xref: /linux/net/mptcp/protocol.c (revision 93a3545d812ae7cfe4426374e00a7d8f64ac02e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include "protocol.h"
24 #include "mib.h"
25 
26 #define MPTCP_SAME_STATE TCP_MAX_STATES
27 
28 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
29 struct mptcp6_sock {
30 	struct mptcp_sock msk;
31 	struct ipv6_pinfo np;
32 };
33 #endif
34 
35 struct mptcp_skb_cb {
36 	u32 offset;
37 };
38 
39 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
40 
41 static struct percpu_counter mptcp_sockets_allocated;
42 
43 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
44  * completed yet or has failed, return the subflow socket.
45  * Otherwise return NULL.
46  */
47 static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
48 {
49 	if (!msk->subflow || READ_ONCE(msk->can_ack))
50 		return NULL;
51 
52 	return msk->subflow;
53 }
54 
55 static bool mptcp_is_tcpsk(struct sock *sk)
56 {
57 	struct socket *sock = sk->sk_socket;
58 
59 	if (unlikely(sk->sk_prot == &tcp_prot)) {
60 		/* we are being invoked after mptcp_accept() has
61 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
62 		 * not an mptcp one.
63 		 *
64 		 * Hand the socket over to tcp so all further socket ops
65 		 * bypass mptcp.
66 		 */
67 		sock->ops = &inet_stream_ops;
68 		return true;
69 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
70 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
71 		sock->ops = &inet6_stream_ops;
72 		return true;
73 #endif
74 	}
75 
76 	return false;
77 }
78 
79 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
80 {
81 	sock_owned_by_me((const struct sock *)msk);
82 
83 	if (likely(!__mptcp_check_fallback(msk)))
84 		return NULL;
85 
86 	return msk->first;
87 }
88 
89 static int __mptcp_socket_create(struct mptcp_sock *msk)
90 {
91 	struct mptcp_subflow_context *subflow;
92 	struct sock *sk = (struct sock *)msk;
93 	struct socket *ssock;
94 	int err;
95 
96 	err = mptcp_subflow_create_socket(sk, &ssock);
97 	if (err)
98 		return err;
99 
100 	msk->first = ssock->sk;
101 	msk->subflow = ssock;
102 	subflow = mptcp_subflow_ctx(ssock->sk);
103 	list_add(&subflow->node, &msk->conn_list);
104 	subflow->request_mptcp = 1;
105 
106 	/* accept() will wait on first subflow sk_wq, and we always wakes up
107 	 * via msk->sk_socket
108 	 */
109 	RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq);
110 
111 	return 0;
112 }
113 
114 static void __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
115 			     struct sk_buff *skb,
116 			     unsigned int offset, size_t copy_len)
117 {
118 	struct sock *sk = (struct sock *)msk;
119 	struct sk_buff *tail;
120 
121 	__skb_unlink(skb, &ssk->sk_receive_queue);
122 
123 	skb_ext_reset(skb);
124 	skb_orphan(skb);
125 	msk->ack_seq += copy_len;
126 
127 	tail = skb_peek_tail(&sk->sk_receive_queue);
128 	if (offset == 0 && tail) {
129 		bool fragstolen;
130 		int delta;
131 
132 		if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) {
133 			kfree_skb_partial(skb, fragstolen);
134 			atomic_add(delta, &sk->sk_rmem_alloc);
135 			sk_mem_charge(sk, delta);
136 			return;
137 		}
138 	}
139 
140 	skb_set_owner_r(skb, sk);
141 	__skb_queue_tail(&sk->sk_receive_queue, skb);
142 	MPTCP_SKB_CB(skb)->offset = offset;
143 }
144 
145 /* both sockets must be locked */
146 static bool mptcp_subflow_dsn_valid(const struct mptcp_sock *msk,
147 				    struct sock *ssk)
148 {
149 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
150 	u64 dsn = mptcp_subflow_get_mapped_dsn(subflow);
151 
152 	/* revalidate data sequence number.
153 	 *
154 	 * mptcp_subflow_data_available() is usually called
155 	 * without msk lock.  Its unlikely (but possible)
156 	 * that msk->ack_seq has been advanced since the last
157 	 * call found in-sequence data.
158 	 */
159 	if (likely(dsn == msk->ack_seq))
160 		return true;
161 
162 	subflow->data_avail = 0;
163 	return mptcp_subflow_data_available(ssk);
164 }
165 
166 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
167 					   struct sock *ssk,
168 					   unsigned int *bytes)
169 {
170 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
171 	struct sock *sk = (struct sock *)msk;
172 	unsigned int moved = 0;
173 	bool more_data_avail;
174 	struct tcp_sock *tp;
175 	bool done = false;
176 
177 	if (!mptcp_subflow_dsn_valid(msk, ssk)) {
178 		*bytes = 0;
179 		return false;
180 	}
181 
182 	tp = tcp_sk(ssk);
183 	do {
184 		u32 map_remaining, offset;
185 		u32 seq = tp->copied_seq;
186 		struct sk_buff *skb;
187 		bool fin;
188 
189 		/* try to move as much data as available */
190 		map_remaining = subflow->map_data_len -
191 				mptcp_subflow_get_map_offset(subflow);
192 
193 		skb = skb_peek(&ssk->sk_receive_queue);
194 		if (!skb)
195 			break;
196 
197 		if (__mptcp_check_fallback(msk)) {
198 			/* if we are running under the workqueue, TCP could have
199 			 * collapsed skbs between dummy map creation and now
200 			 * be sure to adjust the size
201 			 */
202 			map_remaining = skb->len;
203 			subflow->map_data_len = skb->len;
204 		}
205 
206 		offset = seq - TCP_SKB_CB(skb)->seq;
207 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
208 		if (fin) {
209 			done = true;
210 			seq++;
211 		}
212 
213 		if (offset < skb->len) {
214 			size_t len = skb->len - offset;
215 
216 			if (tp->urg_data)
217 				done = true;
218 
219 			__mptcp_move_skb(msk, ssk, skb, offset, len);
220 			seq += len;
221 			moved += len;
222 
223 			if (WARN_ON_ONCE(map_remaining < len))
224 				break;
225 		} else {
226 			WARN_ON_ONCE(!fin);
227 			sk_eat_skb(ssk, skb);
228 			done = true;
229 		}
230 
231 		WRITE_ONCE(tp->copied_seq, seq);
232 		more_data_avail = mptcp_subflow_data_available(ssk);
233 
234 		if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) {
235 			done = true;
236 			break;
237 		}
238 	} while (more_data_avail);
239 
240 	*bytes = moved;
241 
242 	return done;
243 }
244 
245 /* In most cases we will be able to lock the mptcp socket.  If its already
246  * owned, we need to defer to the work queue to avoid ABBA deadlock.
247  */
248 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
249 {
250 	struct sock *sk = (struct sock *)msk;
251 	unsigned int moved = 0;
252 
253 	if (READ_ONCE(sk->sk_lock.owned))
254 		return false;
255 
256 	if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock)))
257 		return false;
258 
259 	/* must re-check after taking the lock */
260 	if (!READ_ONCE(sk->sk_lock.owned))
261 		__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
262 
263 	spin_unlock_bh(&sk->sk_lock.slock);
264 
265 	return moved > 0;
266 }
267 
268 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
269 {
270 	struct mptcp_sock *msk = mptcp_sk(sk);
271 
272 	set_bit(MPTCP_DATA_READY, &msk->flags);
273 
274 	if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) &&
275 	    move_skbs_to_msk(msk, ssk))
276 		goto wake;
277 
278 	/* don't schedule if mptcp sk is (still) over limit */
279 	if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf))
280 		goto wake;
281 
282 	/* mptcp socket is owned, release_cb should retry */
283 	if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED,
284 			      &sk->sk_tsq_flags)) {
285 		sock_hold(sk);
286 
287 		/* need to try again, its possible release_cb() has already
288 		 * been called after the test_and_set_bit() above.
