xref: /linux/net/mptcp/protocol.c (revision 860a9bed265146b10311bcadbbcef59c3af4454d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp_states.h>
19 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
20 #include <net/transp_v6.h>
21 #endif
22 #include <net/mptcp.h>
23 #include <net/xfrm.h>
24 #include <asm/ioctls.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 enum {
39 	MPTCP_CMSG_TS = BIT(0),
40 	MPTCP_CMSG_INQ = BIT(1),
41 };
42 
43 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
44 
45 static void __mptcp_destroy_sock(struct sock *sk);
46 static void mptcp_check_send_data_fin(struct sock *sk);
47 
48 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
49 static struct net_device mptcp_napi_dev;
50 
51 /* Returns end sequence number of the receiver's advertised window */
52 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
53 {
54 	return READ_ONCE(msk->wnd_end);
55 }
56 
57 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
58 {
59 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
60 	if (sk->sk_prot == &tcpv6_prot)
61 		return &inet6_stream_ops;
62 #endif
63 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
64 	return &inet_stream_ops;
65 }
66 
67 static int __mptcp_socket_create(struct mptcp_sock *msk)
68 {
69 	struct mptcp_subflow_context *subflow;
70 	struct sock *sk = (struct sock *)msk;
71 	struct socket *ssock;
72 	int err;
73 
74 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
75 	if (err)
76 		return err;
77 
78 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
79 	WRITE_ONCE(msk->first, ssock->sk);
80 	subflow = mptcp_subflow_ctx(ssock->sk);
81 	list_add(&subflow->node, &msk->conn_list);
82 	sock_hold(ssock->sk);
83 	subflow->request_mptcp = 1;
84 	subflow->subflow_id = msk->subflow_id++;
85 
86 	/* This is the first subflow, always with id 0 */
87 	WRITE_ONCE(subflow->local_id, 0);
88 	mptcp_sock_graft(msk->first, sk->sk_socket);
89 	iput(SOCK_INODE(ssock));
90 
91 	return 0;
92 }
93 
94 /* If the MPC handshake is not started, returns the first subflow,
95  * eventually allocating it.
96  */
97 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
98 {
99 	struct sock *sk = (struct sock *)msk;
100 	int ret;
101 
102 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
103 		return ERR_PTR(-EINVAL);
104 
105 	if (!msk->first) {
106 		ret = __mptcp_socket_create(msk);
107 		if (ret)
108 			return ERR_PTR(ret);
109 	}
110 
111 	return msk->first;
112 }
113 
114 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
115 {
116 	sk_drops_add(sk, skb);
117 	__kfree_skb(skb);
118 }
119 
120 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
121 {
122 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
123 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
124 }
125 
126 static void mptcp_rmem_charge(struct sock *sk, int size)
127 {
128 	mptcp_rmem_fwd_alloc_add(sk, -size);
129 }
130 
131 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
132 			       struct sk_buff *from)
133 {
134 	bool fragstolen;
135 	int delta;
136 
137 	if (MPTCP_SKB_CB(from)->offset ||
138 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
139 		return false;
140 
141 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
142 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
143 		 to->len, MPTCP_SKB_CB(from)->end_seq);
144 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
145 
146 	/* note the fwd memory can reach a negative value after accounting
147 	 * for the delta, but the later skb free will restore a non
148 	 * negative one
149 	 */
150 	atomic_add(delta, &sk->sk_rmem_alloc);
151 	mptcp_rmem_charge(sk, delta);
152 	kfree_skb_partial(from, fragstolen);
153 
154 	return true;
155 }
156 
157 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
158 				   struct sk_buff *from)
159 {
160 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
161 		return false;
162 
163 	return mptcp_try_coalesce((struct sock *)msk, to, from);
164 }
165 
166 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
167 {
168 	amount >>= PAGE_SHIFT;
169 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
170 	__sk_mem_reduce_allocated(sk, amount);
171 }
172 
173 static void mptcp_rmem_uncharge(struct sock *sk, int size)
174 {
175 	struct mptcp_sock *msk = mptcp_sk(sk);
176 	int reclaimable;
177 
178 	mptcp_rmem_fwd_alloc_add(sk, size);
179 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
180 
181 	/* see sk_mem_uncharge() for the rationale behind the following schema */
182 	if (unlikely(reclaimable >= PAGE_SIZE))
183 		__mptcp_rmem_reclaim(sk, reclaimable);
184 }
185 
186 static void mptcp_rfree(struct sk_buff *skb)
187 {
188 	unsigned int len = skb->truesize;
189 	struct sock *sk = skb->sk;
190 
191 	atomic_sub(len, &sk->sk_rmem_alloc);
192 	mptcp_rmem_uncharge(sk, len);
193 }
194 
195 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
196 {
197 	skb_orphan(skb);
198 	skb->sk = sk;
199 	skb->destructor = mptcp_rfree;
200 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
201 	mptcp_rmem_charge(sk, skb->truesize);
202 }
203 
204 /* "inspired" by tcp_data_queue_ofo(), main differences:
205  * - use mptcp seqs
206  * - don't cope with sacks
207  */
208 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
209 {
210 	struct sock *sk = (struct sock *)msk;
211 	struct rb_node **p, *parent;
212 	u64 seq, end_seq, max_seq;
213 	struct sk_buff *skb1;
214 
215 	seq = MPTCP_SKB_CB(skb)->map_seq;
216 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
217 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
218 
219 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
220 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
221 	if (after64(end_seq, max_seq)) {
222 		/* out of window */
223 		mptcp_drop(sk, skb);
224 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
225 			 (unsigned long long)end_seq - (unsigned long)max_seq,
226 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
227 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
228 		return;
229 	}
230 
231 	p = &msk->out_of_order_queue.rb_node;
232 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
233 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
234 		rb_link_node(&skb->rbnode, NULL, p);
235 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
236 		msk->ooo_last_skb = skb;
237 		goto end;
238 	}
239 
240 	/* with 2 subflows, adding at end of ooo queue is quite likely
241 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
242 	 */
243 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
244 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
246 		return;
247 	}
248 
249 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
250 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
251 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
252 		parent = &msk->ooo_last_skb->rbnode;
253 		p = &parent->rb_right;
254 		goto insert;
255 	}
256 
257 	/* Find place to insert this segment. Handle overlaps on the way. */
258 	parent = NULL;
259 	while (*p) {
260 		parent = *p;
261 		skb1 = rb_to_skb(parent);
262 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
263 			p = &parent->rb_left;
264 			continue;
265 		}
266 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
267 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
268 				/* All the bits are present. Drop. */
269 				mptcp_drop(sk, skb);
270 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
271 				return;
272 			}
273 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
274 				/* partial overlap:
275 				 *     |     skb      |
276 				 *  |     skb1    |
277 				 * continue traversing
278 				 */
279 			} else {
280 				/* skb's seq == skb1's seq and skb covers skb1.
281 				 * Replace skb1 with skb.
282 				 */
283 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
284 						&msk->out_of_order_queue);
285 				mptcp_drop(sk, skb1);
286 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
287 				goto merge_right;
288 			}
289 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
290 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
291 			return;
292 		}
293 		p = &parent->rb_right;
294 	}
295 
296 insert:
297 	/* Insert segment into RB tree. */
298 	rb_link_node(&skb->rbnode, parent, p);
299 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
300 
301 merge_right:
302 	/* Remove other segments covered by skb. */
303 	while ((skb1 = skb_rb_next(skb)) != NULL) {
304 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
305 			break;
306 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
307 		mptcp_drop(sk, skb1);
308 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
309 	}
310 	/* If there is no skb after us, we are the last_skb ! */
311 	if (!skb1)
312 		msk->ooo_last_skb = skb;
313 
314 end:
315 	skb_condense(skb);
316 	mptcp_set_owner_r(skb, sk);
317 }
318 
319 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
320 {
321 	struct mptcp_sock *msk = mptcp_sk(sk);
322 	int amt, amount;
323 
324 	if (size <= msk->rmem_fwd_alloc)
325 		return true;
326 
327 	size -= msk->rmem_fwd_alloc;
328 	amt = sk_mem_pages(size);
329 	amount = amt << PAGE_SHIFT;
330 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
331 		return false;
332 
333 	mptcp_rmem_fwd_alloc_add(sk, amount);
334 	return true;
335 }
336 
337 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
338 			     struct sk_buff *skb, unsigned int offset,
339 			     size_t copy_len)
340 {
341 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
342 	struct sock *sk = (struct sock *)msk;
343 	struct sk_buff *tail;
344 	bool has_rxtstamp;
345 
346 	__skb_unlink(skb, &ssk->sk_receive_queue);
347 
348 	skb_ext_reset(skb);
349 	skb_orphan(skb);
350 
351 	/* try to fetch required memory from subflow */
352 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
353 		goto drop;
354 
355 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
356 
357 	/* the skb map_seq accounts for the skb offset:
358 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
359 	 * value
360 	 */
361 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
362 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
363 	MPTCP_SKB_CB(skb)->offset = offset;
364 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
365 
366 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
367 		/* in sequence */
368 		msk->bytes_received += copy_len;
369 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
370 		tail = skb_peek_tail(&sk->sk_receive_queue);
371 		if (tail && mptcp_try_coalesce(sk, tail, skb))
372 			return true;
373 
374 		mptcp_set_owner_r(skb, sk);
375 		__skb_queue_tail(&sk->sk_receive_queue, skb);
376 		return true;
377 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
378 		mptcp_data_queue_ofo(msk, skb);
379 		return false;
380 	}
381 
382 	/* old data, keep it simple and drop the whole pkt, sender
383 	 * will retransmit as needed, if needed.
384 	 */
385 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
386 drop:
387 	mptcp_drop(sk, skb);
388 	return false;
389 }
390 
391 static void mptcp_stop_rtx_timer(struct sock *sk)
392 {
393 	struct inet_connection_sock *icsk = inet_csk(sk);
394 
395 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
396 	mptcp_sk(sk)->timer_ival = 0;
397 }
398 
399 static void mptcp_close_wake_up(struct sock *sk)
400 {
401 	if (sock_flag(sk, SOCK_DEAD))
402 		return;
403 
404 	sk->sk_state_change(sk);
405 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
406 	    sk->sk_state == TCP_CLOSE)
407 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
408 	else
409 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
410 }
411 
412 /* called under the msk socket lock */
413 static bool mptcp_pending_data_fin_ack(struct sock *sk)
414 {
415 	struct mptcp_sock *msk = mptcp_sk(sk);
416 
417 	return ((1 << sk->sk_state) &
418 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
419 	       msk->write_seq == READ_ONCE(msk->snd_una);
420 }
421 
422 static void mptcp_check_data_fin_ack(struct sock *sk)
423 {
424 	struct mptcp_sock *msk = mptcp_sk(sk);
425 
426 	/* Look for an acknowledged DATA_FIN */
427 	if (mptcp_pending_data_fin_ack(sk)) {
428 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
429 
430 		switch (sk->sk_state) {
431 		case TCP_FIN_WAIT1:
432 			mptcp_set_state(sk, TCP_FIN_WAIT2);
433 			break;
434 		case TCP_CLOSING:
435 		case TCP_LAST_ACK:
436 			mptcp_set_state(sk, TCP_CLOSE);
437 			break;
438 		}
439 
440 		mptcp_close_wake_up(sk);
441 	}
442 }
443 
444 /* can be called with no lock acquired */
445 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
446 {
447 	struct mptcp_sock *msk = mptcp_sk(sk);
448 
449 	if (READ_ONCE(msk->rcv_data_fin) &&
450 	    ((1 << inet_sk_state_load(sk)) &
451 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
452 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
453 
454 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
455 			if (seq)
456 				*seq = rcv_data_fin_seq;
457 
458 			return true;
459 		}
460 	}
461 
462 	return false;
463 }
464 
465 static void mptcp_set_datafin_timeout(struct sock *sk)
466 {
467 	struct inet_connection_sock *icsk = inet_csk(sk);
468 	u32 retransmits;
469 
470 	retransmits = min_t(u32, icsk->icsk_retransmits,
471 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
472 
473 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
474 }
475 
476 static void __mptcp_set_timeout(struct sock *sk, long tout)
477 {
478 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
479 }
480 
481 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
482 {
483 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
484 
485 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
486 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
487 }
488 
489 static void mptcp_set_timeout(struct sock *sk)
490 {
491 	struct mptcp_subflow_context *subflow;
492 	long tout = 0;
493 
494 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
495 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
496 	__mptcp_set_timeout(sk, tout);
497 }
498 
499 static inline bool tcp_can_send_ack(const struct sock *ssk)
500 {
501 	return !((1 << inet_sk_state_load(ssk)) &
502 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
503 }
504 
505 void __mptcp_subflow_send_ack(struct sock *ssk)
506 {
507 	if (tcp_can_send_ack(ssk))
508 		tcp_send_ack(ssk);
509 }
510 
511 static void mptcp_subflow_send_ack(struct sock *ssk)
512 {
513 	bool slow;
514 
515 	slow = lock_sock_fast(ssk);
516 	__mptcp_subflow_send_ack(ssk);
517 	unlock_sock_fast(ssk, slow);
518 }
519 
520 static void mptcp_send_ack(struct mptcp_sock *msk)
521 {
522 	struct mptcp_subflow_context *subflow;
523 
524 	mptcp_for_each_subflow(msk, subflow)
525 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
526 }
527 
528 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
529 {
530 	bool slow;
531 
532 	slow = lock_sock_fast(ssk);
533 	if (tcp_can_send_ack(ssk))
534 		tcp_cleanup_rbuf(ssk, 1);
535 	unlock_sock_fast(ssk, slow);
536 }
537 
538 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
539 {
540 	const struct inet_connection_sock *icsk = inet_csk(ssk);
541 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
542 	const struct tcp_sock *tp = tcp_sk(ssk);
543 
544 	return (ack_pending & ICSK_ACK_SCHED) &&
545 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
546 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
547 		 (rx_empty && ack_pending &
548 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
549 }
550 
551 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
552 {
553 	int old_space = READ_ONCE(msk->old_wspace);
554 	struct mptcp_subflow_context *subflow;
555 	struct sock *sk = (struct sock *)msk;
556 	int space =  __mptcp_space(sk);
557 	bool cleanup, rx_empty;
558 
559 	cleanup = (space > 0) && (space >= (old_space << 1));
560 	rx_empty = !__mptcp_rmem(sk);
561 
562 	mptcp_for_each_subflow(msk, subflow) {
563 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
564 
565 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
566 			mptcp_subflow_cleanup_rbuf(ssk);
567 	}
568 }
569 
570 static bool mptcp_check_data_fin(struct sock *sk)
571 {
572 	struct mptcp_sock *msk = mptcp_sk(sk);
573 	u64 rcv_data_fin_seq;
574 	bool ret = false;
575 
576 	/* Need to ack a DATA_FIN received from a peer while this side
577 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
578 	 * msk->rcv_data_fin was set when parsing the incoming options
579 	 * at the subflow level and the msk lock was not held, so this
580 	 * is the first opportunity to act on the DATA_FIN and change
581 	 * the msk state.
582 	 *
583 	 * If we are caught up to the sequence number of the incoming
584 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
585 	 * not caught up, do nothing and let the recv code send DATA_ACK
586 	 * when catching up.
