
1619 	mptcp_data_unlock(sk);
1620 	if (copied)
1621 		__mptcp_check_send_data_fin(sk);
1622 }
1623 
1624 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1625 {
1626 	struct mptcp_sock *msk = mptcp_sk(sk);
1627 	struct mptcp_sendmsg_info info = {
1628 		.data_lock_held = true,
1629 	};
1630 	struct mptcp_data_frag *dfrag;
1631 	struct sock *xmit_ssk;
1632 	int len, copied = 0;
1633 	bool first = true;
1634 
1635 	info.flags = 0;
1636 	while ((dfrag = mptcp_send_head(sk))) {
1637 		info.sent = dfrag->already_sent;
1638 		info.limit = dfrag->data_len;
1639 		len = dfrag->data_len - dfrag->already_sent;
1640 		while (len > 0) {
1641 			int ret = 0;
1642 
1643 			/* the caller already invoked the packet scheduler,
1644 			 * check for a different subflow usage only after
1645 			 * spooling the first chunk of data
1646 			 */
1647 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1648 			if (!xmit_ssk)
1649 				goto out;
1650 			if (xmit_ssk != ssk) {
1651 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1652 						       MPTCP_DELEGATE_SEND);
1653 				goto out;
1654 			}
1655 
1656 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1657 			if (ret <= 0)
1658 				goto out;
1659 
1660 			info.sent += ret;
1661 			copied += ret;
1662 			len -= ret;
1663 			first = false;
1664 
1665 			mptcp_update_post_push(msk, dfrag, ret);
1666 		}
1667 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1668 	}
1669 
1670 out:
1671 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1672 	 * not going to flush it via release_sock()
1673 	 */
1674 	if (copied) {
1675 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1676 			 info.size_goal);
1677 		if (!mptcp_timer_pending(sk))
1678 			mptcp_reset_timer(sk);
1679 
1680 		if (msk->snd_data_fin_enable &&
1681 		    msk->snd_nxt + 1 == msk->write_seq)
1682 			mptcp_schedule_work(sk);
1683 	}
1684 }
1685 
1686 static void mptcp_set_nospace(struct sock *sk)
1687 {
1688 	/* enable autotune */
1689 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1690 
1691 	/* will be cleared on avail space */
1692 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1693 }
1694 
1695 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1696 {
1697 	struct mptcp_sock *msk = mptcp_sk(sk);
1698 	struct page_frag *pfrag;
1699 	size_t copied = 0;
1700 	int ret = 0;
1701 	long timeo;
1702 
1703 	/* we don't support FASTOPEN yet */
1704 	if (msg->msg_flags & MSG_FASTOPEN)
1705 		return -EOPNOTSUPP;
1706 
1707 	/* silently ignore everything else */
1708 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1709 
1710 	lock_sock(sk);
1711 
1712 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1713 
1714 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1715 		ret = sk_stream_wait_connect(sk, &timeo);
1716 		if (ret)
1717 			goto out;
1718 	}
1719 
1720 	pfrag = sk_page_frag(sk);
1721 
1722 	while (msg_data_left(msg)) {
1723 		int total_ts, frag_truesize = 0;
1724 		struct mptcp_data_frag *dfrag;
1725 		bool dfrag_collapsed;
1726 		size_t psize, offset;
1727 
1728 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1729 			ret = -EPIPE;
1730 			goto out;
1731 		}
1732 
1733 		/* reuse tail pfrag, if possible, or carve a new one from the
1734 		 * page allocator
1735 		 */
1736 		dfrag = mptcp_pending_tail(sk);
1737 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1738 		if (!dfrag_collapsed) {
1739 			if (!sk_stream_memory_free(sk))
1740 				goto wait_for_memory;
1741 
1742 			if (!mptcp_page_frag_refill(sk, pfrag))
1743 				goto wait_for_memory;
1744 
1745 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1746 			frag_truesize = dfrag->overhead;
1747 		}
1748 
1749 		/* we do not bound vs wspace, to allow a single packet.
1750 		 * memory accounting will prevent execessive memory usage
1751 		 * anyway
1752 		 */
1753 		offset = dfrag->offset + dfrag->data_len;
1754 		psize = pfrag->size - offset;
1755 		psize = min_t(size_t, psize, msg_data_left(msg));
1756 		total_ts = psize + frag_truesize;
1757 
1758 		if (!sk_wmem_schedule(sk, total_ts))
1759 			goto wait_for_memory;
1760 
1761 		if (copy_page_from_iter(dfrag->page, offset, psize,
1762 					&msg->msg_iter) != psize) {
1763 			ret = -EFAULT;
1764 			goto out;
1765 		}
1766 
1767 		/* data successfully copied into the write queue */
1768 		sk->sk_forward_alloc -= total_ts;
1769 		copied += psize;
1770 		dfrag->data_len += psize;
1771 		frag_truesize += psize;
1772 		pfrag->offset += frag_truesize;
1773 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1774 
1775 		/* charge data on mptcp pending queue to the msk socket
1776 		 * Note: we charge such data both to sk and ssk
1777 		 */
1778 		sk_wmem_queued_add(sk, frag_truesize);
1779 		if (!dfrag_collapsed) {
1780 			get_page(dfrag->page);
1781 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1782 			if (!msk->first_pending)
1783 				WRITE_ONCE(msk->first_pending, dfrag);
1784 		}
1785 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1786 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1787 			 !dfrag_collapsed);
1788 
1789 		continue;
1790 
1791 wait_for_memory:
1792 		mptcp_set_nospace(sk);
1793 		__mptcp_push_pending(sk, msg->msg_flags);
1794 		ret = sk_stream_wait_memory(sk, &timeo);
1795 		if (ret)
1796 			goto out;
1797 	}
1798 
1799 	if (copied)
1800 		__mptcp_push_pending(sk, msg->msg_flags);
1801 
1802 out:
1803 	release_sock(sk);
1804 	return copied ? : ret;
1805 }
1806 
1807 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1808 				struct msghdr *msg,
1809 				size_t len, int flags,
1810 				struct scm_timestamping_internal *tss,
1811 				int *cmsg_flags)
1812 {
1813 	struct sk_buff *skb, *tmp;
1814 	int copied = 0;
1815 
1816 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1817 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1818 		u32 data_len = skb->len - offset;
1819 		u32 count = min_t(size_t, len - copied, data_len);
1820 		int err;
1821 
1822 		if (!(flags & MSG_TRUNC)) {
1823 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1824 			if (unlikely(err < 0)) {
1825 				if (!copied)
1826 					return err;
1827 				break;
1828 			}
1829 		}
1830 
1831 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1832 			tcp_update_recv_tstamps(skb, tss);
1833 			*cmsg_flags |= MPTCP_CMSG_TS;
1834 		}
1835 
1836 		copied += count;
1837 
1838 		if (count < data_len) {
1839 			if (!(flags & MSG_PEEK)) {
1840 				MPTCP_SKB_CB(skb)->offset += count;
1841 				MPTCP_SKB_CB(skb)->map_seq += count;
1842 			}
1843 			break;
1844 		}
1845 
1846 		if (!(flags & MSG_PEEK)) {
1847 			/* we will bulk release the skb memory later */
1848 			skb->destructor = NULL;
1849 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1850 			__skb_unlink(skb, &msk->receive_queue);
1851 			__kfree_skb(skb);
1852 		}
1853 
1854 		if (copied >= len)
1855 			break;
1856 	}
1857 
1858 	return copied;
1859 }
1860 
1861 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1862  *
1863  * Only difference: Use highest rtt estimate of the subflows in use.
1864  */
1865 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1866 {
1867 	struct mptcp_subflow_context *subflow;
1868 	struct sock *sk = (struct sock *)msk;
1869 	u32 time, advmss = 1;
1870 	u64 rtt_us, mstamp;
1871 
1872 	sock_owned_by_me(sk);
1873 
1874 	if (copied <= 0)
1875 		return;
1876 
1877 	msk->rcvq_space.copied += copied;
1878 
1879 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1880 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1881 
1882 	rtt_us = msk->rcvq_space.rtt_us;
1883 	if (rtt_us && time < (rtt_us >> 3))
1884 		return;
1885 
1886 	rtt_us = 0;
1887 	mptcp_for_each_subflow(msk, subflow) {
1888 		const struct tcp_sock *tp;
1889 		u64 sf_rtt_us;
1890 		u32 sf_advmss;
1891 
1892 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1893 
1894 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1895 		sf_advmss = READ_ONCE(tp->advmss);
1896 
1897 		rtt_us = max(sf_rtt_us, rtt_us);
1898 		advmss = max(sf_advmss, advmss);
1899 	}
1900 
1901 	msk->rcvq_space.rtt_us = rtt_us;
1902 	if (time < (rtt_us >> 3) || rtt_us == 0)
1903 		return;
1904 
1905 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1906 		goto new_measure;
1907 
1908 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1909 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1910 		int rcvmem, rcvbuf;
1911 		u64 rcvwin, grow;
1912 
1913 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1914 
1915 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1916 
1917 		do_div(grow, msk->rcvq_space.space);
1918 		rcvwin += (grow << 1);
1919 
1920 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1921 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1922 			rcvmem += 128;
1923 
1924 		do_div(rcvwin, advmss);
1925 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1926 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1927 
1928 		if (rcvbuf > sk->sk_rcvbuf) {
1929 			u32 window_clamp;
1930 
1931 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1932 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1933 
1934 			/* Make subflows follow along.  If we do not do this, we
1935 			 * get drops at subflow level if skbs can't be moved to
1936 			 * the mptcp rx queue fast enough (announced rcv_win can
1937 			 * exceed ssk->sk_rcvbuf).
