1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp_states.h> 19 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 20 #include <net/transp_v6.h> 21 #endif 22 #include <net/mptcp.h> 23 #include <net/xfrm.h> 24 #include <asm/ioctls.h> 25 #include "protocol.h" 26 #include "mib.h" 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/mptcp.h> 30 31 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 32 struct mptcp6_sock { 33 struct mptcp_sock msk; 34 struct ipv6_pinfo np; 35 }; 36 #endif 37 38 enum { 39 MPTCP_CMSG_TS = BIT(0), 40 MPTCP_CMSG_INQ = BIT(1), 41 }; 42 43 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 44 45 static void __mptcp_destroy_sock(struct sock *sk); 46 static void mptcp_check_send_data_fin(struct sock *sk); 47 48 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 49 static struct net_device mptcp_napi_dev; 50 51 /* Returns end sequence number of the receiver's advertised window */ 52 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 53 { 54 return READ_ONCE(msk->wnd_end); 55 } 56 57 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 58 { 59 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 60 if (sk->sk_prot == &tcpv6_prot) 61 return &inet6_stream_ops; 62 #endif 63 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 64 return &inet_stream_ops; 65 } 66 67 static int __mptcp_socket_create(struct mptcp_sock *msk) 68 { 69 struct mptcp_subflow_context *subflow; 70 struct sock *sk = (struct sock *)msk; 71 struct socket *ssock; 72 int err; 73 74 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 75 if (err) 76 return err; 77 78 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 79 WRITE_ONCE(msk->first, ssock->sk); 80 subflow = mptcp_subflow_ctx(ssock->sk); 81 list_add(&subflow->node, &msk->conn_list); 82 sock_hold(ssock->sk); 83 subflow->request_mptcp = 1; 84 subflow->subflow_id = msk->subflow_id++; 85 86 /* This is the first subflow, always with id 0 */ 87 WRITE_ONCE(subflow->local_id, 0); 88 mptcp_sock_graft(msk->first, sk->sk_socket); 89 iput(SOCK_INODE(ssock)); 90 91 return 0; 92 } 93 94 /* If the MPC handshake is not started, returns the first subflow, 95 * eventually allocating it. 96 */ 97 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 98 { 99 struct sock *sk = (struct sock *)msk; 100 int ret; 101 102 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 103 return ERR_PTR(-EINVAL); 104 105 if (!msk->first) { 106 ret = __mptcp_socket_create(msk); 107 if (ret) 108 return ERR_PTR(ret); 109 } 110 111 return msk->first; 112 } 113 114 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 115 { 116 sk_drops_add(sk, skb); 117 __kfree_skb(skb); 118 } 119 120 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 121 { 122 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 123 mptcp_sk(sk)->rmem_fwd_alloc + size); 124 } 125 126 static void mptcp_rmem_charge(struct sock *sk, int size) 127 { 128 mptcp_rmem_fwd_alloc_add(sk, -size); 129 } 130 131 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 132 struct sk_buff *from) 133 { 134 bool fragstolen; 135 int delta; 136 137 if (MPTCP_SKB_CB(from)->offset || 138 !skb_try_coalesce(to, from, &fragstolen, &delta)) 139 return false; 140 141 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 142 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 143 to->len, MPTCP_SKB_CB(from)->end_seq); 144 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 145 146 /* note the fwd memory can reach a negative value after accounting 147 * for the delta, but the later skb free will restore a non 148 * negative one 149 */ 150 atomic_add(delta, &sk->sk_rmem_alloc); 151 mptcp_rmem_charge(sk, delta); 152 kfree_skb_partial(from, fragstolen); 153 154 return true; 155 } 156 157 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 158 struct sk_buff *from) 159 { 160 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 161 return false; 162 163 return mptcp_try_coalesce((struct sock *)msk, to, from); 164 } 165 166 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 167 { 168 amount >>= PAGE_SHIFT; 169 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 170 __sk_mem_reduce_allocated(sk, amount); 171 } 172 173 static void mptcp_rmem_uncharge(struct sock *sk, int size) 174 { 175 struct mptcp_sock *msk = mptcp_sk(sk); 176 int reclaimable; 177 178 mptcp_rmem_fwd_alloc_add(sk, size); 179 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 180 181 /* see sk_mem_uncharge() for the rationale behind the following schema */ 182 if (unlikely(reclaimable >= PAGE_SIZE)) 183 __mptcp_rmem_reclaim(sk, reclaimable); 184 } 185 186 static void mptcp_rfree(struct sk_buff *skb) 187 { 188 unsigned int len = skb->truesize; 189 struct sock *sk = skb->sk; 190 191 atomic_sub(len, &sk->sk_rmem_alloc); 192 mptcp_rmem_uncharge(sk, len); 193 } 194 195 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 196 { 197 skb_orphan(skb); 198 skb->sk = sk; 199 skb->destructor = mptcp_rfree; 200 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 201 mptcp_rmem_charge(sk, skb->truesize); 202 } 203 204 /* "inspired" by tcp_data_queue_ofo(), main differences: 205 * - use mptcp seqs 206 * - don't cope with sacks 207 */ 208 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 209 { 210 struct sock *sk = (struct sock *)msk; 211 struct rb_node **p, *parent; 212 u64 seq, end_seq, max_seq; 213 struct sk_buff *skb1; 214 215 seq = MPTCP_SKB_CB(skb)->map_seq; 216 end_seq = MPTCP_SKB_CB(skb)->end_seq; 217 max_seq = atomic64_read(&msk->rcv_wnd_sent); 218 219 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 220 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 221 if (after64(end_seq, max_seq)) { 222 /* out of window */ 223 mptcp_drop(sk, skb); 224 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 225 (unsigned long long)end_seq - (unsigned long)max_seq, 226 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 227 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 228 return; 229 } 230 231 p = &msk->out_of_order_queue.rb_node; 232 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 233 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 234 rb_link_node(&skb->rbnode, NULL, p); 235 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 236 msk->ooo_last_skb = skb; 237 goto end; 238 } 239 240 /* with 2 subflows, adding at end of ooo queue is quite likely 241 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 242 */ 243 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 246 return; 247 } 248 249 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 250 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 251 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 252 parent = &msk->ooo_last_skb->rbnode; 253 p = &parent->rb_right; 254 goto insert; 255 } 256 257 /* Find place to insert this segment. Handle overlaps on the way. */ 258 parent = NULL; 259 while (*p) { 260 parent = *p; 261 skb1 = rb_to_skb(parent); 262 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 263 p = &parent->rb_left; 264 continue; 265 } 266 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 267 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 /* All the bits are present. Drop. */ 269 mptcp_drop(sk, skb); 270 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 271 return; 272 } 273 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 274 /* partial overlap: 275 * | skb | 276 * | skb1 | 277 * continue traversing 278 */ 279 } else { 280 /* skb's seq == skb1's seq and skb covers skb1. 281 * Replace skb1 with skb. 282 */ 283 rb_replace_node(&skb1->rbnode, &skb->rbnode, 284 &msk->out_of_order_queue); 285 mptcp_drop(sk, skb1); 286 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 287 goto merge_right; 288 } 289 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 290 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 291 return; 292 } 293 p = &parent->rb_right; 294 } 295 296 insert: 297 /* Insert segment into RB tree. */ 298 rb_link_node(&skb->rbnode, parent, p); 299 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 300 301 merge_right: 302 /* Remove other segments covered by skb. */ 303 while ((skb1 = skb_rb_next(skb)) != NULL) { 304 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 305 break; 306 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 307 mptcp_drop(sk, skb1); 308 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 309 } 310 /* If there is no skb after us, we are the last_skb ! */ 311 if (!skb1) 312 msk->ooo_last_skb = skb; 313 314 end: 315 skb_condense(skb); 316 mptcp_set_owner_r(skb, sk); 317 } 318 319 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 320 { 321 struct mptcp_sock *msk = mptcp_sk(sk); 322 int amt, amount; 323 324 if (size <= msk->rmem_fwd_alloc) 325 return true; 326 327 size -= msk->rmem_fwd_alloc; 328 amt = sk_mem_pages(size); 329 amount = amt << PAGE_SHIFT; 330 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 331 return false; 332 333 mptcp_rmem_fwd_alloc_add(sk, amount); 334 return true; 335 } 336 337 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 338 struct sk_buff *skb, unsigned int offset, 339 size_t copy_len) 340 { 341 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 342 struct sock *sk = (struct sock *)msk; 343 struct sk_buff *tail; 344 bool has_rxtstamp; 345 346 __skb_unlink(skb, &ssk->sk_receive_queue); 347 348 skb_ext_reset(skb); 349 skb_orphan(skb); 350 351 /* try to fetch required memory from subflow */ 352 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 353 goto drop; 354 355 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 356 357 /* the skb map_seq accounts for the skb offset: 358 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 359 * value 360 */ 361 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 362 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 363 MPTCP_SKB_CB(skb)->offset = offset; 364 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 365 366 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 367 /* in sequence */ 368 msk->bytes_received += copy_len; 369 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 370 tail = skb_peek_tail(&sk->sk_receive_queue); 371 if (tail && mptcp_try_coalesce(sk, tail, skb)) 372 return true; 373 374 mptcp_set_owner_r(skb, sk); 375 __skb_queue_tail(&sk->sk_receive_queue, skb); 376 return true; 377 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 378 mptcp_data_queue_ofo(msk, skb); 379 return false; 380 } 381 382 /* old data, keep it simple and drop the whole pkt, sender 383 * will retransmit as needed, if needed. 384 */ 385 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 386 drop: 387 mptcp_drop(sk, skb); 388 return false; 389 } 390 391 static void mptcp_stop_rtx_timer(struct sock *sk) 392 { 393 struct inet_connection_sock *icsk = inet_csk(sk); 394 395 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 396 mptcp_sk(sk)->timer_ival = 0; 397 } 398 399 static void mptcp_close_wake_up(struct sock *sk) 400 { 401 if (sock_flag(sk, SOCK_DEAD)) 402 return; 403 404 sk->sk_state_change(sk); 405 if (sk->sk_shutdown == SHUTDOWN_MASK || 406 sk->sk_state == TCP_CLOSE) 407 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 408 else 409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 410 } 411 412 /* called under the msk socket lock */ 413 static bool mptcp_pending_data_fin_ack(struct sock *sk) 414 { 415 struct mptcp_sock *msk = mptcp_sk(sk); 416 417 return ((1 << sk->sk_state) & 418 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 419 msk->write_seq == READ_ONCE(msk->snd_una); 420 } 421 422 static void mptcp_check_data_fin_ack(struct sock *sk) 423 { 424 struct mptcp_sock *msk = mptcp_sk(sk); 425 426 /* Look for an acknowledged DATA_FIN */ 427 if (mptcp_pending_data_fin_ack(sk)) { 428 WRITE_ONCE(msk->snd_data_fin_enable, 0); 429 430 switch (sk->sk_state) { 431 case TCP_FIN_WAIT1: 432 mptcp_set_state(sk, TCP_FIN_WAIT2); 433 break; 434 case TCP_CLOSING: 435 case TCP_LAST_ACK: 436 mptcp_set_state(sk, TCP_CLOSE); 437 break; 438 } 439 440 mptcp_close_wake_up(sk); 441 } 442 } 443 444 /* can be called with no lock acquired */ 445 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 446 { 447 struct mptcp_sock *msk = mptcp_sk(sk); 448 449 if (READ_ONCE(msk->rcv_data_fin) && 450 ((1 << inet_sk_state_load(sk)) & 451 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 452 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 453 454 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 455 if (seq) 456 *seq = rcv_data_fin_seq; 457 458 return true; 459 } 460 } 461 462 return false; 463 } 464 465 static void mptcp_set_datafin_timeout(struct sock *sk) 466 { 467 struct inet_connection_sock *icsk = inet_csk(sk); 468 u32 retransmits; 469 470 retransmits = min_t(u32, icsk->icsk_retransmits, 471 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 472 473 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 474 } 475 476 static void __mptcp_set_timeout(struct sock *sk, long tout) 477 { 478 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 479 } 480 481 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 482 { 483 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 484 485 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 486 inet_csk(ssk)->icsk_timeout - jiffies : 0; 487 } 488 489 static void mptcp_set_timeout(struct sock *sk) 490 { 491 struct mptcp_subflow_context *subflow; 492 long tout = 0; 493 494 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 495 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 496 __mptcp_set_timeout(sk, tout); 497 } 498 499 static inline bool tcp_can_send_ack(const struct sock *ssk) 500 { 501 return !((1 << inet_sk_state_load(ssk)) & 502 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 503 } 504 505 void __mptcp_subflow_send_ack(struct sock *ssk) 506 { 507 if (tcp_can_send_ack(ssk)) 508 tcp_send_ack(ssk); 509 } 510 511 static void mptcp_subflow_send_ack(struct sock *ssk) 512 { 513 bool slow; 514 515 slow = lock_sock_fast(ssk); 516 __mptcp_subflow_send_ack(ssk); 517 unlock_sock_fast(ssk, slow); 518 } 519 520 static void mptcp_send_ack(struct mptcp_sock *msk) 521 { 522 struct mptcp_subflow_context *subflow; 523 524 mptcp_for_each_subflow(msk, subflow) 525 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 526 } 527 528 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 529 { 530 bool slow; 531 532 slow = lock_sock_fast(ssk); 533 if (tcp_can_send_ack(ssk)) 534 tcp_cleanup_rbuf(ssk, 1); 535 unlock_sock_fast(ssk, slow); 536 } 537 538 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 539 { 540 const struct inet_connection_sock *icsk = inet_csk(ssk); 541 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 542 const struct tcp_sock *tp = tcp_sk(ssk); 543 544 return (ack_pending & ICSK_ACK_SCHED) && 545 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 546 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 547 (rx_empty && ack_pending & 548 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 549 } 550 551 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 552 { 553 int old_space = READ_ONCE(msk->old_wspace); 554 struct mptcp_subflow_context *subflow; 555 struct sock *sk = (struct sock *)msk; 556 int space = __mptcp_space(sk); 557 bool cleanup, rx_empty; 558 559 cleanup = (space > 0) && (space >= (old_space << 1)); 560 rx_empty = !