xref: /linux/net/mptcp/protocol.c (revision 79997eda0d31bc68203c95ecb978773ee6ce7a1f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static bool mptcp_is_tcpsk(struct sock *sk)
59 {
60 	struct socket *sock = sk->sk_socket;
61 
62 	if (unlikely(sk->sk_prot == &tcp_prot)) {
63 		/* we are being invoked after mptcp_accept() has
64 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
65 		 * not an mptcp one.
66 		 *
67 		 * Hand the socket over to tcp so all further socket ops
68 		 * bypass mptcp.
69 		 */
70 		WRITE_ONCE(sock->ops, &inet_stream_ops);
71 		return true;
72 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
73 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
74 		WRITE_ONCE(sock->ops, &inet6_stream_ops);
75 		return true;
76 #endif
77 	}
78 
79 	return false;
80 }
81 
82 static int __mptcp_socket_create(struct mptcp_sock *msk)
83 {
84 	struct mptcp_subflow_context *subflow;
85 	struct sock *sk = (struct sock *)msk;
86 	struct socket *ssock;
87 	int err;
88 
89 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
90 	if (err)
91 		return err;
92 
93 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
94 	WRITE_ONCE(msk->first, ssock->sk);
95 	subflow = mptcp_subflow_ctx(ssock->sk);
96 	list_add(&subflow->node, &msk->conn_list);
97 	sock_hold(ssock->sk);
98 	subflow->request_mptcp = 1;
99 	subflow->subflow_id = msk->subflow_id++;
100 
101 	/* This is the first subflow, always with id 0 */
102 	subflow->local_id_valid = 1;
103 	mptcp_sock_graft(msk->first, sk->sk_socket);
104 	iput(SOCK_INODE(ssock));
105 
106 	return 0;
107 }
108 
109 /* If the MPC handshake is not started, returns the first subflow,
110  * eventually allocating it.
111  */
112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
113 {
114 	struct sock *sk = (struct sock *)msk;
115 	int ret;
116 
117 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
118 		return ERR_PTR(-EINVAL);
119 
120 	if (!msk->first) {
121 		ret = __mptcp_socket_create(msk);
122 		if (ret)
123 			return ERR_PTR(ret);
124 	}
125 
126 	return msk->first;
127 }
128 
129 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
130 {
131 	sk_drops_add(sk, skb);
132 	__kfree_skb(skb);
133 }
134 
135 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
136 {
137 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
138 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
139 }
140 
141 static void mptcp_rmem_charge(struct sock *sk, int size)
142 {
143 	mptcp_rmem_fwd_alloc_add(sk, -size);
144 }
145 
146 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
147 			       struct sk_buff *from)
148 {
149 	bool fragstolen;
150 	int delta;
151 
152 	if (MPTCP_SKB_CB(from)->offset ||
153 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
154 		return false;
155 
156 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
157 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
158 		 to->len, MPTCP_SKB_CB(from)->end_seq);
159 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
160 
161 	/* note the fwd memory can reach a negative value after accounting
162 	 * for the delta, but the later skb free will restore a non
163 	 * negative one
164 	 */
165 	atomic_add(delta, &sk->sk_rmem_alloc);
166 	mptcp_rmem_charge(sk, delta);
167 	kfree_skb_partial(from, fragstolen);
168 
169 	return true;
170 }
171 
172 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
173 				   struct sk_buff *from)
174 {
175 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
176 		return false;
177 
178 	return mptcp_try_coalesce((struct sock *)msk, to, from);
179 }
180 
181 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
182 {
183 	amount >>= PAGE_SHIFT;
184 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
185 	__sk_mem_reduce_allocated(sk, amount);
186 }
187 
188 static void mptcp_rmem_uncharge(struct sock *sk, int size)
189 {
190 	struct mptcp_sock *msk = mptcp_sk(sk);
191 	int reclaimable;
192 
193 	mptcp_rmem_fwd_alloc_add(sk, size);
194 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
195 
196 	/* see sk_mem_uncharge() for the rationale behind the following schema */
197 	if (unlikely(reclaimable >= PAGE_SIZE))
198 		__mptcp_rmem_reclaim(sk, reclaimable);
199 }
200 
201 static void mptcp_rfree(struct sk_buff *skb)
202 {
203 	unsigned int len = skb->truesize;
204 	struct sock *sk = skb->sk;
205 
206 	atomic_sub(len, &sk->sk_rmem_alloc);
207 	mptcp_rmem_uncharge(sk, len);
208 }
209 
210 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
211 {
212 	skb_orphan(skb);
213 	skb->sk = sk;
214 	skb->destructor = mptcp_rfree;
215 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
216 	mptcp_rmem_charge(sk, skb->truesize);
217 }
218 
219 /* "inspired" by tcp_data_queue_ofo(), main differences:
220  * - use mptcp seqs
221  * - don't cope with sacks
222  */
223 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
224 {
225 	struct sock *sk = (struct sock *)msk;
226 	struct rb_node **p, *parent;
227 	u64 seq, end_seq, max_seq;
228 	struct sk_buff *skb1;
229 
230 	seq = MPTCP_SKB_CB(skb)->map_seq;
231 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
232 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
233 
234 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
235 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
236 	if (after64(end_seq, max_seq)) {
237 		/* out of window */
238 		mptcp_drop(sk, skb);
239 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
240 			 (unsigned long long)end_seq - (unsigned long)max_seq,
241 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
242 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
243 		return;
244 	}
245 
246 	p = &msk->out_of_order_queue.rb_node;
247 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
248 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
249 		rb_link_node(&skb->rbnode, NULL, p);
250 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
251 		msk->ooo_last_skb = skb;
252 		goto end;
253 	}
254 
255 	/* with 2 subflows, adding at end of ooo queue is quite likely
256 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
257 	 */
258 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
259 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
260 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
261 		return;
262 	}
263 
264 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
265 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
266 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
267 		parent = &msk->ooo_last_skb->rbnode;
268 		p = &parent->rb_right;
269 		goto insert;
270 	}
271 
272 	/* Find place to insert this segment. Handle overlaps on the way. */
273 	parent = NULL;
274 	while (*p) {
275 		parent = *p;
276 		skb1 = rb_to_skb(parent);
277 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
278 			p = &parent->rb_left;
279 			continue;
280 		}
281 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
282 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
283 				/* All the bits are present. Drop. */
284 				mptcp_drop(sk, skb);
285 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
286 				return;
287 			}
288 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
289 				/* partial overlap:
290 				 *     |     skb      |
291 				 *  |     skb1    |
292 				 * continue traversing
293 				 */
294 			} else {
295 				/* skb's seq == skb1's seq and skb covers skb1.
296 				 * Replace skb1 with skb.
297 				 */
298 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
299 						&msk->out_of_order_queue);
300 				mptcp_drop(sk, skb1);
301 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
302 				goto merge_right;
303 			}
304 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
305 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
306 			return;
307 		}
308 		p = &parent->rb_right;
309 	}
310 
311 insert:
312 	/* Insert segment into RB tree. */
313 	rb_link_node(&skb->rbnode, parent, p);
314 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
315 
316 merge_right:
317 	/* Remove other segments covered by skb. */
318 	while ((skb1 = skb_rb_next(skb)) != NULL) {
319 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
320 			break;
321 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
322 		mptcp_drop(sk, skb1);
323 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
324 	}
325 	/* If there is no skb after us, we are the last_skb ! */
326 	if (!skb1)
327 		msk->ooo_last_skb = skb;
328 
329 end:
330 	skb_condense(skb);
331 	mptcp_set_owner_r(skb, sk);
332 }
333 
334 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
335 {
336 	struct mptcp_sock *msk = mptcp_sk(sk);
337 	int amt, amount;
338 
339 	if (size <= msk->rmem_fwd_alloc)
340 		return true;
341 
342 	size -= msk->rmem_fwd_alloc;
343 	amt = sk_mem_pages(size);
344 	amount = amt << PAGE_SHIFT;
345 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
346 		return false;
347 
348 	mptcp_rmem_fwd_alloc_add(sk, amount);
349 	return true;
350 }
351 
352 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
353 			     struct sk_buff *skb, unsigned int offset,
354 			     size_t copy_len)
355 {
356 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
357 	struct sock *sk = (struct sock *)msk;
358 	struct sk_buff *tail;
359 	bool has_rxtstamp;
360 
361 	__skb_unlink(skb, &ssk->sk_receive_queue);
362 
363 	skb_ext_reset(skb);
364 	skb_orphan(skb);
365 
366 	/* try to fetch required memory from subflow */
367 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
368 		goto drop;
369 
370 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
371 
372 	/* the skb map_seq accounts for the skb offset:
373 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
374 	 * value
375 	 */
376 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
377 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
378 	MPTCP_SKB_CB(skb)->offset = offset;
379 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
380 
381 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
382 		/* in sequence */
383 		msk->bytes_received += copy_len;
384 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
385 		tail = skb_peek_tail(&sk->sk_receive_queue);
386 		if (tail && mptcp_try_coalesce(sk, tail, skb))
387 			return true;
388 
389 		mptcp_set_owner_r(skb, sk);
390 		__skb_queue_tail(&sk->sk_receive_queue, skb);
391 		return true;
392 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
393 		mptcp_data_queue_ofo(msk, skb);
394 		return false;
395 	}
396 
397 	/* old data, keep it simple and drop the whole pkt, sender
398 	 * will retransmit as needed, if needed.
399 	 */
400 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
401 drop:
402 	mptcp_drop(sk, skb);
403 	return false;
404 }
405 
406 static void mptcp_stop_rtx_timer(struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 
410 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
411 	mptcp_sk(sk)->timer_ival = 0;
412 }
413 
414 static void mptcp_close_wake_up(struct sock *sk)
415 {
416 	if (sock_flag(sk, SOCK_DEAD))
417 		return;
418 
419 	sk->sk_state_change(sk);
420 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
421 	    sk->sk_state == TCP_CLOSE)
422 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
423 	else
424 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
425 }
426 
427 static bool mptcp_pending_data_fin_ack(struct sock *sk)
428 {
429 	struct mptcp_sock *msk = mptcp_sk(sk);
430 
431 	return ((1 << sk->sk_state) &
432 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
433 	       msk->write_seq == READ_ONCE(msk->snd_una);
434 }
435 
436 static void mptcp_check_data_fin_ack(struct sock *sk)
437 {
438 	struct mptcp_sock *msk = mptcp_sk(sk);
439 
440 	/* Look for an acknowledged DATA_FIN */
441 	if (mptcp_pending_data_fin_ack(sk)) {
442 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
443 
444 		switch (sk->sk_state) {
445 		case TCP_FIN_WAIT1:
446 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
447 			break;
448 		case TCP_CLOSING:
449 		case TCP_LAST_ACK:
450 			inet_sk_state_store(sk, TCP_CLOSE);
451 			break;
452 		}
453 
454 		mptcp_close_wake_up(sk);
455 	}
456 }
457 
458 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
459 {
460 	struct mptcp_sock *msk = mptcp_sk(sk);
461 
462 	if (READ_ONCE(msk->rcv_data_fin) &&
463 	    ((1 << sk->sk_state) &
464 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
465 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
466 
467 		if (msk->ack_seq == rcv_data_fin_seq) {
468 			if (seq)
469 				*seq = rcv_data_fin_seq;
470 
471 			return true;
472 		}
473 	}
474 
475 	return false;
476 }
477 
478 static void mptcp_set_datafin_timeout(struct sock *sk)
479 {
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 	u32 retransmits;
482 
483 	retransmits = min_t(u32, icsk->icsk_retransmits,
484 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
485 
486 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
487 }
488 
489 static void __mptcp_set_timeout(struct sock *sk, long tout)
490 {
491 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
492 }
493 
494 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
495 {
496 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
497 
498 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
499 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
500 }
501 
502 static void mptcp_set_timeout(struct sock *sk)
503 {
504 	struct mptcp_subflow_context *subflow;
505 	long tout = 0;
506 
507 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
508 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
509 	__mptcp_set_timeout(sk, tout);
510 }
511 
512 static inline bool tcp_can_send_ack(const struct sock *ssk)
513 {
514 	return !((1 << inet_sk_state_load(ssk)) &
515 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
516 }
517 
518 void __mptcp_subflow_send_ack(struct sock *ssk)
519 {
520 	if (tcp_can_send_ack(ssk))
521 		tcp_send_ack(ssk);
522 }
523 
524 static void mptcp_subflow_send_ack(struct sock *ssk)
525 {
526 	bool slow;
527 
528 	slow = lock_sock_fast(ssk);
529 	__mptcp_subflow_send_ack(ssk);
530 	unlock_sock_fast(ssk, slow);
531 }
532 
533 static void mptcp_send_ack(struct mptcp_sock *msk)
534 {
535 	struct mptcp_subflow_context *subflow;
536 
537 	mptcp_for_each_subflow(msk, subflow)
538 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
539 }
540 
541 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
542 {
543 	bool slow;
544 
545 	slow = lock_sock_fast(ssk);
546 	if (tcp_can_send_ack(ssk))
547 		tcp_cleanup_rbuf(ssk, 1);
548 	unlock_sock_fast(ssk, slow);
549 }
550 
551 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
552 {
553 	const struct inet_connection_sock *icsk = inet_csk(ssk);
554 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
555 	const struct tcp_sock *tp = tcp_sk(ssk);
556 
557 	return (ack_pending & ICSK_ACK_SCHED) &&
558 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
559 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
560 		 (rx_empty && ack_pending &
561 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
562 }
563 
564 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
565 {
566 	int old_space = READ_ONCE(msk->old_wspace);
567 	struct mptcp_subflow_context *subflow;
568 	struct sock *sk = (struct sock *)msk;
569 	int space =  __mptcp_space(sk);
570 	bool cleanup, rx_empty;
571 
572 	cleanup = (space > 0) && (space >= (old_space << 1));
573 	rx_empty = !__mptcp_rmem(sk);
574 
575 	mptcp_for_each_subflow(msk, subflow) {
576 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
577 
578 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
579 			mptcp_subflow_cleanup_rbuf(ssk);
580 	}
581 }
582 
583 static bool mptcp_check_data_fin(struct sock *sk)
584 {
585 	struct mptcp_sock *msk = mptcp_sk(sk);
586 	u64 rcv_data_fin_seq;
587 	bool ret = false;
588 
589 	/* Need to ack a DATA_FIN received from a peer while this side
590 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
591 	 * msk->rcv_data_fin was set when parsing the incoming options
592 	 * at the subflow level and the msk lock was not held, so this
593 	 * is the first opportunity to act on the DATA_FIN and change
594 	 * the msk state.