289 		 */
290 		move_skbs_to_msk(msk, ssk);
291 	}
292 wake:
293 	sk->sk_data_ready(sk);
294 }
295 
296 static void __mptcp_flush_join_list(struct mptcp_sock *msk)
297 {
298 	if (likely(list_empty(&msk->join_list)))
299 		return;
300 
301 	spin_lock_bh(&msk->join_list_lock);
302 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
303 	spin_unlock_bh(&msk->join_list_lock);
304 }
305 
306 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
307 {
308 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
309 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
310 
311 	if (tout <= 0)
312 		tout = mptcp_sk(sk)->timer_ival;
313 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
314 }
315 
316 static bool mptcp_timer_pending(struct sock *sk)
317 {
318 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
319 }
320 
321 static void mptcp_reset_timer(struct sock *sk)
322 {
323 	struct inet_connection_sock *icsk = inet_csk(sk);
324 	unsigned long tout;
325 
326 	/* should never be called with mptcp level timer cleared */
327 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
328 	if (WARN_ON_ONCE(!tout))
329 		tout = TCP_RTO_MIN;
330 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
331 }
332 
333 void mptcp_data_acked(struct sock *sk)
334 {
335 	mptcp_reset_timer(sk);
336 
337 	if (!sk_stream_is_writeable(sk) &&
338 	    schedule_work(&mptcp_sk(sk)->work))
339 		sock_hold(sk);
340 }
341 
342 void mptcp_subflow_eof(struct sock *sk)
343 {
344 	struct mptcp_sock *msk = mptcp_sk(sk);
345 
346 	if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) &&
347 	    schedule_work(&msk->work))
348 		sock_hold(sk);
349 }
350 
351 static void mptcp_check_for_eof(struct mptcp_sock *msk)
352 {
353 	struct mptcp_subflow_context *subflow;
354 	struct sock *sk = (struct sock *)msk;
355 	int receivers = 0;
356 
357 	mptcp_for_each_subflow(msk, subflow)
358 		receivers += !subflow->rx_eof;
359 
360 	if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
361 		/* hopefully temporary hack: propagate shutdown status
362 		 * to msk, when all subflows agree on it
363 		 */
364 		sk->sk_shutdown |= RCV_SHUTDOWN;
365 
366 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
367 		set_bit(MPTCP_DATA_READY, &msk->flags);
368 		sk->sk_data_ready(sk);
369 	}
370 }
371 
372 static void mptcp_stop_timer(struct sock *sk)
373 {
374 	struct inet_connection_sock *icsk = inet_csk(sk);
375 
376 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
377 	mptcp_sk(sk)->timer_ival = 0;
378 }
379 
380 static bool mptcp_ext_cache_refill(struct mptcp_sock *msk)
381 {
382 	const struct sock *sk = (const struct sock *)msk;
383 
384 	if (!msk->cached_ext)
385 		msk->cached_ext = __skb_ext_alloc(sk->sk_allocation);
386 
387 	return !!msk->cached_ext;
388 }
389 
390 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
391 {
392 	struct mptcp_subflow_context *subflow;
393 	struct sock *sk = (struct sock *)msk;
394 
395 	sock_owned_by_me(sk);
396 
397 	mptcp_for_each_subflow(msk, subflow) {
398 		if (subflow->data_avail)
399 			return mptcp_subflow_tcp_sock(subflow);
400 	}
401 
402 	return NULL;
403 }
404 
405 static bool mptcp_skb_can_collapse_to(u64 write_seq,
406 				      const struct sk_buff *skb,
407 				      const struct mptcp_ext *mpext)
408 {
409 	if (!tcp_skb_can_collapse_to(skb))
410 		return false;
411 
412 	/* can collapse only if MPTCP level sequence is in order */
413 	return mpext && mpext->data_seq + mpext->data_len == write_seq;
414 }
415 
416 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
417 				       const struct page_frag *pfrag,
418 				       const struct mptcp_data_frag *df)
419 {
420 	return df && pfrag->page == df->page &&
421 		df->data_seq + df->data_len == msk->write_seq;
422 }
423 
424 static void dfrag_uncharge(struct sock *sk, int len)
425 {
426 	sk_mem_uncharge(sk, len);
427 	sk_wmem_queued_add(sk, -len);
428 }
429 
430 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
431 {
432 	int len = dfrag->data_len + dfrag->overhead;
433 
434 	list_del(&dfrag->list);
435 	dfrag_uncharge(sk, len);
436 	put_page(dfrag->page);
437 }
438 
439 static void mptcp_clean_una(struct sock *sk)
440 {
441 	struct mptcp_sock *msk = mptcp_sk(sk);
442 	struct mptcp_data_frag *dtmp, *dfrag;
443 	bool cleaned = false;
444 	u64 snd_una;
445 
446 	/* on fallback we just need to ignore snd_una, as this is really
447 	 * plain TCP
448 	 */
449 	if (__mptcp_check_fallback(msk))
450 		atomic64_set(&msk->snd_una, msk->write_seq);
451 	snd_una = atomic64_read(&msk->snd_una);
452 
453 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
454 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
455 			break;
456 
457 		dfrag_clear(sk, dfrag);
458 		cleaned = true;
459 	}
460 
461 	dfrag = mptcp_rtx_head(sk);
462 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
463 		u64 delta = dfrag->data_seq + dfrag->data_len - snd_una;
464 
465 		dfrag->data_seq += delta;
466 		dfrag->data_len -= delta;
467 
468 		dfrag_uncharge(sk, delta);
469 		cleaned = true;
470 	}
471 
472 	if (cleaned) {
473 		sk_mem_reclaim_partial(sk);
474 
475 		/* Only wake up writers if a subflow is ready */
476 		if (test_bit(MPTCP_SEND_SPACE, &msk->flags))
477 			sk_stream_write_space(sk);
478 	}
479 }
480 
481 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
482  * data
483  */
484 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
485 {
486 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
487 					pfrag, sk->sk_allocation)))
488 		return true;
489 
490 	sk->sk_prot->enter_memory_pressure(sk);
491 	sk_stream_moderate_sndbuf(sk);
492 	return false;
493 }
494 
495 static struct mptcp_data_frag *
496 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
497 		      int orig_offset)
498 {
499 	int offset = ALIGN(orig_offset, sizeof(long));
500 	struct mptcp_data_frag *dfrag;
501 
502 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
503 	dfrag->data_len = 0;
504 	dfrag->data_seq = msk->write_seq;
505 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
506 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
507 	dfrag->page = pfrag->page;
508 
509 	return dfrag;
510 }
511 
512 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
513 			      struct msghdr *msg, struct mptcp_data_frag *dfrag,
514 			      long *timeo, int *pmss_now,
515 			      int *ps_goal)
516 {
517 	int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0;
518 	bool dfrag_collapsed, can_collapse = false;
519 	struct mptcp_sock *msk = mptcp_sk(sk);
520 	struct mptcp_ext *mpext = NULL;
521 	bool retransmission = !!dfrag;
522 	struct sk_buff *skb, *tail;
523 	struct page_frag *pfrag;
524 	struct page *page;
525 	u64 *write_seq;
526 	size_t psize;
527 
528 	/* use the mptcp page cache so that we can easily move the data
529 	 * from one substream to another, but do per subflow memory accounting
530 	 * Note: pfrag is used only !retransmission, but the compiler if
531 	 * fooled into a warning if we don't init here
532 	 */
533 	pfrag = sk_page_frag(sk);
534 	if (!retransmission) {
535 		write_seq = &msk->write_seq;
536 		page = pfrag->page;
537 	} else {
538 		write_seq = &dfrag->data_seq;
539 		page = dfrag->page;
540 	}
541 
542 	/* compute copy limit */
543 	mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags);
544 	*pmss_now = mss_now;
545 	*ps_goal = size_goal;
546 	avail_size = size_goal;
547 	skb = tcp_write_queue_tail(ssk);
548 	if (skb) {
549 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
550 
551 		/* Limit the write to the size available in the
552 		 * current skb, if any, so that we create at most a new skb.