__mptcp_rmem(sk); 561 562 mptcp_for_each_subflow(msk, subflow) { 563 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 564 565 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 566 mptcp_subflow_cleanup_rbuf(ssk); 567 } 568 } 569 570 static bool mptcp_check_data_fin(struct sock *sk) 571 { 572 struct mptcp_sock *msk = mptcp_sk(sk); 573 u64 rcv_data_fin_seq; 574 bool ret = false; 575 576 /* Need to ack a DATA_FIN received from a peer while this side 577 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 578 * msk->rcv_data_fin was set when parsing the incoming options 579 * at the subflow level and the msk lock was not held, so this 580 * is the first opportunity to act on the DATA_FIN and change 581 * the msk state. 582 * 583 * If we are caught up to the sequence number of the incoming 584 * DATA_FIN, send the DATA_ACK now and do state transition. If 585 * not caught up, do nothing and let the recv code send DATA_ACK 586 * when catching up. 587 */ 588 589 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 590 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 591 WRITE_ONCE(msk->rcv_data_fin, 0); 592 593 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 594 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 595 596 switch (sk->sk_state) { 597 case TCP_ESTABLISHED: 598 mptcp_set_state(sk, TCP_CLOSE_WAIT); 599 break; 600 case TCP_FIN_WAIT1: 601 mptcp_set_state(sk, TCP_CLOSING); 602 break; 603 case TCP_FIN_WAIT2: 604 mptcp_set_state(sk, TCP_CLOSE); 605 break; 606 default: 607 /* Other states not expected */ 608 WARN_ON_ONCE(1); 609 break; 610 } 611 612 ret = true; 613 if (!__mptcp_check_fallback(msk)) 614 mptcp_send_ack(msk); 615 mptcp_close_wake_up(sk); 616 } 617 return ret; 618 } 619 620 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 621 struct sock *ssk, 622 unsigned int *bytes) 623 { 624 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 625 struct sock *sk = (struct sock *)msk; 626 unsigned int moved = 0; 627 bool more_data_avail; 628 struct tcp_sock *tp; 629 bool done = false; 630 int sk_rbuf; 631 632 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 633 634 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 635 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 636 637 if (unlikely(ssk_rbuf > sk_rbuf)) { 638 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 639 sk_rbuf = ssk_rbuf; 640 } 641 } 642 643 pr_debug("msk=%p ssk=%p", msk, ssk); 644 tp = tcp_sk(ssk); 645 do { 646 u32 map_remaining, offset; 647 u32 seq = tp->copied_seq; 648 struct sk_buff *skb; 649 bool fin; 650 651 /* try to move as much data as available */ 652 map_remaining = subflow->map_data_len - 653 mptcp_subflow_get_map_offset(subflow); 654 655 skb = skb_peek(&ssk->sk_receive_queue); 656 if (!skb) { 657 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 658 * a different CPU can have already processed the pending 659 * data, stop here or we can enter an infinite loop 660 */ 661 if (!moved) 662 done = true; 663 break; 664 } 665 666 if (__mptcp_check_fallback(msk)) { 667 /* Under fallback skbs have no MPTCP extension and TCP could 668 * collapse them between the dummy map creation and the 669 * current dequeue. Be sure to adjust the map size. 670 */ 671 map_remaining = skb->len; 672 subflow->map_data_len = skb->len; 673 } 674 675 offset = seq - TCP_SKB_CB(skb)->seq; 676 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 677 if (fin) { 678 done = true; 679 seq++; 680 } 681 682 if (offset < skb->len) { 683 size_t len = skb->len - offset; 684 685 if (tp->urg_data) 686 done = true; 687 688 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 689 moved += len; 690 seq += len; 691 692 if (WARN_ON_ONCE(map_remaining < len)) 693 break; 694 } else { 695 WARN_ON_ONCE(!fin); 696 sk_eat_skb(ssk, skb); 697 done = true; 698 } 699 700 WRITE_ONCE(tp->copied_seq, seq); 701 more_data_avail = mptcp_subflow_data_available(ssk); 702 703 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 704 done = true; 705 break; 706 } 707 } while (more_data_avail); 708 709 if (moved > 0) 710 msk->last_data_recv = tcp_jiffies32; 711 *bytes += moved; 712 return done; 713 } 714 715 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 716 { 717 struct sock *sk = (struct sock *)msk; 718 struct sk_buff *skb, *tail; 719 bool moved = false; 720 struct rb_node *p; 721 u64 end_seq; 722 723 p = rb_first(&msk->out_of_order_queue); 724 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 725 while (p) { 726 skb = rb_to_skb(p); 727 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 728 break; 729 730 p = rb_next(p); 731 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 732 733 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 734 msk->ack_seq))) { 735 mptcp_drop(sk, skb); 736 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 737 continue; 738 } 739 740 end_seq = MPTCP_SKB_CB(skb)->end_seq; 741 tail = skb_peek_tail(&sk->sk_receive_queue); 742 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 743 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 744 745 /* skip overlapping data, if any */ 746 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 747 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 748 delta); 749 MPTCP_SKB_CB(skb)->offset += delta; 750 MPTCP_SKB_CB(skb)->map_seq += delta; 751 __skb_queue_tail(&sk->sk_receive_queue, skb); 752 } 753 msk->bytes_received += end_seq - msk->ack_seq; 754 WRITE_ONCE(msk->ack_seq, end_seq); 755 moved = true; 756 } 757 return moved; 758 } 759 760 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 761 { 762 int err = sock_error(ssk); 763 int ssk_state; 764 765 if (!err) 766 return false; 767 768 /* only propagate errors on fallen-back sockets or 769 * on MPC connect 770 */ 771 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 772 return false; 773 774 /* We need to propagate only transition to CLOSE state. 775 * Orphaned socket will see such state change via 776 * subflow_sched_work_if_closed() and that path will properly 777 * destroy the msk as needed. 778 */ 779 ssk_state = inet_sk_state_load(ssk); 780 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 781 mptcp_set_state(sk, ssk_state); 782 WRITE_ONCE(sk->sk_err, -err); 783 784 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 785 smp_wmb(); 786 sk_error_report(sk); 787 return true; 788 } 789 790 void __mptcp_error_report(struct sock *sk) 791 { 792 struct mptcp_subflow_context *subflow; 793 struct mptcp_sock *msk = mptcp_sk(sk); 794 795 mptcp_for_each_subflow(msk, subflow) 796 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 797 break; 798 } 799 800 /* In most cases we will be able to lock the mptcp socket. If its already 801 * owned, we need to defer to the work queue to avoid ABBA deadlock. 802 */ 803 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 804 { 805 struct sock *sk = (struct sock *)msk; 806 unsigned int moved = 0; 807 808 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 809 __mptcp_ofo_queue(msk); 810 if (unlikely(ssk->sk_err)) { 811 if (!sock_owned_by_user(sk)) 812 __mptcp_error_report(sk); 813 else 814 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 815 } 816 817 /* If the moves have caught up with the DATA_FIN sequence number 818 * it's time to ack the DATA_FIN and change socket state, but 819 * this is not a good place to change state. Let the workqueue 820 * do it. 821 */ 822 if (mptcp_pending_data_fin(sk, NULL)) 823 mptcp_schedule_work(sk); 824 return moved > 0; 825 } 826 827 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 828 { 829 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 830 struct mptcp_sock *msk = mptcp_sk(sk); 831 int sk_rbuf, ssk_rbuf; 832 833 /* The peer can send data while we are shutting down this 834 * subflow at msk destruction time, but we must avoid enqueuing 835 * more data to the msk receive queue 836 */ 837 if (unlikely(subflow->disposable)) 838 return; 839 840 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 841 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 842 if (unlikely(ssk_rbuf > sk_rbuf)) 843 sk_rbuf = ssk_rbuf; 844 845 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 846 if (__mptcp_rmem(sk) > sk_rbuf) { 847 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 848 return; 849 } 850 851 /* Wake-up the reader only for in-sequence data */ 852 mptcp_data_lock(sk); 853 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 854 sk->sk_data_ready(sk); 855 mptcp_data_unlock(sk); 856 } 857 858 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 859 { 860 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 861 WRITE_ONCE(msk->allow_infinite_fallback, false); 862 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 863 } 864 865 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 866 { 867 struct sock *sk = (struct sock *)msk; 868 869 if (sk->sk_state != TCP_ESTABLISHED) 870 return false; 871 872 /* attach to msk socket only after we are sure we will deal with it 873 * at close time 874 */ 875 if (sk->sk_socket && !ssk->sk_socket) 876 mptcp_sock_graft(ssk, sk->sk_socket); 877 878 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 879 mptcp_sockopt_sync_locked(msk, ssk); 880 mptcp_subflow_joined(msk, ssk); 881 mptcp_stop_tout_timer(sk); 882 __mptcp_propagate_sndbuf(sk, ssk); 883 return true; 884 } 885 886 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 887 { 888 struct mptcp_subflow_context *tmp, *subflow; 889 struct mptcp_sock *msk = mptcp_sk(sk); 890 891 list_for_each_entry_safe(subflow, tmp, join_list, node) { 892 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 893 bool slow = lock_sock_fast(ssk); 894 895 list_move_tail(&subflow->node, &msk->conn_list); 896 if (!__mptcp_finish_join(msk, ssk)) 897 mptcp_subflow_reset(ssk); 898 unlock_sock_fast(ssk, slow); 899 } 900 } 901 902 static bool mptcp_rtx_timer_pending(struct sock *sk) 903 { 904 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 905 } 906 907 static void mptcp_reset_rtx_timer(struct sock *sk) 908 { 909 struct inet_connection_sock *icsk = inet_csk(sk); 910 unsigned long tout; 911 912 /* prevent rescheduling on close */ 913 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 914 return; 915 916 tout = mptcp_sk(sk)->timer_ival; 917 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 918 } 919 920 bool mptcp_schedule_work(struct sock *sk) 921 { 922 if (inet_sk_state_load(sk) != TCP_CLOSE && 923 schedule_work(&mptcp_sk(sk)->work)) { 924 /* each subflow already holds a reference to the sk, and the 925 * workqueue is invoked by a subflow, so sk can't go away here. 926 */ 927 sock_hold(sk); 928 return true; 929 } 930 return false; 931 } 932 933 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 934 { 935 struct mptcp_subflow_context *subflow; 936 937 msk_owned_by_me(msk); 938 939 mptcp_for_each_subflow(msk, subflow) { 940 if (READ_ONCE(subflow->data_avail)) 941 return mptcp_subflow_tcp_sock(subflow); 942 } 943 944 return NULL; 945 } 946 947 static bool mptcp_skb_can_collapse_to(u64 write_seq, 948 const struct sk_buff *skb, 949 const struct mptcp_ext *mpext) 950 { 951 if (!tcp_skb_can_collapse_to(skb)) 952 return false; 953 954 /* can collapse only if MPTCP level sequence is in order and this 955 * mapping has not been xmitted yet 956 */ 957 return mpext && mpext->data_seq + mpext->data_len == write_seq && 958 !mpext->frozen; 959 } 960 961 /* we can append data to the given data frag if: 962 * - there is space available in the backing page_frag 963 * - the data frag tail matches the current page_frag free offset 964 * - the data frag end sequence number matches the current write seq 965 */ 966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 967 const struct page_frag *pfrag, 968 const struct mptcp_data_frag *df) 969 { 970 return df && pfrag->page == df->page && 971 pfrag->size - pfrag->offset > 0 && 972 pfrag->offset == (df->offset + df->data_len) && 973 df->data_seq + df->data_len == msk->write_seq; 974 } 975 976 static void dfrag_uncharge(struct sock *sk, int len) 977 { 978 sk_mem_uncharge(sk, len); 979 sk_wmem_queued_add(sk, -len); 980 } 981 982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 983 { 984 int len = dfrag->data_len + dfrag->overhead; 985 986 list_del(&dfrag->list); 987 dfrag_uncharge(sk, len); 988 put_page(dfrag->page); 989 } 990 991 /* called under both the msk socket lock and the data lock */ 992 static void __mptcp_clean_una(struct sock *sk) 993 { 994 struct mptcp_sock *msk = mptcp_sk(sk); 995 struct mptcp_data_frag *dtmp, *dfrag; 996 u64 snd_una; 997 998 snd_una = msk->snd_una; 999 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1000 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1001 break; 1002 1003 if (unlikely(dfrag == msk->first_pending)) { 1004 /* in recovery mode can see ack after the current snd head */ 1005 if (WARN_ON_ONCE(!msk->recovery)) 1006 break; 1007 1008 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1009 } 1010 1011 dfrag_clear(sk, dfrag); 1012 } 1013 1014 dfrag = mptcp_rtx_head(sk); 1015 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1016 u64 delta = snd_una - dfrag->data_seq; 1017 1018 /* prevent wrap around in recovery mode */ 1019 if (unlikely(delta > dfrag->already_sent)) { 1020 if (WARN_ON_ONCE(!msk->recovery)) 1021 goto out; 1022 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1023 goto out; 1024 dfrag->already_sent += delta - dfrag->already_sent; 1025 } 1026 1027 dfrag->data_seq += delta; 1028 dfrag->offset += delta; 1029 dfrag->data_len -= delta; 1030 dfrag->already_sent -= delta; 1031 1032 dfrag_uncharge(sk, delta); 1033 } 1034 1035 /* all retransmitted data acked, recovery completed */ 1036 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1037 msk->recovery = false; 1038 1039 out: 1040 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1041 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1042 mptcp_stop_rtx_timer(sk); 1043 } else { 1044 mptcp_reset_rtx_timer(sk); 1045 } 1046 1047 if (mptcp_pending_data_fin_ack(sk)) 1048 mptcp_schedule_work(sk); 1049 } 1050 1051 static void __mptcp_clean_una_wakeup(struct sock *sk) 1052 { 1053 lockdep_assert_held_once(&sk->sk_lock.slock); 1054 1055 __mptcp_clean_una(sk); 1056 mptcp_write_space(sk); 1057 } 1058 1059 static void mptcp_clean_una_wakeup(struct sock *sk) 1060 { 1061 mptcp_data_lock(sk); 1062 __mptcp_clean_una_wakeup(sk); 1063 mptcp_data_unlock(sk); 1064 } 1065 1066 static void mptcp_enter_memory_pressure(struct sock *sk) 1067 { 1068 struct mptcp_subflow_context *subflow; 