1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/sock.h> 16 #include <net/inet_common.h> 17 #include <net/inet_hashtables.h> 18 #include <net/protocol.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/hotdata.h> 25 #include <net/xfrm.h> 26 #include <asm/ioctls.h> 27 #include "protocol.h" 28 #include "mib.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/mptcp.h> 32 33 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 34 struct mptcp6_sock { 35 struct mptcp_sock msk; 36 struct ipv6_pinfo np; 37 }; 38 #endif 39 40 enum { 41 MPTCP_CMSG_TS = BIT(0), 42 MPTCP_CMSG_INQ = BIT(1), 43 }; 44 45 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 46 47 static void __mptcp_destroy_sock(struct sock *sk); 48 static void mptcp_check_send_data_fin(struct sock *sk); 49 50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 51 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 52 }; 53 static struct net_device *mptcp_napi_dev; 54 55 /* Returns end sequence number of the receiver's advertised window */ 56 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 57 { 58 return READ_ONCE(msk->wnd_end); 59 } 60 61 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 62 { 63 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 64 if (sk->sk_prot == &tcpv6_prot) 65 return &inet6_stream_ops; 66 #endif 67 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 68 return &inet_stream_ops; 69 } 70 71 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 72 { 73 struct net *net = sock_net((struct sock *)msk); 74 75 if (__mptcp_check_fallback(msk)) 76 return true; 77 78 spin_lock_bh(&msk->fallback_lock); 79 if (!msk->allow_infinite_fallback) { 80 spin_unlock_bh(&msk->fallback_lock); 81 return false; 82 } 83 84 msk->allow_subflows = false; 85 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 86 __MPTCP_INC_STATS(net, fb_mib); 87 spin_unlock_bh(&msk->fallback_lock); 88 return true; 89 } 90 91 static int __mptcp_socket_create(struct mptcp_sock *msk) 92 { 93 struct mptcp_subflow_context *subflow; 94 struct sock *sk = (struct sock *)msk; 95 struct socket *ssock; 96 int err; 97 98 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 99 if (err) 100 return err; 101 102 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 103 WRITE_ONCE(msk->first, ssock->sk); 104 subflow = mptcp_subflow_ctx(ssock->sk); 105 list_add(&subflow->node, &msk->conn_list); 106 sock_hold(ssock->sk); 107 subflow->request_mptcp = 1; 108 subflow->subflow_id = msk->subflow_id++; 109 110 /* This is the first subflow, always with id 0 */ 111 WRITE_ONCE(subflow->local_id, 0); 112 mptcp_sock_graft(msk->first, sk->sk_socket); 113 iput(SOCK_INODE(ssock)); 114 115 return 0; 116 } 117 118 /* If the MPC handshake is not started, returns the first subflow, 119 * eventually allocating it. 120 */ 121 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 122 { 123 struct sock *sk = (struct sock *)msk; 124 int ret; 125 126 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 127 return ERR_PTR(-EINVAL); 128 129 if (!msk->first) { 130 ret = __mptcp_socket_create(msk); 131 if (ret) 132 return ERR_PTR(ret); 133 } 134 135 return msk->first; 136 } 137 138 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 139 { 140 sk_drops_skbadd(sk, skb); 141 __kfree_skb(skb); 142 } 143 144 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 145 struct sk_buff *from) 146 { 147 bool fragstolen; 148 int delta; 149 150 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 151 MPTCP_SKB_CB(from)->offset || 152 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 153 !skb_try_coalesce(to, from, &fragstolen, &delta)) 154 return false; 155 156 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 157 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 158 to->len, MPTCP_SKB_CB(from)->end_seq); 159 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 160 161 /* note the fwd memory can reach a negative value after accounting 162 * for the delta, but the later skb free will restore a non 163 * negative one 164 */ 165 atomic_add(delta, &sk->sk_rmem_alloc); 166 sk_mem_charge(sk, delta); 167 kfree_skb_partial(from, fragstolen); 168 169 return true; 170 } 171 172 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 173 struct sk_buff *from) 174 { 175 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 176 return false; 177 178 return mptcp_try_coalesce((struct sock *)msk, to, from); 179 } 180 181 /* "inspired" by tcp_data_queue_ofo(), main differences: 182 * - use mptcp seqs 183 * - don't cope with sacks 184 */ 185 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 186 { 187 struct sock *sk = (struct sock *)msk; 188 struct rb_node **p, *parent; 189 u64 seq, end_seq, max_seq; 190 struct sk_buff *skb1; 191 192 seq = MPTCP_SKB_CB(skb)->map_seq; 193 end_seq = MPTCP_SKB_CB(skb)->end_seq; 194 max_seq = atomic64_read(&msk->rcv_wnd_sent); 195 196 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 197 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 198 if (after64(end_seq, max_seq)) { 199 /* out of window */ 200 mptcp_drop(sk, skb); 201 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 202 (unsigned long long)end_seq - (unsigned long)max_seq, 203 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 204 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 205 return; 206 } 207 208 p = &msk->out_of_order_queue.rb_node; 209 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 210 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 211 rb_link_node(&skb->rbnode, NULL, p); 212 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 213 msk->ooo_last_skb = skb; 214 goto end; 215 } 216 217 /* with 2 subflows, adding at end of ooo queue is quite likely 218 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 219 */ 220 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 221 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 222 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 223 return; 224 } 225 226 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 227 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 229 parent = &msk->ooo_last_skb->rbnode; 230 p = &parent->rb_right; 231 goto insert; 232 } 233 234 /* Find place to insert this segment. Handle overlaps on the way. */ 235 parent = NULL; 236 while (*p) { 237 parent = *p; 238 skb1 = rb_to_skb(parent); 239 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 240 p = &parent->rb_left; 241 continue; 242 } 243 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 244 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 245 /* All the bits are present. Drop. */ 246 mptcp_drop(sk, skb); 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 248 return; 249 } 250 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 251 /* partial overlap: 252 * | skb | 253 * | skb1 | 254 * continue traversing 255 */ 256 } else { 257 /* skb's seq == skb1's seq and skb covers skb1. 258 * Replace skb1 with skb. 259 */ 260 rb_replace_node(&skb1->rbnode, &skb->rbnode, 261 &msk->out_of_order_queue); 262 mptcp_drop(sk, skb1); 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 264 goto merge_right; 265 } 266 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 267 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 268 return; 269 } 270 p = &parent->rb_right; 271 } 272 273 insert: 274 /* Insert segment into RB tree. */ 275 rb_link_node(&skb->rbnode, parent, p); 276 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 277 278 merge_right: 279 /* Remove other segments covered by skb. */ 280 while ((skb1 = skb_rb_next(skb)) != NULL) { 281 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 282 break; 283 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 284 mptcp_drop(sk, skb1); 285 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 286 } 287 /* If there is no skb after us, we are the last_skb ! */ 288 if (!skb1) 289 msk->ooo_last_skb = skb; 290 291 end: 292 skb_condense(skb); 293 skb_set_owner_r(skb, sk); 294 } 295 296 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 297 struct sk_buff *skb, unsigned int offset, 298 size_t copy_len) 299 { 300 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 301 struct sock *sk = (struct sock *)msk; 302 struct sk_buff *tail; 303 bool has_rxtstamp; 304 305 __skb_unlink(skb, &ssk->sk_receive_queue); 306 307 skb_ext_reset(skb); 308 skb_orphan(skb); 309 310 /* try to fetch required memory from subflow */ 311 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 312 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 313 goto drop; 314 } 315 316 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 317 318 /* the skb map_seq accounts for the skb offset: 319 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 320 * value 321 */ 322 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 323 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 324 MPTCP_SKB_CB(skb)->offset = offset; 325 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 326 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 327 328 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 329 /* in sequence */ 330 msk->bytes_received += copy_len; 331 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 332 tail = skb_peek_tail(&sk->sk_receive_queue); 333 if (tail && mptcp_try_coalesce(sk, tail, skb)) 334 return true; 335 336 skb_set_owner_r(skb, sk); 337 __skb_queue_tail(&sk->sk_receive_queue, skb); 338 return true; 339 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 340 mptcp_data_queue_ofo(msk, skb); 341 return false; 342 } 343 344 /* old data, keep it simple and drop the whole pkt, sender 345 * will retransmit as needed, if needed. 346 */ 347 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 348 drop: 349 mptcp_drop(sk, skb); 350 return false; 351 } 352 353 static void mptcp_stop_rtx_timer(struct sock *sk) 354 { 355 struct inet_connection_sock *icsk = inet_csk(sk); 356 357 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 358 mptcp_sk(sk)->timer_ival = 0; 359 } 360 361 static void mptcp_close_wake_up(struct sock *sk) 362 { 363 if (sock_flag(sk, SOCK_DEAD)) 364 return; 365 366 sk->sk_state_change(sk); 367 if (sk->sk_shutdown == SHUTDOWN_MASK || 368 sk->sk_state == TCP_CLOSE) 369 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 370 else 371 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 372 } 373 374 /* called under the msk socket lock */ 375 static bool mptcp_pending_data_fin_ack(struct sock *sk) 376 { 377 struct mptcp_sock *msk = mptcp_sk(sk); 378 379 return ((1 << sk->sk_state) & 380 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 381 msk->write_seq == READ_ONCE(msk->snd_una); 382 } 383 384 static void mptcp_check_data_fin_ack(struct sock *sk) 385 { 386 struct mptcp_sock *msk = mptcp_sk(sk); 387 388 /* Look for an acknowledged DATA_FIN */ 389 if (mptcp_pending_data_fin_ack(sk)) { 390 WRITE_ONCE(msk->snd_data_fin_enable, 0); 391 392 switch (sk->sk_state) { 393 case TCP_FIN_WAIT1: 394 mptcp_set_state(sk, TCP_FIN_WAIT2); 395 break; 396 case TCP_CLOSING: 397 case TCP_LAST_ACK: 398 mptcp_set_state(sk, TCP_CLOSE); 399 break; 400 } 401 402 mptcp_close_wake_up(sk); 403 } 404 } 405 406 /* can be called with no lock acquired */ 407 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 408 { 409 struct mptcp_sock *msk = mptcp_sk(sk); 410 411 if (READ_ONCE(msk->rcv_data_fin) && 412 ((1 << inet_sk_state_load(sk)) & 413 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 414 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 415 416 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 417 if (seq) 418 *seq = rcv_data_fin_seq; 419 420 return true; 421 } 422 } 423 424 return false; 425 } 426 427 static void mptcp_set_datafin_timeout(struct sock *sk) 428 { 429 struct inet_connection_sock *icsk = inet_csk(sk); 430 u32 retransmits; 431 432 retransmits = min_t(u32, icsk->icsk_retransmits, 433 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 434 435 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 436 } 437 438 static void __mptcp_set_timeout(struct sock *sk, long tout) 439 { 440 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 441 } 442 443 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 444 { 445 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 446 447 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 448 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 449 } 450 451 static void mptcp_set_timeout(struct sock *sk) 452 { 453 struct mptcp_subflow_context *subflow; 454 long tout = 0; 455 456 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 457 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 458 __mptcp_set_timeout(sk, tout); 459 } 460 461 static inline bool tcp_can_send_ack(const struct sock *ssk) 462 { 463 return !((1 << inet_sk_state_load(ssk)) & 464 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 465 } 466 467 void __mptcp_subflow_send_ack(struct sock *ssk) 468 { 469 if (tcp_can_send_ack(ssk)) 470 tcp_send_ack(ssk); 471 } 472 473 static void mptcp_subflow_send_ack(struct sock *ssk) 474 { 475 bool slow; 476 477 slow = lock_sock_fast(ssk); 478 __mptcp_subflow_send_ack(ssk); 479 unlock_sock_fast(ssk, slow); 480 } 481 482 static void mptcp_send_ack(struct mptcp_sock *msk) 483 { 484 struct mptcp_subflow_context *subflow; 485 486 mptcp_for_each_subflow(msk, subflow) 487 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 488 } 489 490 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 491 { 492 bool slow; 493 494 slow = lock_sock_fast(ssk); 495 if (tcp_can_send_ack(ssk)) 496 tcp_cleanup_rbuf(ssk, copied); 497 unlock_sock_fast(ssk, slow); 498 } 499 500 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 501 { 502 const struct inet_connection_sock *icsk = inet_csk(ssk); 503 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 504 const struct tcp_sock *tp = tcp_sk(ssk); 505 506 return (ack_pending & ICSK_ACK_SCHED) && 507 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 508 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 509 (rx_empty && ack_pending & 510 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 511 } 512 513 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 514 { 515 int old_space = READ_ONCE(msk->old_wspace); 516 struct mptcp_subflow_context *subflow; 517 struct sock *sk = (struct sock *)msk; 518 int space = __mptcp_space(sk); 519 bool cleanup, rx_empty; 520 521 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 522 rx_empty = !sk_rmem_alloc_get(sk) && copied; 523 524 mptcp_for_each_subflow(msk, subflow) { 525 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 526 527 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 528 mptcp_subflow_cleanup_rbuf(ssk, copied); 529 } 530 } 531 532 static bool mptcp_check_data_fin(struct sock *sk) 533 { 534 struct mptcp_sock *msk = mptcp_sk(sk); 535 u64 rcv_data_fin_seq; 536 bool ret = false; 537 538 /* Need to ack a DATA_FIN received from a peer while this side 539 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 540 * msk->rcv_data_fin was set when parsing the incoming options 541 * at the subflow level and the msk lock was not held, so this 542 * is the first opportunity to act on the DATA_FIN and change 543 * the msk state. 