553 		 * Explicitly tells TCP internals to avoid collapsing on later
554 		 * queue management operation, to avoid breaking the ext <->
555 		 * SSN association set here
556 		 */
557 		can_collapse = (size_goal - skb->len > 0) &&
558 			      mptcp_skb_can_collapse_to(*write_seq, skb, mpext);
559 		if (!can_collapse)
560 			TCP_SKB_CB(skb)->eor = 1;
561 		else
562 			avail_size = size_goal - skb->len;
563 	}
564 
565 	if (!retransmission) {
566 		/* reuse tail pfrag, if possible, or carve a new one from the
567 		 * page allocator
568 		 */
569 		dfrag = mptcp_rtx_tail(sk);
570 		offset = pfrag->offset;
571 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
572 		if (!dfrag_collapsed) {
573 			dfrag = mptcp_carve_data_frag(msk, pfrag, offset);
574 			offset = dfrag->offset;
575 			frag_truesize = dfrag->overhead;
576 		}
577 		psize = min_t(size_t, pfrag->size - offset, avail_size);
578 
579 		/* Copy to page */
580 		pr_debug("left=%zu", msg_data_left(msg));
581 		psize = copy_page_from_iter(pfrag->page, offset,
582 					    min_t(size_t, msg_data_left(msg),
583 						  psize),
584 					    &msg->msg_iter);
585 		pr_debug("left=%zu", msg_data_left(msg));
586 		if (!psize)
587 			return -EINVAL;
588 
589 		if (!sk_wmem_schedule(sk, psize + dfrag->overhead))
590 			return -ENOMEM;
591 	} else {
592 		offset = dfrag->offset;
593 		psize = min_t(size_t, dfrag->data_len, avail_size);
594 	}
595 
596 	/* tell the TCP stack to delay the push so that we can safely
597 	 * access the skb after the sendpages call
598 	 */
599 	ret = do_tcp_sendpages(ssk, page, offset, psize,
600 			       msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT);
601 	if (ret <= 0)
602 		return ret;
603 
604 	frag_truesize += ret;
605 	if (!retransmission) {
606 		if (unlikely(ret < psize))
607 			iov_iter_revert(&msg->msg_iter, psize - ret);
608 
609 		/* send successful, keep track of sent data for mptcp-level
610 		 * retransmission
611 		 */
612 		dfrag->data_len += ret;
613 		if (!dfrag_collapsed) {
614 			get_page(dfrag->page);
615 			list_add_tail(&dfrag->list, &msk->rtx_queue);
616 			sk_wmem_queued_add(sk, frag_truesize);
617 		} else {
618 			sk_wmem_queued_add(sk, ret);
619 		}
620 
621 		/* charge data on mptcp rtx queue to the master socket
622 		 * Note: we charge such data both to sk and ssk
623 		 */
624 		sk->sk_forward_alloc -= frag_truesize;
625 	}
626 
627 	/* if the tail skb extension is still the cached one, collapsing
628 	 * really happened. Note: we can't check for 'same skb' as the sk_buff
629 	 * hdr on tail can be transmitted, freed and re-allocated by the
630 	 * do_tcp_sendpages() call
631 	 */
632 	tail = tcp_write_queue_tail(ssk);
633 	if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) {
634 		WARN_ON_ONCE(!can_collapse);
635 		mpext->data_len += ret;
636 		goto out;
637 	}
638 
639 	skb = tcp_write_queue_tail(ssk);
640 	mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext);
641 	msk->cached_ext = NULL;
642 
643 	memset(mpext, 0, sizeof(*mpext));
644 	mpext->data_seq = *write_seq;
645 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
646 	mpext->data_len = ret;
647 	mpext->use_map = 1;
648 	mpext->dsn64 = 1;
649 
650 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
651 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
652 		 mpext->dsn64);
653 
654 out:
655 	if (!retransmission)
656 		pfrag->offset += frag_truesize;
657 	*write_seq += ret;
658 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
659 
660 	return ret;
661 }
662 
663 static void mptcp_nospace(struct mptcp_sock *msk, struct socket *sock)
664 {
665 	clear_bit(MPTCP_SEND_SPACE, &msk->flags);
666 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
667 
668 	/* enables sk->write_space() callbacks */
669 	set_bit(SOCK_NOSPACE, &sock->flags);
670 }
671 
672 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
673 {
674 	struct mptcp_subflow_context *subflow;
675 	struct sock *backup = NULL;
676 
677 	sock_owned_by_me((const struct sock *)msk);
678 
679 	if (!mptcp_ext_cache_refill(msk))
680 		return NULL;
681 
682 	mptcp_for_each_subflow(msk, subflow) {
683 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
684 
685 		if (!sk_stream_memory_free(ssk)) {
686 			struct socket *sock = ssk->sk_socket;
687 
688 			if (sock)
689 				mptcp_nospace(msk, sock);
690 
691 			return NULL;
692 		}
693 
694 		if (subflow->backup) {
695 			if (!backup)
696 				backup = ssk;
697 
698 			continue;
699 		}
700 
701 		return ssk;
702 	}
703 
704 	return backup;
705 }
706 
707 static void ssk_check_wmem(struct mptcp_sock *msk, struct sock *ssk)
708 {
709 	struct socket *sock;
710 
711 	if (likely(sk_stream_is_writeable(ssk)))
712 		return;
713 
714 	sock = READ_ONCE(ssk->sk_socket);
715 	if (sock)
716 		mptcp_nospace(msk, sock);
717 }
718 
719 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
720 {
721 	int mss_now = 0, size_goal = 0, ret = 0;
722 	struct mptcp_sock *msk = mptcp_sk(sk);
723 	struct page_frag *pfrag;
724 	size_t copied = 0;
725 	struct sock *ssk;
726 	bool tx_ok;
727 	long timeo;
728 
729 	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
730 		return -EOPNOTSUPP;
731 
732 	lock_sock(sk);
733 
734 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
735 
736 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
737 		ret = sk_stream_wait_connect(sk, &timeo);
738 		if (ret)
739 			goto out;
740 	}
741 
742 	pfrag = sk_page_frag(sk);
743 restart:
744 	mptcp_clean_una(sk);
745 
746 wait_for_sndbuf:
747 	__mptcp_flush_join_list(msk);
748 	ssk = mptcp_subflow_get_send(msk);
749 	while (!sk_stream_memory_free(sk) ||
750 	       !ssk ||
751 	       !mptcp_page_frag_refill(ssk, pfrag)) {
752 		if (ssk) {
753 			/* make sure retransmit timer is
754 			 * running before we wait for memory.
755 			 *
756 			 * The retransmit timer might be needed
757 			 * to make the peer send an up-to-date
758 			 * MPTCP Ack.
759 			 */
760 			mptcp_set_timeout(sk, ssk);
761 			if (!mptcp_timer_pending(sk))
762 				mptcp_reset_timer(sk);
763 		}
764 
765 		ret = sk_stream_wait_memory(sk, &timeo);
766 		if (ret)
767 			goto out;
768 
769 		mptcp_clean_una(sk);
770 
771 		ssk = mptcp_subflow_get_send(msk);
772 		if (list_empty(&msk->conn_list)) {
773 			ret = -ENOTCONN;
774 			goto out;
775 		}
776 	}
777 
778 	pr_debug("conn_list->subflow=%p", ssk);
779 
780 	lock_sock(ssk);
781 	tx_ok = msg_data_left(msg);
782 	while (tx_ok) {
783 		ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now,
784 					 &size_goal);
785 		if (ret < 0) {
786 			if (ret == -EAGAIN && timeo > 0) {
787 				mptcp_set_timeout(sk, ssk);
788 				release_sock(ssk);
789 				goto restart;
790 			}
791 			break;
792 		}
793 
794 		copied += ret;
795 
796 		tx_ok = msg_data_left(msg);
797 		if (!tx_ok)
798 			break;
799 
800 		if (!sk_stream_memory_free(ssk) ||
801 		    !mptcp_page_frag_refill(ssk, pfrag) ||
802 		    !mptcp_ext_cache_refill(msk)) {
803 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
804 			tcp_push(ssk, msg->msg_flags, mss_now,
805 				 tcp_sk(ssk)->nonagle, size_goal);
806 			mptcp_set_timeout(sk, ssk);
807 			release_sock(ssk);
808 			goto restart;
809 		}
810 
811 		/* memory is charged to mptcp level socket as well, i.e.
812 		 * if msg is very large, mptcp socket may run out of buffer
813 		 * space.  mptcp_clean_una() will release data that has
814 		 * been acked at mptcp level in the mean time, so there is
815 		 * a good chance we can continue sending data right away.
816 		 *
817 		 * Normally, when the tcp subflow can accept more data, then
818 		 * so can the MPTCP socket.  However, we need to cope with
819 		 * peers that might lag behind in their MPTCP-level
820 		 * acknowledgements, i.e.  data might have been acked at
821 		 * tcp level only.  So, we must also check the MPTCP socket
822 		 * limits before we send more data.
823 		 */
824 		if (unlikely(!sk_stream_memory_free(sk))) {
825 			tcp_push(ssk, msg->msg_flags, mss_now,
826 				 tcp_sk(ssk)->nonagle, size_goal);
827 			mptcp_clean_una(sk);
828 			if (!sk_stream_memory_free(sk)) {
829 				/* can't send more for now, need to wait for
830 				 * MPTCP-level ACKs from peer.
831 				 *
832 				 * Wakeup will happen via mptcp_clean_una().
833 				 */
834 				mptcp_set_timeout(sk, ssk);
835 				release_sock(ssk);
836 				goto wait_for_sndbuf;
837 			}
838 		}
839 	}
840 
841 	mptcp_set_timeout(sk, ssk);
842 	if (copied) {
843 		ret = copied;
844 		tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle,
845 			 size_goal);
846 
847 		/* start the timer, if it's not pending */
848 		if (!mptcp_timer_pending(sk))
849 			mptcp_reset_timer(sk);
850 	}
851 
852 	ssk_check_wmem(msk, ssk);
853 	release_sock(ssk);
854 out:
855 	release_sock(sk);
856 	return ret;
857 }
858 
859 static void mptcp_wait_data(struct sock *sk, long *timeo)
860 {
861 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
862 	struct mptcp_sock *msk = mptcp_sk(sk);
863 
864 	add_wait_queue(sk_sleep(sk), &wait);
865 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
866 
867 	sk_wait_event(sk, timeo,
868 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
869 
870 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
871 	remove_wait_queue(sk_sleep(sk), &wait);
872 }
873 
874 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
875 				struct msghdr *msg,
876 				size_t len)
877 {
878 	struct sock *sk = (struct sock *)msk;
879 	struct sk_buff *skb;
880 	int copied = 0;
881 
882 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
883 		u32 offset = MPTCP_SKB_CB(skb)->offset;
884 		u32 data_len = skb->len - offset;
885 		u32 count = min_t(size_t, len - copied, data_len);
886 		int err;
887 
888 		err = skb_copy_datagram_msg(skb, offset, msg, count);
889 		if (unlikely(err < 0)) {
890 			if (!copied)
891 				return err;
892 			break;
893 		}
894 
895 		copied += count;
896 
897 		if (count < data_len) {
898 			MPTCP_SKB_CB(skb)->offset += count;
899 			break;
900 		}
901 
902 		__skb_unlink(skb, &sk->sk_receive_queue);
903 		__kfree_skb(skb);
904 
905 		if (copied >= len)
906 			break;
907 	}
908 
909 	return copied;
910 }
911 
912 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
913  *
914  * Only difference: Use highest rtt estimate of the subflows in use.