1069 struct mptcp_sock *msk = mptcp_sk(sk); 1070 bool first = true; 1071 1072 mptcp_for_each_subflow(msk, subflow) { 1073 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1074 1075 if (first) 1076 tcp_enter_memory_pressure(ssk); 1077 sk_stream_moderate_sndbuf(ssk); 1078 1079 first = false; 1080 } 1081 __mptcp_sync_sndbuf(sk); 1082 } 1083 1084 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1085 * data 1086 */ 1087 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1088 { 1089 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1090 pfrag, sk->sk_allocation))) 1091 return true; 1092 1093 mptcp_enter_memory_pressure(sk); 1094 return false; 1095 } 1096 1097 static struct mptcp_data_frag * 1098 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1099 int orig_offset) 1100 { 1101 int offset = ALIGN(orig_offset, sizeof(long)); 1102 struct mptcp_data_frag *dfrag; 1103 1104 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1105 dfrag->data_len = 0; 1106 dfrag->data_seq = msk->write_seq; 1107 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1108 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1109 dfrag->already_sent = 0; 1110 dfrag->page = pfrag->page; 1111 1112 return dfrag; 1113 } 1114 1115 struct mptcp_sendmsg_info { 1116 int mss_now; 1117 int size_goal; 1118 u16 limit; 1119 u16 sent; 1120 unsigned int flags; 1121 bool data_lock_held; 1122 }; 1123 1124 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1125 u64 data_seq, int avail_size) 1126 { 1127 u64 window_end = mptcp_wnd_end(msk); 1128 u64 mptcp_snd_wnd; 1129 1130 if (__mptcp_check_fallback(msk)) 1131 return avail_size; 1132 1133 mptcp_snd_wnd = window_end - data_seq; 1134 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1135 1136 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1137 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1138 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1139 } 1140 1141 return avail_size; 1142 } 1143 1144 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1145 { 1146 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1147 1148 if (!mpext) 1149 return false; 1150 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1151 return true; 1152 } 1153 1154 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1155 { 1156 struct sk_buff *skb; 1157 1158 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1159 if (likely(skb)) { 1160 if (likely(__mptcp_add_ext(skb, gfp))) { 1161 skb_reserve(skb, MAX_TCP_HEADER); 1162 skb->ip_summed = CHECKSUM_PARTIAL; 1163 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1164 return skb; 1165 } 1166 __kfree_skb(skb); 1167 } else { 1168 mptcp_enter_memory_pressure(sk); 1169 } 1170 return NULL; 1171 } 1172 1173 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1174 { 1175 struct sk_buff *skb; 1176 1177 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1178 if (!skb) 1179 return NULL; 1180 1181 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1182 tcp_skb_entail(ssk, skb); 1183 return skb; 1184 } 1185 tcp_skb_tsorted_anchor_cleanup(skb); 1186 kfree_skb(skb); 1187 return NULL; 1188 } 1189 1190 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1191 { 1192 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1193 1194 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1195 } 1196 1197 /* note: this always recompute the csum on the whole skb, even 1198 * if we just appended a single frag. More status info needed 1199 */ 1200 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1201 { 1202 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1203 __wsum csum = ~csum_unfold(mpext->csum); 1204 int offset = skb->len - added; 1205 1206 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1207 } 1208 1209 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1210 struct sock *ssk, 1211 struct mptcp_ext *mpext) 1212 { 1213 if (!mpext) 1214 return; 1215 1216 mpext->infinite_map = 1; 1217 mpext->data_len = 0; 1218 1219 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1220 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1221 pr_fallback(msk); 1222 mptcp_do_fallback(ssk); 1223 } 1224 1225 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1226 1227 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1228 struct mptcp_data_frag *dfrag, 1229 struct mptcp_sendmsg_info *info) 1230 { 1231 u64 data_seq = dfrag->data_seq + info->sent; 1232 int offset = dfrag->offset + info->sent; 1233 struct mptcp_sock *msk = mptcp_sk(sk); 1234 bool zero_window_probe = false; 1235 struct mptcp_ext *mpext = NULL; 1236 bool can_coalesce = false; 1237 bool reuse_skb = true; 1238 struct sk_buff *skb; 1239 size_t copy; 1240 int i; 1241 1242 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1243 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1244 1245 if (WARN_ON_ONCE(info->sent > info->limit || 1246 info->limit > dfrag->data_len)) 1247 return 0; 1248 1249 if (unlikely(!__tcp_can_send(ssk))) 1250 return -EAGAIN; 1251 1252 /* compute send limit */ 1253 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1254 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1255 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1256 copy = info->size_goal; 1257 1258 skb = tcp_write_queue_tail(ssk); 1259 if (skb && copy > skb->len) { 1260 /* Limit the write to the size available in the 1261 * current skb, if any, so that we create at most a new skb. 1262 * Explicitly tells TCP internals to avoid collapsing on later 1263 * queue management operation, to avoid breaking the ext <-> 1264 * SSN association set here 1265 */ 1266 mpext = mptcp_get_ext(skb); 1267 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1268 TCP_SKB_CB(skb)->eor = 1; 1269 tcp_mark_push(tcp_sk(ssk), skb); 1270 goto alloc_skb; 1271 } 1272 1273 i = skb_shinfo(skb)->nr_frags; 1274 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1275 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1276 tcp_mark_push(tcp_sk(ssk), skb); 1277 goto alloc_skb; 1278 } 1279 1280 copy -= skb->len; 1281 } else { 1282 alloc_skb: 1283 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1284 if (!skb) 1285 return -ENOMEM; 1286 1287 i = skb_shinfo(skb)->nr_frags; 1288 reuse_skb = false; 1289 mpext = mptcp_get_ext(skb); 1290 } 1291 1292 /* Zero window and all data acked? Probe. */ 1293 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1294 if (copy == 0) { 1295 u64 snd_una = READ_ONCE(msk->snd_una); 1296 1297 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1298 tcp_remove_empty_skb(ssk); 1299 return 0; 1300 } 1301 1302 zero_window_probe = true; 1303 data_seq = snd_una - 1; 1304 copy = 1; 1305 } 1306 1307 copy = min_t(size_t, copy, info->limit - info->sent); 1308 if (!sk_wmem_schedule(ssk, copy)) { 1309 tcp_remove_empty_skb(ssk); 1310 return -ENOMEM; 1311 } 1312 1313 if (can_coalesce) { 1314 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1315 } else { 1316 get_page(dfrag->page); 1317 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1318 } 1319 1320 skb->len += copy; 1321 skb->data_len += copy; 1322 skb->truesize += copy; 1323 sk_wmem_queued_add(ssk, copy); 1324 sk_mem_charge(ssk, copy); 1325 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1326 TCP_SKB_CB(skb)->end_seq += copy; 1327 tcp_skb_pcount_set(skb, 0); 1328 1329 /* on skb reuse we just need to update the DSS len */ 1330 if (reuse_skb) { 1331 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1332 mpext->data_len += copy; 1333 goto out; 1334 } 1335 1336 memset(mpext, 0, sizeof(*mpext)); 1337 mpext->data_seq = data_seq; 1338 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1339 mpext->data_len = copy; 1340 mpext->use_map = 1; 1341 mpext->dsn64 = 1; 1342 1343 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1344 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1345 mpext->dsn64); 1346 1347 if (zero_window_probe) { 1348 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1349 mpext->frozen = 1; 1350 if (READ_ONCE(msk->csum_enabled)) 1351 mptcp_update_data_checksum(skb, copy); 1352 tcp_push_pending_frames(ssk); 1353 return 0; 1354 } 1355 out: 1356 if (READ_ONCE(msk->csum_enabled)) 1357 mptcp_update_data_checksum(skb, copy); 1358 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1359 mptcp_update_infinite_map(msk, ssk, mpext); 1360 trace_mptcp_sendmsg_frag(mpext); 1361 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1362 return copy; 1363 } 1364 1365 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1366 sizeof(struct tcphdr) - \ 1367 MAX_TCP_OPTION_SPACE - \ 1368 sizeof(struct ipv6hdr) - \ 1369 sizeof(struct frag_hdr)) 1370 1371 struct subflow_send_info { 1372 struct sock *ssk; 1373 u64 linger_time; 1374 }; 1375 1376 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1377 { 1378 if (!subflow->stale) 1379 return; 1380 1381 subflow->stale = 0; 1382 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1383 } 1384 1385 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1386 { 1387 if (unlikely(subflow->stale)) { 1388 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1389 1390 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1391 return false; 1392 1393 mptcp_subflow_set_active(subflow); 1394 } 1395 return __mptcp_subflow_active(subflow); 1396 } 1397 1398 #define SSK_MODE_ACTIVE 0 1399 #define SSK_MODE_BACKUP 1 1400 #define SSK_MODE_MAX 2 1401 1402 /* implement the mptcp packet scheduler; 1403 * returns the subflow that will transmit the next DSS 1404 * additionally updates the rtx timeout 1405 */ 1406 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1407 { 1408 struct subflow_send_info send_info[SSK_MODE_MAX]; 1409 struct mptcp_subflow_context *subflow; 1410 struct sock *sk = (struct sock *)msk; 1411 u32 pace, burst, wmem; 1412 int i, nr_active = 0; 1413 struct sock *ssk; 1414 u64 linger_time; 1415 long tout = 0; 1416 1417 /* pick the subflow with the lower wmem/wspace ratio */ 1418 for (i = 0; i < SSK_MODE_MAX; ++i) { 1419 send_info[i].ssk = NULL; 1420 send_info[i].linger_time = -1; 1421 } 1422 1423 mptcp_for_each_subflow(msk, subflow) { 1424 trace_mptcp_subflow_get_send(subflow); 1425 ssk = mptcp_subflow_tcp_sock(subflow); 1426 if (!mptcp_subflow_active(subflow)) 1427 continue; 1428 1429 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1430 nr_active += !subflow->backup; 1431 pace = subflow->avg_pacing_rate; 1432 if (unlikely(!pace)) { 1433 /* init pacing rate from socket */ 1434 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1435 pace = subflow->avg_pacing_rate; 1436 if (!pace) 1437 continue; 1438 } 1439 1440 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1441 if (linger_time < send_info[subflow->backup].linger_time) { 1442 send_info[subflow->backup].ssk = ssk; 1443 send_info[subflow->backup].linger_time = linger_time; 1444 } 1445 } 1446 __mptcp_set_timeout(sk, tout); 1447 1448 /* pick the best backup if no other subflow is active */ 1449 if (!nr_active) 1450 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1451 1452 /* According to the blest algorithm, to avoid HoL blocking for the 1453 * faster flow, we need to: 1454 * - estimate the faster flow linger time 1455 * - use the above to estimate the amount of byte transferred 1456 * by the faster flow 1457 * - check that the amount of queued data is greter than the above, 1458 * otherwise do not use the picked, slower, subflow 1459 * We select the subflow with the shorter estimated time to flush 1460 * the queued mem, which basically ensure the above. We just need 1461 * to check that subflow has a non empty cwin. 1462 */ 1463 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1464 if (!ssk || !sk_stream_memory_free(ssk)) 1465 return NULL; 1466 1467 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1468 wmem = READ_ONCE(ssk->sk_wmem_queued); 1469 if (!burst) 1470 return ssk; 1471 1472 subflow = mptcp_subflow_ctx(ssk); 1473 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1474 READ_ONCE(ssk->sk_pacing_rate) * burst, 1475 burst + wmem); 1476 msk->snd_burst = burst; 1477 return ssk; 1478 } 1479 1480 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1481 { 1482 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1483 release_sock(ssk); 1484 } 1485 1486 static void mptcp_update_post_push(struct mptcp_sock *msk, 1487 struct mptcp_data_frag *dfrag, 1488 u32 sent) 1489 { 1490 u64 snd_nxt_new = dfrag->data_seq; 1491 1492 dfrag->already_sent += sent; 1493 1494 msk->snd_burst -= sent; 1495 1496 snd_nxt_new += dfrag->already_sent; 1497 1498 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1499 * is recovering after a failover. In that event, this re-sends 1500 * old segments. 1501 * 1502 * Thus compute snd_nxt_new candidate based on 1503 * the dfrag->data_seq that was sent and the data 1504 * that has been handed to the subflow for transmission 1505 * and skip update in case it was old dfrag. 