xref: /linux/net/mptcp/protocol.c (revision 8b4e023d79b760d217dd1c462848c4a27fcc7677)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 	unsigned short family = READ_ONCE(sk->sk_family);
65 
66 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
67 	if (family == AF_INET6)
68 		return &inet6_stream_ops;
69 #endif
70 	WARN_ON_ONCE(family != AF_INET);
71 	return &inet_stream_ops;
72 }
73 
74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
75 {
76 	struct net *net = sock_net((struct sock *)msk);
77 
78 	if (__mptcp_check_fallback(msk))
79 		return true;
80 
81 	/* The caller possibly is not holding the msk socket lock, but
82 	 * in the fallback case only the current subflow is touching
83 	 * the OoO queue.
84 	 */
85 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
86 		return false;
87 
88 	spin_lock_bh(&msk->fallback_lock);
89 	if (!msk->allow_infinite_fallback) {
90 		spin_unlock_bh(&msk->fallback_lock);
91 		return false;
92 	}
93 
94 	msk->allow_subflows = false;
95 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
96 	__MPTCP_INC_STATS(net, fb_mib);
97 	spin_unlock_bh(&msk->fallback_lock);
98 	return true;
99 }
100 
101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
113 	WRITE_ONCE(msk->first, ssock->sk);
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	subflow->subflow_id = msk->subflow_id++;
119 
120 	/* This is the first subflow, always with id 0 */
121 	WRITE_ONCE(subflow->local_id, 0);
122 	mptcp_sock_graft(msk->first, sk->sk_socket);
123 	iput(SOCK_INODE(ssock));
124 
125 	return 0;
126 }
127 
128 /* If the MPC handshake is not started, returns the first subflow,
129  * eventually allocating it.
130  */
131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
132 {
133 	struct sock *sk = (struct sock *)msk;
134 	int ret;
135 
136 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
137 		return ERR_PTR(-EINVAL);
138 
139 	if (!msk->first) {
140 		ret = __mptcp_socket_create(msk);
141 		if (ret)
142 			return ERR_PTR(ret);
143 	}
144 
145 	return msk->first;
146 }
147 
148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
149 {
150 	sk_drops_skbadd(sk, skb);
151 	__kfree_skb(skb);
152 }
153 
154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
155 				 struct sk_buff *from, bool *fragstolen,
156 				 int *delta)
157 {
158 	int limit = READ_ONCE(sk->sk_rcvbuf);
159 
160 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
161 	    MPTCP_SKB_CB(from)->offset ||
162 	    ((to->len + from->len) > (limit >> 3)) ||
163 	    !skb_try_coalesce(to, from, fragstolen, delta))
164 		return false;
165 
166 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
167 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
168 		 to->len, MPTCP_SKB_CB(from)->end_seq);
169 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
170 	return true;
171 }
172 
173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
174 			       struct sk_buff *from)
175 {
176 	bool fragstolen;
177 	int delta;
178 
179 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
180 		return false;
181 
182 	/* note the fwd memory can reach a negative value after accounting
183 	 * for the delta, but the later skb free will restore a non
184 	 * negative one
185 	 */
186 	atomic_add(delta, &sk->sk_rmem_alloc);
187 	sk_mem_charge(sk, delta);
188 	kfree_skb_partial(from, fragstolen);
189 
190 	return true;
191 }
192 
193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
194 				   struct sk_buff *from)
195 {
196 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
197 		return false;
198 
199 	return mptcp_try_coalesce((struct sock *)msk, to, from);
200 }
201 
202 /* "inspired" by tcp_rcvbuf_grow(), main difference:
203  * - mptcp does not maintain a msk-level window clamp
204  * - returns true when  the receive buffer is actually updated
205  */
206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
207 {
208 	struct mptcp_sock *msk = mptcp_sk(sk);
209 	const struct net *net = sock_net(sk);
210 	u32 rcvwin, rcvbuf, cap, oldval;
211 	u64 grow;
212 
213 	oldval = msk->rcvq_space.space;
214 	msk->rcvq_space.space = newval;
215 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
216 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
217 		return false;
218 
219 	/* DRS is always one RTT late. */
220 	rcvwin = newval << 1;
221 
222 	/* slow start: allow the sender to double its rate. */
223 	grow = (u64)rcvwin * (newval - oldval);
224 	do_div(grow, oldval);
225 	rcvwin += grow << 1;
226 
227 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
228 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
229 
230 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
231 
232 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
233 	if (rcvbuf > sk->sk_rcvbuf) {
234 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
235 		return true;
236 	}
237 	return false;
238 }
239 
240 /* "inspired" by tcp_data_queue_ofo(), main differences:
241  * - use mptcp seqs
242  * - don't cope with sacks
243  */
244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
245 {
246 	struct sock *sk = (struct sock *)msk;
247 	struct rb_node **p, *parent;
248 	u64 seq, end_seq, max_seq;
249 	struct sk_buff *skb1;
250 
251 	seq = MPTCP_SKB_CB(skb)->map_seq;
252 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
253 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
254 
255 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
256 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
257 	if (after64(end_seq, max_seq)) {
258 		/* out of window */
259 		mptcp_drop(sk, skb);
260 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
261 			 (unsigned long long)end_seq - (unsigned long)max_seq,
262 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
263 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
264 		return;
265 	}
266 
267 	p = &msk->out_of_order_queue.rb_node;
268 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
269 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
270 		rb_link_node(&skb->rbnode, NULL, p);
271 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
272 		msk->ooo_last_skb = skb;
273 		goto end;
274 	}
275 
276 	/* with 2 subflows, adding at end of ooo queue is quite likely
277 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
278 	 */
279 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
280 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
281 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
282 		return;
283 	}
284 
285 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
286 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
287 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
288 		parent = &msk->ooo_last_skb->rbnode;
289 		p = &parent->rb_right;
290 		goto insert;
291 	}
292 
293 	/* Find place to insert this segment. Handle overlaps on the way. */
294 	parent = NULL;
295 	while (*p) {
296 		parent = *p;
297 		skb1 = rb_to_skb(parent);
298 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
299 			p = &parent->rb_left;
300 			continue;
301 		}
302 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
303 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
304 				/* All the bits are present. Drop. */
305 				mptcp_drop(sk, skb);
306 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
307 				return;
308 			}
309 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
310 				/* partial overlap:
311 				 *     |     skb      |
312 				 *  |     skb1    |
313 				 * continue traversing
314 				 */
315 			} else {
316 				/* skb's seq == skb1's seq and skb covers skb1.
317 				 * Replace skb1 with skb.
318 				 */
319 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
320 						&msk->out_of_order_queue);
321 				mptcp_drop(sk, skb1);
322 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
323 				goto merge_right;
324 			}
325 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
326 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
327 			return;
328 		}
329 		p = &parent->rb_right;
330 	}
331 
332 insert:
333 	/* Insert segment into RB tree. */
334 	rb_link_node(&skb->rbnode, parent, p);
335 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
336 
337 merge_right:
338 	/* Remove other segments covered by skb. */
339 	while ((skb1 = skb_rb_next(skb)) != NULL) {
340 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
341 			break;
342 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
343 		mptcp_drop(sk, skb1);
344 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
345 	}
346 	/* If there is no skb after us, we are the last_skb ! */
347 	if (!skb1)
348 		msk->ooo_last_skb = skb;
349 
350 end:
351 	skb_condense(skb);
352 	skb_set_owner_r(skb, sk);
353 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
354 	if (sk->sk_socket)
355 		mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
356 }
357 
358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
359 			   int copy_len)
360 {
361 	const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
362 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
363 
364 	/* the skb map_seq accounts for the skb offset:
365 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
366 	 * value
367 	 */
368 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
369 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
370 	MPTCP_SKB_CB(skb)->offset = offset;
371 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
372 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
373 
374 	__skb_unlink(skb, &ssk->sk_receive_queue);
375 
376 	skb_ext_reset(skb);
377 	skb_dst_drop(skb);
378 }
379 
380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
381 {
382 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
383 	struct mptcp_sock *msk = mptcp_sk(sk);
384 	struct sk_buff *tail;
385 
386 	/* try to fetch required memory from subflow */
387 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
388 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
389 		goto drop;
390 	}
391 
392 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
393 		/* in sequence */
394 		msk->bytes_received += copy_len;
395 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
396 		tail = skb_peek_tail(&sk->sk_receive_queue);
397 		if (tail && mptcp_try_coalesce(sk, tail, skb))
398 			return true;
399 
400 		skb_set_owner_r(skb, sk);
401 		__skb_queue_tail(&sk->sk_receive_queue, skb);
402 		return true;
403 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
404 		mptcp_data_queue_ofo(msk, skb);
405 		return false;
406 	}
407 
408 	/* old data, keep it simple and drop the whole pkt, sender
409 	 * will retransmit as needed, if needed.
410 	 */
411 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
412 drop:
413 	mptcp_drop(sk, skb);
414 	return false;
415 }
416 
417 static void mptcp_stop_rtx_timer(struct sock *sk)
418 {
419 	struct inet_connection_sock *icsk = inet_csk(sk);
420 
421 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
422 	mptcp_sk(sk)->timer_ival = 0;
423 }
424 
425 static void mptcp_close_wake_up(struct sock *sk)
426 {
427 	if (sock_flag(sk, SOCK_DEAD))
428 		return;
429 
430 	sk->sk_state_change(sk);
431 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
432 	    sk->sk_state == TCP_CLOSE)
433 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
434 	else
435 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
436 }
437 
438 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
439 {
440 	struct mptcp_subflow_context *subflow;
441 
442 	mptcp_for_each_subflow(msk, subflow) {
443 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
444 		bool slow;
445 
446 		slow = lock_sock_fast(ssk);
447 		tcp_shutdown(ssk, SEND_SHUTDOWN);
448 		unlock_sock_fast(ssk, slow);
449 	}
450 }
451 
452 /* called under the msk socket lock */
453 static bool mptcp_pending_data_fin_ack(struct sock *sk)
454 {
455 	struct mptcp_sock *msk = mptcp_sk(sk);
456 
457 	return ((1 << sk->sk_state) &
458 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
459 	       msk->write_seq == READ_ONCE(msk->snd_una);
460 }
461 
462 static void mptcp_check_data_fin_ack(struct sock *sk)
463 {
464 	struct mptcp_sock *msk = mptcp_sk(sk);
465 
466 	/* Look for an acknowledged DATA_FIN */
467 	if (mptcp_pending_data_fin_ack(sk)) {
468 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
469 
470 		switch (sk->sk_state) {
471 		case TCP_FIN_WAIT1:
472 			mptcp_set_state(sk, TCP_FIN_WAIT2);
473 			break;
474 		case TCP_CLOSING:
475 		case TCP_LAST_ACK:
476 			mptcp_shutdown_subflows(msk);
477 			mptcp_set_state(sk, TCP_CLOSE);
478 			break;
479 		}
480 
481 		mptcp_close_wake_up(sk);
482 	}
483 }
484 
485 /* can be called with no lock acquired */
486 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
487 {
488 	struct mptcp_sock *msk = mptcp_sk(sk);
489 
490 	if (READ_ONCE(msk->rcv_data_fin) &&
491 	    ((1 << inet_sk_state_load(sk)) &
492 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
493 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
494 
495 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
496 			if (seq)
497 				*seq = rcv_data_fin_seq;
498 
499 			return true;
500 		}
501 	}
502 
503 	return false;
504 }
505 
506 static void mptcp_set_datafin_timeout(struct sock *sk)
507 {
508 	struct inet_connection_sock *icsk = inet_csk(sk);
509 	u32 retransmits;
510 
511 	retransmits = min_t(u32, icsk->icsk_retransmits,
512 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
513 
514 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
515 }
516 
517 static void __mptcp_set_timeout(struct sock *sk, long tout)
518 {
519 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
520 }
521 
522 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
523 {
524 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
525 
526 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
527 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
528 }
529 
530 static void mptcp_set_timeout(struct sock *sk)
531 {
532 	struct mptcp_subflow_context *subflow;
533 	long tout = 0;
534 
535 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
536 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
537 	__mptcp_set_timeout(sk, tout);
538 }
539 
540 static inline bool tcp_can_send_ack(const struct sock *ssk)
541 {
542 	return !((1 << inet_sk_state_load(ssk)) &
543 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
544 }
545 
546 void __mptcp_subflow_send_ack(struct sock *ssk)
547 {
548 	if (tcp_can_send_ack(ssk))
549 		tcp_send_ack(ssk);
550 }
551 
552 static void mptcp_subflow_send_ack(struct sock *ssk)
553 {
554 	bool slow;
555 
556 	slow = lock_sock_fast(ssk);
557 	__mptcp_subflow_send_ack(ssk);
558 	unlock_sock_fast(ssk, slow);
559 }
560 
561 static void mptcp_send_ack(struct mptcp_sock *msk)
562 {
563 	struct mptcp_subflow_context *subflow;
564 
565 	mptcp_for_each_subflow(msk, subflow)
566 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
567 }
568 
569 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
570 {
571 	bool slow;
572 
573 	slow = lock_sock_fast(ssk);
574 	if (tcp_can_send_ack(ssk))
575 		tcp_cleanup_rbuf(ssk, copied);
576 	unlock_sock_fast(ssk, slow);
577 }
578 
579 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
580 {
581 	const struct inet_connection_sock *icsk = inet_csk(ssk);
582 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
583 	const struct tcp_sock *tp = tcp_sk(ssk);
584 
585 	return (ack_pending & ICSK_ACK_SCHED) &&
586 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
587 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
588 		 (rx_empty && ack_pending &
589 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
590 }
591 
592 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
593 {
594 	int old_space = READ_ONCE(msk->old_wspace);
595 	struct mptcp_subflow_context *subflow;
596 	struct sock *sk = (struct sock *)msk;
597 	int space =  __mptcp_space(sk);
598 	bool cleanup, rx_empty;
599 
600 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
601 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
602 
603 	mptcp_for_each_subflow(msk, subflow) {
604 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
605 
606 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
607 			mptcp_subflow_cleanup_rbuf(ssk, copied);
608 	}
609 }
610 
611 static void mptcp_check_data_fin(struct sock *sk)
612 {
613 	struct mptcp_sock *msk = mptcp_sk(sk);
614 	u64 rcv_data_fin_seq;
615 
616 	/* Need to ack a DATA_FIN received from a peer while this side
617 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
618 	 * msk->rcv_data_fin was set when parsing the incoming options
619 	 * at the subflow level and the msk lock was not held, so this
620 	 * is the first opportunity to act on the DATA_FIN and change
621 	 * the msk state.
622 	 *
623 	 * If we are caught up to the sequence number of the incoming
624 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
625 	 * not caught up, do nothing and let the recv code send DATA_ACK
626 	 * when catching up.
627 	 */
628 
629 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
630 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
631 		WRITE_ONCE(msk->rcv_data_fin, 0);
632 
633 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
634 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
635 
636 		switch (sk->sk_state) {
637 		case TCP_ESTABLISHED:
638 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
639 			break;
640 		case TCP_FIN_WAIT1:
641 			mptcp_set_state(sk, TCP_CLOSING);
642 			break;
643 		case TCP_FIN_WAIT2:
644 			mptcp_shutdown_subflows(msk);
645 			mptcp_set_state(sk, TCP_CLOSE);
646 			break;
647 		default:
648 			/* Other states not expected */
649 			WARN_ON_ONCE(1);
650 			break;
651 		}
652 
653 		if (!__mptcp_check_fallback(msk))
654 			mptcp_send_ack(msk);
655 		mptcp_close_wake_up(sk);
656 	}
657 }
658 
659 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
660 {
661 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
662 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
663 		mptcp_subflow_reset(ssk);
664 	}
665 }
666 
667 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
668 					   struct sock *ssk)
669 {
670 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
671 	struct sock *sk = (struct sock *)msk;
672 	bool more_data_avail;
673 	struct tcp_sock *tp;
674 	bool ret = false;
675 
676 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
677 	tp = tcp_sk(ssk);
678 	do {
679 		u32 map_remaining, offset;
680 		u32 seq = tp->copied_seq;
681 		struct sk_buff *skb;
682 		bool fin;
683 
684 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
685 			break;
686 
687 		/* try to move as much data as available */
688 		map_remaining = subflow->map_data_len -
689 				mptcp_subflow_get_map_offset(subflow);
690 
691 		skb = skb_peek(&ssk->sk_receive_queue);
692 		if (unlikely(!skb))
693 			break;
694 
695 		if (__mptcp_check_fallback(msk)) {
696 			/* Under fallback skbs have no MPTCP extension and TCP could
697 			 * collapse them between the dummy map creation and the
698 			 * current dequeue. Be sure to adjust the map size.
