1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp_states.h> 19 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 20 #include <net/transp_v6.h> 21 #endif 22 #include <net/mptcp.h> 23 #include <net/hotdata.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 } 111 112 return msk->first; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 122 { 123 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 124 mptcp_sk(sk)->rmem_fwd_alloc + size); 125 } 126 127 static void mptcp_rmem_charge(struct sock *sk, int size) 128 { 129 mptcp_rmem_fwd_alloc_add(sk, -size); 130 } 131 132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 133 struct sk_buff *from) 134 { 135 bool fragstolen; 136 int delta; 137 138 if (MPTCP_SKB_CB(from)->offset || 139 !skb_try_coalesce(to, from, &fragstolen, &delta)) 140 return false; 141 142 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 143 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 144 to->len, MPTCP_SKB_CB(from)->end_seq); 145 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 146 147 /* note the fwd memory can reach a negative value after accounting 148 * for the delta, but the later skb free will restore a non 149 * negative one 150 */ 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 kfree_skb_partial(from, fragstolen); 154 155 return true; 156 } 157 158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 159 struct sk_buff *from) 160 { 161 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 162 return false; 163 164 return mptcp_try_coalesce((struct sock *)msk, to, from); 165 } 166 167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 168 { 169 amount >>= PAGE_SHIFT; 170 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 171 __sk_mem_reduce_allocated(sk, amount); 172 } 173 174 static void mptcp_rmem_uncharge(struct sock *sk, int size) 175 { 176 struct mptcp_sock *msk = mptcp_sk(sk); 177 int reclaimable; 178 179 mptcp_rmem_fwd_alloc_add(sk, size); 180 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 181 182 /* see sk_mem_uncharge() for the rationale behind the following schema */ 183 if (unlikely(reclaimable >= PAGE_SIZE)) 184 __mptcp_rmem_reclaim(sk, reclaimable); 185 } 186 187 static void mptcp_rfree(struct sk_buff *skb) 188 { 189 unsigned int len = skb->truesize; 190 struct sock *sk = skb->sk; 191 192 atomic_sub(len, &sk->sk_rmem_alloc); 193 mptcp_rmem_uncharge(sk, len); 194 } 195 196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 197 { 198 skb_orphan(skb); 199 skb->sk = sk; 200 skb->destructor = mptcp_rfree; 201 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 202 mptcp_rmem_charge(sk, skb->truesize); 203 } 204 205 /* "inspired" by tcp_data_queue_ofo(), main differences: 206 * - use mptcp seqs 207 * - don't cope with sacks 208 */ 209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 210 { 211 struct sock *sk = (struct sock *)msk; 212 struct rb_node **p, *parent; 213 u64 seq, end_seq, max_seq; 214 struct sk_buff *skb1; 215 216 seq = MPTCP_SKB_CB(skb)->map_seq; 217 end_seq = MPTCP_SKB_CB(skb)->end_seq; 218 max_seq = atomic64_read(&msk->rcv_wnd_sent); 219 220 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 221 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 222 if (after64(end_seq, max_seq)) { 223 /* out of window */ 224 mptcp_drop(sk, skb); 225 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 226 (unsigned long long)end_seq - (unsigned long)max_seq, 227 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 229 return; 230 } 231 232 p = &msk->out_of_order_queue.rb_node; 233 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 234 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 235 rb_link_node(&skb->rbnode, NULL, p); 236 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 237 msk->ooo_last_skb = skb; 238 goto end; 239 } 240 241 /* with 2 subflows, adding at end of ooo queue is quite likely 242 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 243 */ 244 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 247 return; 248 } 249 250 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 251 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 253 parent = &msk->ooo_last_skb->rbnode; 254 p = &parent->rb_right; 255 goto insert; 256 } 257 258 /* Find place to insert this segment. Handle overlaps on the way. */ 259 parent = NULL; 260 while (*p) { 261 parent = *p; 262 skb1 = rb_to_skb(parent); 263 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 264 p = &parent->rb_left; 265 continue; 266 } 267 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 /* All the bits are present. Drop. */ 270 mptcp_drop(sk, skb); 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 272 return; 273 } 274 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 275 /* partial overlap: 276 * | skb | 277 * | skb1 | 278 * continue traversing 279 */ 280 } else { 281 /* skb's seq == skb1's seq and skb covers skb1. 282 * Replace skb1 with skb. 283 */ 284 rb_replace_node(&skb1->rbnode, &skb->rbnode, 285 &msk->out_of_order_queue); 286 mptcp_drop(sk, skb1); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 goto merge_right; 289 } 290 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 292 return; 293 } 294 p = &parent->rb_right; 295 } 296 297 insert: 298 /* Insert segment into RB tree. */ 299 rb_link_node(&skb->rbnode, parent, p); 300 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 301 302 merge_right: 303 /* Remove other segments covered by skb. */ 304 while ((skb1 = skb_rb_next(skb)) != NULL) { 305 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 306 break; 307 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 308 mptcp_drop(sk, skb1); 309 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 310 } 311 /* If there is no skb after us, we are the last_skb ! */ 312 if (!skb1) 313 msk->ooo_last_skb = skb; 314 315 end: 316 skb_condense(skb); 317 mptcp_set_owner_r(skb, sk); 318 } 319 320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 321 { 322 struct mptcp_sock *msk = mptcp_sk(sk); 323 int amt, amount; 324 325 if (size <= msk->rmem_fwd_alloc) 326 return true; 327 328 size -= msk->rmem_fwd_alloc; 329 amt = sk_mem_pages(size); 330 amount = amt << PAGE_SHIFT; 331 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 332 return false; 333 334 mptcp_rmem_fwd_alloc_add(sk, amount); 335 return true; 336 } 337 338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 339 struct sk_buff *skb, unsigned int offset, 340 size_t copy_len) 341 { 342 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 343 struct sock *sk = (struct sock *)msk; 344 struct sk_buff *tail; 345 bool has_rxtstamp; 346 347 __skb_unlink(skb, &ssk->sk_receive_queue); 348 349 skb_ext_reset(skb); 350 skb_orphan(skb); 351 352 /* try to fetch required memory from subflow */ 353 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) { 354 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 355 goto drop; 356 } 357 358 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 369 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 370 /* in sequence */ 371 msk->bytes_received += copy_len; 372 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 373 tail = skb_peek_tail(&sk->sk_receive_queue); 374 if (tail && mptcp_try_coalesce(sk, tail, skb)) 375 return true; 376 377 mptcp_set_owner_r(skb, sk); 378 __skb_queue_tail(&sk->sk_receive_queue, skb); 379 return true; 380 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 381 mptcp_data_queue_ofo(msk, skb); 382 return false; 383 } 384 385 /* old data, keep it simple and drop the whole pkt, sender 386 * will retransmit as needed, if needed. 387 */ 388 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 389 drop: 390 mptcp_drop(sk, skb); 391 return false; 392 } 393 394 static void mptcp_stop_rtx_timer(struct sock *sk) 395 { 396 struct inet_connection_sock *icsk = inet_csk(sk); 397 398 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 399 mptcp_sk(sk)->timer_ival = 0; 400 } 401 402 static void mptcp_close_wake_up(struct sock *sk) 403 { 404 if (sock_flag(sk, SOCK_DEAD)) 405 return; 406 407 sk->sk_state_change(sk); 408 if (sk->sk_shutdown == SHUTDOWN_MASK || 409 sk->sk_state == TCP_CLOSE) 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 411 else 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 413 } 414 415 /* called under the msk socket lock */ 416 static bool mptcp_pending_data_fin_ack(struct sock *sk) 417 { 418 struct mptcp_sock *msk = mptcp_sk(sk); 419 420 return ((1 << sk->sk_state) & 421 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 422 msk->write_seq == READ_ONCE(msk->snd_una); 423 } 424 425 static void mptcp_check_data_fin_ack(struct sock *sk) 426 { 427 struct mptcp_sock *msk = mptcp_sk(sk); 428 429 /* Look for an acknowledged DATA_FIN */ 430 if (mptcp_pending_data_fin_ack(sk)) { 431 WRITE_ONCE(msk->snd_data_fin_enable, 0); 432 433 switch (sk->sk_state) { 434 case TCP_FIN_WAIT1: 435 mptcp_set_state(sk, TCP_FIN_WAIT2); 436 break; 437 case TCP_CLOSING: 438 case TCP_LAST_ACK: 439 mptcp_set_state(sk, TCP_CLOSE); 440 break; 441 } 442 443 mptcp_close_wake_up(sk); 444 } 445 } 446 447 /* can be called with no lock acquired */ 448 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 449 { 450 struct mptcp_sock *msk = mptcp_sk(sk); 451 452 if (READ_ONCE(msk->rcv_data_fin) && 453 ((1 << inet_sk_state_load(sk)) & 454 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 455 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 456 457 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 458 if (seq) 459 *seq = rcv_data_fin_seq; 460 461 return true; 462 } 463 } 464 465 return false; 466 } 467 468 static void mptcp_set_datafin_timeout(struct sock *sk) 469 { 470 struct inet_connection_sock *icsk = inet_csk(sk); 471 u32 retransmits; 472 473 retransmits = min_t(u32, icsk->icsk_retransmits, 474 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 475 476 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 477 } 478 479 static void __mptcp_set_timeout(struct sock *sk, long tout) 480 { 481 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 482 } 483 484 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 485 { 486 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 487 488 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 489 inet_csk(ssk)->icsk_timeout - jiffies : 0; 490 } 491 492 static void mptcp_set_timeout(struct sock *sk) 493 { 494 struct mptcp_subflow_context *subflow; 495 long tout = 0; 496 497 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 498 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 499 __mptcp_set_timeout(sk, tout); 500 } 501 502 static inline bool tcp_can_send_ack(const struct sock *ssk) 503 { 504 return !((1 << inet_sk_state_load(ssk)) & 505 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 506 } 507 508 void __mptcp_subflow_send_ack(struct sock *ssk) 509 { 510 if (tcp_can_send_ack(ssk)) 511 tcp_send_ack(ssk); 512 } 513 514 static void mptcp_subflow_send_ack(struct sock *ssk) 515 { 516 bool slow; 517 518 slow = lock_sock_fast(ssk); 519 __mptcp_subflow_send_ack(ssk); 520 unlock_sock_fast(ssk, slow); 521 } 522 523 static void mptcp_send_ack(struct mptcp_sock *msk) 524 { 525 struct mptcp_subflow_context *subflow; 526 527 mptcp_for_each_subflow(msk, subflow) 528 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 529 } 530 531 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 532 { 533 bool slow; 534 535 slow = lock_sock_fast(ssk); 536 if (tcp_can_send_ack(ssk)) 537 tcp_cleanup_rbuf(ssk, 1); 538 unlock_sock_fast(ssk, slow); 539 } 540 541 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 542 { 543 const struct inet_connection_sock *icsk = inet_csk(ssk); 544 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 545 const struct tcp_sock *tp = tcp_sk(ssk); 546 547 return (ack_pending & ICSK_ACK_SCHED) && 548 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 549 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 550 (rx_empty && ack_pending & 551 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 552 } 553 554 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 555 { 556 int old_space = READ_ONCE(msk->old_wspace); 557 struct mptcp_subflow_context *subflow; 558 struct sock *sk = (struct sock *)msk; 559 int space = __mptcp_space(sk); 560 bool cleanup, rx_empty; 561 562 cleanup = (space > 0) && (space >= (old_space << 1)); 563 rx_empty = !__mptcp_rmem(sk); 564 565 mptcp_for_each_subflow(msk, subflow) { 566 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 567 568 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 569 mptcp_subflow_cleanup_rbuf(ssk); 570 } 571 } 572 573 static bool mptcp_check_data_fin(struct sock *sk) 574 { 575 struct mptcp_sock *msk = mptcp_sk(sk); 576 u64 rcv_data_fin_seq; 577 bool ret = false; 578 579 /* Need to ack a DATA_FIN received from a peer while this side 580 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 581 * msk->rcv_data_fin was set when parsing the incoming options 582 * at the subflow level and the msk lock was not held, so this 583 * is the first opportunity to act on the DATA_FIN and change 584 * the msk state. 585 * 586 * If we are caught up to the sequence number of the incoming 587 * DATA_FIN, send the DATA_ACK now and do state transition. If 588 * not caught up, do nothing and let the recv code send DATA_ACK 589 * when catching up. 590 */ 591 592 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 593 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 594 WRITE_ONCE(msk->rcv_data_fin, 0); 595 596 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 597 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 598 599 switch (sk->sk_state) { 600 case TCP_ESTABLISHED: 601 mptcp_set_state(sk, TCP_CLOSE_WAIT); 602 break; 603 case TCP_FIN_WAIT1: 604 mptcp_set_state(sk, TCP_CLOSING); 605 break; 606 case TCP_FIN_WAIT2: 607 mptcp_set_state(sk, TCP_CLOSE); 608 break; 609 default: 610 /* Other states not expected */ 611 WARN_ON_ONCE(1); 612 break; 613 } 614 615 ret = true; 616 if (!