544 * 545 * If we are caught up to the sequence number of the incoming 546 * DATA_FIN, send the DATA_ACK now and do state transition. If 547 * not caught up, do nothing and let the recv code send DATA_ACK 548 * when catching up. 549 */ 550 551 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 552 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 553 WRITE_ONCE(msk->rcv_data_fin, 0); 554 555 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 556 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 557 558 switch (sk->sk_state) { 559 case TCP_ESTABLISHED: 560 mptcp_set_state(sk, TCP_CLOSE_WAIT); 561 break; 562 case TCP_FIN_WAIT1: 563 mptcp_set_state(sk, TCP_CLOSING); 564 break; 565 case TCP_FIN_WAIT2: 566 mptcp_set_state(sk, TCP_CLOSE); 567 break; 568 default: 569 /* Other states not expected */ 570 WARN_ON_ONCE(1); 571 break; 572 } 573 574 ret = true; 575 if (!__mptcp_check_fallback(msk)) 576 mptcp_send_ack(msk); 577 mptcp_close_wake_up(sk); 578 } 579 return ret; 580 } 581 582 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 583 { 584 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 585 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 586 mptcp_subflow_reset(ssk); 587 } 588 } 589 590 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 591 struct sock *ssk) 592 { 593 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 594 struct sock *sk = (struct sock *)msk; 595 bool more_data_avail; 596 struct tcp_sock *tp; 597 bool ret = false; 598 599 pr_debug("msk=%p ssk=%p\n", msk, ssk); 600 tp = tcp_sk(ssk); 601 do { 602 u32 map_remaining, offset; 603 u32 seq = tp->copied_seq; 604 struct sk_buff *skb; 605 bool fin; 606 607 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 608 break; 609 610 /* try to move as much data as available */ 611 map_remaining = subflow->map_data_len - 612 mptcp_subflow_get_map_offset(subflow); 613 614 skb = skb_peek(&ssk->sk_receive_queue); 615 if (unlikely(!skb)) 616 break; 617 618 if (__mptcp_check_fallback(msk)) { 619 /* Under fallback skbs have no MPTCP extension and TCP could 620 * collapse them between the dummy map creation and the 621 * current dequeue. Be sure to adjust the map size. 622 */ 623 map_remaining = skb->len; 624 subflow->map_data_len = skb->len; 625 } 626 627 offset = seq - TCP_SKB_CB(skb)->seq; 628 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 629 if (fin) 630 seq++; 631 632 if (offset < skb->len) { 633 size_t len = skb->len - offset; 634 635 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret; 636 seq += len; 637 638 if (unlikely(map_remaining < len)) { 639 DEBUG_NET_WARN_ON_ONCE(1); 640 mptcp_dss_corruption(msk, ssk); 641 } 642 } else { 643 if (unlikely(!fin)) { 644 DEBUG_NET_WARN_ON_ONCE(1); 645 mptcp_dss_corruption(msk, ssk); 646 } 647 648 sk_eat_skb(ssk, skb); 649 } 650 651 WRITE_ONCE(tp->copied_seq, seq); 652 more_data_avail = mptcp_subflow_data_available(ssk); 653 654 } while (more_data_avail); 655 656 if (ret) 657 msk->last_data_recv = tcp_jiffies32; 658 return ret; 659 } 660 661 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 662 { 663 struct sock *sk = (struct sock *)msk; 664 struct sk_buff *skb, *tail; 665 bool moved = false; 666 struct rb_node *p; 667 u64 end_seq; 668 669 p = rb_first(&msk->out_of_order_queue); 670 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 671 while (p) { 672 skb = rb_to_skb(p); 673 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 674 break; 675 676 p = rb_next(p); 677 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 678 679 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 680 msk->ack_seq))) { 681 mptcp_drop(sk, skb); 682 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 683 continue; 684 } 685 686 end_seq = MPTCP_SKB_CB(skb)->end_seq; 687 tail = skb_peek_tail(&sk->sk_receive_queue); 688 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 689 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 690 691 /* skip overlapping data, if any */ 692 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 693 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 694 delta); 695 MPTCP_SKB_CB(skb)->offset += delta; 696 MPTCP_SKB_CB(skb)->map_seq += delta; 697 __skb_queue_tail(&sk->sk_receive_queue, skb); 698 } 699 msk->bytes_received += end_seq - msk->ack_seq; 700 WRITE_ONCE(msk->ack_seq, end_seq); 701 moved = true; 702 } 703 return moved; 704 } 705 706 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 707 { 708 int err = sock_error(ssk); 709 int ssk_state; 710 711 if (!err) 712 return false; 713 714 /* only propagate errors on fallen-back sockets or 715 * on MPC connect 716 */ 717 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 718 return false; 719 720 /* We need to propagate only transition to CLOSE state. 721 * Orphaned socket will see such state change via 722 * subflow_sched_work_if_closed() and that path will properly 723 * destroy the msk as needed. 724 */ 725 ssk_state = inet_sk_state_load(ssk); 726 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 727 mptcp_set_state(sk, ssk_state); 728 WRITE_ONCE(sk->sk_err, -err); 729 730 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 731 smp_wmb(); 732 sk_error_report(sk); 733 return true; 734 } 735 736 void __mptcp_error_report(struct sock *sk) 737 { 738 struct mptcp_subflow_context *subflow; 739 struct mptcp_sock *msk = mptcp_sk(sk); 740 741 mptcp_for_each_subflow(msk, subflow) 742 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 743 break; 744 } 745 746 /* In most cases we will be able to lock the mptcp socket. If its already 747 * owned, we need to defer to the work queue to avoid ABBA deadlock. 748 */ 749 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 750 { 751 struct sock *sk = (struct sock *)msk; 752 bool moved; 753 754 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 755 __mptcp_ofo_queue(msk); 756 if (unlikely(ssk->sk_err)) { 757 if (!sock_owned_by_user(sk)) 758 __mptcp_error_report(sk); 759 else 760 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 761 } 762 763 /* If the moves have caught up with the DATA_FIN sequence number 764 * it's time to ack the DATA_FIN and change socket state, but 765 * this is not a good place to change state. Let the workqueue 766 * do it. 767 */ 768 if (mptcp_pending_data_fin(sk, NULL)) 769 mptcp_schedule_work(sk); 770 return moved; 771 } 772 773 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk) 774 { 775 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf)) 776 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf); 777 } 778 779 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 780 { 781 struct mptcp_sock *msk = mptcp_sk(sk); 782 783 __mptcp_rcvbuf_update(sk, ssk); 784 785 /* Wake-up the reader only for in-sequence data */ 786 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 787 sk->sk_data_ready(sk); 788 } 789 790 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 791 { 792 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 793 794 /* The peer can send data while we are shutting down this 795 * subflow at msk destruction time, but we must avoid enqueuing 796 * more data to the msk receive queue 797 */ 798 if (unlikely(subflow->disposable)) 799 return; 800 801 mptcp_data_lock(sk); 802 if (!sock_owned_by_user(sk)) 803 __mptcp_data_ready(sk, ssk); 804 else 805 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 806 mptcp_data_unlock(sk); 807 } 808 809 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 810 { 811 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 812 msk->allow_infinite_fallback = false; 813 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 814 } 815 816 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 817 { 818 struct sock *sk = (struct sock *)msk; 819 820 if (sk->sk_state != TCP_ESTABLISHED) 821 return false; 822 823 spin_lock_bh(&msk->fallback_lock); 824 if (!msk->allow_subflows) { 825 spin_unlock_bh(&msk->fallback_lock); 826 return false; 827 } 828 mptcp_subflow_joined(msk, ssk); 829 spin_unlock_bh(&msk->fallback_lock); 830 831 /* attach to msk socket only after we are sure we will deal with it 832 * at close time 833 */ 834 if (sk->sk_socket && !ssk->sk_socket) 835 mptcp_sock_graft(ssk, sk->sk_socket); 836 837 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 838 mptcp_sockopt_sync_locked(msk, ssk); 839 mptcp_stop_tout_timer(sk); 840 __mptcp_propagate_sndbuf(sk, ssk); 841 return true; 842 } 843 844 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 845 { 846 struct mptcp_subflow_context *tmp, *subflow; 847 struct mptcp_sock *msk = mptcp_sk(sk); 848 849 list_for_each_entry_safe(subflow, tmp, join_list, node) { 850 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 851 bool slow = lock_sock_fast(ssk); 852 853 list_move_tail(&subflow->node, &msk->conn_list); 854 if (!__mptcp_finish_join(msk, ssk)) 855 mptcp_subflow_reset(ssk); 856 unlock_sock_fast(ssk, slow); 857 } 858 } 859 860 static bool mptcp_rtx_timer_pending(struct sock *sk) 861 { 862 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 863 } 864 865 static void mptcp_reset_rtx_timer(struct sock *sk) 866 { 867 struct inet_connection_sock *icsk = inet_csk(sk); 868 unsigned long tout; 869 870 /* prevent rescheduling on close */ 871 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 872 return; 873 874 tout = mptcp_sk(sk)->timer_ival; 875 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 876 } 877 878 bool mptcp_schedule_work(struct sock *sk) 879 { 880 if (inet_sk_state_load(sk) != TCP_CLOSE && 881 schedule_work(&mptcp_sk(sk)->work)) { 882 /* each subflow already holds a reference to the sk, and the 883 * workqueue is invoked by a subflow, so sk can't go away here. 884 */ 885 sock_hold(sk); 886 return true; 887 } 888 return false; 889 } 890 891 static bool mptcp_skb_can_collapse_to(u64 write_seq, 892 const struct sk_buff *skb, 893 const struct mptcp_ext *mpext) 894 { 895 if (!tcp_skb_can_collapse_to(skb)) 896 return false; 897 898 /* can collapse only if MPTCP level sequence is in order and this 899 * mapping has not been xmitted yet 900 */ 901 return mpext && mpext->data_seq + mpext->data_len == write_seq && 902 !mpext->frozen; 903 } 904 905 /* we can append data to the given data frag if: 906 * - there is space available in the backing page_frag 907 * - the data frag tail matches the current page_frag free offset 908 * - the data frag end sequence number matches the current write seq 909 */ 910 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 911 const struct page_frag *pfrag, 912 const struct mptcp_data_frag *df) 913 { 914 return df && pfrag->page == df->page && 915 pfrag->size - pfrag->offset > 0 && 916 pfrag->offset == (df->offset + df->data_len) && 917 df->data_seq + df->data_len == msk->write_seq; 918 } 919 920 static void dfrag_uncharge(struct sock *sk, int len) 921 { 922 sk_mem_uncharge(sk, len); 923 sk_wmem_queued_add(sk, -len); 924 } 925 926 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 927 { 928 int len = dfrag->data_len + dfrag->overhead; 929 930 list_del(&dfrag->list); 931 dfrag_uncharge(sk, len); 932 put_page(dfrag->page); 933 } 934 935 /* called under both the msk socket lock and the data lock */ 936 static void __mptcp_clean_una(struct sock *sk) 937 { 938 struct mptcp_sock *msk = mptcp_sk(sk); 939 struct mptcp_data_frag *dtmp, *dfrag; 940 u64 snd_una; 941 942 snd_una = msk->snd_una; 943 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 944 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 945 break; 946 947 if (unlikely(dfrag == msk->first_pending)) { 948 /* in recovery mode can see ack after the current snd head */ 949 if (WARN_ON_ONCE(!msk->recovery)) 950 break; 951 952 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 953 } 954 955 dfrag_clear(sk, dfrag); 956 } 957 958 dfrag = mptcp_rtx_head(sk); 959 if (dfrag && after64(snd_una, dfrag->data_seq)) { 960 u64 delta = snd_una - dfrag->data_seq; 961 962 /* prevent wrap around in recovery mode */ 963 if (unlikely(delta > dfrag->already_sent)) { 964 if (WARN_ON_ONCE(!msk->recovery)) 965 goto out; 966 if (WARN_ON_ONCE(delta > dfrag->data_len)) 967 goto out; 968 dfrag->already_sent += delta - dfrag->already_sent; 969 } 970 971 dfrag->data_seq += delta; 972 dfrag->offset += delta; 973 dfrag->data_len -= delta; 974 dfrag->already_sent -= delta; 975 976 dfrag_uncharge(sk, delta); 977 } 978 979 /* all retransmitted data acked, recovery completed */ 980 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 981 msk->recovery = false; 982 983 out: 984 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 985 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 986 mptcp_stop_rtx_timer(sk); 987 } else { 988 mptcp_reset_rtx_timer(sk); 989 } 990 991 if (mptcp_pending_data_fin_ack(sk)) 992 mptcp_schedule_work(sk); 993 } 994 995 static void __mptcp_clean_una_wakeup(struct sock *sk) 996 { 997 lockdep_assert_held_once(&sk->sk_lock.slock); 998 999 __mptcp_clean_una(sk); 1000 mptcp_write_space(sk); 1001 } 1002 1003 static void mptcp_clean_una_wakeup(struct sock *sk) 1004 { 1005 mptcp_data_lock(sk); 1006 __mptcp_clean_una_wakeup(sk); 1007 mptcp_data_unlock(sk); 1008 } 1009 1010 static void mptcp_enter_memory_pressure(struct sock *sk) 1011 { 1012 struct mptcp_subflow_context *subflow; 1013 struct mptcp_sock *msk = mptcp_sk(sk); 1014 bool first = true; 1015 1016 mptcp_for_each_subflow(msk, subflow) { 1017 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1018 1019 if (first) 1020 tcp_enter_memory_pressure(ssk); 1021 sk_stream_moderate_sndbuf(ssk); 1022 1023 first = false; 1024 } 1025 __mptcp_sync_sndbuf(sk); 1026 } 1027 1028 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1029 * data 1030 */ 1031 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1032 { 1033 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1034 pfrag, sk->sk_allocation))) 1035 return true; 1036 1037 mptcp_enter_memory_pressure(sk); 1038 return false; 1039 } 1040 1041 static struct mptcp_data_frag * 1042 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1043 int orig_offset) 1044 { 1045 int offset = ALIGN(orig_offset, sizeof(long)); 1046 struct mptcp_data_frag *dfrag; 1047 1048 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1049 dfrag->data_len = 0; 1050 dfrag->data_seq = msk->write_seq; 1051 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1052 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1053 dfrag->already_sent = 0; 1054 dfrag->page = pfrag->page; 1055 1056 return dfrag; 1057 } 1058 1059 struct mptcp_sendmsg_info { 1060 int mss_now; 1061 int size_goal; 1062 u16 limit; 1063 u16 sent; 1064 unsigned int flags; 1065 bool data_lock_held; 1066 }; 1067 1068 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1069 u64 data_seq, int avail_size) 1070 { 1071 u64 window_end = mptcp_wnd_end(msk); 1072 u64 mptcp_snd_wnd; 1073 1074 if (__mptcp_check_fallback(msk)) 1075 return avail_size; 1076 1077 mptcp_snd_wnd = window_end - data_seq; 1078 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1079 1080 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1081 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1082 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1083 } 1084 1085 return avail_size; 1086 } 1087 1088 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1089 { 1090 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1091 1092 if (!mpext) 1093 return false; 1094 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1095 return true; 1096 } 1097 1098 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1099 { 1100 struct sk_buff *skb; 1101 1102 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1103 if (likely(skb)) { 1104 if (likely(__mptcp_add_ext(skb, gfp))) { 1105 skb_reserve(skb, MAX_TCP_HEADER); 1106 skb->ip_summed = CHECKSUM_PARTIAL; 1107 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1108 return skb; 1109 } 1110 __kfree_skb(skb); 1111 } else { 1112 mptcp_enter_memory_pressure(sk); 1113 } 1114 return NULL; 1115 } 1116 1117 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1118 { 1119 struct sk_buff *skb; 1120 1121 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1122 if (!skb) 1123 return NULL; 1124 1125 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1126 tcp_skb_entail(ssk, skb); 1127 return skb; 1128 } 1129 tcp_skb_tsorted_anchor_cleanup(skb); 1130 kfree_skb(skb); 1131 return NULL; 1132 } 1133 1134 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1135 { 1136 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1137 1138 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1139 } 1140 1141 /* note: this always recompute the csum on the whole skb, even 1142 * if we just appended a single frag. More status info needed 1143 */ 1144 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1145 { 1146 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1147 __wsum csum = ~csum_unfold(mpext->csum); 1148 int offset = skb->len - added; 1149 1150 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1151 } 1152 1153 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1154 struct sock *ssk, 1155 struct mptcp_ext *mpext) 1156 { 1157 if (!mpext) 1158 return; 1159 1160 mpext->infinite_map = 1; 1161 mpext->data_len = 0; 1162 1163 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1164 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1165 mptcp_subflow_reset(ssk); 1166 return; 1167 } 1168 1169 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1170 } 1171 1172 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1173 1174 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1175 struct mptcp_data_frag *dfrag, 1176 struct mptcp_sendmsg_info *info) 1177 { 1178 u64 data_seq = dfrag->data_seq + info->sent; 1179 int offset = dfrag->offset + info->sent; 1180 struct mptcp_sock *msk = mptcp_sk(sk); 1181 bool zero_window_probe = false; 1182 struct mptcp_ext *mpext = NULL; 1183 bool can_coalesce = false; 1184 bool reuse_skb = true; 1185 struct sk_buff *skb; 1186 size_t copy; 1187 int i; 1188 1189 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1190 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1191 1192 if (WARN_ON_ONCE(info->sent > info->limit || 1193 info->limit > dfrag->data_len)) 1194 return 0; 1195 1196 if (unlikely(!__tcp_can_send(ssk))) 1197 return -EAGAIN; 1198 1199 /* compute send limit */ 1200 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1201 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1202 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1203 copy = info->size_goal; 1204 1205 skb = tcp_write_queue_tail(ssk); 1206 if (skb && copy > skb->len) { 1207 /* Limit the write to the size available in the 1208 * current skb, if any, so that we create at most a new skb. 1209 * Explicitly tells TCP internals to avoid collapsing on later 1210 * queue management operation, to avoid breaking the ext <-> 1211 * SSN association set here 1212 */ 1213 mpext = mptcp_get_ext(skb); 1214 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1215 TCP_SKB_CB(skb)->eor = 1; 1216 tcp_mark_push(tcp_sk(ssk), skb); 1217 goto alloc_skb; 1218 } 1219 1220 i = skb_shinfo(skb)->nr_frags; 1221 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1222 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1223 tcp_mark_push(tcp_sk(ssk), skb); 1224 goto alloc_skb; 1225 } 1226 1227 copy -= skb->len; 1228 } else { 1229 alloc_skb: 1230 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1231 if (!skb) 1232 return -ENOMEM; 1233 1234 i = skb_shinfo(skb)->nr_frags; 1235 reuse_skb = false; 1236 mpext = mptcp_get_ext(skb); 1237 } 1238 1239 /* Zero window and all data acked? Probe. */ 1240 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1241 if (copy == 0) { 1242 u64 snd_una = READ_ONCE(msk->snd_una); 1243 1244 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1245 tcp_remove_empty_skb(ssk); 1246 return 0; 1247 } 1248 1249 zero_window_probe = true; 1250 data_seq = snd_una - 1; 1251 copy = 1; 1252 } 1253 1254 copy = min_t(size_t, copy, info->limit - info->sent); 1255 if (!sk_wmem_schedule(ssk, copy)) { 1256 tcp_remove_empty_skb(ssk); 1257 return -ENOMEM; 1258 } 1259 1260 if (can_coalesce) { 1261 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1262 } else { 1263 get_page(dfrag->page); 1264 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1265 } 1266 1267 skb->len += copy; 1268 skb->data_len += copy; 1269 skb->truesize += copy; 1270 sk_wmem_queued_add(ssk, copy); 1271 sk_mem_charge(ssk, copy); 1272 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1273 TCP_SKB_CB(skb)->end_seq += copy; 1274 tcp_skb_pcount_set(skb, 0); 1275 1276 /* on skb reuse we just need to update the DSS len */ 1277 if (reuse_skb) { 1278 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1279 mpext->data_len += copy; 1280 goto out; 1281 } 1282 1283 memset(mpext, 0, sizeof(*mpext)); 1284 mpext->data_seq = data_seq; 1285 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1286 mpext->data_len = copy; 1287 mpext->use_map = 1; 1288 mpext->dsn64 = 1; 1289 1290 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1291 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1292 mpext->dsn64); 1293 1294 if (zero_window_probe) { 1295 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1296 mpext->frozen = 1; 1297 if (READ_ONCE(msk->csum_enabled)) 1298 mptcp_update_data_checksum(skb, copy); 1299 tcp_push_pending_frames(ssk); 1300 return 0; 1301 } 1302 out: 1303 if (READ_ONCE(msk->csum_enabled)) 1304 mptcp_update_data_checksum(skb, copy); 1305 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1306 mptcp_update_infinite_map(msk, ssk, mpext); 1307 trace_mptcp_sendmsg_frag(mpext); 1308 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1309 return copy; 1310 } 1311 1312 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1313 sizeof(struct tcphdr) - \ 1314 MAX_TCP_OPTION_SPACE - \ 1315 sizeof(struct ipv6hdr) - \ 1316 sizeof(struct frag_hdr)) 1317 1318 struct subflow_send_info { 1319 struct sock *ssk; 1320 u64 linger_time; 1321 }; 1322 1323 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1324 { 1325 if (!subflow->stale) 1326 return; 1327 1328 subflow->stale = 0; 1329 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1330 } 1331 1332 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1333 { 1334 if (unlikely(subflow->stale)) { 1335 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1336 1337 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1338 return false; 1339 1340 mptcp_subflow_set_active(subflow); 1341 } 1342 return __mptcp_subflow_active(subflow); 1343 } 1344 1345 #define SSK_MODE_ACTIVE 0 1346 #define SSK_MODE_BACKUP 1 1347 #define SSK_MODE_MAX 2 1348 1349 /* implement the mptcp packet scheduler; 1350 * returns the subflow that will transmit the next DSS 1351 * additionally updates the rtx timeout 1352 */ 1353 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1354 { 1355 struct subflow_send_info send_info[SSK_MODE_MAX]; 1356 struct mptcp_subflow_context *subflow; 1357 struct sock *sk = (struct sock *)msk; 1358 u32 pace, burst, wmem; 1359 int i, nr_active = 0; 1360 struct sock *ssk; 1361 u64 linger_time; 1362 long tout = 0; 1363 1364 /* pick the subflow with the lower wmem/wspace ratio */ 1365 for (i = 0; i < SSK_MODE_MAX; ++i) { 1366 send_info[i].ssk = NULL; 1367 send_info[i].linger_time = -1; 1368 } 1369 1370 mptcp_for_each_subflow(msk, subflow) { 1371 bool backup = subflow->backup || subflow->request_bkup; 1372 1373 trace_mptcp_subflow_get_send(subflow); 1374 ssk = mptcp_subflow_tcp_sock(subflow); 1375 if (!mptcp_subflow_active(subflow)) 1376 continue; 1377 1378 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1379 nr_active += !backup; 1380 pace = subflow->avg_pacing_rate; 1381 if (unlikely(!pace)) { 1382 /* init pacing rate from socket */ 1383 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1384 pace = subflow->avg_pacing_rate; 1385 if (!pace) 1386 continue; 1387 } 1388 1389 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1390 if (linger_time < send_info[backup].linger_time) { 1391 send_info[backup].ssk = ssk; 1392 send_info[backup].linger_time = linger_time; 1393 } 1394 } 1395 __mptcp_set_timeout(sk, tout); 1396 1397 /* pick the best backup if no other subflow is active */ 1398 if (!nr_active) 1399 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1400 1401 /* According to the blest algorithm, to avoid HoL blocking for the 1402 * faster flow, we need to: 1403 * - estimate the faster flow linger time 1404 * - use the above to estimate the amount of byte transferred 1405 * by the faster flow 1406 * - check that the amount of queued data is greater than the above, 1407 * otherwise do not use the picked, slower, subflow 1408 * We select the subflow with the shorter estimated time to flush 1409 * the queued mem, which basically ensure the above. We just need 1410 * to check that subflow has a non empty cwin. 1411 */ 1412 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1413 if (!ssk || !sk_stream_memory_free(ssk)) 1414 return NULL; 1415 1416 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1417 wmem = READ_ONCE(ssk->sk_wmem_queued); 1418 if (!burst) 1419 return ssk; 1420 1421 subflow = mptcp_subflow_ctx(ssk); 1422 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1423 READ_ONCE(ssk->sk_pacing_rate) * burst, 1424 burst + wmem); 1425 msk->snd_burst = burst; 1426 return ssk; 1427 } 1428 1429 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1430 { 1431 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1432 release_sock(ssk); 1433 } 1434 1435 static void mptcp_update_post_push(struct mptcp_sock *msk, 1436 struct mptcp_data_frag *dfrag, 1437 u32 sent) 1438 { 1439 u64 snd_nxt_new = dfrag->data_seq; 1440 1441 dfrag->already_sent += sent; 1442 1443 msk->snd_burst -= sent; 1444 1445 snd_nxt_new += dfrag->already_sent; 1446 1447 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1448 * is recovering after a failover. In that event, this re-sends 1449 * old segments. 1450 * 1451 * Thus compute snd_nxt_new candidate based on 1452 * the dfrag->data_seq that was sent and the data 1453 * that has been handed to the subflow for transmission 1454 * and skip update in case it was old dfrag. 1455 */ 1456 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1457 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1458 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1459 } 1460 } 1461 1462 void mptcp_check_and_set_pending(struct sock *sk) 1463 { 1464 if (mptcp_send_head(sk)) { 1465 mptcp_data_lock(sk); 1466 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1467 mptcp_data_unlock(sk); 1468 } 1469 } 1470 1471 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1472 struct mptcp_sendmsg_info *info) 1473 { 1474 struct mptcp_sock *msk = mptcp_sk(sk); 1475 struct mptcp_data_frag *dfrag; 1476 int len, copied = 0, err = 0; 1477 1478 while ((dfrag = mptcp_send_head(sk))) { 1479 info->sent = dfrag->already_sent; 1480 info->limit = dfrag->data_len; 1481 len = dfrag->data_len - dfrag->already_sent; 1482 while (len > 0) { 1483 int ret = 0; 1484 1485 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1486 if (ret <= 0) { 1487 err = copied ? : ret; 1488 goto out; 1489 } 1490 1491 info->sent += ret; 1492 copied += ret; 1493 len -= ret; 1494 1495 mptcp_update_post_push(msk, dfrag, ret); 1496 } 1497 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1498 1499 if (msk->snd_burst <= 0 || 1500 !sk_stream_memory_free(ssk) || 1501 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1502 err = copied; 1503 goto out; 1504 } 1505 mptcp_set_timeout(sk); 1506 } 1507 err = copied; 1508 1509 out: 1510 if (err > 0) 1511 msk->last_data_sent = tcp_jiffies32; 1512 return err; 1513 } 1514 1515 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1516 { 1517 struct sock *prev_ssk = NULL, *ssk = NULL; 1518 struct mptcp_sock *msk = mptcp_sk(sk); 1519 struct mptcp_sendmsg_info info = { 1520 .flags = flags, 1521 }; 1522 bool do_check_data_fin = false; 1523 int push_count = 1; 1524 1525 while (mptcp_send_head(sk) && (push_count > 0)) { 1526 struct mptcp_subflow_context *subflow; 1527 int ret = 0; 1528 1529 if (mptcp_sched_get_send(msk)) 1530 break; 1531 1532 push_count = 0; 1533 1534 mptcp_for_each_subflow(msk, subflow) { 1535 if (READ_ONCE(subflow->scheduled)) { 1536 mptcp_subflow_set_scheduled(subflow, false); 1537 1538 prev_ssk = ssk; 1539 ssk = mptcp_subflow_tcp_sock(subflow); 1540 if (ssk != prev_ssk) { 1541 /* First check. If the ssk has changed since 1542 * the last round, release prev_ssk 1543 */ 1544 if (prev_ssk) 1545 mptcp_push_release(prev_ssk, &info); 1546 1547 /* Need to lock the new subflow only if different 1548 * from the previous one, otherwise we are still 1549 * helding the relevant lock 1550 */ 1551 lock_sock(ssk); 1552 } 1553 1554 push_count++; 1555 1556 ret = __subflow_push_pending(sk, ssk, &info); 1557 if (ret <= 0) { 1558 if (ret != -EAGAIN || 1559 (1 << ssk->sk_state) & 1560 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1561 push_count--; 1562 continue; 1563 } 1564 do_check_data_fin = true; 1565 } 1566 } 1567 } 1568 1569 /* at this point we held the socket lock for the last subflow we used */ 1570 if (ssk) 1571 mptcp_push_release(ssk, &info); 1572 1573 /* ensure the rtx timer is running */ 1574 if (!mptcp_rtx_timer_pending(sk)) 1575 mptcp_reset_rtx_timer(sk); 1576 if (do_check_data_fin) 1577 mptcp_check_send_data_fin(sk); 1578 } 1579 1580 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1581 { 1582 struct mptcp_sock *msk = mptcp_sk(sk); 1583 struct mptcp_sendmsg_info info = { 1584 .data_lock_held = true, 1585 }; 1586 bool keep_pushing = true; 1587 struct sock *xmit_ssk; 1588 int copied = 0; 1589 1590 info.flags = 0; 1591 while (mptcp_send_head(sk) && keep_pushing) { 1592 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1593 int ret = 0; 1594 1595 /* check for a different subflow usage only after 1596 * spooling the first chunk of data 1597 */ 1598 if (first) { 1599 mptcp_subflow_set_scheduled(subflow, false); 1600 ret = __subflow_push_pending(sk, ssk, &info); 1601 first = false; 1602 if (ret <= 0) 1603 break; 1604 copied += ret; 1605 continue; 1606 } 1607 1608 if (mptcp_sched_get_send(msk)) 1609 goto out; 1610 1611 if (READ_ONCE(subflow->scheduled)) { 1612 mptcp_subflow_set_scheduled(subflow, false); 1613 ret = __subflow_push_pending(sk, ssk, &info); 1614 if (ret <= 0) 1615 keep_pushing = false; 1616 copied += ret; 1617 } 1618 1619 mptcp_for_each_subflow(msk, subflow) { 1620 if (READ_ONCE(subflow->scheduled)) { 1621 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1622 if (xmit_ssk != ssk) { 1623 mptcp_subflow_delegate(subflow, 1624 MPTCP_DELEGATE_SEND); 1625 keep_pushing = false; 1626 } 1627 } 1628 } 1629 } 1630 1631 out: 1632 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1633 * not going to flush it via release_sock() 1634 */ 1635 if (copied) { 1636 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1637 info.size_goal); 1638 if (!mptcp_rtx_timer_pending(sk)) 1639 mptcp_reset_rtx_timer(sk); 1640 1641 if (msk->snd_data_fin_enable && 1642 msk->snd_nxt + 1 == msk->write_seq) 1643 mptcp_schedule_work(sk); 1644 } 1645 } 1646 1647 static int mptcp_disconnect(struct sock *sk, int flags); 1648 1649 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1650 size_t len, int *copied_syn) 1651 { 1652 unsigned int saved_flags = msg->msg_flags; 1653 struct mptcp_sock *msk = mptcp_sk(sk); 1654 struct sock *ssk; 1655 int ret; 1656 1657 /* on flags based fastopen the mptcp is supposed to create the 1658 * first subflow right now. Otherwise we are in the defer_connect 1659 * path, and the first subflow must be already present. 