699 			 */
700 			map_remaining = skb->len;
701 			subflow->map_data_len = skb->len;
702 		}
703 
704 		offset = seq - TCP_SKB_CB(skb)->seq;
705 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
706 		if (fin)
707 			seq++;
708 
709 		if (offset < skb->len) {
710 			size_t len = skb->len - offset;
711 
712 			mptcp_init_skb(ssk, skb, offset, len);
713 			skb_orphan(skb);
714 			ret = __mptcp_move_skb(sk, skb) || ret;
715 			seq += len;
716 
717 			if (unlikely(map_remaining < len)) {
718 				DEBUG_NET_WARN_ON_ONCE(1);
719 				mptcp_dss_corruption(msk, ssk);
720 			}
721 		} else {
722 			if (unlikely(!fin)) {
723 				DEBUG_NET_WARN_ON_ONCE(1);
724 				mptcp_dss_corruption(msk, ssk);
725 			}
726 
727 			sk_eat_skb(ssk, skb);
728 		}
729 
730 		WRITE_ONCE(tp->copied_seq, seq);
731 		more_data_avail = mptcp_subflow_data_available(ssk);
732 
733 	} while (more_data_avail);
734 
735 	if (ret)
736 		msk->last_data_recv = tcp_jiffies32;
737 	return ret;
738 }
739 
740 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
741 {
742 	struct sock *sk = (struct sock *)msk;
743 	struct sk_buff *skb, *tail;
744 	bool moved = false;
745 	struct rb_node *p;
746 	u64 end_seq;
747 
748 	p = rb_first(&msk->out_of_order_queue);
749 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
750 	while (p) {
751 		skb = rb_to_skb(p);
752 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
753 			break;
754 
755 		p = rb_next(p);
756 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
757 
758 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
759 				      msk->ack_seq))) {
760 			mptcp_drop(sk, skb);
761 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
762 			continue;
763 		}
764 
765 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
766 		tail = skb_peek_tail(&sk->sk_receive_queue);
767 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
768 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
769 
770 			/* skip overlapping data, if any */
771 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
772 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
773 				 delta);
774 			MPTCP_SKB_CB(skb)->offset += delta;
775 			MPTCP_SKB_CB(skb)->map_seq += delta;
776 			__skb_queue_tail(&sk->sk_receive_queue, skb);
777 		}
778 		msk->bytes_received += end_seq - msk->ack_seq;
779 		WRITE_ONCE(msk->ack_seq, end_seq);
780 		moved = true;
781 	}
782 	return moved;
783 }
784 
785 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
786 {
787 	int err = sock_error(ssk);
788 	int ssk_state;
789 
790 	if (!err)
791 		return false;
792 
793 	/* only propagate errors on fallen-back sockets or
794 	 * on MPC connect
795 	 */
796 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
797 		return false;
798 
799 	/* We need to propagate only transition to CLOSE state.
800 	 * Orphaned socket will see such state change via
801 	 * subflow_sched_work_if_closed() and that path will properly
802 	 * destroy the msk as needed.
803 	 */
804 	ssk_state = inet_sk_state_load(ssk);
805 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
806 		mptcp_set_state(sk, ssk_state);
807 	WRITE_ONCE(sk->sk_err, -err);
808 
809 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
810 	smp_wmb();
811 	sk_error_report(sk);
812 	return true;
813 }
814 
815 void __mptcp_error_report(struct sock *sk)
816 {
817 	struct mptcp_subflow_context *subflow;
818 	struct mptcp_sock *msk = mptcp_sk(sk);
819 
820 	mptcp_for_each_subflow(msk, subflow)
821 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
822 			break;
823 }
824 
825 /* In most cases we will be able to lock the mptcp socket.  If its already
826  * owned, we need to defer to the work queue to avoid ABBA deadlock.
827  */
828 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
829 {
830 	struct sock *sk = (struct sock *)msk;
831 	bool moved;
832 
833 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
834 	__mptcp_ofo_queue(msk);
835 	if (unlikely(ssk->sk_err))
836 		__mptcp_subflow_error_report(sk, ssk);
837 
838 	/* If the moves have caught up with the DATA_FIN sequence number
839 	 * it's time to ack the DATA_FIN and change socket state, but
840 	 * this is not a good place to change state. Let the workqueue
841 	 * do it.
842 	 */
843 	if (mptcp_pending_data_fin(sk, NULL))
844 		mptcp_schedule_work(sk);
845 	return moved;
846 }
847 
848 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
849 {
850 	struct mptcp_sock *msk = mptcp_sk(sk);
851 
852 	/* Wake-up the reader only for in-sequence data */
853 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
854 		sk->sk_data_ready(sk);
855 }
856 
857 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
858 {
859 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
860 
861 	/* The peer can send data while we are shutting down this
862 	 * subflow at msk destruction time, but we must avoid enqueuing
863 	 * more data to the msk receive queue
864 	 */
865 	if (unlikely(subflow->disposable))
866 		return;
867 
868 	mptcp_data_lock(sk);
869 	if (!sock_owned_by_user(sk))
870 		__mptcp_data_ready(sk, ssk);
871 	else
872 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
873 	mptcp_data_unlock(sk);
874 }
875 
876 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
877 {
878 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
879 	msk->allow_infinite_fallback = false;
880 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
881 }
882 
883 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
884 {
885 	struct sock *sk = (struct sock *)msk;
886 
887 	if (sk->sk_state != TCP_ESTABLISHED)
888 		return false;
889 
890 	spin_lock_bh(&msk->fallback_lock);
891 	if (!msk->allow_subflows) {
892 		spin_unlock_bh(&msk->fallback_lock);
893 		return false;
894 	}
895 	mptcp_subflow_joined(msk, ssk);
896 	spin_unlock_bh(&msk->fallback_lock);
897 
898 	/* attach to msk socket only after we are sure we will deal with it
899 	 * at close time
900 	 */
901 	if (sk->sk_socket && !ssk->sk_socket)
902 		mptcp_sock_graft(ssk, sk->sk_socket);
903 
904 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
905 	mptcp_sockopt_sync_locked(msk, ssk);
906 	mptcp_stop_tout_timer(sk);
907 	__mptcp_propagate_sndbuf(sk, ssk);
908 	return true;
909 }
910 
911 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
912 {
913 	struct mptcp_subflow_context *tmp, *subflow;
914 	struct mptcp_sock *msk = mptcp_sk(sk);
915 
916 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
917 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
918 		bool slow = lock_sock_fast(ssk);
919 
920 		list_move_tail(&subflow->node, &msk->conn_list);
921 		if (!__mptcp_finish_join(msk, ssk))
922 			mptcp_subflow_reset(ssk);
923 		unlock_sock_fast(ssk, slow);
924 	}
925 }
926 
927 static bool mptcp_rtx_timer_pending(struct sock *sk)
928 {
929 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
930 }
931 
932 static void mptcp_reset_rtx_timer(struct sock *sk)
933 {
934 	struct inet_connection_sock *icsk = inet_csk(sk);
935 	unsigned long tout;
936 
937 	/* prevent rescheduling on close */
938 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
939 		return;
940 
941 	tout = mptcp_sk(sk)->timer_ival;
942 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
943 }
944 
945 bool mptcp_schedule_work(struct sock *sk)
946 {
947 	if (inet_sk_state_load(sk) == TCP_CLOSE)
948 		return false;
949 
950 	/* Get a reference on this socket, mptcp_worker() will release it.
951 	 * As mptcp_worker() might complete before us, we can not avoid
952 	 * a sock_hold()/sock_put() if schedule_work() returns false.
953 	 */
954 	sock_hold(sk);
955 
956 	if (schedule_work(&mptcp_sk(sk)->work))
957 		return true;
958 
959 	sock_put(sk);
960 	return false;
961 }
962 
963 static bool mptcp_skb_can_collapse_to(u64 write_seq,
964 				      const struct sk_buff *skb,
965 				      const struct mptcp_ext *mpext)
966 {
967 	if (!tcp_skb_can_collapse_to(skb))
968 		return false;
969 
970 	/* can collapse only if MPTCP level sequence is in order and this
971 	 * mapping has not been xmitted yet
972 	 */
973 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
974 	       !mpext->frozen;
975 }
976 
977 /* we can append data to the given data frag if:
978  * - there is space available in the backing page_frag
979  * - the data frag tail matches the current page_frag free offset
980  * - the data frag end sequence number matches the current write seq
981  */
982 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
983 				       const struct page_frag *pfrag,
984 				       const struct mptcp_data_frag *df)
985 {
986 	return df && pfrag->page == df->page &&
987 		pfrag->size - pfrag->offset > 0 &&
988 		pfrag->offset == (df->offset + df->data_len) &&
989 		df->data_seq + df->data_len == msk->write_seq;
990 }
991 
992 static void dfrag_uncharge(struct sock *sk, int len)
993 {
994 	sk_mem_uncharge(sk, len);
995 	sk_wmem_queued_add(sk, -len);
996 }
997 
998 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
999 {
1000 	int len = dfrag->data_len + dfrag->overhead;
1001 
1002 	list_del(&dfrag->list);
1003 	dfrag_uncharge(sk, len);
1004 	put_page(dfrag->page);
1005 }
1006 
1007 /* called under both the msk socket lock and the data lock */
1008 static void __mptcp_clean_una(struct sock *sk)
1009 {
1010 	struct mptcp_sock *msk = mptcp_sk(sk);
1011 	struct mptcp_data_frag *dtmp, *dfrag;
1012 	u64 snd_una;
1013 
1014 	snd_una = msk->snd_una;
1015 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1016 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1017 			break;
1018 
1019 		if (unlikely(dfrag == msk->first_pending)) {
1020 			/* in recovery mode can see ack after the current snd head */
1021 			if (WARN_ON_ONCE(!msk->recovery))
1022 				break;
1023 
1024 			msk->first_pending = mptcp_send_next(sk);
1025 		}
1026 
1027 		dfrag_clear(sk, dfrag);
1028 	}
1029 
1030 	dfrag = mptcp_rtx_head(sk);
1031 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1032 		u64 delta = snd_una - dfrag->data_seq;
1033 
1034 		/* prevent wrap around in recovery mode */
1035 		if (unlikely(delta > dfrag->already_sent)) {
1036 			if (WARN_ON_ONCE(!msk->recovery))
1037 				goto out;
1038 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1039 				goto out;
1040 			dfrag->already_sent += delta - dfrag->already_sent;
1041 		}
1042 
1043 		dfrag->data_seq += delta;
1044 		dfrag->offset += delta;
1045 		dfrag->data_len -= delta;
1046 		dfrag->already_sent -= delta;
1047 
1048 		dfrag_uncharge(sk, delta);
1049 	}
1050 
1051 	/* all retransmitted data acked, recovery completed */
1052 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1053 		msk->recovery = false;
1054 
1055 out:
1056 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1057 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1058 			mptcp_stop_rtx_timer(sk);
1059 	} else {
1060 		mptcp_reset_rtx_timer(sk);
1061 	}
1062 
1063 	if (mptcp_pending_data_fin_ack(sk))
1064 		mptcp_schedule_work(sk);
1065 }
1066 
1067 static void __mptcp_clean_una_wakeup(struct sock *sk)
1068 {
1069 	lockdep_assert_held_once(&sk->sk_lock.slock);
1070 
1071 	__mptcp_clean_una(sk);
1072 	mptcp_write_space(sk);
1073 }
1074 
1075 static void mptcp_clean_una_wakeup(struct sock *sk)
1076 {
1077 	mptcp_data_lock(sk);
1078 	__mptcp_clean_una_wakeup(sk);
1079 	mptcp_data_unlock(sk);
1080 }
1081 
1082 static void mptcp_enter_memory_pressure(struct sock *sk)
1083 {
1084 	struct mptcp_subflow_context *subflow;
1085 	struct mptcp_sock *msk = mptcp_sk(sk);
1086 	bool first = true;
1087 
1088 	mptcp_for_each_subflow(msk, subflow) {
1089 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1090 
1091 		if (first && !ssk->sk_bypass_prot_mem) {
1092 			tcp_enter_memory_pressure(ssk);
1093 			first = false;
1094 		}
1095 
1096 		sk_stream_moderate_sndbuf(ssk);
1097 	}
1098 	__mptcp_sync_sndbuf(sk);
1099 }
1100 
1101 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1102  * data
1103  */
1104 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1105 {
1106 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1107 					pfrag, sk->sk_allocation)))
1108 		return true;
1109 
1110 	mptcp_enter_memory_pressure(sk);
1111 	return false;
1112 }
1113 
1114 static struct mptcp_data_frag *
1115 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1116 		      int orig_offset)
1117 {
1118 	int offset = ALIGN(orig_offset, sizeof(long));
1119 	struct mptcp_data_frag *dfrag;
1120 
1121 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1122 	dfrag->data_len = 0;
1123 	dfrag->data_seq = msk->write_seq;
1124 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1125 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1126 	dfrag->already_sent = 0;
1127 	dfrag->page = pfrag->page;
1128 
1129 	return dfrag;
1130 }
1131 
1132 struct mptcp_sendmsg_info {
1133 	int mss_now;
1134 	int size_goal;
1135 	u16 limit;
1136 	u16 sent;
1137 	unsigned int flags;
1138 	bool data_lock_held;
1139 };
1140 
1141 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1142 				    u64 data_seq, int avail_size)
1143 {
1144 	u64 window_end = mptcp_wnd_end(msk);
1145 	u64 mptcp_snd_wnd;
1146 
1147 	if (__mptcp_check_fallback(msk))
1148 		return avail_size;
1149 
1150 	mptcp_snd_wnd = window_end - data_seq;
1151 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1152 
1153 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1154 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1155 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1156 	}
1157 
1158 	return avail_size;
1159 }
1160 
1161 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1162 {
1163 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1164 
1165 	if (!mpext)
1166 		return false;
1167 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1168 	return true;
1169 }
1170 
1171 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1172 {
1173 	struct sk_buff *skb;
1174 
1175 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1176 	if (likely(skb)) {
1177 		if (likely(__mptcp_add_ext(skb, gfp))) {
1178 			skb_reserve(skb, MAX_TCP_HEADER);
1179 			skb->ip_summed = CHECKSUM_PARTIAL;
1180 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1181 			return skb;
1182 		}
1183 		__kfree_skb(skb);
1184 	} else {
1185 		mptcp_enter_memory_pressure(sk);
1186 	}
1187 	return NULL;
1188 }
1189 
1190 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1191 {
1192 	struct sk_buff *skb;
1193 
1194 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1195 	if (!skb)
1196 		return NULL;
1197 
1198 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1199 		tcp_skb_entail(ssk, skb);
1200 		return skb;
1201 	}
1202 	tcp_skb_tsorted_anchor_cleanup(skb);
1203 	kfree_skb(skb);
1204 	return NULL;
1205 }
1206 
1207 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1208 {
1209 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1210 
1211 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1212 }
1213 
1214 /* note: this always recompute the csum on the whole skb, even
1215  * if we just appended a single frag. More status info needed
1216  */
1217 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1218 {
1219 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1220 	__wsum csum = ~csum_unfold(mpext->csum);
1221 	int offset = skb->len - added;
1222 
1223 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1224 }
1225 
1226 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1227 				      struct sock *ssk,
1228 				      struct mptcp_ext *mpext)
1229 {
1230 	if (!mpext)
1231 		return;
1232 
1233 	mpext->infinite_map = 1;
1234 	mpext->data_len = 0;
1235 
1236 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1237 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1238 		mptcp_subflow_reset(ssk);
1239 		return;
1240 	}
1241 
1242 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1243 }
1244 
1245 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1246 
1247 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1248 			      struct mptcp_data_frag *dfrag,
1249 			      struct mptcp_sendmsg_info *info)
1250 {
1251 	u64 data_seq = dfrag->data_seq + info->sent;
1252 	int offset = dfrag->offset + info->sent;
1253 	struct mptcp_sock *msk = mptcp_sk(sk);
1254 	bool zero_window_probe = false;
1255 	struct mptcp_ext *mpext = NULL;
1256 	bool can_coalesce = false;
1257 	bool reuse_skb = true;
1258 	struct sk_buff *skb;
1259 	size_t copy;
1260 	int i;
1261 
1262 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1263 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1264 
1265 	if (WARN_ON_ONCE(info->sent > info->limit ||
1266 			 info->limit > dfrag->data_len))
1267 		return 0;
1268 
1269 	if (unlikely(!__tcp_can_send(ssk)))
1270 		return -EAGAIN;
1271 
1272 	/* compute send limit */
1273 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1274 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1275 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1276 	copy = info->size_goal;
1277 
1278 	skb = tcp_write_queue_tail(ssk);
1279 	if (skb && copy > skb->len) {
1280 		/* Limit the write to the size available in the
1281 		 * current skb, if any, so that we create at most a new skb.