__mptcp_check_fallback(msk)) 617 mptcp_send_ack(msk); 618 mptcp_close_wake_up(sk); 619 } 620 return ret; 621 } 622 623 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 624 { 625 if (READ_ONCE(msk->allow_infinite_fallback)) { 626 MPTCP_INC_STATS(sock_net(ssk), 627 MPTCP_MIB_DSSCORRUPTIONFALLBACK); 628 mptcp_do_fallback(ssk); 629 } else { 630 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 631 mptcp_subflow_reset(ssk); 632 } 633 } 634 635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 636 struct sock *ssk, 637 unsigned int *bytes) 638 { 639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 640 struct sock *sk = (struct sock *)msk; 641 unsigned int moved = 0; 642 bool more_data_avail; 643 struct tcp_sock *tp; 644 bool done = false; 645 int sk_rbuf; 646 647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 648 649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 651 652 if (unlikely(ssk_rbuf > sk_rbuf)) { 653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 654 sk_rbuf = ssk_rbuf; 655 } 656 } 657 658 pr_debug("msk=%p ssk=%p\n", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 /* try to move as much data as available */ 667 map_remaining = subflow->map_data_len - 668 mptcp_subflow_get_map_offset(subflow); 669 670 skb = skb_peek(&ssk->sk_receive_queue); 671 if (!skb) { 672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 673 * a different CPU can have already processed the pending 674 * data, stop here or we can enter an infinite loop 675 */ 676 if (!moved) 677 done = true; 678 break; 679 } 680 681 if (__mptcp_check_fallback(msk)) { 682 /* Under fallback skbs have no MPTCP extension and TCP could 683 * collapse them between the dummy map creation and the 684 * current dequeue. Be sure to adjust the map size. 685 */ 686 map_remaining = skb->len; 687 subflow->map_data_len = skb->len; 688 } 689 690 offset = seq - TCP_SKB_CB(skb)->seq; 691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 692 if (fin) { 693 done = true; 694 seq++; 695 } 696 697 if (offset < skb->len) { 698 size_t len = skb->len - offset; 699 700 if (tp->urg_data) 701 done = true; 702 703 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 704 moved += len; 705 seq += len; 706 707 if (unlikely(map_remaining < len)) { 708 DEBUG_NET_WARN_ON_ONCE(1); 709 mptcp_dss_corruption(msk, ssk); 710 } 711 } else { 712 if (unlikely(!fin)) { 713 DEBUG_NET_WARN_ON_ONCE(1); 714 mptcp_dss_corruption(msk, ssk); 715 } 716 717 sk_eat_skb(ssk, skb); 718 done = true; 719 } 720 721 WRITE_ONCE(tp->copied_seq, seq); 722 more_data_avail = mptcp_subflow_data_available(ssk); 723 724 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 725 done = true; 726 break; 727 } 728 } while (more_data_avail); 729 730 if (moved > 0) 731 msk->last_data_recv = tcp_jiffies32; 732 *bytes += moved; 733 return done; 734 } 735 736 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 737 { 738 struct sock *sk = (struct sock *)msk; 739 struct sk_buff *skb, *tail; 740 bool moved = false; 741 struct rb_node *p; 742 u64 end_seq; 743 744 p = rb_first(&msk->out_of_order_queue); 745 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 746 while (p) { 747 skb = rb_to_skb(p); 748 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 749 break; 750 751 p = rb_next(p); 752 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 753 754 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 755 msk->ack_seq))) { 756 mptcp_drop(sk, skb); 757 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 758 continue; 759 } 760 761 end_seq = MPTCP_SKB_CB(skb)->end_seq; 762 tail = skb_peek_tail(&sk->sk_receive_queue); 763 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 764 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 765 766 /* skip overlapping data, if any */ 767 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 768 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 769 delta); 770 MPTCP_SKB_CB(skb)->offset += delta; 771 MPTCP_SKB_CB(skb)->map_seq += delta; 772 __skb_queue_tail(&sk->sk_receive_queue, skb); 773 } 774 msk->bytes_received += end_seq - msk->ack_seq; 775 WRITE_ONCE(msk->ack_seq, end_seq); 776 moved = true; 777 } 778 return moved; 779 } 780 781 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 782 { 783 int err = sock_error(ssk); 784 int ssk_state; 785 786 if (!err) 787 return false; 788 789 /* only propagate errors on fallen-back sockets or 790 * on MPC connect 791 */ 792 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 793 return false; 794 795 /* We need to propagate only transition to CLOSE state. 796 * Orphaned socket will see such state change via 797 * subflow_sched_work_if_closed() and that path will properly 798 * destroy the msk as needed. 799 */ 800 ssk_state = inet_sk_state_load(ssk); 801 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 802 mptcp_set_state(sk, ssk_state); 803 WRITE_ONCE(sk->sk_err, -err); 804 805 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 806 smp_wmb(); 807 sk_error_report(sk); 808 return true; 809 } 810 811 void __mptcp_error_report(struct sock *sk) 812 { 813 struct mptcp_subflow_context *subflow; 814 struct mptcp_sock *msk = mptcp_sk(sk); 815 816 mptcp_for_each_subflow(msk, subflow) 817 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 818 break; 819 } 820 821 /* In most cases we will be able to lock the mptcp socket. If its already 822 * owned, we need to defer to the work queue to avoid ABBA deadlock. 823 */ 824 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 825 { 826 struct sock *sk = (struct sock *)msk; 827 unsigned int moved = 0; 828 829 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 830 __mptcp_ofo_queue(msk); 831 if (unlikely(ssk->sk_err)) { 832 if (!sock_owned_by_user(sk)) 833 __mptcp_error_report(sk); 834 else 835 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 836 } 837 838 /* If the moves have caught up with the DATA_FIN sequence number 839 * it's time to ack the DATA_FIN and change socket state, but 840 * this is not a good place to change state. Let the workqueue 841 * do it. 842 */ 843 if (mptcp_pending_data_fin(sk, NULL)) 844 mptcp_schedule_work(sk); 845 return moved > 0; 846 } 847 848 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 849 { 850 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 851 struct mptcp_sock *msk = mptcp_sk(sk); 852 int sk_rbuf, ssk_rbuf; 853 854 /* The peer can send data while we are shutting down this 855 * subflow at msk destruction time, but we must avoid enqueuing 856 * more data to the msk receive queue 857 */ 858 if (unlikely(subflow->disposable)) 859 return; 860 861 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 862 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 863 if (unlikely(ssk_rbuf > sk_rbuf)) 864 sk_rbuf = ssk_rbuf; 865 866 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 867 if (__mptcp_rmem(sk) > sk_rbuf) 868 return; 869 870 /* Wake-up the reader only for in-sequence data */ 871 mptcp_data_lock(sk); 872 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 873 sk->sk_data_ready(sk); 874 mptcp_data_unlock(sk); 875 } 876 877 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 878 { 879 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 880 WRITE_ONCE(msk->allow_infinite_fallback, false); 881 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 882 } 883 884 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 885 { 886 struct sock *sk = (struct sock *)msk; 887 888 if (sk->sk_state != TCP_ESTABLISHED) 889 return false; 890 891 /* attach to msk socket only after we are sure we will deal with it 892 * at close time 893 */ 894 if (sk->sk_socket && !ssk->sk_socket) 895 mptcp_sock_graft(ssk, sk->sk_socket); 896 897 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 898 mptcp_sockopt_sync_locked(msk, ssk); 899 mptcp_subflow_joined(msk, ssk); 900 mptcp_stop_tout_timer(sk); 901 __mptcp_propagate_sndbuf(sk, ssk); 902 return true; 903 } 904 905 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 906 { 907 struct mptcp_subflow_context *tmp, *subflow; 908 struct mptcp_sock *msk = mptcp_sk(sk); 909 910 list_for_each_entry_safe(subflow, tmp, join_list, node) { 911 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 912 bool slow = lock_sock_fast(ssk); 913 914 list_move_tail(&subflow->node, &msk->conn_list); 915 if (!__mptcp_finish_join(msk, ssk)) 916 mptcp_subflow_reset(ssk); 917 unlock_sock_fast(ssk, slow); 918 } 919 } 920 921 static bool mptcp_rtx_timer_pending(struct sock *sk) 922 { 923 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 924 } 925 926 static void mptcp_reset_rtx_timer(struct sock *sk) 927 { 928 struct inet_connection_sock *icsk = inet_csk(sk); 929 unsigned long tout; 930 931 /* prevent rescheduling on close */ 932 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 933 return; 934 935 tout = mptcp_sk(sk)->timer_ival; 936 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 937 } 938 939 bool mptcp_schedule_work(struct sock *sk) 940 { 941 if (inet_sk_state_load(sk) != TCP_CLOSE && 942 schedule_work(&mptcp_sk(sk)->work)) { 943 /* each subflow already holds a reference to the sk, and the 944 * workqueue is invoked by a subflow, so sk can't go away here. 945 */ 946 sock_hold(sk); 947 return true; 948 } 949 return false; 950 } 951 952 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 953 { 954 struct mptcp_subflow_context *subflow; 955 956 msk_owned_by_me(msk); 957 958 mptcp_for_each_subflow(msk, subflow) { 959 if (READ_ONCE(subflow->data_avail)) 960 return mptcp_subflow_tcp_sock(subflow); 961 } 962 963 return NULL; 964 } 965 966 static bool mptcp_skb_can_collapse_to(u64 write_seq, 967 const struct sk_buff *skb, 968 const struct mptcp_ext *mpext) 969 { 970 if (!tcp_skb_can_collapse_to(skb)) 971 return false; 972 973 /* can collapse only if MPTCP level sequence is in order and this 974 * mapping has not been xmitted yet 975 */ 976 return mpext && mpext->data_seq + mpext->data_len == write_seq && 977 !mpext->frozen; 978 } 979 980 /* we can append data to the given data frag if: 981 * - there is space available in the backing page_frag 982 * - the data frag tail matches the current page_frag free offset 983 * - the data frag end sequence number matches the current write seq 984 */ 985 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 986 const struct page_frag *pfrag, 987 const struct mptcp_data_frag *df) 988 { 989 return df && pfrag->page == df->page && 990 pfrag->size - pfrag->offset > 0 && 991 pfrag->offset == (df->offset + df->data_len) && 992 df->data_seq + df->data_len == msk->write_seq; 993 } 994 995 static void dfrag_uncharge(struct sock *sk, int len) 996 { 997 sk_mem_uncharge(sk, len); 998 sk_wmem_queued_add(sk, -len); 999 } 1000 1001 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1002 { 1003 int len = dfrag->data_len + dfrag->overhead; 1004 1005 list_del(&dfrag->list); 1006 dfrag_uncharge(sk, len); 1007 put_page(dfrag->page); 1008 } 1009 1010 /* called under both the msk socket lock and the data lock */ 1011 static void __mptcp_clean_una(struct sock *sk) 1012 { 1013 struct mptcp_sock *msk = mptcp_sk(sk); 1014 struct mptcp_data_frag *dtmp, *dfrag; 1015 u64 snd_una; 1016 1017 snd_una = msk->snd_una; 1018 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1019 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1020 break; 1021 1022 if (unlikely(dfrag == msk->first_pending)) { 1023 /* in recovery mode can see ack after the current snd head */ 1024 if (WARN_ON_ONCE(!msk->recovery)) 1025 break; 1026 1027 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1028 } 1029 1030 dfrag_clear(sk, dfrag); 1031 } 1032 1033 dfrag = mptcp_rtx_head(sk); 1034 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1035 u64 delta = snd_una - dfrag->data_seq; 1036 1037 /* prevent wrap around in recovery mode */ 1038 if (unlikely(delta > dfrag->already_sent)) { 1039 if (WARN_ON_ONCE(!msk->recovery)) 1040 goto out; 1041 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1042 goto out; 1043 dfrag->already_sent += delta - dfrag->already_sent; 1044 } 1045 1046 dfrag->data_seq += delta; 1047 dfrag->offset += delta; 1048 dfrag->data_len -= delta; 1049 dfrag->already_sent -= delta; 1050 1051 dfrag_uncharge(sk, delta); 1052 } 1053 1054 /* all retransmitted data acked, recovery completed */ 1055 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1056 msk->recovery = false; 1057 1058 out: 1059 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1060 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1061 mptcp_stop_rtx_timer(sk); 1062 } else { 1063 mptcp_reset_rtx_timer(sk); 1064 } 1065 1066 if (mptcp_pending_data_fin_ack(sk)) 1067 mptcp_schedule_work(sk); 1068 } 1069 1070 static void __mptcp_clean_una_wakeup(struct sock *sk) 1071 { 1072 lockdep_assert_held_once(&sk->sk_lock.slock); 1073 1074 __mptcp_clean_una(sk); 1075 mptcp_write_space(sk); 1076 } 1077 1078 static void mptcp_clean_una_wakeup(struct sock *sk) 1079 { 1080 mptcp_data_lock(sk); 1081 __mptcp_clean_una_wakeup(sk); 1082 mptcp_data_unlock(sk); 1083 } 1084 1085 static void mptcp_enter_memory_pressure(struct sock *sk) 1086 { 1087 struct mptcp_subflow_context *subflow; 1088 struct mptcp_sock *msk = mptcp_sk(sk); 1089 bool first = true; 1090 1091 mptcp_for_each_subflow(msk, subflow) { 1092 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1093 1094 if (first) 1095 tcp_enter_memory_pressure(ssk); 1096 sk_stream_moderate_sndbuf(ssk); 1097 1098 first = false; 1099 } 1100 __mptcp_sync_sndbuf(sk); 1101 } 1102 1103 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1104 * data 1105 */ 1106 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1107 { 1108 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1109 pfrag, sk->sk_allocation))) 1110 return true; 1111 1112 mptcp_enter_memory_pressure(sk); 1113 return false; 1114 } 1115 1116 static struct mptcp_data_frag * 1117 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1118 int orig_offset) 1119 { 1120 int offset = ALIGN(orig_offset, sizeof(long)); 1121 struct mptcp_data_frag *dfrag; 1122 1123 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1124 dfrag->data_len = 0; 1125 dfrag->data_seq = msk->write_seq; 1126 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1127 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1128 dfrag->already_sent = 0; 1129 dfrag->page = pfrag->page; 1130 1131 return dfrag; 1132 } 1133 1134 struct mptcp_sendmsg_info { 1135 int mss_now; 1136 int size_goal; 1137 u16 limit; 1138 u16 sent; 1139 unsigned int flags; 1140 bool data_lock_held; 1141 }; 1142 1143 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1144 u64 data_seq, int avail_size) 1145 { 1146 u64 window_end = mptcp_wnd_end(msk); 1147 u64 mptcp_snd_wnd; 1148 1149 if (__mptcp_check_fallback(msk)) 1150 return avail_size; 1151 1152 mptcp_snd_wnd = window_end - data_seq; 1153 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1154 1155 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1156 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1157 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1158 } 1159 1160 return avail_size; 1161 } 1162 1163 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1164 { 1165 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1166 1167 if (!mpext) 1168 return false; 1169 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1170 return true; 1171 } 1172 1173 