587 	 */
588 
589 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
590 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
591 		WRITE_ONCE(msk->rcv_data_fin, 0);
592 
593 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
594 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
595 
596 		switch (sk->sk_state) {
597 		case TCP_ESTABLISHED:
598 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
599 			break;
600 		case TCP_FIN_WAIT1:
601 			mptcp_set_state(sk, TCP_CLOSING);
602 			break;
603 		case TCP_FIN_WAIT2:
604 			mptcp_set_state(sk, TCP_CLOSE);
605 			break;
606 		default:
607 			/* Other states not expected */
608 			WARN_ON_ONCE(1);
609 			break;
610 		}
611 
612 		ret = true;
613 		if (!__mptcp_check_fallback(msk))
614 			mptcp_send_ack(msk);
615 		mptcp_close_wake_up(sk);
616 	}
617 	return ret;
618 }
619 
620 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
621 					   struct sock *ssk,
622 					   unsigned int *bytes)
623 {
624 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
625 	struct sock *sk = (struct sock *)msk;
626 	unsigned int moved = 0;
627 	bool more_data_avail;
628 	struct tcp_sock *tp;
629 	bool done = false;
630 	int sk_rbuf;
631 
632 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
633 
634 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
635 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
636 
637 		if (unlikely(ssk_rbuf > sk_rbuf)) {
638 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
639 			sk_rbuf = ssk_rbuf;
640 		}
641 	}
642 
643 	pr_debug("msk=%p ssk=%p", msk, ssk);
644 	tp = tcp_sk(ssk);
645 	do {
646 		u32 map_remaining, offset;
647 		u32 seq = tp->copied_seq;
648 		struct sk_buff *skb;
649 		bool fin;
650 
651 		/* try to move as much data as available */
652 		map_remaining = subflow->map_data_len -
653 				mptcp_subflow_get_map_offset(subflow);
654 
655 		skb = skb_peek(&ssk->sk_receive_queue);
656 		if (!skb) {
657 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
658 			 * a different CPU can have already processed the pending
659 			 * data, stop here or we can enter an infinite loop
660 			 */
661 			if (!moved)
662 				done = true;
663 			break;
664 		}
665 
666 		if (__mptcp_check_fallback(msk)) {
667 			/* Under fallback skbs have no MPTCP extension and TCP could
668 			 * collapse them between the dummy map creation and the
669 			 * current dequeue. Be sure to adjust the map size.
670 			 */
671 			map_remaining = skb->len;
672 			subflow->map_data_len = skb->len;
673 		}
674 
675 		offset = seq - TCP_SKB_CB(skb)->seq;
676 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
677 		if (fin) {
678 			done = true;
679 			seq++;
680 		}
681 
682 		if (offset < skb->len) {
683 			size_t len = skb->len - offset;
684 
685 			if (tp->urg_data)
686 				done = true;
687 
688 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
689 				moved += len;
690 			seq += len;
691 
692 			if (WARN_ON_ONCE(map_remaining < len))
693 				break;
694 		} else {
695 			WARN_ON_ONCE(!fin);
696 			sk_eat_skb(ssk, skb);
697 			done = true;
698 		}
699 
700 		WRITE_ONCE(tp->copied_seq, seq);
701 		more_data_avail = mptcp_subflow_data_available(ssk);
702 
703 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
704 			done = true;
705 			break;
706 		}
707 	} while (more_data_avail);
708 
709 	if (moved > 0)
710 		msk->last_data_recv = tcp_jiffies32;
711 	*bytes += moved;
712 	return done;
713 }
714 
715 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
716 {
717 	struct sock *sk = (struct sock *)msk;
718 	struct sk_buff *skb, *tail;
719 	bool moved = false;
720 	struct rb_node *p;
721 	u64 end_seq;
722 
723 	p = rb_first(&msk->out_of_order_queue);
724 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
725 	while (p) {
726 		skb = rb_to_skb(p);
727 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
728 			break;
729 
730 		p = rb_next(p);
731 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
732 
733 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
734 				      msk->ack_seq))) {
735 			mptcp_drop(sk, skb);
736 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
737 			continue;
738 		}
739 
740 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
741 		tail = skb_peek_tail(&sk->sk_receive_queue);
742 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
743 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
744 
745 			/* skip overlapping data, if any */
746 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
747 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
748 				 delta);
749 			MPTCP_SKB_CB(skb)->offset += delta;
750 			MPTCP_SKB_CB(skb)->map_seq += delta;
751 			__skb_queue_tail(&sk->sk_receive_queue, skb);
752 		}
753 		msk->bytes_received += end_seq - msk->ack_seq;
754 		WRITE_ONCE(msk->ack_seq, end_seq);
755 		moved = true;
756 	}
757 	return moved;
758 }
759 
760 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
761 {
762 	int err = sock_error(ssk);
763 	int ssk_state;
764 
765 	if (!err)
766 		return false;
767 
768 	/* only propagate errors on fallen-back sockets or
769 	 * on MPC connect
770 	 */
771 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
772 		return false;
773 
774 	/* We need to propagate only transition to CLOSE state.
775 	 * Orphaned socket will see such state change via
776 	 * subflow_sched_work_if_closed() and that path will properly
777 	 * destroy the msk as needed.
778 	 */
779 	ssk_state = inet_sk_state_load(ssk);
780 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
781 		mptcp_set_state(sk, ssk_state);
782 	WRITE_ONCE(sk->sk_err, -err);
783 
784 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
785 	smp_wmb();
786 	sk_error_report(sk);
787 	return true;
788 }
789 
790 void __mptcp_error_report(struct sock *sk)
791 {
792 	struct mptcp_subflow_context *subflow;
793 	struct mptcp_sock *msk = mptcp_sk(sk);
794 
795 	mptcp_for_each_subflow(msk, subflow)
796 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
797 			break;
798 }
799 
800 /* In most cases we will be able to lock the mptcp socket.  If its already
801  * owned, we need to defer to the work queue to avoid ABBA deadlock.
802  */
803 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
804 {
805 	struct sock *sk = (struct sock *)msk;
806 	unsigned int moved = 0;
807 
808 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
809 	__mptcp_ofo_queue(msk);
810 	if (unlikely(ssk->sk_err)) {
811 		if (!sock_owned_by_user(sk))
812 			__mptcp_error_report(sk);
813 		else
814 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
815 	}
816 
817 	/* If the moves have caught up with the DATA_FIN sequence number
818 	 * it's time to ack the DATA_FIN and change socket state, but
819 	 * this is not a good place to change state. Let the workqueue
820 	 * do it.
821 	 */
822 	if (mptcp_pending_data_fin(sk, NULL))
823 		mptcp_schedule_work(sk);
824 	return moved > 0;
825 }
826 
827 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
828 {
829 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
830 	struct mptcp_sock *msk = mptcp_sk(sk);
831 	int sk_rbuf, ssk_rbuf;
832 
833 	/* The peer can send data while we are shutting down this
834 	 * subflow at msk destruction time, but we must avoid enqueuing
835 	 * more data to the msk receive queue
836 	 */
837 	if (unlikely(subflow->disposable))
838 		return;
839 
840 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
841 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
842 	if (unlikely(ssk_rbuf > sk_rbuf))
843 		sk_rbuf = ssk_rbuf;
844 
845 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
846 	if (__mptcp_rmem(sk) > sk_rbuf) {
847 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
848 		return;
849 	}
850 
851 	/* Wake-up the reader only for in-sequence data */
852 	mptcp_data_lock(sk);
853 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
854 		sk->sk_data_ready(sk);
855 	mptcp_data_unlock(sk);
856 }
857 
858 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
859 {
860 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
861 	WRITE_ONCE(msk->allow_infinite_fallback, false);
862 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
863 }
864 
865 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
866 {
867 	struct sock *sk = (struct sock *)msk;
868 
869 	if (sk->sk_state != TCP_ESTABLISHED)
870 		return false;
871 
872 	/* attach to msk socket only after we are sure we will deal with it
873 	 * at close time
874 	 */
875 	if (sk->sk_socket && !ssk->sk_socket)
876 		mptcp_sock_graft(ssk, sk->sk_socket);
877 
878 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
879 	mptcp_sockopt_sync_locked(msk, ssk);
880 	mptcp_subflow_joined(msk, ssk);
881 	mptcp_stop_tout_timer(sk);
882 	__mptcp_propagate_sndbuf(sk, ssk);
883 	return true;
884 }
885 
886 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
887 {
888 	struct mptcp_subflow_context *tmp, *subflow;
889 	struct mptcp_sock *msk = mptcp_sk(sk);
890 
891 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
892 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
893 		bool slow = lock_sock_fast(ssk);
894 
895 		list_move_tail(&subflow->node, &msk->conn_list);
896 		if (!__mptcp_finish_join(msk, ssk))
897 			mptcp_subflow_reset(ssk);
898 		unlock_sock_fast(ssk, slow);
899 	}
900 }
901 
902 static bool mptcp_rtx_timer_pending(struct sock *sk)
903 {
904 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
905 }
906 
907 static void mptcp_reset_rtx_timer(struct sock *sk)
908 {
909 	struct inet_connection_sock *icsk = inet_csk(sk);
910 	unsigned long tout;
911 
912 	/* prevent rescheduling on close */
913 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
914 		return;
915 
916 	tout = mptcp_sk(sk)->timer_ival;
917 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
918 }
919 
920 bool mptcp_schedule_work(struct sock *sk)
921 {
922 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
923 	    schedule_work(&mptcp_sk(sk)->work)) {
924 		/* each subflow already holds a reference to the sk, and the
925 		 * workqueue is invoked by a subflow, so sk can't go away here.
926 		 */
927 		sock_hold(sk);
928 		return true;
929 	}
930 	return false;
931 }
932 
933 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
934 {
935 	struct mptcp_subflow_context *subflow;
936 
937 	msk_owned_by_me(msk);
938 
939 	mptcp_for_each_subflow(msk, subflow) {
940 		if (READ_ONCE(subflow->data_avail))
941 			return mptcp_subflow_tcp_sock(subflow);
942 	}
943 
944 	return NULL;
945 }
946 
947 static bool mptcp_skb_can_collapse_to(u64 write_seq,
948 				      const struct sk_buff *skb,
949 				      const struct mptcp_ext *mpext)
950 {
951 	if (!tcp_skb_can_collapse_to(skb))
952 		return false;
953 
954 	/* can collapse only if MPTCP level sequence is in order and this
955 	 * mapping has not been xmitted yet
956 	 */
957 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
958 	       !mpext->frozen;
959 }
960 
961 /* we can append data to the given data frag if:
962  * - there is space available in the backing page_frag
963  * - the data frag tail matches the current page_frag free offset
964  * - the data frag end sequence number matches the current write seq
965  */
966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
967 				       const struct page_frag *pfrag,
968 				       const struct mptcp_data_frag *df)
969 {
970 	return df && pfrag->page == df->page &&
971 		pfrag->size - pfrag->offset > 0 &&
972 		pfrag->offset == (df->offset + df->data_len) &&
973 		df->data_seq + df->data_len == msk->write_seq;
974 }
975 
976 static void dfrag_uncharge(struct sock *sk, int len)
977 {
978 	sk_mem_uncharge(sk, len);
979 	sk_wmem_queued_add(sk, -len);
980 }
981 
982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
983 {
984 	int len = dfrag->data_len + dfrag->overhead;
985 
986 	list_del(&dfrag->list);
987 	dfrag_uncharge(sk, len);
988 	put_page(dfrag->page);
989 }
990 
991 /* called under both the msk socket lock and the data lock */
992 static void __mptcp_clean_una(struct sock *sk)
993 {
994 	struct mptcp_sock *msk = mptcp_sk(sk);
995 	struct mptcp_data_frag *dtmp, *dfrag;
996 	u64 snd_una;
997 
998 	snd_una = msk->snd_una;
999 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1000 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1001 			break;
1002 
1003 		if (unlikely(dfrag == msk->first_pending)) {
1004 			/* in recovery mode can see ack after the current snd head */
1005 			if (WARN_ON_ONCE(!msk->recovery))
1006 				break;
1007 
1008 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1009 		}
1010 
1011 		dfrag_clear(sk, dfrag);
1012 	}
1013 
1014 	dfrag = mptcp_rtx_head(sk);
1015 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1016 		u64 delta = snd_una - dfrag->data_seq;
1017 
1018 		/* prevent wrap around in recovery mode */
1019 		if (unlikely(delta > dfrag->already_sent)) {
1020 			if (WARN_ON_ONCE(!msk->recovery))
1021 				goto out;
1022 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1023 				goto out;
1024 			dfrag->already_sent += delta - dfrag->already_sent;
1025 		}
1026 
1027 		dfrag->data_seq += delta;
1028 		dfrag->offset += delta;
1029 		dfrag->data_len -= delta;
1030 		dfrag->already_sent -= delta;
1031 
1032 		dfrag_uncharge(sk, delta);
1033 	}
1034 
1035 	/* all retransmitted data acked, recovery completed */
1036 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1037 		msk->recovery = false;
1038 
1039 out:
1040 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1041 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1042 			mptcp_stop_rtx_timer(sk);
1043 	} else {
1044 		mptcp_reset_rtx_timer(sk);
1045 	}
1046 
1047 	if (mptcp_pending_data_fin_ack(sk))
1048 		mptcp_schedule_work(sk);
1049 }
1050 
1051 static void __mptcp_clean_una_wakeup(struct sock *sk)
1052 {
1053 	lockdep_assert_held_once(&sk->sk_lock.slock);
1054 
1055 	__mptcp_clean_una(sk);
1056 	mptcp_write_space(sk);
1057 }
1058 
1059 static void mptcp_clean_una_wakeup(struct sock *sk)
1060 {
1061 	mptcp_data_lock(sk);
1062 	__mptcp_clean_una_wakeup(sk);
1063 	mptcp_data_unlock(sk);
1064 }
1065 
1066 static void mptcp_enter_memory_pressure(struct sock *sk)
1067 {
1068 	struct mptcp_subflow_context *subflow;
1069 	struct mptcp_sock *msk = mptcp_sk(sk);
1070 	bool first = true;
1071 
1072 	mptcp_for_each_subflow(msk, subflow) {
1073 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1074 
1075 		if (first)
1076 			tcp_enter_memory_pressure(ssk);
1077 		sk_stream_moderate_sndbuf(ssk);
1078 
1079 		first = false;
1080 	}
1081 	__mptcp_sync_sndbuf(sk);
1082 }
1083 
1084 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1085  * data
1086  */
1087 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1088 {
1089 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1090 					pfrag, sk->sk_allocation)))
1091 		return true;
1092 
1093 	mptcp_enter_memory_pressure(sk);
1094 	return false;
1095 }
1096 
1097 static struct mptcp_data_frag *
1098 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1099 		      int orig_offset)
1100 {
1101 	int offset = ALIGN(orig_offset, sizeof(long));
1102 	struct mptcp_data_frag *dfrag;
1103 
1104 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1105 	dfrag->data_len = 0;
1106 	dfrag->data_seq = msk->write_seq;
1107 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1108 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1109 	dfrag->already_sent = 0;
1110 	dfrag->page = pfrag->page;
1111 
1112 	return dfrag;
1113 }
1114 
1115 struct mptcp_sendmsg_info {
1116 	int mss_now;
1117 	int size_goal;
1118 	u16 limit;
1119 	u16 sent;
1120 	unsigned int flags;
1121 	bool data_lock_held;
1122 };
1123 
1124 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1125 				    u64 data_seq, int avail_size)
1126 {
1127 	u64 window_end = mptcp_wnd_end(msk);
1128 	u64 mptcp_snd_wnd;
1129 
1130 	if (__mptcp_check_fallback(msk))
1131 		return avail_size;
1132 
1133 	mptcp_snd_wnd = window_end - data_seq;
1134 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1135 
1136 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1137 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1138 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1139 	}
1140 
1141 	return avail_size;
1142 }
1143 
1144 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1145 {
1146 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1147 
1148 	if (!mpext)
1149 		return false;
1150 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1151 	return true;
1152 }
1153 
1154 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1155 {
1156 	struct sk_buff *skb;
1157 
1158 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1159 	if (likely(skb)) {
1160 		if (likely(__mptcp_add_ext(skb, gfp))) {
1161 			skb_reserve(skb, MAX_TCP_HEADER);
1162 			skb->ip_summed = CHECKSUM_PARTIAL;
1163 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1164 			return skb;
1165 		}
1166 		__kfree_skb(skb);
1167 	} else {
1168 		mptcp_enter_memory_pressure(sk);
1169 	}
1170 	return NULL;
1171 }
1172 
1173 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1174 {
1175 	struct sk_buff *skb;
1176 
1177 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1178 	if (!skb)
1179 		return NULL;
1180 
1181 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1182 		tcp_skb_entail(ssk, skb);
1183 		return skb;
1184 	}
1185 	tcp_skb_tsorted_anchor_cleanup(skb);
1186 	kfree_skb(skb);
1187 	return NULL;
1188 }
1189 
1190 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1191 {
1192 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1193 
1194 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1195 }
1196 
1197 /* note: this always recompute the csum on the whole skb, even
1198  * if we just appended a single frag. More status info needed
1199  */
1200 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1201 {
1202 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1203 	__wsum csum = ~csum_unfold(mpext->csum);
1204 	int offset = skb->len - added;
1205 
1206 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1207 }
1208 
1209 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1210 				      struct sock *ssk,
1211 				      struct mptcp_ext *mpext)
1212 {
1213 	if (!mpext)
1214 		return;
1215 
1216 	mpext->infinite_map = 1;
1217 	mpext->data_len = 0;
1218 
1219 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1220 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1221 	pr_fallback(msk);
1222 	mptcp_do_fallback(ssk);
1223 }
1224 
1225 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1226 
1227 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1228 			      struct mptcp_data_frag *dfrag,
1229 			      struct mptcp_sendmsg_info *info)
1230 {
1231 	u64 data_seq = dfrag->data_seq + info->sent;
1232 	int offset = dfrag->offset + info->sent;
1233 	struct mptcp_sock *msk = mptcp_sk(sk);
1234 	bool zero_window_probe = false;
1235 	struct mptcp_ext *mpext = NULL;
1236 	bool can_coalesce = false;
1237 	bool reuse_skb = true;
1238 	struct sk_buff *skb;
1239 	size_t copy;
1240 	int i;
1241 
1242 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1243 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1244 
1245 	if (WARN_ON_ONCE(info->sent > info->limit ||
1246 			 info->limit > dfrag->data_len))
1247 		return 0;
1248 
1249 	if (unlikely(!__tcp_can_send(ssk)))
1250 		return -EAGAIN;
1251 
1252 	/* compute send limit */
1253 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1254 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1255 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1256 	copy = info->size_goal;
1257 
1258 	skb = tcp_write_queue_tail(ssk);
1259 	if (skb && copy > skb->len) {
1260 		/* Limit the write to the size available in the
1261 		 * current skb, if any, so that we create at most a new skb.