1282 		 * Explicitly tells TCP internals to avoid collapsing on later
1283 		 * queue management operation, to avoid breaking the ext <->
1284 		 * SSN association set here
1285 		 */
1286 		mpext = mptcp_get_ext(skb);
1287 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1288 			TCP_SKB_CB(skb)->eor = 1;
1289 			tcp_mark_push(tcp_sk(ssk), skb);
1290 			goto alloc_skb;
1291 		}
1292 
1293 		i = skb_shinfo(skb)->nr_frags;
1294 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1295 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1296 			tcp_mark_push(tcp_sk(ssk), skb);
1297 			goto alloc_skb;
1298 		}
1299 
1300 		copy -= skb->len;
1301 	} else {
1302 alloc_skb:
1303 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1304 		if (!skb)
1305 			return -ENOMEM;
1306 
1307 		i = skb_shinfo(skb)->nr_frags;
1308 		reuse_skb = false;
1309 		mpext = mptcp_get_ext(skb);
1310 	}
1311 
1312 	/* Zero window and all data acked? Probe. */
1313 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1314 	if (copy == 0) {
1315 		u64 snd_una = READ_ONCE(msk->snd_una);
1316 
1317 		/* No need for zero probe if there are any data pending
1318 		 * either at the msk or ssk level; skb is the current write
1319 		 * queue tail and can be empty at this point.
1320 		 */
1321 		if (snd_una != msk->snd_nxt || skb->len ||
1322 		    skb != tcp_send_head(ssk)) {
1323 			tcp_remove_empty_skb(ssk);
1324 			return 0;
1325 		}
1326 
1327 		zero_window_probe = true;
1328 		data_seq = snd_una - 1;
1329 		copy = 1;
1330 	}
1331 
1332 	copy = min_t(size_t, copy, info->limit - info->sent);
1333 	if (!sk_wmem_schedule(ssk, copy)) {
1334 		tcp_remove_empty_skb(ssk);
1335 		return -ENOMEM;
1336 	}
1337 
1338 	if (can_coalesce) {
1339 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1340 	} else {
1341 		get_page(dfrag->page);
1342 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1343 	}
1344 
1345 	skb->len += copy;
1346 	skb->data_len += copy;
1347 	skb->truesize += copy;
1348 	sk_wmem_queued_add(ssk, copy);
1349 	sk_mem_charge(ssk, copy);
1350 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1351 	TCP_SKB_CB(skb)->end_seq += copy;
1352 	tcp_skb_pcount_set(skb, 0);
1353 
1354 	/* on skb reuse we just need to update the DSS len */
1355 	if (reuse_skb) {
1356 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1357 		mpext->data_len += copy;
1358 		goto out;
1359 	}
1360 
1361 	memset(mpext, 0, sizeof(*mpext));
1362 	mpext->data_seq = data_seq;
1363 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1364 	mpext->data_len = copy;
1365 	mpext->use_map = 1;
1366 	mpext->dsn64 = 1;
1367 
1368 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1369 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1370 		 mpext->dsn64);
1371 
1372 	if (zero_window_probe) {
1373 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1374 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1375 		mpext->frozen = 1;
1376 		if (READ_ONCE(msk->csum_enabled))
1377 			mptcp_update_data_checksum(skb, copy);
1378 		tcp_push_pending_frames(ssk);
1379 		return 0;
1380 	}
1381 out:
1382 	if (READ_ONCE(msk->csum_enabled))
1383 		mptcp_update_data_checksum(skb, copy);
1384 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1385 		mptcp_update_infinite_map(msk, ssk, mpext);
1386 	trace_mptcp_sendmsg_frag(mpext);
1387 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1388 	return copy;
1389 }
1390 
1391 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1392 					 sizeof(struct tcphdr) - \
1393 					 MAX_TCP_OPTION_SPACE - \
1394 					 sizeof(struct ipv6hdr) - \
1395 					 sizeof(struct frag_hdr))
1396 
1397 struct subflow_send_info {
1398 	struct sock *ssk;
1399 	u64 linger_time;
1400 };
1401 
1402 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1403 {
1404 	if (!subflow->stale)
1405 		return;
1406 
1407 	subflow->stale = 0;
1408 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1409 }
1410 
1411 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1412 {
1413 	if (unlikely(subflow->stale)) {
1414 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1415 
1416 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1417 			return false;
1418 
1419 		mptcp_subflow_set_active(subflow);
1420 	}
1421 	return __mptcp_subflow_active(subflow);
1422 }
1423 
1424 #define SSK_MODE_ACTIVE	0
1425 #define SSK_MODE_BACKUP	1
1426 #define SSK_MODE_MAX	2
1427 
1428 /* implement the mptcp packet scheduler;
1429  * returns the subflow that will transmit the next DSS
1430  * additionally updates the rtx timeout
1431  */
1432 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1433 {
1434 	struct subflow_send_info send_info[SSK_MODE_MAX];
1435 	struct mptcp_subflow_context *subflow;
1436 	struct sock *sk = (struct sock *)msk;
1437 	u32 pace, burst, wmem;
1438 	int i, nr_active = 0;
1439 	struct sock *ssk;
1440 	u64 linger_time;
1441 	long tout = 0;
1442 
1443 	/* pick the subflow with the lower wmem/wspace ratio */
1444 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1445 		send_info[i].ssk = NULL;
1446 		send_info[i].linger_time = -1;
1447 	}
1448 
1449 	mptcp_for_each_subflow(msk, subflow) {
1450 		bool backup = subflow->backup || subflow->request_bkup;
1451 
1452 		trace_mptcp_subflow_get_send(subflow);
1453 		ssk =  mptcp_subflow_tcp_sock(subflow);
1454 		if (!mptcp_subflow_active(subflow))
1455 			continue;
1456 
1457 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1458 		nr_active += !backup;
1459 		pace = subflow->avg_pacing_rate;
1460 		if (unlikely(!pace)) {
1461 			/* init pacing rate from socket */
1462 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1463 			pace = subflow->avg_pacing_rate;
1464 			if (!pace)
1465 				continue;
1466 		}
1467 
1468 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1469 		if (linger_time < send_info[backup].linger_time) {
1470 			send_info[backup].ssk = ssk;
1471 			send_info[backup].linger_time = linger_time;
1472 		}
1473 	}
1474 	__mptcp_set_timeout(sk, tout);
1475 
1476 	/* pick the best backup if no other subflow is active */
1477 	if (!nr_active)
1478 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1479 
1480 	/* According to the blest algorithm, to avoid HoL blocking for the
1481 	 * faster flow, we need to:
1482 	 * - estimate the faster flow linger time
1483 	 * - use the above to estimate the amount of byte transferred
1484 	 *   by the faster flow
1485 	 * - check that the amount of queued data is greater than the above,
1486 	 *   otherwise do not use the picked, slower, subflow
1487 	 * We select the subflow with the shorter estimated time to flush
1488 	 * the queued mem, which basically ensure the above. We just need
1489 	 * to check that subflow has a non empty cwin.
1490 	 */
1491 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1492 	if (!ssk || !sk_stream_memory_free(ssk))
1493 		return NULL;
1494 
1495 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1496 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1497 	if (!burst)
1498 		return ssk;
1499 
1500 	subflow = mptcp_subflow_ctx(ssk);
1501 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1502 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1503 					   burst + wmem);
1504 	msk->snd_burst = burst;
1505 	return ssk;
1506 }
1507 
1508 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1509 {
1510 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1511 	release_sock(ssk);
1512 }
1513 
1514 static void mptcp_update_post_push(struct mptcp_sock *msk,
1515 				   struct mptcp_data_frag *dfrag,
1516 				   u32 sent)
1517 {
1518 	u64 snd_nxt_new = dfrag->data_seq;
1519 
1520 	dfrag->already_sent += sent;
1521 
1522 	msk->snd_burst -= sent;
1523 
1524 	snd_nxt_new += dfrag->already_sent;
1525 
1526 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1527 	 * is recovering after a failover. In that event, this re-sends
1528 	 * old segments.
1529 	 *
1530 	 * Thus compute snd_nxt_new candidate based on
1531 	 * the dfrag->data_seq that was sent and the data
1532 	 * that has been handed to the subflow for transmission
1533 	 * and skip update in case it was old dfrag.
1534 	 */
1535 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1536 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1537 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1538 	}
1539 }
1540 
1541 void mptcp_check_and_set_pending(struct sock *sk)
1542 {
1543 	if (mptcp_send_head(sk)) {
1544 		mptcp_data_lock(sk);
1545 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1546 		mptcp_data_unlock(sk);
1547 	}
1548 }
1549 
1550 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1551 				  struct mptcp_sendmsg_info *info)
1552 {
1553 	struct mptcp_sock *msk = mptcp_sk(sk);
1554 	struct mptcp_data_frag *dfrag;
1555 	int len, copied = 0, err = 0;
1556 
1557 	while ((dfrag = mptcp_send_head(sk))) {
1558 		info->sent = dfrag->already_sent;
1559 		info->limit = dfrag->data_len;
1560 		len = dfrag->data_len - dfrag->already_sent;
1561 		while (len > 0) {
1562 			int ret = 0;
1563 
1564 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1565 			if (ret <= 0) {
1566 				err = copied ? : ret;
1567 				goto out;
1568 			}
1569 
1570 			info->sent += ret;
1571 			copied += ret;
1572 			len -= ret;
1573 
1574 			mptcp_update_post_push(msk, dfrag, ret);
1575 		}
1576 		msk->first_pending = mptcp_send_next(sk);
1577 
1578 		if (msk->snd_burst <= 0 ||
1579 		    !sk_stream_memory_free(ssk) ||
1580 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1581 			err = copied;
1582 			goto out;
1583 		}
1584 		mptcp_set_timeout(sk);
1585 	}
1586 	err = copied;
1587 
1588 out:
1589 	if (err > 0)
1590 		msk->last_data_sent = tcp_jiffies32;
1591 	return err;
1592 }
1593 
1594 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1595 {
1596 	struct sock *prev_ssk = NULL, *ssk = NULL;
1597 	struct mptcp_sock *msk = mptcp_sk(sk);
1598 	struct mptcp_sendmsg_info info = {
1599 				.flags = flags,
1600 	};
1601 	bool do_check_data_fin = false;
1602 	int push_count = 1;
1603 
1604 	while (mptcp_send_head(sk) && (push_count > 0)) {
1605 		struct mptcp_subflow_context *subflow;
1606 		int ret = 0;
1607 
1608 		if (mptcp_sched_get_send(msk))
1609 			break;
1610 
1611 		push_count = 0;
1612 
1613 		mptcp_for_each_subflow(msk, subflow) {
1614 			if (READ_ONCE(subflow->scheduled)) {
1615 				mptcp_subflow_set_scheduled(subflow, false);
1616 
1617 				prev_ssk = ssk;
1618 				ssk = mptcp_subflow_tcp_sock(subflow);
1619 				if (ssk != prev_ssk) {
1620 					/* First check. If the ssk has changed since
1621 					 * the last round, release prev_ssk
1622 					 */
1623 					if (prev_ssk)
1624 						mptcp_push_release(prev_ssk, &info);
1625 
1626 					/* Need to lock the new subflow only if different
1627 					 * from the previous one, otherwise we are still
1628 					 * helding the relevant lock
1629 					 */
1630 					lock_sock(ssk);
1631 				}
1632 
1633 				push_count++;
1634 
1635 				ret = __subflow_push_pending(sk, ssk, &info);
1636 				if (ret <= 0) {
1637 					if (ret != -EAGAIN ||
1638 					    (1 << ssk->sk_state) &
1639 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1640 						push_count--;
1641 					continue;
1642 				}
1643 				do_check_data_fin = true;
1644 			}
1645 		}
1646 	}
1647 
1648 	/* at this point we held the socket lock for the last subflow we used */
1649 	if (ssk)
1650 		mptcp_push_release(ssk, &info);
1651 
1652 	/* ensure the rtx timer is running */
1653 	if (!mptcp_rtx_timer_pending(sk))
1654 		mptcp_reset_rtx_timer(sk);
1655 	if (do_check_data_fin)
1656 		mptcp_check_send_data_fin(sk);
1657 }
1658 
1659 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1660 {
1661 	struct mptcp_sock *msk = mptcp_sk(sk);
1662 	struct mptcp_sendmsg_info info = {
1663 		.data_lock_held = true,
1664 	};
1665 	bool keep_pushing = true;
1666 	struct sock *xmit_ssk;
1667 	int copied = 0;
1668 
1669 	info.flags = 0;
1670 	while (mptcp_send_head(sk) && keep_pushing) {
1671 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1672 		int ret = 0;
1673 
1674 		/* check for a different subflow usage only after
1675 		 * spooling the first chunk of data
1676 		 */
1677 		if (first) {
1678 			mptcp_subflow_set_scheduled(subflow, false);
1679 			ret = __subflow_push_pending(sk, ssk, &info);
1680 			first = false;
1681 			if (ret <= 0)
1682 				break;
1683 			copied += ret;
1684 			continue;
1685 		}
1686 
1687 		if (mptcp_sched_get_send(msk))
1688 			goto out;
1689 
1690 		if (READ_ONCE(subflow->scheduled)) {
1691 			mptcp_subflow_set_scheduled(subflow, false);
1692 			ret = __subflow_push_pending(sk, ssk, &info);
1693 			if (ret <= 0)
1694 				keep_pushing = false;
1695 			copied += ret;
1696 		}
1697 
1698 		mptcp_for_each_subflow(msk, subflow) {
1699 			if (READ_ONCE(subflow->scheduled)) {
1700 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1701 				if (xmit_ssk != ssk) {
1702 					mptcp_subflow_delegate(subflow,
1703 							       MPTCP_DELEGATE_SEND);
1704 					keep_pushing = false;
1705 				}
1706 			}
1707 		}
1708 	}
1709 
1710 out:
1711 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1712 	 * not going to flush it via release_sock()
1713 	 */
1714 	if (copied) {
1715 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1716 			 info.size_goal);
1717 		if (!mptcp_rtx_timer_pending(sk))
1718 			mptcp_reset_rtx_timer(sk);
1719 
1720 		if (msk->snd_data_fin_enable &&
1721 		    msk->snd_nxt + 1 == msk->write_seq)
1722 			mptcp_schedule_work(sk);
1723 	}
1724 }
1725 
1726 static int mptcp_disconnect(struct sock *sk, int flags);
1727 
1728 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1729 				  size_t len, int *copied_syn)
1730 {
1731 	unsigned int saved_flags = msg->msg_flags;
1732 	struct mptcp_sock *msk = mptcp_sk(sk);
1733 	struct sock *ssk;
1734 	int ret;
1735 
1736 	/* on flags based fastopen the mptcp is supposed to create the
1737 	 * first subflow right now. Otherwise we are in the defer_connect
1738 	 * path, and the first subflow must be already present.