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1174 { 1175 struct sk_buff *skb; 1176 1177 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1178 if (likely(skb)) { 1179 if (likely(__mptcp_add_ext(skb, gfp))) { 1180 skb_reserve(skb, MAX_TCP_HEADER); 1181 skb->ip_summed = CHECKSUM_PARTIAL; 1182 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1183 return skb; 1184 } 1185 __kfree_skb(skb); 1186 } else { 1187 mptcp_enter_memory_pressure(sk); 1188 } 1189 return NULL; 1190 } 1191 1192 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1193 { 1194 struct sk_buff *skb; 1195 1196 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1197 if (!skb) 1198 return NULL; 1199 1200 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1201 tcp_skb_entail(ssk, skb); 1202 return skb; 1203 } 1204 tcp_skb_tsorted_anchor_cleanup(skb); 1205 kfree_skb(skb); 1206 return NULL; 1207 } 1208 1209 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1210 { 1211 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1212 1213 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1214 } 1215 1216 /* note: this always recompute the csum on the whole skb, even 1217 * if we just appended a single frag. More status info needed 1218 */ 1219 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1220 { 1221 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1222 __wsum csum = ~csum_unfold(mpext->csum); 1223 int offset = skb->len - added; 1224 1225 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1226 } 1227 1228 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1229 struct sock *ssk, 1230 struct mptcp_ext *mpext) 1231 { 1232 if (!mpext) 1233 return; 1234 1235 mpext->infinite_map = 1; 1236 mpext->data_len = 0; 1237 1238 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1239 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1240 pr_fallback(msk); 1241 mptcp_do_fallback(ssk); 1242 } 1243 1244 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1245 1246 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1247 struct mptcp_data_frag *dfrag, 1248 struct mptcp_sendmsg_info *info) 1249 { 1250 u64 data_seq = dfrag->data_seq + info->sent; 1251 int offset = dfrag->offset + info->sent; 1252 struct mptcp_sock *msk = mptcp_sk(sk); 1253 bool zero_window_probe = false; 1254 struct mptcp_ext *mpext = NULL; 1255 bool can_coalesce = false; 1256 bool reuse_skb = true; 1257 struct sk_buff *skb; 1258 size_t copy; 1259 int i; 1260 1261 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1262 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1263 1264 if (WARN_ON_ONCE(info->sent > info->limit || 1265 info->limit > dfrag->data_len)) 1266 return 0; 1267 1268 if (unlikely(!__tcp_can_send(ssk))) 1269 return -EAGAIN; 1270 1271 /* compute send limit */ 1272 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1273 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1274 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1275 copy = info->size_goal; 1276 1277 skb = tcp_write_queue_tail(ssk); 1278 if (skb && copy > skb->len) { 1279 /* Limit the write to the size available in the 1280 * current skb, if any, so that we create at most a new skb. 1281 * Explicitly tells TCP internals to avoid collapsing on later 1282 * queue management operation, to avoid breaking the ext <-> 1283 * SSN association set here 1284 */ 1285 mpext = mptcp_get_ext(skb); 1286 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1287 TCP_SKB_CB(skb)->eor = 1; 1288 tcp_mark_push(tcp_sk(ssk), skb); 1289 goto alloc_skb; 1290 } 1291 1292 i = skb_shinfo(skb)->nr_frags; 1293 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1294 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1295 tcp_mark_push(tcp_sk(ssk), skb); 1296 goto alloc_skb; 1297 } 1298 1299 copy -= skb->len; 1300 } else { 1301 alloc_skb: 1302 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1303 if (!skb) 1304 return -ENOMEM; 1305 1306 i = skb_shinfo(skb)->nr_frags; 1307 reuse_skb = false; 1308 mpext = mptcp_get_ext(skb); 1309 } 1310 1311 /* Zero window and all data acked? Probe. */ 1312 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1313 if (copy == 0) { 1314 u64 snd_una = READ_ONCE(msk->snd_una); 1315 1316 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1317 tcp_remove_empty_skb(ssk); 1318 return 0; 1319 } 1320 1321 zero_window_probe = true; 1322 data_seq = snd_una - 1; 1323 copy = 1; 1324 } 1325 1326 copy = min_t(size_t, copy, info->limit - info->sent); 1327 if (!sk_wmem_schedule(ssk, copy)) { 1328 tcp_remove_empty_skb(ssk); 1329 return -ENOMEM; 1330 } 1331 1332 if (can_coalesce) { 1333 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1334 } else { 1335 get_page(dfrag->page); 1336 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1337 } 1338 1339 skb->len += copy; 1340 skb->data_len += copy; 1341 skb->truesize += copy; 1342 sk_wmem_queued_add(ssk, copy); 1343 sk_mem_charge(ssk, copy); 1344 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1345 TCP_SKB_CB(skb)->end_seq += copy; 1346 tcp_skb_pcount_set(skb, 0); 1347 1348 /* on skb reuse we just need to update the DSS len */ 1349 if (reuse_skb) { 1350 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1351 mpext->data_len += copy; 1352 goto out; 1353 } 1354 1355 memset(mpext, 0, sizeof(*mpext)); 1356 mpext->data_seq = data_seq; 1357 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1358 mpext->data_len = copy; 1359 mpext->use_map = 1; 1360 mpext->dsn64 = 1; 1361 1362 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1363 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1364 mpext->dsn64); 1365 1366 if (zero_window_probe) { 1367 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1368 mpext->frozen = 1; 1369 if (READ_ONCE(msk->csum_enabled)) 1370 mptcp_update_data_checksum(skb, copy); 1371 tcp_push_pending_frames(ssk); 1372 return 0; 1373 } 1374 out: 1375 if (READ_ONCE(msk->csum_enabled)) 1376 mptcp_update_data_checksum(skb, copy); 1377 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1378 mptcp_update_infinite_map(msk, ssk, mpext); 1379 trace_mptcp_sendmsg_frag(mpext); 1380 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1381 return copy; 1382 } 1383 1384 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1385 sizeof(struct tcphdr) - \ 1386 MAX_TCP_OPTION_SPACE - \ 1387 sizeof(struct ipv6hdr) - \ 1388 sizeof(struct frag_hdr)) 1389 1390 struct subflow_send_info { 1391 struct sock *ssk; 1392 u64 linger_time; 1393 }; 1394 1395 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1396 { 1397 if (!subflow->stale) 1398 return; 1399 1400 subflow->stale = 0; 1401 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1402 } 1403 1404 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1405 { 1406 if (unlikely(subflow->stale)) { 1407 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1408 1409 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1410 return false; 1411 1412 mptcp_subflow_set_active(subflow); 1413 } 1414 return __mptcp_subflow_active(subflow); 1415 } 1416 1417 #define SSK_MODE_ACTIVE 0 1418 #define SSK_MODE_BACKUP 1 1419 #define SSK_MODE_MAX 2 1420 1421 /* implement the mptcp packet scheduler; 1422 * returns the subflow that will transmit the next DSS 1423 * additionally updates the rtx timeout 1424 */ 1425 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1426 { 1427 struct subflow_send_info send_info[SSK_MODE_MAX]; 1428 struct mptcp_subflow_context *subflow; 1429 struct sock *sk = (struct sock *)msk; 1430 u32 pace, burst, wmem; 1431 int i, nr_active = 0; 1432 struct sock *ssk; 1433 u64 linger_time; 1434 long tout = 0; 1435 1436 /* pick the subflow with the lower wmem/wspace ratio */ 1437 for (i = 0; i < SSK_MODE_MAX; ++i) { 1438 send_info[i].ssk = NULL; 1439 send_info[i].linger_time = -1; 1440 } 1441 1442 mptcp_for_each_subflow(msk, subflow) { 1443 bool backup = subflow->backup || subflow->request_bkup; 1444 1445 trace_mptcp_subflow_get_send(subflow); 1446 ssk = mptcp_subflow_tcp_sock(subflow); 1447 if (!mptcp_subflow_active(subflow)) 1448 continue; 1449 1450 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1451 nr_active += !backup; 1452 pace = subflow->avg_pacing_rate; 1453 if (unlikely(!pace)) { 1454 /* init pacing rate from socket */ 1455 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1456 pace = subflow->avg_pacing_rate; 1457 if (!pace) 1458 continue; 1459 } 1460 1461 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1462 if (linger_time < send_info[backup].linger_time) { 1463 send_info[backup].ssk = ssk; 1464 send_info[backup].linger_time = linger_time; 1465 } 1466 } 1467 __mptcp_set_timeout(sk, tout); 1468 1469 /* pick the best backup if no other subflow is active */ 1470 if (!nr_active) 1471 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1472 1473 /* According to the blest algorithm, to avoid HoL blocking for the 1474 * faster flow, we need to: 1475 * - estimate the faster flow linger time 1476 * - use the above to estimate the amount of byte transferred 1477 * by the faster flow 1478 * - check that the amount of queued data is greter than the above, 1479 * otherwise do not use the picked, slower, subflow 1480 * We select the subflow with the shorter estimated time to flush 1481 * the queued mem, which basically ensure the above. We just need 1482 * to check that subflow has a non empty cwin. 1483 */ 1484 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1485 if (!ssk || !sk_stream_memory_free(ssk)) 1486 return NULL; 1487 1488 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1489 wmem = READ_ONCE(ssk->sk_wmem_queued); 1490 if (!burst) 1491 return ssk; 1492 1493 subflow = mptcp_subflow_ctx(ssk); 1494 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1495 READ_ONCE(ssk->sk_pacing_rate) * burst, 1496 burst + wmem); 1497 msk->snd_burst = burst; 1498 return ssk; 1499 } 1500 1501 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1502 { 1503 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1504 release_sock(ssk); 1505 } 1506 1507 static void mptcp_update_post_push(struct mptcp_sock *msk, 1508 struct mptcp_data_frag *dfrag, 1509 u32 sent) 1510 { 1511 u64 snd_nxt_new = dfrag->data_seq; 1512 1513 dfrag->already_sent += sent; 1514 1515 msk->snd_burst -= sent; 1516 1517 snd_nxt_new += dfrag->already_sent; 1518 1519 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1520 * is recovering after a failover. In that event, this re-sends 1521 * old segments. 1522 * 1523 * Thus compute snd_nxt_new candidate based on 1524 * the dfrag->data_seq that was sent and the data 1525 * that has been handed to the subflow for transmission 1526 * and skip update in case it was old dfrag. 1527 */ 1528 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1529 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1530 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1531 } 1532 } 1533 1534 void mptcp_check_and_set_pending(struct sock *sk) 1535 { 1536 if (mptcp_send_head(sk)) { 1537 mptcp_data_lock(sk); 1538 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1539 mptcp_data_unlock(sk); 1540 } 1541 } 1542 1543 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1544 struct mptcp_sendmsg_info *info) 1545 { 1546 struct mptcp_sock *msk = mptcp_sk(sk); 1547 struct mptcp_data_frag *dfrag; 1548 int len, copied = 0, err = 0; 1549 1550 while ((dfrag = mptcp_send_head(sk))) { 1551 info->sent = dfrag->already_sent; 1552 info->limit = dfrag->data_len; 1553 len = dfrag->data_len - dfrag->already_sent; 1554 while (len > 0) { 1555 int ret = 0; 1556 1557 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1558 if (ret <= 0) { 1559 err = copied ? : ret; 1560 goto out; 1561 } 1562 1563 info->sent += ret; 1564 copied += ret; 1565 len -= ret; 1566 1567 mptcp_update_post_push(msk, dfrag, ret); 1568 } 1569 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1570 1571 if (msk->snd_burst <= 0 || 1572 !sk_stream_memory_free(ssk) || 1573 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1574 err = copied; 1575 goto out; 1576 } 1577 mptcp_set_timeout(sk); 1578 } 1579 err = copied; 1580 1581 out: 1582 if (err > 0) 1583 msk->last_data_sent = tcp_jiffies32; 1584 return err; 1585 } 1586 1587 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1588 { 1589 struct sock *prev_ssk = NULL, *ssk = NULL; 1590 struct mptcp_sock *msk = mptcp_sk(sk); 1591 struct mptcp_sendmsg_info info = { 1592 .flags = flags, 1593 }; 1594 bool do_check_data_fin = false; 1595 int push_count = 1; 1596 1597 while (mptcp_send_head(sk) && (push_count > 0)) { 1598 struct mptcp_subflow_context *subflow; 1599 int ret = 0; 1600 1601 if (mptcp_sched_get_send(msk)) 1602 break; 1603 1604 push_count = 0; 1605 1606 mptcp_for_each_subflow(msk, subflow) { 1607 if (READ_ONCE(subflow->scheduled)) { 1608 mptcp_subflow_set_scheduled(subflow, false); 1609 1610 prev_ssk = ssk; 1611 ssk = mptcp_subflow_tcp_sock(subflow); 1612 if (ssk != prev_ssk) { 1613 /* First check. If the ssk has changed since 1614 * the last round, release prev_ssk 1615 */ 1616 if (prev_ssk) 1617 mptcp_push_release(prev_ssk, &info); 1618 1619 /* Need to lock the new subflow only if different 1620 * from the previous one, otherwise we are still 1621 * helding the relevant lock 1622 */ 1623 lock_sock(ssk); 1624 } 1625 1626 push_count++; 1627 1628 ret = __subflow_push_pending(sk, ssk, &info); 1629 if (ret <= 0) { 1630 if (ret != -EAGAIN || 1631 (1 << ssk->sk_state) & 1632 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1633 push_count--; 1634 continue; 1635 } 1636 do_check_data_fin = true; 1637 } 1638 } 1639 } 1640 1641 /* at this point we held the socket lock for the last subflow we used */ 1642 if (ssk) 1643 mptcp_push_release(ssk, &info); 1644 1645 /* ensure the rtx timer is running */ 1646 if (!mptcp_rtx_timer_pending(sk)) 1647 mptcp_reset_rtx_timer(sk); 1648 if (do_check_data_fin) 1649 mptcp_check_send_data_fin(sk); 1650 } 1651 1652 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1653 { 1654 struct mptcp_sock *msk = mptcp_sk(sk); 1655 struct mptcp_sendmsg_info info = { 1656 .data_lock_held = true, 1657 }; 1658 bool keep_pushing = true; 1659 struct sock *xmit_ssk; 1660 int copied = 0; 1661 1662 info.flags = 0; 1663 while (mptcp_send_head(sk) && keep_pushing) { 1664 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1665 int ret = 0; 1666 1667 /* check for a different subflow usage only after 1668 * spooling the first chunk of data 1669 */ 1670 if (first) { 1671 mptcp_subflow_set_scheduled(subflow, false); 1672 ret = __subflow_push_pending(sk, ssk, &info); 1673 first = false; 1674 if (ret <= 0) 1675 break; 1676 copied += ret; 1677 continue; 1678 } 1679 1680 if (mptcp_sched_get_send(msk)) 1681 goto out; 1682 1683 if (READ_ONCE(subflow->scheduled)) { 1684 mptcp_subflow_set_scheduled(subflow, false); 1685 ret = __subflow_push_pending(sk, ssk, &info); 1686 if (ret <= 0) 1687 keep_pushing = false; 1688 copied += ret; 1689 } 1690 1691 mptcp_for_each_subflow(msk, subflow) { 1692 if (READ_ONCE(subflow->scheduled)) { 1693 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1694 if (xmit_ssk != ssk) { 1695 mptcp_subflow_delegate(subflow, 1696 MPTCP_DELEGATE_SEND); 1697 keep_pushing = false; 1698 } 1699 } 1700 } 1701 } 1702 1703 out: 1704 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1705 * not going to flush it via release_sock() 1706 */ 1707 if (copied) { 1708 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1709 info.size_goal); 1710 if (!mptcp_rtx_timer_pending(sk)) 1711 mptcp_reset_rtx_timer(sk); 1712 1713 if (msk->snd_data_fin_enable && 1714 msk->snd_nxt + 1 == msk->write_seq) 1715 mptcp_schedule_work(sk); 1716 } 1717 } 1718 1719 static int mptcp_disconnect(struct sock *sk, int flags); 1720 1721 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1722 size_t len, int *copied_syn) 1723 { 1724 unsigned int saved_flags = msg->msg_flags; 1725 struct mptcp_sock *msk = mptcp_sk(sk); 1726 struct sock *ssk; 1727 int ret; 1728 1729 /* on flags based fastopen the mptcp is supposed to create the 1730 * first subflow right now. Otherwise we are in the defer_connect 1731 * path, and the first subflow must be already present. 