1262 		 * Explicitly tells TCP internals to avoid collapsing on later
1263 		 * queue management operation, to avoid breaking the ext <->
1264 		 * SSN association set here
1265 		 */
1266 		mpext = mptcp_get_ext(skb);
1267 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1268 			TCP_SKB_CB(skb)->eor = 1;
1269 			tcp_mark_push(tcp_sk(ssk), skb);
1270 			goto alloc_skb;
1271 		}
1272 
1273 		i = skb_shinfo(skb)->nr_frags;
1274 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1275 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1276 			tcp_mark_push(tcp_sk(ssk), skb);
1277 			goto alloc_skb;
1278 		}
1279 
1280 		copy -= skb->len;
1281 	} else {
1282 alloc_skb:
1283 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1284 		if (!skb)
1285 			return -ENOMEM;
1286 
1287 		i = skb_shinfo(skb)->nr_frags;
1288 		reuse_skb = false;
1289 		mpext = mptcp_get_ext(skb);
1290 	}
1291 
1292 	/* Zero window and all data acked? Probe. */
1293 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1294 	if (copy == 0) {
1295 		u64 snd_una = READ_ONCE(msk->snd_una);
1296 
1297 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1298 			tcp_remove_empty_skb(ssk);
1299 			return 0;
1300 		}
1301 
1302 		zero_window_probe = true;
1303 		data_seq = snd_una - 1;
1304 		copy = 1;
1305 	}
1306 
1307 	copy = min_t(size_t, copy, info->limit - info->sent);
1308 	if (!sk_wmem_schedule(ssk, copy)) {
1309 		tcp_remove_empty_skb(ssk);
1310 		return -ENOMEM;
1311 	}
1312 
1313 	if (can_coalesce) {
1314 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1315 	} else {
1316 		get_page(dfrag->page);
1317 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1318 	}
1319 
1320 	skb->len += copy;
1321 	skb->data_len += copy;
1322 	skb->truesize += copy;
1323 	sk_wmem_queued_add(ssk, copy);
1324 	sk_mem_charge(ssk, copy);
1325 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1326 	TCP_SKB_CB(skb)->end_seq += copy;
1327 	tcp_skb_pcount_set(skb, 0);
1328 
1329 	/* on skb reuse we just need to update the DSS len */
1330 	if (reuse_skb) {
1331 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1332 		mpext->data_len += copy;
1333 		goto out;
1334 	}
1335 
1336 	memset(mpext, 0, sizeof(*mpext));
1337 	mpext->data_seq = data_seq;
1338 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1339 	mpext->data_len = copy;
1340 	mpext->use_map = 1;
1341 	mpext->dsn64 = 1;
1342 
1343 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1344 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1345 		 mpext->dsn64);
1346 
1347 	if (zero_window_probe) {
1348 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1349 		mpext->frozen = 1;
1350 		if (READ_ONCE(msk->csum_enabled))
1351 			mptcp_update_data_checksum(skb, copy);
1352 		tcp_push_pending_frames(ssk);
1353 		return 0;
1354 	}
1355 out:
1356 	if (READ_ONCE(msk->csum_enabled))
1357 		mptcp_update_data_checksum(skb, copy);
1358 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1359 		mptcp_update_infinite_map(msk, ssk, mpext);
1360 	trace_mptcp_sendmsg_frag(mpext);
1361 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1362 	return copy;
1363 }
1364 
1365 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1366 					 sizeof(struct tcphdr) - \
1367 					 MAX_TCP_OPTION_SPACE - \
1368 					 sizeof(struct ipv6hdr) - \
1369 					 sizeof(struct frag_hdr))
1370 
1371 struct subflow_send_info {
1372 	struct sock *ssk;
1373 	u64 linger_time;
1374 };
1375 
1376 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1377 {
1378 	if (!subflow->stale)
1379 		return;
1380 
1381 	subflow->stale = 0;
1382 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1383 }
1384 
1385 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1386 {
1387 	if (unlikely(subflow->stale)) {
1388 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1389 
1390 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1391 			return false;
1392 
1393 		mptcp_subflow_set_active(subflow);
1394 	}
1395 	return __mptcp_subflow_active(subflow);
1396 }
1397 
1398 #define SSK_MODE_ACTIVE	0
1399 #define SSK_MODE_BACKUP	1
1400 #define SSK_MODE_MAX	2
1401 
1402 /* implement the mptcp packet scheduler;
1403  * returns the subflow that will transmit the next DSS
1404  * additionally updates the rtx timeout
1405  */
1406 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1407 {
1408 	struct subflow_send_info send_info[SSK_MODE_MAX];
1409 	struct mptcp_subflow_context *subflow;
1410 	struct sock *sk = (struct sock *)msk;
1411 	u32 pace, burst, wmem;
1412 	int i, nr_active = 0;
1413 	struct sock *ssk;
1414 	u64 linger_time;
1415 	long tout = 0;
1416 
1417 	/* pick the subflow with the lower wmem/wspace ratio */
1418 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1419 		send_info[i].ssk = NULL;
1420 		send_info[i].linger_time = -1;
1421 	}
1422 
1423 	mptcp_for_each_subflow(msk, subflow) {
1424 		trace_mptcp_subflow_get_send(subflow);
1425 		ssk =  mptcp_subflow_tcp_sock(subflow);
1426 		if (!mptcp_subflow_active(subflow))
1427 			continue;
1428 
1429 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1430 		nr_active += !subflow->backup;
1431 		pace = subflow->avg_pacing_rate;
1432 		if (unlikely(!pace)) {
1433 			/* init pacing rate from socket */
1434 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1435 			pace = subflow->avg_pacing_rate;
1436 			if (!pace)
1437 				continue;
1438 		}
1439 
1440 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1441 		if (linger_time < send_info[subflow->backup].linger_time) {
1442 			send_info[subflow->backup].ssk = ssk;
1443 			send_info[subflow->backup].linger_time = linger_time;
1444 		}
1445 	}
1446 	__mptcp_set_timeout(sk, tout);
1447 
1448 	/* pick the best backup if no other subflow is active */
1449 	if (!nr_active)
1450 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1451 
1452 	/* According to the blest algorithm, to avoid HoL blocking for the
1453 	 * faster flow, we need to:
1454 	 * - estimate the faster flow linger time
1455 	 * - use the above to estimate the amount of byte transferred
1456 	 *   by the faster flow
1457 	 * - check that the amount of queued data is greter than the above,
1458 	 *   otherwise do not use the picked, slower, subflow
1459 	 * We select the subflow with the shorter estimated time to flush
1460 	 * the queued mem, which basically ensure the above. We just need
1461 	 * to check that subflow has a non empty cwin.
1462 	 */
1463 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1464 	if (!ssk || !sk_stream_memory_free(ssk))
1465 		return NULL;
1466 
1467 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1468 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1469 	if (!burst)
1470 		return ssk;
1471 
1472 	subflow = mptcp_subflow_ctx(ssk);
1473 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1474 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1475 					   burst + wmem);
1476 	msk->snd_burst = burst;
1477 	return ssk;
1478 }
1479 
1480 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1481 {
1482 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1483 	release_sock(ssk);
1484 }
1485 
1486 static void mptcp_update_post_push(struct mptcp_sock *msk,
1487 				   struct mptcp_data_frag *dfrag,
1488 				   u32 sent)
1489 {
1490 	u64 snd_nxt_new = dfrag->data_seq;
1491 
1492 	dfrag->already_sent += sent;
1493 
1494 	msk->snd_burst -= sent;
1495 
1496 	snd_nxt_new += dfrag->already_sent;
1497 
1498 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1499 	 * is recovering after a failover. In that event, this re-sends
1500 	 * old segments.
1501 	 *
1502 	 * Thus compute snd_nxt_new candidate based on
1503 	 * the dfrag->data_seq that was sent and the data
1504 	 * that has been handed to the subflow for transmission
1505 	 * and skip update in case it was old dfrag.
1506 	 */
1507 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1508 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1509 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1510 	}
1511 }
1512 
1513 void mptcp_check_and_set_pending(struct sock *sk)
1514 {
1515 	if (mptcp_send_head(sk)) {
1516 		mptcp_data_lock(sk);
1517 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1518 		mptcp_data_unlock(sk);
1519 	}
1520 }
1521 
1522 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1523 				  struct mptcp_sendmsg_info *info)
1524 {
1525 	struct mptcp_sock *msk = mptcp_sk(sk);
1526 	struct mptcp_data_frag *dfrag;
1527 	int len, copied = 0, err = 0;
1528 
1529 	while ((dfrag = mptcp_send_head(sk))) {
1530 		info->sent = dfrag->already_sent;
1531 		info->limit = dfrag->data_len;
1532 		len = dfrag->data_len - dfrag->already_sent;
1533 		while (len > 0) {
1534 			int ret = 0;
1535 
1536 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1537 			if (ret <= 0) {
1538 				err = copied ? : ret;
1539 				goto out;
1540 			}
1541 
1542 			info->sent += ret;
1543 			copied += ret;
1544 			len -= ret;
1545 
1546 			mptcp_update_post_push(msk, dfrag, ret);
1547 		}
1548 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1549 
1550 		if (msk->snd_burst <= 0 ||
1551 		    !sk_stream_memory_free(ssk) ||
1552 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1553 			err = copied;
1554 			goto out;
1555 		}
1556 		mptcp_set_timeout(sk);
1557 	}
1558 	err = copied;
1559 
1560 out:
1561 	if (err > 0)
1562 		msk->last_data_sent = tcp_jiffies32;
1563 	return err;
1564 }
1565 
1566 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1567 {
1568 	struct sock *prev_ssk = NULL, *ssk = NULL;
1569 	struct mptcp_sock *msk = mptcp_sk(sk);
1570 	struct mptcp_sendmsg_info info = {
1571 				.flags = flags,
1572 	};
1573 	bool do_check_data_fin = false;
1574 	int push_count = 1;
1575 
1576 	while (mptcp_send_head(sk) && (push_count > 0)) {
1577 		struct mptcp_subflow_context *subflow;
1578 		int ret = 0;
1579 
1580 		if (mptcp_sched_get_send(msk))
1581 			break;
1582 
1583 		push_count = 0;
1584 
1585 		mptcp_for_each_subflow(msk, subflow) {
1586 			if (READ_ONCE(subflow->scheduled)) {
1587 				mptcp_subflow_set_scheduled(subflow, false);
1588 
1589 				prev_ssk = ssk;
1590 				ssk = mptcp_subflow_tcp_sock(subflow);
1591 				if (ssk != prev_ssk) {
1592 					/* First check. If the ssk has changed since
1593 					 * the last round, release prev_ssk
1594 					 */
1595 					if (prev_ssk)
1596 						mptcp_push_release(prev_ssk, &info);
1597 
1598 					/* Need to lock the new subflow only if different
1599 					 * from the previous one, otherwise we are still
1600 					 * helding the relevant lock
1601 					 */
1602 					lock_sock(ssk);
1603 				}
1604 
1605 				push_count++;
1606 
1607 				ret = __subflow_push_pending(sk, ssk, &info);
1608 				if (ret <= 0) {
1609 					if (ret != -EAGAIN ||
1610 					    (1 << ssk->sk_state) &
1611 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1612 						push_count--;
1613 					continue;
1614 				}
1615 				do_check_data_fin = true;
1616 			}
1617 		}
1618 	}
1619 
1620 	/* at this point we held the socket lock for the last subflow we used */
1621 	if (ssk)
1622 		mptcp_push_release(ssk, &info);
1623 
1624 	/* ensure the rtx timer is running */
1625 	if (!mptcp_rtx_timer_pending(sk))
1626 		mptcp_reset_rtx_timer(sk);
1627 	if (do_check_data_fin)
1628 		mptcp_check_send_data_fin(sk);
1629 }
1630 
1631 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1632 {
1633 	struct mptcp_sock *msk = mptcp_sk(sk);
1634 	struct mptcp_sendmsg_info info = {
1635 		.data_lock_held = true,
1636 	};
1637 	bool keep_pushing = true;
1638 	struct sock *xmit_ssk;
1639 	int copied = 0;
1640 
1641 	info.flags = 0;
1642 	while (mptcp_send_head(sk) && keep_pushing) {
1643 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1644 		int ret = 0;
1645 
1646 		/* check for a different subflow usage only after
1647 		 * spooling the first chunk of data
1648 		 */
1649 		if (first) {
1650 			mptcp_subflow_set_scheduled(subflow, false);
1651 			ret = __subflow_push_pending(sk, ssk, &info);
1652 			first = false;
1653 			if (ret <= 0)
1654 				break;
1655 			copied += ret;
1656 			continue;
1657 		}
1658 
1659 		if (mptcp_sched_get_send(msk))
1660 			goto out;
1661 
1662 		if (READ_ONCE(subflow->scheduled)) {
1663 			mptcp_subflow_set_scheduled(subflow, false);
1664 			ret = __subflow_push_pending(sk, ssk, &info);
1665 			if (ret <= 0)
1666 				keep_pushing = false;
1667 			copied += ret;
1668 		}
1669 
1670 		mptcp_for_each_subflow(msk, subflow) {
1671 			if (READ_ONCE(subflow->scheduled)) {
1672 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1673 				if (xmit_ssk != ssk) {
1674 					mptcp_subflow_delegate(subflow,
1675 							       MPTCP_DELEGATE_SEND);
1676 					keep_pushing = false;
1677 				}
1678 			}
1679 		}
1680 	}
1681 
1682 out:
1683 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1684 	 * not going to flush it via release_sock()
1685 	 */
1686 	if (copied) {
1687 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1688 			 info.size_goal);
1689 		if (!mptcp_rtx_timer_pending(sk))
1690 			mptcp_reset_rtx_timer(sk);
1691 
1692 		if (msk->snd_data_fin_enable &&
1693 		    msk->snd_nxt + 1 == msk->write_seq)
1694 			mptcp_schedule_work(sk);
1695 	}
1696 }
1697 
1698 static int mptcp_disconnect(struct sock *sk, int flags);
1699 
1700 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1701 				  size_t len, int *copied_syn)
1702 {
1703 	unsigned int saved_flags = msg->msg_flags;
1704 	struct mptcp_sock *msk = mptcp_sk(sk);
1705 	struct sock *ssk;
1706 	int ret;
1707 
1708 	/* on flags based fastopen the mptcp is supposed to create the
1709 	 * first subflow right now. Otherwise we are in the defer_connect
1710 	 * path, and the first subflow must be already present.