1739 	 * Since the defer_connect flag is cleared after the first succsful
1740 	 * fastopen attempt, no need to check for additional subflow status.
1741 	 */
1742 	if (msg->msg_flags & MSG_FASTOPEN) {
1743 		ssk = __mptcp_nmpc_sk(msk);
1744 		if (IS_ERR(ssk))
1745 			return PTR_ERR(ssk);
1746 	}
1747 	if (!msk->first)
1748 		return -EINVAL;
1749 
1750 	ssk = msk->first;
1751 
1752 	lock_sock(ssk);
1753 	msg->msg_flags |= MSG_DONTWAIT;
1754 	msk->fastopening = 1;
1755 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1756 	msk->fastopening = 0;
1757 	msg->msg_flags = saved_flags;
1758 	release_sock(ssk);
1759 
1760 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1761 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1762 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1763 					    msg->msg_namelen, msg->msg_flags, 1);
1764 
1765 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1766 		 * case of any error, except timeout or signal
1767 		 */
1768 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1769 			*copied_syn = 0;
1770 	} else if (ret && ret != -EINPROGRESS) {
1771 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1772 		 * __inet_stream_connect() can fail, due to looking check,
1773 		 * see mptcp_disconnect().
1774 		 * Attempt it again outside the problematic scope.
1775 		 */
1776 		if (!mptcp_disconnect(sk, 0)) {
1777 			sk->sk_disconnects++;
1778 			sk->sk_socket->state = SS_UNCONNECTED;
1779 		}
1780 	}
1781 	inet_clear_bit(DEFER_CONNECT, sk);
1782 
1783 	return ret;
1784 }
1785 
1786 static int do_copy_data_nocache(struct sock *sk, int copy,
1787 				struct iov_iter *from, char *to)
1788 {
1789 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1790 		if (!copy_from_iter_full_nocache(to, copy, from))
1791 			return -EFAULT;
1792 	} else if (!copy_from_iter_full(to, copy, from)) {
1793 		return -EFAULT;
1794 	}
1795 	return 0;
1796 }
1797 
1798 /* open-code sk_stream_memory_free() plus sent limit computation to
1799  * avoid indirect calls in fast-path.
1800  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1801  * annotations.
1802  */
1803 static u32 mptcp_send_limit(const struct sock *sk)
1804 {
1805 	const struct mptcp_sock *msk = mptcp_sk(sk);
1806 	u32 limit, not_sent;
1807 
1808 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1809 		return 0;
1810 
1811 	limit = mptcp_notsent_lowat(sk);
1812 	if (limit == UINT_MAX)
1813 		return UINT_MAX;
1814 
1815 	not_sent = msk->write_seq - msk->snd_nxt;
1816 	if (not_sent >= limit)
1817 		return 0;
1818 
1819 	return limit - not_sent;
1820 }
1821 
1822 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1823 {
1824 	struct mptcp_subflow_context *subflow;
1825 
1826 	if (!rfs_is_needed())
1827 		return;
1828 
1829 	mptcp_for_each_subflow(msk, subflow) {
1830 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1831 
1832 		sock_rps_record_flow(ssk);
1833 	}
1834 }
1835 
1836 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1837 {
1838 	struct mptcp_sock *msk = mptcp_sk(sk);
1839 	struct page_frag *pfrag;
1840 	size_t copied = 0;
1841 	int ret = 0;
1842 	long timeo;
1843 
1844 	/* silently ignore everything else */
1845 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1846 
1847 	lock_sock(sk);
1848 
1849 	mptcp_rps_record_subflows(msk);
1850 
1851 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1852 		     msg->msg_flags & MSG_FASTOPEN)) {
1853 		int copied_syn = 0;
1854 
1855 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1856 		copied += copied_syn;
1857 		if (ret == -EINPROGRESS && copied_syn > 0)
1858 			goto out;
1859 		else if (ret)
1860 			goto do_error;
1861 	}
1862 
1863 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1864 
1865 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1866 		ret = sk_stream_wait_connect(sk, &timeo);
1867 		if (ret)
1868 			goto do_error;
1869 	}
1870 
1871 	ret = -EPIPE;
1872 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1873 		goto do_error;
1874 
1875 	pfrag = sk_page_frag(sk);
1876 
1877 	while (msg_data_left(msg)) {
1878 		int total_ts, frag_truesize = 0;
1879 		struct mptcp_data_frag *dfrag;
1880 		bool dfrag_collapsed;
1881 		size_t psize, offset;
1882 		u32 copy_limit;
1883 
1884 		/* ensure fitting the notsent_lowat() constraint */
1885 		copy_limit = mptcp_send_limit(sk);
1886 		if (!copy_limit)
1887 			goto wait_for_memory;
1888 
1889 		/* reuse tail pfrag, if possible, or carve a new one from the
1890 		 * page allocator
1891 		 */
1892 		dfrag = mptcp_pending_tail(sk);
1893 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1894 		if (!dfrag_collapsed) {
1895 			if (!mptcp_page_frag_refill(sk, pfrag))
1896 				goto wait_for_memory;
1897 
1898 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1899 			frag_truesize = dfrag->overhead;
1900 		}
1901 
1902 		/* we do not bound vs wspace, to allow a single packet.
1903 		 * memory accounting will prevent execessive memory usage
1904 		 * anyway
1905 		 */
1906 		offset = dfrag->offset + dfrag->data_len;
1907 		psize = pfrag->size - offset;
1908 		psize = min_t(size_t, psize, msg_data_left(msg));
1909 		psize = min_t(size_t, psize, copy_limit);
1910 		total_ts = psize + frag_truesize;
1911 
1912 		if (!sk_wmem_schedule(sk, total_ts))
1913 			goto wait_for_memory;
1914 
1915 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1916 					   page_address(dfrag->page) + offset);
1917 		if (ret)
1918 			goto do_error;
1919 
1920 		/* data successfully copied into the write queue */
1921 		sk_forward_alloc_add(sk, -total_ts);
1922 		copied += psize;
1923 		dfrag->data_len += psize;
1924 		frag_truesize += psize;
1925 		pfrag->offset += frag_truesize;
1926 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1927 
1928 		/* charge data on mptcp pending queue to the msk socket
1929 		 * Note: we charge such data both to sk and ssk
1930 		 */
1931 		sk_wmem_queued_add(sk, frag_truesize);
1932 		if (!dfrag_collapsed) {
1933 			get_page(dfrag->page);
1934 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1935 			if (!msk->first_pending)
1936 				msk->first_pending = dfrag;
1937 		}
1938 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1939 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1940 			 !dfrag_collapsed);
1941 
1942 		continue;
1943 
1944 wait_for_memory:
1945 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1946 		__mptcp_push_pending(sk, msg->msg_flags);
1947 		ret = sk_stream_wait_memory(sk, &timeo);
1948 		if (ret)
1949 			goto do_error;
1950 	}
1951 
1952 	if (copied)
1953 		__mptcp_push_pending(sk, msg->msg_flags);
1954 
1955 out:
1956 	release_sock(sk);
1957 	return copied;
1958 
1959 do_error:
1960 	if (copied)
1961 		goto out;
1962 
1963 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1964 	goto out;
1965 }
1966 
1967 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1968 
1969 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1970 				size_t len, int flags, int copied_total,
1971 				struct scm_timestamping_internal *tss,
1972 				int *cmsg_flags)
1973 {
1974 	struct mptcp_sock *msk = mptcp_sk(sk);
1975 	struct sk_buff *skb, *tmp;
1976 	int total_data_len = 0;
1977 	int copied = 0;
1978 
1979 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1980 		u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
1981 		u32 data_len = skb->len - offset;
1982 		u32 count;
1983 		int err;
1984 
1985 		if (flags & MSG_PEEK) {
1986 			/* skip already peeked skbs */
1987 			if (total_data_len + data_len <= copied_total) {
1988 				total_data_len += data_len;
1989 				continue;
1990 			}
1991 
1992 			/* skip the already peeked data in the current skb */
1993 			delta = copied_total - total_data_len;
1994 			offset += delta;
1995 			data_len -= delta;
1996 		}
1997 
1998 		count = min_t(size_t, len - copied, data_len);
1999 		if (!(flags & MSG_TRUNC)) {
2000 			err = skb_copy_datagram_msg(skb, offset, msg, count);
2001 			if (unlikely(err < 0)) {
2002 				if (!copied)
2003 					return err;
2004 				break;
2005 			}
2006 		}
2007 
2008 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
2009 			tcp_update_recv_tstamps(skb, tss);
2010 			*cmsg_flags |= MPTCP_CMSG_TS;
2011 		}
2012 
2013 		copied += count;
2014 
2015 		if (!(flags & MSG_PEEK)) {
2016 			msk->bytes_consumed += count;
2017 			if (count < data_len) {
2018 				MPTCP_SKB_CB(skb)->offset += count;
2019 				MPTCP_SKB_CB(skb)->map_seq += count;
2020 				break;
2021 			}
2022 
2023 			/* avoid the indirect call, we know the destructor is sock_rfree */
2024 			skb->destructor = NULL;
2025 			skb->sk = NULL;
2026 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2027 			sk_mem_uncharge(sk, skb->truesize);
2028 			__skb_unlink(skb, &sk->sk_receive_queue);
2029 			skb_attempt_defer_free(skb);
2030 		}
2031 
2032 		if (copied >= len)
2033 			break;
2034 	}
2035 
2036 	mptcp_rcv_space_adjust(msk, copied);
2037 	return copied;
2038 }
2039 
2040 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2041  *
2042  * Only difference: Use highest rtt estimate of the subflows in use.
2043  */
2044 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2045 {
2046 	struct mptcp_subflow_context *subflow;
2047 	struct sock *sk = (struct sock *)msk;
2048 	u8 scaling_ratio = U8_MAX;
2049 	u32 time, advmss = 1;
2050 	u64 rtt_us, mstamp;
2051 
2052 	msk_owned_by_me(msk);
2053 
2054 	if (copied <= 0)
2055 		return;
2056 
2057 	if (!msk->rcvspace_init)
2058 		mptcp_rcv_space_init(msk, msk->first);
2059 
2060 	msk->rcvq_space.copied += copied;
2061 
2062 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2063 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2064 
2065 	rtt_us = msk->rcvq_space.rtt_us;
2066 	if (rtt_us && time < (rtt_us >> 3))
2067 		return;
2068 
2069 	rtt_us = 0;
2070 	mptcp_for_each_subflow(msk, subflow) {
2071 		const struct tcp_sock *tp;
2072 		u64 sf_rtt_us;
2073 		u32 sf_advmss;
2074 
2075 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2076 
2077 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2078 		sf_advmss = READ_ONCE(tp->advmss);
2079 
2080 		rtt_us = max(sf_rtt_us, rtt_us);
2081 		advmss = max(sf_advmss, advmss);
2082 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2083 	}
2084 
2085 	msk->rcvq_space.rtt_us = rtt_us;
2086 	msk->scaling_ratio = scaling_ratio;
2087 	if (time < (rtt_us >> 3) || rtt_us == 0)
2088 		return;
2089 
2090 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2091 		goto new_measure;
2092 
2093 	if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2094 		/* Make subflows follow along.  If we do not do this, we
2095 		 * get drops at subflow level if skbs can't be moved to
2096 		 * the mptcp rx queue fast enough (announced rcv_win can
2097 		 * exceed ssk->sk_rcvbuf).
2098 		 */
2099 		mptcp_for_each_subflow(msk, subflow) {
2100 			struct sock *ssk;
2101 			bool slow;
2102 
2103 			ssk = mptcp_subflow_tcp_sock(subflow);
2104 			slow = lock_sock_fast(ssk);
2105 			/* subflows can be added before tcp_init_transfer() */
2106 			if (tcp_sk(ssk)->rcvq_space.space)
2107 				tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2108 			unlock_sock_fast(ssk, slow);
2109 		}
2110 	}
2111 
2112 new_measure:
2113 	msk->rcvq_space.copied = 0;
2114 	msk->rcvq_space.time = mstamp;
2115 }
2116 
2117 static struct mptcp_subflow_context *
2118 __mptcp_first_ready_from(struct mptcp_sock *msk,
2119 			 struct mptcp_subflow_context *subflow)
2120 {
2121 	struct mptcp_subflow_context *start_subflow = subflow;
2122 
2123 	while (!READ_ONCE(subflow->data_avail)) {
2124 		subflow = mptcp_next_subflow(msk, subflow);
2125 		if (subflow == start_subflow)
2126 			return NULL;
2127 	}
2128 	return subflow;
2129 }
2130 
2131 static bool __mptcp_move_skbs(struct sock *sk)
2132 {
2133 	struct mptcp_subflow_context *subflow;
2134 	struct mptcp_sock *msk = mptcp_sk(sk);
2135 	bool ret = false;
2136 
2137 	if (list_empty(&msk->conn_list))
2138 		return false;
2139 
2140 	subflow = list_first_entry(&msk->conn_list,
2141 				   struct mptcp_subflow_context, node);
2142 	for (;;) {
2143 		struct sock *ssk;
2144 		bool slowpath;
2145 
2146 		/*
2147 		 * As an optimization avoid traversing the subflows list
2148 		 * and ev. acquiring the subflow socket lock before baling out
2149 		 */
2150 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2151 			break;
2152 
2153 		subflow = __mptcp_first_ready_from(msk, subflow);
2154 		if (!subflow)
2155 			break;
2156 
2157 		ssk = mptcp_subflow_tcp_sock(subflow);
2158 		slowpath = lock_sock_fast(ssk);
2159 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2160 		if (unlikely(ssk->sk_err))
2161 			__mptcp_error_report(sk);
2162 		unlock_sock_fast(ssk, slowpath);
2163 
2164 		subflow = mptcp_next_subflow(msk, subflow);
2165 	}
2166 
2167 	__mptcp_ofo_queue(msk);
2168 	if (ret)
2169 		mptcp_check_data_fin((struct sock *)msk);
2170 	return ret;
2171 }
2172 
2173 static unsigned int mptcp_inq_hint(const struct sock *sk)
2174 {
2175 	const struct mptcp_sock *msk = mptcp_sk(sk);
2176 	const struct sk_buff *skb;
2177 
2178 	skb = skb_peek(&sk->sk_receive_queue);
2179 	if (skb) {
2180 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2181 
2182 		if (hint_val >= INT_MAX)
2183 			return INT_MAX;
2184 
2185 		return (unsigned int)hint_val;
2186 	}
2187 
2188 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2189 		return 1;
2190 
2191 	return 0;
2192 }
2193 
2194 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2195 			 int flags, int *addr_len)
2196 {
2197 	struct mptcp_sock *msk = mptcp_sk(sk);
2198 	struct scm_timestamping_internal tss;
2199 	int copied = 0, cmsg_flags = 0;
2200 	int target;
2201 	long timeo;
2202 
2203 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2204 	if (unlikely(flags & MSG_ERRQUEUE))
2205 		return inet_recv_error(sk, msg, len, addr_len);
2206 
2207 	lock_sock(sk);
2208 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2209 		copied = -ENOTCONN;
2210 		goto out_err;
2211 	}
2212 
2213 	mptcp_rps_record_subflows(msk);
2214 
2215 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2216 
2217 	len = min_t(size_t, len, INT_MAX);
2218 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2219 
2220 	if (unlikely(msk->recvmsg_inq))
2221 		cmsg_flags = MPTCP_CMSG_INQ;
2222 
2223 	while (copied < len) {
2224 		int err, bytes_read;
2225 
2226 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2227 						  copied, &tss, &cmsg_flags);
2228 		if (unlikely(bytes_read < 0)) {
2229 			if (!copied)
2230 				copied = bytes_read;
2231 			goto out_err;
2232 		}
2233 
2234 		copied += bytes_read;
2235 
2236 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2237 			continue;
2238 
2239 		/* only the MPTCP socket status is relevant here. The exit
2240 		 * conditions mirror closely tcp_recvmsg()
2241 		 */
2242 		if (copied >= target)
2243 			break;
2244 
2245 		if (copied) {
2246 			if (sk->sk_err ||
2247 			    sk->sk_state == TCP_CLOSE ||
2248 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2249 			    !timeo ||
2250 			    signal_pending(current))
2251 				break;
2252 		} else {
2253 			if (sk->sk_err) {
2254 				copied = sock_error(sk);
2255 				break;
2256 			}
2257 
2258 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2259 				break;
2260 
2261 			if (sk->sk_state == TCP_CLOSE) {
2262 				copied = -ENOTCONN;
2263 				break;
2264 			}
2265 
2266 			if (!timeo) {
2267 				copied = -EAGAIN;
2268 				break;
2269 			}
2270 
2271 			if (signal_pending(current)) {
2272 				copied = sock_intr_errno(timeo);
2273 				break;
2274 			}
2275 		}
2276 
2277 		pr_debug("block timeout %ld\n", timeo);
2278 		mptcp_cleanup_rbuf(msk, copied);
2279 		err = sk_wait_data(sk, &timeo, NULL);
2280 		if (err < 0) {
2281 			err = copied ? : err;
2282 			goto out_err;
2283 		}
2284 	}
2285 
2286 	mptcp_cleanup_rbuf(msk, copied);
2287 
2288 out_err:
2289 	if (cmsg_flags && copied >= 0) {
2290 		if (cmsg_flags & MPTCP_CMSG_TS)
2291 			tcp_recv_timestamp(msg, sk, &tss);
2292 
2293 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2294 			unsigned int inq = mptcp_inq_hint(sk);
2295 
2296 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2297 		}
2298 	}
2299 
2300 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2301 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2302 
2303 	release_sock(sk);
2304 	return copied;
2305 }
2306 
2307 static void mptcp_retransmit_timer(struct timer_list *t)
2308 {
2309 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2310 							       icsk_retransmit_timer);
2311 	struct sock *sk = &icsk->icsk_inet.sk;
2312 	struct mptcp_sock *msk = mptcp_sk(sk);
2313 
2314 	bh_lock_sock(sk);
2315 	if (!sock_owned_by_user(sk)) {
2316 		/* we need a process context to retransmit */
2317 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2318 			mptcp_schedule_work(sk);
2319 	} else {
2320 		/* delegate our work to tcp_release_cb() */
2321 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2322 	}
2323 	bh_unlock_sock(sk);
2324 	sock_put(sk);
2325 }
2326 
2327 static void mptcp_tout_timer(struct timer_list *t)
2328 {
2329 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2330 
2331 	mptcp_schedule_work(sk);
2332 	sock_put(sk);
2333 }
2334 
2335 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2336  * level.