1506 */ 1507 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1508 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1509 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1510 } 1511 } 1512 1513 void mptcp_check_and_set_pending(struct sock *sk) 1514 { 1515 if (mptcp_send_head(sk)) { 1516 mptcp_data_lock(sk); 1517 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1518 mptcp_data_unlock(sk); 1519 } 1520 } 1521 1522 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1523 struct mptcp_sendmsg_info *info) 1524 { 1525 struct mptcp_sock *msk = mptcp_sk(sk); 1526 struct mptcp_data_frag *dfrag; 1527 int len, copied = 0, err = 0; 1528 1529 while ((dfrag = mptcp_send_head(sk))) { 1530 info->sent = dfrag->already_sent; 1531 info->limit = dfrag->data_len; 1532 len = dfrag->data_len - dfrag->already_sent; 1533 while (len > 0) { 1534 int ret = 0; 1535 1536 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1537 if (ret <= 0) { 1538 err = copied ? : ret; 1539 goto out; 1540 } 1541 1542 info->sent += ret; 1543 copied += ret; 1544 len -= ret; 1545 1546 mptcp_update_post_push(msk, dfrag, ret); 1547 } 1548 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1549 1550 if (msk->snd_burst <= 0 || 1551 !sk_stream_memory_free(ssk) || 1552 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1553 err = copied; 1554 goto out; 1555 } 1556 mptcp_set_timeout(sk); 1557 } 1558 err = copied; 1559 1560 out: 1561 if (err > 0) 1562 msk->last_data_sent = tcp_jiffies32; 1563 return err; 1564 } 1565 1566 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1567 { 1568 struct sock *prev_ssk = NULL, *ssk = NULL; 1569 struct mptcp_sock *msk = mptcp_sk(sk); 1570 struct mptcp_sendmsg_info info = { 1571 .flags = flags, 1572 }; 1573 bool do_check_data_fin = false; 1574 int push_count = 1; 1575 1576 while (mptcp_send_head(sk) && (push_count > 0)) { 1577 struct mptcp_subflow_context *subflow; 1578 int ret = 0; 1579 1580 if (mptcp_sched_get_send(msk)) 1581 break; 1582 1583 push_count = 0; 1584 1585 mptcp_for_each_subflow(msk, subflow) { 1586 if (READ_ONCE(subflow->scheduled)) { 1587 mptcp_subflow_set_scheduled(subflow, false); 1588 1589 prev_ssk = ssk; 1590 ssk = mptcp_subflow_tcp_sock(subflow); 1591 if (ssk != prev_ssk) { 1592 /* First check. If the ssk has changed since 1593 * the last round, release prev_ssk 1594 */ 1595 if (prev_ssk) 1596 mptcp_push_release(prev_ssk, &info); 1597 1598 /* Need to lock the new subflow only if different 1599 * from the previous one, otherwise we are still 1600 * helding the relevant lock 1601 */ 1602 lock_sock(ssk); 1603 } 1604 1605 push_count++; 1606 1607 ret = __subflow_push_pending(sk, ssk, &info); 1608 if (ret <= 0) { 1609 if (ret != -EAGAIN || 1610 (1 << ssk->sk_state) & 1611 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1612 push_count--; 1613 continue; 1614 } 1615 do_check_data_fin = true; 1616 } 1617 } 1618 } 1619 1620 /* at this point we held the socket lock for the last subflow we used */ 1621 if (ssk) 1622 mptcp_push_release(ssk, &info); 1623 1624 /* ensure the rtx timer is running */ 1625 if (!mptcp_rtx_timer_pending(sk)) 1626 mptcp_reset_rtx_timer(sk); 1627 if (do_check_data_fin) 1628 mptcp_check_send_data_fin(sk); 1629 } 1630 1631 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1632 { 1633 struct mptcp_sock *msk = mptcp_sk(sk); 1634 struct mptcp_sendmsg_info info = { 1635 .data_lock_held = true, 1636 }; 1637 bool keep_pushing = true; 1638 struct sock *xmit_ssk; 1639 int copied = 0; 1640 1641 info.flags = 0; 1642 while (mptcp_send_head(sk) && keep_pushing) { 1643 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1644 int ret = 0; 1645 1646 /* check for a different subflow usage only after 1647 * spooling the first chunk of data 1648 */ 1649 if (first) { 1650 mptcp_subflow_set_scheduled(subflow, false); 1651 ret = __subflow_push_pending(sk, ssk, &info); 1652 first = false; 1653 if (ret <= 0) 1654 break; 1655 copied += ret; 1656 continue; 1657 } 1658 1659 if (mptcp_sched_get_send(msk)) 1660 goto out; 1661 1662 if (READ_ONCE(subflow->scheduled)) { 1663 mptcp_subflow_set_scheduled(subflow, false); 1664 ret = __subflow_push_pending(sk, ssk, &info); 1665 if (ret <= 0) 1666 keep_pushing = false; 1667 copied += ret; 1668 } 1669 1670 mptcp_for_each_subflow(msk, subflow) { 1671 if (READ_ONCE(subflow->scheduled)) { 1672 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1673 if (xmit_ssk != ssk) { 1674 mptcp_subflow_delegate(subflow, 1675 MPTCP_DELEGATE_SEND); 1676 keep_pushing = false; 1677 } 1678 } 1679 } 1680 } 1681 1682 out: 1683 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1684 * not going to flush it via release_sock() 1685 */ 1686 if (copied) { 1687 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1688 info.size_goal); 1689 if (!mptcp_rtx_timer_pending(sk)) 1690 mptcp_reset_rtx_timer(sk); 1691 1692 if (msk->snd_data_fin_enable && 1693 msk->snd_nxt + 1 == msk->write_seq) 1694 mptcp_schedule_work(sk); 1695 } 1696 } 1697 1698 static int mptcp_disconnect(struct sock *sk, int flags); 1699 1700 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1701 size_t len, int *copied_syn) 1702 { 1703 unsigned int saved_flags = msg->msg_flags; 1704 struct mptcp_sock *msk = mptcp_sk(sk); 1705 struct sock *ssk; 1706 int ret; 1707 1708 /* on flags based fastopen the mptcp is supposed to create the 1709 * first subflow right now. Otherwise we are in the defer_connect 1710 * path, and the first subflow must be already present. 1711 * Since the defer_connect flag is cleared after the first succsful 1712 * fastopen attempt, no need to check for additional subflow status. 1713 */ 1714 if (msg->msg_flags & MSG_FASTOPEN) { 1715 ssk = __mptcp_nmpc_sk(msk); 1716 if (IS_ERR(ssk)) 1717 return PTR_ERR(ssk); 1718 } 1719 if (!msk->first) 1720 return -EINVAL; 1721 1722 ssk = msk->first; 1723 1724 lock_sock(ssk); 1725 msg->msg_flags |= MSG_DONTWAIT; 1726 msk->fastopening = 1; 1727 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1728 msk->fastopening = 0; 1729 msg->msg_flags = saved_flags; 1730 release_sock(ssk); 1731 1732 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1733 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1734 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1735 msg->msg_namelen, msg->msg_flags, 1); 1736 1737 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1738 * case of any error, except timeout or signal 1739 */ 1740 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1741 *copied_syn = 0; 1742 } else if (ret && ret != -EINPROGRESS) { 1743 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1744 * __inet_stream_connect() can fail, due to looking check, 1745 * see mptcp_disconnect(). 1746 * Attempt it again outside the problematic scope. 1747 */ 1748 if (!mptcp_disconnect(sk, 0)) 1749 sk->sk_socket->state = SS_UNCONNECTED; 1750 } 1751 inet_clear_bit(DEFER_CONNECT, sk); 1752 1753 return ret; 1754 } 1755 1756 static int do_copy_data_nocache(struct sock *sk, int copy, 1757 struct iov_iter *from, char *to) 1758 { 1759 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1760 if (!copy_from_iter_full_nocache(to, copy, from)) 1761 return -EFAULT; 1762 } else if (!copy_from_iter_full(to, copy, from)) { 1763 return -EFAULT; 1764 } 1765 return 0; 1766 } 1767 1768 /* open-code sk_stream_memory_free() plus sent limit computation to 1769 * avoid indirect calls in fast-path. 1770 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1771 * annotations. 1772 */ 1773 static u32 mptcp_send_limit(const struct sock *sk) 1774 { 1775 const struct mptcp_sock *msk = mptcp_sk(sk); 1776 u32 limit, not_sent; 1777 1778 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1779 return 0; 1780 1781 limit = mptcp_notsent_lowat(sk); 1782 if (limit == UINT_MAX) 1783 return UINT_MAX; 1784 1785 not_sent = msk->write_seq - msk->snd_nxt; 1786 if (not_sent >= limit) 1787 return 0; 1788 1789 return limit - not_sent; 1790 } 1791 1792 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1793 { 1794 struct mptcp_sock *msk = mptcp_sk(sk); 1795 struct page_frag *pfrag; 1796 size_t copied = 0; 1797 int ret = 0; 1798 long timeo; 1799 1800 /* silently ignore everything else */ 1801 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1802 1803 lock_sock(sk); 1804 1805 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1806 msg->msg_flags & MSG_FASTOPEN)) { 1807 int copied_syn = 0; 1808 1809 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1810 copied += copied_syn; 1811 if (ret == -EINPROGRESS && copied_syn > 0) 1812 goto out; 1813 else if (ret) 1814 goto do_error; 1815 } 1816 1817 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1818 1819 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1820 ret = sk_stream_wait_connect(sk, &timeo); 1821 if (ret) 1822 goto do_error; 1823 } 1824 1825 ret = -EPIPE; 1826 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1827 goto do_error; 1828 1829 pfrag = sk_page_frag(sk); 1830 1831 while (msg_data_left(msg)) { 1832 int total_ts, frag_truesize = 0; 1833 struct mptcp_data_frag *dfrag; 1834 bool dfrag_collapsed; 1835 size_t psize, offset; 1836 u32 copy_limit; 1837 1838 /* ensure fitting the notsent_lowat() constraint */ 1839 copy_limit = mptcp_send_limit(sk); 1840 if (!copy_limit) 1841 goto wait_for_memory; 1842 1843 /* reuse tail pfrag, if possible, or carve a new one from the 1844 * page allocator 1845 */ 1846 dfrag = mptcp_pending_tail(sk); 1847 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1848 if (!dfrag_collapsed) { 1849 if (!mptcp_page_frag_refill(sk, pfrag)) 1850 goto wait_for_memory; 1851 1852 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1853 frag_truesize = dfrag->overhead; 1854 } 1855 1856 /* we do not bound vs wspace, to allow a single packet. 1857 * memory accounting will prevent execessive memory usage 1858 * anyway 1859 */ 1860 offset = dfrag->offset + dfrag->data_len; 1861 psize = pfrag->size - offset; 1862 psize = min_t(size_t, psize, msg_data_left(msg)); 1863 psize = min_t(size_t, psize, copy_limit); 1864 total_ts = psize + frag_truesize; 1865 1866 if (!sk_wmem_schedule(sk, total_ts)) 1867 goto wait_for_memory; 1868 1869 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1870 page_address(dfrag->page) + offset); 1871 if (ret) 1872 goto do_error; 1873 1874 /* data successfully copied into the write queue */ 1875 sk_forward_alloc_add(sk, -total_ts); 1876 copied += psize; 1877 dfrag->data_len += psize; 1878 frag_truesize += psize; 1879 pfrag->offset += frag_truesize; 1880 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1881 1882 /* charge data on mptcp pending queue to the msk socket 1883 * Note: we charge such data both to sk and ssk 1884 */ 1885 sk_wmem_queued_add(sk, frag_truesize); 1886 if (!dfrag_collapsed) { 1887 get_page(dfrag->page); 1888 list_add_tail(&dfrag->list, &msk->rtx_queue); 1889 if (!msk->first_pending) 1890 WRITE_ONCE(msk->first_pending, dfrag); 1891 } 1892 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1893 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1894 !dfrag_collapsed); 1895 1896 continue; 1897 1898 wait_for_memory: 1899 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1900 __mptcp_push_pending(sk, msg->msg_flags); 1901 ret = sk_stream_wait_memory(sk, &timeo); 1902 if (ret) 1903 goto do_error; 1904 } 1905 1906 if (copied) 1907 __mptcp_push_pending(sk, msg->msg_flags); 1908 1909 out: 1910 release_sock(sk); 1911 return copied; 1912 1913 do_error: 1914 if (copied) 1915 goto out; 1916 1917 copied = sk_stream_error(sk, msg->msg_flags, ret); 1918 goto out; 1919 } 1920 1921 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1922 struct msghdr *msg, 1923 size_t len, int flags, 1924 struct scm_timestamping_internal *tss, 1925 int *cmsg_flags) 1926 { 1927 struct sk_buff *skb, *tmp; 1928 int copied = 0; 1929 1930 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1931 u32 offset = MPTCP_SKB_CB(skb)->offset; 1932 u32 data_len = skb->len - offset; 1933 u32 count = min_t(size_t, len - copied, data_len); 1934 int err; 1935 1936 if (!(flags & MSG_TRUNC)) { 1937 err = skb_copy_datagram_msg(skb, offset, msg, count); 1938 if (unlikely(err < 0)) { 1939 if (!copied) 1940 return err; 1941 break; 1942 } 1943 } 1944 1945 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1946 tcp_update_recv_tstamps(skb, tss); 1947 *cmsg_flags |= MPTCP_CMSG_TS; 1948 } 1949 1950 copied += count; 1951 1952 if (count < data_len) { 1953 if (!(flags & MSG_PEEK)) { 1954 MPTCP_SKB_CB(skb)->offset += count; 1955 MPTCP_SKB_CB(skb)->map_seq += count; 1956 msk->bytes_consumed += count; 1957 } 1958 break; 1959 } 1960 1961 if (!(flags & MSG_PEEK)) { 1962 /* we will bulk release the skb memory later */ 1963 skb->destructor = NULL; 1964 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1965 __skb_unlink(skb, &msk->receive_queue); 1966 __kfree_skb(skb); 1967 msk->bytes_consumed += count; 1968 } 1969 1970 if (copied >= len) 1971 break; 1972 } 1973 1974 return copied; 1975 } 1976 1977 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1978 * 1979 * Only difference: Use highest rtt estimate of the subflows in use. 1980 */ 1981 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1982 { 1983 struct mptcp_subflow_context *subflow; 1984 struct sock *sk = (struct sock *)msk; 1985 u8 scaling_ratio = U8_MAX; 1986 u32 time, advmss = 1; 1987 u64 rtt_us, mstamp; 1988 1989 msk_owned_by_me(msk); 1990 1991 if (copied <= 0) 1992 return; 1993 1994 if (!msk->rcvspace_init) 1995 mptcp_rcv_space_init(msk, msk->first); 1996 1997 msk->rcvq_space.copied += copied; 1998 1999 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2000 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2001 2002 rtt_us = msk->rcvq_space.rtt_us; 2003 if (rtt_us && time < (rtt_us >> 3)) 2004 return; 2005 2006 rtt_us = 0; 2007 mptcp_for_each_subflow(msk, subflow) { 2008 const struct tcp_sock *tp; 2009 u64 sf_rtt_us; 2010 u32 sf_advmss; 2011 2012 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2013 2014 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2015 sf_advmss = READ_ONCE(tp->advmss); 2016 2017 rtt_us = max(sf_rtt_us, rtt_us); 2018 advmss = max(sf_advmss, advmss); 2019 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2020 } 2021 2022 msk->rcvq_space.rtt_us = rtt_us; 2023 msk->scaling_ratio = scaling_ratio; 2024 if (time < (rtt_us >> 3) || rtt_us == 0) 2025 return; 2026 2027 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2028 goto new_measure; 2029 2030 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2031 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2032 u64 rcvwin, grow; 2033 int rcvbuf; 2034 2035 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2036 2037 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2038 2039 do_div(grow, msk->rcvq_space.space); 2040 rcvwin += (grow << 1); 2041 2042 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2043 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2044 2045 if (rcvbuf > sk->sk_rcvbuf) { 2046 u32 window_clamp; 2047 2048 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2049 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2050 2051 /* Make subflows follow along. If we do not do this, we 2052 * get drops at subflow level if skbs can't be moved to 2053 * the mptcp rx queue fast enough (announced rcv_win can 2054 * exceed ssk->sk_rcvbuf). 