595 	 *
596 	 * If we are caught up to the sequence number of the incoming
597 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
598 	 * not caught up, do nothing and let the recv code send DATA_ACK
599 	 * when catching up.
600 	 */
601 
602 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
603 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
604 		WRITE_ONCE(msk->rcv_data_fin, 0);
605 
606 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
607 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
608 
609 		switch (sk->sk_state) {
610 		case TCP_ESTABLISHED:
611 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
612 			break;
613 		case TCP_FIN_WAIT1:
614 			inet_sk_state_store(sk, TCP_CLOSING);
615 			break;
616 		case TCP_FIN_WAIT2:
617 			inet_sk_state_store(sk, TCP_CLOSE);
618 			break;
619 		default:
620 			/* Other states not expected */
621 			WARN_ON_ONCE(1);
622 			break;
623 		}
624 
625 		ret = true;
626 		if (!__mptcp_check_fallback(msk))
627 			mptcp_send_ack(msk);
628 		mptcp_close_wake_up(sk);
629 	}
630 	return ret;
631 }
632 
633 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
634 					   struct sock *ssk,
635 					   unsigned int *bytes)
636 {
637 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
638 	struct sock *sk = (struct sock *)msk;
639 	unsigned int moved = 0;
640 	bool more_data_avail;
641 	struct tcp_sock *tp;
642 	bool done = false;
643 	int sk_rbuf;
644 
645 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
646 
647 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
648 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
649 
650 		if (unlikely(ssk_rbuf > sk_rbuf)) {
651 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
652 			sk_rbuf = ssk_rbuf;
653 		}
654 	}
655 
656 	pr_debug("msk=%p ssk=%p", msk, ssk);
657 	tp = tcp_sk(ssk);
658 	do {
659 		u32 map_remaining, offset;
660 		u32 seq = tp->copied_seq;
661 		struct sk_buff *skb;
662 		bool fin;
663 
664 		/* try to move as much data as available */
665 		map_remaining = subflow->map_data_len -
666 				mptcp_subflow_get_map_offset(subflow);
667 
668 		skb = skb_peek(&ssk->sk_receive_queue);
669 		if (!skb) {
670 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
671 			 * a different CPU can have already processed the pending
672 			 * data, stop here or we can enter an infinite loop
673 			 */
674 			if (!moved)
675 				done = true;
676 			break;
677 		}
678 
679 		if (__mptcp_check_fallback(msk)) {
680 			/* Under fallback skbs have no MPTCP extension and TCP could
681 			 * collapse them between the dummy map creation and the
682 			 * current dequeue. Be sure to adjust the map size.
683 			 */
684 			map_remaining = skb->len;
685 			subflow->map_data_len = skb->len;
686 		}
687 
688 		offset = seq - TCP_SKB_CB(skb)->seq;
689 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
690 		if (fin) {
691 			done = true;
692 			seq++;
693 		}
694 
695 		if (offset < skb->len) {
696 			size_t len = skb->len - offset;
697 
698 			if (tp->urg_data)
699 				done = true;
700 
701 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
702 				moved += len;
703 			seq += len;
704 
705 			if (WARN_ON_ONCE(map_remaining < len))
706 				break;
707 		} else {
708 			WARN_ON_ONCE(!fin);
709 			sk_eat_skb(ssk, skb);
710 			done = true;
711 		}
712 
713 		WRITE_ONCE(tp->copied_seq, seq);
714 		more_data_avail = mptcp_subflow_data_available(ssk);
715 
716 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
717 			done = true;
718 			break;
719 		}
720 	} while (more_data_avail);
721 
722 	*bytes += moved;
723 	return done;
724 }
725 
726 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
727 {
728 	struct sock *sk = (struct sock *)msk;
729 	struct sk_buff *skb, *tail;
730 	bool moved = false;
731 	struct rb_node *p;
732 	u64 end_seq;
733 
734 	p = rb_first(&msk->out_of_order_queue);
735 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
736 	while (p) {
737 		skb = rb_to_skb(p);
738 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
739 			break;
740 
741 		p = rb_next(p);
742 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
743 
744 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
745 				      msk->ack_seq))) {
746 			mptcp_drop(sk, skb);
747 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
748 			continue;
749 		}
750 
751 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
752 		tail = skb_peek_tail(&sk->sk_receive_queue);
753 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
754 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
755 
756 			/* skip overlapping data, if any */
757 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
758 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
759 				 delta);
760 			MPTCP_SKB_CB(skb)->offset += delta;
761 			MPTCP_SKB_CB(skb)->map_seq += delta;
762 			__skb_queue_tail(&sk->sk_receive_queue, skb);
763 		}
764 		msk->bytes_received += end_seq - msk->ack_seq;
765 		msk->ack_seq = end_seq;
766 		moved = true;
767 	}
768 	return moved;
769 }
770 
771 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
772 {
773 	int err = sock_error(ssk);
774 	int ssk_state;
775 
776 	if (!err)
777 		return false;
778 
779 	/* only propagate errors on fallen-back sockets or
780 	 * on MPC connect
781 	 */
782 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
783 		return false;
784 
785 	/* We need to propagate only transition to CLOSE state.
786 	 * Orphaned socket will see such state change via
787 	 * subflow_sched_work_if_closed() and that path will properly
788 	 * destroy the msk as needed.
789 	 */
790 	ssk_state = inet_sk_state_load(ssk);
791 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
792 		inet_sk_state_store(sk, ssk_state);
793 	WRITE_ONCE(sk->sk_err, -err);
794 
795 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
796 	smp_wmb();
797 	sk_error_report(sk);
798 	return true;
799 }
800 
801 void __mptcp_error_report(struct sock *sk)
802 {
803 	struct mptcp_subflow_context *subflow;
804 	struct mptcp_sock *msk = mptcp_sk(sk);
805 
806 	mptcp_for_each_subflow(msk, subflow)
807 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
808 			break;
809 }
810 
811 /* In most cases we will be able to lock the mptcp socket.  If its already
812  * owned, we need to defer to the work queue to avoid ABBA deadlock.
813  */
814 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
815 {
816 	struct sock *sk = (struct sock *)msk;
817 	unsigned int moved = 0;
818 
819 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
820 	__mptcp_ofo_queue(msk);
821 	if (unlikely(ssk->sk_err)) {
822 		if (!sock_owned_by_user(sk))
823 			__mptcp_error_report(sk);
824 		else
825 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
826 	}
827 
828 	/* If the moves have caught up with the DATA_FIN sequence number
829 	 * it's time to ack the DATA_FIN and change socket state, but
830 	 * this is not a good place to change state. Let the workqueue
831 	 * do it.
832 	 */
833 	if (mptcp_pending_data_fin(sk, NULL))
834 		mptcp_schedule_work(sk);
835 	return moved > 0;
836 }
837 
838 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
839 {
840 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
841 	struct mptcp_sock *msk = mptcp_sk(sk);
842 	int sk_rbuf, ssk_rbuf;
843 
844 	/* The peer can send data while we are shutting down this
845 	 * subflow at msk destruction time, but we must avoid enqueuing
846 	 * more data to the msk receive queue
847 	 */
848 	if (unlikely(subflow->disposable))
849 		return;
850 
851 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
852 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
853 	if (unlikely(ssk_rbuf > sk_rbuf))
854 		sk_rbuf = ssk_rbuf;
855 
856 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
857 	if (__mptcp_rmem(sk) > sk_rbuf) {
858 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
859 		return;
860 	}
861 
862 	/* Wake-up the reader only for in-sequence data */
863 	mptcp_data_lock(sk);
864 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
865 		sk->sk_data_ready(sk);
866 	mptcp_data_unlock(sk);
867 }
868 
869 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
870 {
871 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
872 	WRITE_ONCE(msk->allow_infinite_fallback, false);
873 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
874 }
875 
876 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
877 {
878 	struct sock *sk = (struct sock *)msk;
879 
880 	if (sk->sk_state != TCP_ESTABLISHED)
881 		return false;
882 
883 	/* attach to msk socket only after we are sure we will deal with it
884 	 * at close time
885 	 */
886 	if (sk->sk_socket && !ssk->sk_socket)
887 		mptcp_sock_graft(ssk, sk->sk_socket);
888 
889 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
890 	mptcp_sockopt_sync_locked(msk, ssk);
891 	mptcp_subflow_joined(msk, ssk);
892 	mptcp_stop_tout_timer(sk);
893 	__mptcp_propagate_sndbuf(sk, ssk);
894 	return true;
895 }
896 
897 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
898 {
899 	struct mptcp_subflow_context *tmp, *subflow;
900 	struct mptcp_sock *msk = mptcp_sk(sk);
901 
902 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
903 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
904 		bool slow = lock_sock_fast(ssk);
905 
906 		list_move_tail(&subflow->node, &msk->conn_list);
907 		if (!__mptcp_finish_join(msk, ssk))
908 			mptcp_subflow_reset(ssk);
909 		unlock_sock_fast(ssk, slow);
910 	}
911 }
912 
913 static bool mptcp_rtx_timer_pending(struct sock *sk)
914 {
915 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
916 }
917 
918 static void mptcp_reset_rtx_timer(struct sock *sk)
919 {
920 	struct inet_connection_sock *icsk = inet_csk(sk);
921 	unsigned long tout;
922 
923 	/* prevent rescheduling on close */
924 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
925 		return;
926 
927 	tout = mptcp_sk(sk)->timer_ival;
928 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
929 }
930 
931 bool mptcp_schedule_work(struct sock *sk)
932 {
933 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
934 	    schedule_work(&mptcp_sk(sk)->work)) {
935 		/* each subflow already holds a reference to the sk, and the
936 		 * workqueue is invoked by a subflow, so sk can't go away here.