1660 * Since the defer_connect flag is cleared after the first succsful 1661 * fastopen attempt, no need to check for additional subflow status. 1662 */ 1663 if (msg->msg_flags & MSG_FASTOPEN) { 1664 ssk = __mptcp_nmpc_sk(msk); 1665 if (IS_ERR(ssk)) 1666 return PTR_ERR(ssk); 1667 } 1668 if (!msk->first) 1669 return -EINVAL; 1670 1671 ssk = msk->first; 1672 1673 lock_sock(ssk); 1674 msg->msg_flags |= MSG_DONTWAIT; 1675 msk->fastopening = 1; 1676 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1677 msk->fastopening = 0; 1678 msg->msg_flags = saved_flags; 1679 release_sock(ssk); 1680 1681 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1682 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1683 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1684 msg->msg_namelen, msg->msg_flags, 1); 1685 1686 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1687 * case of any error, except timeout or signal 1688 */ 1689 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1690 *copied_syn = 0; 1691 } else if (ret && ret != -EINPROGRESS) { 1692 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1693 * __inet_stream_connect() can fail, due to looking check, 1694 * see mptcp_disconnect(). 1695 * Attempt it again outside the problematic scope. 1696 */ 1697 if (!mptcp_disconnect(sk, 0)) { 1698 sk->sk_disconnects++; 1699 sk->sk_socket->state = SS_UNCONNECTED; 1700 } 1701 } 1702 inet_clear_bit(DEFER_CONNECT, sk); 1703 1704 return ret; 1705 } 1706 1707 static int do_copy_data_nocache(struct sock *sk, int copy, 1708 struct iov_iter *from, char *to) 1709 { 1710 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1711 if (!copy_from_iter_full_nocache(to, copy, from)) 1712 return -EFAULT; 1713 } else if (!copy_from_iter_full(to, copy, from)) { 1714 return -EFAULT; 1715 } 1716 return 0; 1717 } 1718 1719 /* open-code sk_stream_memory_free() plus sent limit computation to 1720 * avoid indirect calls in fast-path. 1721 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1722 * annotations. 1723 */ 1724 static u32 mptcp_send_limit(const struct sock *sk) 1725 { 1726 const struct mptcp_sock *msk = mptcp_sk(sk); 1727 u32 limit, not_sent; 1728 1729 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1730 return 0; 1731 1732 limit = mptcp_notsent_lowat(sk); 1733 if (limit == UINT_MAX) 1734 return UINT_MAX; 1735 1736 not_sent = msk->write_seq - msk->snd_nxt; 1737 if (not_sent >= limit) 1738 return 0; 1739 1740 return limit - not_sent; 1741 } 1742 1743 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1744 { 1745 struct mptcp_sock *msk = mptcp_sk(sk); 1746 struct page_frag *pfrag; 1747 size_t copied = 0; 1748 int ret = 0; 1749 long timeo; 1750 1751 /* silently ignore everything else */ 1752 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1753 1754 lock_sock(sk); 1755 1756 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1757 msg->msg_flags & MSG_FASTOPEN)) { 1758 int copied_syn = 0; 1759 1760 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1761 copied += copied_syn; 1762 if (ret == -EINPROGRESS && copied_syn > 0) 1763 goto out; 1764 else if (ret) 1765 goto do_error; 1766 } 1767 1768 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1769 1770 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1771 ret = sk_stream_wait_connect(sk, &timeo); 1772 if (ret) 1773 goto do_error; 1774 } 1775 1776 ret = -EPIPE; 1777 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1778 goto do_error; 1779 1780 pfrag = sk_page_frag(sk); 1781 1782 while (msg_data_left(msg)) { 1783 int total_ts, frag_truesize = 0; 1784 struct mptcp_data_frag *dfrag; 1785 bool dfrag_collapsed; 1786 size_t psize, offset; 1787 u32 copy_limit; 1788 1789 /* ensure fitting the notsent_lowat() constraint */ 1790 copy_limit = mptcp_send_limit(sk); 1791 if (!copy_limit) 1792 goto wait_for_memory; 1793 1794 /* reuse tail pfrag, if possible, or carve a new one from the 1795 * page allocator 1796 */ 1797 dfrag = mptcp_pending_tail(sk); 1798 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1799 if (!dfrag_collapsed) { 1800 if (!mptcp_page_frag_refill(sk, pfrag)) 1801 goto wait_for_memory; 1802 1803 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1804 frag_truesize = dfrag->overhead; 1805 } 1806 1807 /* we do not bound vs wspace, to allow a single packet. 1808 * memory accounting will prevent execessive memory usage 1809 * anyway 1810 */ 1811 offset = dfrag->offset + dfrag->data_len; 1812 psize = pfrag->size - offset; 1813 psize = min_t(size_t, psize, msg_data_left(msg)); 1814 psize = min_t(size_t, psize, copy_limit); 1815 total_ts = psize + frag_truesize; 1816 1817 if (!sk_wmem_schedule(sk, total_ts)) 1818 goto wait_for_memory; 1819 1820 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1821 page_address(dfrag->page) + offset); 1822 if (ret) 1823 goto do_error; 1824 1825 /* data successfully copied into the write queue */ 1826 sk_forward_alloc_add(sk, -total_ts); 1827 copied += psize; 1828 dfrag->data_len += psize; 1829 frag_truesize += psize; 1830 pfrag->offset += frag_truesize; 1831 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1832 1833 /* charge data on mptcp pending queue to the msk socket 1834 * Note: we charge such data both to sk and ssk 1835 */ 1836 sk_wmem_queued_add(sk, frag_truesize); 1837 if (!dfrag_collapsed) { 1838 get_page(dfrag->page); 1839 list_add_tail(&dfrag->list, &msk->rtx_queue); 1840 if (!msk->first_pending) 1841 WRITE_ONCE(msk->first_pending, dfrag); 1842 } 1843 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1844 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1845 !dfrag_collapsed); 1846 1847 continue; 1848 1849 wait_for_memory: 1850 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1851 __mptcp_push_pending(sk, msg->msg_flags); 1852 ret = sk_stream_wait_memory(sk, &timeo); 1853 if (ret) 1854 goto do_error; 1855 } 1856 1857 if (copied) 1858 __mptcp_push_pending(sk, msg->msg_flags); 1859 1860 out: 1861 release_sock(sk); 1862 return copied; 1863 1864 do_error: 1865 if (copied) 1866 goto out; 1867 1868 copied = sk_stream_error(sk, msg->msg_flags, ret); 1869 goto out; 1870 } 1871 1872 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1873 1874 static int __mptcp_recvmsg_mskq(struct sock *sk, 1875 struct msghdr *msg, 1876 size_t len, int flags, 1877 struct scm_timestamping_internal *tss, 1878 int *cmsg_flags) 1879 { 1880 struct mptcp_sock *msk = mptcp_sk(sk); 1881 struct sk_buff *skb, *tmp; 1882 int copied = 0; 1883 1884 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1885 u32 offset = MPTCP_SKB_CB(skb)->offset; 1886 u32 data_len = skb->len - offset; 1887 u32 count = min_t(size_t, len - copied, data_len); 1888 int err; 1889 1890 if (!(flags & MSG_TRUNC)) { 1891 err = skb_copy_datagram_msg(skb, offset, msg, count); 1892 if (unlikely(err < 0)) { 1893 if (!copied) 1894 return err; 1895 break; 1896 } 1897 } 1898 1899 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1900 tcp_update_recv_tstamps(skb, tss); 1901 *cmsg_flags |= MPTCP_CMSG_TS; 1902 } 1903 1904 copied += count; 1905 1906 if (count < data_len) { 1907 if (!(flags & MSG_PEEK)) { 1908 MPTCP_SKB_CB(skb)->offset += count; 1909 MPTCP_SKB_CB(skb)->map_seq += count; 1910 msk->bytes_consumed += count; 1911 } 1912 break; 1913 } 1914 1915 if (!(flags & MSG_PEEK)) { 1916 /* avoid the indirect call, we know the destructor is sock_wfree */ 1917 skb->destructor = NULL; 1918 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1919 sk_mem_uncharge(sk, skb->truesize); 1920 __skb_unlink(skb, &sk->sk_receive_queue); 1921 __kfree_skb(skb); 1922 msk->bytes_consumed += count; 1923 } 1924 1925 if (copied >= len) 1926 break; 1927 } 1928 1929 mptcp_rcv_space_adjust(msk, copied); 1930 return copied; 1931 } 1932 1933 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1934 * 1935 * Only difference: Use highest rtt estimate of the subflows in use. 1936 */ 1937 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1938 { 1939 struct mptcp_subflow_context *subflow; 1940 struct sock *sk = (struct sock *)msk; 1941 u8 scaling_ratio = U8_MAX; 1942 u32 time, advmss = 1; 1943 u64 rtt_us, mstamp; 1944 1945 msk_owned_by_me(msk); 1946 1947 if (copied <= 0) 1948 return; 1949 1950 if (!msk->rcvspace_init) 1951 mptcp_rcv_space_init(msk, msk->first); 1952 1953 msk->rcvq_space.copied += copied; 1954 1955 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1956 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1957 1958 rtt_us = msk->rcvq_space.rtt_us; 1959 if (rtt_us && time < (rtt_us >> 3)) 1960 return; 1961 1962 rtt_us = 0; 1963 mptcp_for_each_subflow(msk, subflow) { 1964 const struct tcp_sock *tp; 1965 u64 sf_rtt_us; 1966 u32 sf_advmss; 1967 1968 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1969 1970 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1971 sf_advmss = READ_ONCE(tp->advmss); 1972 1973 rtt_us = max(sf_rtt_us, rtt_us); 1974 advmss = max(sf_advmss, advmss); 1975 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1976 } 1977 1978 msk->rcvq_space.rtt_us = rtt_us; 1979 msk->scaling_ratio = scaling_ratio; 1980 if (time < (rtt_us >> 3) || rtt_us == 0) 1981 return; 1982 1983 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1984 goto new_measure; 1985 1986 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1987 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1988 u64 rcvwin, grow; 1989 int rcvbuf; 1990 1991 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1992 1993 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1994 1995 do_div(grow, msk->rcvq_space.space); 1996 rcvwin += (grow << 1); 1997 1998 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 1999 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2000 2001 if (rcvbuf > sk->sk_rcvbuf) { 2002 u32 window_clamp; 2003 2004 window_clamp = mptcp_win_from_space(sk, rcvbuf); 2005 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2006 2007 /* Make subflows follow along. If we do not do this, we 2008 * get drops at subflow level if skbs can't be moved to 2009 * the mptcp rx queue fast enough (announced rcv_win can 2010 * exceed ssk->sk_rcvbuf). 2011 */ 2012 mptcp_for_each_subflow(msk, subflow) { 2013 struct sock *ssk; 2014 bool slow; 2015 2016 ssk = mptcp_subflow_tcp_sock(subflow); 2017 slow = lock_sock_fast(ssk); 2018 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2019 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2020 if (tcp_can_send_ack(ssk)) 2021 tcp_cleanup_rbuf(ssk, 1); 2022 unlock_sock_fast(ssk, slow); 2023 } 2024 } 2025 } 2026 2027 msk->rcvq_space.space = msk->rcvq_space.copied; 2028 new_measure: 2029 msk->rcvq_space.copied = 0; 2030 msk->rcvq_space.time = mstamp; 2031 } 2032 2033 static struct mptcp_subflow_context * 2034 __mptcp_first_ready_from(struct mptcp_sock *msk, 2035 struct mptcp_subflow_context *subflow) 2036 { 2037 struct mptcp_subflow_context *start_subflow = subflow; 2038 2039 while (!READ_ONCE(subflow->data_avail)) { 2040 subflow = mptcp_next_subflow(msk, subflow); 2041 if (subflow == start_subflow) 2042 return NULL; 2043 } 2044 return subflow; 2045 } 2046 2047 static bool __mptcp_move_skbs(struct sock *sk) 2048 { 2049 struct mptcp_subflow_context *subflow; 2050 struct mptcp_sock *msk = mptcp_sk(sk); 2051 bool ret = false; 2052 2053 if (list_empty(&msk->conn_list)) 2054 return false; 2055 2056 /* verify we can move any data from the subflow, eventually updating */ 2057 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 2058 mptcp_for_each_subflow(msk, subflow) 2059 __mptcp_rcvbuf_update(sk, subflow->tcp_sock); 2060 2061 subflow = list_first_entry(&msk->conn_list, 2062 struct mptcp_subflow_context, node); 2063 for (;;) { 2064 struct sock *ssk; 2065 bool slowpath; 2066 2067 /* 2068 * As an optimization avoid traversing the subflows list 2069 * and ev. acquiring the subflow socket lock before baling out 2070 */ 2071 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2072 break; 2073 2074 subflow = __mptcp_first_ready_from(msk, subflow); 2075 if (!subflow) 2076 break; 2077 2078 ssk = mptcp_subflow_tcp_sock(subflow); 2079 slowpath = lock_sock_fast(ssk); 2080 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2081 if (unlikely(ssk->sk_err)) 2082 __mptcp_error_report(sk); 2083 unlock_sock_fast(ssk, slowpath); 2084 2085 subflow = mptcp_next_subflow(msk, subflow); 2086 } 2087 2088 __mptcp_ofo_queue(msk); 2089 if (ret) 2090 mptcp_check_data_fin((struct sock *)msk); 2091 return ret; 2092 } 2093 2094 static unsigned int mptcp_inq_hint(const struct sock *sk) 2095 { 2096 const struct mptcp_sock *msk = mptcp_sk(sk); 2097 const struct sk_buff *skb; 2098 2099 skb = skb_peek(&sk->sk_receive_queue); 2100 if (skb) { 2101 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2102 2103 if (hint_val >= INT_MAX) 2104 return INT_MAX; 2105 2106 return (unsigned int)hint_val; 2107 } 2108 2109 