2055 */ 2056 mptcp_for_each_subflow(msk, subflow) { 2057 struct sock *ssk; 2058 bool slow; 2059 2060 ssk = mptcp_subflow_tcp_sock(subflow); 2061 slow = lock_sock_fast(ssk); 2062 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2063 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2064 tcp_cleanup_rbuf(ssk, 1); 2065 unlock_sock_fast(ssk, slow); 2066 } 2067 } 2068 } 2069 2070 msk->rcvq_space.space = msk->rcvq_space.copied; 2071 new_measure: 2072 msk->rcvq_space.copied = 0; 2073 msk->rcvq_space.time = mstamp; 2074 } 2075 2076 static void __mptcp_update_rmem(struct sock *sk) 2077 { 2078 struct mptcp_sock *msk = mptcp_sk(sk); 2079 2080 if (!msk->rmem_released) 2081 return; 2082 2083 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2084 mptcp_rmem_uncharge(sk, msk->rmem_released); 2085 WRITE_ONCE(msk->rmem_released, 0); 2086 } 2087 2088 static void __mptcp_splice_receive_queue(struct sock *sk) 2089 { 2090 struct mptcp_sock *msk = mptcp_sk(sk); 2091 2092 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2093 } 2094 2095 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2096 { 2097 struct sock *sk = (struct sock *)msk; 2098 unsigned int moved = 0; 2099 bool ret, done; 2100 2101 do { 2102 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2103 bool slowpath; 2104 2105 /* we can have data pending in the subflows only if the msk 2106 * receive buffer was full at subflow_data_ready() time, 2107 * that is an unlikely slow path. 2108 */ 2109 if (likely(!ssk)) 2110 break; 2111 2112 slowpath = lock_sock_fast(ssk); 2113 mptcp_data_lock(sk); 2114 __mptcp_update_rmem(sk); 2115 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2116 mptcp_data_unlock(sk); 2117 2118 if (unlikely(ssk->sk_err)) 2119 __mptcp_error_report(sk); 2120 unlock_sock_fast(ssk, slowpath); 2121 } while (!done); 2122 2123 /* acquire the data lock only if some input data is pending */ 2124 ret = moved > 0; 2125 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2126 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2127 mptcp_data_lock(sk); 2128 __mptcp_update_rmem(sk); 2129 ret |= __mptcp_ofo_queue(msk); 2130 __mptcp_splice_receive_queue(sk); 2131 mptcp_data_unlock(sk); 2132 } 2133 if (ret) 2134 mptcp_check_data_fin((struct sock *)msk); 2135 return !skb_queue_empty(&msk->receive_queue); 2136 } 2137 2138 static unsigned int mptcp_inq_hint(const struct sock *sk) 2139 { 2140 const struct mptcp_sock *msk = mptcp_sk(sk); 2141 const struct sk_buff *skb; 2142 2143 skb = skb_peek(&msk->receive_queue); 2144 if (skb) { 2145 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2146 2147 if (hint_val >= INT_MAX) 2148 return INT_MAX; 2149 2150 return (unsigned int)hint_val; 2151 } 2152 2153 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2154 return 1; 2155 2156 return 0; 2157 } 2158 2159 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2160 int flags, int *addr_len) 2161 { 2162 struct mptcp_sock *msk = mptcp_sk(sk); 2163 struct scm_timestamping_internal tss; 2164 int copied = 0, cmsg_flags = 0; 2165 int target; 2166 long timeo; 2167 2168 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2169 if (unlikely(flags & MSG_ERRQUEUE)) 2170 return inet_recv_error(sk, msg, len, addr_len); 2171 2172 lock_sock(sk); 2173 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2174 copied = -ENOTCONN; 2175 goto out_err; 2176 } 2177 2178 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2179 2180 len = min_t(size_t, len, INT_MAX); 2181 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2182 2183 if (unlikely(msk->recvmsg_inq)) 2184 cmsg_flags = MPTCP_CMSG_INQ; 2185 2186 while (copied < len) { 2187 int bytes_read; 2188 2189 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2190 if (unlikely(bytes_read < 0)) { 2191 if (!copied) 2192 copied = bytes_read; 2193 goto out_err; 2194 } 2195 2196 copied += bytes_read; 2197 2198 /* be sure to advertise window change */ 2199 mptcp_cleanup_rbuf(msk); 2200 2201 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2202 continue; 2203 2204 /* only the master socket status is relevant here. The exit 2205 * conditions mirror closely tcp_recvmsg() 2206 */ 2207 if (copied >= target) 2208 break; 2209 2210 if (copied) { 2211 if (sk->sk_err || 2212 sk->sk_state == TCP_CLOSE || 2213 (sk->sk_shutdown & RCV_SHUTDOWN) || 2214 !timeo || 2215 signal_pending(current)) 2216 break; 2217 } else { 2218 if (sk->sk_err) { 2219 copied = sock_error(sk); 2220 break; 2221 } 2222 2223 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2224 /* race breaker: the shutdown could be after the 2225 * previous receive queue check 2226 */ 2227 if (__mptcp_move_skbs(msk)) 2228 continue; 2229 break; 2230 } 2231 2232 if (sk->sk_state == TCP_CLOSE) { 2233 copied = -ENOTCONN; 2234 break; 2235 } 2236 2237 if (!timeo) { 2238 copied = -EAGAIN; 2239 break; 2240 } 2241 2242 if (signal_pending(current)) { 2243 copied = sock_intr_errno(timeo); 2244 break; 2245 } 2246 } 2247 2248 pr_debug("block timeout %ld", timeo); 2249 sk_wait_data(sk, &timeo, NULL); 2250 } 2251 2252 out_err: 2253 if (cmsg_flags && copied >= 0) { 2254 if (cmsg_flags & MPTCP_CMSG_TS) 2255 tcp_recv_timestamp(msg, sk, &tss); 2256 2257 if (cmsg_flags & MPTCP_CMSG_INQ) { 2258 unsigned int inq = mptcp_inq_hint(sk); 2259 2260 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2261 } 2262 } 2263 2264 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2265 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2266 skb_queue_empty(&msk->receive_queue), copied); 2267 if (!(flags & MSG_PEEK)) 2268 mptcp_rcv_space_adjust(msk, copied); 2269 2270 release_sock(sk); 2271 return copied; 2272 } 2273 2274 static void mptcp_retransmit_timer(struct timer_list *t) 2275 { 2276 struct inet_connection_sock *icsk = from_timer(icsk, t, 2277 icsk_retransmit_timer); 2278 struct sock *sk = &icsk->icsk_inet.sk; 2279 struct mptcp_sock *msk = mptcp_sk(sk); 2280 2281 bh_lock_sock(sk); 2282 if (!sock_owned_by_user(sk)) { 2283 /* we need a process context to retransmit */ 2284 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2285 mptcp_schedule_work(sk); 2286 } else { 2287 /* delegate our work to tcp_release_cb() */ 2288 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2289 } 2290 bh_unlock_sock(sk); 2291 sock_put(sk); 2292 } 2293 2294 static void mptcp_tout_timer(struct timer_list *t) 2295 { 2296 struct sock *sk = from_timer(sk, t, sk_timer); 2297 2298 mptcp_schedule_work(sk); 2299 sock_put(sk); 2300 } 2301 2302 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2303 * level. 2304 * 2305 * A backup subflow is returned only if that is the only kind available. 2306 */ 2307 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2308 { 2309 struct sock *backup = NULL, *pick = NULL; 2310 struct mptcp_subflow_context *subflow; 2311 int min_stale_count = INT_MAX; 2312 2313 mptcp_for_each_subflow(msk, subflow) { 2314 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2315 2316 if (!__mptcp_subflow_active(subflow)) 2317 continue; 2318 2319 /* still data outstanding at TCP level? skip this */ 2320 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2321 mptcp_pm_subflow_chk_stale(msk, ssk); 2322 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2323 continue; 2324 } 2325 2326 if (subflow->backup) { 2327 if (!backup) 2328 backup = ssk; 2329 continue; 2330 } 2331 2332 if (!pick) 2333 pick = ssk; 2334 } 2335 2336 if (pick) 2337 return pick; 2338 2339 /* use backup only if there are no progresses anywhere */ 2340 return min_stale_count > 1 ? backup : NULL; 2341 } 2342 2343 bool __mptcp_retransmit_pending_data(struct sock *sk) 2344 { 2345 struct mptcp_data_frag *cur, *rtx_head; 2346 struct mptcp_sock *msk = mptcp_sk(sk); 2347 2348 if (__mptcp_check_fallback(msk)) 2349 return false; 2350 2351 /* the closing socket has some data untransmitted and/or unacked: 2352 * some data in the mptcp rtx queue has not really xmitted yet. 2353 * keep it simple and re-inject the whole mptcp level rtx queue 2354 */ 2355 mptcp_data_lock(sk); 2356 __mptcp_clean_una_wakeup(sk); 2357 rtx_head = mptcp_rtx_head(sk); 2358 if (!rtx_head) { 2359 mptcp_data_unlock(sk); 2360 return false; 2361 } 2362 2363 msk->recovery_snd_nxt = msk->snd_nxt; 2364 msk->recovery = true; 2365 mptcp_data_unlock(sk); 2366 2367 msk->first_pending = rtx_head; 2368 msk->snd_burst = 0; 2369 2370 /* be sure to clear the "sent status" on all re-injected fragments */ 2371 list_for_each_entry(cur, &msk->rtx_queue, list) { 2372 if (!cur->already_sent) 2373 break; 2374 cur->already_sent = 0; 2375 } 2376 2377 return true; 2378 } 2379 2380 /* flags for __mptcp_close_ssk() */ 2381 #define MPTCP_CF_PUSH BIT(1) 2382 #define MPTCP_CF_FASTCLOSE BIT(2) 2383 2384 /* be sure to send a reset only if the caller asked for it, also 2385 * clean completely the subflow status when the subflow reaches 2386 * TCP_CLOSE state 2387 */ 2388 static void __mptcp_subflow_disconnect(struct sock *ssk, 2389 struct mptcp_subflow_context *subflow, 2390 unsigned int flags) 2391 { 2392 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2393 (flags & MPTCP_CF_FASTCLOSE)) { 2394 /* The MPTCP code never wait on the subflow sockets, TCP-level 2395 * disconnect should never fail 2396 */ 2397 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2398 mptcp_subflow_ctx_reset(subflow); 2399 } else { 2400 tcp_shutdown(ssk, SEND_SHUTDOWN); 2401 } 2402 } 2403 2404 /* subflow sockets can be either outgoing (connect) or incoming 2405 * (accept). 2406 * 2407 * Outgoing subflows use in-kernel sockets. 2408 * Incoming subflows do not have their own 'struct socket' allocated, 2409 * so we need to use tcp_close() after detaching them from the mptcp 2410 * parent socket. 2411 */ 2412 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2413 struct mptcp_subflow_context *subflow, 2414 unsigned int flags) 2415 { 2416 struct mptcp_sock *msk = mptcp_sk(sk); 2417 bool dispose_it, need_push = false; 2418 2419 /* If the first subflow moved to a close state before accept, e.g. due 2420 * to an incoming reset or listener shutdown, the subflow socket is 2421 * already deleted by inet_child_forget() and the mptcp socket can't 2422 * survive too. 2423 */ 2424 if (msk->in_accept_queue && msk->first == ssk && 2425 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2426 /* ensure later check in mptcp_worker() will dispose the msk */ 2427 sock_set_flag(sk, SOCK_DEAD); 2428 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2429 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2430 mptcp_subflow_drop_ctx(ssk); 2431 goto out_release; 2432 } 2433 2434 dispose_it = msk->free_first || ssk != msk->first; 2435 if (dispose_it) 2436 list_del(&subflow->node); 2437 2438 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2439 2440 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2441 /* be sure to force the tcp_close path 2442 * to generate the egress reset 2443 */ 2444 ssk->sk_lingertime = 0; 2445 sock_set_flag(ssk, SOCK_LINGER); 2446 subflow->send_fastclose = 1; 2447 } 2448 2449 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2450 if (!dispose_it) { 2451 __mptcp_subflow_disconnect(ssk, subflow, flags); 2452 release_sock(ssk); 2453 2454 goto out; 2455 } 2456 2457 subflow->disposable = 1; 2458 2459 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2460 * the ssk has been already destroyed, we just need to release the 2461 * reference owned by msk; 2462 */ 2463 if (!inet_csk(ssk)->icsk_ulp_ops) { 2464 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2465 kfree_rcu(subflow, rcu); 2466 } else { 2467 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2468 __tcp_close(ssk, 0); 2469 2470 /* close acquired an extra ref */ 2471 __sock_put(ssk); 2472 } 2473 2474 out_release: 2475 __mptcp_subflow_error_report(sk, ssk); 2476 release_sock(ssk); 2477 2478 sock_put(ssk); 2479 2480 if (ssk == msk->first) 2481 WRITE_ONCE(msk->first, NULL); 2482 2483 out: 2484 __mptcp_sync_sndbuf(sk); 2485 if (need_push) 2486 __mptcp_push_pending(sk, 0); 2487 2488 /* Catch every 'all subflows closed' scenario, including peers silently 2489 * closing them, e.g. due to timeout. 2490 * For established sockets, allow an additional timeout before closing, 2491 * as the protocol can still create more subflows. 2492 */ 2493 if (list_is_singular(&msk->conn_list) && msk->first && 2494 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2495 if (sk->sk_state != TCP_ESTABLISHED || 2496 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2497 mptcp_set_state(sk, TCP_CLOSE); 2498 mptcp_close_wake_up(sk); 2499 } else { 2500 mptcp_start_tout_timer(sk); 2501 } 2502 } 2503 } 2504 2505 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2506 struct mptcp_subflow_context *subflow) 2507 { 2508 if (sk->sk_state == TCP_ESTABLISHED) 2509 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2510 2511 /* subflow aborted before reaching the fully_established status 2512 * attempt the creation of the next subflow 2513 */ 2514 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2515 2516 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2517 } 2518 2519 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2520 { 2521 return 0; 2522 } 2523 2524 static void __mptcp_close_subflow(struct sock *sk) 2525 { 2526 struct mptcp_subflow_context *subflow, *tmp; 2527 struct mptcp_sock *msk = mptcp_sk(sk); 2528 2529 might_sleep(); 2530 2531 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2532 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2533 2534 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2535 continue; 2536 2537 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2538 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2539 continue; 2540 2541 mptcp_close_ssk(sk, ssk, subflow); 2542 } 2543 2544 } 2545 2546 static bool mptcp_close_tout_expired(const struct sock *sk) 2547 { 2548 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2549 sk->sk_state == TCP_CLOSE) 2550 return false; 2551 2552 return time_after32(tcp_jiffies32, 2553 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2554 } 2555 2556 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2557 { 2558 struct mptcp_subflow_context *subflow, *tmp; 2559 struct sock *sk = (struct sock *)msk; 2560 2561 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2562 return; 2563 2564 mptcp_token_destroy(msk); 2565 2566 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2567 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2568 bool slow; 2569 2570 slow = lock_sock_fast(tcp_sk); 2571 if (tcp_sk->sk_state != TCP_CLOSE) { 2572 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2573 tcp_set_state(tcp_sk, TCP_CLOSE); 2574 } 2575 unlock_sock_fast(tcp_sk, slow); 2576 } 2577 2578 /* Mirror the tcp_reset() error propagation */ 2579 switch (sk->sk_state) { 2580 case TCP_SYN_SENT: 2581 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2582 break; 2583 case TCP_CLOSE_WAIT: 2584 WRITE_ONCE(sk->sk_err, EPIPE); 2585 break; 2586 case TCP_CLOSE: 2587 return; 2588 default: 2589 WRITE_ONCE(sk->sk_err, ECONNRESET); 2590 } 2591 2592 mptcp_set_state(sk, TCP_CLOSE); 2593 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2594 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2595 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2596 2597 /* the calling mptcp_worker will properly destroy the socket */ 2598 if (sock_flag(sk, SOCK_DEAD)) 2599 return; 2600 2601 sk->sk_state_change(sk); 2602 sk_error_report(sk); 2603 } 2604 2605 static void __mptcp_retrans(struct sock *sk) 2606 { 2607 struct mptcp_sock *msk = mptcp_sk(sk); 2608 struct mptcp_subflow_context *subflow; 2609 struct mptcp_sendmsg_info info = {}; 2610 struct mptcp_data_frag *dfrag; 2611 struct sock *ssk; 2612 int ret, err; 2613 u16 len = 0; 2614 2615 mptcp_clean_una_wakeup(sk); 2616 2617 /* first check ssk: need to kick "stale" logic */ 2618 err = mptcp_sched_get_retrans(msk); 2619 dfrag = mptcp_rtx_head(sk); 2620 if (!dfrag) { 2621 if (mptcp_data_fin_enabled(msk)) { 2622 struct inet_connection_sock *icsk = inet_csk(sk); 2623 2624 icsk->icsk_retransmits++; 2625 mptcp_set_datafin_timeout(sk); 2626 mptcp_send_ack(msk); 2627 2628 goto reset_timer; 2629 } 2630 2631 if (!mptcp_send_head(sk)) 2632 return; 2633 2634 goto reset_timer; 2635 } 2636 2637 if (err) 2638 goto reset_timer; 2639 2640 mptcp_for_each_subflow(msk, subflow) { 2641 if (READ_ONCE(subflow->scheduled)) { 2642 u16 copied = 0; 2643 2644 mptcp_subflow_set_scheduled(subflow, false); 2645 2646 ssk = mptcp_subflow_tcp_sock(subflow); 2647 2648 lock_sock(ssk); 2649 2650 /* limit retransmission to the bytes already sent on some subflows */ 