937 		 */
938 		sock_hold(sk);
939 		return true;
940 	}
941 	return false;
942 }
943 
944 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
945 {
946 	struct mptcp_subflow_context *subflow;
947 
948 	msk_owned_by_me(msk);
949 
950 	mptcp_for_each_subflow(msk, subflow) {
951 		if (READ_ONCE(subflow->data_avail))
952 			return mptcp_subflow_tcp_sock(subflow);
953 	}
954 
955 	return NULL;
956 }
957 
958 static bool mptcp_skb_can_collapse_to(u64 write_seq,
959 				      const struct sk_buff *skb,
960 				      const struct mptcp_ext *mpext)
961 {
962 	if (!tcp_skb_can_collapse_to(skb))
963 		return false;
964 
965 	/* can collapse only if MPTCP level sequence is in order and this
966 	 * mapping has not been xmitted yet
967 	 */
968 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
969 	       !mpext->frozen;
970 }
971 
972 /* we can append data to the given data frag if:
973  * - there is space available in the backing page_frag
974  * - the data frag tail matches the current page_frag free offset
975  * - the data frag end sequence number matches the current write seq
976  */
977 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
978 				       const struct page_frag *pfrag,
979 				       const struct mptcp_data_frag *df)
980 {
981 	return df && pfrag->page == df->page &&
982 		pfrag->size - pfrag->offset > 0 &&
983 		pfrag->offset == (df->offset + df->data_len) &&
984 		df->data_seq + df->data_len == msk->write_seq;
985 }
986 
987 static void dfrag_uncharge(struct sock *sk, int len)
988 {
989 	sk_mem_uncharge(sk, len);
990 	sk_wmem_queued_add(sk, -len);
991 }
992 
993 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
994 {
995 	int len = dfrag->data_len + dfrag->overhead;
996 
997 	list_del(&dfrag->list);
998 	dfrag_uncharge(sk, len);
999 	put_page(dfrag->page);
1000 }
1001 
1002 static void __mptcp_clean_una(struct sock *sk)
1003 {
1004 	struct mptcp_sock *msk = mptcp_sk(sk);
1005 	struct mptcp_data_frag *dtmp, *dfrag;
1006 	u64 snd_una;
1007 
1008 	snd_una = msk->snd_una;
1009 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1010 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1011 			break;
1012 
1013 		if (unlikely(dfrag == msk->first_pending)) {
1014 			/* in recovery mode can see ack after the current snd head */
1015 			if (WARN_ON_ONCE(!msk->recovery))
1016 				break;
1017 
1018 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1019 		}
1020 
1021 		dfrag_clear(sk, dfrag);
1022 	}
1023 
1024 	dfrag = mptcp_rtx_head(sk);
1025 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1026 		u64 delta = snd_una - dfrag->data_seq;
1027 
1028 		/* prevent wrap around in recovery mode */
1029 		if (unlikely(delta > dfrag->already_sent)) {
1030 			if (WARN_ON_ONCE(!msk->recovery))
1031 				goto out;
1032 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1033 				goto out;
1034 			dfrag->already_sent += delta - dfrag->already_sent;
1035 		}
1036 
1037 		dfrag->data_seq += delta;
1038 		dfrag->offset += delta;
1039 		dfrag->data_len -= delta;
1040 		dfrag->already_sent -= delta;
1041 
1042 		dfrag_uncharge(sk, delta);
1043 	}
1044 
1045 	/* all retransmitted data acked, recovery completed */
1046 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1047 		msk->recovery = false;
1048 
1049 out:
1050 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1051 	    snd_una == READ_ONCE(msk->write_seq)) {
1052 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1053 			mptcp_stop_rtx_timer(sk);
1054 	} else {
1055 		mptcp_reset_rtx_timer(sk);
1056 	}
1057 }
1058 
1059 static void __mptcp_clean_una_wakeup(struct sock *sk)
1060 {
1061 	lockdep_assert_held_once(&sk->sk_lock.slock);
1062 
1063 	__mptcp_clean_una(sk);
1064 	mptcp_write_space(sk);
1065 }
1066 
1067 static void mptcp_clean_una_wakeup(struct sock *sk)
1068 {
1069 	mptcp_data_lock(sk);
1070 	__mptcp_clean_una_wakeup(sk);
1071 	mptcp_data_unlock(sk);
1072 }
1073 
1074 static void mptcp_enter_memory_pressure(struct sock *sk)
1075 {
1076 	struct mptcp_subflow_context *subflow;
1077 	struct mptcp_sock *msk = mptcp_sk(sk);
1078 	bool first = true;
1079 
1080 	mptcp_for_each_subflow(msk, subflow) {
1081 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1082 
1083 		if (first)
1084 			tcp_enter_memory_pressure(ssk);
1085 		sk_stream_moderate_sndbuf(ssk);
1086 
1087 		first = false;
1088 	}
1089 	__mptcp_sync_sndbuf(sk);
1090 }
1091 
1092 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1093  * data
1094  */
1095 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1096 {
1097 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1098 					pfrag, sk->sk_allocation)))
1099 		return true;
1100 
1101 	mptcp_enter_memory_pressure(sk);
1102 	return false;
1103 }
1104 
1105 static struct mptcp_data_frag *
1106 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1107 		      int orig_offset)
1108 {
1109 	int offset = ALIGN(orig_offset, sizeof(long));
1110 	struct mptcp_data_frag *dfrag;
1111 
1112 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1113 	dfrag->data_len = 0;
1114 	dfrag->data_seq = msk->write_seq;
1115 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1116 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1117 	dfrag->already_sent = 0;
1118 	dfrag->page = pfrag->page;
1119 
1120 	return dfrag;
1121 }
1122 
1123 struct mptcp_sendmsg_info {
1124 	int mss_now;
1125 	int size_goal;
1126 	u16 limit;
1127 	u16 sent;
1128 	unsigned int flags;
1129 	bool data_lock_held;
1130 };
1131 
1132 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1133 				    u64 data_seq, int avail_size)
1134 {
1135 	u64 window_end = mptcp_wnd_end(msk);
1136 	u64 mptcp_snd_wnd;
1137 
1138 	if (__mptcp_check_fallback(msk))
1139 		return avail_size;
1140 
1141 	mptcp_snd_wnd = window_end - data_seq;
1142 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1143 
1144 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1145 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1146 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1147 	}
1148 
1149 	return avail_size;
1150 }
1151 
1152 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1153 {
1154 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1155 
1156 	if (!mpext)
1157 		return false;
1158 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1159 	return true;
1160 }
1161 
1162 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1163 {
1164 	struct sk_buff *skb;
1165 
1166 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1167 	if (likely(skb)) {
1168 		if (likely(__mptcp_add_ext(skb, gfp))) {
1169 			skb_reserve(skb, MAX_TCP_HEADER);
1170 			skb->ip_summed = CHECKSUM_PARTIAL;
1171 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1172 			return skb;
1173 		}
1174 		__kfree_skb(skb);
1175 	} else {
1176 		mptcp_enter_memory_pressure(sk);
1177 	}
1178 	return NULL;
1179 }
1180 
1181 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1182 {
1183 	struct sk_buff *skb;
1184 
1185 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1186 	if (!skb)
1187 		return NULL;
1188 
1189 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1190 		tcp_skb_entail(ssk, skb);
1191 		return skb;
1192 	}
1193 	tcp_skb_tsorted_anchor_cleanup(skb);
1194 	kfree_skb(skb);
1195 	return NULL;
1196 }
1197 
1198 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1199 {
1200 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1201 
1202 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1203 }
1204 
1205 /* note: this always recompute the csum on the whole skb, even
1206  * if we just appended a single frag. More status info needed
1207  */
1208 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1209 {
1210 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1211 	__wsum csum = ~csum_unfold(mpext->csum);
1212 	int offset = skb->len - added;
1213 
1214 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1215 }
1216 
1217 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1218 				      struct sock *ssk,
1219 				      struct mptcp_ext *mpext)
1220 {
1221 	if (!mpext)
1222 		return;
1223 
1224 	mpext->infinite_map = 1;
1225 	mpext->data_len = 0;
1226 
1227 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1228 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1229 	pr_fallback(msk);
1230 	mptcp_do_fallback(ssk);
1231 }
1232 
1233 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1234 			      struct mptcp_data_frag *dfrag,
1235 			      struct mptcp_sendmsg_info *info)
1236 {
1237 	u64 data_seq = dfrag->data_seq + info->sent;
1238 	int offset = dfrag->offset + info->sent;
1239 	struct mptcp_sock *msk = mptcp_sk(sk);
1240 	bool zero_window_probe = false;
1241 	struct mptcp_ext *mpext = NULL;
1242 	bool can_coalesce = false;
1243 	bool reuse_skb = true;
1244 	struct sk_buff *skb;
1245 	size_t copy;
1246 	int i;
1247 
1248 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1249 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1250 
1251 	if (WARN_ON_ONCE(info->sent > info->limit ||
1252 			 info->limit > dfrag->data_len))
1253 		return 0;
1254 
1255 	if (unlikely(!__tcp_can_send(ssk)))
1256 		return -EAGAIN;
1257 
1258 	/* compute send limit */
1259 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1260 	copy = info->size_goal;
1261 
1262 	skb = tcp_write_queue_tail(ssk);
1263 	if (skb && copy > skb->len) {
1264 		/* Limit the write to the size available in the
1265 		 * current skb, if any, so that we create at most a new skb.
1266 		 * Explicitly tells TCP internals to avoid collapsing on later
1267 		 * queue management operation, to avoid breaking the ext <->
1268 		 * SSN association set here
1269 		 */
1270 		mpext = mptcp_get_ext(skb);
1271 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1272 			TCP_SKB_CB(skb)->eor = 1;
1273 			goto alloc_skb;
1274 		}
1275 
1276 		i = skb_shinfo(skb)->nr_frags;
1277 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1278 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1279 			tcp_mark_push(tcp_sk(ssk), skb);
1280 			goto alloc_skb;
1281 		}
1282 
1283 		copy -= skb->len;
1284 	} else {
1285 alloc_skb:
1286 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1287 		if (!skb)
1288 			return -ENOMEM;
1289 
1290 		i = skb_shinfo(skb)->nr_frags;
1291 		reuse_skb = false;
1292 		mpext = mptcp_get_ext(skb);
1293 	}
1294 
1295 	/* Zero window and all data acked? Probe. */
1296 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1297 	if (copy == 0) {
1298 		u64 snd_una = READ_ONCE(msk->snd_una);
1299 
1300 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1301 			tcp_remove_empty_skb(ssk);
1302 			return 0;
1303 		}
1304 
1305 		zero_window_probe = true;
1306 		data_seq = snd_una - 1;
1307 		copy = 1;
1308 	}
1309 
1310 	copy = min_t(size_t, copy, info->limit - info->sent);
1311 	if (!sk_wmem_schedule(ssk, copy)) {
1312 		tcp_remove_empty_skb(ssk);
1313 		return -ENOMEM;
1314 	}
1315 
1316 	if (can_coalesce) {
1317 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1318 	} else {
1319 		get_page(dfrag->page);
1320 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1321 	}
1322 
1323 	skb->len += copy;
1324 	skb->data_len += copy;
1325 	skb->truesize += copy;
1326 	sk_wmem_queued_add(ssk, copy);
1327 	sk_mem_charge(ssk, copy);
1328 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1329 	TCP_SKB_CB(skb)->end_seq += copy;
1330 	tcp_skb_pcount_set(skb, 0);
1331 
1332 	/* on skb reuse we just need to update the DSS len */
1333 	if (reuse_skb) {
1334 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1335 		mpext->data_len += copy;
1336 		goto out;
1337 	}
1338 
1339 	memset(mpext, 0, sizeof(*mpext));
1340 	mpext->data_seq = data_seq;
1341 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1342 	mpext->data_len = copy;
1343 	mpext->use_map = 1;
1344 	mpext->dsn64 = 1;
1345 
1346 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1347 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1348 		 mpext->dsn64);
1349 
1350 	if (zero_window_probe) {
1351 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1352 		mpext->frozen = 1;
1353 		if (READ_ONCE(msk->csum_enabled))
1354 			mptcp_update_data_checksum(skb, copy);
1355 		tcp_push_pending_frames(ssk);
1356 		return 0;
1357 	}
1358 out:
1359 	if (READ_ONCE(msk->csum_enabled))
1360 		mptcp_update_data_checksum(skb, copy);
1361 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1362 		mptcp_update_infinite_map(msk, ssk, mpext);
1363 	trace_mptcp_sendmsg_frag(mpext);
1364 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1365 	return copy;
1366 }
1367 
1368 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1369 					 sizeof(struct tcphdr) - \
1370 					 MAX_TCP_OPTION_SPACE - \
1371 					 sizeof(struct ipv6hdr) - \
1372 					 sizeof(struct frag_hdr))
1373 
1374 struct subflow_send_info {
1375 	struct sock *ssk;
1376 	u64 linger_time;
1377 };
1378 
1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1380 {
1381 	if (!subflow->stale)
1382 		return;
1383 
1384 	subflow->stale = 0;
1385 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1386 }
1387 
1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1389 {
1390 	if (unlikely(subflow->stale)) {
1391 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1392 
1393 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1394 			return false;
1395 
1396 		mptcp_subflow_set_active(subflow);
1397 	}
1398 	return __mptcp_subflow_active(subflow);
1399 }
1400 
1401 #define SSK_MODE_ACTIVE	0
1402 #define SSK_MODE_BACKUP	1
1403 #define SSK_MODE_MAX	2
1404 
1405 /* implement the mptcp packet scheduler;
1406  * returns the subflow that will transmit the next DSS
1407  * additionally updates the rtx timeout
1408  */
1409 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1410 {
1411 	struct subflow_send_info send_info[SSK_MODE_MAX];
1412 	struct mptcp_subflow_context *subflow;
1413 	struct sock *sk = (struct sock *)msk;
1414 	u32 pace, burst, wmem;
1415 	int i, nr_active = 0;
1416 	struct sock *ssk;
1417 	u64 linger_time;
1418 	long tout = 0;
1419 
1420 	/* pick the subflow with the lower wmem/wspace ratio */
1421 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1422 		send_info[i].ssk = NULL;
1423 		send_info[i].linger_time = -1;
1424 	}
1425 
1426 	mptcp_for_each_subflow(msk, subflow) {
1427 		trace_mptcp_subflow_get_send(subflow);
1428 		ssk =  mptcp_subflow_tcp_sock(subflow);
1429 		if (!mptcp_subflow_active(subflow))
1430 			continue;
1431 
1432 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1433 		nr_active += !subflow->backup;
1434 		pace = subflow->avg_pacing_rate;
1435 		if (unlikely(!pace)) {
1436 			/* init pacing rate from socket */
1437 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1438 			pace = subflow->avg_pacing_rate;
1439 			if (!pace)
1440 				continue;
1441 		}
1442 
1443 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1444 		if (linger_time < send_info[subflow->backup].linger_time) {
1445 			send_info[subflow->backup].ssk = ssk;
1446 			send_info[subflow->backup].linger_time = linger_time;
1447 		}
1448 	}
1449 	__mptcp_set_timeout(sk, tout);
1450 
1451 	/* pick the best backup if no other subflow is active */
1452 	if (!nr_active)
1453 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1454 
1455 	/* According to the blest algorithm, to avoid HoL blocking for the
1456 	 * faster flow, we need to:
1457 	 * - estimate the faster flow linger time
1458 	 * - use the above to estimate the amount of byte transferred
1459 	 *   by the faster flow
1460 	 * - check that the amount of queued data is greter than the above,
1461 	 *   otherwise do not use the picked, slower, subflow
1462 	 * We select the subflow with the shorter estimated time to flush
1463 	 * the queued mem, which basically ensure the above. We just need
1464 	 * to check that subflow has a non empty cwin.