1711 	 * Since the defer_connect flag is cleared after the first succsful
1712 	 * fastopen attempt, no need to check for additional subflow status.
1713 	 */
1714 	if (msg->msg_flags & MSG_FASTOPEN) {
1715 		ssk = __mptcp_nmpc_sk(msk);
1716 		if (IS_ERR(ssk))
1717 			return PTR_ERR(ssk);
1718 	}
1719 	if (!msk->first)
1720 		return -EINVAL;
1721 
1722 	ssk = msk->first;
1723 
1724 	lock_sock(ssk);
1725 	msg->msg_flags |= MSG_DONTWAIT;
1726 	msk->fastopening = 1;
1727 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1728 	msk->fastopening = 0;
1729 	msg->msg_flags = saved_flags;
1730 	release_sock(ssk);
1731 
1732 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1733 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1734 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1735 					    msg->msg_namelen, msg->msg_flags, 1);
1736 
1737 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1738 		 * case of any error, except timeout or signal
1739 		 */
1740 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1741 			*copied_syn = 0;
1742 	} else if (ret && ret != -EINPROGRESS) {
1743 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1744 		 * __inet_stream_connect() can fail, due to looking check,
1745 		 * see mptcp_disconnect().
1746 		 * Attempt it again outside the problematic scope.
1747 		 */
1748 		if (!mptcp_disconnect(sk, 0))
1749 			sk->sk_socket->state = SS_UNCONNECTED;
1750 	}
1751 	inet_clear_bit(DEFER_CONNECT, sk);
1752 
1753 	return ret;
1754 }
1755 
1756 static int do_copy_data_nocache(struct sock *sk, int copy,
1757 				struct iov_iter *from, char *to)
1758 {
1759 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1760 		if (!copy_from_iter_full_nocache(to, copy, from))
1761 			return -EFAULT;
1762 	} else if (!copy_from_iter_full(to, copy, from)) {
1763 		return -EFAULT;
1764 	}
1765 	return 0;
1766 }
1767 
1768 /* open-code sk_stream_memory_free() plus sent limit computation to
1769  * avoid indirect calls in fast-path.
1770  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1771  * annotations.
1772  */
1773 static u32 mptcp_send_limit(const struct sock *sk)
1774 {
1775 	const struct mptcp_sock *msk = mptcp_sk(sk);
1776 	u32 limit, not_sent;
1777 
1778 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1779 		return 0;
1780 
1781 	limit = mptcp_notsent_lowat(sk);
1782 	if (limit == UINT_MAX)
1783 		return UINT_MAX;
1784 
1785 	not_sent = msk->write_seq - msk->snd_nxt;
1786 	if (not_sent >= limit)
1787 		return 0;
1788 
1789 	return limit - not_sent;
1790 }
1791 
1792 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1793 {
1794 	struct mptcp_sock *msk = mptcp_sk(sk);
1795 	struct page_frag *pfrag;
1796 	size_t copied = 0;
1797 	int ret = 0;
1798 	long timeo;
1799 
1800 	/* silently ignore everything else */
1801 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1802 
1803 	lock_sock(sk);
1804 
1805 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1806 		     msg->msg_flags & MSG_FASTOPEN)) {
1807 		int copied_syn = 0;
1808 
1809 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1810 		copied += copied_syn;
1811 		if (ret == -EINPROGRESS && copied_syn > 0)
1812 			goto out;
1813 		else if (ret)
1814 			goto do_error;
1815 	}
1816 
1817 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1818 
1819 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1820 		ret = sk_stream_wait_connect(sk, &timeo);
1821 		if (ret)
1822 			goto do_error;
1823 	}
1824 
1825 	ret = -EPIPE;
1826 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1827 		goto do_error;
1828 
1829 	pfrag = sk_page_frag(sk);
1830 
1831 	while (msg_data_left(msg)) {
1832 		int total_ts, frag_truesize = 0;
1833 		struct mptcp_data_frag *dfrag;
1834 		bool dfrag_collapsed;
1835 		size_t psize, offset;
1836 		u32 copy_limit;
1837 
1838 		/* ensure fitting the notsent_lowat() constraint */
1839 		copy_limit = mptcp_send_limit(sk);
1840 		if (!copy_limit)
1841 			goto wait_for_memory;
1842 
1843 		/* reuse tail pfrag, if possible, or carve a new one from the
1844 		 * page allocator
1845 		 */
1846 		dfrag = mptcp_pending_tail(sk);
1847 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1848 		if (!dfrag_collapsed) {
1849 			if (!mptcp_page_frag_refill(sk, pfrag))
1850 				goto wait_for_memory;
1851 
1852 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1853 			frag_truesize = dfrag->overhead;
1854 		}
1855 
1856 		/* we do not bound vs wspace, to allow a single packet.
1857 		 * memory accounting will prevent execessive memory usage
1858 		 * anyway
1859 		 */
1860 		offset = dfrag->offset + dfrag->data_len;
1861 		psize = pfrag->size - offset;
1862 		psize = min_t(size_t, psize, msg_data_left(msg));
1863 		psize = min_t(size_t, psize, copy_limit);
1864 		total_ts = psize + frag_truesize;
1865 
1866 		if (!sk_wmem_schedule(sk, total_ts))
1867 			goto wait_for_memory;
1868 
1869 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1870 					   page_address(dfrag->page) + offset);
1871 		if (ret)
1872 			goto do_error;
1873 
1874 		/* data successfully copied into the write queue */
1875 		sk_forward_alloc_add(sk, -total_ts);
1876 		copied += psize;
1877 		dfrag->data_len += psize;
1878 		frag_truesize += psize;
1879 		pfrag->offset += frag_truesize;
1880 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1881 
1882 		/* charge data on mptcp pending queue to the msk socket
1883 		 * Note: we charge such data both to sk and ssk
1884 		 */
1885 		sk_wmem_queued_add(sk, frag_truesize);
1886 		if (!dfrag_collapsed) {
1887 			get_page(dfrag->page);
1888 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1889 			if (!msk->first_pending)
1890 				WRITE_ONCE(msk->first_pending, dfrag);
1891 		}
1892 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1893 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1894 			 !dfrag_collapsed);
1895 
1896 		continue;
1897 
1898 wait_for_memory:
1899 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1900 		__mptcp_push_pending(sk, msg->msg_flags);
1901 		ret = sk_stream_wait_memory(sk, &timeo);
1902 		if (ret)
1903 			goto do_error;
1904 	}
1905 
1906 	if (copied)
1907 		__mptcp_push_pending(sk, msg->msg_flags);
1908 
1909 out:
1910 	release_sock(sk);
1911 	return copied;
1912 
1913 do_error:
1914 	if (copied)
1915 		goto out;
1916 
1917 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1918 	goto out;
1919 }
1920 
1921 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1922 				struct msghdr *msg,
1923 				size_t len, int flags,
1924 				struct scm_timestamping_internal *tss,
1925 				int *cmsg_flags)
1926 {
1927 	struct sk_buff *skb, *tmp;
1928 	int copied = 0;
1929 
1930 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1931 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1932 		u32 data_len = skb->len - offset;
1933 		u32 count = min_t(size_t, len - copied, data_len);
1934 		int err;
1935 
1936 		if (!(flags & MSG_TRUNC)) {
1937 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1938 			if (unlikely(err < 0)) {
1939 				if (!copied)
1940 					return err;
1941 				break;
1942 			}
1943 		}
1944 
1945 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1946 			tcp_update_recv_tstamps(skb, tss);
1947 			*cmsg_flags |= MPTCP_CMSG_TS;
1948 		}
1949 
1950 		copied += count;
1951 
1952 		if (count < data_len) {
1953 			if (!(flags & MSG_PEEK)) {
1954 				MPTCP_SKB_CB(skb)->offset += count;
1955 				MPTCP_SKB_CB(skb)->map_seq += count;
1956 				msk->bytes_consumed += count;
1957 			}
1958 			break;
1959 		}
1960 
1961 		if (!(flags & MSG_PEEK)) {
1962 			/* we will bulk release the skb memory later */
1963 			skb->destructor = NULL;
1964 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1965 			__skb_unlink(skb, &msk->receive_queue);
1966 			__kfree_skb(skb);
1967 			msk->bytes_consumed += count;
1968 		}
1969 
1970 		if (copied >= len)
1971 			break;
1972 	}
1973 
1974 	return copied;
1975 }
1976 
1977 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1978  *
1979  * Only difference: Use highest rtt estimate of the subflows in use.
1980  */
1981 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1982 {
1983 	struct mptcp_subflow_context *subflow;
1984 	struct sock *sk = (struct sock *)msk;
1985 	u8 scaling_ratio = U8_MAX;
1986 	u32 time, advmss = 1;
1987 	u64 rtt_us, mstamp;
1988 
1989 	msk_owned_by_me(msk);
1990 
1991 	if (copied <= 0)
1992 		return;
1993 
1994 	if (!msk->rcvspace_init)
1995 		mptcp_rcv_space_init(msk, msk->first);
1996 
1997 	msk->rcvq_space.copied += copied;
1998 
1999 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2000 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2001 
2002 	rtt_us = msk->rcvq_space.rtt_us;
2003 	if (rtt_us && time < (rtt_us >> 3))
2004 		return;
2005 
2006 	rtt_us = 0;
2007 	mptcp_for_each_subflow(msk, subflow) {
2008 		const struct tcp_sock *tp;
2009 		u64 sf_rtt_us;
2010 		u32 sf_advmss;
2011 
2012 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2013 
2014 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2015 		sf_advmss = READ_ONCE(tp->advmss);
2016 
2017 		rtt_us = max(sf_rtt_us, rtt_us);
2018 		advmss = max(sf_advmss, advmss);
2019 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2020 	}
2021 
2022 	msk->rcvq_space.rtt_us = rtt_us;
2023 	msk->scaling_ratio = scaling_ratio;
2024 	if (time < (rtt_us >> 3) || rtt_us == 0)
2025 		return;
2026 
2027 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2028 		goto new_measure;
2029 
2030 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2031 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2032 		u64 rcvwin, grow;
2033 		int rcvbuf;
2034 
2035 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2036 
2037 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2038 
2039 		do_div(grow, msk->rcvq_space.space);
2040 		rcvwin += (grow << 1);
2041 
2042 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2043 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2044 
2045 		if (rcvbuf > sk->sk_rcvbuf) {
2046 			u32 window_clamp;
2047 
2048 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2049 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2050 
2051 			/* Make subflows follow along.  If we do not do this, we
2052 			 * get drops at subflow level if skbs can't be moved to
2053 			 * the mptcp rx queue fast enough (announced rcv_win can
2054 			 * exceed ssk->sk_rcvbuf).
2055 			 */
2056 			mptcp_for_each_subflow(msk, subflow) {
2057 				struct sock *ssk;
2058 				bool slow;
2059 
2060 				ssk = mptcp_subflow_tcp_sock(subflow);
2061 				slow = lock_sock_fast(ssk);
2062 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2063 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2064 				tcp_cleanup_rbuf(ssk, 1);
2065 				unlock_sock_fast(ssk, slow);
2066 			}
2067 		}
2068 	}
2069 
2070 	msk->rcvq_space.space = msk->rcvq_space.copied;
2071 new_measure:
2072 	msk->rcvq_space.copied = 0;
2073 	msk->rcvq_space.time = mstamp;
2074 }
2075 
2076 static void __mptcp_update_rmem(struct sock *sk)
2077 {
2078 	struct mptcp_sock *msk = mptcp_sk(sk);
2079 
2080 	if (!msk->rmem_released)
2081 		return;
2082 
2083 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2084 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2085 	WRITE_ONCE(msk->rmem_released, 0);
2086 }
2087 
2088 static void __mptcp_splice_receive_queue(struct sock *sk)
2089 {
2090 	struct mptcp_sock *msk = mptcp_sk(sk);
2091 
2092 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2093 }
2094 
2095 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2096 {
2097 	struct sock *sk = (struct sock *)msk;
2098 	unsigned int moved = 0;
2099 	bool ret, done;
2100 
2101 	do {
2102 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2103 		bool slowpath;
2104 
2105 		/* we can have data pending in the subflows only if the msk
2106 		 * receive buffer was full at subflow_data_ready() time,
2107 		 * that is an unlikely slow path.