2651 info.sent = 0; 2652 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2653 dfrag->already_sent; 2654 while (info.sent < info.limit) { 2655 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2656 if (ret <= 0) 2657 break; 2658 2659 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2660 copied += ret; 2661 info.sent += ret; 2662 } 2663 if (copied) { 2664 len = max(copied, len); 2665 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2666 info.size_goal); 2667 WRITE_ONCE(msk->allow_infinite_fallback, false); 2668 } 2669 2670 release_sock(ssk); 2671 } 2672 } 2673 2674 msk->bytes_retrans += len; 2675 dfrag->already_sent = max(dfrag->already_sent, len); 2676 2677 reset_timer: 2678 mptcp_check_and_set_pending(sk); 2679 2680 if (!mptcp_rtx_timer_pending(sk)) 2681 mptcp_reset_rtx_timer(sk); 2682 } 2683 2684 /* schedule the timeout timer for the relevant event: either close timeout 2685 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2686 */ 2687 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2688 { 2689 struct sock *sk = (struct sock *)msk; 2690 unsigned long timeout, close_timeout; 2691 2692 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2693 return; 2694 2695 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2696 mptcp_close_timeout(sk); 2697 2698 /* the close timeout takes precedence on the fail one, and here at least one of 2699 * them is active 2700 */ 2701 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2702 2703 sk_reset_timer(sk, &sk->sk_timer, timeout); 2704 } 2705 2706 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2707 { 2708 struct sock *ssk = msk->first; 2709 bool slow; 2710 2711 if (!ssk) 2712 return; 2713 2714 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2715 2716 slow = lock_sock_fast(ssk); 2717 mptcp_subflow_reset(ssk); 2718 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2719 unlock_sock_fast(ssk, slow); 2720 } 2721 2722 static void mptcp_do_fastclose(struct sock *sk) 2723 { 2724 struct mptcp_subflow_context *subflow, *tmp; 2725 struct mptcp_sock *msk = mptcp_sk(sk); 2726 2727 mptcp_set_state(sk, TCP_CLOSE); 2728 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2729 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2730 subflow, MPTCP_CF_FASTCLOSE); 2731 } 2732 2733 static void mptcp_worker(struct work_struct *work) 2734 { 2735 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2736 struct sock *sk = (struct sock *)msk; 2737 unsigned long fail_tout; 2738 int state; 2739 2740 lock_sock(sk); 2741 state = sk->sk_state; 2742 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2743 goto unlock; 2744 2745 mptcp_check_fastclose(msk); 2746 2747 mptcp_pm_nl_work(msk); 2748 2749 mptcp_check_send_data_fin(sk); 2750 mptcp_check_data_fin_ack(sk); 2751 mptcp_check_data_fin(sk); 2752 2753 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2754 __mptcp_close_subflow(sk); 2755 2756 if (mptcp_close_tout_expired(sk)) { 2757 mptcp_do_fastclose(sk); 2758 mptcp_close_wake_up(sk); 2759 } 2760 2761 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2762 __mptcp_destroy_sock(sk); 2763 goto unlock; 2764 } 2765 2766 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2767 __mptcp_retrans(sk); 2768 2769 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2770 if (fail_tout && time_after(jiffies, fail_tout)) 2771 mptcp_mp_fail_no_response(msk); 2772 2773 unlock: 2774 release_sock(sk); 2775 sock_put(sk); 2776 } 2777 2778 static void __mptcp_init_sock(struct sock *sk) 2779 { 2780 struct mptcp_sock *msk = mptcp_sk(sk); 2781 2782 INIT_LIST_HEAD(&msk->conn_list); 2783 INIT_LIST_HEAD(&msk->join_list); 2784 INIT_LIST_HEAD(&msk->rtx_queue); 2785 INIT_WORK(&msk->work, mptcp_worker); 2786 __skb_queue_head_init(&msk->receive_queue); 2787 msk->out_of_order_queue = RB_ROOT; 2788 msk->first_pending = NULL; 2789 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 2790 WRITE_ONCE(msk->rmem_released, 0); 2791 msk->timer_ival = TCP_RTO_MIN; 2792 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2793 2794 WRITE_ONCE(msk->first, NULL); 2795 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2796 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2797 WRITE_ONCE(msk->allow_infinite_fallback, true); 2798 msk->recovery = false; 2799 msk->subflow_id = 1; 2800 msk->last_data_sent = tcp_jiffies32; 2801 msk->last_data_recv = tcp_jiffies32; 2802 msk->last_ack_recv = tcp_jiffies32; 2803 2804 mptcp_pm_data_init(msk); 2805 2806 /* re-use the csk retrans timer for MPTCP-level retrans */ 2807 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2808 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2809 } 2810 2811 static void mptcp_ca_reset(struct sock *sk) 2812 { 2813 struct inet_connection_sock *icsk = inet_csk(sk); 2814 2815 tcp_assign_congestion_control(sk); 2816 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2817 2818 /* no need to keep a reference to the ops, the name will suffice */ 2819 tcp_cleanup_congestion_control(sk); 2820 icsk->icsk_ca_ops = NULL; 2821 } 2822 2823 static int mptcp_init_sock(struct sock *sk) 2824 { 2825 struct net *net = sock_net(sk); 2826 int ret; 2827 2828 __mptcp_init_sock(sk); 2829 2830 if (!mptcp_is_enabled(net)) 2831 return -ENOPROTOOPT; 2832 2833 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2834 return -ENOMEM; 2835 2836 ret = mptcp_init_sched(mptcp_sk(sk), 2837 mptcp_sched_find(mptcp_get_scheduler(net))); 2838 if (ret) 2839 return ret; 2840 2841 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2842 2843 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2844 * propagate the correct value 2845 */ 2846 mptcp_ca_reset(sk); 2847 2848 sk_sockets_allocated_inc(sk); 2849 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2850 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2851 2852 return 0; 2853 } 2854 2855 static void __mptcp_clear_xmit(struct sock *sk) 2856 { 2857 struct mptcp_sock *msk = mptcp_sk(sk); 2858 struct mptcp_data_frag *dtmp, *dfrag; 2859 2860 WRITE_ONCE(msk->first_pending, NULL); 2861 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2862 dfrag_clear(sk, dfrag); 2863 } 2864 2865 void mptcp_cancel_work(struct sock *sk) 2866 { 2867 struct mptcp_sock *msk = mptcp_sk(sk); 2868 2869 if (cancel_work_sync(&msk->work)) 2870 __sock_put(sk); 2871 } 2872 2873 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2874 { 2875 lock_sock(ssk); 2876 2877 switch (ssk->sk_state) { 2878 case TCP_LISTEN: 2879 if (!(how & RCV_SHUTDOWN)) 2880 break; 2881 fallthrough; 2882 case TCP_SYN_SENT: 2883 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2884 break; 2885 default: 2886 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2887 pr_debug("Fallback"); 2888 ssk->sk_shutdown |= how; 2889 tcp_shutdown(ssk, how); 2890 2891 /* simulate the data_fin ack reception to let the state 2892 * machine move forward 2893 */ 2894 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2895 mptcp_schedule_work(sk); 2896 } else { 2897 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2898 tcp_send_ack(ssk); 2899 if (!mptcp_rtx_timer_pending(sk)) 2900 mptcp_reset_rtx_timer(sk); 2901 } 2902 break; 2903 } 2904 2905 release_sock(ssk); 2906 } 2907 2908 void mptcp_set_state(struct sock *sk, int state) 2909 { 2910 int oldstate = sk->sk_state; 2911 2912 switch (state) { 2913 case TCP_ESTABLISHED: 2914 if (oldstate != TCP_ESTABLISHED) 2915 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2916 break; 2917 2918 default: 2919 if (oldstate == TCP_ESTABLISHED) 2920 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2921 } 2922 2923 inet_sk_state_store(sk, state); 2924 } 2925 2926 static const unsigned char new_state[16] = { 2927 /* current state: new state: action: */ 2928 [0 /* (Invalid) */] = TCP_CLOSE, 2929 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2930 [TCP_SYN_SENT] = TCP_CLOSE, 2931 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2932 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2933 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2934 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2935 [TCP_CLOSE] = TCP_CLOSE, 2936 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2937 [TCP_LAST_ACK] = TCP_LAST_ACK, 2938 [TCP_LISTEN] = TCP_CLOSE, 2939 [TCP_CLOSING] = TCP_CLOSING, 2940 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2941 }; 2942 2943 static int mptcp_close_state(struct sock *sk) 2944 { 2945 int next = (int)new_state[sk->sk_state]; 2946 int ns = next & TCP_STATE_MASK; 2947 2948 mptcp_set_state(sk, ns); 2949 2950 return next & TCP_ACTION_FIN; 2951 } 2952 2953 static void mptcp_check_send_data_fin(struct sock *sk) 2954 { 2955 struct mptcp_subflow_context *subflow; 2956 struct mptcp_sock *msk = mptcp_sk(sk); 2957 2958 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2959 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2960 msk->snd_nxt, msk->write_seq); 2961 2962 /* we still need to enqueue subflows or not really shutting down, 2963 * skip this 2964 */ 2965 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2966 mptcp_send_head(sk)) 2967 return; 2968 2969 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2970 2971 mptcp_for_each_subflow(msk, subflow) { 2972 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2973 2974 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2975 } 2976 } 2977 2978 static void __mptcp_wr_shutdown(struct sock *sk) 2979 { 2980 struct mptcp_sock *msk = mptcp_sk(sk); 2981 2982 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2983 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2984 !!mptcp_send_head(sk)); 2985 2986 /* will be ignored by fallback sockets */ 2987 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2988 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2989 2990 mptcp_check_send_data_fin(sk); 2991 } 2992 2993 static void __mptcp_destroy_sock(struct sock *sk) 2994 { 2995 struct mptcp_sock *msk = mptcp_sk(sk); 2996 2997 pr_debug("msk=%p", msk); 2998 2999 might_sleep(); 3000 3001 mptcp_stop_rtx_timer(sk); 3002 sk_stop_timer(sk, &sk->sk_timer); 3003 msk->pm.status = 0; 3004 mptcp_release_sched(msk); 3005 3006 sk->sk_prot->destroy(sk); 3007 3008 WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc)); 3009 WARN_ON_ONCE(msk->rmem_released); 3010 sk_stream_kill_queues(sk); 3011 xfrm_sk_free_policy(sk); 3012 3013 sock_put(sk); 3014 } 3015 3016 void __mptcp_unaccepted_force_close(struct sock *sk) 3017 { 3018 sock_set_flag(sk, SOCK_DEAD); 3019 mptcp_do_fastclose(sk); 3020 __mptcp_destroy_sock(sk); 3021 } 3022 3023 static __poll_t mptcp_check_readable(struct sock *sk) 3024 { 3025 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3026 } 3027 3028 static void mptcp_check_listen_stop(struct sock *sk) 3029 { 3030 struct sock *ssk; 3031 3032 if (inet_sk_state_load(sk) != TCP_LISTEN) 3033 return; 3034 3035 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3036 ssk = mptcp_sk(sk)->first; 3037 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3038 return; 3039 3040 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3041 tcp_set_state(ssk, TCP_CLOSE); 3042 mptcp_subflow_queue_clean(sk, ssk); 3043 inet_csk_listen_stop(ssk); 3044 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3045 release_sock(ssk); 3046 } 3047 3048 bool __mptcp_close(struct sock *sk, long timeout) 3049 { 3050 struct mptcp_subflow_context *subflow; 3051 struct mptcp_sock *msk = mptcp_sk(sk); 3052 bool do_cancel_work = false; 3053 int subflows_alive = 0; 3054 3055 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3056 3057 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3058 mptcp_check_listen_stop(sk); 3059 mptcp_set_state(sk, TCP_CLOSE); 3060 goto cleanup; 3061 } 3062 3063 if (mptcp_data_avail(msk) || timeout < 0) { 3064 /* If the msk has read data, or the caller explicitly ask it, 3065 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3066 */ 3067 mptcp_do_fastclose(sk); 3068 timeout = 0; 3069 } else if (mptcp_close_state(sk)) { 3070 __mptcp_wr_shutdown(sk); 3071 } 3072 3073 sk_stream_wait_close(sk, timeout); 3074 3075 cleanup: 3076 /* orphan all the subflows */ 3077 mptcp_for_each_subflow(msk, subflow) { 3078 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3079 bool slow = lock_sock_fast_nested(ssk); 3080 3081 subflows_alive += ssk->sk_state != TCP_CLOSE; 3082 3083 /* since the close timeout takes precedence on the fail one, 3084 * cancel the latter 3085 */ 3086 if (ssk == msk->first) 3087 subflow->fail_tout = 0; 3088 3089 /* detach from the parent socket, but allow data_ready to 3090 * push incoming data into the mptcp stack, to properly ack it 3091 */ 3092 ssk->sk_socket = NULL; 3093 ssk->sk_wq = NULL; 3094 unlock_sock_fast(ssk, slow); 3095 } 3096 sock_orphan(sk); 3097 3098 /* all the subflows are closed, only timeout can change the msk 3099 * state, let's not keep resources busy for no reasons 3100 */ 3101 if (subflows_alive == 0) 3102 mptcp_set_state(sk, TCP_CLOSE); 3103 3104 sock_hold(sk); 3105 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3106 if (msk->token) 3107 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3108 3109 if (sk->sk_state == TCP_CLOSE) { 3110 __mptcp_destroy_sock(sk); 3111 do_cancel_work = true; 3112 } else { 3113 mptcp_start_tout_timer(sk); 3114 } 3115 3116 return do_cancel_work; 3117 } 3118 3119 static void mptcp_close(struct sock *sk, long timeout) 3120 { 3121 bool do_cancel_work; 3122 3123 lock_sock(sk); 3124 3125 do_cancel_work = __mptcp_close(sk, timeout); 3126 release_sock(sk); 3127 if (do_cancel_work) 3128 mptcp_cancel_work(sk); 3129 3130 sock_put(sk); 3131 } 3132 3133 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3134 { 3135 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3136 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3137 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3138 3139 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3140 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3141 3142 if (msk6 && ssk6) { 3143 msk6->saddr = ssk6->saddr; 3144 msk6->flow_label = ssk6->flow_label; 3145 } 3146 #endif 3147 3148 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3149 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3150 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3151 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3152 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3153 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3154 } 3155 3156 static int mptcp_disconnect(struct sock *sk, int flags) 3157 { 3158 struct mptcp_sock *msk = mptcp_sk(sk); 3159 3160 /* We are on the fastopen error path. We can't call straight into the 3161 * subflows cleanup code due to lock nesting (we are already under 3162 * msk->firstsocket lock). 