1465 	 */
1466 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1467 	if (!ssk || !sk_stream_memory_free(ssk))
1468 		return NULL;
1469 
1470 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1471 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1472 	if (!burst)
1473 		return ssk;
1474 
1475 	subflow = mptcp_subflow_ctx(ssk);
1476 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1477 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1478 					   burst + wmem);
1479 	msk->snd_burst = burst;
1480 	return ssk;
1481 }
1482 
1483 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1484 {
1485 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1486 	release_sock(ssk);
1487 }
1488 
1489 static void mptcp_update_post_push(struct mptcp_sock *msk,
1490 				   struct mptcp_data_frag *dfrag,
1491 				   u32 sent)
1492 {
1493 	u64 snd_nxt_new = dfrag->data_seq;
1494 
1495 	dfrag->already_sent += sent;
1496 
1497 	msk->snd_burst -= sent;
1498 
1499 	snd_nxt_new += dfrag->already_sent;
1500 
1501 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1502 	 * is recovering after a failover. In that event, this re-sends
1503 	 * old segments.
1504 	 *
1505 	 * Thus compute snd_nxt_new candidate based on
1506 	 * the dfrag->data_seq that was sent and the data
1507 	 * that has been handed to the subflow for transmission
1508 	 * and skip update in case it was old dfrag.
1509 	 */
1510 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1511 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1512 		msk->snd_nxt = snd_nxt_new;
1513 	}
1514 }
1515 
1516 void mptcp_check_and_set_pending(struct sock *sk)
1517 {
1518 	if (mptcp_send_head(sk))
1519 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1520 }
1521 
1522 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1523 				  struct mptcp_sendmsg_info *info)
1524 {
1525 	struct mptcp_sock *msk = mptcp_sk(sk);
1526 	struct mptcp_data_frag *dfrag;
1527 	int len, copied = 0, err = 0;
1528 
1529 	while ((dfrag = mptcp_send_head(sk))) {
1530 		info->sent = dfrag->already_sent;
1531 		info->limit = dfrag->data_len;
1532 		len = dfrag->data_len - dfrag->already_sent;
1533 		while (len > 0) {
1534 			int ret = 0;
1535 
1536 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1537 			if (ret <= 0) {
1538 				err = copied ? : ret;
1539 				goto out;
1540 			}
1541 
1542 			info->sent += ret;
1543 			copied += ret;
1544 			len -= ret;
1545 
1546 			mptcp_update_post_push(msk, dfrag, ret);
1547 		}
1548 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1549 
1550 		if (msk->snd_burst <= 0 ||
1551 		    !sk_stream_memory_free(ssk) ||
1552 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1553 			err = copied;
1554 			goto out;
1555 		}
1556 		mptcp_set_timeout(sk);
1557 	}
1558 	err = copied;
1559 
1560 out:
1561 	return err;
1562 }
1563 
1564 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1565 {
1566 	struct sock *prev_ssk = NULL, *ssk = NULL;
1567 	struct mptcp_sock *msk = mptcp_sk(sk);
1568 	struct mptcp_sendmsg_info info = {
1569 				.flags = flags,
1570 	};
1571 	bool do_check_data_fin = false;
1572 	int push_count = 1;
1573 
1574 	while (mptcp_send_head(sk) && (push_count > 0)) {
1575 		struct mptcp_subflow_context *subflow;
1576 		int ret = 0;
1577 
1578 		if (mptcp_sched_get_send(msk))
1579 			break;
1580 
1581 		push_count = 0;
1582 
1583 		mptcp_for_each_subflow(msk, subflow) {
1584 			if (READ_ONCE(subflow->scheduled)) {
1585 				mptcp_subflow_set_scheduled(subflow, false);
1586 
1587 				prev_ssk = ssk;
1588 				ssk = mptcp_subflow_tcp_sock(subflow);
1589 				if (ssk != prev_ssk) {
1590 					/* First check. If the ssk has changed since
1591 					 * the last round, release prev_ssk
1592 					 */
1593 					if (prev_ssk)
1594 						mptcp_push_release(prev_ssk, &info);
1595 
1596 					/* Need to lock the new subflow only if different
1597 					 * from the previous one, otherwise we are still
1598 					 * helding the relevant lock
1599 					 */
1600 					lock_sock(ssk);
1601 				}
1602 
1603 				push_count++;
1604 
1605 				ret = __subflow_push_pending(sk, ssk, &info);
1606 				if (ret <= 0) {
1607 					if (ret != -EAGAIN ||
1608 					    (1 << ssk->sk_state) &
1609 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1610 						push_count--;
1611 					continue;
1612 				}
1613 				do_check_data_fin = true;
1614 			}
1615 		}
1616 	}
1617 
1618 	/* at this point we held the socket lock for the last subflow we used */
1619 	if (ssk)
1620 		mptcp_push_release(ssk, &info);
1621 
1622 	/* ensure the rtx timer is running */
1623 	if (!mptcp_rtx_timer_pending(sk))
1624 		mptcp_reset_rtx_timer(sk);
1625 	if (do_check_data_fin)
1626 		mptcp_check_send_data_fin(sk);
1627 }
1628 
1629 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1630 {
1631 	struct mptcp_sock *msk = mptcp_sk(sk);
1632 	struct mptcp_sendmsg_info info = {
1633 		.data_lock_held = true,
1634 	};
1635 	bool keep_pushing = true;
1636 	struct sock *xmit_ssk;
1637 	int copied = 0;
1638 
1639 	info.flags = 0;
1640 	while (mptcp_send_head(sk) && keep_pushing) {
1641 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1642 		int ret = 0;
1643 
1644 		/* check for a different subflow usage only after
1645 		 * spooling the first chunk of data
1646 		 */
1647 		if (first) {
1648 			mptcp_subflow_set_scheduled(subflow, false);
1649 			ret = __subflow_push_pending(sk, ssk, &info);
1650 			first = false;
1651 			if (ret <= 0)
1652 				break;
1653 			copied += ret;
1654 			continue;
1655 		}
1656 
1657 		if (mptcp_sched_get_send(msk))
1658 			goto out;
1659 
1660 		if (READ_ONCE(subflow->scheduled)) {
1661 			mptcp_subflow_set_scheduled(subflow, false);
1662 			ret = __subflow_push_pending(sk, ssk, &info);
1663 			if (ret <= 0)
1664 				keep_pushing = false;
1665 			copied += ret;
1666 		}
1667 
1668 		mptcp_for_each_subflow(msk, subflow) {
1669 			if (READ_ONCE(subflow->scheduled)) {
1670 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1671 				if (xmit_ssk != ssk) {
1672 					mptcp_subflow_delegate(subflow,
1673 							       MPTCP_DELEGATE_SEND);
1674 					keep_pushing = false;
1675 				}
1676 			}
1677 		}
1678 	}
1679 
1680 out:
1681 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1682 	 * not going to flush it via release_sock()
1683 	 */
1684 	if (copied) {
1685 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1686 			 info.size_goal);
1687 		if (!mptcp_rtx_timer_pending(sk))
1688 			mptcp_reset_rtx_timer(sk);
1689 
1690 		if (msk->snd_data_fin_enable &&
1691 		    msk->snd_nxt + 1 == msk->write_seq)
1692 			mptcp_schedule_work(sk);
1693 	}
1694 }
1695 
1696 static void mptcp_set_nospace(struct sock *sk)
1697 {
1698 	/* enable autotune */
1699 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1700 
1701 	/* will be cleared on avail space */
1702 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1703 }
1704 
1705 static int mptcp_disconnect(struct sock *sk, int flags);
1706 
1707 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1708 				  size_t len, int *copied_syn)
1709 {
1710 	unsigned int saved_flags = msg->msg_flags;
1711 	struct mptcp_sock *msk = mptcp_sk(sk);
1712 	struct sock *ssk;
1713 	int ret;
1714 
1715 	/* on flags based fastopen the mptcp is supposed to create the
1716 	 * first subflow right now. Otherwise we are in the defer_connect
1717 	 * path, and the first subflow must be already present.
1718 	 * Since the defer_connect flag is cleared after the first succsful
1719 	 * fastopen attempt, no need to check for additional subflow status.
1720 	 */
1721 	if (msg->msg_flags & MSG_FASTOPEN) {
1722 		ssk = __mptcp_nmpc_sk(msk);
1723 		if (IS_ERR(ssk))
1724 			return PTR_ERR(ssk);
1725 	}
1726 	if (!msk->first)
1727 		return -EINVAL;
1728 
1729 	ssk = msk->first;
1730 
1731 	lock_sock(ssk);
1732 	msg->msg_flags |= MSG_DONTWAIT;
1733 	msk->fastopening = 1;
1734 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1735 	msk->fastopening = 0;
1736 	msg->msg_flags = saved_flags;
1737 	release_sock(ssk);
1738 
1739 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1740 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1741 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1742 					    msg->msg_namelen, msg->msg_flags, 1);
1743 
1744 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1745 		 * case of any error, except timeout or signal
1746 		 */
1747 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1748 			*copied_syn = 0;
1749 	} else if (ret && ret != -EINPROGRESS) {
1750 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1751 		 * __inet_stream_connect() can fail, due to looking check,
1752 		 * see mptcp_disconnect().
1753 		 * Attempt it again outside the problematic scope.
1754 		 */
1755 		if (!mptcp_disconnect(sk, 0))
1756 			sk->sk_socket->state = SS_UNCONNECTED;
1757 	}
1758 	inet_clear_bit(DEFER_CONNECT, sk);
1759 
1760 	return ret;
1761 }
1762 
1763 static int do_copy_data_nocache(struct sock *sk, int copy,
1764 				struct iov_iter *from, char *to)
1765 {
1766 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1767 		if (!copy_from_iter_full_nocache(to, copy, from))
1768 			return -EFAULT;
1769 	} else if (!copy_from_iter_full(to, copy, from)) {
1770 		return -EFAULT;
1771 	}
1772 	return 0;
1773 }
1774 
1775 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1776 {
1777 	struct mptcp_sock *msk = mptcp_sk(sk);
1778 	struct page_frag *pfrag;
1779 	size_t copied = 0;
1780 	int ret = 0;
1781 	long timeo;
1782 
1783 	/* silently ignore everything else */
1784 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1785 
1786 	lock_sock(sk);
1787 
1788 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1789 		     msg->msg_flags & MSG_FASTOPEN)) {
1790 		int copied_syn = 0;
1791 
1792 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1793 		copied += copied_syn;
1794 		if (ret == -EINPROGRESS && copied_syn > 0)
1795 			goto out;
1796 		else if (ret)
1797 			goto do_error;
1798 	}
1799 
1800 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1801 
1802 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1803 		ret = sk_stream_wait_connect(sk, &timeo);
1804 		if (ret)
1805 			goto do_error;
1806 	}
1807 
1808 	ret = -EPIPE;
1809 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1810 		goto do_error;
1811 
1812 	pfrag = sk_page_frag(sk);
1813 
1814 	while (msg_data_left(msg)) {
1815 		int total_ts, frag_truesize = 0;
1816 		struct mptcp_data_frag *dfrag;
1817 		bool dfrag_collapsed;
1818 		size_t psize, offset;
1819 
1820 		/* reuse tail pfrag, if possible, or carve a new one from the
1821 		 * page allocator
1822 		 */
1823 		dfrag = mptcp_pending_tail(sk);
1824 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1825 		if (!dfrag_collapsed) {
1826 			if (!sk_stream_memory_free(sk))
1827 				goto wait_for_memory;
1828 
1829 			if (!mptcp_page_frag_refill(sk, pfrag))
1830 				goto wait_for_memory;
1831 
1832 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1833 			frag_truesize = dfrag->overhead;
1834 		}
1835 
1836 		/* we do not bound vs wspace, to allow a single packet.