915  */
916 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
917 {
918 	struct mptcp_subflow_context *subflow;
919 	struct sock *sk = (struct sock *)msk;
920 	u32 time, advmss = 1;
921 	u64 rtt_us, mstamp;
922 
923 	sock_owned_by_me(sk);
924 
925 	if (copied <= 0)
926 		return;
927 
928 	msk->rcvq_space.copied += copied;
929 
930 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
931 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
932 
933 	rtt_us = msk->rcvq_space.rtt_us;
934 	if (rtt_us && time < (rtt_us >> 3))
935 		return;
936 
937 	rtt_us = 0;
938 	mptcp_for_each_subflow(msk, subflow) {
939 		const struct tcp_sock *tp;
940 		u64 sf_rtt_us;
941 		u32 sf_advmss;
942 
943 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
944 
945 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
946 		sf_advmss = READ_ONCE(tp->advmss);
947 
948 		rtt_us = max(sf_rtt_us, rtt_us);
949 		advmss = max(sf_advmss, advmss);
950 	}
951 
952 	msk->rcvq_space.rtt_us = rtt_us;
953 	if (time < (rtt_us >> 3) || rtt_us == 0)
954 		return;
955 
956 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
957 		goto new_measure;
958 
959 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
960 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
961 		int rcvmem, rcvbuf;
962 		u64 rcvwin, grow;
963 
964 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
965 
966 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
967 
968 		do_div(grow, msk->rcvq_space.space);
969 		rcvwin += (grow << 1);
970 
971 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
972 		while (tcp_win_from_space(sk, rcvmem) < advmss)
973 			rcvmem += 128;
974 
975 		do_div(rcvwin, advmss);
976 		rcvbuf = min_t(u64, rcvwin * rcvmem,
977 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
978 
979 		if (rcvbuf > sk->sk_rcvbuf) {
980 			u32 window_clamp;
981 
982 			window_clamp = tcp_win_from_space(sk, rcvbuf);
983 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
984 
985 			/* Make subflows follow along.  If we do not do this, we
986 			 * get drops at subflow level if skbs can't be moved to
987 			 * the mptcp rx queue fast enough (announced rcv_win can
988 			 * exceed ssk->sk_rcvbuf).
989 			 */
990 			mptcp_for_each_subflow(msk, subflow) {
991 				struct sock *ssk;
992 
993 				ssk = mptcp_subflow_tcp_sock(subflow);
994 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
995 				tcp_sk(ssk)->window_clamp = window_clamp;
996 			}
997 		}
998 	}
999 
1000 	msk->rcvq_space.space = msk->rcvq_space.copied;
1001 new_measure:
1002 	msk->rcvq_space.copied = 0;
1003 	msk->rcvq_space.time = mstamp;
1004 }
1005 
1006 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1007 {
1008 	unsigned int moved = 0;
1009 	bool done;
1010 
1011 	do {
1012 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1013 
1014 		if (!ssk)
1015 			break;
1016 
1017 		lock_sock(ssk);
1018 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1019 		release_sock(ssk);
1020 	} while (!done);
1021 
1022 	return moved > 0;
1023 }
1024 
1025 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1026 			 int nonblock, int flags, int *addr_len)
1027 {
1028 	struct mptcp_sock *msk = mptcp_sk(sk);
1029 	int copied = 0;
1030 	int target;
1031 	long timeo;
1032 
1033 	if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT))
1034 		return -EOPNOTSUPP;
1035 
1036 	lock_sock(sk);
1037 	timeo = sock_rcvtimeo(sk, nonblock);
1038 
1039 	len = min_t(size_t, len, INT_MAX);
1040 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1041 	__mptcp_flush_join_list(msk);
1042 
1043 	while (len > (size_t)copied) {
1044 		int bytes_read;
1045 
1046 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied);
1047 		if (unlikely(bytes_read < 0)) {
1048 			if (!copied)
1049 				copied = bytes_read;
1050 			goto out_err;
1051 		}
1052 
1053 		copied += bytes_read;
1054 
1055 		if (skb_queue_empty(&sk->sk_receive_queue) &&
1056 		    __mptcp_move_skbs(msk))
1057 			continue;
1058 
1059 		/* only the master socket status is relevant here. The exit
1060 		 * conditions mirror closely tcp_recvmsg()
1061 		 */
1062 		if (copied >= target)
1063 			break;
1064 
1065 		if (copied) {
1066 			if (sk->sk_err ||
1067 			    sk->sk_state == TCP_CLOSE ||
1068 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1069 			    !timeo ||
1070 			    signal_pending(current))
1071 				break;
1072 		} else {
1073 			if (sk->sk_err) {
1074 				copied = sock_error(sk);
1075 				break;
1076 			}
1077 
1078 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1079 				mptcp_check_for_eof(msk);
1080 
1081 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1082 				break;
1083 
1084 			if (sk->sk_state == TCP_CLOSE) {
1085 				copied = -ENOTCONN;
1086 				break;
1087 			}
1088 
1089 			if (!timeo) {
1090 				copied = -EAGAIN;
1091 				break;
1092 			}
1093 
1094 			if (signal_pending(current)) {
1095 				copied = sock_intr_errno(timeo);
1096 				break;
1097 			}
1098 		}
1099 
1100 		pr_debug("block timeout %ld", timeo);
1101 		mptcp_wait_data(sk, &timeo);
1102 	}
1103 
1104 	if (skb_queue_empty(&sk->sk_receive_queue)) {
1105 		/* entire backlog drained, clear DATA_READY. */
1106 		clear_bit(MPTCP_DATA_READY, &msk->flags);
1107 
1108 		/* .. race-breaker: ssk might have gotten new data
1109 		 * after last __mptcp_move_skbs() returned false.
1110 		 */
1111 		if (unlikely(__mptcp_move_skbs(msk)))
1112 			set_bit(MPTCP_DATA_READY, &msk->flags);
1113 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
1114 		/* data to read but mptcp_wait_data() cleared DATA_READY */
1115 		set_bit(MPTCP_DATA_READY, &msk->flags);
1116 	}
1117 out_err:
1118 	mptcp_rcv_space_adjust(msk, copied);
1119 
1120 	release_sock(sk);
1121 	return copied;
1122 }
1123 
1124 static void mptcp_retransmit_handler(struct sock *sk)
1125 {
1126 	struct mptcp_sock *msk = mptcp_sk(sk);
1127 
1128 	if (atomic64_read(&msk->snd_una) == msk->write_seq) {
1129 		mptcp_stop_timer(sk);
1130 	} else {
1131 		set_bit(MPTCP_WORK_RTX, &msk->flags);
1132 		if (schedule_work(&msk->work))
1133 			sock_hold(sk);
1134 	}
1135 }
1136 
1137 static void mptcp_retransmit_timer(struct timer_list *t)
1138 {
1139 	struct inet_connection_sock *icsk = from_timer(icsk, t,
1140 						       icsk_retransmit_timer);
1141 	struct sock *sk = &icsk->icsk_inet.sk;
1142 
1143 	bh_lock_sock(sk);
1144 	if (!sock_owned_by_user(sk)) {
1145 		mptcp_retransmit_handler(sk);
1146 	} else {
1147 		/* delegate our work to tcp_release_cb() */
1148 		if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED,
1149 				      &sk->sk_tsq_flags))
1150 			sock_hold(sk);
1151 	}
1152 	bh_unlock_sock(sk);
1153 	sock_put(sk);
1154 }
1155 
1156 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
1157  * level.
1158  *
1159  * A backup subflow is returned only if that is the only kind available.
1160  */
1161 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
1162 {
1163 	struct mptcp_subflow_context *subflow;
1164 	struct sock *backup = NULL;
1165 
1166 	sock_owned_by_me((const struct sock *)msk);
1167 
1168 	mptcp_for_each_subflow(msk, subflow) {
1169 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1170 
1171 		/* still data outstanding at TCP level?  Don't retransmit. */
1172 		if (!tcp_write_queue_empty(ssk))
1173 			return NULL;
1174 
1175 		if (subflow->backup) {
1176 			if (!backup)
1177 				backup = ssk;
1178 			continue;
1179 		}
1180 
1181 		return ssk;
1182 	}
1183 
1184 	return backup;
1185 }
1186 
1187 /* subflow sockets can be either outgoing (connect) or incoming
1188  * (accept).
1189  *
1190  * Outgoing subflows use in-kernel sockets.
1191  * Incoming subflows do not have their own 'struct socket' allocated,
1192  * so we need to use tcp_close() after detaching them from the mptcp
1193  * parent socket.