2108 		 */
2109 		if (likely(!ssk))
2110 			break;
2111 
2112 		slowpath = lock_sock_fast(ssk);
2113 		mptcp_data_lock(sk);
2114 		__mptcp_update_rmem(sk);
2115 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2116 		mptcp_data_unlock(sk);
2117 
2118 		if (unlikely(ssk->sk_err))
2119 			__mptcp_error_report(sk);
2120 		unlock_sock_fast(ssk, slowpath);
2121 	} while (!done);
2122 
2123 	/* acquire the data lock only if some input data is pending */
2124 	ret = moved > 0;
2125 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2126 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2127 		mptcp_data_lock(sk);
2128 		__mptcp_update_rmem(sk);
2129 		ret |= __mptcp_ofo_queue(msk);
2130 		__mptcp_splice_receive_queue(sk);
2131 		mptcp_data_unlock(sk);
2132 	}
2133 	if (ret)
2134 		mptcp_check_data_fin((struct sock *)msk);
2135 	return !skb_queue_empty(&msk->receive_queue);
2136 }
2137 
2138 static unsigned int mptcp_inq_hint(const struct sock *sk)
2139 {
2140 	const struct mptcp_sock *msk = mptcp_sk(sk);
2141 	const struct sk_buff *skb;
2142 
2143 	skb = skb_peek(&msk->receive_queue);
2144 	if (skb) {
2145 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2146 
2147 		if (hint_val >= INT_MAX)
2148 			return INT_MAX;
2149 
2150 		return (unsigned int)hint_val;
2151 	}
2152 
2153 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2154 		return 1;
2155 
2156 	return 0;
2157 }
2158 
2159 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2160 			 int flags, int *addr_len)
2161 {
2162 	struct mptcp_sock *msk = mptcp_sk(sk);
2163 	struct scm_timestamping_internal tss;
2164 	int copied = 0, cmsg_flags = 0;
2165 	int target;
2166 	long timeo;
2167 
2168 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2169 	if (unlikely(flags & MSG_ERRQUEUE))
2170 		return inet_recv_error(sk, msg, len, addr_len);
2171 
2172 	lock_sock(sk);
2173 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2174 		copied = -ENOTCONN;
2175 		goto out_err;
2176 	}
2177 
2178 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2179 
2180 	len = min_t(size_t, len, INT_MAX);
2181 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2182 
2183 	if (unlikely(msk->recvmsg_inq))
2184 		cmsg_flags = MPTCP_CMSG_INQ;
2185 
2186 	while (copied < len) {
2187 		int bytes_read;
2188 
2189 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2190 		if (unlikely(bytes_read < 0)) {
2191 			if (!copied)
2192 				copied = bytes_read;
2193 			goto out_err;
2194 		}
2195 
2196 		copied += bytes_read;
2197 
2198 		/* be sure to advertise window change */
2199 		mptcp_cleanup_rbuf(msk);
2200 
2201 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2202 			continue;
2203 
2204 		/* only the master socket status is relevant here. The exit
2205 		 * conditions mirror closely tcp_recvmsg()
2206 		 */
2207 		if (copied >= target)
2208 			break;
2209 
2210 		if (copied) {
2211 			if (sk->sk_err ||
2212 			    sk->sk_state == TCP_CLOSE ||
2213 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2214 			    !timeo ||
2215 			    signal_pending(current))
2216 				break;
2217 		} else {
2218 			if (sk->sk_err) {
2219 				copied = sock_error(sk);
2220 				break;
2221 			}
2222 
2223 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2224 				/* race breaker: the shutdown could be after the
2225 				 * previous receive queue check
2226 				 */
2227 				if (__mptcp_move_skbs(msk))
2228 					continue;
2229 				break;
2230 			}
2231 
2232 			if (sk->sk_state == TCP_CLOSE) {
2233 				copied = -ENOTCONN;
2234 				break;
2235 			}
2236 
2237 			if (!timeo) {
2238 				copied = -EAGAIN;
2239 				break;
2240 			}
2241 
2242 			if (signal_pending(current)) {
2243 				copied = sock_intr_errno(timeo);
2244 				break;
2245 			}
2246 		}
2247 
2248 		pr_debug("block timeout %ld", timeo);
2249 		sk_wait_data(sk, &timeo, NULL);
2250 	}
2251 
2252 out_err:
2253 	if (cmsg_flags && copied >= 0) {
2254 		if (cmsg_flags & MPTCP_CMSG_TS)
2255 			tcp_recv_timestamp(msg, sk, &tss);
2256 
2257 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2258 			unsigned int inq = mptcp_inq_hint(sk);
2259 
2260 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2261 		}
2262 	}
2263 
2264 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2265 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2266 		 skb_queue_empty(&msk->receive_queue), copied);
2267 	if (!(flags & MSG_PEEK))
2268 		mptcp_rcv_space_adjust(msk, copied);
2269 
2270 	release_sock(sk);
2271 	return copied;
2272 }
2273 
2274 static void mptcp_retransmit_timer(struct timer_list *t)
2275 {
2276 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2277 						       icsk_retransmit_timer);
2278 	struct sock *sk = &icsk->icsk_inet.sk;
2279 	struct mptcp_sock *msk = mptcp_sk(sk);
2280 
2281 	bh_lock_sock(sk);
2282 	if (!sock_owned_by_user(sk)) {
2283 		/* we need a process context to retransmit */
2284 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2285 			mptcp_schedule_work(sk);
2286 	} else {
2287 		/* delegate our work to tcp_release_cb() */
2288 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2289 	}
2290 	bh_unlock_sock(sk);
2291 	sock_put(sk);
2292 }
2293 
2294 static void mptcp_tout_timer(struct timer_list *t)
2295 {
2296 	struct sock *sk = from_timer(sk, t, sk_timer);
2297 
2298 	mptcp_schedule_work(sk);
2299 	sock_put(sk);
2300 }
2301 
2302 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2303  * level.
2304  *
2305  * A backup subflow is returned only if that is the only kind available.
2306  */
2307 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2308 {
2309 	struct sock *backup = NULL, *pick = NULL;
2310 	struct mptcp_subflow_context *subflow;
2311 	int min_stale_count = INT_MAX;
2312 
2313 	mptcp_for_each_subflow(msk, subflow) {
2314 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2315 
2316 		if (!__mptcp_subflow_active(subflow))
2317 			continue;
2318 
2319 		/* still data outstanding at TCP level? skip this */
2320 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2321 			mptcp_pm_subflow_chk_stale(msk, ssk);
2322 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2323 			continue;
2324 		}
2325 
2326 		if (subflow->backup) {
2327 			if (!backup)
2328 				backup = ssk;
2329 			continue;
2330 		}
2331 
2332 		if (!pick)
2333 			pick = ssk;
2334 	}
2335 
2336 	if (pick)
2337 		return pick;
2338 
2339 	/* use backup only if there are no progresses anywhere */
2340 	return min_stale_count > 1 ? backup : NULL;
2341 }
2342 
2343 bool __mptcp_retransmit_pending_data(struct sock *sk)
2344 {
2345 	struct mptcp_data_frag *cur, *rtx_head;
2346 	struct mptcp_sock *msk = mptcp_sk(sk);
2347 
2348 	if (__mptcp_check_fallback(msk))
2349 		return false;
2350 
2351 	/* the closing socket has some data untransmitted and/or unacked:
2352 	 * some data in the mptcp rtx queue has not really xmitted yet.
2353 	 * keep it simple and re-inject the whole mptcp level rtx queue
2354 	 */
2355 	mptcp_data_lock(sk);
2356 	__mptcp_clean_una_wakeup(sk);
2357 	rtx_head = mptcp_rtx_head(sk);
2358 	if (!rtx_head) {
2359 		mptcp_data_unlock(sk);
2360 		return false;
2361 	}
2362 
2363 	msk->recovery_snd_nxt = msk->snd_nxt;
2364 	msk->recovery = true;
2365 	mptcp_data_unlock(sk);
2366 
2367 	msk->first_pending = rtx_head;
2368 	msk->snd_burst = 0;
2369 
2370 	/* be sure to clear the "sent status" on all re-injected fragments */
2371 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2372 		if (!cur->already_sent)
2373 			break;
2374 		cur->already_sent = 0;
2375 	}
2376 
2377 	return true;
2378 }
2379 
2380 /* flags for __mptcp_close_ssk() */
2381 #define MPTCP_CF_PUSH		BIT(1)
2382 #define MPTCP_CF_FASTCLOSE	BIT(2)
2383 
2384 /* be sure to send a reset only if the caller asked for it, also
2385  * clean completely the subflow status when the subflow reaches
2386  * TCP_CLOSE state
2387  */
2388 static void __mptcp_subflow_disconnect(struct sock *ssk,
2389 				       struct mptcp_subflow_context *subflow,
2390 				       unsigned int flags)
2391 {
2392 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2393 	    (flags & MPTCP_CF_FASTCLOSE)) {
2394 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2395 		 * disconnect should never fail
2396 		 */
2397 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2398 		mptcp_subflow_ctx_reset(subflow);
2399 	} else {
2400 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2401 	}
2402 }
2403 
2404 /* subflow sockets can be either outgoing (connect) or incoming
2405  * (accept).
2406  *
2407  * Outgoing subflows use in-kernel sockets.
2408  * Incoming subflows do not have their own 'struct socket' allocated,
2409  * so we need to use tcp_close() after detaching them from the mptcp
2410  * parent socket.
2411  */
2412 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2413 			      struct mptcp_subflow_context *subflow,
2414 			      unsigned int flags)
2415 {
2416 	struct mptcp_sock *msk = mptcp_sk(sk);
2417 	bool dispose_it, need_push = false;
2418 
2419 	/* If the first subflow moved to a close state before accept, e.g. due
2420 	 * to an incoming reset or listener shutdown, the subflow socket is
2421 	 * already deleted by inet_child_forget() and the mptcp socket can't
2422 	 * survive too.
2423 	 */
2424 	if (msk->in_accept_queue && msk->first == ssk &&
2425 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2426 		/* ensure later check in mptcp_worker() will dispose the msk */
2427 		sock_set_flag(sk, SOCK_DEAD);
2428 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2429 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2430 		mptcp_subflow_drop_ctx(ssk);
2431 		goto out_release;
2432 	}
2433 
2434 	dispose_it = msk->free_first || ssk != msk->first;
2435 	if (dispose_it)
2436 		list_del(&subflow->node);
2437 
2438 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2439 
2440 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2441 		/* be sure to force the tcp_close path
2442 		 * to generate the egress reset
2443 		 */
2444 		ssk->sk_lingertime = 0;
2445 		sock_set_flag(ssk, SOCK_LINGER);
2446 		subflow->send_fastclose = 1;
2447 	}
2448 
2449 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2450 	if (!dispose_it) {
2451 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2452 		release_sock(ssk);
2453 
2454 		goto out;
2455 	}
2456 
2457 	subflow->disposable = 1;
2458 
2459 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2460 	 * the ssk has been already destroyed, we just need to release the
2461 	 * reference owned by msk;
2462 	 */
2463 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2464 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2465 		kfree_rcu(subflow, rcu);
2466 	} else {
2467 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2468 		__tcp_close(ssk, 0);
2469 
2470 		/* close acquired an extra ref */
2471 		__sock_put(ssk);
2472 	}
2473 
2474 out_release:
2475 	__mptcp_subflow_error_report(sk, ssk);
2476 	release_sock(ssk);
2477 
2478 	sock_put(ssk);
2479 
2480 	if (ssk == msk->first)
2481 		WRITE_ONCE(msk->first, NULL);
2482 
2483 out:
2484 	__mptcp_sync_sndbuf(sk);
2485 	if (need_push)
2486 		__mptcp_push_pending(sk, 0);
2487 
2488 	/* Catch every 'all subflows closed' scenario, including peers silently
2489 	 * closing them, e.g. due to timeout.
2490 	 * For established sockets, allow an additional timeout before closing,
2491 	 * as the protocol can still create more subflows.
2492 	 */
2493 	if (list_is_singular(&msk->conn_list) && msk->first &&
2494 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2495 		if (sk->sk_state != TCP_ESTABLISHED ||
2496 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2497 			mptcp_set_state(sk, TCP_CLOSE);
2498 			mptcp_close_wake_up(sk);
2499 		} else {
2500 			mptcp_start_tout_timer(sk);
2501 		}
2502 	}
2503 }
2504 
2505 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2506 		     struct mptcp_subflow_context *subflow)
2507 {
2508 	if (sk->sk_state == TCP_ESTABLISHED)
2509 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2510 
2511 	/* subflow aborted before reaching the fully_established status
2512 	 * attempt the creation of the next subflow
2513 	 */
2514 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2515 
2516 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2517 }
2518 
2519 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2520 {
2521 	return 0;
2522 }
2523 
2524 static void __mptcp_close_subflow(struct sock *sk)
2525 {
2526 	struct mptcp_subflow_context *subflow, *tmp;
2527 	struct mptcp_sock *msk = mptcp_sk(sk);
2528 
2529 	might_sleep();
2530 
2531 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2532 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2533 
2534 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2535 			continue;
2536 
2537 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2538 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2539 			continue;
2540 
2541 		mptcp_close_ssk(sk, ssk, subflow);
2542 	}
2543 
2544 }
2545 
2546 static bool mptcp_close_tout_expired(const struct sock *sk)
2547 {
2548 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2549 	    sk->sk_state == TCP_CLOSE)
2550 		return false;
2551 
2552 	return time_after32(tcp_jiffies32,
2553 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2554 }
2555 
2556 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2557 {
2558 	struct mptcp_subflow_context *subflow, *tmp;
2559 	struct sock *sk = (struct sock *)msk;
2560 
2561 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2562 		return;
2563 
2564 	mptcp_token_destroy(msk);
2565 
2566 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2567 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2568 		bool slow;
2569 
2570 		slow = lock_sock_fast(tcp_sk);
2571 		if (tcp_sk->sk_state != TCP_CLOSE) {
2572 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2573 			tcp_set_state(tcp_sk, TCP_CLOSE);
2574 		}
2575 		unlock_sock_fast(tcp_sk, slow);
2576 	}
2577 
2578 	/* Mirror the tcp_reset() error propagation */
2579 	switch (sk->sk_state) {
2580 	case TCP_SYN_SENT:
2581 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2582 		break;
2583 	case TCP_CLOSE_WAIT:
2584 		WRITE_ONCE(sk->sk_err, EPIPE);
2585 		break;
2586 	case TCP_CLOSE:
2587 		return;
2588 	default:
2589 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2590 	}
2591 
2592 	mptcp_set_state(sk, TCP_CLOSE);
2593 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2594 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2595 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2596 
2597 	/* the calling mptcp_worker will properly destroy the socket */
2598 	if (sock_flag(sk, SOCK_DEAD))
2599 		return;
2600 
2601 	sk->sk_state_change(sk);
2602 	sk_error_report(sk);
2603 }
2604 
2605 static void __mptcp_retrans(struct sock *sk)
2606 {
2607 	struct mptcp_sock *msk = mptcp_sk(sk);
2608 	struct mptcp_subflow_context *subflow;
2609 	struct mptcp_sendmsg_info info = {};
2610 	struct mptcp_data_frag *dfrag;
2611 	struct sock *ssk;
2612 	int ret, err;
2613 	u16 len = 0;
2614 
2615 	mptcp_clean_una_wakeup(sk);
2616 
2617 	/* first check ssk: need to kick "stale" logic */
2618 	err = mptcp_sched_get_retrans(msk);
2619 	dfrag = mptcp_rtx_head(sk);
2620 	if (!dfrag) {
2621 		if (mptcp_data_fin_enabled(msk)) {
2622 			struct inet_connection_sock *icsk = inet_csk(sk);
2623 
2624 			icsk->icsk_retransmits++;
2625 			mptcp_set_datafin_timeout(sk);
2626 			mptcp_send_ack(msk);
2627 
2628 			goto reset_timer;
2629 		}
2630 
2631 		if (!mptcp_send_head(sk))
2632 			return;
2633 
2634 		goto reset_timer;
2635 	}
2636 
2637 	if (err)
2638 		goto reset_timer;
2639 