1732 * Since the defer_connect flag is cleared after the first succsful 1733 * fastopen attempt, no need to check for additional subflow status. 1734 */ 1735 if (msg->msg_flags & MSG_FASTOPEN) { 1736 ssk = __mptcp_nmpc_sk(msk); 1737 if (IS_ERR(ssk)) 1738 return PTR_ERR(ssk); 1739 } 1740 if (!msk->first) 1741 return -EINVAL; 1742 1743 ssk = msk->first; 1744 1745 lock_sock(ssk); 1746 msg->msg_flags |= MSG_DONTWAIT; 1747 msk->fastopening = 1; 1748 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1749 msk->fastopening = 0; 1750 msg->msg_flags = saved_flags; 1751 release_sock(ssk); 1752 1753 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1754 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1755 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1756 msg->msg_namelen, msg->msg_flags, 1); 1757 1758 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1759 * case of any error, except timeout or signal 1760 */ 1761 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1762 *copied_syn = 0; 1763 } else if (ret && ret != -EINPROGRESS) { 1764 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1765 * __inet_stream_connect() can fail, due to looking check, 1766 * see mptcp_disconnect(). 1767 * Attempt it again outside the problematic scope. 1768 */ 1769 if (!mptcp_disconnect(sk, 0)) 1770 sk->sk_socket->state = SS_UNCONNECTED; 1771 } 1772 inet_clear_bit(DEFER_CONNECT, sk); 1773 1774 return ret; 1775 } 1776 1777 static int do_copy_data_nocache(struct sock *sk, int copy, 1778 struct iov_iter *from, char *to) 1779 { 1780 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1781 if (!copy_from_iter_full_nocache(to, copy, from)) 1782 return -EFAULT; 1783 } else if (!copy_from_iter_full(to, copy, from)) { 1784 return -EFAULT; 1785 } 1786 return 0; 1787 } 1788 1789 /* open-code sk_stream_memory_free() plus sent limit computation to 1790 * avoid indirect calls in fast-path. 1791 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1792 * annotations. 1793 */ 1794 static u32 mptcp_send_limit(const struct sock *sk) 1795 { 1796 const struct mptcp_sock *msk = mptcp_sk(sk); 1797 u32 limit, not_sent; 1798 1799 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1800 return 0; 1801 1802 limit = mptcp_notsent_lowat(sk); 1803 if (limit == UINT_MAX) 1804 return UINT_MAX; 1805 1806 not_sent = msk->write_seq - msk->snd_nxt; 1807 if (not_sent >= limit) 1808 return 0; 1809 1810 return limit - not_sent; 1811 } 1812 1813 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1814 { 1815 struct mptcp_sock *msk = mptcp_sk(sk); 1816 struct page_frag *pfrag; 1817 size_t copied = 0; 1818 int ret = 0; 1819 long timeo; 1820 1821 /* silently ignore everything else */ 1822 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1823 1824 lock_sock(sk); 1825 1826 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1827 msg->msg_flags & MSG_FASTOPEN)) { 1828 int copied_syn = 0; 1829 1830 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1831 copied += copied_syn; 1832 if (ret == -EINPROGRESS && copied_syn > 0) 1833 goto out; 1834 else if (ret) 1835 goto do_error; 1836 } 1837 1838 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1839 1840 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1841 ret = sk_stream_wait_connect(sk, &timeo); 1842 if (ret) 1843 goto do_error; 1844 } 1845 1846 ret = -EPIPE; 1847 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1848 goto do_error; 1849 1850 pfrag = sk_page_frag(sk); 1851 1852 while (msg_data_left(msg)) { 1853 int total_ts, frag_truesize = 0; 1854 struct mptcp_data_frag *dfrag; 1855 bool dfrag_collapsed; 1856 size_t psize, offset; 1857 u32 copy_limit; 1858 1859 /* ensure fitting the notsent_lowat() constraint */ 1860 copy_limit = mptcp_send_limit(sk); 1861 if (!copy_limit) 1862 goto wait_for_memory; 1863 1864 /* reuse tail pfrag, if possible, or carve a new one from the 1865 * page allocator 1866 */ 1867 dfrag = mptcp_pending_tail(sk); 1868 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1869 if (!dfrag_collapsed) { 1870 if (!mptcp_page_frag_refill(sk, pfrag)) 1871 goto wait_for_memory; 1872 1873 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1874 frag_truesize = dfrag->overhead; 1875 } 1876 1877 /* we do not bound vs wspace, to allow a single packet. 1878 * memory accounting will prevent execessive memory usage 1879 * anyway 1880 */ 1881 offset = dfrag->offset + dfrag->data_len; 1882 psize = pfrag->size - offset; 1883 psize = min_t(size_t, psize, msg_data_left(msg)); 1884 psize = min_t(size_t, psize, copy_limit); 1885 total_ts = psize + frag_truesize; 1886 1887 if (!sk_wmem_schedule(sk, total_ts)) 1888 goto wait_for_memory; 1889 1890 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1891 page_address(dfrag->page) + offset); 1892 if (ret) 1893 goto do_error; 1894 1895 /* data successfully copied into the write queue */ 1896 sk_forward_alloc_add(sk, -total_ts); 1897 copied += psize; 1898 dfrag->data_len += psize; 1899 frag_truesize += psize; 1900 pfrag->offset += frag_truesize; 1901 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1902 1903 /* charge data on mptcp pending queue to the msk socket 1904 * Note: we charge such data both to sk and ssk 1905 */ 1906 sk_wmem_queued_add(sk, frag_truesize); 1907 if (!dfrag_collapsed) { 1908 get_page(dfrag->page); 1909 list_add_tail(&dfrag->list, &msk->rtx_queue); 1910 if (!msk->first_pending) 1911 WRITE_ONCE(msk->first_pending, dfrag); 1912 } 1913 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1914 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1915 !dfrag_collapsed); 1916 1917 continue; 1918 1919 wait_for_memory: 1920 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1921 __mptcp_push_pending(sk, msg->msg_flags); 1922 ret = sk_stream_wait_memory(sk, &timeo); 1923 if (ret) 1924 goto do_error; 1925 } 1926 1927 if (copied) 1928 __mptcp_push_pending(sk, msg->msg_flags); 1929 1930 out: 1931 release_sock(sk); 1932 return copied; 1933 1934 do_error: 1935 if (copied) 1936 goto out; 1937 1938 copied = sk_stream_error(sk, msg->msg_flags, ret); 1939 goto out; 1940 } 1941 1942 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1943 struct msghdr *msg, 1944 size_t len, int flags, 1945 struct scm_timestamping_internal *tss, 1946 int *cmsg_flags) 1947 { 1948 struct sk_buff *skb, *tmp; 1949 int copied = 0; 1950 1951 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1952 u32 offset = MPTCP_SKB_CB(skb)->offset; 1953 u32 data_len = skb->len - offset; 1954 u32 count = min_t(size_t, len - copied, data_len); 1955 int err; 1956 1957 if (!(flags & MSG_TRUNC)) { 1958 err = skb_copy_datagram_msg(skb, offset, msg, count); 1959 if (unlikely(err < 0)) { 1960 if (!copied) 1961 return err; 1962 break; 1963 } 1964 } 1965 1966 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1967 tcp_update_recv_tstamps(skb, tss); 1968 *cmsg_flags |= MPTCP_CMSG_TS; 1969 } 1970 1971 copied += count; 1972 1973 if (count < data_len) { 1974 if (!(flags & MSG_PEEK)) { 1975 MPTCP_SKB_CB(skb)->offset += count; 1976 MPTCP_SKB_CB(skb)->map_seq += count; 1977 msk->bytes_consumed += count; 1978 } 1979 break; 1980 } 1981 1982 if (!(flags & MSG_PEEK)) { 1983 /* we will bulk release the skb memory later */ 1984 skb->destructor = NULL; 1985 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1986 __skb_unlink(skb, &msk->receive_queue); 1987 __kfree_skb(skb); 1988 msk->bytes_consumed += count; 1989 } 1990 1991 if (copied >= len) 1992 break; 1993 } 1994 1995 return copied; 1996 } 1997 1998 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1999 * 2000 * Only difference: Use highest rtt estimate of the subflows in use. 2001 */ 2002 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2003 { 2004 struct mptcp_subflow_context *subflow; 2005 struct sock *sk = (struct sock *)msk; 2006 u8 scaling_ratio = U8_MAX; 2007 u32 time, advmss = 1; 2008 u64 rtt_us, mstamp; 2009 2010 msk_owned_by_me(msk); 2011 2012 if (copied <= 0) 2013 return; 2014 2015 if (!msk->rcvspace_init) 2016 mptcp_rcv_space_init(msk, msk->first); 2017 2018 msk->rcvq_space.copied += copied; 2019 2020 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2021 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2022 2023 rtt_us = msk->rcvq_space.rtt_us; 2024 if (rtt_us && time < (rtt_us >> 3)) 2025 return; 2026 2027 rtt_us = 0; 2028 mptcp_for_each_subflow(msk, subflow) { 2029 const struct tcp_sock *tp; 2030 u64 sf_rtt_us; 2031 u32 sf_advmss; 2032 2033 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2034 2035 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2036 sf_advmss = READ_ONCE(tp->advmss); 2037 2038 rtt_us = max(sf_rtt_us, rtt_us); 2039 advmss = max(sf_advmss, advmss); 2040 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2041 } 2042 2043 msk->rcvq_space.rtt_us = rtt_us; 2044 msk->scaling_ratio = scaling_ratio; 2045 if (time < (rtt_us >> 3) || rtt_us == 0) 2046 return; 2047 2048 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2049 goto new_measure; 2050 2051 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2052 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2053 u64 rcvwin, grow; 2054 int rcvbuf; 2055 2056 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2057 2058 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2059 2060 do_div(grow, msk->rcvq_space.space); 2061 rcvwin += (grow << 1); 2062 2063 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 2064 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2065 2066 if (rcvbuf > sk->sk_rcvbuf) { 2067 u32 window_clamp; 2068 2069 window_clamp = mptcp_win_from_space(sk, rcvbuf); 2070 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2071 2072 /* Make subflows follow along. If we do not do this, we 2073 * get drops at subflow level if skbs can't be moved to 2074 * the mptcp rx queue fast enough (announced rcv_win can 2075 * exceed ssk->sk_rcvbuf). 2076 */ 2077 mptcp_for_each_subflow(msk, subflow) { 2078 struct sock *ssk; 2079 bool slow; 2080 2081 ssk = mptcp_subflow_tcp_sock(subflow); 2082 slow = lock_sock_fast(ssk); 2083 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2084 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2085 if (tcp_can_send_ack(ssk)) 2086 tcp_cleanup_rbuf(ssk, 1); 2087 unlock_sock_fast(ssk, slow); 2088 } 2089 } 2090 } 2091 2092 msk->rcvq_space.space = msk->rcvq_space.copied; 2093 new_measure: 2094 msk->rcvq_space.copied = 0; 2095 msk->rcvq_space.time = mstamp; 2096 } 2097 2098 static void __mptcp_update_rmem(struct sock *sk) 2099 { 2100 struct mptcp_sock *msk = mptcp_sk(sk); 2101 2102 if (!msk->rmem_released) 2103 return; 2104 2105 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2106 mptcp_rmem_uncharge(sk, msk->rmem_released); 2107 WRITE_ONCE(msk->rmem_released, 0); 2108 } 2109 2110 static void __mptcp_splice_receive_queue(struct sock *sk) 2111 { 2112 struct mptcp_sock *msk = mptcp_sk(sk); 2113 2114 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2115 } 2116 2117 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2118 { 2119 struct sock *sk = (struct sock *)msk; 2120 unsigned int moved = 0; 2121 bool ret, done; 2122 2123 do { 2124 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2125 bool slowpath; 2126 2127 /* we can have data pending in the subflows only if the msk 2128 * receive buffer was full at subflow_data_ready() time, 2129 * that is an unlikely slow path. 2130 */ 2131 if (likely(!ssk)) 2132 break; 2133 2134 slowpath = lock_sock_fast(ssk); 2135 mptcp_data_lock(sk); 2136 __mptcp_update_rmem(sk); 2137 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2138 mptcp_data_unlock(sk); 2139 2140 if (unlikely(ssk->sk_err)) 2141 __mptcp_error_report(sk); 2142 unlock_sock_fast(ssk, slowpath); 2143 } while (!done); 2144 2145 /* acquire the data lock only if some input data is pending */ 2146 ret = moved > 0; 2147 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2148 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2149 mptcp_data_lock(sk); 2150 __mptcp_update_rmem(sk); 2151 ret |= __mptcp_ofo_queue(msk); 2152 __mptcp_splice_receive_queue(sk); 2153 mptcp_data_unlock(sk); 2154 } 2155 if (ret) 2156 mptcp_check_data_fin((struct sock *)msk); 2157 return !skb_queue_empty(&msk->receive_queue); 2158 } 2159 2160 static unsigned int mptcp_inq_hint(const struct sock *sk) 2161 { 2162 const struct mptcp_sock *msk = mptcp_sk(sk); 2163 const struct sk_buff *skb; 2164 2165 skb = skb_peek(&msk->receive_queue); 2166 if (skb) { 2167 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2168 2169 if (hint_val >= INT_MAX) 2170 return INT_MAX; 2171 2172 return (unsigned int)hint_val; 2173 } 2174 2175 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2176 return 1; 2177 2178 return 0; 2179 } 2180 2181 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2182 int flags, int *addr_len) 2183 { 2184 struct mptcp_sock *msk = mptcp_sk(sk); 2185 struct scm_timestamping_internal tss; 2186 int copied = 0, cmsg_flags = 0; 2187 int target; 2188 long timeo; 2189 2190 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2191 if (unlikely(flags & MSG_ERRQUEUE)) 2192 return inet_recv_error(sk, msg, len, addr_len); 2193 2194 lock_sock(sk); 2195 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2196 copied = -ENOTCONN; 2197 goto out_err; 2198 } 2199 2200 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2201 2202 len = min_t(size_t, len, INT_MAX); 2203 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2204 2205 if (unlikely(msk->recvmsg_inq)) 2206 cmsg_flags = MPTCP_CMSG_INQ; 2207 2208 while (copied < len) { 2209 int err, bytes_read; 2210 2211 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2212 if (unlikely(bytes_read < 0)) { 2213 if (!copied) 2214 copied = bytes_read; 2215 goto out_err; 2216 } 2217 2218 copied += bytes_read; 2219 2220 /* be sure to advertise window change */ 2221 mptcp_cleanup_rbuf(msk); 2222 2223 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2224 continue; 2225 2226 /* only the MPTCP socket status is relevant here. The exit 2227 * conditions mirror closely tcp_recvmsg() 2228 */ 2229 if (copied >= target) 2230 break; 2231 2232 if (copied) { 2233 if (sk->sk_err || 2234 sk->sk_state == TCP_CLOSE || 2235 (sk->sk_shutdown & RCV_SHUTDOWN) || 2236 !timeo || 2237 signal_pending(current)) 2238 break; 2239 } else { 2240 if (sk->sk_err) { 2241 copied = sock_error(sk); 2242 break; 2243 } 2244 2245 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2246 /* race breaker: the shutdown could be after the 2247 * previous receive queue check 2248 */ 2249 if (__mptcp_move_skbs(msk)) 2250 continue; 2251 break; 2252 } 2253 2254 if (sk->sk_state == TCP_CLOSE) { 2255 copied = -ENOTCONN; 2256 break; 2257 } 2258 2259 if (!timeo) { 2260 copied = -EAGAIN; 2261 break; 2262 } 2263 2264 if (signal_pending(current)) { 2265 copied = sock_intr_errno(timeo); 2266 break; 2267 } 2268 } 2269 2270 pr_debug("block timeout %ld\n", timeo); 2271 mptcp_rcv_space_adjust(msk, copied); 2272 err = sk_wait_data(sk, &timeo, NULL); 2273 if (err < 0) { 2274 err = copied ? : err; 2275 goto out_err; 2276 } 2277 } 2278 2279 mptcp_rcv_space_adjust(msk, copied); 2280 2281 out_err: 2282 if (cmsg_flags && copied >= 0) { 2283 if (cmsg_flags & MPTCP_CMSG_TS) 2284 tcp_recv_timestamp(msg, sk, &tss); 2285 2286 if (cmsg_flags & MPTCP_CMSG_INQ) { 2287 unsigned int inq = mptcp_inq_hint(sk); 2288 2289 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2290 } 2291 } 2292 2293 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n", 2294 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2295 skb_queue_empty(&msk->receive_queue), copied); 2296 2297 release_sock(sk); 2298 return copied; 2299 } 2300 2301 static void mptcp_retransmit_timer(struct timer_list *t) 2302 { 2303 struct inet_connection_sock *icsk = from_timer(icsk, t, 2304 icsk_retransmit_timer); 2305 struct sock *sk = &icsk->icsk_inet.sk; 2306 struct mptcp_sock *msk = mptcp_sk(sk); 2307 2308 bh_lock_sock(sk); 2309 if (!sock_owned_by_user(sk)) { 2310 /* we need a process context to retransmit */ 2311 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2312 mptcp_schedule_work(sk); 2313 } else { 2314 /* delegate our work to tcp_release_cb() */ 2315 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2316 } 2317 bh_unlock_sock(sk); 2318 sock_put(sk); 2319 } 2320 2321 static void mptcp_tout_timer(struct timer_list *t) 2322 { 2323 struct sock *sk = from_timer(sk, t, sk_timer); 2324 2325 mptcp_schedule_work(sk); 2326 sock_put(sk); 2327 } 2328 2329 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2330 * level. 2331 * 2332 * A backup subflow is returned only if that is the only kind available. 2333 */ 2334 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2335 { 2336 struct sock *backup = NULL, *pick = NULL; 2337 struct mptcp_subflow_context *subflow; 2338 int min_stale_count = INT_MAX; 2339 2340 mptcp_for_each_subflow(msk, subflow) { 2341 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2342 2343 if (!__mptcp_subflow_active(subflow)) 2344 continue; 2345 2346 /* still data outstanding at TCP level? skip this */ 2347 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2348 mptcp_pm_subflow_chk_stale(msk, ssk); 2349 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2350 continue; 2351 } 2352 2353 if (subflow->backup || subflow->request_bkup) { 2354 if (!backup) 2355 backup = ssk; 2356 continue; 2357 } 2358 2359 if (!pick) 2360 pick = ssk; 2361 } 2362 2363 if (pick) 2364 return pick; 2365 2366 /* use backup only if there are no progresses anywhere */ 2367 return min_stale_count > 1 ? backup : NULL; 2368 } 2369 2370 bool __mptcp_retransmit_pending_data(struct sock *sk) 2371 { 2372 struct mptcp_data_frag *cur, *rtx_head; 2373 struct mptcp_sock *msk = mptcp_sk(sk); 2374 2375 if (__mptcp_check_fallback(msk)) 2376 return false; 2377 2378 /* the closing socket has some data untransmitted and/or unacked: 2379 * some data in the mptcp rtx queue has not really xmitted yet. 2380 * keep it simple and re-inject the whole mptcp level rtx queue 2381 */ 2382 mptcp_data_lock(sk); 2383 __mptcp_clean_una_wakeup(sk); 2384 rtx_head = mptcp_rtx_head(sk); 2385 if (!rtx_head) { 2386 mptcp_data_unlock(sk); 2387 return false; 2388 } 2389 2390 msk->recovery_snd_nxt = msk->snd_nxt; 2391 msk->recovery = true; 2392 mptcp_data_unlock(sk); 2393 2394 msk->first_pending = rtx_head; 2395 msk->snd_burst = 0; 2396 2397 /* be sure to clear the "sent status" on all re-injected fragments */ 2398 list_for_each_entry(cur, &msk->rtx_queue, list) { 2399 if (!cur->already_sent) 2400 break; 2401 cur->already_sent = 0; 2402 } 2403 2404 return true; 2405 } 2406 2407 /* flags for __mptcp_close_ssk() */ 2408 #define MPTCP_CF_PUSH BIT(1) 2409 #define MPTCP_CF_FASTCLOSE BIT(2) 2410 2411 /* be sure to send a reset only if the caller asked for it, also 2412 * clean completely the subflow status when the subflow reaches 2413 * TCP_CLOSE state 2414 */ 2415 static void __mptcp_subflow_disconnect(struct sock *ssk, 2416 struct mptcp_subflow_context *subflow, 2417 unsigned int flags) 2418 { 2419 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2420 (flags & MPTCP_CF_FASTCLOSE)) { 2421 /* The MPTCP code never wait on the subflow sockets, TCP-level 2422 * disconnect should never fail 2423 */ 2424 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2425 mptcp_subflow_ctx_reset(subflow); 2426 } else { 2427 tcp_shutdown(ssk, SEND_SHUTDOWN); 2428 } 2429 } 2430 2431 /* subflow sockets can be either outgoing (connect) or incoming 2432 * (accept). 2433 * 2434 * Outgoing subflows use in-kernel sockets. 2435 * Incoming subflows do not have their own 'struct socket' allocated, 2436 * so we need to use tcp_close() after detaching them from the mptcp 2437 * parent socket. 2438 */ 2439 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2440 struct mptcp_subflow_context *subflow, 2441 unsigned int flags) 2442 { 2443 struct mptcp_sock *msk = mptcp_sk(sk); 2444 bool dispose_it, need_push = false; 2445 2446 /* If the first subflow moved to a close state before accept, e.g. due 2447 * to an incoming reset or listener shutdown, the subflow socket is 2448 * already deleted by inet_child_forget() and the mptcp socket can't 2449 * survive too. 2450 */ 2451 if (msk->in_accept_queue && msk->first == ssk && 2452 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2453 /* ensure later check in mptcp_worker() will dispose the msk */ 2454 sock_set_flag(sk, SOCK_DEAD); 2455 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2456 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2457 mptcp_subflow_drop_ctx(ssk); 2458 goto out_release; 2459 } 2460 2461 dispose_it = msk->free_first || ssk != msk->first; 2462 if (dispose_it) 2463 list_del(&subflow->node); 2464 2465 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2466 2467 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2468 /* be sure to force the tcp_close path 2469 * to generate the egress reset 2470 */ 2471 ssk->sk_lingertime = 0; 2472 sock_set_flag(ssk, SOCK_LINGER); 2473 subflow->send_fastclose = 1; 2474 } 2475 2476 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2477 if (!dispose_it) { 2478 __mptcp_subflow_disconnect(ssk, subflow, flags); 2479 release_sock(ssk); 2480 2481 goto out; 2482 } 2483 2484 subflow->disposable = 1; 2485 2486 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2487 * the ssk has been already destroyed, we just need to release the 2488 * reference owned by msk; 2489 */ 2490 if (!inet_csk(ssk)->icsk_ulp_ops) { 2491 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2492 kfree_rcu(subflow, rcu); 2493 } else { 2494 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2495 __tcp_close(ssk, 0); 2496 2497 /* close acquired an extra ref */ 2498 __sock_put(ssk); 2499 } 2500 2501 out_release: 2502 __mptcp_subflow_error_report(sk, ssk); 2503 release_sock(ssk); 2504 2505 sock_put(ssk); 2506 2507 if (ssk == msk->first) 2508 WRITE_ONCE(msk->first, NULL); 2509 2510 out: 2511 __mptcp_sync_sndbuf(sk); 2512 if (need_push) 2513 __mptcp_push_pending(sk, 0); 2514 2515 /* Catch every 'all subflows closed' scenario, including peers silently 2516 * closing them, e.g. due to timeout. 2517 * For established sockets, allow an additional timeout before closing, 2518 * as the protocol can still create more subflows. 2519 */ 2520 if (list_is_singular(&msk->conn_list) && msk->first && 2521 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2522 if (sk->sk_state != TCP_ESTABLISHED || 2523 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2524 mptcp_set_state(sk, TCP_CLOSE); 2525 mptcp_close_wake_up(sk); 2526 } else { 2527 mptcp_start_tout_timer(sk); 2528 } 2529 } 2530 } 2531 2532 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2533 struct mptcp_subflow_context *subflow) 2534 { 2535 /* The first subflow can already be closed and still in the list */ 2536 if (subflow->close_event_done) 2537 return; 2538 2539 subflow->close_event_done = true; 2540 2541 if (sk->sk_state == TCP_ESTABLISHED) 2542 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2543 2544 /* subflow aborted before reaching the fully_established status 2545 * attempt the creation of the next subflow 2546 */ 2547 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2548 2549 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2550 } 2551 2552 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2553 { 2554 return 0; 2555 } 2556 2557 static void __mptcp_close_subflow(struct sock *sk) 2558 { 2559 struct mptcp_subflow_context *subflow, *tmp; 2560 struct mptcp_sock *msk = mptcp_sk(sk); 2561 2562 might_sleep(); 2563 2564 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2565 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2566 int ssk_state = inet_sk_state_load(ssk); 2567 2568 if (ssk_state != TCP_CLOSE && 2569 (ssk_state != TCP_CLOSE_WAIT || 2570 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2571 continue; 2572 2573 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2574 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2575 continue; 2576 2577 mptcp_close_ssk(sk, ssk, subflow); 2578 } 2579 2580 } 2581 2582 static bool mptcp_close_tout_expired(const struct sock *sk) 2583 { 2584 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2585 sk->sk_state == TCP_CLOSE) 2586 return false; 2587 2588 return time_after32(tcp_jiffies32, 2589 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2590 } 2591 2592 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2593 { 2594 struct mptcp_subflow_context *subflow, *tmp; 2595 struct sock *sk = (struct sock *)msk; 2596 2597 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2598 return; 2599 2600 mptcp_token_destroy(msk); 2601 2602 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2603 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2604 bool slow; 2605 2606 slow = lock_sock_fast(tcp_sk); 2607 if (tcp_sk->sk_state != TCP_CLOSE) { 2608 mptcp_send_active_reset_reason(tcp_sk); 2609 tcp_set_state(tcp_sk, TCP_CLOSE); 2610 } 2611 unlock_sock_fast(tcp_sk, slow); 2612 } 2613 2614 /* Mirror the tcp_reset() error propagation */ 2615 switch (sk->sk_state) { 2616 case TCP_SYN_SENT: 2617 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2618 break; 2619 case TCP_CLOSE_WAIT: 2620 WRITE_ONCE(sk->sk_err, EPIPE); 2621 break; 2622 case TCP_CLOSE: 2623 return; 2624 default: 2625 WRITE_ONCE(sk->sk_err, ECONNRESET); 2626 } 2627 2628 mptcp_set_state(sk, TCP_CLOSE); 2629 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2630 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2631 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2632 2633 /* the calling mptcp_worker will properly destroy the socket */ 2634 if (sock_flag(sk, SOCK_DEAD)) 2635 return; 2636 2637 sk->sk_state_change(sk); 2638 sk_error_report(sk); 2639 } 2640 2641 static void __mptcp_retrans(struct sock *sk) 2642 { 2643 struct mptcp_sock *msk = mptcp_sk(sk); 2644 struct mptcp_subflow_context *subflow; 2645 struct mptcp_sendmsg_info info = {}; 2646 struct mptcp_data_frag *dfrag; 2647 struct sock *ssk; 2648 int ret, err; 2649 u16 len = 0; 2650 2651 mptcp_clean_una_wakeup(sk); 2652 2653 /* first check ssk: need to kick "stale" logic */ 2654 err = mptcp_sched_get_retrans(msk); 2655 dfrag = mptcp_rtx_head(sk); 2656 if (!dfrag) { 2657 if (mptcp_data_fin_enabled(msk)) { 2658 struct inet_connection_sock *icsk = inet_csk(sk); 2659 2660 icsk->icsk_retransmits++; 2661 mptcp_set_datafin_timeout(sk); 2662 mptcp_send_ack(msk); 2663 2664 goto reset_timer; 2665 } 2666 2667 if (!mptcp_send_head(sk)) 2668 return; 2669 2670 goto reset_timer; 2671 } 2672 2673 if (err) 2674 goto reset_timer; 2675 2676 mptcp_for_each_subflow(msk, subflow) { 2677 if (READ_ONCE(subflow->scheduled)) { 2678 u16 copied = 0; 2679 2680 mptcp_subflow_set_scheduled(subflow, false); 2681 2682 ssk = mptcp_subflow_tcp_sock(subflow); 2683 2684 lock_sock(ssk); 2685 2686 /* limit retransmission to the bytes already sent on some subflows */ 2687 info.sent = 0; 2688 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2689 dfrag->already_sent; 2690 while (info.sent < info.limit) { 2691 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2692 if (ret <= 0) 2693 break; 2694 2695 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2696 copied += ret; 2697 info.sent += ret; 2698 } 2699 if (copied) { 2700 len = max(copied, len); 2701 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2702 info.size_goal); 2703 WRITE_ONCE(msk->allow_infinite_fallback, false); 2704 } 2705 2706 release_sock(ssk); 2707 } 2708 } 2709 2710 msk->bytes_retrans += len; 2711 dfrag->already_sent = max(dfrag->already_sent, len); 2712 2713 reset_timer: 2714 mptcp_check_and_set_pending(sk); 2715 2716 if (!mptcp_rtx_timer_pending(sk)) 2717 mptcp_reset_rtx_timer(sk); 2718 } 2719 2720 /* schedule the timeout timer for the relevant event: either close timeout 2721 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2722 */ 2723 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2724 { 2725 struct sock *sk = (struct sock *)msk; 2726 unsigned long timeout, close_timeout; 2727 2728 