1938 			 */
1939 			mptcp_for_each_subflow(msk, subflow) {
1940 				struct sock *ssk;
1941 				bool slow;
1942 
1943 				ssk = mptcp_subflow_tcp_sock(subflow);
1944 				slow = lock_sock_fast(ssk);
1945 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1946 				tcp_sk(ssk)->window_clamp = window_clamp;
1947 				tcp_cleanup_rbuf(ssk, 1);
1948 				unlock_sock_fast(ssk, slow);
1949 			}
1950 		}
1951 	}
1952 
1953 	msk->rcvq_space.space = msk->rcvq_space.copied;
1954 new_measure:
1955 	msk->rcvq_space.copied = 0;
1956 	msk->rcvq_space.time = mstamp;
1957 }
1958 
1959 static void __mptcp_update_rmem(struct sock *sk)
1960 {
1961 	struct mptcp_sock *msk = mptcp_sk(sk);
1962 
1963 	if (!msk->rmem_released)
1964 		return;
1965 
1966 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1967 	mptcp_rmem_uncharge(sk, msk->rmem_released);
1968 	WRITE_ONCE(msk->rmem_released, 0);
1969 }
1970 
1971 static void __mptcp_splice_receive_queue(struct sock *sk)
1972 {
1973 	struct mptcp_sock *msk = mptcp_sk(sk);
1974 
1975 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1976 }
1977 
1978 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1979 {
1980 	struct sock *sk = (struct sock *)msk;
1981 	unsigned int moved = 0;
1982 	bool ret, done;
1983 
1984 	do {
1985 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1986 		bool slowpath;
1987 
1988 		/* we can have data pending in the subflows only if the msk
1989 		 * receive buffer was full at subflow_data_ready() time,
1990 		 * that is an unlikely slow path.
1991 		 */
1992 		if (likely(!ssk))
1993 			break;
1994 
1995 		slowpath = lock_sock_fast(ssk);
1996 		mptcp_data_lock(sk);
1997 		__mptcp_update_rmem(sk);
1998 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1999 		mptcp_data_unlock(sk);
2000 
2001 		if (unlikely(ssk->sk_err))
2002 			__mptcp_error_report(sk);
2003 		unlock_sock_fast(ssk, slowpath);
2004 	} while (!done);
2005 
2006 	/* acquire the data lock only if some input data is pending */
2007 	ret = moved > 0;
2008 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2009 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2010 		mptcp_data_lock(sk);
2011 		__mptcp_update_rmem(sk);
2012 		ret |= __mptcp_ofo_queue(msk);
2013 		__mptcp_splice_receive_queue(sk);
2014 		mptcp_data_unlock(sk);
2015 	}
2016 	if (ret)
2017 		mptcp_check_data_fin((struct sock *)msk);
2018 	return !skb_queue_empty(&msk->receive_queue);
2019 }
2020 
2021 static unsigned int mptcp_inq_hint(const struct sock *sk)
2022 {
2023 	const struct mptcp_sock *msk = mptcp_sk(sk);
2024 	const struct sk_buff *skb;
2025 
2026 	skb = skb_peek(&msk->receive_queue);
2027 	if (skb) {
2028 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2029 
2030 		if (hint_val >= INT_MAX)
2031 			return INT_MAX;
2032 
2033 		return (unsigned int)hint_val;
2034 	}
2035 
2036 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2037 		return 1;
2038 
2039 	return 0;
2040 }
2041 
2042 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2043 			 int flags, int *addr_len)
2044 {
2045 	struct mptcp_sock *msk = mptcp_sk(sk);
2046 	struct scm_timestamping_internal tss;
2047 	int copied = 0, cmsg_flags = 0;
2048 	int target;
2049 	long timeo;
2050 
2051 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2052 	if (unlikely(flags & MSG_ERRQUEUE))
2053 		return inet_recv_error(sk, msg, len, addr_len);
2054 
2055 	lock_sock(sk);
2056 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2057 		copied = -ENOTCONN;
2058 		goto out_err;
2059 	}
2060 
2061 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2062 
2063 	len = min_t(size_t, len, INT_MAX);
2064 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2065 
2066 	if (unlikely(msk->recvmsg_inq))
2067 		cmsg_flags = MPTCP_CMSG_INQ;
2068 
2069 	while (copied < len) {
2070 		int bytes_read;
2071 
2072 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2073 		if (unlikely(bytes_read < 0)) {
2074 			if (!copied)
2075 				copied = bytes_read;
2076 			goto out_err;
2077 		}
2078 
2079 		copied += bytes_read;
2080 
2081 		/* be sure to advertise window change */
2082 		mptcp_cleanup_rbuf(msk);
2083 
2084 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2085 			continue;
2086 
2087 		/* only the master socket status is relevant here. The exit
2088 		 * conditions mirror closely tcp_recvmsg()
2089 		 */
2090 		if (copied >= target)
2091 			break;
2092 
2093 		if (copied) {
2094 			if (sk->sk_err ||
2095 			    sk->sk_state == TCP_CLOSE ||
2096 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2097 			    !timeo ||
2098 			    signal_pending(current))
2099 				break;
2100 		} else {
2101 			if (sk->sk_err) {
2102 				copied = sock_error(sk);
2103 				break;
2104 			}
2105 
2106 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2107 				mptcp_check_for_eof(msk);
2108 
2109 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2110 				/* race breaker: the shutdown could be after the
2111 				 * previous receive queue check
2112 				 */
2113 				if (__mptcp_move_skbs(msk))
2114 					continue;
2115 				break;
2116 			}
2117 
2118 			if (sk->sk_state == TCP_CLOSE) {
2119 				copied = -ENOTCONN;
2120 				break;
2121 			}
2122 
2123 			if (!timeo) {
2124 				copied = -EAGAIN;
2125 				break;
2126 			}
2127 
2128 			if (signal_pending(current)) {
2129 				copied = sock_intr_errno(timeo);
2130 				break;
2131 			}
2132 		}
2133 
2134 		pr_debug("block timeout %ld", timeo);
2135 		sk_wait_data(sk, &timeo, NULL);
2136 	}
2137 
2138 out_err:
2139 	if (cmsg_flags && copied >= 0) {
2140 		if (cmsg_flags & MPTCP_CMSG_TS)
2141 			tcp_recv_timestamp(msg, sk, &tss);
2142 
2143 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2144 			unsigned int inq = mptcp_inq_hint(sk);
2145 
2146 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2147 		}
2148 	}
2149 
2150 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2151 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2152 		 skb_queue_empty(&msk->receive_queue), copied);
2153 	if (!(flags & MSG_PEEK))
2154 		mptcp_rcv_space_adjust(msk, copied);
2155 
2156 	release_sock(sk);
2157 	return copied;
2158 }
2159 
2160 static void mptcp_retransmit_timer(struct timer_list *t)
2161 {
2162 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2163 						       icsk_retransmit_timer);
2164 	struct sock *sk = &icsk->icsk_inet.sk;
2165 	struct mptcp_sock *msk = mptcp_sk(sk);
2166 
2167 	bh_lock_sock(sk);
2168 	if (!sock_owned_by_user(sk)) {
2169 		/* we need a process context to retransmit */
2170 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2171 			mptcp_schedule_work(sk);
2172 	} else {
2173 		/* delegate our work to tcp_release_cb() */
2174 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2175 	}
2176 	bh_unlock_sock(sk);
2177 	sock_put(sk);
2178 }
2179 
2180 static struct mptcp_subflow_context *
2181 mp_fail_response_expect_subflow(struct mptcp_sock *msk)
2182 {
2183 	struct mptcp_subflow_context *subflow, *ret = NULL;
2184 
2185 	mptcp_for_each_subflow(msk, subflow) {
2186 		if (READ_ONCE(subflow->mp_fail_response_expect)) {
2187 			ret = subflow;
2188 			break;
2189 		}
2190 	}
2191 
2192 	return ret;
2193 }
2194 
2195 static void mptcp_check_mp_fail_response(struct mptcp_sock *msk)
2196 {
2197 	struct mptcp_subflow_context *subflow;
2198 	struct sock *sk = (struct sock *)msk;
2199 
2200 	bh_lock_sock(sk);
2201 	subflow = mp_fail_response_expect_subflow(msk);
2202 	if (subflow)
2203 		__set_bit(MPTCP_FAIL_NO_RESPONSE, &msk->flags);
2204 	bh_unlock_sock(sk);
2205 }
2206 
2207 static void mptcp_timeout_timer(struct timer_list *t)
2208 {
2209 	struct sock *sk = from_timer(sk, t, sk_timer);
2210 
2211 	mptcp_check_mp_fail_response(mptcp_sk(sk));
2212 	mptcp_schedule_work(sk);
2213 	sock_put(sk);
2214 }
2215 
2216 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2217  * level.