1837 		 * memory accounting will prevent execessive memory usage
1838 		 * anyway
1839 		 */
1840 		offset = dfrag->offset + dfrag->data_len;
1841 		psize = pfrag->size - offset;
1842 		psize = min_t(size_t, psize, msg_data_left(msg));
1843 		total_ts = psize + frag_truesize;
1844 
1845 		if (!sk_wmem_schedule(sk, total_ts))
1846 			goto wait_for_memory;
1847 
1848 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1849 					   page_address(dfrag->page) + offset);
1850 		if (ret)
1851 			goto do_error;
1852 
1853 		/* data successfully copied into the write queue */
1854 		sk_forward_alloc_add(sk, -total_ts);
1855 		copied += psize;
1856 		dfrag->data_len += psize;
1857 		frag_truesize += psize;
1858 		pfrag->offset += frag_truesize;
1859 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1860 
1861 		/* charge data on mptcp pending queue to the msk socket
1862 		 * Note: we charge such data both to sk and ssk
1863 		 */
1864 		sk_wmem_queued_add(sk, frag_truesize);
1865 		if (!dfrag_collapsed) {
1866 			get_page(dfrag->page);
1867 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1868 			if (!msk->first_pending)
1869 				WRITE_ONCE(msk->first_pending, dfrag);
1870 		}
1871 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1872 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1873 			 !dfrag_collapsed);
1874 
1875 		continue;
1876 
1877 wait_for_memory:
1878 		mptcp_set_nospace(sk);
1879 		__mptcp_push_pending(sk, msg->msg_flags);
1880 		ret = sk_stream_wait_memory(sk, &timeo);
1881 		if (ret)
1882 			goto do_error;
1883 	}
1884 
1885 	if (copied)
1886 		__mptcp_push_pending(sk, msg->msg_flags);
1887 
1888 out:
1889 	release_sock(sk);
1890 	return copied;
1891 
1892 do_error:
1893 	if (copied)
1894 		goto out;
1895 
1896 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1897 	goto out;
1898 }
1899 
1900 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1901 				struct msghdr *msg,
1902 				size_t len, int flags,
1903 				struct scm_timestamping_internal *tss,
1904 				int *cmsg_flags)
1905 {
1906 	struct sk_buff *skb, *tmp;
1907 	int copied = 0;
1908 
1909 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1910 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1911 		u32 data_len = skb->len - offset;
1912 		u32 count = min_t(size_t, len - copied, data_len);
1913 		int err;
1914 
1915 		if (!(flags & MSG_TRUNC)) {
1916 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1917 			if (unlikely(err < 0)) {
1918 				if (!copied)
1919 					return err;
1920 				break;
1921 			}
1922 		}
1923 
1924 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1925 			tcp_update_recv_tstamps(skb, tss);
1926 			*cmsg_flags |= MPTCP_CMSG_TS;
1927 		}
1928 
1929 		copied += count;
1930 
1931 		if (count < data_len) {
1932 			if (!(flags & MSG_PEEK)) {
1933 				MPTCP_SKB_CB(skb)->offset += count;
1934 				MPTCP_SKB_CB(skb)->map_seq += count;
1935 				msk->bytes_consumed += count;
1936 			}
1937 			break;
1938 		}
1939 
1940 		if (!(flags & MSG_PEEK)) {
1941 			/* we will bulk release the skb memory later */
1942 			skb->destructor = NULL;
1943 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1944 			__skb_unlink(skb, &msk->receive_queue);
1945 			__kfree_skb(skb);
1946 			msk->bytes_consumed += count;
1947 		}
1948 
1949 		if (copied >= len)
1950 			break;
1951 	}
1952 
1953 	return copied;
1954 }
1955 
1956 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1957  *
1958  * Only difference: Use highest rtt estimate of the subflows in use.
1959  */
1960 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1961 {
1962 	struct mptcp_subflow_context *subflow;
1963 	struct sock *sk = (struct sock *)msk;
1964 	u8 scaling_ratio = U8_MAX;
1965 	u32 time, advmss = 1;
1966 	u64 rtt_us, mstamp;
1967 
1968 	msk_owned_by_me(msk);
1969 
1970 	if (copied <= 0)
1971 		return;
1972 
1973 	msk->rcvq_space.copied += copied;
1974 
1975 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1976 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1977 
1978 	rtt_us = msk->rcvq_space.rtt_us;
1979 	if (rtt_us && time < (rtt_us >> 3))
1980 		return;
1981 
1982 	rtt_us = 0;
1983 	mptcp_for_each_subflow(msk, subflow) {
1984 		const struct tcp_sock *tp;
1985 		u64 sf_rtt_us;
1986 		u32 sf_advmss;
1987 
1988 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1989 
1990 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1991 		sf_advmss = READ_ONCE(tp->advmss);
1992 
1993 		rtt_us = max(sf_rtt_us, rtt_us);
1994 		advmss = max(sf_advmss, advmss);
1995 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1996 	}
1997 
1998 	msk->rcvq_space.rtt_us = rtt_us;
1999 	msk->scaling_ratio = scaling_ratio;
2000 	if (time < (rtt_us >> 3) || rtt_us == 0)
2001 		return;
2002 
2003 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2004 		goto new_measure;
2005 
2006 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2007 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2008 		u64 rcvwin, grow;
2009 		int rcvbuf;
2010 
2011 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2012 
2013 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2014 
2015 		do_div(grow, msk->rcvq_space.space);
2016 		rcvwin += (grow << 1);
2017 
2018 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2019 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2020 
2021 		if (rcvbuf > sk->sk_rcvbuf) {
2022 			u32 window_clamp;
2023 
2024 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2025 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2026 
2027 			/* Make subflows follow along.  If we do not do this, we
2028 			 * get drops at subflow level if skbs can't be moved to
2029 			 * the mptcp rx queue fast enough (announced rcv_win can
2030 			 * exceed ssk->sk_rcvbuf).
2031 			 */
2032 			mptcp_for_each_subflow(msk, subflow) {
2033 				struct sock *ssk;
2034 				bool slow;
2035 
2036 				ssk = mptcp_subflow_tcp_sock(subflow);
2037 				slow = lock_sock_fast(ssk);
2038 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2039 				tcp_sk(ssk)->window_clamp = window_clamp;
2040 				tcp_cleanup_rbuf(ssk, 1);
2041 				unlock_sock_fast(ssk, slow);
2042 			}
2043 		}
2044 	}
2045 
2046 	msk->rcvq_space.space = msk->rcvq_space.copied;
2047 new_measure:
2048 	msk->rcvq_space.copied = 0;
2049 	msk->rcvq_space.time = mstamp;
2050 }
2051 
2052 static void __mptcp_update_rmem(struct sock *sk)
2053 {
2054 	struct mptcp_sock *msk = mptcp_sk(sk);
2055 
2056 	if (!msk->rmem_released)
2057 		return;
2058 
2059 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2060 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2061 	WRITE_ONCE(msk->rmem_released, 0);
2062 }
2063 
2064 static void __mptcp_splice_receive_queue(struct sock *sk)
2065 {
2066 	struct mptcp_sock *msk = mptcp_sk(sk);
2067 
2068 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2069 }
2070 
2071 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2072 {
2073 	struct sock *sk = (struct sock *)msk;
2074 	unsigned int moved = 0;
2075 	bool ret, done;
2076 
2077 	do {
2078 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2079 		bool slowpath;
2080 
2081 		/* we can have data pending in the subflows only if the msk
2082 		 * receive buffer was full at subflow_data_ready() time,
2083 		 * that is an unlikely slow path.
2084 		 */
2085 		if (likely(!ssk))
2086 			break;
2087 
2088 		slowpath = lock_sock_fast(ssk);
2089 		mptcp_data_lock(sk);
2090 		__mptcp_update_rmem(sk);
2091 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2092 		mptcp_data_unlock(sk);
2093 
2094 		if (unlikely(ssk->sk_err))
2095 			__mptcp_error_report(sk);
2096 		unlock_sock_fast(ssk, slowpath);
2097 	} while (!done);
2098 
2099 	/* acquire the data lock only if some input data is pending */
2100 	ret = moved > 0;
2101 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2102 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2103 		mptcp_data_lock(sk);
2104 		__mptcp_update_rmem(sk);
2105 		ret |= __mptcp_ofo_queue(msk);
2106 		__mptcp_splice_receive_queue(sk);
2107 		mptcp_data_unlock(sk);
2108 	}
2109 	if (ret)
2110 		mptcp_check_data_fin((struct sock *)msk);
2111 	return !skb_queue_empty(&msk->receive_queue);
2112 }
2113 
2114 static unsigned int mptcp_inq_hint(const struct sock *sk)
2115 {
2116 	const struct mptcp_sock *msk = mptcp_sk(sk);
2117 	const struct sk_buff *skb;
2118 
2119 	skb = skb_peek(&msk->receive_queue);
2120 	if (skb) {
2121 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2122 
2123 		if (hint_val >= INT_MAX)
2124 			return INT_MAX;
2125 
2126 		return (unsigned int)hint_val;
2127 	}
2128 
2129 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2130 		return 1;
2131 
2132 	return 0;
2133 }
2134 
2135 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2136 			 int flags, int *addr_len)
2137 {
2138 	struct mptcp_sock *msk = mptcp_sk(sk);
2139 	struct scm_timestamping_internal tss;
2140 	int copied = 0, cmsg_flags = 0;
2141 	int target;
2142 	long timeo;
2143 
2144 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2145 	if (unlikely(flags & MSG_ERRQUEUE))
2146 		return inet_recv_error(sk, msg, len, addr_len);
2147 
2148 	lock_sock(sk);
2149 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2150 		copied = -ENOTCONN;
2151 		goto out_err;
2152 	}
2153 
2154 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2155 
2156 	len = min_t(size_t, len, INT_MAX);
2157 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2158 
2159 	if (unlikely(msk->recvmsg_inq))
2160 		cmsg_flags = MPTCP_CMSG_INQ;
2161 
2162 	while (copied < len) {
2163 		int bytes_read;
2164 
2165 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2166 		if (unlikely(bytes_read < 0)) {
2167 			if (!copied)
2168 				copied = bytes_read;
2169 			goto out_err;
2170 		}
2171 
2172 		copied += bytes_read;
2173 
2174 		/* be sure to advertise window change */
2175 		mptcp_cleanup_rbuf(msk);
2176 
2177 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2178 			continue;
2179 
2180 		/* only the master socket status is relevant here. The exit
2181 		 * conditions mirror closely tcp_recvmsg()
2182 		 */
2183 		if (copied >= target)
2184 			break;
2185 
2186 		if (copied) {
2187 			if (sk->sk_err ||
2188 			    sk->sk_state == TCP_CLOSE ||
2189 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2190 			    !timeo ||
2191 			    signal_pending(current))
2192 				break;
2193 		} else {
2194 			if (sk->sk_err) {
2195 				copied = sock_error(sk);
2196 				break;
2197 			}
2198 
2199 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2200 				/* race breaker: the shutdown could be after the
2201 				 * previous receive queue check
2202 				 */
2203 				if (__mptcp_move_skbs(msk))
2204 					continue;
2205 				break;
2206 			}
2207 
2208 			if (sk->sk_state == TCP_CLOSE) {
2209 				copied = -ENOTCONN;
2210 				break;
2211 			}
2212 
2213 			if (!timeo) {
2214 				copied = -EAGAIN;
2215 				break;
2216 			}
2217 
2218 			if (signal_pending(current)) {
2219 				copied = sock_intr_errno(timeo);
2220 				break;
2221 			}
2222 		}
2223 
2224 		pr_debug("block timeout %ld", timeo);
2225 		sk_wait_data(sk, &timeo, NULL);
2226 	}
2227 
2228 out_err:
2229 	if (cmsg_flags && copied >= 0) {
2230 		if (cmsg_flags & MPTCP_CMSG_TS)
2231 			tcp_recv_timestamp(msg, sk, &tss);
2232 
2233 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2234 			unsigned int inq = mptcp_inq_hint(sk);
2235 
2236 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2237 		}
2238 	}
2239 
2240 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2241 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2242 		 skb_queue_empty(&msk->receive_queue), copied);
2243 	if (!(flags & MSG_PEEK))
2244 		mptcp_rcv_space_adjust(msk, copied);
2245 
2246 	release_sock(sk);
2247 	return copied;
2248 }
2249 
2250 static void mptcp_retransmit_timer(struct timer_list *t)
2251 {
2252 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2253 						       icsk_retransmit_timer);
2254 	struct sock *sk = &icsk->icsk_inet.sk;
2255 	struct mptcp_sock *msk = mptcp_sk(sk);
2256 
2257 	bh_lock_sock(sk);
2258 	if (!sock_owned_by_user(sk)) {
2259 		/* we need a process context to retransmit */
2260 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2261 			mptcp_schedule_work(sk);
2262 	} else {
2263 		/* delegate our work to tcp_release_cb() */
2264 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2265 	}
2266 	bh_unlock_sock(sk);
2267 	sock_put(sk);
2268 }
2269 
2270 static void mptcp_tout_timer(struct timer_list *t)
2271 {
2272 	struct sock *sk = from_timer(sk, t, sk_timer);
2273 
2274 	mptcp_schedule_work(sk);
2275 	sock_put(sk);
2276 }
2277 
2278 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2279  * level.
2280  *
2281  * A backup subflow is returned only if that is the only kind available.
2282  */
2283 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2284 {
2285 	struct sock *backup = NULL, *pick = NULL;
2286 	struct mptcp_subflow_context *subflow;
2287 	int min_stale_count = INT_MAX;
2288 
2289 	mptcp_for_each_subflow(msk, subflow) {
2290 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2291 
2292 		if (!__mptcp_subflow_active(subflow))
2293 			continue;
2294 
2295 		/* still data outstanding at TCP level? skip this */
2296 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2297 			mptcp_pm_subflow_chk_stale(msk, ssk);
2298 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2299 			continue;
2300 		}
2301 
2302 		if (subflow->backup) {
2303 			if (!backup)
2304 				backup = ssk;
2305 			continue;
2306 		}
2307 
2308 		if (!pick)
2309 			pick = ssk;
2310 	}
2311 
2312 	if (pick)
2313 		return pick;
2314 
2315 	/* use backup only if there are no progresses anywhere */
2316 	return min_stale_count > 1 ? backup : NULL;
2317 }
2318 
2319 bool __mptcp_retransmit_pending_data(struct sock *sk)
2320 {
2321 	struct mptcp_data_frag *cur, *rtx_head;
2322 	struct mptcp_sock *msk = mptcp_sk(sk);
2323 
2324 	if (__mptcp_check_fallback(msk))
2325 		return false;
2326 
2327 	if (tcp_rtx_and_write_queues_empty(sk))
2328 		return false;
2329 
2330 	/* the closing socket has some data untransmitted and/or unacked:
2331 	 * some data in the mptcp rtx queue has not really xmitted yet.