2337  *
2338  * A backup subflow is returned only if that is the only kind available.
2339  */
2340 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2341 {
2342 	struct sock *backup = NULL, *pick = NULL;
2343 	struct mptcp_subflow_context *subflow;
2344 	int min_stale_count = INT_MAX;
2345 
2346 	mptcp_for_each_subflow(msk, subflow) {
2347 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2348 
2349 		if (!__mptcp_subflow_active(subflow))
2350 			continue;
2351 
2352 		/* still data outstanding at TCP level? skip this */
2353 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2354 			mptcp_pm_subflow_chk_stale(msk, ssk);
2355 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2356 			continue;
2357 		}
2358 
2359 		if (subflow->backup || subflow->request_bkup) {
2360 			if (!backup)
2361 				backup = ssk;
2362 			continue;
2363 		}
2364 
2365 		if (!pick)
2366 			pick = ssk;
2367 	}
2368 
2369 	if (pick)
2370 		return pick;
2371 
2372 	/* use backup only if there are no progresses anywhere */
2373 	return min_stale_count > 1 ? backup : NULL;
2374 }
2375 
2376 bool __mptcp_retransmit_pending_data(struct sock *sk)
2377 {
2378 	struct mptcp_data_frag *cur, *rtx_head;
2379 	struct mptcp_sock *msk = mptcp_sk(sk);
2380 
2381 	if (__mptcp_check_fallback(msk))
2382 		return false;
2383 
2384 	/* the closing socket has some data untransmitted and/or unacked:
2385 	 * some data in the mptcp rtx queue has not really xmitted yet.
2386 	 * keep it simple and re-inject the whole mptcp level rtx queue
2387 	 */
2388 	mptcp_data_lock(sk);
2389 	__mptcp_clean_una_wakeup(sk);
2390 	rtx_head = mptcp_rtx_head(sk);
2391 	if (!rtx_head) {
2392 		mptcp_data_unlock(sk);
2393 		return false;
2394 	}
2395 
2396 	msk->recovery_snd_nxt = msk->snd_nxt;
2397 	msk->recovery = true;
2398 	mptcp_data_unlock(sk);
2399 
2400 	msk->first_pending = rtx_head;
2401 	msk->snd_burst = 0;
2402 
2403 	/* be sure to clear the "sent status" on all re-injected fragments */
2404 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2405 		if (!cur->already_sent)
2406 			break;
2407 		cur->already_sent = 0;
2408 	}
2409 
2410 	return true;
2411 }
2412 
2413 /* flags for __mptcp_close_ssk() */
2414 #define MPTCP_CF_PUSH		BIT(1)
2415 
2416 /* be sure to send a reset only if the caller asked for it, also
2417  * clean completely the subflow status when the subflow reaches
2418  * TCP_CLOSE state
2419  */
2420 static void __mptcp_subflow_disconnect(struct sock *ssk,
2421 				       struct mptcp_subflow_context *subflow,
2422 				       unsigned int flags)
2423 {
2424 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2425 	    subflow->send_fastclose) {
2426 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2427 		 * disconnect should never fail
2428 		 */
2429 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2430 		mptcp_subflow_ctx_reset(subflow);
2431 	} else {
2432 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2433 	}
2434 }
2435 
2436 /* subflow sockets can be either outgoing (connect) or incoming
2437  * (accept).
2438  *
2439  * Outgoing subflows use in-kernel sockets.
2440  * Incoming subflows do not have their own 'struct socket' allocated,
2441  * so we need to use tcp_close() after detaching them from the mptcp
2442  * parent socket.
2443  */
2444 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2445 			      struct mptcp_subflow_context *subflow,
2446 			      unsigned int flags)
2447 {
2448 	struct mptcp_sock *msk = mptcp_sk(sk);
2449 	bool dispose_it, need_push = false;
2450 
2451 	/* If the first subflow moved to a close state before accept, e.g. due
2452 	 * to an incoming reset or listener shutdown, the subflow socket is
2453 	 * already deleted by inet_child_forget() and the mptcp socket can't
2454 	 * survive too.
2455 	 */
2456 	if (msk->in_accept_queue && msk->first == ssk &&
2457 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2458 		/* ensure later check in mptcp_worker() will dispose the msk */
2459 		sock_set_flag(sk, SOCK_DEAD);
2460 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2461 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2462 		mptcp_subflow_drop_ctx(ssk);
2463 		goto out_release;
2464 	}
2465 
2466 	dispose_it = msk->free_first || ssk != msk->first;
2467 	if (dispose_it)
2468 		list_del(&subflow->node);
2469 
2470 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2471 
2472 	if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE)
2473 		tcp_set_state(ssk, TCP_CLOSE);
2474 
2475 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2476 	if (!dispose_it) {
2477 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2478 		release_sock(ssk);
2479 
2480 		goto out;
2481 	}
2482 
2483 	subflow->disposable = 1;
2484 
2485 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2486 	 * the ssk has been already destroyed, we just need to release the
2487 	 * reference owned by msk;
2488 	 */
2489 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2490 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2491 		kfree_rcu(subflow, rcu);
2492 	} else {
2493 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2494 		__tcp_close(ssk, 0);
2495 
2496 		/* close acquired an extra ref */
2497 		__sock_put(ssk);
2498 	}
2499 
2500 out_release:
2501 	__mptcp_subflow_error_report(sk, ssk);
2502 	release_sock(ssk);
2503 
2504 	sock_put(ssk);
2505 
2506 	if (ssk == msk->first)
2507 		WRITE_ONCE(msk->first, NULL);
2508 
2509 out:
2510 	__mptcp_sync_sndbuf(sk);
2511 	if (need_push)
2512 		__mptcp_push_pending(sk, 0);
2513 
2514 	/* Catch every 'all subflows closed' scenario, including peers silently
2515 	 * closing them, e.g. due to timeout.
2516 	 * For established sockets, allow an additional timeout before closing,
2517 	 * as the protocol can still create more subflows.
2518 	 */
2519 	if (list_is_singular(&msk->conn_list) && msk->first &&
2520 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2521 		if (sk->sk_state != TCP_ESTABLISHED ||
2522 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2523 			mptcp_set_state(sk, TCP_CLOSE);
2524 			mptcp_close_wake_up(sk);
2525 		} else {
2526 			mptcp_start_tout_timer(sk);
2527 		}
2528 	}
2529 }
2530 
2531 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2532 		     struct mptcp_subflow_context *subflow)
2533 {
2534 	/* The first subflow can already be closed and still in the list */
2535 	if (subflow->close_event_done)
2536 		return;
2537 
2538 	subflow->close_event_done = true;
2539 
2540 	if (sk->sk_state == TCP_ESTABLISHED)
2541 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2542 
2543 	/* subflow aborted before reaching the fully_established status
2544 	 * attempt the creation of the next subflow
2545 	 */
2546 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2547 
2548 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2549 }
2550 
2551 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2552 {
2553 	return 0;
2554 }
2555 
2556 static void __mptcp_close_subflow(struct sock *sk)
2557 {
2558 	struct mptcp_subflow_context *subflow, *tmp;
2559 	struct mptcp_sock *msk = mptcp_sk(sk);
2560 
2561 	might_sleep();
2562 
2563 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2564 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2565 		int ssk_state = inet_sk_state_load(ssk);
2566 
2567 		if (ssk_state != TCP_CLOSE &&
2568 		    (ssk_state != TCP_CLOSE_WAIT ||
2569 		     inet_sk_state_load(sk) != TCP_ESTABLISHED ||
2570 		     __mptcp_check_fallback(msk)))
2571 			continue;
2572 
2573 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2574 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2575 			continue;
2576 
2577 		mptcp_close_ssk(sk, ssk, subflow);
2578 	}
2579 
2580 }
2581 
2582 static bool mptcp_close_tout_expired(const struct sock *sk)
2583 {
2584 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2585 	    sk->sk_state == TCP_CLOSE)
2586 		return false;
2587 
2588 	return time_after32(tcp_jiffies32,
2589 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2590 }
2591 
2592 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2593 {
2594 	struct mptcp_subflow_context *subflow, *tmp;
2595 	struct sock *sk = (struct sock *)msk;
2596 
2597 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2598 		return;
2599 
2600 	mptcp_token_destroy(msk);
2601 
2602 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2603 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2604 		bool slow;
2605 
2606 		slow = lock_sock_fast(tcp_sk);
2607 		if (tcp_sk->sk_state != TCP_CLOSE) {
2608 			mptcp_send_active_reset_reason(tcp_sk);
2609 			tcp_set_state(tcp_sk, TCP_CLOSE);
2610 		}
2611 		unlock_sock_fast(tcp_sk, slow);
2612 	}
2613 
2614 	/* Mirror the tcp_reset() error propagation */
2615 	switch (sk->sk_state) {
2616 	case TCP_SYN_SENT:
2617 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2618 		break;
2619 	case TCP_CLOSE_WAIT:
2620 		WRITE_ONCE(sk->sk_err, EPIPE);
2621 		break;
2622 	case TCP_CLOSE:
2623 		return;
2624 	default:
2625 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2626 	}
2627 
2628 	mptcp_set_state(sk, TCP_CLOSE);
2629 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2630 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2631 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2632 
2633 	/* the calling mptcp_worker will properly destroy the socket */
2634 	if (sock_flag(sk, SOCK_DEAD))
2635 		return;
2636 
2637 	sk->sk_state_change(sk);
2638 	sk_error_report(sk);
2639 }
2640 
2641 static void __mptcp_retrans(struct sock *sk)
2642 {
2643 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2644 	struct mptcp_sock *msk = mptcp_sk(sk);
2645 	struct mptcp_subflow_context *subflow;
2646 	struct mptcp_data_frag *dfrag;
2647 	struct sock *ssk;
2648 	int ret, err;
2649 	u16 len = 0;
2650 
2651 	mptcp_clean_una_wakeup(sk);
2652 
2653 	/* first check ssk: need to kick "stale" logic */
2654 	err = mptcp_sched_get_retrans(msk);
2655 	dfrag = mptcp_rtx_head(sk);
2656 	if (!dfrag) {
2657 		if (mptcp_data_fin_enabled(msk)) {
2658 			struct inet_connection_sock *icsk = inet_csk(sk);
2659 
2660 			WRITE_ONCE(icsk->icsk_retransmits,
2661 				   icsk->icsk_retransmits + 1);
2662 			mptcp_set_datafin_timeout(sk);
2663 			mptcp_send_ack(msk);
2664 
2665 			goto reset_timer;
2666 		}
2667 
2668 		if (!mptcp_send_head(sk))
2669 			return;
2670 
2671 		goto reset_timer;
2672 	}
2673 
2674 	if (err)
2675 		goto reset_timer;
2676 
2677 	mptcp_for_each_subflow(msk, subflow) {
2678 		if (READ_ONCE(subflow->scheduled)) {
2679 			u16 copied = 0;
2680 
2681 			mptcp_subflow_set_scheduled(subflow, false);
2682 
2683 			ssk = mptcp_subflow_tcp_sock(subflow);
2684 
2685 			lock_sock(ssk);
2686 
2687 			/* limit retransmission to the bytes already sent on some subflows */
2688 			info.sent = 0;
2689 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2690 								    dfrag->already_sent;
2691 
2692 			/*
2693 			 * make the whole retrans decision, xmit, disallow
2694 			 * fallback atomic
2695 			 */
2696 			spin_lock_bh(&msk->fallback_lock);
2697 			if (__mptcp_check_fallback(msk)) {
2698 				spin_unlock_bh(&msk->fallback_lock);
2699 				release_sock(ssk);
2700 				return;
2701 			}
2702 
2703 			while (info.sent < info.limit) {
2704 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2705 				if (ret <= 0)
2706 					break;
2707 
2708 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2709 				copied += ret;
2710 				info.sent += ret;
2711 			}
2712 			if (copied) {
2713 				len = max(copied, len);
2714 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2715 					 info.size_goal);
2716 				msk->allow_infinite_fallback = false;
2717 			}
2718 			spin_unlock_bh(&msk->fallback_lock);
2719 
2720 			release_sock(ssk);
2721 		}
2722 	}
2723 
2724 	msk->bytes_retrans += len;
2725 	dfrag->already_sent = max(dfrag->already_sent, len);
2726 
2727 reset_timer:
2728 	mptcp_check_and_set_pending(sk);
2729 
2730 	if (!mptcp_rtx_timer_pending(sk))
2731 		mptcp_reset_rtx_timer(sk);
2732 }
2733 
2734 /* schedule the timeout timer for the relevant event: either close timeout
2735  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2736  */
2737 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2738 {
2739 	struct sock *sk = (struct sock *)msk;
2740 	unsigned long timeout, close_timeout;
2741 
2742 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2743 		return;
2744 
2745 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2746 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2747 
2748 	/* the close timeout takes precedence on the fail one, and here at least one of
2749 	 * them is active
2750 	 */
2751 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2752 
2753 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2754 }
2755 
2756 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2757 {
2758 	struct sock *ssk = msk->first;
2759 	bool slow;
2760 
2761 	if (!ssk)
2762 		return;
2763 
2764 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2765 
2766 	slow = lock_sock_fast(ssk);
2767 	mptcp_subflow_reset(ssk);
2768 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2769 	unlock_sock_fast(ssk, slow);
2770 }
2771 
2772 static void mptcp_do_fastclose(struct sock *sk)
2773 {
2774 	struct mptcp_subflow_context *subflow, *tmp;
2775 	struct mptcp_sock *msk = mptcp_sk(sk);
2776 
2777 	mptcp_set_state(sk, TCP_CLOSE);
2778 
2779 	/* Explicitly send the fastclose reset as need */
2780 	if (__mptcp_check_fallback(msk))
2781 		return;
2782 
2783 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2784 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2785 