3163 */ 3164 if (msk->fastopening) 3165 return -EBUSY; 3166 3167 mptcp_check_listen_stop(sk); 3168 mptcp_set_state(sk, TCP_CLOSE); 3169 3170 mptcp_stop_rtx_timer(sk); 3171 mptcp_stop_tout_timer(sk); 3172 3173 if (msk->token) 3174 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3175 3176 /* msk->subflow is still intact, the following will not free the first 3177 * subflow 3178 */ 3179 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3180 WRITE_ONCE(msk->flags, 0); 3181 msk->cb_flags = 0; 3182 msk->recovery = false; 3183 WRITE_ONCE(msk->can_ack, false); 3184 WRITE_ONCE(msk->fully_established, false); 3185 WRITE_ONCE(msk->rcv_data_fin, false); 3186 WRITE_ONCE(msk->snd_data_fin_enable, false); 3187 WRITE_ONCE(msk->rcv_fastclose, false); 3188 WRITE_ONCE(msk->use_64bit_ack, false); 3189 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3190 mptcp_pm_data_reset(msk); 3191 mptcp_ca_reset(sk); 3192 msk->bytes_consumed = 0; 3193 msk->bytes_acked = 0; 3194 msk->bytes_received = 0; 3195 msk->bytes_sent = 0; 3196 msk->bytes_retrans = 0; 3197 msk->rcvspace_init = 0; 3198 3199 WRITE_ONCE(sk->sk_shutdown, 0); 3200 sk_error_report(sk); 3201 return 0; 3202 } 3203 3204 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3205 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3206 { 3207 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3208 3209 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3210 } 3211 3212 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3213 { 3214 const struct ipv6_pinfo *np = inet6_sk(sk); 3215 struct ipv6_txoptions *opt; 3216 struct ipv6_pinfo *newnp; 3217 3218 newnp = inet6_sk(newsk); 3219 3220 rcu_read_lock(); 3221 opt = rcu_dereference(np->opt); 3222 if (opt) { 3223 opt = ipv6_dup_options(newsk, opt); 3224 if (!opt) 3225 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3226 } 3227 RCU_INIT_POINTER(newnp->opt, opt); 3228 rcu_read_unlock(); 3229 } 3230 #endif 3231 3232 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3233 { 3234 struct ip_options_rcu *inet_opt, *newopt = NULL; 3235 const struct inet_sock *inet = inet_sk(sk); 3236 struct inet_sock *newinet; 3237 3238 newinet = inet_sk(newsk); 3239 3240 rcu_read_lock(); 3241 inet_opt = rcu_dereference(inet->inet_opt); 3242 if (inet_opt) { 3243 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3244 inet_opt->opt.optlen, GFP_ATOMIC); 3245 if (newopt) 3246 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3247 inet_opt->opt.optlen); 3248 else 3249 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3250 } 3251 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3252 rcu_read_unlock(); 3253 } 3254 3255 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3256 const struct mptcp_options_received *mp_opt, 3257 struct sock *ssk, 3258 struct request_sock *req) 3259 { 3260 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3261 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3262 struct mptcp_subflow_context *subflow; 3263 struct mptcp_sock *msk; 3264 3265 if (!nsk) 3266 return NULL; 3267 3268 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3269 if (nsk->sk_family == AF_INET6) 3270 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3271 #endif 3272 3273 __mptcp_init_sock(nsk); 3274 3275 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3276 if (nsk->sk_family == AF_INET6) 3277 mptcp_copy_ip6_options(nsk, sk); 3278 else 3279 #endif 3280 mptcp_copy_ip_options(nsk, sk); 3281 3282 msk = mptcp_sk(nsk); 3283 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3284 WRITE_ONCE(msk->token, subflow_req->token); 3285 msk->in_accept_queue = 1; 3286 WRITE_ONCE(msk->fully_established, false); 3287 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3288 WRITE_ONCE(msk->csum_enabled, true); 3289 3290 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3291 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3292 WRITE_ONCE(msk->snd_una, msk->write_seq); 3293 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3294 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3295 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3296 3297 /* passive msk is created after the first/MPC subflow */ 3298 msk->subflow_id = 2; 3299 3300 sock_reset_flag(nsk, SOCK_RCU_FREE); 3301 security_inet_csk_clone(nsk, req); 3302 3303 /* this can't race with mptcp_close(), as the msk is 3304 * not yet exposted to user-space 3305 */ 3306 mptcp_set_state(nsk, TCP_ESTABLISHED); 3307 3308 /* The msk maintain a ref to each subflow in the connections list */ 3309 WRITE_ONCE(msk->first, ssk); 3310 subflow = mptcp_subflow_ctx(ssk); 3311 list_add(&subflow->node, &msk->conn_list); 3312 sock_hold(ssk); 3313 3314 /* new mpc subflow takes ownership of the newly 3315 * created mptcp socket 3316 */ 3317 mptcp_token_accept(subflow_req, msk); 3318 3319 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3320 * uses the correct data 3321 */ 3322 mptcp_copy_inaddrs(nsk, ssk); 3323 __mptcp_propagate_sndbuf(nsk, ssk); 3324 3325 mptcp_rcv_space_init(msk, ssk); 3326 3327 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3328 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3329 bh_unlock_sock(nsk); 3330 3331 /* note: the newly allocated socket refcount is 2 now */ 3332 return nsk; 3333 } 3334 3335 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3336 { 3337 const struct tcp_sock *tp = tcp_sk(ssk); 3338 3339 msk->rcvspace_init = 1; 3340 msk->rcvq_space.copied = 0; 3341 msk->rcvq_space.rtt_us = 0; 3342 3343 msk->rcvq_space.time = tp->tcp_mstamp; 3344 3345 /* initial rcv_space offering made to peer */ 3346 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3347 TCP_INIT_CWND * tp->advmss); 3348 if (msk->rcvq_space.space == 0) 3349 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3350 } 3351 3352 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3353 { 3354 struct mptcp_subflow_context *subflow, *tmp; 3355 struct sock *sk = (struct sock *)msk; 3356 3357 __mptcp_clear_xmit(sk); 3358 3359 /* join list will be eventually flushed (with rst) at sock lock release time */ 3360 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3361 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3362 3363 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3364 mptcp_data_lock(sk); 3365 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3366 __skb_queue_purge(&sk->sk_receive_queue); 3367 skb_rbtree_purge(&msk->out_of_order_queue); 3368 mptcp_data_unlock(sk); 3369 3370 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3371 * inet_sock_destruct() will dispose it 3372 */ 3373 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3374 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3375 mptcp_token_destroy(msk); 3376 mptcp_pm_free_anno_list(msk); 3377 mptcp_free_local_addr_list(msk); 3378 } 3379 3380 static void mptcp_destroy(struct sock *sk) 3381 { 3382 struct mptcp_sock *msk = mptcp_sk(sk); 3383 3384 /* allow the following to close even the initial subflow */ 3385 msk->free_first = 1; 3386 mptcp_destroy_common(msk, 0); 3387 sk_sockets_allocated_dec(sk); 3388 } 3389 3390 void __mptcp_data_acked(struct sock *sk) 3391 { 3392 if (!sock_owned_by_user(sk)) 3393 __mptcp_clean_una(sk); 3394 else 3395 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3396 } 3397 3398 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3399 { 3400 if (!mptcp_send_head(sk)) 3401 return; 3402 3403 if (!sock_owned_by_user(sk)) 3404 __mptcp_subflow_push_pending(sk, ssk, false); 3405 else 3406 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3407 } 3408 3409 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3410 BIT(MPTCP_RETRANSMIT) | \ 3411 BIT(MPTCP_FLUSH_JOIN_LIST)) 3412 3413 /* processes deferred events and flush wmem */ 3414 static void mptcp_release_cb(struct sock *sk) 3415 __must_hold(&sk->sk_lock.slock) 3416 { 3417 struct mptcp_sock *msk = mptcp_sk(sk); 3418 3419 for (;;) { 3420 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3421 struct list_head join_list; 3422 3423 if (!flags) 3424 break; 3425 3426 INIT_LIST_HEAD(&join_list); 3427 list_splice_init(&msk->join_list, &join_list); 3428 3429 /* the following actions acquire the subflow socket lock 3430 * 3431 * 1) can't be invoked in atomic scope 3432 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3433 * datapath acquires the msk socket spinlock while helding 3434 * the subflow socket lock 3435 */ 3436 msk->cb_flags &= ~flags; 3437 spin_unlock_bh(&sk->sk_lock.slock); 3438 3439 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3440 __mptcp_flush_join_list(sk, &join_list); 3441 if (flags & BIT(MPTCP_PUSH_PENDING)) 3442 __mptcp_push_pending(sk, 0); 3443 if (flags & BIT(MPTCP_RETRANSMIT)) 3444 __mptcp_retrans(sk); 3445 3446 cond_resched(); 3447 spin_lock_bh(&sk->sk_lock.slock); 3448 } 3449 3450 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3451 __mptcp_clean_una_wakeup(sk); 3452 if (unlikely(msk->cb_flags)) { 3453 /* be sure to sync the msk state before taking actions 3454 * depending on sk_state (MPTCP_ERROR_REPORT) 3455 * On sk release avoid actions depending on the first subflow 3456 */ 3457 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3458 __mptcp_sync_state(sk, msk->pending_state); 3459 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3460 __mptcp_error_report(sk); 3461 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3462 __mptcp_sync_sndbuf(sk); 3463 } 3464 3465 __mptcp_update_rmem(sk); 3466 } 3467 3468 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3469 * TCP can't schedule delack timer before the subflow is fully established. 3470 * MPTCP uses the delack timer to do 3rd ack retransmissions 3471 */ 3472 static void schedule_3rdack_retransmission(struct sock *ssk) 3473 { 3474 struct inet_connection_sock *icsk = inet_csk(ssk); 3475 struct tcp_sock *tp = tcp_sk(ssk); 3476 unsigned long timeout; 3477 3478 if (mptcp_subflow_ctx(ssk)->fully_established) 3479 return; 3480 3481 /* reschedule with a timeout above RTT, as we must look only for drop */ 3482 if (tp->srtt_us) 3483 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3484 else 3485 timeout = TCP_TIMEOUT_INIT; 3486 timeout += jiffies; 3487 3488 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3489 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3490 icsk->icsk_ack.timeout = timeout; 3491 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3492 } 3493 3494 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3495 { 3496 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3497 struct sock *sk = subflow->conn; 3498 3499 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3500 mptcp_data_lock(sk); 3501 if (!sock_owned_by_user(sk)) 3502 __mptcp_subflow_push_pending(sk, ssk, true); 3503 else 3504 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3505 mptcp_data_unlock(sk); 3506 } 3507 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3508 mptcp_data_lock(sk); 3509 if (!sock_owned_by_user(sk)) 3510 __mptcp_sync_sndbuf(sk); 3511 else 3512 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3513 mptcp_data_unlock(sk); 3514 } 3515 if (status & BIT(MPTCP_DELEGATE_ACK)) 3516 schedule_3rdack_retransmission(ssk); 3517 } 3518 3519 static int mptcp_hash(struct sock *sk) 3520 { 3521 /* should never be called, 3522 * we hash the TCP subflows not the master socket 3523 */ 3524 WARN_ON_ONCE(1); 3525 return 0; 3526 } 3527 3528 static void mptcp_unhash(struct sock *sk) 3529 { 3530 /* called from sk_common_release(), but nothing to do here */ 3531 } 3532 3533 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3534 { 3535 struct mptcp_sock *msk = mptcp_sk(sk); 3536 3537 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3538 if (WARN_ON_ONCE(!msk->first)) 3539 return -EINVAL; 3540 3541 return inet_csk_get_port(msk->first, snum); 3542 } 3543 3544 void mptcp_finish_connect(struct sock *ssk) 3545 { 3546 struct mptcp_subflow_context *subflow; 3547 struct mptcp_sock *msk; 3548 struct sock *sk; 3549 3550 subflow = mptcp_subflow_ctx(ssk); 3551 sk = subflow->conn; 3552 msk = mptcp_sk(sk); 3553 3554 pr_debug("msk=%p, token=%u", sk, subflow->token); 3555 3556 subflow->map_seq = subflow->iasn; 3557 subflow->map_subflow_seq = 1; 3558 3559 /* the socket is not connected yet, no msk/subflow ops can access/race 3560 * accessing the field below 3561 */ 3562 WRITE_ONCE(msk->local_key, subflow->local_key); 3563 3564 mptcp_pm_new_connection(msk, ssk, 0); 3565 } 3566 3567 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3568 { 3569 write_lock_bh(&sk->sk_callback_lock); 3570 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3571 sk_set_socket(sk, parent); 3572 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3573 write_unlock_bh(&sk->sk_callback_lock); 3574 } 3575 3576 bool mptcp_finish_join(struct sock *ssk) 3577 { 3578 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3579 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3580 struct sock *parent = (void *)msk; 3581 bool ret = true; 3582 3583 pr_debug("msk=%p, subflow=%p", msk, subflow); 3584 3585 /* mptcp socket already closing? */ 3586 if (!mptcp_is_fully_established(parent)) { 3587 subflow->reset_reason = MPTCP_RST_EMPTCP; 3588 return false; 3589 } 3590 3591 /* active subflow, already present inside the conn_list */ 3592 if (!list_empty(&subflow->node)) { 3593 mptcp_subflow_joined(msk, ssk); 3594 mptcp_propagate_sndbuf(parent, ssk); 3595 return true; 3596 } 3597 3598 if (!mptcp_pm_allow_new_subflow(msk)) 3599 goto err_prohibited; 3600 3601 /* If we can't acquire msk socket lock here, let the release callback 3602 * handle it 3603 */ 3604 mptcp_data_lock(parent); 3605 if (!sock_owned_by_user(parent)) { 3606 ret = __mptcp_finish_join(msk, ssk); 3607 if (ret) { 3608 sock_hold(ssk); 3609 list_add_tail(&subflow->node, &msk->conn_list); 3610 } 3611 } else { 3612 sock_hold(ssk); 3613 list_add_tail(&subflow->node, &msk->join_list); 3614 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3615 } 3616 mptcp_data_unlock(parent); 3617 3618 if (!ret) { 3619 err_prohibited: 3620 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3621 return false; 3622 } 3623 3624 return true; 3625 } 3626 3627 static void mptcp_shutdown(struct sock *sk, int how) 3628 { 3629 pr_debug("sk=%p, how=%d", sk, how); 3630 3631 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3632 __mptcp_wr_shutdown(sk); 3633 } 3634 3635 static int mptcp_forward_alloc_get(const struct sock *sk) 3636 { 3637 return READ_ONCE(sk->sk_forward_alloc) + 3638 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3639 } 3640 3641 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3642 { 3643 const struct sock *sk = (void *)msk; 3644 u64 delta; 3645 3646 if (sk->sk_state == TCP_LISTEN) 3647 return -EINVAL; 3648 3649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3650 return 0; 3651 3652 delta = msk->write_seq - v; 3653 if (__mptcp_check_fallback(msk) && msk->first) { 3654 struct tcp_sock *tp = tcp_sk(msk->first); 3655 3656 /* the first subflow is disconnected after close - see 3657 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3658 * so ignore that status, too. 3659 */ 3660 if (!