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2110 return 1; 2111 2112 return 0; 2113 } 2114 2115 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2116 int flags, int *addr_len) 2117 { 2118 struct mptcp_sock *msk = mptcp_sk(sk); 2119 struct scm_timestamping_internal tss; 2120 int copied = 0, cmsg_flags = 0; 2121 int target; 2122 long timeo; 2123 2124 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2125 if (unlikely(flags & MSG_ERRQUEUE)) 2126 return inet_recv_error(sk, msg, len, addr_len); 2127 2128 lock_sock(sk); 2129 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2130 copied = -ENOTCONN; 2131 goto out_err; 2132 } 2133 2134 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2135 2136 len = min_t(size_t, len, INT_MAX); 2137 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2138 2139 if (unlikely(msk->recvmsg_inq)) 2140 cmsg_flags = MPTCP_CMSG_INQ; 2141 2142 while (copied < len) { 2143 int err, bytes_read; 2144 2145 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2146 if (unlikely(bytes_read < 0)) { 2147 if (!copied) 2148 copied = bytes_read; 2149 goto out_err; 2150 } 2151 2152 copied += bytes_read; 2153 2154 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2155 continue; 2156 2157 /* only the MPTCP socket status is relevant here. The exit 2158 * conditions mirror closely tcp_recvmsg() 2159 */ 2160 if (copied >= target) 2161 break; 2162 2163 if (copied) { 2164 if (sk->sk_err || 2165 sk->sk_state == TCP_CLOSE || 2166 (sk->sk_shutdown & RCV_SHUTDOWN) || 2167 !timeo || 2168 signal_pending(current)) 2169 break; 2170 } else { 2171 if (sk->sk_err) { 2172 copied = sock_error(sk); 2173 break; 2174 } 2175 2176 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2177 /* race breaker: the shutdown could be after the 2178 * previous receive queue check 2179 */ 2180 if (__mptcp_move_skbs(sk)) 2181 continue; 2182 break; 2183 } 2184 2185 if (sk->sk_state == TCP_CLOSE) { 2186 copied = -ENOTCONN; 2187 break; 2188 } 2189 2190 if (!timeo) { 2191 copied = -EAGAIN; 2192 break; 2193 } 2194 2195 if (signal_pending(current)) { 2196 copied = sock_intr_errno(timeo); 2197 break; 2198 } 2199 } 2200 2201 pr_debug("block timeout %ld\n", timeo); 2202 mptcp_cleanup_rbuf(msk, copied); 2203 err = sk_wait_data(sk, &timeo, NULL); 2204 if (err < 0) { 2205 err = copied ? : err; 2206 goto out_err; 2207 } 2208 } 2209 2210 mptcp_cleanup_rbuf(msk, copied); 2211 2212 out_err: 2213 if (cmsg_flags && copied >= 0) { 2214 if (cmsg_flags & MPTCP_CMSG_TS) 2215 tcp_recv_timestamp(msg, sk, &tss); 2216 2217 if (cmsg_flags & MPTCP_CMSG_INQ) { 2218 unsigned int inq = mptcp_inq_hint(sk); 2219 2220 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2221 } 2222 } 2223 2224 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2225 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2226 2227 release_sock(sk); 2228 return copied; 2229 } 2230 2231 static void mptcp_retransmit_timer(struct timer_list *t) 2232 { 2233 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2234 icsk_retransmit_timer); 2235 struct sock *sk = &icsk->icsk_inet.sk; 2236 struct mptcp_sock *msk = mptcp_sk(sk); 2237 2238 bh_lock_sock(sk); 2239 if (!sock_owned_by_user(sk)) { 2240 /* we need a process context to retransmit */ 2241 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2242 mptcp_schedule_work(sk); 2243 } else { 2244 /* delegate our work to tcp_release_cb() */ 2245 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2246 } 2247 bh_unlock_sock(sk); 2248 sock_put(sk); 2249 } 2250 2251 static void mptcp_tout_timer(struct timer_list *t) 2252 { 2253 struct sock *sk = timer_container_of(sk, t, sk_timer); 2254 2255 mptcp_schedule_work(sk); 2256 sock_put(sk); 2257 } 2258 2259 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2260 * level. 2261 * 2262 * A backup subflow is returned only if that is the only kind available. 2263 */ 2264 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2265 { 2266 struct sock *backup = NULL, *pick = NULL; 2267 struct mptcp_subflow_context *subflow; 2268 int min_stale_count = INT_MAX; 2269 2270 mptcp_for_each_subflow(msk, subflow) { 2271 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2272 2273 if (!__mptcp_subflow_active(subflow)) 2274 continue; 2275 2276 /* still data outstanding at TCP level? skip this */ 2277 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2278 mptcp_pm_subflow_chk_stale(msk, ssk); 2279 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2280 continue; 2281 } 2282 2283 if (subflow->backup || subflow->request_bkup) { 2284 if (!backup) 2285 backup = ssk; 2286 continue; 2287 } 2288 2289 if (!pick) 2290 pick = ssk; 2291 } 2292 2293 if (pick) 2294 return pick; 2295 2296 /* use backup only if there are no progresses anywhere */ 2297 return min_stale_count > 1 ? backup : NULL; 2298 } 2299 2300 bool __mptcp_retransmit_pending_data(struct sock *sk) 2301 { 2302 struct mptcp_data_frag *cur, *rtx_head; 2303 struct mptcp_sock *msk = mptcp_sk(sk); 2304 2305 if (__mptcp_check_fallback(msk)) 2306 return false; 2307 2308 /* the closing socket has some data untransmitted and/or unacked: 2309 * some data in the mptcp rtx queue has not really xmitted yet. 2310 * keep it simple and re-inject the whole mptcp level rtx queue 2311 */ 2312 mptcp_data_lock(sk); 2313 __mptcp_clean_una_wakeup(sk); 2314 rtx_head = mptcp_rtx_head(sk); 2315 if (!rtx_head) { 2316 mptcp_data_unlock(sk); 2317 return false; 2318 } 2319 2320 msk->recovery_snd_nxt = msk->snd_nxt; 2321 msk->recovery = true; 2322 mptcp_data_unlock(sk); 2323 2324 msk->first_pending = rtx_head; 2325 msk->snd_burst = 0; 2326 2327 /* be sure to clear the "sent status" on all re-injected fragments */ 2328 list_for_each_entry(cur, &msk->rtx_queue, list) { 2329 if (!cur->already_sent) 2330 break; 2331 cur->already_sent = 0; 2332 } 2333 2334 return true; 2335 } 2336 2337 /* flags for __mptcp_close_ssk() */ 2338 #define MPTCP_CF_PUSH BIT(1) 2339 #define MPTCP_CF_FASTCLOSE BIT(2) 2340 2341 /* be sure to send a reset only if the caller asked for it, also 2342 * clean completely the subflow status when the subflow reaches 2343 * TCP_CLOSE state 2344 */ 2345 static void __mptcp_subflow_disconnect(struct sock *ssk, 2346 struct mptcp_subflow_context *subflow, 2347 unsigned int flags) 2348 { 2349 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2350 (flags & MPTCP_CF_FASTCLOSE)) { 2351 /* The MPTCP code never wait on the subflow sockets, TCP-level 2352 * disconnect should never fail 2353 */ 2354 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2355 mptcp_subflow_ctx_reset(subflow); 2356 } else { 2357 tcp_shutdown(ssk, SEND_SHUTDOWN); 2358 } 2359 } 2360 2361 /* subflow sockets can be either outgoing (connect) or incoming 2362 * (accept). 2363 * 2364 * Outgoing subflows use in-kernel sockets. 2365 * Incoming subflows do not have their own 'struct socket' allocated, 2366 * so we need to use tcp_close() after detaching them from the mptcp 2367 * parent socket. 2368 */ 2369 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2370 struct mptcp_subflow_context *subflow, 2371 unsigned int flags) 2372 { 2373 struct mptcp_sock *msk = mptcp_sk(sk); 2374 bool dispose_it, need_push = false; 2375 2376 /* If the first subflow moved to a close state before accept, e.g. due 2377 * to an incoming reset or listener shutdown, the subflow socket is 2378 * already deleted by inet_child_forget() and the mptcp socket can't 2379 * survive too. 2380 */ 2381 if (msk->in_accept_queue && msk->first == ssk && 2382 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2383 /* ensure later check in mptcp_worker() will dispose the msk */ 2384 sock_set_flag(sk, SOCK_DEAD); 2385 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2386 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2387 mptcp_subflow_drop_ctx(ssk); 2388 goto out_release; 2389 } 2390 2391 dispose_it = msk->free_first || ssk != msk->first; 2392 if (dispose_it) 2393 list_del(&subflow->node); 2394 2395 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2396 2397 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2398 /* be sure to force the tcp_close path 2399 * to generate the egress reset 2400 */ 2401 ssk->sk_lingertime = 0; 2402 sock_set_flag(ssk, SOCK_LINGER); 2403 subflow->send_fastclose = 1; 2404 } 2405 2406 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2407 if (!dispose_it) { 2408 __mptcp_subflow_disconnect(ssk, subflow, flags); 2409 release_sock(ssk); 2410 2411 goto out; 2412 } 2413 2414 subflow->disposable = 1; 2415 2416 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2417 * the ssk has been already destroyed, we just need to release the 2418 * reference owned by msk; 2419 */ 2420 if (!inet_csk(ssk)->icsk_ulp_ops) { 2421 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2422 kfree_rcu(subflow, rcu); 2423 } else { 2424 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2425 __tcp_close(ssk, 0); 2426 2427 /* close acquired an extra ref */ 2428 __sock_put(ssk); 2429 } 2430 2431 out_release: 2432 __mptcp_subflow_error_report(sk, ssk); 2433 release_sock(ssk); 2434 2435 sock_put(ssk); 2436 2437 if (ssk == msk->first) 2438 WRITE_ONCE(msk->first, NULL); 2439 2440 out: 2441 __mptcp_sync_sndbuf(sk); 2442 if (need_push) 2443 __mptcp_push_pending(sk, 0); 2444 2445 /* Catch every 'all subflows closed' scenario, including peers silently 2446 * closing them, e.g. due to timeout. 2447 * For established sockets, allow an additional timeout before closing, 2448 * as the protocol can still create more subflows. 2449 */ 2450 if (list_is_singular(&msk->conn_list) && msk->first && 2451 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2452 if (sk->sk_state != TCP_ESTABLISHED || 2453 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2454 mptcp_set_state(sk, TCP_CLOSE); 2455 mptcp_close_wake_up(sk); 2456 } else { 2457 mptcp_start_tout_timer(sk); 2458 } 2459 } 2460 } 2461 2462 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2463 struct mptcp_subflow_context *subflow) 2464 { 2465 /* The first subflow can already be closed and still in the list */ 2466 if (subflow->close_event_done) 2467 return; 2468 2469 subflow->close_event_done = true; 2470 2471 if (sk->sk_state == TCP_ESTABLISHED) 2472 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2473 2474 /* subflow aborted before reaching the fully_established status 2475 * attempt the creation of the next subflow 2476 */ 2477 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2478 2479 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2480 } 2481 2482 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2483 { 2484 return 0; 2485 } 2486 2487 static void __mptcp_close_subflow(struct sock *sk) 2488 { 2489 struct mptcp_subflow_context *subflow, *tmp; 2490 struct mptcp_sock *msk = mptcp_sk(sk); 2491 2492 might_sleep(); 2493 2494 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2495 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2496 int ssk_state = inet_sk_state_load(ssk); 2497 2498 if (ssk_state != TCP_CLOSE && 2499 (ssk_state != TCP_CLOSE_WAIT || 2500 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2501 continue; 2502 2503 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2504 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2505 continue; 2506 2507 mptcp_close_ssk(sk, ssk, subflow); 2508 } 2509 2510 } 2511 2512 static bool mptcp_close_tout_expired(const struct sock *sk) 2513 { 2514 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2515 sk->sk_state == TCP_CLOSE) 2516 return false; 2517 2518 return time_after32(tcp_jiffies32, 2519 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2520 } 2521 2522 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2523 { 2524 struct mptcp_subflow_context *subflow, *tmp; 2525 struct sock *sk = (struct sock *)msk; 2526 2527 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2528 return; 2529 2530 mptcp_token_destroy(msk); 2531 2532 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2533 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2534 bool slow; 2535 2536 slow = lock_sock_fast(tcp_sk); 2537 if (tcp_sk->sk_state != TCP_CLOSE) { 2538 mptcp_send_active_reset_reason(tcp_sk); 2539 tcp_set_state(tcp_sk, TCP_CLOSE); 2540 } 2541 unlock_sock_fast(tcp_sk, slow); 2542 } 2543 2544 /* Mirror the tcp_reset() error propagation */ 2545 switch (sk->sk_state) { 2546 case TCP_SYN_SENT: 2547 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2548 break; 2549 case TCP_CLOSE_WAIT: 2550 WRITE_ONCE(sk->sk_err, EPIPE); 2551 break; 2552 case TCP_CLOSE: 2553 return; 2554 default: 2555 WRITE_ONCE(sk->sk_err, ECONNRESET); 2556 } 2557 2558 mptcp_set_state(sk, TCP_CLOSE); 2559 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2560 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2561 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2562 2563 /* the calling mptcp_worker will properly destroy the socket */ 2564 if (sock_flag(sk, SOCK_DEAD)) 2565 return; 2566 2567 sk->sk_state_change(sk); 2568 sk_error_report(sk); 2569 } 2570 2571 static void __mptcp_retrans(struct sock *sk) 2572 { 2573 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2574 struct mptcp_sock *msk = mptcp_sk(sk); 2575 struct mptcp_subflow_context *subflow; 2576 struct mptcp_data_frag *dfrag; 2577 struct sock *ssk; 2578 int ret, err; 2579 u16 len = 0; 2580 2581 mptcp_clean_una_wakeup(sk); 2582 2583 /* first check ssk: need to kick "stale" logic */ 2584 err = mptcp_sched_get_retrans(msk); 2585 dfrag = mptcp_rtx_head(sk); 2586 if (!dfrag) { 2587 if (mptcp_data_fin_enabled(msk)) { 2588 struct inet_connection_sock *icsk = inet_csk(sk); 2589 2590 WRITE_ONCE(icsk->icsk_retransmits, 2591 icsk->icsk_retransmits + 1); 2592 mptcp_set_datafin_timeout(sk); 2593 mptcp_send_ack(msk); 2594 2595 goto reset_timer; 2596 } 2597 2598 if (!mptcp_send_head(sk)) 2599 return; 2600 2601 goto reset_timer; 2602 } 2603 2604 if (err) 2605 goto reset_timer; 2606 2607 mptcp_for_each_subflow(msk, subflow) { 2608 if (READ_ONCE(subflow->scheduled)) { 2609 u16 copied = 0; 2610 2611 mptcp_subflow_set_scheduled(subflow, false); 2612 2613 ssk = mptcp_subflow_tcp_sock(subflow); 2614 2615 lock_sock(ssk); 2616 2617 /* limit retransmission to the bytes already sent on some subflows */ 2618 info.sent = 0; 2619 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2620 dfrag->already_sent; 2621 2622 /* 2623 * make the whole retrans decision, xmit, disallow 2624 * fallback atomic 2625 */ 2626 spin_lock_bh(&msk->fallback_lock); 2627 if (__mptcp_check_fallback(msk)) { 2628 spin_unlock_bh(&msk->fallback_lock); 2629 release_sock(ssk); 2630 return; 2631 } 2632 2633 while (info.sent < info.limit) { 2634 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2635 if (ret <= 0) 2636 break; 2637 2638 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2639 copied += ret; 2640 info.sent += ret; 2641 } 2642 if (copied) { 2643 len = max(copied, len); 2644 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2645 