2332 	 * keep it simple and re-inject the whole mptcp level rtx queue
2333 	 */
2334 	mptcp_data_lock(sk);
2335 	__mptcp_clean_una_wakeup(sk);
2336 	rtx_head = mptcp_rtx_head(sk);
2337 	if (!rtx_head) {
2338 		mptcp_data_unlock(sk);
2339 		return false;
2340 	}
2341 
2342 	msk->recovery_snd_nxt = msk->snd_nxt;
2343 	msk->recovery = true;
2344 	mptcp_data_unlock(sk);
2345 
2346 	msk->first_pending = rtx_head;
2347 	msk->snd_burst = 0;
2348 
2349 	/* be sure to clear the "sent status" on all re-injected fragments */
2350 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2351 		if (!cur->already_sent)
2352 			break;
2353 		cur->already_sent = 0;
2354 	}
2355 
2356 	return true;
2357 }
2358 
2359 /* flags for __mptcp_close_ssk() */
2360 #define MPTCP_CF_PUSH		BIT(1)
2361 #define MPTCP_CF_FASTCLOSE	BIT(2)
2362 
2363 /* be sure to send a reset only if the caller asked for it, also
2364  * clean completely the subflow status when the subflow reaches
2365  * TCP_CLOSE state
2366  */
2367 static void __mptcp_subflow_disconnect(struct sock *ssk,
2368 				       struct mptcp_subflow_context *subflow,
2369 				       unsigned int flags)
2370 {
2371 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2372 	    (flags & MPTCP_CF_FASTCLOSE)) {
2373 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2374 		 * disconnect should never fail
2375 		 */
2376 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2377 		mptcp_subflow_ctx_reset(subflow);
2378 	} else {
2379 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2380 	}
2381 }
2382 
2383 /* subflow sockets can be either outgoing (connect) or incoming
2384  * (accept).
2385  *
2386  * Outgoing subflows use in-kernel sockets.
2387  * Incoming subflows do not have their own 'struct socket' allocated,
2388  * so we need to use tcp_close() after detaching them from the mptcp
2389  * parent socket.
2390  */
2391 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2392 			      struct mptcp_subflow_context *subflow,
2393 			      unsigned int flags)
2394 {
2395 	struct mptcp_sock *msk = mptcp_sk(sk);
2396 	bool dispose_it, need_push = false;
2397 
2398 	/* If the first subflow moved to a close state before accept, e.g. due
2399 	 * to an incoming reset or listener shutdown, the subflow socket is
2400 	 * already deleted by inet_child_forget() and the mptcp socket can't
2401 	 * survive too.
2402 	 */
2403 	if (msk->in_accept_queue && msk->first == ssk &&
2404 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2405 		/* ensure later check in mptcp_worker() will dispose the msk */
2406 		sock_set_flag(sk, SOCK_DEAD);
2407 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2408 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2409 		mptcp_subflow_drop_ctx(ssk);
2410 		goto out_release;
2411 	}
2412 
2413 	dispose_it = msk->free_first || ssk != msk->first;
2414 	if (dispose_it)
2415 		list_del(&subflow->node);
2416 
2417 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2418 
2419 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2420 		/* be sure to force the tcp_close path
2421 		 * to generate the egress reset
2422 		 */
2423 		ssk->sk_lingertime = 0;
2424 		sock_set_flag(ssk, SOCK_LINGER);
2425 		subflow->send_fastclose = 1;
2426 	}
2427 
2428 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2429 	if (!dispose_it) {
2430 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2431 		release_sock(ssk);
2432 
2433 		goto out;
2434 	}
2435 
2436 	subflow->disposable = 1;
2437 
2438 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2439 	 * the ssk has been already destroyed, we just need to release the
2440 	 * reference owned by msk;
2441 	 */
2442 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2443 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2444 		kfree_rcu(subflow, rcu);
2445 	} else {
2446 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2447 		__tcp_close(ssk, 0);
2448 
2449 		/* close acquired an extra ref */
2450 		__sock_put(ssk);
2451 	}
2452 
2453 out_release:
2454 	__mptcp_subflow_error_report(sk, ssk);
2455 	release_sock(ssk);
2456 
2457 	sock_put(ssk);
2458 
2459 	if (ssk == msk->first)
2460 		WRITE_ONCE(msk->first, NULL);
2461 
2462 out:
2463 	__mptcp_sync_sndbuf(sk);
2464 	if (need_push)
2465 		__mptcp_push_pending(sk, 0);
2466 
2467 	/* Catch every 'all subflows closed' scenario, including peers silently
2468 	 * closing them, e.g. due to timeout.
2469 	 * For established sockets, allow an additional timeout before closing,
2470 	 * as the protocol can still create more subflows.
2471 	 */
2472 	if (list_is_singular(&msk->conn_list) && msk->first &&
2473 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2474 		if (sk->sk_state != TCP_ESTABLISHED ||
2475 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2476 			inet_sk_state_store(sk, TCP_CLOSE);
2477 			mptcp_close_wake_up(sk);
2478 		} else {
2479 			mptcp_start_tout_timer(sk);
2480 		}
2481 	}
2482 }
2483 
2484 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2485 		     struct mptcp_subflow_context *subflow)
2486 {
2487 	if (sk->sk_state == TCP_ESTABLISHED)
2488 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2489 
2490 	/* subflow aborted before reaching the fully_established status
2491 	 * attempt the creation of the next subflow
2492 	 */
2493 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2494 
2495 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2496 }
2497 
2498 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2499 {
2500 	return 0;
2501 }
2502 
2503 static void __mptcp_close_subflow(struct sock *sk)
2504 {
2505 	struct mptcp_subflow_context *subflow, *tmp;
2506 	struct mptcp_sock *msk = mptcp_sk(sk);
2507 
2508 	might_sleep();
2509 
2510 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2511 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2512 
2513 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2514 			continue;
2515 
2516 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2517 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2518 			continue;
2519 
2520 		mptcp_close_ssk(sk, ssk, subflow);
2521 	}
2522 
2523 }
2524 
2525 static bool mptcp_close_tout_expired(const struct sock *sk)
2526 {
2527 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2528 	    sk->sk_state == TCP_CLOSE)
2529 		return false;
2530 
2531 	return time_after32(tcp_jiffies32,
2532 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2533 }
2534 
2535 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2536 {
2537 	struct mptcp_subflow_context *subflow, *tmp;
2538 	struct sock *sk = (struct sock *)msk;
2539 
2540 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2541 		return;
2542 
2543 	mptcp_token_destroy(msk);
2544 
2545 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2546 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2547 		bool slow;
2548 
2549 		slow = lock_sock_fast(tcp_sk);
2550 		if (tcp_sk->sk_state != TCP_CLOSE) {
2551 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2552 			tcp_set_state(tcp_sk, TCP_CLOSE);
2553 		}
2554 		unlock_sock_fast(tcp_sk, slow);
2555 	}
2556 
2557 	/* Mirror the tcp_reset() error propagation */
2558 	switch (sk->sk_state) {
2559 	case TCP_SYN_SENT:
2560 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2561 		break;
2562 	case TCP_CLOSE_WAIT:
2563 		WRITE_ONCE(sk->sk_err, EPIPE);
2564 		break;
2565 	case TCP_CLOSE:
2566 		return;
2567 	default:
2568 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2569 	}
2570 
2571 	inet_sk_state_store(sk, TCP_CLOSE);
2572 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2573 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2574 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2575 
2576 	/* the calling mptcp_worker will properly destroy the socket */
2577 	if (sock_flag(sk, SOCK_DEAD))
2578 		return;
2579 
2580 	sk->sk_state_change(sk);
2581 	sk_error_report(sk);
2582 }
2583 
2584 static void __mptcp_retrans(struct sock *sk)
2585 {
2586 	struct mptcp_sock *msk = mptcp_sk(sk);
2587 	struct mptcp_subflow_context *subflow;
2588 	struct mptcp_sendmsg_info info = {};
2589 	struct mptcp_data_frag *dfrag;
2590 	struct sock *ssk;
2591 	int ret, err;
2592 	u16 len = 0;
2593 
2594 	mptcp_clean_una_wakeup(sk);
2595 
2596 	/* first check ssk: need to kick "stale" logic */
2597 	err = mptcp_sched_get_retrans(msk);
2598 	dfrag = mptcp_rtx_head(sk);
2599 	if (!dfrag) {
2600 		if (mptcp_data_fin_enabled(msk)) {
2601 			struct inet_connection_sock *icsk = inet_csk(sk);
2602 
2603 			icsk->icsk_retransmits++;
2604 			mptcp_set_datafin_timeout(sk);
2605 			mptcp_send_ack(msk);
2606 
2607 			goto reset_timer;
2608 		}
2609 
2610 		if (!mptcp_send_head(sk))
2611 			return;
2612 
2613 		goto reset_timer;
2614 	}
2615 
2616 	if (err)
2617 		goto reset_timer;
2618 
2619 	mptcp_for_each_subflow(msk, subflow) {
2620 		if (READ_ONCE(subflow->scheduled)) {
2621 			u16 copied = 0;
2622 
2623 			mptcp_subflow_set_scheduled(subflow, false);
2624 
2625 			ssk = mptcp_subflow_tcp_sock(subflow);
2626 
2627 			lock_sock(ssk);
2628 
2629 			/* limit retransmission to the bytes already sent on some subflows */
2630 			info.sent = 0;
2631 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2632 								    dfrag->already_sent;
2633 			while (info.sent < info.limit) {
2634 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2635 				if (ret <= 0)
2636 					break;
2637 
2638 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2639 				copied += ret;
2640 				info.sent += ret;
2641 			}
2642 			if (copied) {
2643 				len = max(copied, len);
2644 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2645 					 info.size_goal);
2646 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2647 			}
2648 
2649 			release_sock(ssk);
2650 		}
2651 	}
2652 
2653 	msk->bytes_retrans += len;
2654 	dfrag->already_sent = max(dfrag->already_sent, len);
2655 
2656 reset_timer:
2657 	mptcp_check_and_set_pending(sk);
2658 
2659 	if (!mptcp_rtx_timer_pending(sk))
2660 		mptcp_reset_rtx_timer(sk);
2661 }
2662 
2663 /* schedule the timeout timer for the relevant event: either close timeout
2664  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2665  */
2666 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2667 {
2668 	struct sock *sk = (struct sock *)msk;
2669 	unsigned long timeout, close_timeout;
2670 
2671 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2672 		return;
2673 
2674 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2675 			mptcp_close_timeout(sk);
2676 
2677 	/* the close timeout takes precedence on the fail one, and here at least one of
2678 	 * them is active
2679 	 */
2680 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2681 
2682 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2683 }
2684 
2685 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2686 {
2687 	struct sock *ssk = msk->first;
2688 	bool slow;
2689 
2690 	if (!ssk)
2691 		return;
2692 
2693 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2694 
2695 	slow = lock_sock_fast(ssk);
2696 	mptcp_subflow_reset(ssk);
2697 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2698 	unlock_sock_fast(ssk, slow);
2699 }
2700 
2701 static void mptcp_do_fastclose(struct sock *sk)
2702 {
2703 	struct mptcp_subflow_context *subflow, *tmp;
2704 	struct mptcp_sock *msk = mptcp_sk(sk);
2705 
2706 	inet_sk_state_store(sk, TCP_CLOSE);
2707 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2708 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2709 				  subflow, MPTCP_CF_FASTCLOSE);
2710 }
2711 
2712 static void mptcp_worker(struct work_struct *work)
2713 {
2714 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2715 	struct sock *sk = (struct sock *)msk;
2716 	unsigned long fail_tout;
2717 	int state;
2718 
2719 	lock_sock(sk);
2720 	state = sk->sk_state;
2721 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2722 		goto unlock;
2723 
2724 	mptcp_check_fastclose(msk);