2218  *
2219  * A backup subflow is returned only if that is the only kind available.
2220  */
2221 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2222 {
2223 	struct sock *backup = NULL, *pick = NULL;
2224 	struct mptcp_subflow_context *subflow;
2225 	int min_stale_count = INT_MAX;
2226 
2227 	sock_owned_by_me((const struct sock *)msk);
2228 
2229 	if (__mptcp_check_fallback(msk))
2230 		return NULL;
2231 
2232 	mptcp_for_each_subflow(msk, subflow) {
2233 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2234 
2235 		if (!__mptcp_subflow_active(subflow))
2236 			continue;
2237 
2238 		/* still data outstanding at TCP level? skip this */
2239 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2240 			mptcp_pm_subflow_chk_stale(msk, ssk);
2241 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2242 			continue;
2243 		}
2244 
2245 		if (subflow->backup) {
2246 			if (!backup)
2247 				backup = ssk;
2248 			continue;
2249 		}
2250 
2251 		if (!pick)
2252 			pick = ssk;
2253 	}
2254 
2255 	if (pick)
2256 		return pick;
2257 
2258 	/* use backup only if there are no progresses anywhere */
2259 	return min_stale_count > 1 ? backup : NULL;
2260 }
2261 
2262 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2263 {
2264 	if (msk->subflow) {
2265 		iput(SOCK_INODE(msk->subflow));
2266 		msk->subflow = NULL;
2267 	}
2268 }
2269 
2270 bool __mptcp_retransmit_pending_data(struct sock *sk)
2271 {
2272 	struct mptcp_data_frag *cur, *rtx_head;
2273 	struct mptcp_sock *msk = mptcp_sk(sk);
2274 
2275 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2276 		return false;
2277 
2278 	if (tcp_rtx_and_write_queues_empty(sk))
2279 		return false;
2280 
2281 	/* the closing socket has some data untransmitted and/or unacked:
2282 	 * some data in the mptcp rtx queue has not really xmitted yet.
2283 	 * keep it simple and re-inject the whole mptcp level rtx queue
2284 	 */
2285 	mptcp_data_lock(sk);
2286 	__mptcp_clean_una_wakeup(sk);
2287 	rtx_head = mptcp_rtx_head(sk);
2288 	if (!rtx_head) {
2289 		mptcp_data_unlock(sk);
2290 		return false;
2291 	}
2292 
2293 	msk->recovery_snd_nxt = msk->snd_nxt;
2294 	msk->recovery = true;
2295 	mptcp_data_unlock(sk);
2296 
2297 	msk->first_pending = rtx_head;
2298 	msk->snd_burst = 0;
2299 
2300 	/* be sure to clear the "sent status" on all re-injected fragments */
2301 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2302 		if (!cur->already_sent)
2303 			break;
2304 		cur->already_sent = 0;
2305 	}
2306 
2307 	return true;
2308 }
2309 
2310 /* flags for __mptcp_close_ssk() */
2311 #define MPTCP_CF_PUSH		BIT(1)
2312 #define MPTCP_CF_FASTCLOSE	BIT(2)
2313 
2314 /* subflow sockets can be either outgoing (connect) or incoming
2315  * (accept).
2316  *
2317  * Outgoing subflows use in-kernel sockets.
2318  * Incoming subflows do not have their own 'struct socket' allocated,
2319  * so we need to use tcp_close() after detaching them from the mptcp
2320  * parent socket.
2321  */
2322 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2323 			      struct mptcp_subflow_context *subflow,
2324 			      unsigned int flags)
2325 {
2326 	struct mptcp_sock *msk = mptcp_sk(sk);
2327 	bool need_push, dispose_it;
2328 
2329 	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2330 	if (dispose_it)
2331 		list_del(&subflow->node);
2332 
2333 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2334 
2335 	if (flags & MPTCP_CF_FASTCLOSE)
2336 		subflow->send_fastclose = 1;
2337 
2338 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2339 	if (!dispose_it) {
2340 		tcp_disconnect(ssk, 0);
2341 		msk->subflow->state = SS_UNCONNECTED;
2342 		mptcp_subflow_ctx_reset(subflow);
2343 		release_sock(ssk);
2344 
2345 		goto out;
2346 	}
2347 
2348 	/* if we are invoked by the msk cleanup code, the subflow is
2349 	 * already orphaned
2350 	 */
2351 	if (ssk->sk_socket)
2352 		sock_orphan(ssk);
2353 
2354 	subflow->disposable = 1;
2355 
2356 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2357 	 * the ssk has been already destroyed, we just need to release the
2358 	 * reference owned by msk;
2359 	 */
2360 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2361 		kfree_rcu(subflow, rcu);
2362 	} else {
2363 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2364 		__tcp_close(ssk, 0);
2365 
2366 		/* close acquired an extra ref */
2367 		__sock_put(ssk);
2368 	}
2369 	release_sock(ssk);
2370 
2371 	sock_put(ssk);
2372 
2373 	if (ssk == msk->first)
2374 		msk->first = NULL;
2375 
2376 out:
2377 	if (ssk == msk->last_snd)
2378 		msk->last_snd = NULL;
2379 
2380 	if (need_push)
2381 		__mptcp_push_pending(sk, 0);
2382 }
2383 
2384 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2385 		     struct mptcp_subflow_context *subflow)
2386 {
2387 	if (sk->sk_state == TCP_ESTABLISHED)
2388 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2389 
2390 	/* subflow aborted before reaching the fully_established status
2391 	 * attempt the creation of the next subflow
2392 	 */
2393 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2394 
2395 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2396 }
2397 
2398 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2399 {
2400 	return 0;
2401 }
2402 
2403 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2404 {
2405 	struct mptcp_subflow_context *subflow, *tmp;
2406 
2407 	might_sleep();
2408 
2409 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2410 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2411 
2412 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2413 			continue;
2414 
2415 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2416 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2417 			continue;
2418 
2419 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2420 	}
2421 }
2422 
2423 static bool mptcp_check_close_timeout(const struct sock *sk)
2424 {
2425 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2426 	struct mptcp_subflow_context *subflow;
2427 
2428 	if (delta >= TCP_TIMEWAIT_LEN)
2429 		return true;
2430 
2431 	/* if all subflows are in closed status don't bother with additional
2432 	 * timeout
2433 	 */
2434 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2435 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2436 		    TCP_CLOSE)
2437 			return false;
2438 	}
2439 	return true;
2440 }
2441 
2442 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2443 {
2444 	struct mptcp_subflow_context *subflow, *tmp;
2445 	struct sock *sk = &msk->sk.icsk_inet.sk;
2446 
2447 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2448 		return;
2449 
2450 	mptcp_token_destroy(msk);
2451 
2452 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2453 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2454 		bool slow;
2455 
2456 		slow = lock_sock_fast(tcp_sk);
2457 		if (tcp_sk->sk_state != TCP_CLOSE) {
2458 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2459 			tcp_set_state(tcp_sk, TCP_CLOSE);
2460 		}
2461 		unlock_sock_fast(tcp_sk, slow);
2462 	}
2463 
2464 	inet_sk_state_store(sk, TCP_CLOSE);
2465 	sk->sk_shutdown = SHUTDOWN_MASK;
2466 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2467 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2468 
2469 	mptcp_close_wake_up(sk);
2470 }
2471 
2472 static void __mptcp_retrans(struct sock *sk)
2473 {
2474 	struct mptcp_sock *msk = mptcp_sk(sk);
2475 	struct mptcp_sendmsg_info info = {};
2476 	struct mptcp_data_frag *dfrag;
2477 	size_t copied = 0;
2478 	struct sock *ssk;
2479 	int ret;
2480 
2481 	mptcp_clean_una_wakeup(sk);
2482 
2483 	/* first check ssk: need to kick "stale" logic */
2484 	ssk = mptcp_subflow_get_retrans(msk);
2485 	dfrag = mptcp_rtx_head(sk);
2486 	if (!dfrag) {
2487 		if (mptcp_data_fin_enabled(msk)) {
2488 			struct inet_connection_sock *icsk = inet_csk(sk);
2489 
2490 			icsk->icsk_retransmits++;
2491 			mptcp_set_datafin_timeout(sk);
2492 			mptcp_send_ack(msk);
2493 
2494 			goto reset_timer;
2495 		}
2496 
2497 		if (!mptcp_send_head(sk))
2498 			return;
2499 
2500 		goto reset_timer;
2501 	}
2502 
2503 	if (!ssk)
2504 		goto reset_timer;
2505 
2506 	lock_sock(ssk);
2507 
2508 	/* limit retransmission to the bytes already sent on some subflows */
2509 	info.sent = 0;
2510 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2511 	while (info.sent < info.limit) {
2512 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2513 		if (ret <= 0)
2514 			break;