info.size_goal); 2646 msk->allow_infinite_fallback = false; 2647 } 2648 spin_unlock_bh(&msk->fallback_lock); 2649 2650 release_sock(ssk); 2651 } 2652 } 2653 2654 msk->bytes_retrans += len; 2655 dfrag->already_sent = max(dfrag->already_sent, len); 2656 2657 reset_timer: 2658 mptcp_check_and_set_pending(sk); 2659 2660 if (!mptcp_rtx_timer_pending(sk)) 2661 mptcp_reset_rtx_timer(sk); 2662 } 2663 2664 /* schedule the timeout timer for the relevant event: either close timeout 2665 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2666 */ 2667 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2668 { 2669 struct sock *sk = (struct sock *)msk; 2670 unsigned long timeout, close_timeout; 2671 2672 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2673 return; 2674 2675 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2676 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2677 2678 /* the close timeout takes precedence on the fail one, and here at least one of 2679 * them is active 2680 */ 2681 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2682 2683 sk_reset_timer(sk, &sk->sk_timer, timeout); 2684 } 2685 2686 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2687 { 2688 struct sock *ssk = msk->first; 2689 bool slow; 2690 2691 if (!ssk) 2692 return; 2693 2694 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2695 2696 slow = lock_sock_fast(ssk); 2697 mptcp_subflow_reset(ssk); 2698 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2699 unlock_sock_fast(ssk, slow); 2700 } 2701 2702 static void mptcp_do_fastclose(struct sock *sk) 2703 { 2704 struct mptcp_subflow_context *subflow, *tmp; 2705 struct mptcp_sock *msk = mptcp_sk(sk); 2706 2707 mptcp_set_state(sk, TCP_CLOSE); 2708 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2709 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2710 subflow, MPTCP_CF_FASTCLOSE); 2711 } 2712 2713 static void mptcp_worker(struct work_struct *work) 2714 { 2715 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2716 struct sock *sk = (struct sock *)msk; 2717 unsigned long fail_tout; 2718 int state; 2719 2720 lock_sock(sk); 2721 state = sk->sk_state; 2722 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2723 goto unlock; 2724 2725 mptcp_check_fastclose(msk); 2726 2727 mptcp_pm_worker(msk); 2728 2729 mptcp_check_send_data_fin(sk); 2730 mptcp_check_data_fin_ack(sk); 2731 mptcp_check_data_fin(sk); 2732 2733 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2734 __mptcp_close_subflow(sk); 2735 2736 if (mptcp_close_tout_expired(sk)) { 2737 mptcp_do_fastclose(sk); 2738 mptcp_close_wake_up(sk); 2739 } 2740 2741 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2742 __mptcp_destroy_sock(sk); 2743 goto unlock; 2744 } 2745 2746 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2747 __mptcp_retrans(sk); 2748 2749 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2750 if (fail_tout && time_after(jiffies, fail_tout)) 2751 mptcp_mp_fail_no_response(msk); 2752 2753 unlock: 2754 release_sock(sk); 2755 sock_put(sk); 2756 } 2757 2758 static void __mptcp_init_sock(struct sock *sk) 2759 { 2760 struct mptcp_sock *msk = mptcp_sk(sk); 2761 2762 INIT_LIST_HEAD(&msk->conn_list); 2763 INIT_LIST_HEAD(&msk->join_list); 2764 INIT_LIST_HEAD(&msk->rtx_queue); 2765 INIT_WORK(&msk->work, mptcp_worker); 2766 msk->out_of_order_queue = RB_ROOT; 2767 msk->first_pending = NULL; 2768 msk->timer_ival = TCP_RTO_MIN; 2769 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2770 2771 WRITE_ONCE(msk->first, NULL); 2772 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2773 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2774 msk->allow_infinite_fallback = true; 2775 msk->allow_subflows = true; 2776 msk->recovery = false; 2777 msk->subflow_id = 1; 2778 msk->last_data_sent = tcp_jiffies32; 2779 msk->last_data_recv = tcp_jiffies32; 2780 msk->last_ack_recv = tcp_jiffies32; 2781 2782 mptcp_pm_data_init(msk); 2783 spin_lock_init(&msk->fallback_lock); 2784 2785 /* re-use the csk retrans timer for MPTCP-level retrans */ 2786 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2787 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2788 } 2789 2790 static void mptcp_ca_reset(struct sock *sk) 2791 { 2792 struct inet_connection_sock *icsk = inet_csk(sk); 2793 2794 tcp_assign_congestion_control(sk); 2795 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2796 sizeof(mptcp_sk(sk)->ca_name)); 2797 2798 /* no need to keep a reference to the ops, the name will suffice */ 2799 tcp_cleanup_congestion_control(sk); 2800 icsk->icsk_ca_ops = NULL; 2801 } 2802 2803 static int mptcp_init_sock(struct sock *sk) 2804 { 2805 struct net *net = sock_net(sk); 2806 int ret; 2807 2808 __mptcp_init_sock(sk); 2809 2810 if (!mptcp_is_enabled(net)) 2811 return -ENOPROTOOPT; 2812 2813 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2814 return -ENOMEM; 2815 2816 rcu_read_lock(); 2817 ret = mptcp_init_sched(mptcp_sk(sk), 2818 mptcp_sched_find(mptcp_get_scheduler(net))); 2819 rcu_read_unlock(); 2820 if (ret) 2821 return ret; 2822 2823 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2824 2825 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2826 * propagate the correct value 2827 */ 2828 mptcp_ca_reset(sk); 2829 2830 sk_sockets_allocated_inc(sk); 2831 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2832 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2833 2834 return 0; 2835 } 2836 2837 static void __mptcp_clear_xmit(struct sock *sk) 2838 { 2839 struct mptcp_sock *msk = mptcp_sk(sk); 2840 struct mptcp_data_frag *dtmp, *dfrag; 2841 2842 WRITE_ONCE(msk->first_pending, NULL); 2843 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2844 dfrag_clear(sk, dfrag); 2845 } 2846 2847 void mptcp_cancel_work(struct sock *sk) 2848 { 2849 struct mptcp_sock *msk = mptcp_sk(sk); 2850 2851 if (cancel_work_sync(&msk->work)) 2852 __sock_put(sk); 2853 } 2854 2855 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2856 { 2857 lock_sock(ssk); 2858 2859 switch (ssk->sk_state) { 2860 case TCP_LISTEN: 2861 if (!(how & RCV_SHUTDOWN)) 2862 break; 2863 fallthrough; 2864 case TCP_SYN_SENT: 2865 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2866 break; 2867 default: 2868 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2869 pr_debug("Fallback\n"); 2870 ssk->sk_shutdown |= how; 2871 tcp_shutdown(ssk, how); 2872 2873 /* simulate the data_fin ack reception to let the state 2874 * machine move forward 2875 */ 2876 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2877 mptcp_schedule_work(sk); 2878 } else { 2879 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2880 tcp_send_ack(ssk); 2881 if (!mptcp_rtx_timer_pending(sk)) 2882 mptcp_reset_rtx_timer(sk); 2883 } 2884 break; 2885 } 2886 2887 release_sock(ssk); 2888 } 2889 2890 void mptcp_set_state(struct sock *sk, int state) 2891 { 2892 int oldstate = sk->sk_state; 2893 2894 switch (state) { 2895 case TCP_ESTABLISHED: 2896 if (oldstate != TCP_ESTABLISHED) 2897 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2898 break; 2899 case TCP_CLOSE_WAIT: 2900 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2901 * MPTCP "accepted" sockets will be created later on. So no 2902 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2903 */ 2904 break; 2905 default: 2906 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2907 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2908 } 2909 2910 inet_sk_state_store(sk, state); 2911 } 2912 2913 static const unsigned char new_state[16] = { 2914 /* current state: new state: action: */ 2915 [0 /* (Invalid) */] = TCP_CLOSE, 2916 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2917 [TCP_SYN_SENT] = TCP_CLOSE, 2918 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2919 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2920 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2921 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2922 [TCP_CLOSE] = TCP_CLOSE, 2923 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2924 [TCP_LAST_ACK] = TCP_LAST_ACK, 2925 [TCP_LISTEN] = TCP_CLOSE, 2926 [TCP_CLOSING] = TCP_CLOSING, 2927 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2928 }; 2929 2930 static int mptcp_close_state(struct sock *sk) 2931 { 2932 int next = (int)new_state[sk->sk_state]; 2933 int ns = next & TCP_STATE_MASK; 2934 2935 mptcp_set_state(sk, ns); 2936 2937 return next & TCP_ACTION_FIN; 2938 } 2939 2940 static void mptcp_check_send_data_fin(struct sock *sk) 2941 { 2942 struct mptcp_subflow_context *subflow; 2943 struct mptcp_sock *msk = mptcp_sk(sk); 2944 2945 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2946 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2947 msk->snd_nxt, msk->write_seq); 2948 2949 /* we still need to enqueue subflows or not really shutting down, 2950 * skip this 2951 */ 2952 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2953 mptcp_send_head(sk)) 2954 return; 2955 2956 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2957 2958 mptcp_for_each_subflow(msk, subflow) { 2959 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2960 2961 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2962 } 2963 } 2964 2965 static void __mptcp_wr_shutdown(struct sock *sk) 2966 { 2967 struct mptcp_sock *msk = mptcp_sk(sk); 2968 2969 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2970 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2971 !!mptcp_send_head(sk)); 2972 2973 /* will be ignored by fallback sockets */ 2974 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2975 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2976 2977 mptcp_check_send_data_fin(sk); 2978 } 2979 2980 static void __mptcp_destroy_sock(struct sock *sk) 2981 { 2982 struct mptcp_sock *msk = mptcp_sk(sk); 2983 2984 pr_debug("msk=%p\n", msk); 2985 2986 might_sleep(); 2987 2988 mptcp_stop_rtx_timer(sk); 2989 sk_stop_timer(sk, &sk->sk_timer); 2990 msk->pm.status = 0; 2991 mptcp_release_sched(msk); 2992 2993 sk->sk_prot->destroy(sk); 2994 2995 sk_stream_kill_queues(sk); 2996 xfrm_sk_free_policy(sk); 2997 2998 sock_put(sk); 2999 } 3000 3001 void __mptcp_unaccepted_force_close(struct sock *sk) 3002 { 3003 sock_set_flag(sk, SOCK_DEAD); 3004 mptcp_do_fastclose(sk); 3005 __mptcp_destroy_sock(sk); 3006 } 3007 3008 static __poll_t mptcp_check_readable(struct sock *sk) 3009 { 3010 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3011 } 3012 3013 static void mptcp_check_listen_stop(struct sock *sk) 3014 { 3015 struct sock *ssk; 3016 3017 if (inet_sk_state_load(sk) != TCP_LISTEN) 3018 return; 3019 3020 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3021 ssk = mptcp_sk(sk)->first; 3022 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3023 return; 3024 3025 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3026 tcp_set_state(ssk, TCP_CLOSE); 3027 mptcp_subflow_queue_clean(sk, ssk); 3028 inet_csk_listen_stop(ssk); 3029 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3030 release_sock(ssk); 3031 } 3032 3033 bool __mptcp_close(struct sock *sk, long timeout) 3034 { 3035 struct mptcp_subflow_context *subflow; 3036 struct mptcp_sock *msk = mptcp_sk(sk); 3037 bool do_cancel_work = false; 3038 int subflows_alive = 0; 3039 3040 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3041 3042 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3043 mptcp_check_listen_stop(sk); 3044 mptcp_set_state(sk, TCP_CLOSE); 3045 goto cleanup; 3046 } 3047 3048 if (mptcp_data_avail(msk) || timeout < 0) { 3049 /* If the msk has read data, or the caller explicitly ask it, 3050 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3051 */ 3052 mptcp_do_fastclose(sk); 3053 timeout = 0; 3054 } else if (mptcp_close_state(sk)) { 3055 __mptcp_wr_shutdown(sk); 3056 } 3057 3058 sk_stream_wait_close(sk, timeout); 3059 3060 cleanup: 3061 /* orphan all the subflows */ 3062 mptcp_for_each_subflow(msk, subflow) { 3063 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3064 bool slow = lock_sock_fast_nested(ssk); 3065 3066 subflows_alive += ssk->sk_state != TCP_CLOSE; 3067 3068 /* since the close timeout takes precedence on the fail one, 3069 * cancel the latter 3070 */ 3071 if (ssk == msk->first) 3072 subflow->fail_tout = 0; 3073 3074 /* detach from the parent socket, but allow data_ready to 3075 * push incoming data into the mptcp stack, to properly ack it 3076 */ 3077 ssk->sk_socket = NULL; 3078 ssk->sk_wq = NULL; 3079 unlock_sock_fast(ssk, slow); 3080 } 3081 sock_orphan(sk); 3082 3083 /* all the subflows are closed, only timeout can change the msk 3084 * state, let's not keep resources busy for no reasons 3085 */ 3086 if (subflows_alive == 0) 3087 mptcp_set_state(sk, TCP_CLOSE); 3088 3089 sock_hold(sk); 3090 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3091 mptcp_pm_connection_closed(msk); 3092 3093 if (sk->sk_state == TCP_CLOSE) { 3094 __mptcp_destroy_sock(sk); 3095 do_cancel_work = true; 3096 } else { 3097 mptcp_start_tout_timer(sk); 3098 } 3099 3100 return do_cancel_work; 3101 } 3102 3103 static void mptcp_close(struct sock *sk, long timeout) 3104 { 3105 bool do_cancel_work; 3106 3107 lock_sock(sk); 3108 3109 do_cancel_work = __mptcp_close(sk, timeout); 3110 release_sock(sk); 3111 if (do_cancel_work) 3112 mptcp_cancel_work(sk); 3113 3114 sock_put(sk); 3115 } 3116 3117 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3118 { 3119 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3120 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3121 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3122 3123 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3124 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3125 3126 if (msk6 && ssk6) { 3127 msk6->saddr = ssk6->saddr; 3128 msk6->flow_label = ssk6->flow_label; 3129 } 3130 #endif 3131 3132 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3133 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3134 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3135 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3136 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3137 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3138 } 3139 3140 static int mptcp_disconnect(struct sock *sk, int flags) 3141 { 3142 struct mptcp_sock *msk = mptcp_sk(sk); 3143 3144 /* We are on the fastopen error path. We can't call straight into the 3145 * subflows cleanup code due to lock nesting (we are already under 3146 * msk->firstsocket lock). 