2786 		lock_sock(ssk);
2787 
2788 		/* Some subflow socket states don't allow/need a reset.*/
2789 		if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
2790 			goto unlock;
2791 
2792 		subflow->send_fastclose = 1;
2793 		tcp_send_active_reset(ssk, ssk->sk_allocation,
2794 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
2795 unlock:
2796 		release_sock(ssk);
2797 	}
2798 }
2799 
2800 static void mptcp_worker(struct work_struct *work)
2801 {
2802 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2803 	struct sock *sk = (struct sock *)msk;
2804 	unsigned long fail_tout;
2805 	int state;
2806 
2807 	lock_sock(sk);
2808 	state = sk->sk_state;
2809 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2810 		goto unlock;
2811 
2812 	mptcp_check_fastclose(msk);
2813 
2814 	mptcp_pm_worker(msk);
2815 
2816 	mptcp_check_send_data_fin(sk);
2817 	mptcp_check_data_fin_ack(sk);
2818 	mptcp_check_data_fin(sk);
2819 
2820 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2821 		__mptcp_close_subflow(sk);
2822 
2823 	if (mptcp_close_tout_expired(sk)) {
2824 		struct mptcp_subflow_context *subflow, *tmp;
2825 
2826 		mptcp_do_fastclose(sk);
2827 		mptcp_for_each_subflow_safe(msk, subflow, tmp)
2828 			__mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0);
2829 		mptcp_close_wake_up(sk);
2830 	}
2831 
2832 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2833 		__mptcp_destroy_sock(sk);
2834 		goto unlock;
2835 	}
2836 
2837 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2838 		__mptcp_retrans(sk);
2839 
2840 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2841 	if (fail_tout && time_after(jiffies, fail_tout))
2842 		mptcp_mp_fail_no_response(msk);
2843 
2844 unlock:
2845 	release_sock(sk);
2846 	sock_put(sk);
2847 }
2848 
2849 static void __mptcp_init_sock(struct sock *sk)
2850 {
2851 	struct mptcp_sock *msk = mptcp_sk(sk);
2852 
2853 	INIT_LIST_HEAD(&msk->conn_list);
2854 	INIT_LIST_HEAD(&msk->join_list);
2855 	INIT_LIST_HEAD(&msk->rtx_queue);
2856 	INIT_WORK(&msk->work, mptcp_worker);
2857 	msk->out_of_order_queue = RB_ROOT;
2858 	msk->first_pending = NULL;
2859 	msk->timer_ival = TCP_RTO_MIN;
2860 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2861 
2862 	WRITE_ONCE(msk->first, NULL);
2863 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2864 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2865 	msk->allow_infinite_fallback = true;
2866 	msk->allow_subflows = true;
2867 	msk->recovery = false;
2868 	msk->subflow_id = 1;
2869 	msk->last_data_sent = tcp_jiffies32;
2870 	msk->last_data_recv = tcp_jiffies32;
2871 	msk->last_ack_recv = tcp_jiffies32;
2872 
2873 	mptcp_pm_data_init(msk);
2874 	spin_lock_init(&msk->fallback_lock);
2875 
2876 	/* re-use the csk retrans timer for MPTCP-level retrans */
2877 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2878 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2879 }
2880 
2881 static void mptcp_ca_reset(struct sock *sk)
2882 {
2883 	struct inet_connection_sock *icsk = inet_csk(sk);
2884 
2885 	tcp_assign_congestion_control(sk);
2886 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2887 		sizeof(mptcp_sk(sk)->ca_name));
2888 
2889 	/* no need to keep a reference to the ops, the name will suffice */
2890 	tcp_cleanup_congestion_control(sk);
2891 	icsk->icsk_ca_ops = NULL;
2892 }
2893 
2894 static int mptcp_init_sock(struct sock *sk)
2895 {
2896 	struct net *net = sock_net(sk);
2897 	int ret;
2898 
2899 	__mptcp_init_sock(sk);
2900 
2901 	if (!mptcp_is_enabled(net))
2902 		return -ENOPROTOOPT;
2903 
2904 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2905 		return -ENOMEM;
2906 
2907 	rcu_read_lock();
2908 	ret = mptcp_init_sched(mptcp_sk(sk),
2909 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2910 	rcu_read_unlock();
2911 	if (ret)
2912 		return ret;
2913 
2914 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2915 
2916 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2917 	 * propagate the correct value
2918 	 */
2919 	mptcp_ca_reset(sk);
2920 
2921 	sk_sockets_allocated_inc(sk);
2922 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2923 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2924 
2925 	return 0;
2926 }
2927 
2928 static void __mptcp_clear_xmit(struct sock *sk)
2929 {
2930 	struct mptcp_sock *msk = mptcp_sk(sk);
2931 	struct mptcp_data_frag *dtmp, *dfrag;
2932 
2933 	msk->first_pending = NULL;
2934 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2935 		dfrag_clear(sk, dfrag);
2936 }
2937 
2938 void mptcp_cancel_work(struct sock *sk)
2939 {
2940 	struct mptcp_sock *msk = mptcp_sk(sk);
2941 
2942 	if (cancel_work_sync(&msk->work))
2943 		__sock_put(sk);
2944 }
2945 
2946 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2947 {
2948 	lock_sock(ssk);
2949 
2950 	switch (ssk->sk_state) {
2951 	case TCP_LISTEN:
2952 		if (!(how & RCV_SHUTDOWN))
2953 			break;
2954 		fallthrough;
2955 	case TCP_SYN_SENT:
2956 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2957 		break;
2958 	default:
2959 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2960 			pr_debug("Fallback\n");
2961 			ssk->sk_shutdown |= how;
2962 			tcp_shutdown(ssk, how);
2963 
2964 			/* simulate the data_fin ack reception to let the state
2965 			 * machine move forward
2966 			 */
2967 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2968 			mptcp_schedule_work(sk);
2969 		} else {
2970 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2971 			tcp_send_ack(ssk);
2972 			if (!mptcp_rtx_timer_pending(sk))
2973 				mptcp_reset_rtx_timer(sk);
2974 		}
2975 		break;
2976 	}
2977 
2978 	release_sock(ssk);
2979 }
2980 
2981 void mptcp_set_state(struct sock *sk, int state)
2982 {
2983 	int oldstate = sk->sk_state;
2984 
2985 	switch (state) {
2986 	case TCP_ESTABLISHED:
2987 		if (oldstate != TCP_ESTABLISHED)
2988 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2989 		break;
2990 	case TCP_CLOSE_WAIT:
2991 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2992 		 * MPTCP "accepted" sockets will be created later on. So no
2993 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2994 		 */
2995 		break;
2996 	default:
2997 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2998 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2999 	}
3000 
3001 	inet_sk_state_store(sk, state);
3002 }
3003 
3004 static const unsigned char new_state[16] = {
3005 	/* current state:     new state:      action:	*/
3006 	[0 /* (Invalid) */] = TCP_CLOSE,
3007 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3008 	[TCP_SYN_SENT]      = TCP_CLOSE,
3009 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3010 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
3011 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
3012 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
3013 	[TCP_CLOSE]         = TCP_CLOSE,
3014 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
3015 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
3016 	[TCP_LISTEN]        = TCP_CLOSE,
3017 	[TCP_CLOSING]       = TCP_CLOSING,
3018 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
3019 };
3020 
3021 static int mptcp_close_state(struct sock *sk)
3022 {
3023 	int next = (int)new_state[sk->sk_state];
3024 	int ns = next & TCP_STATE_MASK;
3025 
3026 	mptcp_set_state(sk, ns);
3027 
3028 	return next & TCP_ACTION_FIN;
3029 }
3030 
3031 static void mptcp_check_send_data_fin(struct sock *sk)
3032 {
3033 	struct mptcp_subflow_context *subflow;
3034 	struct mptcp_sock *msk = mptcp_sk(sk);
3035 
3036 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3037 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3038 		 msk->snd_nxt, msk->write_seq);
3039 
3040 	/* we still need to enqueue subflows or not really shutting down,
3041 	 * skip this
3042 	 */
3043 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3044 	    mptcp_send_head(sk))
3045 		return;
3046 
3047 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3048 
3049 	mptcp_for_each_subflow(msk, subflow) {
3050 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3051 
3052 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3053 	}
3054 }
3055 
3056 static void __mptcp_wr_shutdown(struct sock *sk)
3057 {
3058 	struct mptcp_sock *msk = mptcp_sk(sk);
3059 
3060 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3061 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3062 		 !!mptcp_send_head(sk));
3063 
3064 	/* will be ignored by fallback sockets */
3065 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3066 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3067 
3068 	mptcp_check_send_data_fin(sk);
3069 }
3070 
3071 static void __mptcp_destroy_sock(struct sock *sk)
3072 {
3073 	struct mptcp_sock *msk = mptcp_sk(sk);
3074 
3075 	pr_debug("msk=%p\n", msk);
3076 
3077 	might_sleep();
3078 
3079 	mptcp_stop_rtx_timer(sk);
3080 	sk_stop_timer(sk, &sk->sk_timer);
3081 	msk->pm.status = 0;
3082 	mptcp_release_sched(msk);
3083 
3084 	sk->sk_prot->destroy(sk);
3085 
3086 	sk_stream_kill_queues(sk);
3087 	xfrm_sk_free_policy(sk);
3088 
3089 	sock_put(sk);
3090 }
3091 
3092 void __mptcp_unaccepted_force_close(struct sock *sk)
3093 {
3094 	sock_set_flag(sk, SOCK_DEAD);
3095 	mptcp_do_fastclose(sk);
3096 	__mptcp_destroy_sock(sk);
3097 }
3098 
3099 static __poll_t mptcp_check_readable(struct sock *sk)
3100 {
3101 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3102 }
3103 
3104 static void mptcp_check_listen_stop(struct sock *sk)
3105 {
3106 	struct sock *ssk;
3107 
3108 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3109 		return;
3110 
3111 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3112 	ssk = mptcp_sk(sk)->first;
3113 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3114 		return;
3115 
3116 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3117 	tcp_set_state(ssk, TCP_CLOSE);
3118 	mptcp_subflow_queue_clean(sk, ssk);
3119 	inet_csk_listen_stop(ssk);
3120 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3121 	release_sock(ssk);
3122 }
3123 
3124 bool __mptcp_close(struct sock *sk, long timeout)
3125 {
3126 	struct mptcp_subflow_context *subflow;
3127 	struct mptcp_sock *msk = mptcp_sk(sk);
3128 	bool do_cancel_work = false;
3129 	int subflows_alive = 0;
3130 
3131 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3132 
3133 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3134 		mptcp_check_listen_stop(sk);
3135 		mptcp_set_state(sk, TCP_CLOSE);
3136 		goto cleanup;
3137 	}
3138 
3139 	if (mptcp_data_avail(msk) || timeout < 0) {
3140 		/* If the msk has read data, or the caller explicitly ask it,
3141 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3142 		 */
3143 		mptcp_do_fastclose(sk);
3144 		timeout = 0;
3145 	} else if (mptcp_close_state(sk)) {
3146 		__mptcp_wr_shutdown(sk);
3147 	}
3148 
3149 	sk_stream_wait_close(sk, timeout);
3150 
3151 cleanup:
3152 	/* orphan all the subflows */
3153 	mptcp_for_each_subflow(msk, subflow) {
3154 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3155 		bool slow = lock_sock_fast_nested(ssk);
3156 
3157 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3158 
3159 		/* since the close timeout takes precedence on the fail one,
3160 		 * cancel the latter
3161 		 */
3162 		if (ssk == msk->first)
3163 			subflow->fail_tout = 0;
3164 
3165 		/* detach from the parent socket, but allow data_ready to
3166 		 * push incoming data into the mptcp stack, to properly ack it
3167 		 */
3168 		ssk->sk_socket = NULL;
3169 		ssk->sk_wq = NULL;
3170 		unlock_sock_fast(ssk, slow);
3171 	}
3172 	sock_orphan(sk);
3173 
3174 	/* all the subflows are closed, only timeout can change the msk
3175 	 * state, let's not keep resources busy for no reasons
3176 	 */
3177 	if (subflows_alive == 0)
3178 		mptcp_set_state(sk, TCP_CLOSE);
3179 
3180 	sock_hold(sk);
3181 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3182 	mptcp_pm_connection_closed(msk);
3183 
3184 	if (sk->sk_state == TCP_CLOSE) {
3185 		__mptcp_destroy_sock(sk);
3186 		do_cancel_work = true;
3187 	} else {
3188 		mptcp_start_tout_timer(sk);
3189 	}
3190 
3191 	return do_cancel_work;
3192 }
3193 
3194 static void mptcp_close(struct sock *sk, long timeout)
3195 {
3196 	bool do_cancel_work;
3197 
3198 	lock_sock(sk);
3199 
3200 	do_cancel_work = __mptcp_close(sk, timeout);
3201 	release_sock(sk);
3202 	if (do_cancel_work)
3203 		mptcp_cancel_work(sk);
3204 
3205 	sock_put(sk);
3206 }
3207 
3208 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3209 {
3210 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3211 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3212 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3213 
3214 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3215 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3216 
3217 	if (msk6 && ssk6) {
3218 		msk6->saddr = ssk6->saddr;
3219 		msk6->flow_label = ssk6->flow_label;
3220 	}
3221 #endif
3222 
3223 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3224 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3225 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3226 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3227 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3228 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3229 }
3230 
3231 static int mptcp_disconnect(struct sock *sk, int flags)
3232 {
3233 	struct mptcp_sock *msk = mptcp_sk(sk);
3234 
3235 	/* We are on the fastopen error path. We can't call straight into the
3236 	 * subflows cleanup code due to lock nesting (we are already under
3237 	 * msk->firstsocket lock).