1194  */
1195 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
1196 			      struct mptcp_subflow_context *subflow,
1197 			      long timeout)
1198 {
1199 	struct socket *sock = READ_ONCE(ssk->sk_socket);
1200 
1201 	list_del(&subflow->node);
1202 
1203 	if (sock && sock != sk->sk_socket) {
1204 		/* outgoing subflow */
1205 		sock_release(sock);
1206 	} else {
1207 		/* incoming subflow */
1208 		tcp_close(ssk, timeout);
1209 	}
1210 }
1211 
1212 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
1213 {
1214 	return 0;
1215 }
1216 
1217 static void pm_work(struct mptcp_sock *msk)
1218 {
1219 	struct mptcp_pm_data *pm = &msk->pm;
1220 
1221 	spin_lock_bh(&msk->pm.lock);
1222 
1223 	pr_debug("msk=%p status=%x", msk, pm->status);
1224 	if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) {
1225 		pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED);
1226 		mptcp_pm_nl_add_addr_received(msk);
1227 	}
1228 	if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) {
1229 		pm->status &= ~BIT(MPTCP_PM_ESTABLISHED);
1230 		mptcp_pm_nl_fully_established(msk);
1231 	}
1232 	if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) {
1233 		pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED);
1234 		mptcp_pm_nl_subflow_established(msk);
1235 	}
1236 
1237 	spin_unlock_bh(&msk->pm.lock);
1238 }
1239 
1240 static void mptcp_worker(struct work_struct *work)
1241 {
1242 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
1243 	struct sock *ssk, *sk = &msk->sk.icsk_inet.sk;
1244 	int orig_len, orig_offset, mss_now = 0, size_goal = 0;
1245 	struct mptcp_data_frag *dfrag;
1246 	u64 orig_write_seq;
1247 	size_t copied = 0;
1248 	struct msghdr msg;
1249 	long timeo = 0;
1250 
1251 	lock_sock(sk);
1252 	mptcp_clean_una(sk);
1253 	__mptcp_flush_join_list(msk);
1254 	__mptcp_move_skbs(msk);
1255 
1256 	if (msk->pm.status)
1257 		pm_work(msk);
1258 
1259 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1260 		mptcp_check_for_eof(msk);
1261 
1262 	if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
1263 		goto unlock;
1264 
1265 	dfrag = mptcp_rtx_head(sk);
1266 	if (!dfrag)
1267 		goto unlock;
1268 
1269 	if (!mptcp_ext_cache_refill(msk))
1270 		goto reset_unlock;
1271 
1272 	ssk = mptcp_subflow_get_retrans(msk);
1273 	if (!ssk)
1274 		goto reset_unlock;
1275 
1276 	lock_sock(ssk);
1277 
1278 	msg.msg_flags = MSG_DONTWAIT;
1279 	orig_len = dfrag->data_len;
1280 	orig_offset = dfrag->offset;
1281 	orig_write_seq = dfrag->data_seq;
1282 	while (dfrag->data_len > 0) {
1283 		int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo,
1284 					     &mss_now, &size_goal);
1285 		if (ret < 0)
1286 			break;
1287 
1288 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
1289 		copied += ret;
1290 		dfrag->data_len -= ret;
1291 		dfrag->offset += ret;
1292 
1293 		if (!mptcp_ext_cache_refill(msk))
1294 			break;
1295 	}
1296 	if (copied)
1297 		tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle,
1298 			 size_goal);
1299 
1300 	dfrag->data_seq = orig_write_seq;
1301 	dfrag->offset = orig_offset;
1302 	dfrag->data_len = orig_len;
1303 
1304 	mptcp_set_timeout(sk, ssk);
1305 	release_sock(ssk);
1306 
1307 reset_unlock:
1308 	if (!mptcp_timer_pending(sk))
1309 		mptcp_reset_timer(sk);
1310 
1311 unlock:
1312 	release_sock(sk);
1313 	sock_put(sk);
1314 }
1315 
1316 static int __mptcp_init_sock(struct sock *sk)
1317 {
1318 	struct mptcp_sock *msk = mptcp_sk(sk);
1319 
1320 	spin_lock_init(&msk->join_list_lock);
1321 
1322 	INIT_LIST_HEAD(&msk->conn_list);
1323 	INIT_LIST_HEAD(&msk->join_list);
1324 	INIT_LIST_HEAD(&msk->rtx_queue);
1325 	__set_bit(MPTCP_SEND_SPACE, &msk->flags);
1326 	INIT_WORK(&msk->work, mptcp_worker);
1327 
1328 	msk->first = NULL;
1329 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
1330 
1331 	mptcp_pm_data_init(msk);
1332 
1333 	/* re-use the csk retrans timer for MPTCP-level retrans */
1334 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
1335 
1336 	return 0;
1337 }
1338 
1339 static int mptcp_init_sock(struct sock *sk)
1340 {
1341 	struct net *net = sock_net(sk);
1342 	int ret;
1343 
1344 	if (!mptcp_is_enabled(net))
1345 		return -ENOPROTOOPT;
1346 
1347 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
1348 		return -ENOMEM;
1349 
1350 	ret = __mptcp_init_sock(sk);
1351 	if (ret)
1352 		return ret;
1353 
1354 	ret = __mptcp_socket_create(mptcp_sk(sk));
1355 	if (ret)
1356 		return ret;
1357 
1358 	sk_sockets_allocated_inc(sk);
1359 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
1360 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[2];
1361 
1362 	return 0;
1363 }
1364 
1365 static void __mptcp_clear_xmit(struct sock *sk)
1366 {
1367 	struct mptcp_sock *msk = mptcp_sk(sk);
1368 	struct mptcp_data_frag *dtmp, *dfrag;
1369 
1370 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
1371 
1372 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
1373 		dfrag_clear(sk, dfrag);
1374 }
1375 
1376 static void mptcp_cancel_work(struct sock *sk)
1377 {
1378 	struct mptcp_sock *msk = mptcp_sk(sk);
1379 
1380 	if (cancel_work_sync(&msk->work))
1381 		sock_put(sk);
1382 }
1383 
1384 static void mptcp_subflow_shutdown(struct sock *ssk, int how,
1385 				   bool data_fin_tx_enable, u64 data_fin_tx_seq)
1386 {
1387 	lock_sock(ssk);
1388 
1389 	switch (ssk->sk_state) {
1390 	case TCP_LISTEN:
1391 		if (!(how & RCV_SHUTDOWN))
1392 			break;
1393 		/* fall through */
1394 	case TCP_SYN_SENT:
1395 		tcp_disconnect(ssk, O_NONBLOCK);
1396 		break;
1397 	default:
1398 		if (data_fin_tx_enable) {
1399 			struct mptcp_subflow_context *subflow;
1400 
1401 			subflow = mptcp_subflow_ctx(ssk);
1402 			subflow->data_fin_tx_seq = data_fin_tx_seq;
1403 			subflow->data_fin_tx_enable = 1;
1404 		}
1405 
1406 		ssk->sk_shutdown |= how;
1407 		tcp_shutdown(ssk, how);
1408 		break;
1409 	}
1410 
1411 	release_sock(ssk);
1412 }
1413 
1414 /* Called with msk lock held, releases such lock before returning */
1415 static void mptcp_close(struct sock *sk, long timeout)
1416 {
1417 	struct mptcp_subflow_context *subflow, *tmp;
1418 	struct mptcp_sock *msk = mptcp_sk(sk);
1419 	LIST_HEAD(conn_list);
1420 	u64 data_fin_tx_seq;
1421 
1422 	lock_sock(sk);
1423 
1424 	inet_sk_state_store(sk, TCP_CLOSE);
1425 
1426 	/* be sure to always acquire the join list lock, to sync vs
1427 	 * mptcp_finish_join().
1428 	 */
1429 	spin_lock_bh(&msk->join_list_lock);
1430 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
1431 	spin_unlock_bh(&msk->join_list_lock);
1432 	list_splice_init(&msk->conn_list, &conn_list);
1433 
1434 	data_fin_tx_seq = msk->write_seq;
1435 
1436 	__mptcp_clear_xmit(sk);
1437 
1438 	release_sock(sk);
1439 
1440 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
1441 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1442 
1443 		subflow->data_fin_tx_seq = data_fin_tx_seq;
1444 		subflow->data_fin_tx_enable = 1;
1445 		__mptcp_close_ssk(sk, ssk, subflow, timeout);
1446 	}
1447 
1448 	mptcp_cancel_work(sk);
1449 
1450 	__skb_queue_purge(&sk->sk_receive_queue);
1451 
1452 	sk_common_release(sk);
1453 }
1454 
1455 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
1456 {
1457 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1458 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
1459 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
1460 
1461 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
1462 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
1463 
1464 	if (msk6 && ssk6) {
1465 		msk6->saddr = ssk6->saddr;
1466 		msk6->flow_label = ssk6->flow_label;
1467 	}
1468 #endif
1469 
1470 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
1471 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
1472 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
1473 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
1474 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
1475 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
1476 }
1477 
1478 static int mptcp_disconnect(struct sock *sk, int flags)
1479 {
1480 	/* Should never be called.