2515 
2516 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2517 		copied += ret;
2518 		info.sent += ret;
2519 	}
2520 	if (copied) {
2521 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2522 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2523 			 info.size_goal);
2524 		WRITE_ONCE(msk->allow_infinite_fallback, false);
2525 	}
2526 
2527 	release_sock(ssk);
2528 
2529 reset_timer:
2530 	mptcp_check_and_set_pending(sk);
2531 
2532 	mptcp_data_lock(sk);
2533 	if (!mptcp_timer_pending(sk))
2534 		mptcp_reset_timer(sk);
2535 	mptcp_data_unlock(sk);
2536 }
2537 
2538 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2539 {
2540 	struct mptcp_subflow_context *subflow;
2541 	struct sock *ssk;
2542 	bool slow;
2543 
2544 	subflow = mp_fail_response_expect_subflow(msk);
2545 	if (subflow) {
2546 		pr_debug("MP_FAIL doesn't respond, reset the subflow");
2547 
2548 		ssk = mptcp_subflow_tcp_sock(subflow);
2549 		slow = lock_sock_fast(ssk);
2550 		mptcp_subflow_reset(ssk);
2551 		unlock_sock_fast(ssk, slow);
2552 	}
2553 }
2554 
2555 static void mptcp_worker(struct work_struct *work)
2556 {
2557 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2558 	struct sock *sk = &msk->sk.icsk_inet.sk;
2559 	int state;
2560 
2561 	lock_sock(sk);
2562 	state = sk->sk_state;
2563 	if (unlikely(state == TCP_CLOSE))
2564 		goto unlock;
2565 
2566 	mptcp_check_data_fin_ack(sk);
2567 
2568 	mptcp_check_fastclose(msk);
2569 
2570 	mptcp_pm_nl_work(msk);
2571 
2572 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2573 		mptcp_check_for_eof(msk);
2574 
2575 	__mptcp_check_send_data_fin(sk);
2576 	mptcp_check_data_fin(sk);
2577 
2578 	/* There is no point in keeping around an orphaned sk timedout or
2579 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2580 	 * even if it is orphaned and in FIN_WAIT2 state
2581 	 */
2582 	if (sock_flag(sk, SOCK_DEAD) &&
2583 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2584 		inet_sk_state_store(sk, TCP_CLOSE);
2585 		__mptcp_destroy_sock(sk);
2586 		goto unlock;
2587 	}
2588 
2589 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2590 		__mptcp_close_subflow(msk);
2591 
2592 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2593 		__mptcp_retrans(sk);
2594 
2595 	if (test_and_clear_bit(MPTCP_FAIL_NO_RESPONSE, &msk->flags))
2596 		mptcp_mp_fail_no_response(msk);
2597 
2598 unlock:
2599 	release_sock(sk);
2600 	sock_put(sk);
2601 }
2602 
2603 static int __mptcp_init_sock(struct sock *sk)
2604 {
2605 	struct mptcp_sock *msk = mptcp_sk(sk);
2606 
2607 	INIT_LIST_HEAD(&msk->conn_list);
2608 	INIT_LIST_HEAD(&msk->join_list);
2609 	INIT_LIST_HEAD(&msk->rtx_queue);
2610 	INIT_WORK(&msk->work, mptcp_worker);
2611 	__skb_queue_head_init(&msk->receive_queue);
2612 	msk->out_of_order_queue = RB_ROOT;
2613 	msk->first_pending = NULL;
2614 	msk->rmem_fwd_alloc = 0;
2615 	WRITE_ONCE(msk->rmem_released, 0);
2616 	msk->timer_ival = TCP_RTO_MIN;
2617 
2618 	msk->first = NULL;
2619 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2620 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2621 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2622 	msk->recovery = false;
2623 
2624 	mptcp_pm_data_init(msk);
2625 
2626 	/* re-use the csk retrans timer for MPTCP-level retrans */
2627 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2628 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2629 
2630 	return 0;
2631 }
2632 
2633 static void mptcp_ca_reset(struct sock *sk)
2634 {
2635 	struct inet_connection_sock *icsk = inet_csk(sk);
2636 
2637 	tcp_assign_congestion_control(sk);
2638 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2639 
2640 	/* no need to keep a reference to the ops, the name will suffice */
2641 	tcp_cleanup_congestion_control(sk);
2642 	icsk->icsk_ca_ops = NULL;
2643 }
2644 
2645 static int mptcp_init_sock(struct sock *sk)
2646 {
2647 	struct net *net = sock_net(sk);
2648 	int ret;
2649 
2650 	ret = __mptcp_init_sock(sk);
2651 	if (ret)
2652 		return ret;
2653 
2654 	if (!mptcp_is_enabled(net))
2655 		return -ENOPROTOOPT;
2656 
2657 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2658 		return -ENOMEM;
2659 
2660 	ret = __mptcp_socket_create(mptcp_sk(sk));
2661 	if (ret)
2662 		return ret;
2663 
2664 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2665 	 * propagate the correct value
2666 	 */
2667 	mptcp_ca_reset(sk);
2668 
2669 	sk_sockets_allocated_inc(sk);
2670 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2671 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2672 
2673 	return 0;
2674 }
2675 
2676 static void __mptcp_clear_xmit(struct sock *sk)
2677 {
2678 	struct mptcp_sock *msk = mptcp_sk(sk);
2679 	struct mptcp_data_frag *dtmp, *dfrag;
2680 
2681 	WRITE_ONCE(msk->first_pending, NULL);
2682 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2683 		dfrag_clear(sk, dfrag);
2684 }
2685 
2686 static void mptcp_cancel_work(struct sock *sk)
2687 {
2688 	struct mptcp_sock *msk = mptcp_sk(sk);
2689 
2690 	if (cancel_work_sync(&msk->work))
2691 		__sock_put(sk);
2692 }
2693 
2694 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2695 {
2696 	lock_sock(ssk);
2697 
2698 	switch (ssk->sk_state) {
2699 	case TCP_LISTEN:
2700 		if (!(how & RCV_SHUTDOWN))
2701 			break;
2702 		fallthrough;
2703 	case TCP_SYN_SENT:
2704 		tcp_disconnect(ssk, O_NONBLOCK);
2705 		break;
2706 	default:
2707 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2708 			pr_debug("Fallback");
2709 			ssk->sk_shutdown |= how;
2710 			tcp_shutdown(ssk, how);
2711 		} else {
2712 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2713 			tcp_send_ack(ssk);
2714 			mptcp_data_lock(sk);
2715 			if (!mptcp_timer_pending(sk))
2716 				mptcp_reset_timer(sk);
2717 			mptcp_data_unlock(sk);
2718 		}
2719 		break;
2720 	}
2721 
2722 	release_sock(ssk);
2723 }
2724 
2725 static const unsigned char new_state[16] = {
2726 	/* current state:     new state:      action:	*/
2727 	[0 /* (Invalid) */] = TCP_CLOSE,
2728 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2729 	[TCP_SYN_SENT]      = TCP_CLOSE,
2730 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2731 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2732 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2733 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2734 	[TCP_CLOSE]         = TCP_CLOSE,
2735 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2736 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2737 	[TCP_LISTEN]        = TCP_CLOSE,
2738 	[TCP_CLOSING]       = TCP_CLOSING,
2739 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2740 };
2741 
2742 static int mptcp_close_state(struct sock *sk)
2743 {
2744 	int next = (int)new_state[sk->sk_state];
2745 	int ns = next & TCP_STATE_MASK;
2746 
2747 	inet_sk_state_store(sk, ns);
2748 
2749 	return next & TCP_ACTION_FIN;
2750 }
2751 
2752 static void __mptcp_check_send_data_fin(struct sock *sk)
2753 {
2754 	struct mptcp_subflow_context *subflow;
2755 	struct mptcp_sock *msk = mptcp_sk(sk);
2756 
2757 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2758 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2759 		 msk->snd_nxt, msk->write_seq);
2760 
2761 	/* we still need to enqueue subflows or not really shutting down,
2762 	 * skip this
2763 	 */
2764 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2765 	    mptcp_send_head(sk))
2766 		return;
2767 
2768 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2769 
2770 	/* fallback socket will not get data_fin/ack, can move to the next
2771 	 * state now
2772 	 */
2773 	if (__mptcp_check_fallback(msk)) {
2774 		WRITE_ONCE(msk->snd_una, msk->write_seq);
2775 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2776 			inet_sk_state_store(sk, TCP_CLOSE);
2777 			mptcp_close_wake_up(sk);
2778 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2779 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2780 		}
2781 	}
2782 
2783 	mptcp_for_each_subflow(msk, subflow) {
2784 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2785 
2786 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2787 	}
2788 }
2789 
2790 static void __mptcp_wr_shutdown(struct sock *sk)
2791 {
2792 	struct mptcp_sock *msk = mptcp_sk(sk);
2793 
2794 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2795 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2796 		 !!mptcp_send_head(sk));
2797 
2798 	/* will be ignored by fallback sockets */