2640 	mptcp_for_each_subflow(msk, subflow) {
2641 		if (READ_ONCE(subflow->scheduled)) {
2642 			u16 copied = 0;
2643 
2644 			mptcp_subflow_set_scheduled(subflow, false);
2645 
2646 			ssk = mptcp_subflow_tcp_sock(subflow);
2647 
2648 			lock_sock(ssk);
2649 
2650 			/* limit retransmission to the bytes already sent on some subflows */
2651 			info.sent = 0;
2652 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2653 								    dfrag->already_sent;
2654 			while (info.sent < info.limit) {
2655 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2656 				if (ret <= 0)
2657 					break;
2658 
2659 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2660 				copied += ret;
2661 				info.sent += ret;
2662 			}
2663 			if (copied) {
2664 				len = max(copied, len);
2665 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2666 					 info.size_goal);
2667 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2668 			}
2669 
2670 			release_sock(ssk);
2671 		}
2672 	}
2673 
2674 	msk->bytes_retrans += len;
2675 	dfrag->already_sent = max(dfrag->already_sent, len);
2676 
2677 reset_timer:
2678 	mptcp_check_and_set_pending(sk);
2679 
2680 	if (!mptcp_rtx_timer_pending(sk))
2681 		mptcp_reset_rtx_timer(sk);
2682 }
2683 
2684 /* schedule the timeout timer for the relevant event: either close timeout
2685  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2686  */
2687 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2688 {
2689 	struct sock *sk = (struct sock *)msk;
2690 	unsigned long timeout, close_timeout;
2691 
2692 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2693 		return;
2694 
2695 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2696 			mptcp_close_timeout(sk);
2697 
2698 	/* the close timeout takes precedence on the fail one, and here at least one of
2699 	 * them is active
2700 	 */
2701 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2702 
2703 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2704 }
2705 
2706 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2707 {
2708 	struct sock *ssk = msk->first;
2709 	bool slow;
2710 
2711 	if (!ssk)
2712 		return;
2713 
2714 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2715 
2716 	slow = lock_sock_fast(ssk);
2717 	mptcp_subflow_reset(ssk);
2718 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2719 	unlock_sock_fast(ssk, slow);
2720 }
2721 
2722 static void mptcp_do_fastclose(struct sock *sk)
2723 {
2724 	struct mptcp_subflow_context *subflow, *tmp;
2725 	struct mptcp_sock *msk = mptcp_sk(sk);
2726 
2727 	mptcp_set_state(sk, TCP_CLOSE);
2728 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2729 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2730 				  subflow, MPTCP_CF_FASTCLOSE);
2731 }
2732 
2733 static void mptcp_worker(struct work_struct *work)
2734 {
2735 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2736 	struct sock *sk = (struct sock *)msk;
2737 	unsigned long fail_tout;
2738 	int state;
2739 
2740 	lock_sock(sk);
2741 	state = sk->sk_state;
2742 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2743 		goto unlock;
2744 
2745 	mptcp_check_fastclose(msk);
2746 
2747 	mptcp_pm_nl_work(msk);
2748 
2749 	mptcp_check_send_data_fin(sk);
2750 	mptcp_check_data_fin_ack(sk);
2751 	mptcp_check_data_fin(sk);
2752 
2753 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2754 		__mptcp_close_subflow(sk);
2755 
2756 	if (mptcp_close_tout_expired(sk)) {
2757 		mptcp_do_fastclose(sk);
2758 		mptcp_close_wake_up(sk);
2759 	}
2760 
2761 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2762 		__mptcp_destroy_sock(sk);
2763 		goto unlock;
2764 	}
2765 
2766 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2767 		__mptcp_retrans(sk);
2768 
2769 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2770 	if (fail_tout && time_after(jiffies, fail_tout))
2771 		mptcp_mp_fail_no_response(msk);
2772 
2773 unlock:
2774 	release_sock(sk);
2775 	sock_put(sk);
2776 }
2777 
2778 static void __mptcp_init_sock(struct sock *sk)
2779 {
2780 	struct mptcp_sock *msk = mptcp_sk(sk);
2781 
2782 	INIT_LIST_HEAD(&msk->conn_list);
2783 	INIT_LIST_HEAD(&msk->join_list);
2784 	INIT_LIST_HEAD(&msk->rtx_queue);
2785 	INIT_WORK(&msk->work, mptcp_worker);
2786 	__skb_queue_head_init(&msk->receive_queue);
2787 	msk->out_of_order_queue = RB_ROOT;
2788 	msk->first_pending = NULL;
2789 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
2790 	WRITE_ONCE(msk->rmem_released, 0);
2791 	msk->timer_ival = TCP_RTO_MIN;
2792 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2793 
2794 	WRITE_ONCE(msk->first, NULL);
2795 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2796 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2797 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2798 	msk->recovery = false;
2799 	msk->subflow_id = 1;
2800 	msk->last_data_sent = tcp_jiffies32;
2801 	msk->last_data_recv = tcp_jiffies32;
2802 	msk->last_ack_recv = tcp_jiffies32;
2803 
2804 	mptcp_pm_data_init(msk);
2805 
2806 	/* re-use the csk retrans timer for MPTCP-level retrans */
2807 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2808 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2809 }
2810 
2811 static void mptcp_ca_reset(struct sock *sk)
2812 {
2813 	struct inet_connection_sock *icsk = inet_csk(sk);
2814 
2815 	tcp_assign_congestion_control(sk);
2816 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2817 
2818 	/* no need to keep a reference to the ops, the name will suffice */
2819 	tcp_cleanup_congestion_control(sk);
2820 	icsk->icsk_ca_ops = NULL;
2821 }
2822 
2823 static int mptcp_init_sock(struct sock *sk)
2824 {
2825 	struct net *net = sock_net(sk);
2826 	int ret;
2827 
2828 	__mptcp_init_sock(sk);
2829 
2830 	if (!mptcp_is_enabled(net))
2831 		return -ENOPROTOOPT;
2832 
2833 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2834 		return -ENOMEM;
2835 
2836 	ret = mptcp_init_sched(mptcp_sk(sk),
2837 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2838 	if (ret)
2839 		return ret;
2840 
2841 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2842 
2843 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2844 	 * propagate the correct value
2845 	 */
2846 	mptcp_ca_reset(sk);
2847 
2848 	sk_sockets_allocated_inc(sk);
2849 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2850 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2851 
2852 	return 0;
2853 }
2854 
2855 static void __mptcp_clear_xmit(struct sock *sk)
2856 {
2857 	struct mptcp_sock *msk = mptcp_sk(sk);
2858 	struct mptcp_data_frag *dtmp, *dfrag;
2859 
2860 	WRITE_ONCE(msk->first_pending, NULL);
2861 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2862 		dfrag_clear(sk, dfrag);
2863 }
2864 
2865 void mptcp_cancel_work(struct sock *sk)
2866 {
2867 	struct mptcp_sock *msk = mptcp_sk(sk);
2868 
2869 	if (cancel_work_sync(&msk->work))
2870 		__sock_put(sk);
2871 }
2872 
2873 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2874 {
2875 	lock_sock(ssk);
2876 
2877 	switch (ssk->sk_state) {
2878 	case TCP_LISTEN:
2879 		if (!(how & RCV_SHUTDOWN))
2880 			break;
2881 		fallthrough;
2882 	case TCP_SYN_SENT:
2883 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2884 		break;
2885 	default:
2886 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2887 			pr_debug("Fallback");
2888 			ssk->sk_shutdown |= how;
2889 			tcp_shutdown(ssk, how);
2890 
2891 			/* simulate the data_fin ack reception to let the state
2892 			 * machine move forward
2893 			 */
2894 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2895 			mptcp_schedule_work(sk);
2896 		} else {
2897 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2898 			tcp_send_ack(ssk);
2899 			if (!mptcp_rtx_timer_pending(sk))
2900 				mptcp_reset_rtx_timer(sk);
2901 		}
2902 		break;
2903 	}
2904 
2905 	release_sock(ssk);
2906 }
2907 
2908 void mptcp_set_state(struct sock *sk, int state)
2909 {
2910 	int oldstate = sk->sk_state;
2911 
2912 	switch (state) {
2913 	case TCP_ESTABLISHED:
2914 		if (oldstate != TCP_ESTABLISHED)
2915 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2916 		break;
2917 
2918 	default:
2919 		if (oldstate == TCP_ESTABLISHED)
2920 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2921 	}
2922 
2923 	inet_sk_state_store(sk, state);
2924 }
2925 
2926 static const unsigned char new_state[16] = {
2927 	/* current state:     new state:      action:	*/
2928 	[0 /* (Invalid) */] = TCP_CLOSE,
2929 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2930 	[TCP_SYN_SENT]      = TCP_CLOSE,
2931 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2932 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2933 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2934 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2935 	[TCP_CLOSE]         = TCP_CLOSE,
2936 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2937 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2938 	[TCP_LISTEN]        = TCP_CLOSE,
2939 	[TCP_CLOSING]       = TCP_CLOSING,
2940 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2941 };
2942 
2943 static int mptcp_close_state(struct sock *sk)
2944 {
2945 	int next = (int)new_state[sk->sk_state];
2946 	int ns = next & TCP_STATE_MASK;
2947 
2948 	mptcp_set_state(sk, ns);
2949 
2950 	return next & TCP_ACTION_FIN;
2951 }
2952 
2953 static void mptcp_check_send_data_fin(struct sock *sk)
2954 {
2955 	struct mptcp_subflow_context *subflow;
2956 	struct mptcp_sock *msk = mptcp_sk(sk);
2957 
2958 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2959 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2960 		 msk->snd_nxt, msk->write_seq);
2961 
2962 	/* we still need to enqueue subflows or not really shutting down,
2963 	 * skip this
2964 	 */
2965 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2966 	    mptcp_send_head(sk))
2967 		return;
2968 
2969 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2970 
2971 	mptcp_for_each_subflow(msk, subflow) {
2972 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2973 
2974 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2975 	}
2976 }
2977 
2978 static void __mptcp_wr_shutdown(struct sock *sk)
2979 {
2980 	struct mptcp_sock *msk = mptcp_sk(sk);
2981 
2982 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2983 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2984 		 !!mptcp_send_head(sk));
2985 
2986 	/* will be ignored by fallback sockets */
2987 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2988 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2989 
2990 	mptcp_check_send_data_fin(sk);
2991 }
2992 
2993 static void __mptcp_destroy_sock(struct sock *sk)
2994 {
2995 	struct mptcp_sock *msk = mptcp_sk(sk);
2996 
2997 	pr_debug("msk=%p", msk);
2998 
2999 	might_sleep();
3000 
3001 	mptcp_stop_rtx_timer(sk);
3002 	sk_stop_timer(sk, &sk->sk_timer);
3003 	msk->pm.status = 0;
3004 	mptcp_release_sched(msk);
3005 
3006 	sk->sk_prot->destroy(sk);
3007 
3008 	WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
3009 	WARN_ON_ONCE(msk->rmem_released);
3010 	sk_stream_kill_queues(sk);
3011 	xfrm_sk_free_policy(sk);
3012 
3013 	sock_put(sk);
3014 }
3015 
3016 void __mptcp_unaccepted_force_close(struct sock *sk)
3017 {
3018 	sock_set_flag(sk, SOCK_DEAD);
3019 	mptcp_do_fastclose(sk);
3020 	__mptcp_destroy_sock(sk);
3021 }
3022 
3023 static __poll_t mptcp_check_readable(struct sock *sk)
3024 {
3025 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3026 }
3027 
3028 static void mptcp_check_listen_stop(struct sock *sk)
3029 {
3030 	struct sock *ssk;
3031 
3032 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3033 		return;
3034 
3035 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3036 	ssk = mptcp_sk(sk)->first;
3037 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3038 		return;
3039 
3040 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3041 	tcp_set_state(ssk, TCP_CLOSE);
3042 	mptcp_subflow_queue_clean(sk, ssk);
3043 	inet_csk_listen_stop(ssk);
3044 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3045 	release_sock(ssk);
3046 }
3047 
3048 bool __mptcp_close(struct sock *sk, long timeout)
3049 {
3050 	struct mptcp_subflow_context *subflow;
3051 	struct mptcp_sock *msk = mptcp_sk(sk);
3052 	bool do_cancel_work = false;
3053 	int subflows_alive = 0;
3054 
3055 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3056 
3057 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3058 		mptcp_check_listen_stop(sk);
3059 		mptcp_set_state(sk, TCP_CLOSE);
3060 		goto cleanup;
3061 	}
3062 
3063 	if (mptcp_data_avail(msk) || timeout < 0) {
3064 		/* If the msk has read data, or the caller explicitly ask it,
3065 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3066 		 */
3067 		mptcp_do_fastclose(sk);
3068 		timeout = 0;
3069 	} else if (mptcp_close_state(sk)) {
3070 		__mptcp_wr_shutdown(sk);
3071 	}
3072 
3073 	sk_stream_wait_close(sk, timeout);
3074 
3075 cleanup:
3076 	/* orphan all the subflows */
3077 	mptcp_for_each_subflow(msk, subflow) {
3078 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3079 		bool slow = lock_sock_fast_nested(ssk);
3080 
3081 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3082 
3083 		/* since the close timeout takes precedence on the fail one,
3084 		 * cancel the latter
3085 		 */
3086 		if (ssk == msk->first)
3087 			subflow->fail_tout = 0;
3088 
3089 		/* detach from the parent socket, but allow data_ready to
3090 		 * push incoming data into the mptcp stack, to properly ack it
3091 		 */
3092 		ssk->sk_socket = NULL;
3093 		ssk->sk_wq = NULL;
3094 		unlock_sock_fast(ssk, slow);
3095 	}
3096 	sock_orphan(sk);
3097 
3098 	/* all the subflows are closed, only timeout can change the msk
3099 	 * state, let's not keep resources busy for no reasons
3100 	 */
3101 	if (subflows_alive == 0)
3102 		mptcp_set_state(sk, TCP_CLOSE);
3103 
3104 	sock_hold(sk);
3105 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3106 	if (msk->token)
3107 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3108 
3109 	if (sk->sk_state == TCP_CLOSE) {
3110 		__mptcp_destroy_sock(sk);
3111 		do_cancel_work = true;
3112 	} else {
3113 		mptcp_start_tout_timer(sk);
3114 	}
3115 
3116 	return do_cancel_work;
3117 }
3118 
3119 static void mptcp_close(struct sock *sk, long timeout)
3120 {
3121 	bool do_cancel_work;
3122 
3123 	lock_sock(sk);
3124 
3125 	do_cancel_work = __mptcp_close(sk, timeout);
3126 	release_sock(sk);
3127 	if (do_cancel_work)
3128 		mptcp_cancel_work(sk);
3129 
3130 	sock_put(sk);
3131 }
3132 
3133 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3134 {
3135 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3136 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3137 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3138 
3139 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3140 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3141 
3142 	if (msk6 && ssk6) {
3143 		msk6->saddr = ssk6->saddr;
3144 		msk6->flow_label = ssk6->flow_label;
3145 	}
3146 #endif
3147 
3148 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3149 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3150 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3151 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3152 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3153 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3154 }
3155 
3156 static int mptcp_disconnect(struct sock *sk, int flags)
3157 {
3158 	struct mptcp_sock *msk = mptcp_sk(sk);
3159 
3160 	/* We are on the fastopen error path. We can't call straight into the
3161 	 * subflows cleanup code due to lock nesting (we are already under
3162 	 * msk->firstsocket lock).