1481 	 * inet_stream_connect() calls ->disconnect, but that
1482 	 * refers to the subflow socket, not the mptcp one.
1483 	 */
1484 	WARN_ON_ONCE(1);
1485 	return 0;
1486 }
1487 
1488 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1489 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
1490 {
1491 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
1492 
1493 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
1494 }
1495 #endif
1496 
1497 struct sock *mptcp_sk_clone(const struct sock *sk,
1498 			    const struct mptcp_options_received *mp_opt,
1499 			    struct request_sock *req)
1500 {
1501 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
1502 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
1503 	struct mptcp_sock *msk;
1504 	u64 ack_seq;
1505 
1506 	if (!nsk)
1507 		return NULL;
1508 
1509 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
1510 	if (nsk->sk_family == AF_INET6)
1511 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
1512 #endif
1513 
1514 	__mptcp_init_sock(nsk);
1515 
1516 	msk = mptcp_sk(nsk);
1517 	msk->local_key = subflow_req->local_key;
1518 	msk->token = subflow_req->token;
1519 	msk->subflow = NULL;
1520 
1521 	msk->write_seq = subflow_req->idsn + 1;
1522 	atomic64_set(&msk->snd_una, msk->write_seq);
1523 	if (mp_opt->mp_capable) {
1524 		msk->can_ack = true;
1525 		msk->remote_key = mp_opt->sndr_key;
1526 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
1527 		ack_seq++;
1528 		msk->ack_seq = ack_seq;
1529 	}
1530 
1531 	sock_reset_flag(nsk, SOCK_RCU_FREE);
1532 	/* will be fully established after successful MPC subflow creation */
1533 	inet_sk_state_store(nsk, TCP_SYN_RECV);
1534 	bh_unlock_sock(nsk);
1535 
1536 	/* keep a single reference */
1537 	__sock_put(nsk);
1538 	return nsk;
1539 }
1540 
1541 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
1542 {
1543 	const struct tcp_sock *tp = tcp_sk(ssk);
1544 
1545 	msk->rcvq_space.copied = 0;
1546 	msk->rcvq_space.rtt_us = 0;
1547 
1548 	msk->rcvq_space.time = tp->tcp_mstamp;
1549 
1550 	/* initial rcv_space offering made to peer */
1551 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
1552 				      TCP_INIT_CWND * tp->advmss);
1553 	if (msk->rcvq_space.space == 0)
1554 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
1555 }
1556 
1557 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
1558 				 bool kern)
1559 {
1560 	struct mptcp_sock *msk = mptcp_sk(sk);
1561 	struct socket *listener;
1562 	struct sock *newsk;
1563 
1564 	listener = __mptcp_nmpc_socket(msk);
1565 	if (WARN_ON_ONCE(!listener)) {
1566 		*err = -EINVAL;
1567 		return NULL;
1568 	}
1569 
1570 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
1571 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
1572 	if (!newsk)
1573 		return NULL;
1574 
1575 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
1576 	if (sk_is_mptcp(newsk)) {
1577 		struct mptcp_subflow_context *subflow;
1578 		struct sock *new_mptcp_sock;
1579 		struct sock *ssk = newsk;
1580 
1581 		subflow = mptcp_subflow_ctx(newsk);
1582 		new_mptcp_sock = subflow->conn;
1583 
1584 		/* is_mptcp should be false if subflow->conn is missing, see
1585 		 * subflow_syn_recv_sock()
1586 		 */
1587 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
1588 			tcp_sk(newsk)->is_mptcp = 0;
1589 			return newsk;
1590 		}
1591 
1592 		/* acquire the 2nd reference for the owning socket */
1593 		sock_hold(new_mptcp_sock);
1594 
1595 		local_bh_disable();
1596 		bh_lock_sock(new_mptcp_sock);
1597 		msk = mptcp_sk(new_mptcp_sock);
1598 		msk->first = newsk;
1599 
1600 		newsk = new_mptcp_sock;
1601 		mptcp_copy_inaddrs(newsk, ssk);
1602 		list_add(&subflow->node, &msk->conn_list);
1603 		inet_sk_state_store(newsk, TCP_ESTABLISHED);
1604 
1605 		mptcp_rcv_space_init(msk, ssk);
1606 		bh_unlock_sock(new_mptcp_sock);
1607 
1608 		__MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
1609 		local_bh_enable();
1610 	} else {
1611 		MPTCP_INC_STATS(sock_net(sk),
1612 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
1613 	}
1614 
1615 	return newsk;
1616 }
1617 
1618 static void mptcp_destroy(struct sock *sk)
1619 {
1620 	struct mptcp_sock *msk = mptcp_sk(sk);
1621 
1622 	mptcp_token_destroy(msk);
1623 	if (msk->cached_ext)
1624 		__skb_ext_put(msk->cached_ext);
1625 
1626 	sk_sockets_allocated_dec(sk);
1627 }
1628 
1629 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
1630 				       char __user *optval, unsigned int optlen)
1631 {
1632 	struct sock *sk = (struct sock *)msk;
1633 	struct socket *ssock;
1634 	int ret;
1635 
1636 	switch (optname) {
1637 	case SO_REUSEPORT:
1638 	case SO_REUSEADDR:
1639 		lock_sock(sk);
1640 		ssock = __mptcp_nmpc_socket(msk);
1641 		if (!ssock) {
1642 			release_sock(sk);
1643 			return -EINVAL;
1644 		}
1645 
1646 		ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen);
1647 		if (ret == 0) {
1648 			if (optname == SO_REUSEPORT)
1649 				sk->sk_reuseport = ssock->sk->sk_reuseport;
1650 			else if (optname == SO_REUSEADDR)
1651 				sk->sk_reuse = ssock->sk->sk_reuse;
1652 		}
1653 		release_sock(sk);
1654 		return ret;
1655 	}
1656 
1657 	return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
1658 }
1659 
1660 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
1661 			       char __user *optval, unsigned int optlen)
1662 {
1663 	struct sock *sk = (struct sock *)msk;
1664 	int ret = -EOPNOTSUPP;
1665 	struct socket *ssock;
1666 
1667 	switch (optname) {
1668 	case IPV6_V6ONLY:
1669 		lock_sock(sk);
1670 		ssock = __mptcp_nmpc_socket(msk);
1671 		if (!ssock) {
1672 			release_sock(sk);
1673 			return -EINVAL;
1674 		}
1675 
1676 		ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen);
1677 		if (ret == 0)
1678 			sk->sk_ipv6only = ssock->sk->sk_ipv6only;
1679 
1680 		release_sock(sk);
1681 		break;
1682 	}
1683 
1684 	return ret;
1685 }
1686 
1687 static int mptcp_setsockopt(struct sock *sk, int level, int optname,
1688 			    char __user *optval, unsigned int optlen)
1689 {
1690 	struct mptcp_sock *msk = mptcp_sk(sk);
1691 	struct sock *ssk;
1692 
1693 	pr_debug("msk=%p", msk);
1694 
1695 	if (level == SOL_SOCKET)
1696 		return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
1697 
1698 	/* @@ the meaning of setsockopt() when the socket is connected and
1699 	 * there are multiple subflows is not yet defined. It is up to the
1700 	 * MPTCP-level socket to configure the subflows until the subflow
1701 	 * is in TCP fallback, when TCP socket options are passed through
1702 	 * to the one remaining subflow.
1703 	 */
1704 	lock_sock(sk);
1705 	ssk = __mptcp_tcp_fallback(msk);
1706 	release_sock(sk);
1707 	if (ssk)
1708 		return tcp_setsockopt(ssk, level, optname, optval, optlen);
1709 
1710 	if (level == SOL_IPV6)
1711 		return mptcp_setsockopt_v6(msk, optname, optval, optlen);
1712 
1713 	return -EOPNOTSUPP;
1714 }
1715 
1716 static int mptcp_getsockopt(struct sock *sk, int level, int optname,
1717 			    char __user *optval, int __user *option)
1718 {
1719 	struct mptcp_sock *msk = mptcp_sk(sk);
1720 	struct sock *ssk;
1721 
1722 	pr_debug("msk=%p", msk);
1723 
1724 	/* @@ the meaning of setsockopt() when the socket is connected and
1725 	 * there are multiple subflows is not yet defined. It is up to the
1726 	 * MPTCP-level socket to configure the subflows until the subflow
1727 	 * is in TCP fallback, when socket options are passed through
1728 	 * to the one remaining subflow.