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2729 return; 2730 2731 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2732 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2733 2734 /* the close timeout takes precedence on the fail one, and here at least one of 2735 * them is active 2736 */ 2737 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2738 2739 sk_reset_timer(sk, &sk->sk_timer, timeout); 2740 } 2741 2742 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2743 { 2744 struct sock *ssk = msk->first; 2745 bool slow; 2746 2747 if (!ssk) 2748 return; 2749 2750 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2751 2752 slow = lock_sock_fast(ssk); 2753 mptcp_subflow_reset(ssk); 2754 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2755 unlock_sock_fast(ssk, slow); 2756 } 2757 2758 static void mptcp_do_fastclose(struct sock *sk) 2759 { 2760 struct mptcp_subflow_context *subflow, *tmp; 2761 struct mptcp_sock *msk = mptcp_sk(sk); 2762 2763 mptcp_set_state(sk, TCP_CLOSE); 2764 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2765 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2766 subflow, MPTCP_CF_FASTCLOSE); 2767 } 2768 2769 static void mptcp_worker(struct work_struct *work) 2770 { 2771 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2772 struct sock *sk = (struct sock *)msk; 2773 unsigned long fail_tout; 2774 int state; 2775 2776 lock_sock(sk); 2777 state = sk->sk_state; 2778 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2779 goto unlock; 2780 2781 mptcp_check_fastclose(msk); 2782 2783 mptcp_pm_nl_work(msk); 2784 2785 mptcp_check_send_data_fin(sk); 2786 mptcp_check_data_fin_ack(sk); 2787 mptcp_check_data_fin(sk); 2788 2789 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2790 __mptcp_close_subflow(sk); 2791 2792 if (mptcp_close_tout_expired(sk)) { 2793 mptcp_do_fastclose(sk); 2794 mptcp_close_wake_up(sk); 2795 } 2796 2797 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2798 __mptcp_destroy_sock(sk); 2799 goto unlock; 2800 } 2801 2802 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2803 __mptcp_retrans(sk); 2804 2805 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2806 if (fail_tout && time_after(jiffies, fail_tout)) 2807 mptcp_mp_fail_no_response(msk); 2808 2809 unlock: 2810 release_sock(sk); 2811 sock_put(sk); 2812 } 2813 2814 static void __mptcp_init_sock(struct sock *sk) 2815 { 2816 struct mptcp_sock *msk = mptcp_sk(sk); 2817 2818 INIT_LIST_HEAD(&msk->conn_list); 2819 INIT_LIST_HEAD(&msk->join_list); 2820 INIT_LIST_HEAD(&msk->rtx_queue); 2821 INIT_WORK(&msk->work, mptcp_worker); 2822 __skb_queue_head_init(&msk->receive_queue); 2823 msk->out_of_order_queue = RB_ROOT; 2824 msk->first_pending = NULL; 2825 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 2826 WRITE_ONCE(msk->rmem_released, 0); 2827 msk->timer_ival = TCP_RTO_MIN; 2828 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2829 2830 WRITE_ONCE(msk->first, NULL); 2831 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2832 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2833 WRITE_ONCE(msk->allow_infinite_fallback, true); 2834 msk->recovery = false; 2835 msk->subflow_id = 1; 2836 msk->last_data_sent = tcp_jiffies32; 2837 msk->last_data_recv = tcp_jiffies32; 2838 msk->last_ack_recv = tcp_jiffies32; 2839 2840 mptcp_pm_data_init(msk); 2841 2842 /* re-use the csk retrans timer for MPTCP-level retrans */ 2843 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2844 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2845 } 2846 2847 static void mptcp_ca_reset(struct sock *sk) 2848 { 2849 struct inet_connection_sock *icsk = inet_csk(sk); 2850 2851 tcp_assign_congestion_control(sk); 2852 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2853 sizeof(mptcp_sk(sk)->ca_name)); 2854 2855 /* no need to keep a reference to the ops, the name will suffice */ 2856 tcp_cleanup_congestion_control(sk); 2857 icsk->icsk_ca_ops = NULL; 2858 } 2859 2860 static int mptcp_init_sock(struct sock *sk) 2861 { 2862 struct net *net = sock_net(sk); 2863 int ret; 2864 2865 __mptcp_init_sock(sk); 2866 2867 if (!mptcp_is_enabled(net)) 2868 return -ENOPROTOOPT; 2869 2870 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2871 return -ENOMEM; 2872 2873 rcu_read_lock(); 2874 ret = mptcp_init_sched(mptcp_sk(sk), 2875 mptcp_sched_find(mptcp_get_scheduler(net))); 2876 rcu_read_unlock(); 2877 if (ret) 2878 return ret; 2879 2880 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2881 2882 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2883 * propagate the correct value 2884 */ 2885 mptcp_ca_reset(sk); 2886 2887 sk_sockets_allocated_inc(sk); 2888 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2889 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2890 2891 return 0; 2892 } 2893 2894 static void __mptcp_clear_xmit(struct sock *sk) 2895 { 2896 struct mptcp_sock *msk = mptcp_sk(sk); 2897 struct mptcp_data_frag *dtmp, *dfrag; 2898 2899 WRITE_ONCE(msk->first_pending, NULL); 2900 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2901 dfrag_clear(sk, dfrag); 2902 } 2903 2904 void mptcp_cancel_work(struct sock *sk) 2905 { 2906 struct mptcp_sock *msk = mptcp_sk(sk); 2907 2908 if (cancel_work_sync(&msk->work)) 2909 __sock_put(sk); 2910 } 2911 2912 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2913 { 2914 lock_sock(ssk); 2915 2916 switch (ssk->sk_state) { 2917 case TCP_LISTEN: 2918 if (!(how & RCV_SHUTDOWN)) 2919 break; 2920 fallthrough; 2921 case TCP_SYN_SENT: 2922 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2923 break; 2924 default: 2925 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2926 pr_debug("Fallback\n"); 2927 ssk->sk_shutdown |= how; 2928 tcp_shutdown(ssk, how); 2929 2930 /* simulate the data_fin ack reception to let the state 2931 * machine move forward 2932 */ 2933 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2934 mptcp_schedule_work(sk); 2935 } else { 2936 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2937 tcp_send_ack(ssk); 2938 if (!mptcp_rtx_timer_pending(sk)) 2939 mptcp_reset_rtx_timer(sk); 2940 } 2941 break; 2942 } 2943 2944 release_sock(ssk); 2945 } 2946 2947 void mptcp_set_state(struct sock *sk, int state) 2948 { 2949 int oldstate = sk->sk_state; 2950 2951 switch (state) { 2952 case TCP_ESTABLISHED: 2953 if (oldstate != TCP_ESTABLISHED) 2954 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2955 break; 2956 case TCP_CLOSE_WAIT: 2957 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2958 * MPTCP "accepted" sockets will be created later on. So no 2959 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2960 */ 2961 break; 2962 default: 2963 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2964 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2965 } 2966 2967 inet_sk_state_store(sk, state); 2968 } 2969 2970 static const unsigned char new_state[16] = { 2971 /* current state: new state: action: */ 2972 [0 /* (Invalid) */] = TCP_CLOSE, 2973 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2974 [TCP_SYN_SENT] = TCP_CLOSE, 2975 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2976 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2977 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2978 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2979 [TCP_CLOSE] = TCP_CLOSE, 2980 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2981 [TCP_LAST_ACK] = TCP_LAST_ACK, 2982 [TCP_LISTEN] = TCP_CLOSE, 2983 [TCP_CLOSING] = TCP_CLOSING, 2984 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2985 }; 2986 2987 static int mptcp_close_state(struct sock *sk) 2988 { 2989 int next = (int)new_state[sk->sk_state]; 2990 int ns = next & TCP_STATE_MASK; 2991 2992 mptcp_set_state(sk, ns); 2993 2994 return next & TCP_ACTION_FIN; 2995 } 2996 2997 static void mptcp_check_send_data_fin(struct sock *sk) 2998 { 2999 struct mptcp_subflow_context *subflow; 3000 struct mptcp_sock *msk = mptcp_sk(sk); 3001 3002 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3003 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3004 msk->snd_nxt, msk->write_seq); 3005 3006 /* we still need to enqueue subflows or not really shutting down, 3007 * skip this 3008 */ 3009 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3010 mptcp_send_head(sk)) 3011 return; 3012 3013 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3014 3015 mptcp_for_each_subflow(msk, subflow) { 3016 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3017 3018 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3019 } 3020 } 3021 3022 static void __mptcp_wr_shutdown(struct sock *sk) 3023 { 3024 struct mptcp_sock *msk = mptcp_sk(sk); 3025 3026 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3027 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3028 !!mptcp_send_head(sk)); 3029 3030 /* will be ignored by fallback sockets */ 3031 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3032 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3033 3034 mptcp_check_send_data_fin(sk); 3035 } 3036 3037 static void __mptcp_destroy_sock(struct sock *sk) 3038 { 3039 struct mptcp_sock *msk = mptcp_sk(sk); 3040 3041 pr_debug("msk=%p\n", msk); 3042 3043 might_sleep(); 3044 3045 mptcp_stop_rtx_timer(sk); 3046 sk_stop_timer(sk, &sk->sk_timer); 3047 msk->pm.status = 0; 3048 mptcp_release_sched(msk); 3049 3050 sk->sk_prot->destroy(sk); 3051 3052 WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc)); 3053 WARN_ON_ONCE(msk->rmem_released); 3054 sk_stream_kill_queues(sk); 3055 xfrm_sk_free_policy(sk); 3056 3057 sock_put(sk); 3058 } 3059 3060 void __mptcp_unaccepted_force_close(struct sock *sk) 3061 { 3062 sock_set_flag(sk, SOCK_DEAD); 3063 mptcp_do_fastclose(sk); 3064 __mptcp_destroy_sock(sk); 3065 } 3066 3067 static __poll_t mptcp_check_readable(struct sock *sk) 3068 { 3069 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3070 } 3071 3072 static void mptcp_check_listen_stop(struct sock *sk) 3073 { 3074 struct sock *ssk; 3075 3076 if (inet_sk_state_load(sk) != TCP_LISTEN) 3077 return; 3078 3079 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3080 ssk = mptcp_sk(sk)->first; 3081 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3082 return; 3083 3084 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3085 tcp_set_state(ssk, TCP_CLOSE); 3086 mptcp_subflow_queue_clean(sk, ssk); 3087 inet_csk_listen_stop(ssk); 3088 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3089 release_sock(ssk); 3090 } 3091 3092 bool __mptcp_close(struct sock *sk, long timeout) 3093 { 3094 struct mptcp_subflow_context *subflow; 3095 struct mptcp_sock *msk = mptcp_sk(sk); 3096 bool do_cancel_work = false; 3097 int subflows_alive = 0; 3098 3099 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3100 3101 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3102 mptcp_check_listen_stop(sk); 3103 mptcp_set_state(sk, TCP_CLOSE); 3104 goto cleanup; 3105 } 3106 3107 if (mptcp_data_avail(msk) || timeout < 0) { 3108 /* If the msk has read data, or the caller explicitly ask it, 3109 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3110 */ 3111 mptcp_do_fastclose(sk); 3112 timeout = 0; 3113 } else if (mptcp_close_state(sk)) { 3114 __mptcp_wr_shutdown(sk); 3115 } 3116 3117 sk_stream_wait_close(sk, timeout); 3118 3119 cleanup: 3120 /* orphan all the subflows */ 3121 mptcp_for_each_subflow(msk, subflow) { 3122 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3123 bool slow = lock_sock_fast_nested(ssk); 3124 3125 subflows_alive += ssk->sk_state != TCP_CLOSE; 3126 3127 /* since the close timeout takes precedence on the fail one, 3128 * cancel the latter 3129 */ 3130 if (ssk == msk->first) 3131 subflow->fail_tout = 0; 3132 3133 /* detach from the parent socket, but allow data_ready to 3134 * push incoming data into the mptcp stack, to properly ack it 3135 */ 3136 ssk->sk_socket = NULL; 3137 ssk->sk_wq = NULL; 3138 unlock_sock_fast(ssk, slow); 3139 } 3140 sock_orphan(sk); 3141 3142 /* all the subflows are closed, only timeout can change the msk 3143 * state, let's not keep resources busy for no reasons 3144 */ 3145 if (subflows_alive == 0) 3146 mptcp_set_state(sk, TCP_CLOSE); 3147 3148 sock_hold(sk); 3149 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3150 mptcp_pm_connection_closed(msk); 3151 3152 if (sk->sk_state == TCP_CLOSE) { 3153 __mptcp_destroy_sock(sk); 3154 do_cancel_work = true; 3155 } else { 3156 mptcp_start_tout_timer(sk); 3157 } 3158 3159 return do_cancel_work; 3160 } 3161 3162 static void mptcp_close(struct sock *sk, long timeout) 3163 { 3164 bool do_cancel_work; 3165 3166 lock_sock(sk); 3167 3168 do_cancel_work = __mptcp_close(sk, timeout); 3169 release_sock(sk); 3170 if (do_cancel_work) 3171 mptcp_cancel_work(sk); 3172 3173 sock_put(sk); 3174 } 3175 3176 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3177 { 3178 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3179 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3180 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3181 3182 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3183 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3184 3185 if (msk6 && ssk6) { 3186 msk6->saddr = ssk6->saddr; 3187 msk6->flow_label = ssk6->flow_label; 3188 } 3189 #endif 3190 3191 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3192 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3193 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3194 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3195 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3196 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3197 } 3198 3199 static int mptcp_disconnect(struct sock *sk, int flags) 3200 { 3201 struct mptcp_sock *msk = mptcp_sk(sk); 3202 3203 /* We are on the fastopen error path. We can't call straight into the 3204 * subflows cleanup code due to lock nesting (we are already under 3205 * msk->firstsocket lock). 