3238 	 */
3239 	if (msk->fastopening)
3240 		return -EBUSY;
3241 
3242 	mptcp_check_listen_stop(sk);
3243 	mptcp_set_state(sk, TCP_CLOSE);
3244 
3245 	mptcp_stop_rtx_timer(sk);
3246 	mptcp_stop_tout_timer(sk);
3247 
3248 	mptcp_pm_connection_closed(msk);
3249 
3250 	/* msk->subflow is still intact, the following will not free the first
3251 	 * subflow
3252 	 */
3253 	mptcp_do_fastclose(sk);
3254 	mptcp_destroy_common(msk);
3255 
3256 	/* The first subflow is already in TCP_CLOSE status, the following
3257 	 * can't overlap with a fallback anymore
3258 	 */
3259 	spin_lock_bh(&msk->fallback_lock);
3260 	msk->allow_subflows = true;
3261 	msk->allow_infinite_fallback = true;
3262 	WRITE_ONCE(msk->flags, 0);
3263 	spin_unlock_bh(&msk->fallback_lock);
3264 
3265 	msk->cb_flags = 0;
3266 	msk->recovery = false;
3267 	WRITE_ONCE(msk->can_ack, false);
3268 	WRITE_ONCE(msk->fully_established, false);
3269 	WRITE_ONCE(msk->rcv_data_fin, false);
3270 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3271 	WRITE_ONCE(msk->rcv_fastclose, false);
3272 	WRITE_ONCE(msk->use_64bit_ack, false);
3273 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3274 	mptcp_pm_data_reset(msk);
3275 	mptcp_ca_reset(sk);
3276 	msk->bytes_consumed = 0;
3277 	msk->bytes_acked = 0;
3278 	msk->bytes_received = 0;
3279 	msk->bytes_sent = 0;
3280 	msk->bytes_retrans = 0;
3281 	msk->rcvspace_init = 0;
3282 
3283 	WRITE_ONCE(sk->sk_shutdown, 0);
3284 	sk_error_report(sk);
3285 	return 0;
3286 }
3287 
3288 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3289 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3290 {
3291 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3292 
3293 	return &msk6->np;
3294 }
3295 
3296 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3297 {
3298 	const struct ipv6_pinfo *np = inet6_sk(sk);
3299 	struct ipv6_txoptions *opt;
3300 	struct ipv6_pinfo *newnp;
3301 
3302 	newnp = inet6_sk(newsk);
3303 
3304 	rcu_read_lock();
3305 	opt = rcu_dereference(np->opt);
3306 	if (opt) {
3307 		opt = ipv6_dup_options(newsk, opt);
3308 		if (!opt)
3309 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3310 	}
3311 	RCU_INIT_POINTER(newnp->opt, opt);
3312 	rcu_read_unlock();
3313 }
3314 #endif
3315 
3316 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3317 {
3318 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3319 	const struct inet_sock *inet = inet_sk(sk);
3320 	struct inet_sock *newinet;
3321 
3322 	newinet = inet_sk(newsk);
3323 
3324 	rcu_read_lock();
3325 	inet_opt = rcu_dereference(inet->inet_opt);
3326 	if (inet_opt) {
3327 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3328 				      inet_opt->opt.optlen, GFP_ATOMIC);
3329 		if (!newopt)
3330 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3331 	}
3332 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3333 	rcu_read_unlock();
3334 }
3335 
3336 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3337 				 const struct mptcp_options_received *mp_opt,
3338 				 struct sock *ssk,
3339 				 struct request_sock *req)
3340 {
3341 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3342 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3343 	struct mptcp_subflow_context *subflow;
3344 	struct mptcp_sock *msk;
3345 
3346 	if (!nsk)
3347 		return NULL;
3348 
3349 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3350 	if (nsk->sk_family == AF_INET6)
3351 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3352 #endif
3353 
3354 	__mptcp_init_sock(nsk);
3355 
3356 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3357 	if (nsk->sk_family == AF_INET6)
3358 		mptcp_copy_ip6_options(nsk, sk);
3359 	else
3360 #endif
3361 		mptcp_copy_ip_options(nsk, sk);
3362 
3363 	msk = mptcp_sk(nsk);
3364 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3365 	WRITE_ONCE(msk->token, subflow_req->token);
3366 	msk->in_accept_queue = 1;
3367 	WRITE_ONCE(msk->fully_established, false);
3368 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3369 		WRITE_ONCE(msk->csum_enabled, true);
3370 
3371 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3372 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3373 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3374 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3375 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3376 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3377 
3378 	/* passive msk is created after the first/MPC subflow */
3379 	msk->subflow_id = 2;
3380 
3381 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3382 	security_inet_csk_clone(nsk, req);
3383 
3384 	/* this can't race with mptcp_close(), as the msk is
3385 	 * not yet exposted to user-space
3386 	 */
3387 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3388 
3389 	/* The msk maintain a ref to each subflow in the connections list */
3390 	WRITE_ONCE(msk->first, ssk);
3391 	subflow = mptcp_subflow_ctx(ssk);
3392 	list_add(&subflow->node, &msk->conn_list);
3393 	sock_hold(ssk);
3394 
3395 	/* new mpc subflow takes ownership of the newly
3396 	 * created mptcp socket
3397 	 */
3398 	mptcp_token_accept(subflow_req, msk);
3399 
3400 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3401 	 * uses the correct data
3402 	 */
3403 	mptcp_copy_inaddrs(nsk, ssk);
3404 	__mptcp_propagate_sndbuf(nsk, ssk);
3405 
3406 	mptcp_rcv_space_init(msk, ssk);
3407 
3408 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3409 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3410 	bh_unlock_sock(nsk);
3411 
3412 	/* note: the newly allocated socket refcount is 2 now */
3413 	return nsk;
3414 }
3415 
3416 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3417 {
3418 	const struct tcp_sock *tp = tcp_sk(ssk);
3419 
3420 	msk->rcvspace_init = 1;
3421 	msk->rcvq_space.copied = 0;
3422 	msk->rcvq_space.rtt_us = 0;
3423 
3424 	msk->rcvq_space.time = tp->tcp_mstamp;
3425 
3426 	/* initial rcv_space offering made to peer */
3427 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3428 				      TCP_INIT_CWND * tp->advmss);
3429 	if (msk->rcvq_space.space == 0)
3430 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3431 }
3432 
3433 void mptcp_destroy_common(struct mptcp_sock *msk)
3434 {
3435 	struct mptcp_subflow_context *subflow, *tmp;
3436 	struct sock *sk = (struct sock *)msk;
3437 
3438 	__mptcp_clear_xmit(sk);
3439 
3440 	/* join list will be eventually flushed (with rst) at sock lock release time */
3441 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3442 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0);
3443 
3444 	__skb_queue_purge(&sk->sk_receive_queue);
3445 	skb_rbtree_purge(&msk->out_of_order_queue);
3446 
3447 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3448 	 * inet_sock_destruct() will dispose it
3449 	 */
3450 	mptcp_token_destroy(msk);
3451 	mptcp_pm_destroy(msk);
3452 }
3453 
3454 static void mptcp_destroy(struct sock *sk)
3455 {
3456 	struct mptcp_sock *msk = mptcp_sk(sk);
3457 
3458 	/* allow the following to close even the initial subflow */
3459 	msk->free_first = 1;
3460 	mptcp_destroy_common(msk);
3461 	sk_sockets_allocated_dec(sk);
3462 }
3463 
3464 void __mptcp_data_acked(struct sock *sk)
3465 {
3466 	if (!sock_owned_by_user(sk))
3467 		__mptcp_clean_una(sk);
3468 	else
3469 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3470 }
3471 
3472 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3473 {
3474 	if (!sock_owned_by_user(sk))
3475 		__mptcp_subflow_push_pending(sk, ssk, false);
3476 	else
3477 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3478 }
3479 
3480 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3481 				      BIT(MPTCP_RETRANSMIT) | \
3482 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3483 				      BIT(MPTCP_DEQUEUE))
3484 
3485 /* processes deferred events and flush wmem */
3486 static void mptcp_release_cb(struct sock *sk)
3487 	__must_hold(&sk->sk_lock.slock)
3488 {
3489 	struct mptcp_sock *msk = mptcp_sk(sk);
3490 
3491 	for (;;) {
3492 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3493 		struct list_head join_list;
3494 
3495 		if (!flags)
3496 			break;
3497 
3498 		INIT_LIST_HEAD(&join_list);
3499 		list_splice_init(&msk->join_list, &join_list);
3500 
3501 		/* the following actions acquire the subflow socket lock
3502 		 *
3503 		 * 1) can't be invoked in atomic scope
3504 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3505 		 *    datapath acquires the msk socket spinlock while helding
3506 		 *    the subflow socket lock
3507 		 */
3508 		msk->cb_flags &= ~flags;
3509 		spin_unlock_bh(&sk->sk_lock.slock);
3510 
3511 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3512 			__mptcp_flush_join_list(sk, &join_list);
3513 		if (flags & BIT(MPTCP_PUSH_PENDING))
3514 			__mptcp_push_pending(sk, 0);
3515 		if (flags & BIT(MPTCP_RETRANSMIT))
3516 			__mptcp_retrans(sk);
3517 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3518 			/* notify ack seq update */
3519 			mptcp_cleanup_rbuf(msk, 0);
3520 			sk->sk_data_ready(sk);
3521 		}
3522 
3523 		cond_resched();
3524 		spin_lock_bh(&sk->sk_lock.slock);
3525 	}
3526 
3527 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3528 		__mptcp_clean_una_wakeup(sk);
3529 	if (unlikely(msk->cb_flags)) {
3530 		/* be sure to sync the msk state before taking actions
3531 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3532 		 * On sk release avoid actions depending on the first subflow
3533 		 */
3534 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3535 			__mptcp_sync_state(sk, msk->pending_state);
3536 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3537 			__mptcp_error_report(sk);
3538 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3539 			__mptcp_sync_sndbuf(sk);
3540 	}
3541 }
3542 
3543 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3544  * TCP can't schedule delack timer before the subflow is fully established.
3545  * MPTCP uses the delack timer to do 3rd ack retransmissions
3546  */
3547 static void schedule_3rdack_retransmission(struct sock *ssk)
3548 {
3549 	struct inet_connection_sock *icsk = inet_csk(ssk);
3550 	struct tcp_sock *tp = tcp_sk(ssk);
3551 	unsigned long timeout;
3552 
3553 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3554 		return;
3555 
3556 	/* reschedule with a timeout above RTT, as we must look only for drop */
3557 	if (tp->srtt_us)
3558 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3559 	else
3560 		timeout = TCP_TIMEOUT_INIT;
3561 	timeout += jiffies;
3562 
3563 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3564 	smp_store_release(&icsk->icsk_ack.pending,
3565 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3566 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3567 }
3568 
3569 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3570 {
3571 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3572 	struct sock *sk = subflow->conn;
3573 
3574 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3575 		mptcp_data_lock(sk);
3576 		if (!sock_owned_by_user(sk))
3577 			__mptcp_subflow_push_pending(sk, ssk, true);
3578 		else
3579 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3580 		mptcp_data_unlock(sk);
3581 	}
3582 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3583 		mptcp_data_lock(sk);
3584 		if (!sock_owned_by_user(sk))
3585 			__mptcp_sync_sndbuf(sk);
3586 		else
3587 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3588 		mptcp_data_unlock(sk);
3589 	}
3590 	if (status & BIT(MPTCP_DELEGATE_ACK))
3591 		schedule_3rdack_retransmission(ssk);
3592 }
3593 
3594 static int mptcp_hash(struct sock *sk)
3595 {
3596 	/* should never be called,
3597 	 * we hash the TCP subflows not the MPTCP socket
3598 	 */
3599 	WARN_ON_ONCE(1);
3600 	return 0;
3601 }
3602 
3603 static void mptcp_unhash(struct sock *sk)
3604 {
3605 	/* called from sk_common_release(), but nothing to do here */
3606 }
3607 
3608 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3609 {
3610 	struct mptcp_sock *msk = mptcp_sk(sk);
3611 
3612 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3613 	if (WARN_ON_ONCE(!msk->first))
3614 		return -EINVAL;
3615 
3616 	return inet_csk_get_port(msk->first, snum);
3617 }
3618 
3619 void mptcp_finish_connect(struct sock *ssk)
3620 {
3621 	struct mptcp_subflow_context *subflow;
3622 	struct mptcp_sock *msk;
3623 	struct sock *sk;
3624 
3625 	subflow = mptcp_subflow_ctx(ssk);
3626 	sk = subflow->conn;
3627 	msk = mptcp_sk(sk);
3628 
3629 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3630 
3631 	subflow->map_seq = subflow->iasn;
3632 	subflow->map_subflow_seq = 1;
3633 
3634 	/* the socket is not connected yet, no msk/subflow ops can access/race
3635 	 * accessing the field below
3636 	 */
3637 	WRITE_ONCE(msk->local_key, subflow->local_key);
3638 
3639 	mptcp_pm_new_connection(msk, ssk, 0);
3640 }
3641 
3642 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3643 {
3644 	write_lock_bh(&sk->sk_callback_lock);
3645 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3646 	sk_set_socket(sk, parent);
3647 	write_unlock_bh(&sk->sk_callback_lock);
3648 }
3649 
3650 bool mptcp_finish_join(struct sock *ssk)
3651 {
3652 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3653 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3654 	struct sock *parent = (void *)msk;
3655 	bool ret = true;
3656 
3657 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3658 
3659 	/* mptcp socket already closing? */
3660 	if (!mptcp_is_fully_established(parent)) {
3661 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3662 		return false;
3663 	}
3664 
3665 	/* active subflow, already present inside the conn_list */
3666 	if (!list_empty(&subflow->node)) {
3667 		spin_lock_bh(&msk->fallback_lock);
3668 		if (!msk->allow_subflows) {
3669 			spin_unlock_bh(&msk->fallback_lock);
3670 			return false;
3671 		}
3672 		mptcp_subflow_joined(msk, ssk);
3673 		spin_unlock_bh(&msk->fallback_lock);
3674 		mptcp_propagate_sndbuf(parent, ssk);
3675 		return true;
3676 	}
3677 
3678 	if (!mptcp_pm_allow_new_subflow(msk)) {
3679 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3680 		goto err_prohibited;
3681 	}
3682 
3683 	/* If we can't acquire msk socket lock here, let the release callback
3684 	 * handle it
3685 	 */
3686 	mptcp_data_lock(parent);
3687 	if (!sock_owned_by_user(parent)) {
3688 		ret = __mptcp_finish_join(msk, ssk);
3689 		if (ret) {
3690 			sock_hold(ssk);
3691 			list_add_tail(&subflow->node, &msk->conn_list);
3692 		}
3693 	} else {
3694 		sock_hold(ssk);
3695 		list_add_tail(&subflow->node, &msk->join_list);
3696 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3697 	}
3698 	mptcp_data_unlock(parent);
3699 
3700 	if (!ret) {
3701 err_prohibited:
3702 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3703 		return false;
3704 	}
3705 
3706 	return true;
3707 }
3708 
3709 static void mptcp_shutdown(struct sock *sk, int how)
3710 {
3711 	pr_debug("sk=%p, how=%d\n", sk, how);
3712 
3713 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3714 		__mptcp_wr_shutdown(sk);
3715 }
3716 
3717 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3718 {
3719 	const struct sock *sk = (void *)msk;
3720 	u64 delta;
3721 
3722 	if (sk->sk_state == TCP_LISTEN)
3723 		return -EINVAL;
3724 
3725 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3726 		return 0;
3727 
3728 	delta = msk->write_seq - v;
3729 	if (__mptcp_check_fallback(msk) && msk->first) {
3730 		struct tcp_sock *tp = tcp_sk(msk->first);
3731 
3732 		/* the first subflow is disconnected after close - see
3733 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3734 		 * so ignore that status, too.
3735 		 */
3736 		if (!((1 << msk->first->sk_state) &
3737 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3738 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3739 	}
3740 	if (delta > INT_MAX)
3741 		delta = INT_MAX;
3742 
3743 	return (int)delta;
3744 }
3745 
3746 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3747 {
3748 	struct mptcp_sock *msk = mptcp_sk(sk);
3749 	bool slow;
3750 
3751 	switch (cmd) {
3752 	case SIOCINQ:
3753 		if (sk->sk_state == TCP_LISTEN)
3754 			return -EINVAL;
3755 
3756 		lock_sock(sk);
3757 		if (__mptcp_move_skbs(sk))
3758 			mptcp_cleanup_rbuf(msk, 0);
3759 		*karg = mptcp_inq_hint(sk);
3760 		release_sock(sk);
3761 		break;
3762 	case SIOCOUTQ:
3763 		slow = lock_sock_fast(sk);
3764 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3765 		unlock_sock_fast(sk, slow);
3766 		break;
3767 	case SIOCOUTQNSD:
3768 		slow = lock_sock_fast(sk);
3769 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3770 		unlock_sock_fast(sk, slow);
3771 		break;
3772 	default:
3773 		return -ENOIOCTLCMD;
3774 	}
3775 
3776 	return 0;
3777 }
3778 
3779 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
3780 			 int addr_len)
3781 {
3782 	struct mptcp_subflow_context *subflow;
3783 	struct mptcp_sock *msk = mptcp_sk(sk);
3784 	int err = -EINVAL;
3785 	struct sock *ssk;
3786 
3787 	ssk = __mptcp_nmpc_sk(msk);
3788 	if (IS_ERR(ssk))
3789 		return PTR_ERR(ssk);
3790 
3791 	mptcp_set_state(sk, TCP_SYN_SENT);
3792 	subflow = mptcp_subflow_ctx(ssk);
3793 #ifdef CONFIG_TCP_MD5SIG
3794 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3795 	 * TCP option space.