1729 	 */
1730 	lock_sock(sk);
1731 	ssk = __mptcp_tcp_fallback(msk);
1732 	release_sock(sk);
1733 	if (ssk)
1734 		return tcp_getsockopt(ssk, level, optname, optval, option);
1735 
1736 	return -EOPNOTSUPP;
1737 }
1738 
1739 #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \
1740 			    TCPF_WRITE_TIMER_DEFERRED)
1741 
1742 /* this is very alike tcp_release_cb() but we must handle differently a
1743  * different set of events
1744  */
1745 static void mptcp_release_cb(struct sock *sk)
1746 {
1747 	unsigned long flags, nflags;
1748 
1749 	do {
1750 		flags = sk->sk_tsq_flags;
1751 		if (!(flags & MPTCP_DEFERRED_ALL))
1752 			return;
1753 		nflags = flags & ~MPTCP_DEFERRED_ALL;
1754 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1755 
1756 	sock_release_ownership(sk);
1757 
1758 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1759 		struct mptcp_sock *msk = mptcp_sk(sk);
1760 		struct sock *ssk;
1761 
1762 		ssk = mptcp_subflow_recv_lookup(msk);
1763 		if (!ssk || !schedule_work(&msk->work))
1764 			__sock_put(sk);
1765 	}
1766 
1767 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1768 		mptcp_retransmit_handler(sk);
1769 		__sock_put(sk);
1770 	}
1771 }
1772 
1773 static int mptcp_hash(struct sock *sk)
1774 {
1775 	/* should never be called,
1776 	 * we hash the TCP subflows not the master socket
1777 	 */
1778 	WARN_ON_ONCE(1);
1779 	return 0;
1780 }
1781 
1782 static void mptcp_unhash(struct sock *sk)
1783 {
1784 	/* called from sk_common_release(), but nothing to do here */
1785 }
1786 
1787 static int mptcp_get_port(struct sock *sk, unsigned short snum)
1788 {
1789 	struct mptcp_sock *msk = mptcp_sk(sk);
1790 	struct socket *ssock;
1791 
1792 	ssock = __mptcp_nmpc_socket(msk);
1793 	pr_debug("msk=%p, subflow=%p", msk, ssock);
1794 	if (WARN_ON_ONCE(!ssock))
1795 		return -EINVAL;
1796 
1797 	return inet_csk_get_port(ssock->sk, snum);
1798 }
1799 
1800 void mptcp_finish_connect(struct sock *ssk)
1801 {
1802 	struct mptcp_subflow_context *subflow;
1803 	struct mptcp_sock *msk;
1804 	struct sock *sk;
1805 	u64 ack_seq;
1806 
1807 	subflow = mptcp_subflow_ctx(ssk);
1808 	sk = subflow->conn;
1809 	msk = mptcp_sk(sk);
1810 
1811 	pr_debug("msk=%p, token=%u", sk, subflow->token);
1812 
1813 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
1814 	ack_seq++;
1815 	subflow->map_seq = ack_seq;
1816 	subflow->map_subflow_seq = 1;
1817 	subflow->rel_write_seq = 1;
1818 
1819 	/* the socket is not connected yet, no msk/subflow ops can access/race
1820 	 * accessing the field below
1821 	 */
1822 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
1823 	WRITE_ONCE(msk->local_key, subflow->local_key);
1824 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
1825 	WRITE_ONCE(msk->ack_seq, ack_seq);
1826 	WRITE_ONCE(msk->can_ack, 1);
1827 	atomic64_set(&msk->snd_una, msk->write_seq);
1828 
1829 	mptcp_pm_new_connection(msk, 0);
1830 
1831 	mptcp_rcv_space_init(msk, ssk);
1832 }
1833 
1834 static void mptcp_sock_graft(struct sock *sk, struct socket *parent)
1835 {
1836 	write_lock_bh(&sk->sk_callback_lock);
1837 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1838 	sk_set_socket(sk, parent);
1839 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1840 	write_unlock_bh(&sk->sk_callback_lock);
1841 }
1842 
1843 bool mptcp_finish_join(struct sock *sk)
1844 {
1845 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
1846 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
1847 	struct sock *parent = (void *)msk;
1848 	struct socket *parent_sock;
1849 	bool ret;
1850 
1851 	pr_debug("msk=%p, subflow=%p", msk, subflow);
1852 
1853 	/* mptcp socket already closing? */
1854 	if (inet_sk_state_load(parent) != TCP_ESTABLISHED)
1855 		return false;
1856 
1857 	if (!msk->pm.server_side)
1858 		return true;
1859 
1860 	if (!mptcp_pm_allow_new_subflow(msk))
1861 		return false;
1862 
1863 	/* active connections are already on conn_list, and we can't acquire
1864 	 * msk lock here.
1865 	 * use the join list lock as synchronization point and double-check
1866 	 * msk status to avoid racing with mptcp_close()
1867 	 */
1868 	spin_lock_bh(&msk->join_list_lock);
1869 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
1870 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node)))
1871 		list_add_tail(&subflow->node, &msk->join_list);
1872 	spin_unlock_bh(&msk->join_list_lock);
1873 	if (!ret)
1874 		return false;
1875 
1876 	/* attach to msk socket only after we are sure he will deal with us
1877 	 * at close time
1878 	 */
1879 	parent_sock = READ_ONCE(parent->sk_socket);
1880 	if (parent_sock && !sk->sk_socket)
1881 		mptcp_sock_graft(sk, parent_sock);
1882 	subflow->map_seq = msk->ack_seq;
1883 	return true;
1884 }
1885 
1886 static bool mptcp_memory_free(const struct sock *sk, int wake)
1887 {
1888 	struct mptcp_sock *msk = mptcp_sk(sk);
1889 
1890 	return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true;
1891 }
1892 
1893 static struct proto mptcp_prot = {
1894 	.name		= "MPTCP",
1895 	.owner		= THIS_MODULE,
1896 	.init		= mptcp_init_sock,
1897 	.disconnect	= mptcp_disconnect,
1898 	.close		= mptcp_close,
1899 	.accept		= mptcp_accept,
1900 	.setsockopt	= mptcp_setsockopt,
1901 	.getsockopt	= mptcp_getsockopt,
1902 	.shutdown	= tcp_shutdown,
1903 	.destroy	= mptcp_destroy,
1904 	.sendmsg	= mptcp_sendmsg,
1905 	.recvmsg	= mptcp_recvmsg,
1906 	.release_cb	= mptcp_release_cb,
1907 	.hash		= mptcp_hash,
1908 	.unhash		= mptcp_unhash,
1909 	.get_port	= mptcp_get_port,
1910 	.sockets_allocated	= &mptcp_sockets_allocated,
1911 	.memory_allocated	= &tcp_memory_allocated,
1912 	.memory_pressure	= &tcp_memory_pressure,
1913 	.stream_memory_free	= mptcp_memory_free,
1914 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
1915 	.sysctl_mem	= sysctl_tcp_mem,
1916 	.obj_size	= sizeof(struct mptcp_sock),
1917 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
1918 	.no_autobind	= true,
1919 };
1920 
1921 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1922 {
1923 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
1924 	struct socket *ssock;
1925 	int err;
1926 
1927 	lock_sock(sock->sk);
1928 	ssock = __mptcp_nmpc_socket(msk);
1929 	if (!ssock) {
1930 		err = -EINVAL;
1931 		goto unlock;
1932 	}
1933 
1934 	err = ssock->ops->bind(ssock, uaddr, addr_len);
1935 	if (!err)
1936 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
1937 
1938 unlock:
1939 	release_sock(sock->sk);
1940 	return err;
1941 }
1942 
1943 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1944 				int addr_len, int flags)
1945 {
1946 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
1947 	struct mptcp_subflow_context *subflow;
1948 	struct socket *ssock;
1949 	int err;
1950 
1951 	lock_sock(sock->sk);
1952 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
1953 		/* pending connection or invalid state, let existing subflow
1954 		 * cope with that
1955 		 */
1956 		ssock = msk->subflow;
1957 		goto do_connect;
1958 	}
1959 
1960 	ssock = __mptcp_nmpc_socket(msk);
1961 	if (!ssock) {
1962 		err = -EINVAL;
1963 		goto unlock;
1964 	}
1965 
1966 	mptcp_token_destroy(msk);
1967 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
1968 	subflow = mptcp_subflow_ctx(ssock->sk);
1969 #ifdef CONFIG_TCP_MD5SIG
1970 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
1971 	 * TCP option space.