3206 */ 3207 if (msk->fastopening) 3208 return -EBUSY; 3209 3210 mptcp_check_listen_stop(sk); 3211 mptcp_set_state(sk, TCP_CLOSE); 3212 3213 mptcp_stop_rtx_timer(sk); 3214 mptcp_stop_tout_timer(sk); 3215 3216 mptcp_pm_connection_closed(msk); 3217 3218 /* msk->subflow is still intact, the following will not free the first 3219 * subflow 3220 */ 3221 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3222 WRITE_ONCE(msk->flags, 0); 3223 msk->cb_flags = 0; 3224 msk->recovery = false; 3225 WRITE_ONCE(msk->can_ack, false); 3226 WRITE_ONCE(msk->fully_established, false); 3227 WRITE_ONCE(msk->rcv_data_fin, false); 3228 WRITE_ONCE(msk->snd_data_fin_enable, false); 3229 WRITE_ONCE(msk->rcv_fastclose, false); 3230 WRITE_ONCE(msk->use_64bit_ack, false); 3231 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3232 mptcp_pm_data_reset(msk); 3233 mptcp_ca_reset(sk); 3234 msk->bytes_consumed = 0; 3235 msk->bytes_acked = 0; 3236 msk->bytes_received = 0; 3237 msk->bytes_sent = 0; 3238 msk->bytes_retrans = 0; 3239 msk->rcvspace_init = 0; 3240 3241 WRITE_ONCE(sk->sk_shutdown, 0); 3242 sk_error_report(sk); 3243 return 0; 3244 } 3245 3246 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3247 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3248 { 3249 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3250 3251 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3252 } 3253 3254 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3255 { 3256 const struct ipv6_pinfo *np = inet6_sk(sk); 3257 struct ipv6_txoptions *opt; 3258 struct ipv6_pinfo *newnp; 3259 3260 newnp = inet6_sk(newsk); 3261 3262 rcu_read_lock(); 3263 opt = rcu_dereference(np->opt); 3264 if (opt) { 3265 opt = ipv6_dup_options(newsk, opt); 3266 if (!opt) 3267 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3268 } 3269 RCU_INIT_POINTER(newnp->opt, opt); 3270 rcu_read_unlock(); 3271 } 3272 #endif 3273 3274 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3275 { 3276 struct ip_options_rcu *inet_opt, *newopt = NULL; 3277 const struct inet_sock *inet = inet_sk(sk); 3278 struct inet_sock *newinet; 3279 3280 newinet = inet_sk(newsk); 3281 3282 rcu_read_lock(); 3283 inet_opt = rcu_dereference(inet->inet_opt); 3284 if (inet_opt) { 3285 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3286 inet_opt->opt.optlen, GFP_ATOMIC); 3287 if (newopt) 3288 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3289 inet_opt->opt.optlen); 3290 else 3291 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3292 } 3293 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3294 rcu_read_unlock(); 3295 } 3296 3297 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3298 const struct mptcp_options_received *mp_opt, 3299 struct sock *ssk, 3300 struct request_sock *req) 3301 { 3302 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3303 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3304 struct mptcp_subflow_context *subflow; 3305 struct mptcp_sock *msk; 3306 3307 if (!nsk) 3308 return NULL; 3309 3310 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3311 if (nsk->sk_family == AF_INET6) 3312 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3313 #endif 3314 3315 __mptcp_init_sock(nsk); 3316 3317 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3318 if (nsk->sk_family == AF_INET6) 3319 mptcp_copy_ip6_options(nsk, sk); 3320 else 3321 #endif 3322 mptcp_copy_ip_options(nsk, sk); 3323 3324 msk = mptcp_sk(nsk); 3325 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3326 WRITE_ONCE(msk->token, subflow_req->token); 3327 msk->in_accept_queue = 1; 3328 WRITE_ONCE(msk->fully_established, false); 3329 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3330 WRITE_ONCE(msk->csum_enabled, true); 3331 3332 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3333 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3334 WRITE_ONCE(msk->snd_una, msk->write_seq); 3335 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3336 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3337 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3338 3339 /* passive msk is created after the first/MPC subflow */ 3340 msk->subflow_id = 2; 3341 3342 sock_reset_flag(nsk, SOCK_RCU_FREE); 3343 security_inet_csk_clone(nsk, req); 3344 3345 /* this can't race with mptcp_close(), as the msk is 3346 * not yet exposted to user-space 3347 */ 3348 mptcp_set_state(nsk, TCP_ESTABLISHED); 3349 3350 /* The msk maintain a ref to each subflow in the connections list */ 3351 WRITE_ONCE(msk->first, ssk); 3352 subflow = mptcp_subflow_ctx(ssk); 3353 list_add(&subflow->node, &msk->conn_list); 3354 sock_hold(ssk); 3355 3356 /* new mpc subflow takes ownership of the newly 3357 * created mptcp socket 3358 */ 3359 mptcp_token_accept(subflow_req, msk); 3360 3361 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3362 * uses the correct data 3363 */ 3364 mptcp_copy_inaddrs(nsk, ssk); 3365 __mptcp_propagate_sndbuf(nsk, ssk); 3366 3367 mptcp_rcv_space_init(msk, ssk); 3368 3369 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3370 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3371 bh_unlock_sock(nsk); 3372 3373 /* note: the newly allocated socket refcount is 2 now */ 3374 return nsk; 3375 } 3376 3377 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3378 { 3379 const struct tcp_sock *tp = tcp_sk(ssk); 3380 3381 msk->rcvspace_init = 1; 3382 msk->rcvq_space.copied = 0; 3383 msk->rcvq_space.rtt_us = 0; 3384 3385 msk->rcvq_space.time = tp->tcp_mstamp; 3386 3387 /* initial rcv_space offering made to peer */ 3388 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3389 TCP_INIT_CWND * tp->advmss); 3390 if (msk->rcvq_space.space == 0) 3391 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3392 } 3393 3394 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3395 { 3396 struct mptcp_subflow_context *subflow, *tmp; 3397 struct sock *sk = (struct sock *)msk; 3398 3399 __mptcp_clear_xmit(sk); 3400 3401 /* join list will be eventually flushed (with rst) at sock lock release time */ 3402 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3403 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3404 3405 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3406 mptcp_data_lock(sk); 3407 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3408 __skb_queue_purge(&sk->sk_receive_queue); 3409 skb_rbtree_purge(&msk->out_of_order_queue); 3410 mptcp_data_unlock(sk); 3411 3412 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3413 * inet_sock_destruct() will dispose it 3414 */ 3415 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3416 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3417 mptcp_token_destroy(msk); 3418 mptcp_pm_free_anno_list(msk); 3419 mptcp_free_local_addr_list(msk); 3420 } 3421 3422 static void mptcp_destroy(struct sock *sk) 3423 { 3424 struct mptcp_sock *msk = mptcp_sk(sk); 3425 3426 /* allow the following to close even the initial subflow */ 3427 msk->free_first = 1; 3428 mptcp_destroy_common(msk, 0); 3429 sk_sockets_allocated_dec(sk); 3430 } 3431 3432 void __mptcp_data_acked(struct sock *sk) 3433 { 3434 if (!sock_owned_by_user(sk)) 3435 __mptcp_clean_una(sk); 3436 else 3437 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3438 } 3439 3440 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3441 { 3442 if (!mptcp_send_head(sk)) 3443 return; 3444 3445 if (!sock_owned_by_user(sk)) 3446 __mptcp_subflow_push_pending(sk, ssk, false); 3447 else 3448 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3449 } 3450 3451 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3452 BIT(MPTCP_RETRANSMIT) | \ 3453 BIT(MPTCP_FLUSH_JOIN_LIST)) 3454 3455 /* processes deferred events and flush wmem */ 3456 static void mptcp_release_cb(struct sock *sk) 3457 __must_hold(&sk->sk_lock.slock) 3458 { 3459 struct mptcp_sock *msk = mptcp_sk(sk); 3460 3461 for (;;) { 3462 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3463 struct list_head join_list; 3464 3465 if (!flags) 3466 break; 3467 3468 INIT_LIST_HEAD(&join_list); 3469 list_splice_init(&msk->join_list, &join_list); 3470 3471 /* the following actions acquire the subflow socket lock 3472 * 3473 * 1) can't be invoked in atomic scope 3474 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3475 * datapath acquires the msk socket spinlock while helding 3476 * the subflow socket lock 3477 */ 3478 msk->cb_flags &= ~flags; 3479 spin_unlock_bh(&sk->sk_lock.slock); 3480 3481 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3482 __mptcp_flush_join_list(sk, &join_list); 3483 if (flags & BIT(MPTCP_PUSH_PENDING)) 3484 __mptcp_push_pending(sk, 0); 3485 if (flags & BIT(MPTCP_RETRANSMIT)) 3486 __mptcp_retrans(sk); 3487 3488 cond_resched(); 3489 spin_lock_bh(&sk->sk_lock.slock); 3490 } 3491 3492 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3493 __mptcp_clean_una_wakeup(sk); 3494 if (unlikely(msk->cb_flags)) { 3495 /* be sure to sync the msk state before taking actions 3496 * depending on sk_state (MPTCP_ERROR_REPORT) 3497 * On sk release avoid actions depending on the first subflow 3498 */ 3499 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3500 __mptcp_sync_state(sk, msk->pending_state); 3501 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3502 __mptcp_error_report(sk); 3503 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3504 __mptcp_sync_sndbuf(sk); 3505 } 3506 3507 __mptcp_update_rmem(sk); 3508 } 3509 3510 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3511 * TCP can't schedule delack timer before the subflow is fully established. 3512 * MPTCP uses the delack timer to do 3rd ack retransmissions 3513 */ 3514 static void schedule_3rdack_retransmission(struct sock *ssk) 3515 { 3516 struct inet_connection_sock *icsk = inet_csk(ssk); 3517 struct tcp_sock *tp = tcp_sk(ssk); 3518 unsigned long timeout; 3519 3520 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3521 return; 3522 3523 /* reschedule with a timeout above RTT, as we must look only for drop */ 3524 if (tp->srtt_us) 3525 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3526 else 3527 timeout = TCP_TIMEOUT_INIT; 3528 timeout += jiffies; 3529 3530 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3531 smp_store_release(&icsk->icsk_ack.pending, 3532 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3533 icsk->icsk_ack.timeout = timeout; 3534 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3535 } 3536 3537 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3538 { 3539 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3540 struct sock *sk = subflow->conn; 3541 3542 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3543 mptcp_data_lock(sk); 3544 if (!sock_owned_by_user(sk)) 3545 __mptcp_subflow_push_pending(sk, ssk, true); 3546 else 3547 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3548 mptcp_data_unlock(sk); 3549 } 3550 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3551 mptcp_data_lock(sk); 3552 if (!sock_owned_by_user(sk)) 3553 __mptcp_sync_sndbuf(sk); 3554 else 3555 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3556 mptcp_data_unlock(sk); 3557 } 3558 if (status & BIT(MPTCP_DELEGATE_ACK)) 3559 schedule_3rdack_retransmission(ssk); 3560 } 3561 3562 static int mptcp_hash(struct sock *sk) 3563 { 3564 /* should never be called, 3565 * we hash the TCP subflows not the MPTCP socket 3566 */ 3567 WARN_ON_ONCE(1); 3568 return 0; 3569 } 3570 3571 static void mptcp_unhash(struct sock *sk) 3572 { 3573 /* called from sk_common_release(), but nothing to do here */ 3574 } 3575 3576 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3577 { 3578 struct mptcp_sock *msk = mptcp_sk(sk); 3579 3580 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3581 if (WARN_ON_ONCE(!msk->first)) 3582 return -EINVAL; 3583 3584 return inet_csk_get_port(msk->first, snum); 3585 } 3586 3587 void mptcp_finish_connect(struct sock *ssk) 3588 { 3589 struct mptcp_subflow_context *subflow; 3590 struct mptcp_sock *msk; 3591 struct sock *sk; 3592 3593 subflow = mptcp_subflow_ctx(ssk); 3594 sk = subflow->conn; 3595 msk = mptcp_sk(sk); 3596 3597 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3598 3599 subflow->map_seq = subflow->iasn; 3600 subflow->map_subflow_seq = 1; 3601 3602 /* the socket is not connected yet, no msk/subflow ops can access/race 3603 * accessing the field below 3604 */ 3605 WRITE_ONCE(msk->local_key, subflow->local_key); 3606 3607 mptcp_pm_new_connection(msk, ssk, 0); 3608 } 3609 3610 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3611 { 3612 write_lock_bh(&sk->sk_callback_lock); 3613 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3614 sk_set_socket(sk, parent); 3615 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3616 write_unlock_bh(&sk->sk_callback_lock); 3617 } 3618 3619 bool mptcp_finish_join(struct sock *ssk) 3620 { 3621 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3622 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3623 struct sock *parent = (void *)msk; 3624 bool ret = true; 3625 3626 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3627 3628 /* mptcp socket already closing? */ 3629 if (!mptcp_is_fully_established(parent)) { 3630 subflow->reset_reason = MPTCP_RST_EMPTCP; 3631 return false; 3632 } 3633 3634 /* active subflow, already present inside the conn_list */ 3635 if (!list_empty(&subflow->node)) { 3636 mptcp_subflow_joined(msk, ssk); 3637 mptcp_propagate_sndbuf(parent, ssk); 3638 return true; 3639 } 3640 3641 if (!mptcp_pm_allow_new_subflow(msk)) 3642 goto err_prohibited; 3643 3644 /* If we can't acquire msk socket lock here, let the release callback 3645 * handle it 3646 */ 3647 mptcp_data_lock(parent); 3648 if (!sock_owned_by_user(parent)) { 3649 ret = __mptcp_finish_join(msk, ssk); 3650 if (ret) { 3651 sock_hold(ssk); 3652 list_add_tail(&subflow->node, &msk->conn_list); 3653 } 3654 } else { 3655 sock_hold(ssk); 3656 list_add_tail(&subflow->node, &msk->join_list); 3657 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3658 } 3659 mptcp_data_unlock(parent); 3660 3661 if (!ret) { 3662 err_prohibited: 3663 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3664 return false; 3665 } 3666 3667 return true; 3668 } 3669 3670 static void mptcp_shutdown(struct sock *sk, int how) 3671 { 3672 pr_debug("sk=%p, how=%d\n", sk, how); 3673 3674 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3675 __mptcp_wr_shutdown(sk); 3676 } 3677 3678 static int mptcp_forward_alloc_get(const struct sock *sk) 3679 { 3680 return READ_ONCE(sk->sk_forward_alloc) + 3681 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3682 } 3683 3684 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3685 { 3686 const struct sock *sk = (void *)msk; 3687 u64 delta; 3688 3689 if (sk->sk_state == TCP_LISTEN) 3690 return -EINVAL; 3691 3692 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3693 return 0; 3694 3695 delta = msk->write_seq - v; 3696 if (__mptcp_check_fallback(msk) && msk->first) { 3697 struct tcp_sock *tp = tcp_sk(msk->first); 3698 3699 /* the first subflow is disconnected after close - see 3700 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3701 * so ignore that status, too. 3702 */ 3703 if (!