2799 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2800 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2801 
2802 	__mptcp_check_send_data_fin(sk);
2803 }
2804 
2805 static void __mptcp_destroy_sock(struct sock *sk)
2806 {
2807 	struct mptcp_subflow_context *subflow, *tmp;
2808 	struct mptcp_sock *msk = mptcp_sk(sk);
2809 	LIST_HEAD(conn_list);
2810 
2811 	pr_debug("msk=%p", msk);
2812 
2813 	might_sleep();
2814 
2815 	/* join list will be eventually flushed (with rst) at sock lock release time*/
2816 	list_splice_init(&msk->conn_list, &conn_list);
2817 
2818 	mptcp_data_lock(sk);
2819 	mptcp_stop_timer(sk);
2820 	sk_stop_timer(sk, &sk->sk_timer);
2821 	mptcp_data_unlock(sk);
2822 	msk->pm.status = 0;
2823 
2824 	/* clears msk->subflow, allowing the following loop to close
2825 	 * even the initial subflow
2826 	 */
2827 	mptcp_dispose_initial_subflow(msk);
2828 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2829 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2830 		__mptcp_close_ssk(sk, ssk, subflow, 0);
2831 	}
2832 
2833 	sk->sk_prot->destroy(sk);
2834 
2835 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2836 	WARN_ON_ONCE(msk->rmem_released);
2837 	sk_stream_kill_queues(sk);
2838 	xfrm_sk_free_policy(sk);
2839 
2840 	sk_refcnt_debug_release(sk);
2841 	sock_put(sk);
2842 }
2843 
2844 static void mptcp_close(struct sock *sk, long timeout)
2845 {
2846 	struct mptcp_subflow_context *subflow;
2847 	bool do_cancel_work = false;
2848 
2849 	lock_sock(sk);
2850 	sk->sk_shutdown = SHUTDOWN_MASK;
2851 
2852 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2853 		inet_sk_state_store(sk, TCP_CLOSE);
2854 		goto cleanup;
2855 	}
2856 
2857 	if (mptcp_close_state(sk))
2858 		__mptcp_wr_shutdown(sk);
2859 
2860 	sk_stream_wait_close(sk, timeout);
2861 
2862 cleanup:
2863 	/* orphan all the subflows */
2864 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2865 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2866 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2867 		bool slow = lock_sock_fast_nested(ssk);
2868 
2869 		sock_orphan(ssk);
2870 		unlock_sock_fast(ssk, slow);
2871 	}
2872 	sock_orphan(sk);
2873 
2874 	sock_hold(sk);
2875 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2876 	if (mptcp_sk(sk)->token)
2877 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2878 
2879 	if (sk->sk_state == TCP_CLOSE) {
2880 		__mptcp_destroy_sock(sk);
2881 		do_cancel_work = true;
2882 	} else {
2883 		mptcp_data_lock(sk);
2884 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2885 		mptcp_data_unlock(sk);
2886 	}
2887 	release_sock(sk);
2888 	if (do_cancel_work)
2889 		mptcp_cancel_work(sk);
2890 
2891 	sock_put(sk);
2892 }
2893 
2894 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2895 {
2896 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2897 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2898 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2899 
2900 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2901 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2902 
2903 	if (msk6 && ssk6) {
2904 		msk6->saddr = ssk6->saddr;
2905 		msk6->flow_label = ssk6->flow_label;
2906 	}
2907 #endif
2908 
2909 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2910 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2911 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2912 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2913 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2914 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2915 }
2916 
2917 static int mptcp_disconnect(struct sock *sk, int flags)
2918 {
2919 	struct mptcp_subflow_context *subflow;
2920 	struct mptcp_sock *msk = mptcp_sk(sk);
2921 
2922 	inet_sk_state_store(sk, TCP_CLOSE);
2923 
2924 	mptcp_for_each_subflow(msk, subflow) {
2925 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2926 
2927 		__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE);
2928 	}
2929 
2930 	mptcp_data_lock(sk);
2931 	mptcp_stop_timer(sk);
2932 	sk_stop_timer(sk, &sk->sk_timer);
2933 	mptcp_data_unlock(sk);
2934 
2935 	if (mptcp_sk(sk)->token)
2936 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2937 
2938 	mptcp_destroy_common(msk);
2939 	msk->last_snd = NULL;
2940 	WRITE_ONCE(msk->flags, 0);
2941 	msk->cb_flags = 0;
2942 	msk->push_pending = 0;
2943 	msk->recovery = false;
2944 	msk->can_ack = false;
2945 	msk->fully_established = false;
2946 	msk->rcv_data_fin = false;
2947 	msk->snd_data_fin_enable = false;
2948 	msk->rcv_fastclose = false;
2949 	msk->use_64bit_ack = false;
2950 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2951 	mptcp_pm_data_reset(msk);
2952 	mptcp_ca_reset(sk);
2953 
2954 	sk->sk_shutdown = 0;
2955 	sk_error_report(sk);
2956 	return 0;
2957 }
2958 
2959 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2960 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2961 {
2962 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2963 
2964 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2965 }
2966 #endif
2967 
2968 struct sock *mptcp_sk_clone(const struct sock *sk,
2969 			    const struct mptcp_options_received *mp_opt,
2970 			    struct request_sock *req)
2971 {
2972 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2973 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2974 	struct mptcp_sock *msk;
2975 	u64 ack_seq;
2976 
2977 	if (!nsk)
2978 		return NULL;
2979 
2980 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2981 	if (nsk->sk_family == AF_INET6)
2982 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2983 #endif
2984 
2985 	__mptcp_init_sock(nsk);
2986 
2987 	msk = mptcp_sk(nsk);
2988 	msk->local_key = subflow_req->local_key;
2989 	msk->token = subflow_req->token;
2990 	msk->subflow = NULL;
2991 	WRITE_ONCE(msk->fully_established, false);
2992 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2993 		WRITE_ONCE(msk->csum_enabled, true);
2994 
2995 	msk->write_seq = subflow_req->idsn + 1;
2996 	msk->snd_nxt = msk->write_seq;
2997 	msk->snd_una = msk->write_seq;
2998 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2999 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3000 
3001 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
3002 		msk->can_ack = true;
3003 		msk->remote_key = mp_opt->sndr_key;
3004 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
3005 		ack_seq++;
3006 		WRITE_ONCE(msk->ack_seq, ack_seq);
3007 		atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3008 	}
3009 
3010 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3011 	/* will be fully established after successful MPC subflow creation */
3012 	inet_sk_state_store(nsk, TCP_SYN_RECV);
3013 
3014 	security_inet_csk_clone(nsk, req);
3015 	bh_unlock_sock(nsk);
3016 
3017 	/* keep a single reference */
3018 	__sock_put(nsk);
3019 	return nsk;
3020 }
3021 
3022 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3023 {
3024 	const struct tcp_sock *tp = tcp_sk(ssk);
3025 
3026 	msk->rcvq_space.copied = 0;
3027 	msk->rcvq_space.rtt_us = 0;
3028 
3029 	msk->rcvq_space.time = tp->tcp_mstamp;
3030 
3031 	/* initial rcv_space offering made to peer */
3032 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3033 				      TCP_INIT_CWND * tp->advmss);
3034 	if (msk->rcvq_space.space == 0)
3035 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3036 
3037 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3038 }
3039 
3040 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3041 				 bool kern)
3042 {
3043 	struct mptcp_sock *msk = mptcp_sk(sk);
3044 	struct socket *listener;
3045 	struct sock *newsk;
3046 
3047 	listener = __mptcp_nmpc_socket(msk);
3048 	if (WARN_ON_ONCE(!listener)) {
3049 		*err = -EINVAL;
3050 		return NULL;
3051 	}
3052 
3053 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3054 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
3055 	if (!newsk)
3056 		return NULL;
3057 
3058 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3059 	if (sk_is_mptcp(newsk)) {
3060 		struct mptcp_subflow_context *subflow;
3061 		struct sock *new_mptcp_sock;
3062 
3063 		subflow = mptcp_subflow_ctx(newsk);
3064 		new_mptcp_sock = subflow->conn;
3065 
3066 		/* is_mptcp should be false if subflow->conn is missing, see
3067 		 * subflow_syn_recv_sock()
3068 		 */
3069 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3070 			tcp_sk(newsk)->is_mptcp = 0;
3071 			goto out;