((1 << msk->first->sk_state) & 3661 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3662 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3663 } 3664 if (delta > INT_MAX) 3665 delta = INT_MAX; 3666 3667 return (int)delta; 3668 } 3669 3670 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3671 { 3672 struct mptcp_sock *msk = mptcp_sk(sk); 3673 bool slow; 3674 3675 switch (cmd) { 3676 case SIOCINQ: 3677 if (sk->sk_state == TCP_LISTEN) 3678 return -EINVAL; 3679 3680 lock_sock(sk); 3681 __mptcp_move_skbs(msk); 3682 *karg = mptcp_inq_hint(sk); 3683 release_sock(sk); 3684 break; 3685 case SIOCOUTQ: 3686 slow = lock_sock_fast(sk); 3687 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3688 unlock_sock_fast(sk, slow); 3689 break; 3690 case SIOCOUTQNSD: 3691 slow = lock_sock_fast(sk); 3692 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3693 unlock_sock_fast(sk, slow); 3694 break; 3695 default: 3696 return -ENOIOCTLCMD; 3697 } 3698 3699 return 0; 3700 } 3701 3702 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3703 struct mptcp_subflow_context *subflow) 3704 { 3705 subflow->request_mptcp = 0; 3706 __mptcp_do_fallback(msk); 3707 } 3708 3709 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3710 { 3711 struct mptcp_subflow_context *subflow; 3712 struct mptcp_sock *msk = mptcp_sk(sk); 3713 int err = -EINVAL; 3714 struct sock *ssk; 3715 3716 ssk = __mptcp_nmpc_sk(msk); 3717 if (IS_ERR(ssk)) 3718 return PTR_ERR(ssk); 3719 3720 mptcp_set_state(sk, TCP_SYN_SENT); 3721 subflow = mptcp_subflow_ctx(ssk); 3722 #ifdef CONFIG_TCP_MD5SIG 3723 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3724 * TCP option space. 3725 */ 3726 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3727 mptcp_subflow_early_fallback(msk, subflow); 3728 #endif 3729 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3730 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3731 mptcp_subflow_early_fallback(msk, subflow); 3732 } 3733 if (likely(!__mptcp_check_fallback(msk))) 3734 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3735 3736 /* if reaching here via the fastopen/sendmsg path, the caller already 3737 * acquired the subflow socket lock, too. 3738 */ 3739 if (!msk->fastopening) 3740 lock_sock(ssk); 3741 3742 /* the following mirrors closely a very small chunk of code from 3743 * __inet_stream_connect() 3744 */ 3745 if (ssk->sk_state != TCP_CLOSE) 3746 goto out; 3747 3748 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3749 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3750 if (err) 3751 goto out; 3752 } 3753 3754 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3755 if (err < 0) 3756 goto out; 3757 3758 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3759 3760 out: 3761 if (!msk->fastopening) 3762 release_sock(ssk); 3763 3764 /* on successful connect, the msk state will be moved to established by 3765 * subflow_finish_connect() 3766 */ 3767 if (unlikely(err)) { 3768 /* avoid leaving a dangling token in an unconnected socket */ 3769 mptcp_token_destroy(msk); 3770 mptcp_set_state(sk, TCP_CLOSE); 3771 return err; 3772 } 3773 3774 mptcp_copy_inaddrs(sk, ssk); 3775 return 0; 3776 } 3777 3778 static struct proto mptcp_prot = { 3779 .name = "MPTCP", 3780 .owner = THIS_MODULE, 3781 .init = mptcp_init_sock, 3782 .connect = mptcp_connect, 3783 .disconnect = mptcp_disconnect, 3784 .close = mptcp_close, 3785 .setsockopt = mptcp_setsockopt, 3786 .getsockopt = mptcp_getsockopt, 3787 .shutdown = mptcp_shutdown, 3788 .destroy = mptcp_destroy, 3789 .sendmsg = mptcp_sendmsg, 3790 .ioctl = mptcp_ioctl, 3791 .recvmsg = mptcp_recvmsg, 3792 .release_cb = mptcp_release_cb, 3793 .hash = mptcp_hash, 3794 .unhash = mptcp_unhash, 3795 .get_port = mptcp_get_port, 3796 .forward_alloc_get = mptcp_forward_alloc_get, 3797 .stream_memory_free = mptcp_stream_memory_free, 3798 .sockets_allocated = &mptcp_sockets_allocated, 3799 3800 .memory_allocated = &tcp_memory_allocated, 3801 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3802 3803 .memory_pressure = &tcp_memory_pressure, 3804 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3805 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3806 .sysctl_mem = sysctl_tcp_mem, 3807 .obj_size = sizeof(struct mptcp_sock), 3808 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3809 .no_autobind = true, 3810 }; 3811 3812 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3813 { 3814 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3815 struct sock *ssk, *sk = sock->sk; 3816 int err = -EINVAL; 3817 3818 lock_sock(sk); 3819 ssk = __mptcp_nmpc_sk(msk); 3820 if (IS_ERR(ssk)) { 3821 err = PTR_ERR(ssk); 3822 goto unlock; 3823 } 3824 3825 if (sk->sk_family == AF_INET) 3826 err = inet_bind_sk(ssk, uaddr, addr_len); 3827 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3828 else if (sk->sk_family == AF_INET6) 3829 err = inet6_bind_sk(ssk, uaddr, addr_len); 3830 #endif 3831 if (!err) 3832 mptcp_copy_inaddrs(sk, ssk); 3833 3834 unlock: 3835 release_sock(sk); 3836 return err; 3837 } 3838 3839 static int mptcp_listen(struct socket *sock, int backlog) 3840 { 3841 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3842 struct sock *sk = sock->sk; 3843 struct sock *ssk; 3844 int err; 3845 3846 pr_debug("msk=%p", msk); 3847 3848 lock_sock(sk); 3849 3850 err = -EINVAL; 3851 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3852 goto unlock; 3853 3854 ssk = __mptcp_nmpc_sk(msk); 3855 if (IS_ERR(ssk)) { 3856 err = PTR_ERR(ssk); 3857 goto unlock; 3858 } 3859 3860 mptcp_set_state(sk, TCP_LISTEN); 3861 sock_set_flag(sk, SOCK_RCU_FREE); 3862 3863 lock_sock(ssk); 3864 err = __inet_listen_sk(ssk, backlog); 3865 release_sock(ssk); 3866 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3867 3868 if (!err) { 3869 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3870 mptcp_copy_inaddrs(sk, ssk); 3871 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3872 } 3873 3874 unlock: 3875 release_sock(sk); 3876 return err; 3877 } 3878 3879 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3880 int flags, bool kern) 3881 { 3882 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3883 struct sock *ssk, *newsk; 3884 int err; 3885 3886 pr_debug("msk=%p", msk); 3887 3888 /* Buggy applications can call accept on socket states other then LISTEN 3889 * but no need to allocate the first subflow just to error out. 3890 */ 3891 ssk = READ_ONCE(msk->first); 3892 if (!ssk) 3893 return -EINVAL; 3894 3895 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3896 newsk = inet_csk_accept(ssk, flags, &err, kern); 3897 if (!newsk) 3898 return err; 3899 3900 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3901 if (sk_is_mptcp(newsk)) { 3902 struct mptcp_subflow_context *subflow; 3903 struct sock *new_mptcp_sock; 3904 3905 subflow = mptcp_subflow_ctx(newsk); 3906 new_mptcp_sock = subflow->conn; 3907 3908 /* is_mptcp should be false if subflow->conn is missing, see 3909 * subflow_syn_recv_sock() 3910 */ 3911 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3912 tcp_sk(newsk)->is_mptcp = 0; 3913 goto tcpfallback; 3914 } 3915 3916 newsk = new_mptcp_sock; 3917 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3918 3919 newsk->sk_kern_sock = kern; 3920 lock_sock(newsk); 3921 __inet_accept(sock, newsock, newsk); 3922 3923 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3924 msk = mptcp_sk(newsk); 3925 msk->in_accept_queue = 0; 3926 3927 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3928 * This is needed so NOSPACE flag can be set from tcp stack. 3929 */ 3930 mptcp_for_each_subflow(msk, subflow) { 3931 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3932 3933 if (!ssk->sk_socket) 3934 mptcp_sock_graft(ssk, newsock); 3935 } 3936 3937 /* Do late cleanup for the first subflow as necessary. Also 3938 * deal with bad peers not doing a complete shutdown. 3939 */ 3940 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3941 __mptcp_close_ssk(newsk, msk->first, 3942 mptcp_subflow_ctx(msk->first), 0); 3943 if (unlikely(list_is_singular(&msk->conn_list))) 3944 mptcp_set_state(newsk, TCP_CLOSE); 3945 } 3946 } else { 3947 tcpfallback: 3948 newsk->sk_kern_sock = kern; 3949 lock_sock(newsk); 3950 __inet_accept(sock, newsock, newsk); 3951 /* we are being invoked after accepting a non-mp-capable 3952 * flow: sk is a tcp_sk, not an mptcp one. 3953 * 3954 * Hand the socket over to tcp so all further socket ops 3955 * bypass mptcp. 3956 */ 3957 WRITE_ONCE(newsock->sk->sk_socket->ops, 3958 mptcp_fallback_tcp_ops(newsock->sk)); 3959 } 3960 release_sock(newsk); 3961 3962 return 0; 3963 } 3964 3965 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3966 { 3967 struct sock *sk = (struct sock *)msk; 3968 3969 if (__mptcp_stream_is_writeable(sk, 1)) 3970 return EPOLLOUT | EPOLLWRNORM; 3971 3972 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3973 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3974 if (__mptcp_stream_is_writeable(sk, 1)) 3975 return EPOLLOUT | EPOLLWRNORM; 3976 3977 return 0; 3978 } 3979 3980 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3981 struct poll_table_struct *wait) 3982 { 3983 struct sock *sk = sock->sk; 3984 struct mptcp_sock *msk; 3985 __poll_t mask = 0; 3986 u8 shutdown; 3987 int state; 3988 3989 msk = mptcp_sk(sk); 3990 sock_poll_wait(file, sock, wait); 3991 3992 state = inet_sk_state_load(sk); 3993 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3994 if (state == TCP_LISTEN) { 3995 struct sock *ssk = READ_ONCE(msk->first); 3996 3997 if (WARN_ON_ONCE(!ssk)) 3998 return 0; 3999 4000 return inet_csk_listen_poll(ssk); 4001 } 4002 4003 shutdown = READ_ONCE(sk->sk_shutdown); 4004 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4005 mask |= EPOLLHUP; 4006 if (shutdown & RCV_SHUTDOWN) 4007 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4008 4009 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4010 mask |= mptcp_check_readable(sk); 4011 if (shutdown & SEND_SHUTDOWN) 4012 mask |= EPOLLOUT | EPOLLWRNORM; 4013 else 4014 mask |= mptcp_check_writeable(msk); 4015 } else if (state == TCP_SYN_SENT && 4016 inet_test_bit(DEFER_CONNECT, sk)) { 4017 /* cf tcp_poll() note about TFO */ 4018 mask |= EPOLLOUT | EPOLLWRNORM; 4019 } 4020 4021 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4022 smp_rmb(); 4023 if (READ_ONCE(sk->sk_err)) 4024 mask |= EPOLLERR; 4025 4026 return mask; 4027 } 4028 4029 static const struct proto_ops mptcp_stream_ops = { 4030 .family = PF_INET, 4031 .owner = THIS_MODULE, 4032 .release = inet_release, 4033 .bind = mptcp_bind, 4034 .connect = inet_stream_connect, 4035 .socketpair = sock_no_socketpair, 4036 .accept = mptcp_stream_accept, 4037 .getname = inet_getname, 4038 .poll = mptcp_poll, 4039 .ioctl = inet_ioctl, 4040 .gettstamp = sock_gettstamp, 4041 .listen = mptcp_listen, 4042 .shutdown = inet_shutdown, 4043 .setsockopt = sock_common_setsockopt, 4044 .getsockopt = sock_common_getsockopt, 4045 .sendmsg = inet_sendmsg, 4046 .recvmsg = inet_recvmsg, 4047 .mmap = sock_no_mmap, 4048 .set_rcvlowat = mptcp_set_rcvlowat, 4049 }; 4050 4051 static struct inet_protosw mptcp_protosw = { 4052 .type = SOCK_STREAM, 4053 .protocol = IPPROTO_MPTCP, 4054 .prot = &mptcp_prot, 4055 .ops = &mptcp_stream_ops, 4056 .flags = INET_PROTOSW_ICSK, 4057 }; 4058 4059 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4060 { 4061 struct mptcp_delegated_action *delegated; 4062 struct mptcp_subflow_context *subflow; 4063 int work_done = 0; 4064 4065 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4066 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4067 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4068 4069 bh_lock_sock_nested(ssk); 4070 if (!sock_owned_by_user(ssk)) { 4071 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4072 } else { 4073 /* tcp_release_cb_override already processed 4074 * the action or will do at next release_sock(). 4075 * In both case must dequeue the subflow here - on the same 4076 * CPU that scheduled it. 4077 */ 4078 smp_wmb(); 4079 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4080 } 4081 bh_unlock_sock(ssk); 4082 sock_put(ssk); 4083 4084 if (++work_done == budget) 4085 return budget; 4086 } 4087 4088 /* always provide a 0 'work_done' argument, so that napi_complete_done 4089 * will not try accessing the NULL napi->dev ptr 4090 */ 4091 napi_complete_done(napi, 0); 4092 return work_done; 4093 } 4094 4095 void __init mptcp_proto_init(void) 4096 { 4097 struct mptcp_delegated_action *delegated; 4098 int cpu; 4099 4100 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4101 4102 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4103 panic("Failed to allocate MPTCP pcpu counter\n"); 4104 4105 init_dummy_netdev(&mptcp_napi_dev); 4106 for_each_possible_cpu(cpu) { 4107 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4108 INIT_LIST_HEAD(&delegated->head); 4109 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4110 mptcp_napi_poll); 4111 napi_enable(&delegated->napi); 4112 } 4113 4114 mptcp_subflow_init(); 4115 mptcp_pm_init(); 4116 mptcp_sched_init(); 4117 mptcp_token_init(); 4118 4119 if (proto_register(&mptcp_prot, 1) != 0) 4120 panic("Failed to register MPTCP proto.\n"); 4121 4122 inet_register_protosw(&mptcp_protosw); 4123 4124 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4125 } 4126 4127 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4128 static const struct proto_ops mptcp_v6_stream_ops = { 4129 .family = PF_INET6, 4130 .owner = THIS_MODULE, 4131 .release = inet6_release, 4132 .bind = mptcp_bind, 4133 .connect = inet_stream_connect, 4134 .socketpair = sock_no_socketpair, 4135 .accept = mptcp_stream_accept, 4136 .getname = inet6_getname, 4137 .poll = mptcp_poll, 4138 .ioctl = inet6_ioctl, 4139 .gettstamp = sock_gettstamp, 4140 .listen = mptcp_listen, 4141 .shutdown = inet_shutdown, 4142 .setsockopt = sock_common_setsockopt, 4143 .getsockopt = sock_common_getsockopt, 4144 .sendmsg = inet6_sendmsg, 4145 .recvmsg = inet6_recvmsg, 4146 .mmap = sock_no_mmap, 4147 #ifdef CONFIG_COMPAT 4148 .compat_ioctl = inet6_compat_ioctl, 4149 #endif 4150 .set_rcvlowat = mptcp_set_rcvlowat, 4151 }; 4152 4153 static struct proto mptcp_v6_prot; 4154 4155 static struct inet_protosw mptcp_v6_protosw = { 4156 .type = SOCK_STREAM, 4157 .protocol = IPPROTO_MPTCP, 4158 .prot = &mptcp_v6_prot, 4159 .ops = &mptcp_v6_stream_ops, 4160 .flags = INET_PROTOSW_ICSK, 4161 }; 4162 4163 int __init mptcp_proto_v6_init(void) 4164 { 4165 int err; 4166 4167 mptcp_v6_prot = mptcp_prot; 4168 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4169 mptcp_v6_prot.slab = NULL; 4170 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4171 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4172 4173 err = proto_register(&mptcp_v6_prot, 1); 4174 if (err) 4175 return err; 4176 4177 err = inet6_register_protosw(&mptcp_v6_protosw); 4178 if (err) 4179 proto_unregister(&mptcp_v6_prot); 4180 4181 return err; 4182 } 4183 #endif 4184