((1 << msk->first->sk_state) & 3704 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3705 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3706 } 3707 if (delta > INT_MAX) 3708 delta = INT_MAX; 3709 3710 return (int)delta; 3711 } 3712 3713 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3714 { 3715 struct mptcp_sock *msk = mptcp_sk(sk); 3716 bool slow; 3717 3718 switch (cmd) { 3719 case SIOCINQ: 3720 if (sk->sk_state == TCP_LISTEN) 3721 return -EINVAL; 3722 3723 lock_sock(sk); 3724 __mptcp_move_skbs(msk); 3725 *karg = mptcp_inq_hint(sk); 3726 release_sock(sk); 3727 break; 3728 case SIOCOUTQ: 3729 slow = lock_sock_fast(sk); 3730 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3731 unlock_sock_fast(sk, slow); 3732 break; 3733 case SIOCOUTQNSD: 3734 slow = lock_sock_fast(sk); 3735 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3736 unlock_sock_fast(sk, slow); 3737 break; 3738 default: 3739 return -ENOIOCTLCMD; 3740 } 3741 3742 return 0; 3743 } 3744 3745 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3746 { 3747 struct mptcp_subflow_context *subflow; 3748 struct mptcp_sock *msk = mptcp_sk(sk); 3749 int err = -EINVAL; 3750 struct sock *ssk; 3751 3752 ssk = __mptcp_nmpc_sk(msk); 3753 if (IS_ERR(ssk)) 3754 return PTR_ERR(ssk); 3755 3756 mptcp_set_state(sk, TCP_SYN_SENT); 3757 subflow = mptcp_subflow_ctx(ssk); 3758 #ifdef CONFIG_TCP_MD5SIG 3759 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3760 * TCP option space. 3761 */ 3762 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3763 mptcp_subflow_early_fallback(msk, subflow); 3764 #endif 3765 if (subflow->request_mptcp) { 3766 if (mptcp_active_should_disable(sk)) { 3767 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3768 mptcp_subflow_early_fallback(msk, subflow); 3769 } else if (mptcp_token_new_connect(ssk) < 0) { 3770 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3771 mptcp_subflow_early_fallback(msk, subflow); 3772 } 3773 } 3774 3775 WRITE_ONCE(msk->write_seq, subflow->idsn); 3776 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3777 WRITE_ONCE(msk->snd_una, subflow->idsn); 3778 if (likely(!__mptcp_check_fallback(msk))) 3779 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3780 3781 /* if reaching here via the fastopen/sendmsg path, the caller already 3782 * acquired the subflow socket lock, too. 3783 */ 3784 if (!msk->fastopening) 3785 lock_sock(ssk); 3786 3787 /* the following mirrors closely a very small chunk of code from 3788 * __inet_stream_connect() 3789 */ 3790 if (ssk->sk_state != TCP_CLOSE) 3791 goto out; 3792 3793 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3794 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3795 if (err) 3796 goto out; 3797 } 3798 3799 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3800 if (err < 0) 3801 goto out; 3802 3803 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3804 3805 out: 3806 if (!msk->fastopening) 3807 release_sock(ssk); 3808 3809 /* on successful connect, the msk state will be moved to established by 3810 * subflow_finish_connect() 3811 */ 3812 if (unlikely(err)) { 3813 /* avoid leaving a dangling token in an unconnected socket */ 3814 mptcp_token_destroy(msk); 3815 mptcp_set_state(sk, TCP_CLOSE); 3816 return err; 3817 } 3818 3819 mptcp_copy_inaddrs(sk, ssk); 3820 return 0; 3821 } 3822 3823 static struct proto mptcp_prot = { 3824 .name = "MPTCP", 3825 .owner = THIS_MODULE, 3826 .init = mptcp_init_sock, 3827 .connect = mptcp_connect, 3828 .disconnect = mptcp_disconnect, 3829 .close = mptcp_close, 3830 .setsockopt = mptcp_setsockopt, 3831 .getsockopt = mptcp_getsockopt, 3832 .shutdown = mptcp_shutdown, 3833 .destroy = mptcp_destroy, 3834 .sendmsg = mptcp_sendmsg, 3835 .ioctl = mptcp_ioctl, 3836 .recvmsg = mptcp_recvmsg, 3837 .release_cb = mptcp_release_cb, 3838 .hash = mptcp_hash, 3839 .unhash = mptcp_unhash, 3840 .get_port = mptcp_get_port, 3841 .forward_alloc_get = mptcp_forward_alloc_get, 3842 .stream_memory_free = mptcp_stream_memory_free, 3843 .sockets_allocated = &mptcp_sockets_allocated, 3844 3845 .memory_allocated = &tcp_memory_allocated, 3846 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3847 3848 .memory_pressure = &tcp_memory_pressure, 3849 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3850 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3851 .sysctl_mem = sysctl_tcp_mem, 3852 .obj_size = sizeof(struct mptcp_sock), 3853 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3854 .no_autobind = true, 3855 }; 3856 3857 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3858 { 3859 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3860 struct sock *ssk, *sk = sock->sk; 3861 int err = -EINVAL; 3862 3863 lock_sock(sk); 3864 ssk = __mptcp_nmpc_sk(msk); 3865 if (IS_ERR(ssk)) { 3866 err = PTR_ERR(ssk); 3867 goto unlock; 3868 } 3869 3870 if (sk->sk_family == AF_INET) 3871 err = inet_bind_sk(ssk, uaddr, addr_len); 3872 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3873 else if (sk->sk_family == AF_INET6) 3874 err = inet6_bind_sk(ssk, uaddr, addr_len); 3875 #endif 3876 if (!err) 3877 mptcp_copy_inaddrs(sk, ssk); 3878 3879 unlock: 3880 release_sock(sk); 3881 return err; 3882 } 3883 3884 static int mptcp_listen(struct socket *sock, int backlog) 3885 { 3886 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3887 struct sock *sk = sock->sk; 3888 struct sock *ssk; 3889 int err; 3890 3891 pr_debug("msk=%p\n", msk); 3892 3893 lock_sock(sk); 3894 3895 err = -EINVAL; 3896 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3897 goto unlock; 3898 3899 ssk = __mptcp_nmpc_sk(msk); 3900 if (IS_ERR(ssk)) { 3901 err = PTR_ERR(ssk); 3902 goto unlock; 3903 } 3904 3905 mptcp_set_state(sk, TCP_LISTEN); 3906 sock_set_flag(sk, SOCK_RCU_FREE); 3907 3908 lock_sock(ssk); 3909 err = __inet_listen_sk(ssk, backlog); 3910 release_sock(ssk); 3911 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3912 3913 if (!err) { 3914 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3915 mptcp_copy_inaddrs(sk, ssk); 3916 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3917 } 3918 3919 unlock: 3920 release_sock(sk); 3921 return err; 3922 } 3923 3924 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3925 struct proto_accept_arg *arg) 3926 { 3927 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3928 struct sock *ssk, *newsk; 3929 3930 pr_debug("msk=%p\n", msk); 3931 3932 /* Buggy applications can call accept on socket states other then LISTEN 3933 * but no need to allocate the first subflow just to error out. 3934 */ 3935 ssk = READ_ONCE(msk->first); 3936 if (!ssk) 3937 return -EINVAL; 3938 3939 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3940 newsk = inet_csk_accept(ssk, arg); 3941 if (!newsk) 3942 return arg->err; 3943 3944 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3945 if (sk_is_mptcp(newsk)) { 3946 struct mptcp_subflow_context *subflow; 3947 struct sock *new_mptcp_sock; 3948 3949 subflow = mptcp_subflow_ctx(newsk); 3950 new_mptcp_sock = subflow->conn; 3951 3952 /* is_mptcp should be false if subflow->conn is missing, see 3953 * subflow_syn_recv_sock() 3954 */ 3955 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3956 tcp_sk(newsk)->is_mptcp = 0; 3957 goto tcpfallback; 3958 } 3959 3960 newsk = new_mptcp_sock; 3961 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3962 3963 newsk->sk_kern_sock = arg->kern; 3964 lock_sock(newsk); 3965 __inet_accept(sock, newsock, newsk); 3966 3967 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3968 msk = mptcp_sk(newsk); 3969 msk->in_accept_queue = 0; 3970 3971 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3972 * This is needed so NOSPACE flag can be set from tcp stack. 3973 */ 3974 mptcp_for_each_subflow(msk, subflow) { 3975 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3976 3977 if (!ssk->sk_socket) 3978 mptcp_sock_graft(ssk, newsock); 3979 } 3980 3981 /* Do late cleanup for the first subflow as necessary. Also 3982 * deal with bad peers not doing a complete shutdown. 3983 */ 3984 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3985 __mptcp_close_ssk(newsk, msk->first, 3986 mptcp_subflow_ctx(msk->first), 0); 3987 if (unlikely(list_is_singular(&msk->conn_list))) 3988 mptcp_set_state(newsk, TCP_CLOSE); 3989 } 3990 } else { 3991 tcpfallback: 3992 newsk->sk_kern_sock = arg->kern; 3993 lock_sock(newsk); 3994 __inet_accept(sock, newsock, newsk); 3995 /* we are being invoked after accepting a non-mp-capable 3996 * flow: sk is a tcp_sk, not an mptcp one. 3997 * 3998 * Hand the socket over to tcp so all further socket ops 3999 * bypass mptcp. 4000 */ 4001 WRITE_ONCE(newsock->sk->sk_socket->ops, 4002 mptcp_fallback_tcp_ops(newsock->sk)); 4003 } 4004 release_sock(newsk); 4005 4006 return 0; 4007 } 4008 4009 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4010 { 4011 struct sock *sk = (struct sock *)msk; 4012 4013 if (__mptcp_stream_is_writeable(sk, 1)) 4014 return EPOLLOUT | EPOLLWRNORM; 4015 4016 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4017 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4018 if (__mptcp_stream_is_writeable(sk, 1)) 4019 return EPOLLOUT | EPOLLWRNORM; 4020 4021 return 0; 4022 } 4023 4024 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4025 struct poll_table_struct *wait) 4026 { 4027 struct sock *sk = sock->sk; 4028 struct mptcp_sock *msk; 4029 __poll_t mask = 0; 4030 u8 shutdown; 4031 int state; 4032 4033 msk = mptcp_sk(sk); 4034 sock_poll_wait(file, sock, wait); 4035 4036 state = inet_sk_state_load(sk); 4037 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4038 if (state == TCP_LISTEN) { 4039 struct sock *ssk = READ_ONCE(msk->first); 4040 4041 if (WARN_ON_ONCE(!ssk)) 4042 return 0; 4043 4044 return inet_csk_listen_poll(ssk); 4045 } 4046 4047 shutdown = READ_ONCE(sk->sk_shutdown); 4048 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4049 mask |= EPOLLHUP; 4050 if (shutdown & RCV_SHUTDOWN) 4051 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4052 4053 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4054 mask |= mptcp_check_readable(sk); 4055 if (shutdown & SEND_SHUTDOWN) 4056 mask |= EPOLLOUT | EPOLLWRNORM; 4057 else 4058 mask |= mptcp_check_writeable(msk); 4059 } else if (state == TCP_SYN_SENT && 4060 inet_test_bit(DEFER_CONNECT, sk)) { 4061 /* cf tcp_poll() note about TFO */ 4062 mask |= EPOLLOUT | EPOLLWRNORM; 4063 } 4064 4065 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4066 smp_rmb(); 4067 if (READ_ONCE(sk->sk_err)) 4068 mask |= EPOLLERR; 4069 4070 return mask; 4071 } 4072 4073 static const struct proto_ops mptcp_stream_ops = { 4074 .family = PF_INET, 4075 .owner = THIS_MODULE, 4076 .release = inet_release, 4077 .bind = mptcp_bind, 4078 .connect = inet_stream_connect, 4079 .socketpair = sock_no_socketpair, 4080 .accept = mptcp_stream_accept, 4081 .getname = inet_getname, 4082 .poll = mptcp_poll, 4083 .ioctl = inet_ioctl, 4084 .gettstamp = sock_gettstamp, 4085 .listen = mptcp_listen, 4086 .shutdown = inet_shutdown, 4087 .setsockopt = sock_common_setsockopt, 4088 .getsockopt = sock_common_getsockopt, 4089 .sendmsg = inet_sendmsg, 4090 .recvmsg = inet_recvmsg, 4091 .mmap = sock_no_mmap, 4092 .set_rcvlowat = mptcp_set_rcvlowat, 4093 }; 4094 4095 static struct inet_protosw mptcp_protosw = { 4096 .type = SOCK_STREAM, 4097 .protocol = IPPROTO_MPTCP, 4098 .prot = &mptcp_prot, 4099 .ops = &mptcp_stream_ops, 4100 .flags = INET_PROTOSW_ICSK, 4101 }; 4102 4103 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4104 { 4105 struct mptcp_delegated_action *delegated; 4106 struct mptcp_subflow_context *subflow; 4107 int work_done = 0; 4108 4109 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4110 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4111 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4112 4113 bh_lock_sock_nested(ssk); 4114 if (!sock_owned_by_user(ssk)) { 4115 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4116 } else { 4117 /* tcp_release_cb_override already processed 4118 * the action or will do at next release_sock(). 4119 * In both case must dequeue the subflow here - on the same 4120 * CPU that scheduled it. 4121 */ 4122 smp_wmb(); 4123 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4124 } 4125 bh_unlock_sock(ssk); 4126 sock_put(ssk); 4127 4128 if (++work_done == budget) 4129 return budget; 4130 } 4131 4132 /* always provide a 0 'work_done' argument, so that napi_complete_done 4133 * will not try accessing the NULL napi->dev ptr 4134 */ 4135 napi_complete_done(napi, 0); 4136 return work_done; 4137 } 4138 4139 void __init mptcp_proto_init(void) 4140 { 4141 struct mptcp_delegated_action *delegated; 4142 int cpu; 4143 4144 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4145 4146 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4147 panic("Failed to allocate MPTCP pcpu counter\n"); 4148 4149 init_dummy_netdev(&mptcp_napi_dev); 4150 for_each_possible_cpu(cpu) { 4151 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4152 INIT_LIST_HEAD(&delegated->head); 4153 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4154 mptcp_napi_poll); 4155 napi_enable(&delegated->napi); 4156 } 4157 4158 mptcp_subflow_init(); 4159 mptcp_pm_init(); 4160 mptcp_sched_init(); 4161 mptcp_token_init(); 4162 4163 if (proto_register(&mptcp_prot, 1) != 0) 4164 panic("Failed to register MPTCP proto.\n"); 4165 4166 inet_register_protosw(&mptcp_protosw); 4167 4168 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4169 } 4170 4171 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4172 static const struct proto_ops mptcp_v6_stream_ops = { 4173 .family = PF_INET6, 4174 .owner = THIS_MODULE, 4175 .release = inet6_release, 4176 .bind = mptcp_bind, 4177 .connect = inet_stream_connect, 4178 .socketpair = sock_no_socketpair, 4179 .accept = mptcp_stream_accept, 4180 .getname = inet6_getname, 4181 .poll = mptcp_poll, 4182 .ioctl = inet6_ioctl, 4183 .gettstamp = sock_gettstamp, 4184 .listen = mptcp_listen, 4185 .shutdown = inet_shutdown, 4186 .setsockopt = sock_common_setsockopt, 4187 .getsockopt = sock_common_getsockopt, 4188 .sendmsg = inet6_sendmsg, 4189 .recvmsg = inet6_recvmsg, 4190 .mmap = sock_no_mmap, 4191 #ifdef CONFIG_COMPAT 4192 .compat_ioctl = inet6_compat_ioctl, 4193 #endif 4194 .set_rcvlowat = mptcp_set_rcvlowat, 4195 }; 4196 4197 static struct proto mptcp_v6_prot; 4198 4199 static struct inet_protosw mptcp_v6_protosw = { 4200 .type = SOCK_STREAM, 4201 .protocol = IPPROTO_MPTCP, 4202 .prot = &mptcp_v6_prot, 4203 .ops = &mptcp_v6_stream_ops, 4204 .flags = INET_PROTOSW_ICSK, 4205 }; 4206 4207 int __init mptcp_proto_v6_init(void) 4208 { 4209 int err; 4210 4211 mptcp_v6_prot = mptcp_prot; 4212 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4213 mptcp_v6_prot.slab = NULL; 4214 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4215 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4216 4217 err = proto_register(&mptcp_v6_prot, 1); 4218 if (err) 4219 return err; 4220 4221 err = inet6_register_protosw(&mptcp_v6_protosw); 4222 if (err) 4223 proto_unregister(&mptcp_v6_prot); 4224 4225 return err; 4226 } 4227 #endif 4228