3072 		}
3073 
3074 		/* acquire the 2nd reference for the owning socket */
3075 		sock_hold(new_mptcp_sock);
3076 		newsk = new_mptcp_sock;
3077 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3078 	} else {
3079 		MPTCP_INC_STATS(sock_net(sk),
3080 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3081 	}
3082 
3083 out:
3084 	newsk->sk_kern_sock = kern;
3085 	return newsk;
3086 }
3087 
3088 void mptcp_destroy_common(struct mptcp_sock *msk)
3089 {
3090 	struct sock *sk = (struct sock *)msk;
3091 
3092 	__mptcp_clear_xmit(sk);
3093 
3094 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3095 	mptcp_data_lock(sk);
3096 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3097 	__skb_queue_purge(&sk->sk_receive_queue);
3098 	skb_rbtree_purge(&msk->out_of_order_queue);
3099 	mptcp_data_unlock(sk);
3100 
3101 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3102 	 * inet_sock_destruct() will dispose it
3103 	 */
3104 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3105 	msk->rmem_fwd_alloc = 0;
3106 	mptcp_token_destroy(msk);
3107 	mptcp_pm_free_anno_list(msk);
3108 	mptcp_free_local_addr_list(msk);
3109 }
3110 
3111 static void mptcp_destroy(struct sock *sk)
3112 {
3113 	struct mptcp_sock *msk = mptcp_sk(sk);
3114 
3115 	mptcp_destroy_common(msk);
3116 	sk_sockets_allocated_dec(sk);
3117 }
3118 
3119 void __mptcp_data_acked(struct sock *sk)
3120 {
3121 	if (!sock_owned_by_user(sk))
3122 		__mptcp_clean_una(sk);
3123 	else
3124 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3125 
3126 	if (mptcp_pending_data_fin_ack(sk))
3127 		mptcp_schedule_work(sk);
3128 }
3129 
3130 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3131 {
3132 	if (!mptcp_send_head(sk))
3133 		return;
3134 
3135 	if (!sock_owned_by_user(sk)) {
3136 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3137 
3138 		if (xmit_ssk == ssk)
3139 			__mptcp_subflow_push_pending(sk, ssk);
3140 		else if (xmit_ssk)
3141 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3142 	} else {
3143 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3144 	}
3145 }
3146 
3147 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3148 				      BIT(MPTCP_RETRANSMIT) | \
3149 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3150 
3151 /* processes deferred events and flush wmem */
3152 static void mptcp_release_cb(struct sock *sk)
3153 	__must_hold(&sk->sk_lock.slock)
3154 {
3155 	struct mptcp_sock *msk = mptcp_sk(sk);
3156 
3157 	for (;;) {
3158 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3159 				      msk->push_pending;
3160 		if (!flags)
3161 			break;
3162 
3163 		/* the following actions acquire the subflow socket lock
3164 		 *
3165 		 * 1) can't be invoked in atomic scope
3166 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3167 		 *    datapath acquires the msk socket spinlock while helding
3168 		 *    the subflow socket lock
3169 		 */
3170 		msk->push_pending = 0;
3171 		msk->cb_flags &= ~flags;
3172 		spin_unlock_bh(&sk->sk_lock.slock);
3173 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3174 			__mptcp_flush_join_list(sk);
3175 		if (flags & BIT(MPTCP_PUSH_PENDING))
3176 			__mptcp_push_pending(sk, 0);
3177 		if (flags & BIT(MPTCP_RETRANSMIT))
3178 			__mptcp_retrans(sk);
3179 
3180 		cond_resched();
3181 		spin_lock_bh(&sk->sk_lock.slock);
3182 	}
3183 
3184 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3185 		__mptcp_clean_una_wakeup(sk);
3186 	if (unlikely(&msk->cb_flags)) {
3187 		/* be sure to set the current sk state before tacking actions
3188 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3189 		 */
3190 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3191 			__mptcp_set_connected(sk);
3192 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3193 			__mptcp_error_report(sk);
3194 		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3195 			msk->last_snd = NULL;
3196 	}
3197 
3198 	__mptcp_update_rmem(sk);
3199 }
3200 
3201 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3202  * TCP can't schedule delack timer before the subflow is fully established.
3203  * MPTCP uses the delack timer to do 3rd ack retransmissions
3204  */
3205 static void schedule_3rdack_retransmission(struct sock *ssk)
3206 {
3207 	struct inet_connection_sock *icsk = inet_csk(ssk);
3208 	struct tcp_sock *tp = tcp_sk(ssk);
3209 	unsigned long timeout;
3210 
3211 	if (mptcp_subflow_ctx(ssk)->fully_established)
3212 		return;
3213 
3214 	/* reschedule with a timeout above RTT, as we must look only for drop */
3215 	if (tp->srtt_us)
3216 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3217 	else
3218 		timeout = TCP_TIMEOUT_INIT;
3219 	timeout += jiffies;
3220 
3221 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3222 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3223 	icsk->icsk_ack.timeout = timeout;
3224 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3225 }
3226 
3227 void mptcp_subflow_process_delegated(struct sock *ssk)
3228 {
3229 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3230 	struct sock *sk = subflow->conn;
3231 
3232 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3233 		mptcp_data_lock(sk);
3234 		if (!sock_owned_by_user(sk))
3235 			__mptcp_subflow_push_pending(sk, ssk);
3236 		else
3237 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3238 		mptcp_data_unlock(sk);
3239 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3240 	}
3241 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3242 		schedule_3rdack_retransmission(ssk);
3243 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3244 	}
3245 }
3246 
3247 static int mptcp_hash(struct sock *sk)
3248 {
3249 	/* should never be called,
3250 	 * we hash the TCP subflows not the master socket
3251 	 */
3252 	WARN_ON_ONCE(1);
3253 	return 0;
3254 }
3255 
3256 static void mptcp_unhash(struct sock *sk)
3257 {
3258 	/* called from sk_common_release(), but nothing to do here */
3259 }
3260 
3261 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3262 {
3263 	struct mptcp_sock *msk = mptcp_sk(sk);
3264 	struct socket *ssock;
3265 
3266 	ssock = __mptcp_nmpc_socket(msk);
3267 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3268 	if (WARN_ON_ONCE(!ssock))
3269 		return -EINVAL;
3270 
3271 	return inet_csk_get_port(ssock->sk, snum);
3272 }
3273 
3274 void mptcp_finish_connect(struct sock *ssk)
3275 {
3276 	struct mptcp_subflow_context *subflow;
3277 	struct mptcp_sock *msk;
3278 	struct sock *sk;
3279 	u64 ack_seq;
3280 
3281 	subflow = mptcp_subflow_ctx(ssk);
3282 	sk = subflow->conn;
3283 	msk = mptcp_sk(sk);
3284 
3285 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3286 
3287 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3288 	ack_seq++;
3289 	subflow->map_seq = ack_seq;
3290 	subflow->map_subflow_seq = 1;
3291 
3292 	/* the socket is not connected yet, no msk/subflow ops can access/race
3293 	 * accessing the field below
3294 	 */
3295 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3296 	WRITE_ONCE(msk->local_key, subflow->local_key);
3297 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3298 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3299 	WRITE_ONCE(msk->ack_seq, ack_seq);
3300 	WRITE_ONCE(msk->can_ack, 1);
3301 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3302 	atomic64_set(&msk->rcv_wnd_sent, ack_seq);
3303 
3304 	mptcp_pm_new_connection(msk, ssk, 0);
3305 
3306 	mptcp_rcv_space_init(msk, ssk);
3307 }
3308 
3309 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3310 {
3311 	write_lock_bh(&sk->sk_callback_lock);
3312 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3313 	sk_set_socket(sk, parent);
3314 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3315 	write_unlock_bh(&sk->sk_callback_lock);
3316 }
3317 
3318 bool mptcp_finish_join(struct sock *ssk)
3319 {
3320 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3321 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3322 	struct sock *parent = (void *)msk;
3323 	bool ret = true;
3324 
3325 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3326 
3327 	/* mptcp socket already closing? */
3328 	if (!mptcp_is_fully_established(parent)) {
3329 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3330 		return false;
3331 	}
3332 
3333 	if (!list_empty(&subflow->node))
3334 		goto out;
3335 
3336 	if (!mptcp_pm_allow_new_subflow(msk))
3337 		goto err_prohibited;
3338 
3339 	/* active connections are already on conn_list.