1972 	 */
1973 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
1974 		subflow->request_mptcp = 0;
1975 #endif
1976 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk))
1977 		subflow->request_mptcp = 0;
1978 
1979 do_connect:
1980 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
1981 	sock->state = ssock->state;
1982 
1983 	/* on successful connect, the msk state will be moved to established by
1984 	 * subflow_finish_connect()
1985 	 */
1986 	if (!err || err == EINPROGRESS)
1987 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
1988 	else
1989 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
1990 
1991 unlock:
1992 	release_sock(sock->sk);
1993 	return err;
1994 }
1995 
1996 static int mptcp_listen(struct socket *sock, int backlog)
1997 {
1998 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
1999 	struct socket *ssock;
2000 	int err;
2001 
2002 	pr_debug("msk=%p", msk);
2003 
2004 	lock_sock(sock->sk);
2005 	ssock = __mptcp_nmpc_socket(msk);
2006 	if (!ssock) {
2007 		err = -EINVAL;
2008 		goto unlock;
2009 	}
2010 
2011 	mptcp_token_destroy(msk);
2012 	inet_sk_state_store(sock->sk, TCP_LISTEN);
2013 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
2014 
2015 	err = ssock->ops->listen(ssock, backlog);
2016 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
2017 	if (!err)
2018 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
2019 
2020 unlock:
2021 	release_sock(sock->sk);
2022 	return err;
2023 }
2024 
2025 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
2026 			       int flags, bool kern)
2027 {
2028 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2029 	struct socket *ssock;
2030 	int err;
2031 
2032 	pr_debug("msk=%p", msk);
2033 
2034 	lock_sock(sock->sk);
2035 	if (sock->sk->sk_state != TCP_LISTEN)
2036 		goto unlock_fail;
2037 
2038 	ssock = __mptcp_nmpc_socket(msk);
2039 	if (!ssock)
2040 		goto unlock_fail;
2041 
2042 	clear_bit(MPTCP_DATA_READY, &msk->flags);
2043 	sock_hold(ssock->sk);
2044 	release_sock(sock->sk);
2045 
2046 	err = ssock->ops->accept(sock, newsock, flags, kern);
2047 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
2048 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
2049 		struct mptcp_subflow_context *subflow;
2050 
2051 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
2052 		 * This is needed so NOSPACE flag can be set from tcp stack.
2053 		 */
2054 		__mptcp_flush_join_list(msk);
2055 		list_for_each_entry(subflow, &msk->conn_list, node) {
2056 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2057 
2058 			if (!ssk->sk_socket)
2059 				mptcp_sock_graft(ssk, newsock);
2060 		}
2061 	}
2062 
2063 	if (inet_csk_listen_poll(ssock->sk))
2064 		set_bit(MPTCP_DATA_READY, &msk->flags);
2065 	sock_put(ssock->sk);
2066 	return err;
2067 
2068 unlock_fail:
2069 	release_sock(sock->sk);
2070 	return -EINVAL;
2071 }
2072 
2073 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2074 {
2075 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
2076 	       0;
2077 }
2078 
2079 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
2080 			   struct poll_table_struct *wait)
2081 {
2082 	struct sock *sk = sock->sk;
2083 	struct mptcp_sock *msk;
2084 	__poll_t mask = 0;
2085 	int state;
2086 
2087 	msk = mptcp_sk(sk);
2088 	sock_poll_wait(file, sock, wait);
2089 
2090 	state = inet_sk_state_load(sk);
2091 	if (state == TCP_LISTEN)
2092 		return mptcp_check_readable(msk);
2093 
2094 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
2095 		mask |= mptcp_check_readable(msk);
2096 		if (sk_stream_is_writeable(sk) &&
2097 		    test_bit(MPTCP_SEND_SPACE, &msk->flags))
2098 			mask |= EPOLLOUT | EPOLLWRNORM;
2099 	}
2100 	if (sk->sk_shutdown & RCV_SHUTDOWN)
2101 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
2102 
2103 	return mask;
2104 }
2105 
2106 static int mptcp_shutdown(struct socket *sock, int how)
2107 {
2108 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
2109 	struct mptcp_subflow_context *subflow;
2110 	int ret = 0;
2111 
2112 	pr_debug("sk=%p, how=%d", msk, how);
2113 
2114 	lock_sock(sock->sk);
2115 	if (how == SHUT_WR || how == SHUT_RDWR)
2116 		inet_sk_state_store(sock->sk, TCP_FIN_WAIT1);
2117 
2118 	how++;
2119 
2120 	if ((how & ~SHUTDOWN_MASK) || !how) {
2121 		ret = -EINVAL;
2122 		goto out_unlock;
2123 	}
2124 
2125 	if (sock->state == SS_CONNECTING) {
2126 		if ((1 << sock->sk->sk_state) &
2127 		    (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
2128 			sock->state = SS_DISCONNECTING;
2129 		else
2130 			sock->state = SS_CONNECTED;
2131 	}
2132 
2133 	__mptcp_flush_join_list(msk);
2134 	mptcp_for_each_subflow(msk, subflow) {
2135 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2136 
2137 		mptcp_subflow_shutdown(tcp_sk, how, 1, msk->write_seq);
2138 	}
2139 
2140 	/* Wake up anyone sleeping in poll. */
2141 	sock->sk->sk_state_change(sock->sk);
2142 
2143 out_unlock:
2144 	release_sock(sock->sk);
2145 
2146 	return ret;
2147 }
2148 
2149 static const struct proto_ops mptcp_stream_ops = {
2150 	.family		   = PF_INET,
2151 	.owner		   = THIS_MODULE,
2152 	.release	   = inet_release,
2153 	.bind		   = mptcp_bind,
2154 	.connect	   = mptcp_stream_connect,
2155 	.socketpair	   = sock_no_socketpair,
2156 	.accept		   = mptcp_stream_accept,
2157 	.getname	   = inet_getname,
2158 	.poll		   = mptcp_poll,
2159 	.ioctl		   = inet_ioctl,
2160 	.gettstamp	   = sock_gettstamp,
2161 	.listen		   = mptcp_listen,
2162 	.shutdown	   = mptcp_shutdown,
2163 	.setsockopt	   = sock_common_setsockopt,
2164 	.getsockopt	   = sock_common_getsockopt,
2165 	.sendmsg	   = inet_sendmsg,
2166 	.recvmsg	   = inet_recvmsg,
2167 	.mmap		   = sock_no_mmap,
2168 	.sendpage	   = inet_sendpage,
2169 #ifdef CONFIG_COMPAT
2170 	.compat_setsockopt = compat_sock_common_setsockopt,
2171 	.compat_getsockopt = compat_sock_common_getsockopt,
2172 #endif
2173 };
2174 
2175 static struct inet_protosw mptcp_protosw = {
2176 	.type		= SOCK_STREAM,
2177 	.protocol	= IPPROTO_MPTCP,
2178 	.prot		= &mptcp_prot,
2179 	.ops		= &mptcp_stream_ops,
2180 	.flags		= INET_PROTOSW_ICSK,
2181 };
2182 
2183 void __init mptcp_proto_init(void)
2184 {
2185 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
2186 
2187 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
2188 		panic("Failed to allocate MPTCP pcpu counter\n");
2189 
2190 	mptcp_subflow_init();
2191 	mptcp_pm_init();
2192 	mptcp_token_init();
2193 
2194 	if (proto_register(&mptcp_prot, 1) != 0)
2195 		panic("Failed to register MPTCP proto.\n");
2196 
2197 	inet_register_protosw(&mptcp_protosw);
2198 
2199 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
2200 }
2201 
2202 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2203 static const struct proto_ops mptcp_v6_stream_ops = {
2204 	.family		   = PF_INET6,
2205 	.owner		   = THIS_MODULE,
2206 	.release	   = inet6_release,
2207 	.bind		   = mptcp_bind,
2208 	.connect	   = mptcp_stream_connect,
2209 	.socketpair	   = sock_no_socketpair,
2210 	.accept		   = mptcp_stream_accept,
2211 	.getname	   = inet6_getname,
2212 	.poll		   = mptcp_poll,
2213 	.ioctl		   = inet6_ioctl,
2214 	.gettstamp	   = sock_gettstamp,
2215 	.listen		   = mptcp_listen,
2216 	.shutdown	   = mptcp_shutdown,
2217 	.setsockopt	   = sock_common_setsockopt,
2218 	.getsockopt	   = sock_common_getsockopt,
2219 	.sendmsg	   = inet6_sendmsg,
2220 	.recvmsg	   = inet6_recvmsg,
2221 	.mmap		   = sock_no_mmap,
2222 	.sendpage	   = inet_sendpage,
2223 #ifdef CONFIG_COMPAT
2224 	.compat_ioctl	   = inet6_compat_ioctl,
2225 	.compat_setsockopt = compat_sock_common_setsockopt,
2226 	.compat_getsockopt = compat_sock_common_getsockopt,
2227 #endif
2228 };
2229 
2230 static struct proto mptcp_v6_prot;
2231 
2232 static void mptcp_v6_destroy(struct sock *sk)
2233 {
2234 	mptcp_destroy(sk);
2235 	inet6_destroy_sock(sk);
2236 }
2237 
2238 static struct inet_protosw mptcp_v6_protosw = {
2239 	.type		= SOCK_STREAM,
2240 	.protocol	= IPPROTO_MPTCP,
2241 	.prot		= &mptcp_v6_prot,
2242 	.ops		= &mptcp_v6_stream_ops,
2243 	.flags		= INET_PROTOSW_ICSK,
2244 };
2245 
2246 int __init mptcp_proto_v6_init(void)
2247 {
2248 	int err;
2249 
2250 	mptcp_v6_prot = mptcp_prot;
2251 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
2252 	mptcp_v6_prot.slab = NULL;
2253 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
2254 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
2255 
2256 	err = proto_register(&mptcp_v6_prot, 1);
2257 	if (err)
2258 		return err;
2259 
2260 	err = inet6_register_protosw(&mptcp_v6_protosw);
2261 	if (err)
2262 		proto_unregister(&mptcp_v6_prot);
2263 
2264 	return err;
2265 }
2266 #endif
2267