3163 	 */
3164 	if (msk->fastopening)
3165 		return -EBUSY;
3166 
3167 	mptcp_check_listen_stop(sk);
3168 	mptcp_set_state(sk, TCP_CLOSE);
3169 
3170 	mptcp_stop_rtx_timer(sk);
3171 	mptcp_stop_tout_timer(sk);
3172 
3173 	if (msk->token)
3174 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3175 
3176 	/* msk->subflow is still intact, the following will not free the first
3177 	 * subflow
3178 	 */
3179 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3180 	WRITE_ONCE(msk->flags, 0);
3181 	msk->cb_flags = 0;
3182 	msk->recovery = false;
3183 	WRITE_ONCE(msk->can_ack, false);
3184 	WRITE_ONCE(msk->fully_established, false);
3185 	WRITE_ONCE(msk->rcv_data_fin, false);
3186 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3187 	WRITE_ONCE(msk->rcv_fastclose, false);
3188 	WRITE_ONCE(msk->use_64bit_ack, false);
3189 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3190 	mptcp_pm_data_reset(msk);
3191 	mptcp_ca_reset(sk);
3192 	msk->bytes_consumed = 0;
3193 	msk->bytes_acked = 0;
3194 	msk->bytes_received = 0;
3195 	msk->bytes_sent = 0;
3196 	msk->bytes_retrans = 0;
3197 	msk->rcvspace_init = 0;
3198 
3199 	WRITE_ONCE(sk->sk_shutdown, 0);
3200 	sk_error_report(sk);
3201 	return 0;
3202 }
3203 
3204 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3205 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3206 {
3207 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3208 
3209 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3210 }
3211 
3212 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3213 {
3214 	const struct ipv6_pinfo *np = inet6_sk(sk);
3215 	struct ipv6_txoptions *opt;
3216 	struct ipv6_pinfo *newnp;
3217 
3218 	newnp = inet6_sk(newsk);
3219 
3220 	rcu_read_lock();
3221 	opt = rcu_dereference(np->opt);
3222 	if (opt) {
3223 		opt = ipv6_dup_options(newsk, opt);
3224 		if (!opt)
3225 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3226 	}
3227 	RCU_INIT_POINTER(newnp->opt, opt);
3228 	rcu_read_unlock();
3229 }
3230 #endif
3231 
3232 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3233 {
3234 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3235 	const struct inet_sock *inet = inet_sk(sk);
3236 	struct inet_sock *newinet;
3237 
3238 	newinet = inet_sk(newsk);
3239 
3240 	rcu_read_lock();
3241 	inet_opt = rcu_dereference(inet->inet_opt);
3242 	if (inet_opt) {
3243 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3244 				      inet_opt->opt.optlen, GFP_ATOMIC);
3245 		if (newopt)
3246 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3247 			       inet_opt->opt.optlen);
3248 		else
3249 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3250 	}
3251 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3252 	rcu_read_unlock();
3253 }
3254 
3255 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3256 				 const struct mptcp_options_received *mp_opt,
3257 				 struct sock *ssk,
3258 				 struct request_sock *req)
3259 {
3260 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3261 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3262 	struct mptcp_subflow_context *subflow;
3263 	struct mptcp_sock *msk;
3264 
3265 	if (!nsk)
3266 		return NULL;
3267 
3268 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3269 	if (nsk->sk_family == AF_INET6)
3270 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3271 #endif
3272 
3273 	__mptcp_init_sock(nsk);
3274 
3275 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3276 	if (nsk->sk_family == AF_INET6)
3277 		mptcp_copy_ip6_options(nsk, sk);
3278 	else
3279 #endif
3280 		mptcp_copy_ip_options(nsk, sk);
3281 
3282 	msk = mptcp_sk(nsk);
3283 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3284 	WRITE_ONCE(msk->token, subflow_req->token);
3285 	msk->in_accept_queue = 1;
3286 	WRITE_ONCE(msk->fully_established, false);
3287 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3288 		WRITE_ONCE(msk->csum_enabled, true);
3289 
3290 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3291 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3292 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3293 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3294 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3295 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3296 
3297 	/* passive msk is created after the first/MPC subflow */
3298 	msk->subflow_id = 2;
3299 
3300 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3301 	security_inet_csk_clone(nsk, req);
3302 
3303 	/* this can't race with mptcp_close(), as the msk is
3304 	 * not yet exposted to user-space
3305 	 */
3306 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3307 
3308 	/* The msk maintain a ref to each subflow in the connections list */
3309 	WRITE_ONCE(msk->first, ssk);
3310 	subflow = mptcp_subflow_ctx(ssk);
3311 	list_add(&subflow->node, &msk->conn_list);
3312 	sock_hold(ssk);
3313 
3314 	/* new mpc subflow takes ownership of the newly
3315 	 * created mptcp socket
3316 	 */
3317 	mptcp_token_accept(subflow_req, msk);
3318 
3319 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3320 	 * uses the correct data
3321 	 */
3322 	mptcp_copy_inaddrs(nsk, ssk);
3323 	__mptcp_propagate_sndbuf(nsk, ssk);
3324 
3325 	mptcp_rcv_space_init(msk, ssk);
3326 
3327 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3328 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3329 	bh_unlock_sock(nsk);
3330 
3331 	/* note: the newly allocated socket refcount is 2 now */
3332 	return nsk;
3333 }
3334 
3335 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3336 {
3337 	const struct tcp_sock *tp = tcp_sk(ssk);
3338 
3339 	msk->rcvspace_init = 1;
3340 	msk->rcvq_space.copied = 0;
3341 	msk->rcvq_space.rtt_us = 0;
3342 
3343 	msk->rcvq_space.time = tp->tcp_mstamp;
3344 
3345 	/* initial rcv_space offering made to peer */
3346 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3347 				      TCP_INIT_CWND * tp->advmss);
3348 	if (msk->rcvq_space.space == 0)
3349 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3350 }
3351 
3352 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3353 {
3354 	struct mptcp_subflow_context *subflow, *tmp;
3355 	struct sock *sk = (struct sock *)msk;
3356 
3357 	__mptcp_clear_xmit(sk);
3358 
3359 	/* join list will be eventually flushed (with rst) at sock lock release time */
3360 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3361 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3362 
3363 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3364 	mptcp_data_lock(sk);
3365 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3366 	__skb_queue_purge(&sk->sk_receive_queue);
3367 	skb_rbtree_purge(&msk->out_of_order_queue);
3368 	mptcp_data_unlock(sk);
3369 
3370 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3371 	 * inet_sock_destruct() will dispose it
3372 	 */
3373 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3374 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3375 	mptcp_token_destroy(msk);
3376 	mptcp_pm_free_anno_list(msk);
3377 	mptcp_free_local_addr_list(msk);
3378 }
3379 
3380 static void mptcp_destroy(struct sock *sk)
3381 {
3382 	struct mptcp_sock *msk = mptcp_sk(sk);
3383 
3384 	/* allow the following to close even the initial subflow */
3385 	msk->free_first = 1;
3386 	mptcp_destroy_common(msk, 0);
3387 	sk_sockets_allocated_dec(sk);
3388 }
3389 
3390 void __mptcp_data_acked(struct sock *sk)
3391 {
3392 	if (!sock_owned_by_user(sk))
3393 		__mptcp_clean_una(sk);
3394 	else
3395 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3396 }
3397 
3398 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3399 {
3400 	if (!mptcp_send_head(sk))
3401 		return;
3402 
3403 	if (!sock_owned_by_user(sk))
3404 		__mptcp_subflow_push_pending(sk, ssk, false);
3405 	else
3406 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3407 }
3408 
3409 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3410 				      BIT(MPTCP_RETRANSMIT) | \
3411 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3412 
3413 /* processes deferred events and flush wmem */
3414 static void mptcp_release_cb(struct sock *sk)
3415 	__must_hold(&sk->sk_lock.slock)
3416 {
3417 	struct mptcp_sock *msk = mptcp_sk(sk);
3418 
3419 	for (;;) {
3420 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3421 		struct list_head join_list;
3422 
3423 		if (!flags)
3424 			break;
3425 
3426 		INIT_LIST_HEAD(&join_list);
3427 		list_splice_init(&msk->join_list, &join_list);
3428 
3429 		/* the following actions acquire the subflow socket lock
3430 		 *
3431 		 * 1) can't be invoked in atomic scope
3432 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3433 		 *    datapath acquires the msk socket spinlock while helding
3434 		 *    the subflow socket lock
3435 		 */
3436 		msk->cb_flags &= ~flags;
3437 		spin_unlock_bh(&sk->sk_lock.slock);
3438 
3439 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3440 			__mptcp_flush_join_list(sk, &join_list);
3441 		if (flags & BIT(MPTCP_PUSH_PENDING))
3442 			__mptcp_push_pending(sk, 0);
3443 		if (flags & BIT(MPTCP_RETRANSMIT))
3444 			__mptcp_retrans(sk);
3445 
3446 		cond_resched();
3447 		spin_lock_bh(&sk->sk_lock.slock);
3448 	}
3449 
3450 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3451 		__mptcp_clean_una_wakeup(sk);
3452 	if (unlikely(msk->cb_flags)) {
3453 		/* be sure to sync the msk state before taking actions
3454 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3455 		 * On sk release avoid actions depending on the first subflow
3456 		 */
3457 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3458 			__mptcp_sync_state(sk, msk->pending_state);
3459 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3460 			__mptcp_error_report(sk);
3461 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3462 			__mptcp_sync_sndbuf(sk);
3463 	}
3464 
3465 	__mptcp_update_rmem(sk);
3466 }
3467 
3468 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3469  * TCP can't schedule delack timer before the subflow is fully established.
3470  * MPTCP uses the delack timer to do 3rd ack retransmissions
3471  */
3472 static void schedule_3rdack_retransmission(struct sock *ssk)
3473 {
3474 	struct inet_connection_sock *icsk = inet_csk(ssk);
3475 	struct tcp_sock *tp = tcp_sk(ssk);
3476 	unsigned long timeout;
3477 
3478 	if (mptcp_subflow_ctx(ssk)->fully_established)
3479 		return;
3480 
3481 	/* reschedule with a timeout above RTT, as we must look only for drop */
3482 	if (tp->srtt_us)
3483 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3484 	else
3485 		timeout = TCP_TIMEOUT_INIT;
3486 	timeout += jiffies;
3487 
3488 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3489 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3490 	icsk->icsk_ack.timeout = timeout;
3491 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3492 }
3493 
3494 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3495 {
3496 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3497 	struct sock *sk = subflow->conn;
3498 
3499 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3500 		mptcp_data_lock(sk);
3501 		if (!sock_owned_by_user(sk))
3502 			__mptcp_subflow_push_pending(sk, ssk, true);
3503 		else
3504 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3505 		mptcp_data_unlock(sk);
3506 	}
3507 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3508 		mptcp_data_lock(sk);
3509 		if (!sock_owned_by_user(sk))
3510 			__mptcp_sync_sndbuf(sk);
3511 		else
3512 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3513 		mptcp_data_unlock(sk);
3514 	}
3515 	if (status & BIT(MPTCP_DELEGATE_ACK))
3516 		schedule_3rdack_retransmission(ssk);
3517 }
3518 
3519 static int mptcp_hash(struct sock *sk)
3520 {
3521 	/* should never be called,
3522 	 * we hash the TCP subflows not the master socket
3523 	 */
3524 	WARN_ON_ONCE(1);
3525 	return 0;
3526 }
3527 
3528 static void mptcp_unhash(struct sock *sk)
3529 {
3530 	/* called from sk_common_release(), but nothing to do here */
3531 }
3532 
3533 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3534 {
3535 	struct mptcp_sock *msk = mptcp_sk(sk);
3536 
3537 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3538 	if (WARN_ON_ONCE(!msk->first))
3539 		return -EINVAL;
3540 
3541 	return inet_csk_get_port(msk->first, snum);
3542 }
3543 
3544 void mptcp_finish_connect(struct sock *ssk)
3545 {
3546 	struct mptcp_subflow_context *subflow;
3547 	struct mptcp_sock *msk;
3548 	struct sock *sk;
3549 
3550 	subflow = mptcp_subflow_ctx(ssk);
3551 	sk = subflow->conn;
3552 	msk = mptcp_sk(sk);
3553 
3554 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3555 
3556 	subflow->map_seq = subflow->iasn;
3557 	subflow->map_subflow_seq = 1;
3558 
3559 	/* the socket is not connected yet, no msk/subflow ops can access/race
3560 	 * accessing the field below
3561 	 */
3562 	WRITE_ONCE(msk->local_key, subflow->local_key);
3563 
3564 	mptcp_pm_new_connection(msk, ssk, 0);
3565 }
3566 
3567 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3568 {
3569 	write_lock_bh(&sk->sk_callback_lock);
3570 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3571 	sk_set_socket(sk, parent);
3572 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3573 	write_unlock_bh(&sk->sk_callback_lock);
3574 }
3575 
3576 bool mptcp_finish_join(struct sock *ssk)
3577 {
3578 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3579 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3580 	struct sock *parent = (void *)msk;
3581 	bool ret = true;
3582 
3583 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3584 
3585 	/* mptcp socket already closing? */
3586 	if (!mptcp_is_fully_established(parent)) {
3587 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3588 		return false;
3589 	}
3590 
3591 	/* active subflow, already present inside the conn_list */
3592 	if (!list_empty(&subflow->node)) {
3593 		mptcp_subflow_joined(msk, ssk);
3594 		mptcp_propagate_sndbuf(parent, ssk);
3595 		return true;
3596 	}
3597 
3598 	if (!mptcp_pm_allow_new_subflow(msk))
3599 		goto err_prohibited;
3600 
3601 	/* If we can't acquire msk socket lock here, let the release callback
3602 	 * handle it
3603 	 */
3604 	mptcp_data_lock(parent);
3605 	if (!sock_owned_by_user(parent)) {
3606 		ret = __mptcp_finish_join(msk, ssk);
3607 		if (ret) {
3608 			sock_hold(ssk);
3609 			list_add_tail(&subflow->node, &msk->conn_list);
3610 		}
3611 	} else {
3612 		sock_hold(ssk);
3613 		list_add_tail(&subflow->node, &msk->join_list);
3614 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3615 	}
3616 	mptcp_data_unlock(parent);
3617 
3618 	if (!ret) {
3619 err_prohibited:
3620 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3621 		return false;
3622 	}
3623 
3624 	return true;
3625 }
3626 
3627 static void mptcp_shutdown(struct sock *sk, int how)
3628 {
3629 	pr_debug("sk=%p, how=%d", sk, how);
3630 
3631 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3632 		__mptcp_wr_shutdown(sk);
3633 }
3634 
3635 static int mptcp_forward_alloc_get(const struct sock *sk)
3636 {
3637 	return READ_ONCE(sk->sk_forward_alloc) +
3638 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3639 }
3640 
3641 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3642 {
3643 	const struct sock *sk = (void *)msk;
3644 	u64 delta;
3645 
3646 	if (sk->sk_state == TCP_LISTEN)
3647 		return -EINVAL;
3648 
3649 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3650 		return 0;
3651 
3652 	delta = msk->write_seq - v;
3653 	if (__mptcp_check_fallback(msk) && msk->first) {
3654 		struct tcp_sock *tp = tcp_sk(msk->first);
3655 
3656 		/* the first subflow is disconnected after close - see
3657 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3658 		 * so ignore that status, too.
3659 		 */
3660 		if (!((1 << msk->first->sk_state) &
3661 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3662 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3663 	}
3664 	if (delta > INT_MAX)
3665 		delta = INT_MAX;
3666 
3667 	return (int)delta;
3668 }
3669 
3670 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3671 {
3672 	struct mptcp_sock *msk = mptcp_sk(sk);
3673 	bool slow;
3674 
3675 	switch (cmd) {
3676 	case SIOCINQ:
3677 		if (sk->sk_state == TCP_LISTEN)
3678 			return -EINVAL;
3679 
3680 		lock_sock(sk);
3681 		__mptcp_move_skbs(msk);
3682 		*karg = mptcp_inq_hint(sk);
3683 		release_sock(sk);
3684 		break;
3685 	case SIOCOUTQ:
3686 		slow = lock_sock_fast(sk);
3687 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3688 		unlock_sock_fast(sk, slow);
3689 		break;
3690 	case SIOCOUTQNSD:
3691 		slow = lock_sock_fast(sk);
3692 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3693 		unlock_sock_fast(sk, slow);
3694 		break;
3695 	default:
3696 		return -ENOIOCTLCMD;
3697 	}
3698 
3699 	return 0;
3700 }
3701 
3702 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3703 					 struct mptcp_subflow_context *subflow)
3704 {
3705 	subflow->request_mptcp = 0;
3706 	__mptcp_do_fallback(msk);
3707 }
3708 
3709 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3710 {
3711 	struct mptcp_subflow_context *subflow;
3712 	struct mptcp_sock *msk = mptcp_sk(sk);
3713 	int err = -EINVAL;
3714 	struct sock *ssk;
3715 
3716 	ssk = __mptcp_nmpc_sk(msk);
3717 	if (IS_ERR(ssk))
3718 		return PTR_ERR(ssk);
3719 
3720 	mptcp_set_state(sk, TCP_SYN_SENT);
3721 	subflow = mptcp_subflow_ctx(ssk);
3722 #ifdef CONFIG_TCP_MD5SIG
3723 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3724 	 * TCP option space.