3340 	 * If we can't acquire msk socket lock here, let the release callback
3341 	 * handle it
3342 	 */
3343 	mptcp_data_lock(parent);
3344 	if (!sock_owned_by_user(parent)) {
3345 		ret = __mptcp_finish_join(msk, ssk);
3346 		if (ret) {
3347 			sock_hold(ssk);
3348 			list_add_tail(&subflow->node, &msk->conn_list);
3349 		}
3350 	} else {
3351 		sock_hold(ssk);
3352 		list_add_tail(&subflow->node, &msk->join_list);
3353 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3354 	}
3355 	mptcp_data_unlock(parent);
3356 
3357 	if (!ret) {
3358 err_prohibited:
3359 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3360 		return false;
3361 	}
3362 
3363 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3364 	WRITE_ONCE(msk->allow_infinite_fallback, false);
3365 
3366 out:
3367 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3368 	return true;
3369 }
3370 
3371 static void mptcp_shutdown(struct sock *sk, int how)
3372 {
3373 	pr_debug("sk=%p, how=%d", sk, how);
3374 
3375 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3376 		__mptcp_wr_shutdown(sk);
3377 }
3378 
3379 static int mptcp_forward_alloc_get(const struct sock *sk)
3380 {
3381 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3382 }
3383 
3384 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3385 {
3386 	const struct sock *sk = (void *)msk;
3387 	u64 delta;
3388 
3389 	if (sk->sk_state == TCP_LISTEN)
3390 		return -EINVAL;
3391 
3392 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3393 		return 0;
3394 
3395 	delta = msk->write_seq - v;
3396 	if (__mptcp_check_fallback(msk) && msk->first) {
3397 		struct tcp_sock *tp = tcp_sk(msk->first);
3398 
3399 		/* the first subflow is disconnected after close - see
3400 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3401 		 * so ignore that status, too.
3402 		 */
3403 		if (!((1 << msk->first->sk_state) &
3404 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3405 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3406 	}
3407 	if (delta > INT_MAX)
3408 		delta = INT_MAX;
3409 
3410 	return (int)delta;
3411 }
3412 
3413 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3414 {
3415 	struct mptcp_sock *msk = mptcp_sk(sk);
3416 	bool slow;
3417 	int answ;
3418 
3419 	switch (cmd) {
3420 	case SIOCINQ:
3421 		if (sk->sk_state == TCP_LISTEN)
3422 			return -EINVAL;
3423 
3424 		lock_sock(sk);
3425 		__mptcp_move_skbs(msk);
3426 		answ = mptcp_inq_hint(sk);
3427 		release_sock(sk);
3428 		break;
3429 	case SIOCOUTQ:
3430 		slow = lock_sock_fast(sk);
3431 		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3432 		unlock_sock_fast(sk, slow);
3433 		break;
3434 	case SIOCOUTQNSD:
3435 		slow = lock_sock_fast(sk);
3436 		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3437 		unlock_sock_fast(sk, slow);
3438 		break;
3439 	default:
3440 		return -ENOIOCTLCMD;
3441 	}
3442 
3443 	return put_user(answ, (int __user *)arg);
3444 }
3445 
3446 static struct proto mptcp_prot = {
3447 	.name		= "MPTCP",
3448 	.owner		= THIS_MODULE,
3449 	.init		= mptcp_init_sock,
3450 	.disconnect	= mptcp_disconnect,
3451 	.close		= mptcp_close,
3452 	.accept		= mptcp_accept,
3453 	.setsockopt	= mptcp_setsockopt,
3454 	.getsockopt	= mptcp_getsockopt,
3455 	.shutdown	= mptcp_shutdown,
3456 	.destroy	= mptcp_destroy,
3457 	.sendmsg	= mptcp_sendmsg,
3458 	.ioctl		= mptcp_ioctl,
3459 	.recvmsg	= mptcp_recvmsg,
3460 	.release_cb	= mptcp_release_cb,
3461 	.hash		= mptcp_hash,
3462 	.unhash		= mptcp_unhash,
3463 	.get_port	= mptcp_get_port,
3464 	.forward_alloc_get	= mptcp_forward_alloc_get,
3465 	.sockets_allocated	= &mptcp_sockets_allocated,
3466 	.memory_allocated	= &tcp_memory_allocated,
3467 	.memory_pressure	= &tcp_memory_pressure,
3468 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3469 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3470 	.sysctl_mem	= sysctl_tcp_mem,
3471 	.obj_size	= sizeof(struct mptcp_sock),
3472 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3473 	.no_autobind	= true,
3474 };
3475 
3476 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3477 {
3478 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3479 	struct socket *ssock;
3480 	int err;
3481 
3482 	lock_sock(sock->sk);
3483 	ssock = __mptcp_nmpc_socket(msk);
3484 	if (!ssock) {
3485 		err = -EINVAL;
3486 		goto unlock;
3487 	}
3488 
3489 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3490 	if (!err)
3491 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3492 
3493 unlock:
3494 	release_sock(sock->sk);
3495 	return err;
3496 }
3497 
3498 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3499 					 struct mptcp_subflow_context *subflow)
3500 {
3501 	subflow->request_mptcp = 0;
3502 	__mptcp_do_fallback(msk);
3503 }
3504 
3505 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3506 				int addr_len, int flags)
3507 {
3508 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3509 	struct mptcp_subflow_context *subflow;
3510 	struct socket *ssock;
3511 	int err = -EINVAL;
3512 
3513 	lock_sock(sock->sk);
3514 	if (uaddr) {
3515 		if (addr_len < sizeof(uaddr->sa_family))
3516 			goto unlock;
3517 
3518 		if (uaddr->sa_family == AF_UNSPEC) {
3519 			err = mptcp_disconnect(sock->sk, flags);
3520 			sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
3521 			goto unlock;
3522 		}
3523 	}
3524 
3525 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3526 		/* pending connection or invalid state, let existing subflow
3527 		 * cope with that
3528 		 */
3529 		ssock = msk->subflow;
3530 		goto do_connect;
3531 	}
3532 
3533 	ssock = __mptcp_nmpc_socket(msk);
3534 	if (!ssock)
3535 		goto unlock;
3536 
3537 	mptcp_token_destroy(msk);
3538 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3539 	subflow = mptcp_subflow_ctx(ssock->sk);
3540 #ifdef CONFIG_TCP_MD5SIG
3541 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3542 	 * TCP option space.
3543 	 */
3544 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3545 		mptcp_subflow_early_fallback(msk, subflow);
3546 #endif
3547 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3548 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3549 		mptcp_subflow_early_fallback(msk, subflow);
3550 	}
3551 	if (likely(!__mptcp_check_fallback(msk)))
3552 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3553 
3554 do_connect:
3555 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3556 	sock->state = ssock->state;
3557 
3558 	/* on successful connect, the msk state will be moved to established by
3559 	 * subflow_finish_connect()
3560 	 */
3561 	if (!err || err == -EINPROGRESS)
3562 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3563 	else
3564 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3565 
3566 unlock:
3567 	release_sock(sock->sk);
3568 	return err;
3569 }
3570 
3571 static int mptcp_listen(struct socket *sock, int backlog)
3572 {
3573 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3574 	struct socket *ssock;
3575 	int err;
3576 
3577 	pr_debug("msk=%p", msk);
3578 
3579 	lock_sock(sock->sk);
3580 	ssock = __mptcp_nmpc_socket(msk);
3581 	if (!ssock) {
3582 		err = -EINVAL;
3583 		goto unlock;
3584 	}
3585 
3586 	mptcp_token_destroy(msk);
3587 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3588 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3589 
3590 	err = ssock->ops->listen(ssock, backlog);
3591 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3592 	if (!err)
3593 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3594 
3595 unlock:
3596 	release_sock(sock->sk);
3597 	return err;
3598 }
3599 
3600 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3601 			       int flags, bool kern)
3602 {
3603 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3604 	struct socket *ssock;
3605 	int err;
3606 
3607 	pr_debug("msk=%p", msk);
3608 
3609 	ssock = __mptcp_nmpc_socket(msk);
3610 	if (!ssock)
3611 		return -EINVAL;
3612 
3613 	err = ssock->ops->accept(sock, newsock, flags, kern);
3614 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3615 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3616 		struct mptcp_subflow_context *subflow;
3617 		struct sock *newsk = newsock->sk;
3618 
3619 		lock_sock(newsk);
3620 
3621 		/* PM/worker can now acquire the first subflow socket
3622 		 * lock without racing with listener queue cleanup,
3623 		 * we can notify it, if needed.