3147 */ 3148 if (msk->fastopening) 3149 return -EBUSY; 3150 3151 mptcp_check_listen_stop(sk); 3152 mptcp_set_state(sk, TCP_CLOSE); 3153 3154 mptcp_stop_rtx_timer(sk); 3155 mptcp_stop_tout_timer(sk); 3156 3157 mptcp_pm_connection_closed(msk); 3158 3159 /* msk->subflow is still intact, the following will not free the first 3160 * subflow 3161 */ 3162 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3163 3164 /* The first subflow is already in TCP_CLOSE status, the following 3165 * can't overlap with a fallback anymore 3166 */ 3167 spin_lock_bh(&msk->fallback_lock); 3168 msk->allow_subflows = true; 3169 msk->allow_infinite_fallback = true; 3170 WRITE_ONCE(msk->flags, 0); 3171 spin_unlock_bh(&msk->fallback_lock); 3172 3173 msk->cb_flags = 0; 3174 msk->recovery = false; 3175 WRITE_ONCE(msk->can_ack, false); 3176 WRITE_ONCE(msk->fully_established, false); 3177 WRITE_ONCE(msk->rcv_data_fin, false); 3178 WRITE_ONCE(msk->snd_data_fin_enable, false); 3179 WRITE_ONCE(msk->rcv_fastclose, false); 3180 WRITE_ONCE(msk->use_64bit_ack, false); 3181 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3182 mptcp_pm_data_reset(msk); 3183 mptcp_ca_reset(sk); 3184 msk->bytes_consumed = 0; 3185 msk->bytes_acked = 0; 3186 msk->bytes_received = 0; 3187 msk->bytes_sent = 0; 3188 msk->bytes_retrans = 0; 3189 msk->rcvspace_init = 0; 3190 3191 WRITE_ONCE(sk->sk_shutdown, 0); 3192 sk_error_report(sk); 3193 return 0; 3194 } 3195 3196 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3197 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3198 { 3199 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3200 3201 return &msk6->np; 3202 } 3203 3204 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3205 { 3206 const struct ipv6_pinfo *np = inet6_sk(sk); 3207 struct ipv6_txoptions *opt; 3208 struct ipv6_pinfo *newnp; 3209 3210 newnp = inet6_sk(newsk); 3211 3212 rcu_read_lock(); 3213 opt = rcu_dereference(np->opt); 3214 if (opt) { 3215 opt = ipv6_dup_options(newsk, opt); 3216 if (!opt) 3217 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3218 } 3219 RCU_INIT_POINTER(newnp->opt, opt); 3220 rcu_read_unlock(); 3221 } 3222 #endif 3223 3224 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3225 { 3226 struct ip_options_rcu *inet_opt, *newopt = NULL; 3227 const struct inet_sock *inet = inet_sk(sk); 3228 struct inet_sock *newinet; 3229 3230 newinet = inet_sk(newsk); 3231 3232 rcu_read_lock(); 3233 inet_opt = rcu_dereference(inet->inet_opt); 3234 if (inet_opt) { 3235 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3236 inet_opt->opt.optlen, GFP_ATOMIC); 3237 if (!newopt) 3238 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3239 } 3240 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3241 rcu_read_unlock(); 3242 } 3243 3244 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3245 const struct mptcp_options_received *mp_opt, 3246 struct sock *ssk, 3247 struct request_sock *req) 3248 { 3249 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3250 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3251 struct mptcp_subflow_context *subflow; 3252 struct mptcp_sock *msk; 3253 3254 if (!nsk) 3255 return NULL; 3256 3257 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3258 if (nsk->sk_family == AF_INET6) 3259 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3260 #endif 3261 3262 __mptcp_init_sock(nsk); 3263 3264 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3265 if (nsk->sk_family == AF_INET6) 3266 mptcp_copy_ip6_options(nsk, sk); 3267 else 3268 #endif 3269 mptcp_copy_ip_options(nsk, sk); 3270 3271 msk = mptcp_sk(nsk); 3272 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3273 WRITE_ONCE(msk->token, subflow_req->token); 3274 msk->in_accept_queue = 1; 3275 WRITE_ONCE(msk->fully_established, false); 3276 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3277 WRITE_ONCE(msk->csum_enabled, true); 3278 3279 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3280 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3281 WRITE_ONCE(msk->snd_una, msk->write_seq); 3282 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3283 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3284 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3285 3286 /* passive msk is created after the first/MPC subflow */ 3287 msk->subflow_id = 2; 3288 3289 sock_reset_flag(nsk, SOCK_RCU_FREE); 3290 security_inet_csk_clone(nsk, req); 3291 3292 /* this can't race with mptcp_close(), as the msk is 3293 * not yet exposted to user-space 3294 */ 3295 mptcp_set_state(nsk, TCP_ESTABLISHED); 3296 3297 /* The msk maintain a ref to each subflow in the connections list */ 3298 WRITE_ONCE(msk->first, ssk); 3299 subflow = mptcp_subflow_ctx(ssk); 3300 list_add(&subflow->node, &msk->conn_list); 3301 sock_hold(ssk); 3302 3303 /* new mpc subflow takes ownership of the newly 3304 * created mptcp socket 3305 */ 3306 mptcp_token_accept(subflow_req, msk); 3307 3308 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3309 * uses the correct data 3310 */ 3311 mptcp_copy_inaddrs(nsk, ssk); 3312 __mptcp_propagate_sndbuf(nsk, ssk); 3313 3314 mptcp_rcv_space_init(msk, ssk); 3315 3316 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3317 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3318 bh_unlock_sock(nsk); 3319 3320 /* note: the newly allocated socket refcount is 2 now */ 3321 return nsk; 3322 } 3323 3324 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3325 { 3326 const struct tcp_sock *tp = tcp_sk(ssk); 3327 3328 msk->rcvspace_init = 1; 3329 msk->rcvq_space.copied = 0; 3330 msk->rcvq_space.rtt_us = 0; 3331 3332 msk->rcvq_space.time = tp->tcp_mstamp; 3333 3334 /* initial rcv_space offering made to peer */ 3335 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3336 TCP_INIT_CWND * tp->advmss); 3337 if (msk->rcvq_space.space == 0) 3338 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3339 } 3340 3341 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3342 { 3343 struct mptcp_subflow_context *subflow, *tmp; 3344 struct sock *sk = (struct sock *)msk; 3345 3346 __mptcp_clear_xmit(sk); 3347 3348 /* join list will be eventually flushed (with rst) at sock lock release time */ 3349 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3350 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3351 3352 __skb_queue_purge(&sk->sk_receive_queue); 3353 skb_rbtree_purge(&msk->out_of_order_queue); 3354 3355 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3356 * inet_sock_destruct() will dispose it 3357 */ 3358 mptcp_token_destroy(msk); 3359 mptcp_pm_destroy(msk); 3360 } 3361 3362 static void mptcp_destroy(struct sock *sk) 3363 { 3364 struct mptcp_sock *msk = mptcp_sk(sk); 3365 3366 /* allow the following to close even the initial subflow */ 3367 msk->free_first = 1; 3368 mptcp_destroy_common(msk, 0); 3369 sk_sockets_allocated_dec(sk); 3370 } 3371 3372 void __mptcp_data_acked(struct sock *sk) 3373 { 3374 if (!sock_owned_by_user(sk)) 3375 __mptcp_clean_una(sk); 3376 else 3377 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3378 } 3379 3380 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3381 { 3382 if (!mptcp_send_head(sk)) 3383 return; 3384 3385 if (!sock_owned_by_user(sk)) 3386 __mptcp_subflow_push_pending(sk, ssk, false); 3387 else 3388 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3389 } 3390 3391 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3392 BIT(MPTCP_RETRANSMIT) | \ 3393 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3394 BIT(MPTCP_DEQUEUE)) 3395 3396 /* processes deferred events and flush wmem */ 3397 static void mptcp_release_cb(struct sock *sk) 3398 __must_hold(&sk->sk_lock.slock) 3399 { 3400 struct mptcp_sock *msk = mptcp_sk(sk); 3401 3402 for (;;) { 3403 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3404 struct list_head join_list; 3405 3406 if (!flags) 3407 break; 3408 3409 INIT_LIST_HEAD(&join_list); 3410 list_splice_init(&msk->join_list, &join_list); 3411 3412 /* the following actions acquire the subflow socket lock 3413 * 3414 * 1) can't be invoked in atomic scope 3415 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3416 * datapath acquires the msk socket spinlock while helding 3417 * the subflow socket lock 3418 */ 3419 msk->cb_flags &= ~flags; 3420 spin_unlock_bh(&sk->sk_lock.slock); 3421 3422 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3423 __mptcp_flush_join_list(sk, &join_list); 3424 if (flags & BIT(MPTCP_PUSH_PENDING)) 3425 __mptcp_push_pending(sk, 0); 3426 if (flags & BIT(MPTCP_RETRANSMIT)) 3427 __mptcp_retrans(sk); 3428 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3429 /* notify ack seq update */ 3430 mptcp_cleanup_rbuf(msk, 0); 3431 sk->sk_data_ready(sk); 3432 } 3433 3434 cond_resched(); 3435 spin_lock_bh(&sk->sk_lock.slock); 3436 } 3437 3438 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3439 __mptcp_clean_una_wakeup(sk); 3440 if (unlikely(msk->cb_flags)) { 3441 /* be sure to sync the msk state before taking actions 3442 * depending on sk_state (MPTCP_ERROR_REPORT) 3443 * On sk release avoid actions depending on the first subflow 3444 */ 3445 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3446 __mptcp_sync_state(sk, msk->pending_state); 3447 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3448 __mptcp_error_report(sk); 3449 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3450 __mptcp_sync_sndbuf(sk); 3451 } 3452 } 3453 3454 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3455 * TCP can't schedule delack timer before the subflow is fully established. 3456 * MPTCP uses the delack timer to do 3rd ack retransmissions 3457 */ 3458 static void schedule_3rdack_retransmission(struct sock *ssk) 3459 { 3460 struct inet_connection_sock *icsk = inet_csk(ssk); 3461 struct tcp_sock *tp = tcp_sk(ssk); 3462 unsigned long timeout; 3463 3464 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3465 return; 3466 3467 /* reschedule with a timeout above RTT, as we must look only for drop */ 3468 if (tp->srtt_us) 3469 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3470 else 3471 timeout = TCP_TIMEOUT_INIT; 3472 timeout += jiffies; 3473 3474 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3475 smp_store_release(&icsk->icsk_ack.pending, 3476 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3477 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3478 } 3479 3480 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3481 { 3482 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3483 struct sock *sk = subflow->conn; 3484 3485 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3486 mptcp_data_lock(sk); 3487 if (!sock_owned_by_user(sk)) 3488 __mptcp_subflow_push_pending(sk, ssk, true); 3489 else 3490 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3491 mptcp_data_unlock(sk); 3492 } 3493 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3494 mptcp_data_lock(sk); 3495 if (!sock_owned_by_user(sk)) 3496 __mptcp_sync_sndbuf(sk); 3497 else 3498 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3499 mptcp_data_unlock(sk); 3500 } 3501 if (status & BIT(MPTCP_DELEGATE_ACK)) 3502 schedule_3rdack_retransmission(ssk); 3503 } 3504 3505 static int mptcp_hash(struct sock *sk) 3506 { 3507 /* should never be called, 3508 * we hash the TCP subflows not the MPTCP socket 3509 */ 3510 WARN_ON_ONCE(1); 3511 return 0; 3512 } 3513 3514 static void mptcp_unhash(struct sock *sk) 3515 { 3516 /* called from sk_common_release(), but nothing to do here */ 3517 } 3518 3519 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3520 { 3521 struct mptcp_sock *msk = mptcp_sk(sk); 3522 3523 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3524 if (WARN_ON_ONCE(!msk->first)) 3525 return -EINVAL; 3526 3527 return inet_csk_get_port(msk->first, snum); 3528 } 3529 3530 void mptcp_finish_connect(struct sock *ssk) 3531 { 3532 struct mptcp_subflow_context *subflow; 3533 struct mptcp_sock *msk; 3534 struct sock *sk; 3535 3536 subflow = mptcp_subflow_ctx(ssk); 3537 sk = subflow->conn; 3538 msk = mptcp_sk(sk); 3539 3540 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3541 3542 subflow->map_seq = subflow->iasn; 3543 subflow->map_subflow_seq = 1; 3544 3545 /* the socket is not connected yet, no msk/subflow ops can access/race 3546 * accessing the field below 3547 */ 3548 WRITE_ONCE(msk->local_key, subflow->local_key); 3549 3550 mptcp_pm_new_connection(msk, ssk, 0); 3551 } 3552 3553 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3554 { 3555 write_lock_bh(&sk->sk_callback_lock); 3556 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3557 sk_set_socket(sk, parent); 3558 WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid); 3559 write_unlock_bh(&sk->sk_callback_lock); 3560 } 3561 3562 bool mptcp_finish_join(struct sock *ssk) 3563 { 3564 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3565 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3566 struct sock *parent = (void *)msk; 3567 bool ret = true; 3568 3569 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3570 3571 /* mptcp socket already closing? */ 3572 if (!mptcp_is_fully_established(parent)) { 3573 subflow->reset_reason = MPTCP_RST_EMPTCP; 3574 return false; 3575 } 3576 3577 /* active subflow, already present inside the conn_list */ 3578 if (!list_empty(&subflow->node)) { 3579 spin_lock_bh(&msk->fallback_lock); 3580 if (!msk->allow_subflows) { 3581 spin_unlock_bh(&msk->fallback_lock); 3582 return false; 3583 } 3584 mptcp_subflow_joined(msk, ssk); 3585 spin_unlock_bh(&msk->fallback_lock); 3586 mptcp_propagate_sndbuf(parent, ssk); 3587 return true; 3588 } 3589 3590 if (!mptcp_pm_allow_new_subflow(msk)) { 3591 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3592 goto err_prohibited; 3593 } 3594 3595 /* If we can't acquire msk socket lock here, let the release callback 3596 * handle it 3597 */ 3598 mptcp_data_lock(parent); 3599 if (!sock_owned_by_user(parent)) { 3600 ret = __mptcp_finish_join(msk, ssk); 3601 if (ret) { 3602 sock_hold(ssk); 3603 list_add_tail(&subflow->node, &msk->conn_list); 3604 } 3605 } else { 3606 sock_hold(ssk); 3607 list_add_tail(&subflow->node, &msk->join_list); 3608 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3609 } 3610 mptcp_data_unlock(parent); 3611 3612 if (!ret) { 3613 err_prohibited: 3614 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3615 return false; 3616 } 3617 3618 return true; 3619 } 3620 3621 static void mptcp_shutdown(struct sock *sk, int how) 3622 { 3623 pr_debug("sk=%p, how=%d\n", sk, how); 3624 3625 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3626 __mptcp_wr_shutdown(sk); 3627 } 3628 3629 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3630 { 3631 const struct sock *sk = (void *)msk; 3632 u64 delta; 3633 3634 if (sk->sk_state == TCP_LISTEN) 3635 return -EINVAL; 3636 3637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3638 return 0; 3639 3640 delta = msk->write_seq - v; 3641 if (__mptcp_check_fallback(msk) && msk->first) { 3642 struct tcp_sock *tp = tcp_sk(msk->first); 3643 3644 /* the first subflow is disconnected after close - see 3645 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3646 * so ignore that status, too. 3647 */ 3648 if (!