2725 
2726 	mptcp_pm_nl_work(msk);
2727 
2728 	mptcp_check_send_data_fin(sk);
2729 	mptcp_check_data_fin_ack(sk);
2730 	mptcp_check_data_fin(sk);
2731 
2732 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2733 		__mptcp_close_subflow(sk);
2734 
2735 	if (mptcp_close_tout_expired(sk)) {
2736 		mptcp_do_fastclose(sk);
2737 		mptcp_close_wake_up(sk);
2738 	}
2739 
2740 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2741 		__mptcp_destroy_sock(sk);
2742 		goto unlock;
2743 	}
2744 
2745 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2746 		__mptcp_retrans(sk);
2747 
2748 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2749 	if (fail_tout && time_after(jiffies, fail_tout))
2750 		mptcp_mp_fail_no_response(msk);
2751 
2752 unlock:
2753 	release_sock(sk);
2754 	sock_put(sk);
2755 }
2756 
2757 static void __mptcp_init_sock(struct sock *sk)
2758 {
2759 	struct mptcp_sock *msk = mptcp_sk(sk);
2760 
2761 	INIT_LIST_HEAD(&msk->conn_list);
2762 	INIT_LIST_HEAD(&msk->join_list);
2763 	INIT_LIST_HEAD(&msk->rtx_queue);
2764 	INIT_WORK(&msk->work, mptcp_worker);
2765 	__skb_queue_head_init(&msk->receive_queue);
2766 	msk->out_of_order_queue = RB_ROOT;
2767 	msk->first_pending = NULL;
2768 	msk->rmem_fwd_alloc = 0;
2769 	WRITE_ONCE(msk->rmem_released, 0);
2770 	msk->timer_ival = TCP_RTO_MIN;
2771 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2772 
2773 	WRITE_ONCE(msk->first, NULL);
2774 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2775 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2776 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2777 	msk->recovery = false;
2778 	msk->subflow_id = 1;
2779 
2780 	mptcp_pm_data_init(msk);
2781 
2782 	/* re-use the csk retrans timer for MPTCP-level retrans */
2783 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2784 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2785 }
2786 
2787 static void mptcp_ca_reset(struct sock *sk)
2788 {
2789 	struct inet_connection_sock *icsk = inet_csk(sk);
2790 
2791 	tcp_assign_congestion_control(sk);
2792 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2793 
2794 	/* no need to keep a reference to the ops, the name will suffice */
2795 	tcp_cleanup_congestion_control(sk);
2796 	icsk->icsk_ca_ops = NULL;
2797 }
2798 
2799 static int mptcp_init_sock(struct sock *sk)
2800 {
2801 	struct net *net = sock_net(sk);
2802 	int ret;
2803 
2804 	__mptcp_init_sock(sk);
2805 
2806 	if (!mptcp_is_enabled(net))
2807 		return -ENOPROTOOPT;
2808 
2809 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2810 		return -ENOMEM;
2811 
2812 	ret = mptcp_init_sched(mptcp_sk(sk),
2813 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2814 	if (ret)
2815 		return ret;
2816 
2817 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2818 
2819 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2820 	 * propagate the correct value
2821 	 */
2822 	mptcp_ca_reset(sk);
2823 
2824 	sk_sockets_allocated_inc(sk);
2825 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2826 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2827 
2828 	return 0;
2829 }
2830 
2831 static void __mptcp_clear_xmit(struct sock *sk)
2832 {
2833 	struct mptcp_sock *msk = mptcp_sk(sk);
2834 	struct mptcp_data_frag *dtmp, *dfrag;
2835 
2836 	WRITE_ONCE(msk->first_pending, NULL);
2837 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2838 		dfrag_clear(sk, dfrag);
2839 }
2840 
2841 void mptcp_cancel_work(struct sock *sk)
2842 {
2843 	struct mptcp_sock *msk = mptcp_sk(sk);
2844 
2845 	if (cancel_work_sync(&msk->work))
2846 		__sock_put(sk);
2847 }
2848 
2849 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2850 {
2851 	lock_sock(ssk);
2852 
2853 	switch (ssk->sk_state) {
2854 	case TCP_LISTEN:
2855 		if (!(how & RCV_SHUTDOWN))
2856 			break;
2857 		fallthrough;
2858 	case TCP_SYN_SENT:
2859 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2860 		break;
2861 	default:
2862 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2863 			pr_debug("Fallback");
2864 			ssk->sk_shutdown |= how;
2865 			tcp_shutdown(ssk, how);
2866 
2867 			/* simulate the data_fin ack reception to let the state
2868 			 * machine move forward
2869 			 */
2870 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2871 			mptcp_schedule_work(sk);
2872 		} else {
2873 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2874 			tcp_send_ack(ssk);
2875 			if (!mptcp_rtx_timer_pending(sk))
2876 				mptcp_reset_rtx_timer(sk);
2877 		}
2878 		break;
2879 	}
2880 
2881 	release_sock(ssk);
2882 }
2883 
2884 static const unsigned char new_state[16] = {
2885 	/* current state:     new state:      action:	*/
2886 	[0 /* (Invalid) */] = TCP_CLOSE,
2887 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2888 	[TCP_SYN_SENT]      = TCP_CLOSE,
2889 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2890 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2891 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2892 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2893 	[TCP_CLOSE]         = TCP_CLOSE,
2894 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2895 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2896 	[TCP_LISTEN]        = TCP_CLOSE,
2897 	[TCP_CLOSING]       = TCP_CLOSING,
2898 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2899 };
2900 
2901 static int mptcp_close_state(struct sock *sk)
2902 {
2903 	int next = (int)new_state[sk->sk_state];
2904 	int ns = next & TCP_STATE_MASK;
2905 
2906 	inet_sk_state_store(sk, ns);
2907 
2908 	return next & TCP_ACTION_FIN;
2909 }
2910 
2911 static void mptcp_check_send_data_fin(struct sock *sk)
2912 {
2913 	struct mptcp_subflow_context *subflow;
2914 	struct mptcp_sock *msk = mptcp_sk(sk);
2915 
2916 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2917 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2918 		 msk->snd_nxt, msk->write_seq);
2919 
2920 	/* we still need to enqueue subflows or not really shutting down,
2921 	 * skip this
2922 	 */
2923 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2924 	    mptcp_send_head(sk))
2925 		return;
2926 
2927 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2928 
2929 	mptcp_for_each_subflow(msk, subflow) {
2930 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2931 
2932 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2933 	}
2934 }
2935 
2936 static void __mptcp_wr_shutdown(struct sock *sk)
2937 {
2938 	struct mptcp_sock *msk = mptcp_sk(sk);
2939 
2940 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2941 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2942 		 !!mptcp_send_head(sk));
2943 
2944 	/* will be ignored by fallback sockets */
2945 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2946 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2947 
2948 	mptcp_check_send_data_fin(sk);
2949 }
2950 
2951 static void __mptcp_destroy_sock(struct sock *sk)
2952 {
2953 	struct mptcp_sock *msk = mptcp_sk(sk);
2954 
2955 	pr_debug("msk=%p", msk);
2956 
2957 	might_sleep();
2958 
2959 	mptcp_stop_rtx_timer(sk);
2960 	sk_stop_timer(sk, &sk->sk_timer);
2961 	msk->pm.status = 0;
2962 	mptcp_release_sched(msk);
2963 
2964 	sk->sk_prot->destroy(sk);
2965 
2966 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2967 	WARN_ON_ONCE(msk->rmem_released);
2968 	sk_stream_kill_queues(sk);
2969 	xfrm_sk_free_policy(sk);
2970 
2971 	sock_put(sk);
2972 }
2973 
2974 void __mptcp_unaccepted_force_close(struct sock *sk)
2975 {
2976 	sock_set_flag(sk, SOCK_DEAD);
2977 	mptcp_do_fastclose(sk);
2978 	__mptcp_destroy_sock(sk);
2979 }
2980 
2981 static __poll_t mptcp_check_readable(struct sock *sk)
2982 {
2983 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2984 }
2985 
2986 static void mptcp_check_listen_stop(struct sock *sk)
2987 {
2988 	struct sock *ssk;
2989 
2990 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2991 		return;
2992 
2993 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2994 	ssk = mptcp_sk(sk)->first;
2995 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2996 		return;
2997 
2998 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2999 	tcp_set_state(ssk, TCP_CLOSE);
3000 	mptcp_subflow_queue_clean(sk, ssk);
3001 	inet_csk_listen_stop(ssk);
3002 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3003 	release_sock(ssk);
3004 }
3005 
3006 bool __mptcp_close(struct sock *sk, long timeout)
3007 {
3008 	struct mptcp_subflow_context *subflow;
3009 	struct mptcp_sock *msk = mptcp_sk(sk);
3010 	bool do_cancel_work = false;
3011 	int subflows_alive = 0;
3012 
3013 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3014 
3015 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3016 		mptcp_check_listen_stop(sk);
3017 		inet_sk_state_store(sk, TCP_CLOSE);
3018 		goto cleanup;
3019 	}
3020 
3021 	if (mptcp_data_avail(msk) || timeout < 0) {
3022 		/* If the msk has read data, or the caller explicitly ask it,
3023 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3024 		 */
3025 		mptcp_do_fastclose(sk);
3026 		timeout = 0;
3027 	} else if (mptcp_close_state(sk)) {
3028 		__mptcp_wr_shutdown(sk);
3029 	}
3030 
3031 	sk_stream_wait_close(sk, timeout);
3032 
3033 cleanup:
3034 	/* orphan all the subflows */
3035 	mptcp_for_each_subflow(msk, subflow) {
3036 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3037 		bool slow = lock_sock_fast_nested(ssk);
3038 
3039 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3040 
3041 		/* since the close timeout takes precedence on the fail one,
3042 		 * cancel the latter
3043 		 */
3044 		if (ssk == msk->first)
3045 			subflow->fail_tout = 0;
3046 
3047 		/* detach from the parent socket, but allow data_ready to
3048 		 * push incoming data into the mptcp stack, to properly ack it
3049 		 */
3050 		ssk->sk_socket = NULL;
3051 		ssk->sk_wq = NULL;
3052 		unlock_sock_fast(ssk, slow);
3053 	}
3054 	sock_orphan(sk);
3055 
3056 	/* all the subflows are closed, only timeout can change the msk
3057 	 * state, let's not keep resources busy for no reasons
3058 	 */
3059 	if (subflows_alive == 0)
3060 		inet_sk_state_store(sk, TCP_CLOSE);
3061 
3062 	sock_hold(sk);
3063 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3064 	if (msk->token)
3065 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3066 
3067 	if (sk->sk_state == TCP_CLOSE) {
3068 		__mptcp_destroy_sock(sk);
3069 		do_cancel_work = true;
3070 	} else {
3071 		mptcp_start_tout_timer(sk);
3072 	}
3073 
3074 	return do_cancel_work;
3075 }
3076 
3077 static void mptcp_close(struct sock *sk, long timeout)
3078 {
3079 	bool do_cancel_work;
3080 
3081 	lock_sock(sk);
3082 
3083 	do_cancel_work = __mptcp_close(sk, timeout);
3084 	release_sock(sk);
3085 	if (do_cancel_work)
3086 		mptcp_cancel_work(sk);
3087 
3088 	sock_put(sk);
3089 }
3090 
3091 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3092 {
3093 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3094 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3095 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3096 
3097 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3098 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3099 
3100 	if (msk6 && ssk6) {
3101 		msk6->saddr = ssk6->saddr;
3102 		msk6->flow_label = ssk6->flow_label;
3103 	}
3104 #endif
3105 
3106 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3107 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3108 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3109 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3110 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3111 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3112 }
3113 
3114 static int mptcp_disconnect(struct sock *sk, int flags)
3115 {
3116 	struct mptcp_sock *msk = mptcp_sk(sk);
3117 
3118 	/* We are on the fastopen error path. We can't call straight into the
3119 	 * subflows cleanup code due to lock nesting (we are already under
3120 	 * msk->firstsocket lock).