3624 		 *
3625 		 * Even if remote has reset the initial subflow by now
3626 		 * the refcnt is still at least one.
3627 		 */
3628 		subflow = mptcp_subflow_ctx(msk->first);
3629 		list_add(&subflow->node, &msk->conn_list);
3630 		sock_hold(msk->first);
3631 		if (mptcp_is_fully_established(newsk))
3632 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3633 
3634 		mptcp_copy_inaddrs(newsk, msk->first);
3635 		mptcp_rcv_space_init(msk, msk->first);
3636 		mptcp_propagate_sndbuf(newsk, msk->first);
3637 
3638 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3639 		 * This is needed so NOSPACE flag can be set from tcp stack.
3640 		 */
3641 		mptcp_for_each_subflow(msk, subflow) {
3642 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3643 
3644 			if (!ssk->sk_socket)
3645 				mptcp_sock_graft(ssk, newsock);
3646 		}
3647 		release_sock(newsk);
3648 	}
3649 
3650 	return err;
3651 }
3652 
3653 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3654 {
3655 	/* Concurrent splices from sk_receive_queue into receive_queue will
3656 	 * always show at least one non-empty queue when checked in this order.
3657 	 */
3658 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3659 	    skb_queue_empty_lockless(&msk->receive_queue))
3660 		return 0;
3661 
3662 	return EPOLLIN | EPOLLRDNORM;
3663 }
3664 
3665 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3666 {
3667 	struct sock *sk = (struct sock *)msk;
3668 
3669 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3670 		return EPOLLOUT | EPOLLWRNORM;
3671 
3672 	if (sk_stream_is_writeable(sk))
3673 		return EPOLLOUT | EPOLLWRNORM;
3674 
3675 	mptcp_set_nospace(sk);
3676 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3677 	if (sk_stream_is_writeable(sk))
3678 		return EPOLLOUT | EPOLLWRNORM;
3679 
3680 	return 0;
3681 }
3682 
3683 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3684 			   struct poll_table_struct *wait)
3685 {
3686 	struct sock *sk = sock->sk;
3687 	struct mptcp_sock *msk;
3688 	__poll_t mask = 0;
3689 	int state;
3690 
3691 	msk = mptcp_sk(sk);
3692 	sock_poll_wait(file, sock, wait);
3693 
3694 	state = inet_sk_state_load(sk);
3695 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3696 	if (state == TCP_LISTEN) {
3697 		if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
3698 			return 0;
3699 
3700 		return inet_csk_listen_poll(msk->subflow->sk);
3701 	}
3702 
3703 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3704 		mask |= mptcp_check_readable(msk);
3705 		mask |= mptcp_check_writeable(msk);
3706 	}
3707 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3708 		mask |= EPOLLHUP;
3709 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3710 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3711 
3712 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3713 	smp_rmb();
3714 	if (sk->sk_err)
3715 		mask |= EPOLLERR;
3716 
3717 	return mask;
3718 }
3719 
3720 static const struct proto_ops mptcp_stream_ops = {
3721 	.family		   = PF_INET,
3722 	.owner		   = THIS_MODULE,
3723 	.release	   = inet_release,
3724 	.bind		   = mptcp_bind,
3725 	.connect	   = mptcp_stream_connect,
3726 	.socketpair	   = sock_no_socketpair,
3727 	.accept		   = mptcp_stream_accept,
3728 	.getname	   = inet_getname,
3729 	.poll		   = mptcp_poll,
3730 	.ioctl		   = inet_ioctl,
3731 	.gettstamp	   = sock_gettstamp,
3732 	.listen		   = mptcp_listen,
3733 	.shutdown	   = inet_shutdown,
3734 	.setsockopt	   = sock_common_setsockopt,
3735 	.getsockopt	   = sock_common_getsockopt,
3736 	.sendmsg	   = inet_sendmsg,
3737 	.recvmsg	   = inet_recvmsg,
3738 	.mmap		   = sock_no_mmap,
3739 	.sendpage	   = inet_sendpage,
3740 };
3741 
3742 static struct inet_protosw mptcp_protosw = {
3743 	.type		= SOCK_STREAM,
3744 	.protocol	= IPPROTO_MPTCP,
3745 	.prot		= &mptcp_prot,
3746 	.ops		= &mptcp_stream_ops,
3747 	.flags		= INET_PROTOSW_ICSK,
3748 };
3749 
3750 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3751 {
3752 	struct mptcp_delegated_action *delegated;
3753 	struct mptcp_subflow_context *subflow;
3754 	int work_done = 0;
3755 
3756 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3757 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3758 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3759 
3760 		bh_lock_sock_nested(ssk);
3761 		if (!sock_owned_by_user(ssk) &&
3762 		    mptcp_subflow_has_delegated_action(subflow))
3763 			mptcp_subflow_process_delegated(ssk);
3764 		/* ... elsewhere tcp_release_cb_override already processed
3765 		 * the action or will do at next release_sock().
3766 		 * In both case must dequeue the subflow here - on the same
3767 		 * CPU that scheduled it.
3768 		 */
3769 		bh_unlock_sock(ssk);
3770 		sock_put(ssk);
3771 
3772 		if (++work_done == budget)
3773 			return budget;
3774 	}
3775 
3776 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3777 	 * will not try accessing the NULL napi->dev ptr
3778 	 */
3779 	napi_complete_done(napi, 0);
3780 	return work_done;
3781 }
3782 
3783 void __init mptcp_proto_init(void)
3784 {
3785 	struct mptcp_delegated_action *delegated;
3786 	int cpu;
3787 
3788 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3789 
3790 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3791 		panic("Failed to allocate MPTCP pcpu counter\n");
3792 
3793 	init_dummy_netdev(&mptcp_napi_dev);
3794 	for_each_possible_cpu(cpu) {
3795 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3796 		INIT_LIST_HEAD(&delegated->head);
3797 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3798 				  mptcp_napi_poll);
3799 		napi_enable(&delegated->napi);
3800 	}
3801 
3802 	mptcp_subflow_init();
3803 	mptcp_pm_init();
3804 	mptcp_token_init();
3805 
3806 	if (proto_register(&mptcp_prot, 1) != 0)
3807 		panic("Failed to register MPTCP proto.\n");
3808 
3809 	inet_register_protosw(&mptcp_protosw);
3810 
3811 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3812 }
3813 
3814 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3815 static const struct proto_ops mptcp_v6_stream_ops = {
3816 	.family		   = PF_INET6,
3817 	.owner		   = THIS_MODULE,
3818 	.release	   = inet6_release,
3819 	.bind		   = mptcp_bind,
3820 	.connect	   = mptcp_stream_connect,
3821 	.socketpair	   = sock_no_socketpair,
3822 	.accept		   = mptcp_stream_accept,
3823 	.getname	   = inet6_getname,
3824 	.poll		   = mptcp_poll,
3825 	.ioctl		   = inet6_ioctl,
3826 	.gettstamp	   = sock_gettstamp,
3827 	.listen		   = mptcp_listen,
3828 	.shutdown	   = inet_shutdown,
3829 	.setsockopt	   = sock_common_setsockopt,
3830 	.getsockopt	   = sock_common_getsockopt,
3831 	.sendmsg	   = inet6_sendmsg,
3832 	.recvmsg	   = inet6_recvmsg,
3833 	.mmap		   = sock_no_mmap,
3834 	.sendpage	   = inet_sendpage,
3835 #ifdef CONFIG_COMPAT
3836 	.compat_ioctl	   = inet6_compat_ioctl,
3837 #endif
3838 };
3839 
3840 static struct proto mptcp_v6_prot;
3841 
3842 static void mptcp_v6_destroy(struct sock *sk)
3843 {
3844 	mptcp_destroy(sk);
3845 	inet6_destroy_sock(sk);
3846 }
3847 
3848 static struct inet_protosw mptcp_v6_protosw = {
3849 	.type		= SOCK_STREAM,
3850 	.protocol	= IPPROTO_MPTCP,
3851 	.prot		= &mptcp_v6_prot,
3852 	.ops		= &mptcp_v6_stream_ops,
3853 	.flags		= INET_PROTOSW_ICSK,
3854 };
3855 
3856 int __init mptcp_proto_v6_init(void)
3857 {
3858 	int err;
3859 
3860 	mptcp_v6_prot = mptcp_prot;
3861 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3862 	mptcp_v6_prot.slab = NULL;
3863 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3864 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3865 
3866 	err = proto_register(&mptcp_v6_prot, 1);
3867 	if (err)
3868 		return err;
3869 
3870 	err = inet6_register_protosw(&mptcp_v6_protosw);
3871 	if (err)
3872 		proto_unregister(&mptcp_v6_prot);
3873 
3874 	return err;
3875 }
3876 #endif
3877