((1 << msk->first->sk_state) & 3649 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3650 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3651 } 3652 if (delta > INT_MAX) 3653 delta = INT_MAX; 3654 3655 return (int)delta; 3656 } 3657 3658 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3659 { 3660 struct mptcp_sock *msk = mptcp_sk(sk); 3661 bool slow; 3662 3663 switch (cmd) { 3664 case SIOCINQ: 3665 if (sk->sk_state == TCP_LISTEN) 3666 return -EINVAL; 3667 3668 lock_sock(sk); 3669 if (__mptcp_move_skbs(sk)) 3670 mptcp_cleanup_rbuf(msk, 0); 3671 *karg = mptcp_inq_hint(sk); 3672 release_sock(sk); 3673 break; 3674 case SIOCOUTQ: 3675 slow = lock_sock_fast(sk); 3676 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3677 unlock_sock_fast(sk, slow); 3678 break; 3679 case SIOCOUTQNSD: 3680 slow = lock_sock_fast(sk); 3681 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3682 unlock_sock_fast(sk, slow); 3683 break; 3684 default: 3685 return -ENOIOCTLCMD; 3686 } 3687 3688 return 0; 3689 } 3690 3691 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3692 { 3693 struct mptcp_subflow_context *subflow; 3694 struct mptcp_sock *msk = mptcp_sk(sk); 3695 int err = -EINVAL; 3696 struct sock *ssk; 3697 3698 ssk = __mptcp_nmpc_sk(msk); 3699 if (IS_ERR(ssk)) 3700 return PTR_ERR(ssk); 3701 3702 mptcp_set_state(sk, TCP_SYN_SENT); 3703 subflow = mptcp_subflow_ctx(ssk); 3704 #ifdef CONFIG_TCP_MD5SIG 3705 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3706 * TCP option space. 3707 */ 3708 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3709 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3710 #endif 3711 if (subflow->request_mptcp) { 3712 if (mptcp_active_should_disable(sk)) 3713 mptcp_early_fallback(msk, subflow, 3714 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3715 else if (mptcp_token_new_connect(ssk) < 0) 3716 mptcp_early_fallback(msk, subflow, 3717 MPTCP_MIB_TOKENFALLBACKINIT); 3718 } 3719 3720 WRITE_ONCE(msk->write_seq, subflow->idsn); 3721 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3722 WRITE_ONCE(msk->snd_una, subflow->idsn); 3723 if (likely(!__mptcp_check_fallback(msk))) 3724 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3725 3726 /* if reaching here via the fastopen/sendmsg path, the caller already 3727 * acquired the subflow socket lock, too. 3728 */ 3729 if (!msk->fastopening) 3730 lock_sock(ssk); 3731 3732 /* the following mirrors closely a very small chunk of code from 3733 * __inet_stream_connect() 3734 */ 3735 if (ssk->sk_state != TCP_CLOSE) 3736 goto out; 3737 3738 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3739 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3740 if (err) 3741 goto out; 3742 } 3743 3744 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3745 if (err < 0) 3746 goto out; 3747 3748 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3749 3750 out: 3751 if (!msk->fastopening) 3752 release_sock(ssk); 3753 3754 /* on successful connect, the msk state will be moved to established by 3755 * subflow_finish_connect() 3756 */ 3757 if (unlikely(err)) { 3758 /* avoid leaving a dangling token in an unconnected socket */ 3759 mptcp_token_destroy(msk); 3760 mptcp_set_state(sk, TCP_CLOSE); 3761 return err; 3762 } 3763 3764 mptcp_copy_inaddrs(sk, ssk); 3765 return 0; 3766 } 3767 3768 static struct proto mptcp_prot = { 3769 .name = "MPTCP", 3770 .owner = THIS_MODULE, 3771 .init = mptcp_init_sock, 3772 .connect = mptcp_connect, 3773 .disconnect = mptcp_disconnect, 3774 .close = mptcp_close, 3775 .setsockopt = mptcp_setsockopt, 3776 .getsockopt = mptcp_getsockopt, 3777 .shutdown = mptcp_shutdown, 3778 .destroy = mptcp_destroy, 3779 .sendmsg = mptcp_sendmsg, 3780 .ioctl = mptcp_ioctl, 3781 .recvmsg = mptcp_recvmsg, 3782 .release_cb = mptcp_release_cb, 3783 .hash = mptcp_hash, 3784 .unhash = mptcp_unhash, 3785 .get_port = mptcp_get_port, 3786 .stream_memory_free = mptcp_stream_memory_free, 3787 .sockets_allocated = &mptcp_sockets_allocated, 3788 3789 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3790 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3791 3792 .memory_pressure = &tcp_memory_pressure, 3793 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3794 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3795 .sysctl_mem = sysctl_tcp_mem, 3796 .obj_size = sizeof(struct mptcp_sock), 3797 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3798 .no_autobind = true, 3799 }; 3800 3801 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3802 { 3803 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3804 struct sock *ssk, *sk = sock->sk; 3805 int err = -EINVAL; 3806 3807 lock_sock(sk); 3808 ssk = __mptcp_nmpc_sk(msk); 3809 if (IS_ERR(ssk)) { 3810 err = PTR_ERR(ssk); 3811 goto unlock; 3812 } 3813 3814 if (sk->sk_family == AF_INET) 3815 err = inet_bind_sk(ssk, uaddr, addr_len); 3816 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3817 else if (sk->sk_family == AF_INET6) 3818 err = inet6_bind_sk(ssk, uaddr, addr_len); 3819 #endif 3820 if (!err) 3821 mptcp_copy_inaddrs(sk, ssk); 3822 3823 unlock: 3824 release_sock(sk); 3825 return err; 3826 } 3827 3828 static int mptcp_listen(struct socket *sock, int backlog) 3829 { 3830 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3831 struct sock *sk = sock->sk; 3832 struct sock *ssk; 3833 int err; 3834 3835 pr_debug("msk=%p\n", msk); 3836 3837 lock_sock(sk); 3838 3839 err = -EINVAL; 3840 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3841 goto unlock; 3842 3843 ssk = __mptcp_nmpc_sk(msk); 3844 if (IS_ERR(ssk)) { 3845 err = PTR_ERR(ssk); 3846 goto unlock; 3847 } 3848 3849 mptcp_set_state(sk, TCP_LISTEN); 3850 sock_set_flag(sk, SOCK_RCU_FREE); 3851 3852 lock_sock(ssk); 3853 err = __inet_listen_sk(ssk, backlog); 3854 release_sock(ssk); 3855 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3856 3857 if (!err) { 3858 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3859 mptcp_copy_inaddrs(sk, ssk); 3860 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3861 } 3862 3863 unlock: 3864 release_sock(sk); 3865 return err; 3866 } 3867 3868 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3869 struct proto_accept_arg *arg) 3870 { 3871 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3872 struct sock *ssk, *newsk; 3873 3874 pr_debug("msk=%p\n", msk); 3875 3876 /* Buggy applications can call accept on socket states other then LISTEN 3877 * but no need to allocate the first subflow just to error out. 3878 */ 3879 ssk = READ_ONCE(msk->first); 3880 if (!ssk) 3881 return -EINVAL; 3882 3883 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3884 newsk = inet_csk_accept(ssk, arg); 3885 if (!newsk) 3886 return arg->err; 3887 3888 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3889 if (sk_is_mptcp(newsk)) { 3890 struct mptcp_subflow_context *subflow; 3891 struct sock *new_mptcp_sock; 3892 3893 subflow = mptcp_subflow_ctx(newsk); 3894 new_mptcp_sock = subflow->conn; 3895 3896 /* is_mptcp should be false if subflow->conn is missing, see 3897 * subflow_syn_recv_sock() 3898 */ 3899 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3900 tcp_sk(newsk)->is_mptcp = 0; 3901 goto tcpfallback; 3902 } 3903 3904 newsk = new_mptcp_sock; 3905 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3906 3907 newsk->sk_kern_sock = arg->kern; 3908 lock_sock(newsk); 3909 __inet_accept(sock, newsock, newsk); 3910 3911 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3912 msk = mptcp_sk(newsk); 3913 msk->in_accept_queue = 0; 3914 3915 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3916 * This is needed so NOSPACE flag can be set from tcp stack. 3917 */ 3918 mptcp_for_each_subflow(msk, subflow) { 3919 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3920 3921 if (!ssk->sk_socket) 3922 mptcp_sock_graft(ssk, newsock); 3923 } 3924 3925 /* Do late cleanup for the first subflow as necessary. Also 3926 * deal with bad peers not doing a complete shutdown. 3927 */ 3928 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3929 __mptcp_close_ssk(newsk, msk->first, 3930 mptcp_subflow_ctx(msk->first), 0); 3931 if (unlikely(list_is_singular(&msk->conn_list))) 3932 mptcp_set_state(newsk, TCP_CLOSE); 3933 } 3934 } else { 3935 tcpfallback: 3936 newsk->sk_kern_sock = arg->kern; 3937 lock_sock(newsk); 3938 __inet_accept(sock, newsock, newsk); 3939 /* we are being invoked after accepting a non-mp-capable 3940 * flow: sk is a tcp_sk, not an mptcp one. 3941 * 3942 * Hand the socket over to tcp so all further socket ops 3943 * bypass mptcp. 3944 */ 3945 WRITE_ONCE(newsock->sk->sk_socket->ops, 3946 mptcp_fallback_tcp_ops(newsock->sk)); 3947 } 3948 release_sock(newsk); 3949 3950 return 0; 3951 } 3952 3953 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3954 { 3955 struct sock *sk = (struct sock *)msk; 3956 3957 if (__mptcp_stream_is_writeable(sk, 1)) 3958 return EPOLLOUT | EPOLLWRNORM; 3959 3960 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3961 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3962 if (__mptcp_stream_is_writeable(sk, 1)) 3963 return EPOLLOUT | EPOLLWRNORM; 3964 3965 return 0; 3966 } 3967 3968 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3969 struct poll_table_struct *wait) 3970 { 3971 struct sock *sk = sock->sk; 3972 struct mptcp_sock *msk; 3973 __poll_t mask = 0; 3974 u8 shutdown; 3975 int state; 3976 3977 msk = mptcp_sk(sk); 3978 sock_poll_wait(file, sock, wait); 3979 3980 state = inet_sk_state_load(sk); 3981 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 3982 if (state == TCP_LISTEN) { 3983 struct sock *ssk = READ_ONCE(msk->first); 3984 3985 if (WARN_ON_ONCE(!ssk)) 3986 return 0; 3987 3988 return inet_csk_listen_poll(ssk); 3989 } 3990 3991 shutdown = READ_ONCE(sk->sk_shutdown); 3992 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3993 mask |= EPOLLHUP; 3994 if (shutdown & RCV_SHUTDOWN) 3995 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3996 3997 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3998 mask |= mptcp_check_readable(sk); 3999 if (shutdown & SEND_SHUTDOWN) 4000 mask |= EPOLLOUT | EPOLLWRNORM; 4001 else 4002 mask |= mptcp_check_writeable(msk); 4003 } else if (state == TCP_SYN_SENT && 4004 inet_test_bit(DEFER_CONNECT, sk)) { 4005 /* cf tcp_poll() note about TFO */ 4006 mask |= EPOLLOUT | EPOLLWRNORM; 4007 } 4008 4009 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4010 smp_rmb(); 4011 if (READ_ONCE(sk->sk_err)) 4012 mask |= EPOLLERR; 4013 4014 return mask; 4015 } 4016 4017 static const struct proto_ops mptcp_stream_ops = { 4018 .family = PF_INET, 4019 .owner = THIS_MODULE, 4020 .release = inet_release, 4021 .bind = mptcp_bind, 4022 .connect = inet_stream_connect, 4023 .socketpair = sock_no_socketpair, 4024 .accept = mptcp_stream_accept, 4025 .getname = inet_getname, 4026 .poll = mptcp_poll, 4027 .ioctl = inet_ioctl, 4028 .gettstamp = sock_gettstamp, 4029 .listen = mptcp_listen, 4030 .shutdown = inet_shutdown, 4031 .setsockopt = sock_common_setsockopt, 4032 .getsockopt = sock_common_getsockopt, 4033 .sendmsg = inet_sendmsg, 4034 .recvmsg = inet_recvmsg, 4035 .mmap = sock_no_mmap, 4036 .set_rcvlowat = mptcp_set_rcvlowat, 4037 }; 4038 4039 static struct inet_protosw mptcp_protosw = { 4040 .type = SOCK_STREAM, 4041 .protocol = IPPROTO_MPTCP, 4042 .prot = &mptcp_prot, 4043 .ops = &mptcp_stream_ops, 4044 .flags = INET_PROTOSW_ICSK, 4045 }; 4046 4047 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4048 { 4049 struct mptcp_delegated_action *delegated; 4050 struct mptcp_subflow_context *subflow; 4051 int work_done = 0; 4052 4053 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4054 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4055 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4056 4057 bh_lock_sock_nested(ssk); 4058 if (!sock_owned_by_user(ssk)) { 4059 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4060 } else { 4061 /* tcp_release_cb_override already processed 4062 * the action or will do at next release_sock(). 4063 * In both case must dequeue the subflow here - on the same 4064 * CPU that scheduled it. 4065 */ 4066 smp_wmb(); 4067 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4068 } 4069 bh_unlock_sock(ssk); 4070 sock_put(ssk); 4071 4072 if (++work_done == budget) 4073 return budget; 4074 } 4075 4076 /* always provide a 0 'work_done' argument, so that napi_complete_done 4077 * will not try accessing the NULL napi->dev ptr 4078 */ 4079 napi_complete_done(napi, 0); 4080 return work_done; 4081 } 4082 4083 void __init mptcp_proto_init(void) 4084 { 4085 struct mptcp_delegated_action *delegated; 4086 int cpu; 4087 4088 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4089 4090 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4091 panic("Failed to allocate MPTCP pcpu counter\n"); 4092 4093 mptcp_napi_dev = alloc_netdev_dummy(0); 4094 if (!mptcp_napi_dev) 4095 panic("Failed to allocate MPTCP dummy netdev\n"); 4096 for_each_possible_cpu(cpu) { 4097 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4098 INIT_LIST_HEAD(&delegated->head); 4099 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4100 mptcp_napi_poll); 4101 napi_enable(&delegated->napi); 4102 } 4103 4104 mptcp_subflow_init(); 4105 mptcp_pm_init(); 4106 mptcp_sched_init(); 4107 mptcp_token_init(); 4108 4109 if (proto_register(&mptcp_prot, 1) != 0) 4110 panic("Failed to register MPTCP proto.\n"); 4111 4112 inet_register_protosw(&mptcp_protosw); 4113 4114 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4115 } 4116 4117 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4118 static const struct proto_ops mptcp_v6_stream_ops = { 4119 .family = PF_INET6, 4120 .owner = THIS_MODULE, 4121 .release = inet6_release, 4122 .bind = mptcp_bind, 4123 .connect = inet_stream_connect, 4124 .socketpair = sock_no_socketpair, 4125 .accept = mptcp_stream_accept, 4126 .getname = inet6_getname, 4127 .poll = mptcp_poll, 4128 .ioctl = inet6_ioctl, 4129 .gettstamp = sock_gettstamp, 4130 .listen = mptcp_listen, 4131 .shutdown = inet_shutdown, 4132 .setsockopt = sock_common_setsockopt, 4133 .getsockopt = sock_common_getsockopt, 4134 .sendmsg = inet6_sendmsg, 4135 .recvmsg = inet6_recvmsg, 4136 .mmap = sock_no_mmap, 4137 #ifdef CONFIG_COMPAT 4138 .compat_ioctl = inet6_compat_ioctl, 4139 #endif 4140 .set_rcvlowat = mptcp_set_rcvlowat, 4141 }; 4142 4143 static struct proto mptcp_v6_prot; 4144 4145 static struct inet_protosw mptcp_v6_protosw = { 4146 .type = SOCK_STREAM, 4147 .protocol = IPPROTO_MPTCP, 4148 .prot = &mptcp_v6_prot, 4149 .ops = &mptcp_v6_stream_ops, 4150 .flags = INET_PROTOSW_ICSK, 4151 }; 4152 4153 int __init mptcp_proto_v6_init(void) 4154 { 4155 int err; 4156 4157 mptcp_v6_prot = mptcp_prot; 4158 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4159 mptcp_v6_prot.slab = NULL; 4160 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4161 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4162 4163 err = proto_register(&mptcp_v6_prot, 1); 4164 if (err) 4165 return err; 4166 4167 err = inet6_register_protosw(&mptcp_v6_protosw); 4168 if (err) 4169 proto_unregister(&mptcp_v6_prot); 4170 4171 return err; 4172 } 4173 #endif 4174