3725 	 */
3726 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3727 		mptcp_subflow_early_fallback(msk, subflow);
3728 #endif
3729 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3730 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3731 		mptcp_subflow_early_fallback(msk, subflow);
3732 	}
3733 	if (likely(!__mptcp_check_fallback(msk)))
3734 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3735 
3736 	/* if reaching here via the fastopen/sendmsg path, the caller already
3737 	 * acquired the subflow socket lock, too.
3738 	 */
3739 	if (!msk->fastopening)
3740 		lock_sock(ssk);
3741 
3742 	/* the following mirrors closely a very small chunk of code from
3743 	 * __inet_stream_connect()
3744 	 */
3745 	if (ssk->sk_state != TCP_CLOSE)
3746 		goto out;
3747 
3748 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3749 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3750 		if (err)
3751 			goto out;
3752 	}
3753 
3754 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3755 	if (err < 0)
3756 		goto out;
3757 
3758 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3759 
3760 out:
3761 	if (!msk->fastopening)
3762 		release_sock(ssk);
3763 
3764 	/* on successful connect, the msk state will be moved to established by
3765 	 * subflow_finish_connect()
3766 	 */
3767 	if (unlikely(err)) {
3768 		/* avoid leaving a dangling token in an unconnected socket */
3769 		mptcp_token_destroy(msk);
3770 		mptcp_set_state(sk, TCP_CLOSE);
3771 		return err;
3772 	}
3773 
3774 	mptcp_copy_inaddrs(sk, ssk);
3775 	return 0;
3776 }
3777 
3778 static struct proto mptcp_prot = {
3779 	.name		= "MPTCP",
3780 	.owner		= THIS_MODULE,
3781 	.init		= mptcp_init_sock,
3782 	.connect	= mptcp_connect,
3783 	.disconnect	= mptcp_disconnect,
3784 	.close		= mptcp_close,
3785 	.setsockopt	= mptcp_setsockopt,
3786 	.getsockopt	= mptcp_getsockopt,
3787 	.shutdown	= mptcp_shutdown,
3788 	.destroy	= mptcp_destroy,
3789 	.sendmsg	= mptcp_sendmsg,
3790 	.ioctl		= mptcp_ioctl,
3791 	.recvmsg	= mptcp_recvmsg,
3792 	.release_cb	= mptcp_release_cb,
3793 	.hash		= mptcp_hash,
3794 	.unhash		= mptcp_unhash,
3795 	.get_port	= mptcp_get_port,
3796 	.forward_alloc_get	= mptcp_forward_alloc_get,
3797 	.stream_memory_free	= mptcp_stream_memory_free,
3798 	.sockets_allocated	= &mptcp_sockets_allocated,
3799 
3800 	.memory_allocated	= &tcp_memory_allocated,
3801 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3802 
3803 	.memory_pressure	= &tcp_memory_pressure,
3804 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3805 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3806 	.sysctl_mem	= sysctl_tcp_mem,
3807 	.obj_size	= sizeof(struct mptcp_sock),
3808 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3809 	.no_autobind	= true,
3810 };
3811 
3812 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3813 {
3814 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3815 	struct sock *ssk, *sk = sock->sk;
3816 	int err = -EINVAL;
3817 
3818 	lock_sock(sk);
3819 	ssk = __mptcp_nmpc_sk(msk);
3820 	if (IS_ERR(ssk)) {
3821 		err = PTR_ERR(ssk);
3822 		goto unlock;
3823 	}
3824 
3825 	if (sk->sk_family == AF_INET)
3826 		err = inet_bind_sk(ssk, uaddr, addr_len);
3827 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3828 	else if (sk->sk_family == AF_INET6)
3829 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3830 #endif
3831 	if (!err)
3832 		mptcp_copy_inaddrs(sk, ssk);
3833 
3834 unlock:
3835 	release_sock(sk);
3836 	return err;
3837 }
3838 
3839 static int mptcp_listen(struct socket *sock, int backlog)
3840 {
3841 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3842 	struct sock *sk = sock->sk;
3843 	struct sock *ssk;
3844 	int err;
3845 
3846 	pr_debug("msk=%p", msk);
3847 
3848 	lock_sock(sk);
3849 
3850 	err = -EINVAL;
3851 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3852 		goto unlock;
3853 
3854 	ssk = __mptcp_nmpc_sk(msk);
3855 	if (IS_ERR(ssk)) {
3856 		err = PTR_ERR(ssk);
3857 		goto unlock;
3858 	}
3859 
3860 	mptcp_set_state(sk, TCP_LISTEN);
3861 	sock_set_flag(sk, SOCK_RCU_FREE);
3862 
3863 	lock_sock(ssk);
3864 	err = __inet_listen_sk(ssk, backlog);
3865 	release_sock(ssk);
3866 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3867 
3868 	if (!err) {
3869 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3870 		mptcp_copy_inaddrs(sk, ssk);
3871 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3872 	}
3873 
3874 unlock:
3875 	release_sock(sk);
3876 	return err;
3877 }
3878 
3879 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3880 			       int flags, bool kern)
3881 {
3882 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3883 	struct sock *ssk, *newsk;
3884 	int err;
3885 
3886 	pr_debug("msk=%p", msk);
3887 
3888 	/* Buggy applications can call accept on socket states other then LISTEN
3889 	 * but no need to allocate the first subflow just to error out.
3890 	 */
3891 	ssk = READ_ONCE(msk->first);
3892 	if (!ssk)
3893 		return -EINVAL;
3894 
3895 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3896 	newsk = inet_csk_accept(ssk, flags, &err, kern);
3897 	if (!newsk)
3898 		return err;
3899 
3900 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3901 	if (sk_is_mptcp(newsk)) {
3902 		struct mptcp_subflow_context *subflow;
3903 		struct sock *new_mptcp_sock;
3904 
3905 		subflow = mptcp_subflow_ctx(newsk);
3906 		new_mptcp_sock = subflow->conn;
3907 
3908 		/* is_mptcp should be false if subflow->conn is missing, see
3909 		 * subflow_syn_recv_sock()
3910 		 */
3911 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3912 			tcp_sk(newsk)->is_mptcp = 0;
3913 			goto tcpfallback;
3914 		}
3915 
3916 		newsk = new_mptcp_sock;
3917 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3918 
3919 		newsk->sk_kern_sock = kern;
3920 		lock_sock(newsk);
3921 		__inet_accept(sock, newsock, newsk);
3922 
3923 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3924 		msk = mptcp_sk(newsk);
3925 		msk->in_accept_queue = 0;
3926 
3927 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3928 		 * This is needed so NOSPACE flag can be set from tcp stack.
3929 		 */
3930 		mptcp_for_each_subflow(msk, subflow) {
3931 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3932 
3933 			if (!ssk->sk_socket)
3934 				mptcp_sock_graft(ssk, newsock);
3935 		}
3936 
3937 		/* Do late cleanup for the first subflow as necessary. Also
3938 		 * deal with bad peers not doing a complete shutdown.
3939 		 */
3940 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3941 			__mptcp_close_ssk(newsk, msk->first,
3942 					  mptcp_subflow_ctx(msk->first), 0);
3943 			if (unlikely(list_is_singular(&msk->conn_list)))
3944 				mptcp_set_state(newsk, TCP_CLOSE);
3945 		}
3946 	} else {
3947 tcpfallback:
3948 		newsk->sk_kern_sock = kern;
3949 		lock_sock(newsk);
3950 		__inet_accept(sock, newsock, newsk);
3951 		/* we are being invoked after accepting a non-mp-capable
3952 		 * flow: sk is a tcp_sk, not an mptcp one.
3953 		 *
3954 		 * Hand the socket over to tcp so all further socket ops
3955 		 * bypass mptcp.
3956 		 */
3957 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3958 			   mptcp_fallback_tcp_ops(newsock->sk));
3959 	}
3960 	release_sock(newsk);
3961 
3962 	return 0;
3963 }
3964 
3965 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3966 {
3967 	struct sock *sk = (struct sock *)msk;
3968 
3969 	if (__mptcp_stream_is_writeable(sk, 1))
3970 		return EPOLLOUT | EPOLLWRNORM;
3971 
3972 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3973 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3974 	if (__mptcp_stream_is_writeable(sk, 1))
3975 		return EPOLLOUT | EPOLLWRNORM;
3976 
3977 	return 0;
3978 }
3979 
3980 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3981 			   struct poll_table_struct *wait)
3982 {
3983 	struct sock *sk = sock->sk;
3984 	struct mptcp_sock *msk;
3985 	__poll_t mask = 0;
3986 	u8 shutdown;
3987 	int state;
3988 
3989 	msk = mptcp_sk(sk);
3990 	sock_poll_wait(file, sock, wait);
3991 
3992 	state = inet_sk_state_load(sk);
3993 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3994 	if (state == TCP_LISTEN) {
3995 		struct sock *ssk = READ_ONCE(msk->first);
3996 
3997 		if (WARN_ON_ONCE(!ssk))
3998 			return 0;
3999 
4000 		return inet_csk_listen_poll(ssk);
4001 	}
4002 
4003 	shutdown = READ_ONCE(sk->sk_shutdown);
4004 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4005 		mask |= EPOLLHUP;
4006 	if (shutdown & RCV_SHUTDOWN)
4007 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4008 
4009 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4010 		mask |= mptcp_check_readable(sk);
4011 		if (shutdown & SEND_SHUTDOWN)
4012 			mask |= EPOLLOUT | EPOLLWRNORM;
4013 		else
4014 			mask |= mptcp_check_writeable(msk);
4015 	} else if (state == TCP_SYN_SENT &&
4016 		   inet_test_bit(DEFER_CONNECT, sk)) {
4017 		/* cf tcp_poll() note about TFO */
4018 		mask |= EPOLLOUT | EPOLLWRNORM;
4019 	}
4020 
4021 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4022 	smp_rmb();
4023 	if (READ_ONCE(sk->sk_err))
4024 		mask |= EPOLLERR;
4025 
4026 	return mask;
4027 }
4028 
4029 static const struct proto_ops mptcp_stream_ops = {
4030 	.family		   = PF_INET,
4031 	.owner		   = THIS_MODULE,
4032 	.release	   = inet_release,
4033 	.bind		   = mptcp_bind,
4034 	.connect	   = inet_stream_connect,
4035 	.socketpair	   = sock_no_socketpair,
4036 	.accept		   = mptcp_stream_accept,
4037 	.getname	   = inet_getname,
4038 	.poll		   = mptcp_poll,
4039 	.ioctl		   = inet_ioctl,
4040 	.gettstamp	   = sock_gettstamp,
4041 	.listen		   = mptcp_listen,
4042 	.shutdown	   = inet_shutdown,
4043 	.setsockopt	   = sock_common_setsockopt,
4044 	.getsockopt	   = sock_common_getsockopt,
4045 	.sendmsg	   = inet_sendmsg,
4046 	.recvmsg	   = inet_recvmsg,
4047 	.mmap		   = sock_no_mmap,
4048 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4049 };
4050 
4051 static struct inet_protosw mptcp_protosw = {
4052 	.type		= SOCK_STREAM,
4053 	.protocol	= IPPROTO_MPTCP,
4054 	.prot		= &mptcp_prot,
4055 	.ops		= &mptcp_stream_ops,
4056 	.flags		= INET_PROTOSW_ICSK,
4057 };
4058 
4059 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4060 {
4061 	struct mptcp_delegated_action *delegated;
4062 	struct mptcp_subflow_context *subflow;
4063 	int work_done = 0;
4064 
4065 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4066 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4067 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4068 
4069 		bh_lock_sock_nested(ssk);
4070 		if (!sock_owned_by_user(ssk)) {
4071 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4072 		} else {
4073 			/* tcp_release_cb_override already processed
4074 			 * the action or will do at next release_sock().
4075 			 * In both case must dequeue the subflow here - on the same
4076 			 * CPU that scheduled it.
4077 			 */
4078 			smp_wmb();
4079 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4080 		}
4081 		bh_unlock_sock(ssk);
4082 		sock_put(ssk);
4083 
4084 		if (++work_done == budget)
4085 			return budget;
4086 	}
4087 
4088 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4089 	 * will not try accessing the NULL napi->dev ptr
4090 	 */
4091 	napi_complete_done(napi, 0);
4092 	return work_done;
4093 }
4094 
4095 void __init mptcp_proto_init(void)
4096 {
4097 	struct mptcp_delegated_action *delegated;
4098 	int cpu;
4099 
4100 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4101 
4102 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4103 		panic("Failed to allocate MPTCP pcpu counter\n");
4104 
4105 	init_dummy_netdev(&mptcp_napi_dev);
4106 	for_each_possible_cpu(cpu) {
4107 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4108 		INIT_LIST_HEAD(&delegated->head);
4109 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4110 				  mptcp_napi_poll);
4111 		napi_enable(&delegated->napi);
4112 	}
4113 
4114 	mptcp_subflow_init();
4115 	mptcp_pm_init();
4116 	mptcp_sched_init();
4117 	mptcp_token_init();
4118 
4119 	if (proto_register(&mptcp_prot, 1) != 0)
4120 		panic("Failed to register MPTCP proto.\n");
4121 
4122 	inet_register_protosw(&mptcp_protosw);
4123 
4124 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4125 }
4126 
4127 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4128 static const struct proto_ops mptcp_v6_stream_ops = {
4129 	.family		   = PF_INET6,
4130 	.owner		   = THIS_MODULE,
4131 	.release	   = inet6_release,
4132 	.bind		   = mptcp_bind,
4133 	.connect	   = inet_stream_connect,
4134 	.socketpair	   = sock_no_socketpair,
4135 	.accept		   = mptcp_stream_accept,
4136 	.getname	   = inet6_getname,
4137 	.poll		   = mptcp_poll,
4138 	.ioctl		   = inet6_ioctl,
4139 	.gettstamp	   = sock_gettstamp,
4140 	.listen		   = mptcp_listen,
4141 	.shutdown	   = inet_shutdown,
4142 	.setsockopt	   = sock_common_setsockopt,
4143 	.getsockopt	   = sock_common_getsockopt,
4144 	.sendmsg	   = inet6_sendmsg,
4145 	.recvmsg	   = inet6_recvmsg,
4146 	.mmap		   = sock_no_mmap,
4147 #ifdef CONFIG_COMPAT
4148 	.compat_ioctl	   = inet6_compat_ioctl,
4149 #endif
4150 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4151 };
4152 
4153 static struct proto mptcp_v6_prot;
4154 
4155 static struct inet_protosw mptcp_v6_protosw = {
4156 	.type		= SOCK_STREAM,
4157 	.protocol	= IPPROTO_MPTCP,
4158 	.prot		= &mptcp_v6_prot,
4159 	.ops		= &mptcp_v6_stream_ops,
4160 	.flags		= INET_PROTOSW_ICSK,
4161 };
4162 
4163 int __init mptcp_proto_v6_init(void)
4164 {
4165 	int err;
4166 
4167 	mptcp_v6_prot = mptcp_prot;
4168 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4169 	mptcp_v6_prot.slab = NULL;
4170 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4171 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4172 
4173 	err = proto_register(&mptcp_v6_prot, 1);
4174 	if (err)
4175 		return err;
4176 
4177 	err = inet6_register_protosw(&mptcp_v6_protosw);
4178 	if (err)
4179 		proto_unregister(&mptcp_v6_prot);
4180 
4181 	return err;
4182 }
4183 #endif
4184