3796 	 */
3797 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3798 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3799 #endif
3800 	if (subflow->request_mptcp) {
3801 		if (mptcp_active_should_disable(sk))
3802 			mptcp_early_fallback(msk, subflow,
3803 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3804 		else if (mptcp_token_new_connect(ssk) < 0)
3805 			mptcp_early_fallback(msk, subflow,
3806 					     MPTCP_MIB_TOKENFALLBACKINIT);
3807 	}
3808 
3809 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3810 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3811 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3812 	if (likely(!__mptcp_check_fallback(msk)))
3813 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3814 
3815 	/* if reaching here via the fastopen/sendmsg path, the caller already
3816 	 * acquired the subflow socket lock, too.
3817 	 */
3818 	if (!msk->fastopening)
3819 		lock_sock(ssk);
3820 
3821 	/* the following mirrors closely a very small chunk of code from
3822 	 * __inet_stream_connect()
3823 	 */
3824 	if (ssk->sk_state != TCP_CLOSE)
3825 		goto out;
3826 
3827 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3828 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3829 		if (err)
3830 			goto out;
3831 	}
3832 
3833 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3834 	if (err < 0)
3835 		goto out;
3836 
3837 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3838 
3839 out:
3840 	if (!msk->fastopening)
3841 		release_sock(ssk);
3842 
3843 	/* on successful connect, the msk state will be moved to established by
3844 	 * subflow_finish_connect()
3845 	 */
3846 	if (unlikely(err)) {
3847 		/* avoid leaving a dangling token in an unconnected socket */
3848 		mptcp_token_destroy(msk);
3849 		mptcp_set_state(sk, TCP_CLOSE);
3850 		return err;
3851 	}
3852 
3853 	mptcp_copy_inaddrs(sk, ssk);
3854 	return 0;
3855 }
3856 
3857 static struct proto mptcp_prot = {
3858 	.name		= "MPTCP",
3859 	.owner		= THIS_MODULE,
3860 	.init		= mptcp_init_sock,
3861 	.connect	= mptcp_connect,
3862 	.disconnect	= mptcp_disconnect,
3863 	.close		= mptcp_close,
3864 	.setsockopt	= mptcp_setsockopt,
3865 	.getsockopt	= mptcp_getsockopt,
3866 	.shutdown	= mptcp_shutdown,
3867 	.destroy	= mptcp_destroy,
3868 	.sendmsg	= mptcp_sendmsg,
3869 	.ioctl		= mptcp_ioctl,
3870 	.recvmsg	= mptcp_recvmsg,
3871 	.release_cb	= mptcp_release_cb,
3872 	.hash		= mptcp_hash,
3873 	.unhash		= mptcp_unhash,
3874 	.get_port	= mptcp_get_port,
3875 	.stream_memory_free	= mptcp_stream_memory_free,
3876 	.sockets_allocated	= &mptcp_sockets_allocated,
3877 
3878 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3879 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3880 
3881 	.memory_pressure	= &tcp_memory_pressure,
3882 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3883 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3884 	.sysctl_mem	= sysctl_tcp_mem,
3885 	.obj_size	= sizeof(struct mptcp_sock),
3886 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3887 	.no_autobind	= true,
3888 };
3889 
3890 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len)
3891 {
3892 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3893 	struct sock *ssk, *sk = sock->sk;
3894 	int err = -EINVAL;
3895 
3896 	lock_sock(sk);
3897 	ssk = __mptcp_nmpc_sk(msk);
3898 	if (IS_ERR(ssk)) {
3899 		err = PTR_ERR(ssk);
3900 		goto unlock;
3901 	}
3902 
3903 	if (sk->sk_family == AF_INET)
3904 		err = inet_bind_sk(ssk, uaddr, addr_len);
3905 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3906 	else if (sk->sk_family == AF_INET6)
3907 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3908 #endif
3909 	if (!err)
3910 		mptcp_copy_inaddrs(sk, ssk);
3911 
3912 unlock:
3913 	release_sock(sk);
3914 	return err;
3915 }
3916 
3917 static int mptcp_listen(struct socket *sock, int backlog)
3918 {
3919 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3920 	struct sock *sk = sock->sk;
3921 	struct sock *ssk;
3922 	int err;
3923 
3924 	pr_debug("msk=%p\n", msk);
3925 
3926 	lock_sock(sk);
3927 
3928 	err = -EINVAL;
3929 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3930 		goto unlock;
3931 
3932 	ssk = __mptcp_nmpc_sk(msk);
3933 	if (IS_ERR(ssk)) {
3934 		err = PTR_ERR(ssk);
3935 		goto unlock;
3936 	}
3937 
3938 	mptcp_set_state(sk, TCP_LISTEN);
3939 	sock_set_flag(sk, SOCK_RCU_FREE);
3940 
3941 	lock_sock(ssk);
3942 	err = __inet_listen_sk(ssk, backlog);
3943 	release_sock(ssk);
3944 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3945 
3946 	if (!err) {
3947 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3948 		mptcp_copy_inaddrs(sk, ssk);
3949 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3950 	}
3951 
3952 unlock:
3953 	release_sock(sk);
3954 	return err;
3955 }
3956 
3957 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3958 			       struct proto_accept_arg *arg)
3959 {
3960 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3961 	struct sock *ssk, *newsk;
3962 
3963 	pr_debug("msk=%p\n", msk);
3964 
3965 	/* Buggy applications can call accept on socket states other then LISTEN
3966 	 * but no need to allocate the first subflow just to error out.
3967 	 */
3968 	ssk = READ_ONCE(msk->first);
3969 	if (!ssk)
3970 		return -EINVAL;
3971 
3972 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3973 	newsk = inet_csk_accept(ssk, arg);
3974 	if (!newsk)
3975 		return arg->err;
3976 
3977 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3978 	if (sk_is_mptcp(newsk)) {
3979 		struct mptcp_subflow_context *subflow;
3980 		struct sock *new_mptcp_sock;
3981 
3982 		subflow = mptcp_subflow_ctx(newsk);
3983 		new_mptcp_sock = subflow->conn;
3984 
3985 		/* is_mptcp should be false if subflow->conn is missing, see
3986 		 * subflow_syn_recv_sock()
3987 		 */
3988 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3989 			tcp_sk(newsk)->is_mptcp = 0;
3990 			goto tcpfallback;
3991 		}
3992 
3993 		newsk = new_mptcp_sock;
3994 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3995 
3996 		newsk->sk_kern_sock = arg->kern;
3997 		lock_sock(newsk);
3998 		__inet_accept(sock, newsock, newsk);
3999 
4000 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
4001 		msk = mptcp_sk(newsk);
4002 		msk->in_accept_queue = 0;
4003 
4004 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
4005 		 * This is needed so NOSPACE flag can be set from tcp stack.
4006 		 */
4007 		mptcp_for_each_subflow(msk, subflow) {
4008 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4009 
4010 			if (!ssk->sk_socket)
4011 				mptcp_sock_graft(ssk, newsock);
4012 		}
4013 
4014 		mptcp_rps_record_subflows(msk);
4015 
4016 		/* Do late cleanup for the first subflow as necessary. Also
4017 		 * deal with bad peers not doing a complete shutdown.
4018 		 */
4019 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4020 			__mptcp_close_ssk(newsk, msk->first,
4021 					  mptcp_subflow_ctx(msk->first), 0);
4022 			if (unlikely(list_is_singular(&msk->conn_list)))
4023 				mptcp_set_state(newsk, TCP_CLOSE);
4024 		}
4025 	} else {
4026 tcpfallback:
4027 		newsk->sk_kern_sock = arg->kern;
4028 		lock_sock(newsk);
4029 		__inet_accept(sock, newsock, newsk);
4030 		/* we are being invoked after accepting a non-mp-capable
4031 		 * flow: sk is a tcp_sk, not an mptcp one.
4032 		 *
4033 		 * Hand the socket over to tcp so all further socket ops
4034 		 * bypass mptcp.
4035 		 */
4036 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4037 			   mptcp_fallback_tcp_ops(newsock->sk));
4038 	}
4039 	release_sock(newsk);
4040 
4041 	return 0;
4042 }
4043 
4044 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4045 {
4046 	struct sock *sk = (struct sock *)msk;
4047 
4048 	if (__mptcp_stream_is_writeable(sk, 1))
4049 		return EPOLLOUT | EPOLLWRNORM;
4050 
4051 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4052 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4053 	if (__mptcp_stream_is_writeable(sk, 1))
4054 		return EPOLLOUT | EPOLLWRNORM;
4055 
4056 	return 0;
4057 }
4058 
4059 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4060 			   struct poll_table_struct *wait)
4061 {
4062 	struct sock *sk = sock->sk;
4063 	struct mptcp_sock *msk;
4064 	__poll_t mask = 0;
4065 	u8 shutdown;
4066 	int state;
4067 
4068 	msk = mptcp_sk(sk);
4069 	sock_poll_wait(file, sock, wait);
4070 
4071 	state = inet_sk_state_load(sk);
4072 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4073 	if (state == TCP_LISTEN) {
4074 		struct sock *ssk = READ_ONCE(msk->first);
4075 
4076 		if (WARN_ON_ONCE(!ssk))
4077 			return 0;
4078 
4079 		return inet_csk_listen_poll(ssk);
4080 	}
4081 
4082 	shutdown = READ_ONCE(sk->sk_shutdown);
4083 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4084 		mask |= EPOLLHUP;
4085 	if (shutdown & RCV_SHUTDOWN)
4086 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4087 
4088 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4089 		mask |= mptcp_check_readable(sk);
4090 		if (shutdown & SEND_SHUTDOWN)
4091 			mask |= EPOLLOUT | EPOLLWRNORM;
4092 		else
4093 			mask |= mptcp_check_writeable(msk);
4094 	} else if (state == TCP_SYN_SENT &&
4095 		   inet_test_bit(DEFER_CONNECT, sk)) {
4096 		/* cf tcp_poll() note about TFO */
4097 		mask |= EPOLLOUT | EPOLLWRNORM;
4098 	}
4099 
4100 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4101 	smp_rmb();
4102 	if (READ_ONCE(sk->sk_err))
4103 		mask |= EPOLLERR;
4104 
4105 	return mask;
4106 }
4107 
4108 static const struct proto_ops mptcp_stream_ops = {
4109 	.family		   = PF_INET,
4110 	.owner		   = THIS_MODULE,
4111 	.release	   = inet_release,
4112 	.bind		   = mptcp_bind,
4113 	.connect	   = inet_stream_connect,
4114 	.socketpair	   = sock_no_socketpair,
4115 	.accept		   = mptcp_stream_accept,
4116 	.getname	   = inet_getname,
4117 	.poll		   = mptcp_poll,
4118 	.ioctl		   = inet_ioctl,
4119 	.gettstamp	   = sock_gettstamp,
4120 	.listen		   = mptcp_listen,
4121 	.shutdown	   = inet_shutdown,
4122 	.setsockopt	   = sock_common_setsockopt,
4123 	.getsockopt	   = sock_common_getsockopt,
4124 	.sendmsg	   = inet_sendmsg,
4125 	.recvmsg	   = inet_recvmsg,
4126 	.mmap		   = sock_no_mmap,
4127 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4128 };
4129 
4130 static struct inet_protosw mptcp_protosw = {
4131 	.type		= SOCK_STREAM,
4132 	.protocol	= IPPROTO_MPTCP,
4133 	.prot		= &mptcp_prot,
4134 	.ops		= &mptcp_stream_ops,
4135 	.flags		= INET_PROTOSW_ICSK,
4136 };
4137 
4138 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4139 {
4140 	struct mptcp_delegated_action *delegated;
4141 	struct mptcp_subflow_context *subflow;
4142 	int work_done = 0;
4143 
4144 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4145 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4146 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4147 
4148 		bh_lock_sock_nested(ssk);
4149 		if (!sock_owned_by_user(ssk)) {
4150 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4151 		} else {
4152 			/* tcp_release_cb_override already processed
4153 			 * the action or will do at next release_sock().
4154 			 * In both case must dequeue the subflow here - on the same
4155 			 * CPU that scheduled it.
4156 			 */
4157 			smp_wmb();
4158 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4159 		}
4160 		bh_unlock_sock(ssk);
4161 		sock_put(ssk);
4162 
4163 		if (++work_done == budget)
4164 			return budget;
4165 	}
4166 
4167 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4168 	 * will not try accessing the NULL napi->dev ptr
4169 	 */
4170 	napi_complete_done(napi, 0);
4171 	return work_done;
4172 }
4173 
4174 void __init mptcp_proto_init(void)
4175 {
4176 	struct mptcp_delegated_action *delegated;
4177 	int cpu;
4178 
4179 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4180 
4181 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4182 		panic("Failed to allocate MPTCP pcpu counter\n");
4183 
4184 	mptcp_napi_dev = alloc_netdev_dummy(0);
4185 	if (!mptcp_napi_dev)
4186 		panic("Failed to allocate MPTCP dummy netdev\n");
4187 	for_each_possible_cpu(cpu) {
4188 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4189 		INIT_LIST_HEAD(&delegated->head);
4190 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4191 				  mptcp_napi_poll);
4192 		napi_enable(&delegated->napi);
4193 	}
4194 
4195 	mptcp_subflow_init();
4196 	mptcp_pm_init();
4197 	mptcp_sched_init();
4198 	mptcp_token_init();
4199 
4200 	if (proto_register(&mptcp_prot, 1) != 0)
4201 		panic("Failed to register MPTCP proto.\n");
4202 
4203 	inet_register_protosw(&mptcp_protosw);
4204 
4205 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4206 }
4207 
4208 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4209 static const struct proto_ops mptcp_v6_stream_ops = {
4210 	.family		   = PF_INET6,
4211 	.owner		   = THIS_MODULE,
4212 	.release	   = inet6_release,
4213 	.bind		   = mptcp_bind,
4214 	.connect	   = inet_stream_connect,
4215 	.socketpair	   = sock_no_socketpair,
4216 	.accept		   = mptcp_stream_accept,
4217 	.getname	   = inet6_getname,
4218 	.poll		   = mptcp_poll,
4219 	.ioctl		   = inet6_ioctl,
4220 	.gettstamp	   = sock_gettstamp,
4221 	.listen		   = mptcp_listen,
4222 	.shutdown	   = inet_shutdown,
4223 	.setsockopt	   = sock_common_setsockopt,
4224 	.getsockopt	   = sock_common_getsockopt,
4225 	.sendmsg	   = inet6_sendmsg,
4226 	.recvmsg	   = inet6_recvmsg,
4227 	.mmap		   = sock_no_mmap,
4228 #ifdef CONFIG_COMPAT
4229 	.compat_ioctl	   = inet6_compat_ioctl,
4230 #endif
4231 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4232 };
4233 
4234 static struct proto mptcp_v6_prot;
4235 
4236 static struct inet_protosw mptcp_v6_protosw = {
4237 	.type		= SOCK_STREAM,
4238 	.protocol	= IPPROTO_MPTCP,
4239 	.prot		= &mptcp_v6_prot,
4240 	.ops		= &mptcp_v6_stream_ops,
4241 	.flags		= INET_PROTOSW_ICSK,
4242 };
4243 
4244 int __init mptcp_proto_v6_init(void)
4245 {
4246 	int err;
4247 
4248 	mptcp_v6_prot = mptcp_prot;
4249 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4250 	mptcp_v6_prot.slab = NULL;
4251 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4252 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4253 
4254 	err = proto_register(&mptcp_v6_prot, 1);
4255 	if (err)
4256 		return err;
4257 
4258 	err = inet6_register_protosw(&mptcp_v6_protosw);
4259 	if (err)
4260 		proto_unregister(&mptcp_v6_prot);
4261 
4262 	return err;
4263 }
4264 #endif
4265