3121 	 */
3122 	if (msk->fastopening)
3123 		return -EBUSY;
3124 
3125 	mptcp_check_listen_stop(sk);
3126 	inet_sk_state_store(sk, TCP_CLOSE);
3127 
3128 	mptcp_stop_rtx_timer(sk);
3129 	mptcp_stop_tout_timer(sk);
3130 
3131 	if (msk->token)
3132 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3133 
3134 	/* msk->subflow is still intact, the following will not free the first
3135 	 * subflow
3136 	 */
3137 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3138 	WRITE_ONCE(msk->flags, 0);
3139 	msk->cb_flags = 0;
3140 	msk->push_pending = 0;
3141 	msk->recovery = false;
3142 	msk->can_ack = false;
3143 	msk->fully_established = false;
3144 	msk->rcv_data_fin = false;
3145 	msk->snd_data_fin_enable = false;
3146 	msk->rcv_fastclose = false;
3147 	msk->use_64bit_ack = false;
3148 	msk->bytes_consumed = 0;
3149 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3150 	mptcp_pm_data_reset(msk);
3151 	mptcp_ca_reset(sk);
3152 	msk->bytes_acked = 0;
3153 	msk->bytes_received = 0;
3154 	msk->bytes_sent = 0;
3155 	msk->bytes_retrans = 0;
3156 
3157 	WRITE_ONCE(sk->sk_shutdown, 0);
3158 	sk_error_report(sk);
3159 	return 0;
3160 }
3161 
3162 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3163 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3164 {
3165 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3166 
3167 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3168 }
3169 #endif
3170 
3171 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3172 				 const struct mptcp_options_received *mp_opt,
3173 				 struct sock *ssk,
3174 				 struct request_sock *req)
3175 {
3176 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3177 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3178 	struct mptcp_sock *msk;
3179 
3180 	if (!nsk)
3181 		return NULL;
3182 
3183 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3184 	if (nsk->sk_family == AF_INET6)
3185 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3186 #endif
3187 
3188 	__mptcp_init_sock(nsk);
3189 
3190 	msk = mptcp_sk(nsk);
3191 	msk->local_key = subflow_req->local_key;
3192 	msk->token = subflow_req->token;
3193 	msk->in_accept_queue = 1;
3194 	WRITE_ONCE(msk->fully_established, false);
3195 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3196 		WRITE_ONCE(msk->csum_enabled, true);
3197 
3198 	msk->write_seq = subflow_req->idsn + 1;
3199 	msk->snd_nxt = msk->write_seq;
3200 	msk->snd_una = msk->write_seq;
3201 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3202 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3203 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3204 
3205 	/* passive msk is created after the first/MPC subflow */
3206 	msk->subflow_id = 2;
3207 
3208 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3209 	security_inet_csk_clone(nsk, req);
3210 
3211 	/* this can't race with mptcp_close(), as the msk is
3212 	 * not yet exposted to user-space
3213 	 */
3214 	inet_sk_state_store(nsk, TCP_ESTABLISHED);
3215 
3216 	/* The msk maintain a ref to each subflow in the connections list */
3217 	WRITE_ONCE(msk->first, ssk);
3218 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3219 	sock_hold(ssk);
3220 
3221 	/* new mpc subflow takes ownership of the newly
3222 	 * created mptcp socket
3223 	 */
3224 	mptcp_token_accept(subflow_req, msk);
3225 
3226 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3227 	 * uses the correct data
3228 	 */
3229 	mptcp_copy_inaddrs(nsk, ssk);
3230 	__mptcp_propagate_sndbuf(nsk, ssk);
3231 
3232 	mptcp_rcv_space_init(msk, ssk);
3233 	bh_unlock_sock(nsk);
3234 
3235 	/* note: the newly allocated socket refcount is 2 now */
3236 	return nsk;
3237 }
3238 
3239 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3240 {
3241 	const struct tcp_sock *tp = tcp_sk(ssk);
3242 
3243 	msk->rcvq_space.copied = 0;
3244 	msk->rcvq_space.rtt_us = 0;
3245 
3246 	msk->rcvq_space.time = tp->tcp_mstamp;
3247 
3248 	/* initial rcv_space offering made to peer */
3249 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3250 				      TCP_INIT_CWND * tp->advmss);
3251 	if (msk->rcvq_space.space == 0)
3252 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3253 
3254 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3255 }
3256 
3257 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err,
3258 				 bool kern)
3259 {
3260 	struct sock *newsk;
3261 
3262 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3263 	newsk = inet_csk_accept(ssk, flags, err, kern);
3264 	if (!newsk)
3265 		return NULL;
3266 
3267 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3268 	if (sk_is_mptcp(newsk)) {
3269 		struct mptcp_subflow_context *subflow;
3270 		struct sock *new_mptcp_sock;
3271 
3272 		subflow = mptcp_subflow_ctx(newsk);
3273 		new_mptcp_sock = subflow->conn;
3274 
3275 		/* is_mptcp should be false if subflow->conn is missing, see
3276 		 * subflow_syn_recv_sock()
3277 		 */
3278 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3279 			tcp_sk(newsk)->is_mptcp = 0;
3280 			goto out;
3281 		}
3282 
3283 		newsk = new_mptcp_sock;
3284 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3285 	} else {
3286 		MPTCP_INC_STATS(sock_net(ssk),
3287 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3288 	}
3289 
3290 out:
3291 	newsk->sk_kern_sock = kern;
3292 	return newsk;
3293 }
3294 
3295 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3296 {
3297 	struct mptcp_subflow_context *subflow, *tmp;
3298 	struct sock *sk = (struct sock *)msk;
3299 
3300 	__mptcp_clear_xmit(sk);
3301 
3302 	/* join list will be eventually flushed (with rst) at sock lock release time */
3303 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3304 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3305 
3306 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3307 	mptcp_data_lock(sk);
3308 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3309 	__skb_queue_purge(&sk->sk_receive_queue);
3310 	skb_rbtree_purge(&msk->out_of_order_queue);
3311 	mptcp_data_unlock(sk);
3312 
3313 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3314 	 * inet_sock_destruct() will dispose it
3315 	 */
3316 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3317 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3318 	mptcp_token_destroy(msk);
3319 	mptcp_pm_free_anno_list(msk);
3320 	mptcp_free_local_addr_list(msk);
3321 }
3322 
3323 static void mptcp_destroy(struct sock *sk)
3324 {
3325 	struct mptcp_sock *msk = mptcp_sk(sk);
3326 
3327 	/* allow the following to close even the initial subflow */
3328 	msk->free_first = 1;
3329 	mptcp_destroy_common(msk, 0);
3330 	sk_sockets_allocated_dec(sk);
3331 }
3332 
3333 void __mptcp_data_acked(struct sock *sk)
3334 {
3335 	if (!sock_owned_by_user(sk))
3336 		__mptcp_clean_una(sk);
3337 	else
3338 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3339 
3340 	if (mptcp_pending_data_fin_ack(sk))
3341 		mptcp_schedule_work(sk);
3342 }
3343 
3344 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3345 {
3346 	if (!mptcp_send_head(sk))
3347 		return;
3348 
3349 	if (!sock_owned_by_user(sk))
3350 		__mptcp_subflow_push_pending(sk, ssk, false);
3351 	else
3352 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3353 }
3354 
3355 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3356 				      BIT(MPTCP_RETRANSMIT) | \
3357 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3358 
3359 /* processes deferred events and flush wmem */
3360 static void mptcp_release_cb(struct sock *sk)
3361 	__must_hold(&sk->sk_lock.slock)
3362 {
3363 	struct mptcp_sock *msk = mptcp_sk(sk);
3364 
3365 	for (;;) {
3366 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3367 				      msk->push_pending;
3368 		struct list_head join_list;
3369 
3370 		if (!flags)
3371 			break;
3372 
3373 		INIT_LIST_HEAD(&join_list);
3374 		list_splice_init(&msk->join_list, &join_list);
3375 
3376 		/* the following actions acquire the subflow socket lock
3377 		 *
3378 		 * 1) can't be invoked in atomic scope
3379 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3380 		 *    datapath acquires the msk socket spinlock while helding
3381 		 *    the subflow socket lock
3382 		 */
3383 		msk->push_pending = 0;
3384 		msk->cb_flags &= ~flags;
3385 		spin_unlock_bh(&sk->sk_lock.slock);
3386 
3387 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3388 			__mptcp_flush_join_list(sk, &join_list);
3389 		if (flags & BIT(MPTCP_PUSH_PENDING))
3390 			__mptcp_push_pending(sk, 0);
3391 		if (flags & BIT(MPTCP_RETRANSMIT))
3392 			__mptcp_retrans(sk);
3393 
3394 		cond_resched();
3395 		spin_lock_bh(&sk->sk_lock.slock);
3396 	}
3397 
3398 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3399 		__mptcp_clean_una_wakeup(sk);
3400 	if (unlikely(msk->cb_flags)) {
3401 		/* be sure to set the current sk state before tacking actions
3402 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3403 		 */
3404 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3405 			__mptcp_set_connected(sk);
3406 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3407 			__mptcp_error_report(sk);
3408 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3409 			__mptcp_sync_sndbuf(sk);
3410 	}
3411 
3412 	__mptcp_update_rmem(sk);
3413 }
3414 
3415 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3416  * TCP can't schedule delack timer before the subflow is fully established.
3417  * MPTCP uses the delack timer to do 3rd ack retransmissions
3418  */
3419 static void schedule_3rdack_retransmission(struct sock *ssk)
3420 {
3421 	struct inet_connection_sock *icsk = inet_csk(ssk);
3422 	struct tcp_sock *tp = tcp_sk(ssk);
3423 	unsigned long timeout;
3424 
3425 	if (mptcp_subflow_ctx(ssk)->fully_established)
3426 		return;
3427 
3428 	/* reschedule with a timeout above RTT, as we must look only for drop */
3429 	if (tp->srtt_us)
3430 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3431 	else
3432 		timeout = TCP_TIMEOUT_INIT;
3433 	timeout += jiffies;
3434 
3435 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3436 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3437 	icsk->icsk_ack.timeout = timeout;
3438 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3439 }
3440 
3441 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3442 {
3443 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3444 	struct sock *sk = subflow->conn;
3445 
3446 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3447 		mptcp_data_lock(sk);
3448 		if (!sock_owned_by_user(sk))
3449 			__mptcp_subflow_push_pending(sk, ssk, true);
3450 		else
3451 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3452 		mptcp_data_unlock(sk);
3453 	}
3454 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3455 		mptcp_data_lock(sk);
3456 		if (!sock_owned_by_user(sk))
3457 			__mptcp_sync_sndbuf(sk);
3458 		else
3459 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3460 		mptcp_data_unlock(sk);
3461 	}
3462 	if (status & BIT(MPTCP_DELEGATE_ACK))
3463 		schedule_3rdack_retransmission(ssk);
3464 }
3465 
3466 static int mptcp_hash(struct sock *sk)
3467 {
3468 	/* should never be called,
3469 	 * we hash the TCP subflows not the master socket
3470 	 */
3471 	WARN_ON_ONCE(1);
3472 	return 0;
3473 }
3474 
3475 static void mptcp_unhash(struct sock *sk)
3476 {
3477 	/* called from sk_common_release(), but nothing to do here */
3478 }
3479 
3480 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3481 {
3482 	struct mptcp_sock *msk = mptcp_sk(sk);
3483 
3484 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3485 	if (WARN_ON_ONCE(!msk->first))
3486 		return -EINVAL;
3487 
3488 	return inet_csk_get_port(msk->first, snum);
3489 }
3490 
3491 void mptcp_finish_connect(struct sock *ssk)
3492 {
3493 	struct mptcp_subflow_context *subflow;
3494 	struct mptcp_sock *msk;
3495 	struct sock *sk;
3496 
3497 	subflow = mptcp_subflow_ctx(ssk);
3498 	sk = subflow->conn;
3499 	msk = mptcp_sk(sk);
3500 
3501 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3502 
3503 	subflow->map_seq = subflow->iasn;
3504 	subflow->map_subflow_seq = 1;
3505 
3506 	/* the socket is not connected yet, no msk/subflow ops can access/race
3507 	 * accessing the field below
3508 	 */
3509 	WRITE_ONCE(msk->local_key, subflow->local_key);
3510 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3511 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3512 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3513 
3514 	mptcp_pm_new_connection(msk, ssk, 0);
3515 
3516 	mptcp_rcv_space_init(msk, ssk);
3517 }
3518 
3519 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3520 {
3521 	write_lock_bh(&sk->sk_callback_lock);
3522 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3523 	sk_set_socket(sk, parent);
3524 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3525 	write_unlock_bh(&sk->sk_callback_lock);
3526 }
3527 
3528 bool mptcp_finish_join(struct sock *ssk)
3529 {
3530 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3531 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3532 	struct sock *parent = (void *)msk;
3533 	bool ret = true;
3534 
3535 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3536 
3537 	/* mptcp socket already closing? */
3538 	if (!mptcp_is_fully_established(parent)) {
3539 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3540 		return false;
3541 	}
3542 
3543 	/* active subflow, already present inside the conn_list */
3544 	if (!list_empty(&subflow->node)) {
3545 		mptcp_subflow_joined(msk, ssk);
3546 		mptcp_propagate_sndbuf(parent, ssk);
3547 		return true;
3548 	}
3549 
3550 	if (!mptcp_pm_allow_new_subflow(msk))
3551 		goto err_prohibited;
3552 
3553 	/* If we can't acquire msk socket lock here, let the release callback
3554 	 * handle it
3555 	 */
3556 	mptcp_data_lock(parent);
3557 	if (!sock_owned_by_user(parent)) {
3558 		ret = __mptcp_finish_join(msk, ssk);
3559 		if (ret) {
3560 			sock_hold(ssk);
3561 			list_add_tail(&subflow->node, &msk->conn_list);
3562 		}
3563 	} else {
3564 		sock_hold(ssk);
3565 		list_add_tail(&subflow->node, &msk->join_list);
3566 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3567 	}
3568 	mptcp_data_unlock(parent);
3569 
3570 	if (!ret) {
3571 err_prohibited:
3572 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3573 		return false;
3574 	}
3575 
3576 	return true;
3577 }
3578 
3579 static void mptcp_shutdown(struct sock *sk, int how)
3580 {
3581 	pr_debug("sk=%p, how=%d", sk, how);
3582 
3583 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3584 		__mptcp_wr_shutdown(sk);
3585 }
3586 
3587 static int mptcp_forward_alloc_get(const struct sock *sk)
3588 {
3589 	return READ_ONCE(sk->sk_forward_alloc) +
3590 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3591 }
3592 
3593 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3594 {
3595 	const struct sock *sk = (void *)msk;
3596 	u64 delta;
3597 
3598 	if (sk->sk_state == TCP_LISTEN)
3599 		return -EINVAL;
3600 
3601 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3602 		return 0;
3603 
3604 	delta = msk->write_seq - v;
3605 	if (__mptcp_check_fallback(msk) && msk->first) {
3606 		struct tcp_sock *tp = tcp_sk(msk->first);
3607 
3608 		/* the first subflow is disconnected after close - see
3609 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3610 		 * so ignore that status, too.
3611 		 */
3612 		if (!((1 << msk->first->sk_state) &
3613 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3614 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3615 	}
3616 	if (delta > INT_MAX)
3617 		delta = INT_MAX;
3618 
3619 	return (int)delta;
3620 }
3621 
3622 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3623 {
3624 	struct mptcp_sock *msk = mptcp_sk(sk);
3625 	bool slow;
3626 
3627 	switch (cmd) {
3628 	case SIOCINQ:
3629 		if (sk->sk_state == TCP_LISTEN)
3630 			return -EINVAL;
3631 
3632 		lock_sock(sk);
3633 		__mptcp_move_skbs(msk);
3634 		*karg = mptcp_inq_hint(sk);
3635 		release_sock(sk);
3636 		break;
3637 	case SIOCOUTQ:
3638 		slow = lock_sock_fast(sk);
3639 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3640 		unlock_sock_fast(sk, slow);
3641 		break;
3642 	case SIOCOUTQNSD:
3643 		slow = lock_sock_fast(sk);
3644 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3645 		unlock_sock_fast(sk, slow);
3646 		break;
3647 	default:
3648 		return -ENOIOCTLCMD;
3649 	}
3650 
3651 	return 0;
3652 }
3653 
3654 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3655 					 struct mptcp_subflow_context *subflow)
3656 {
3657 	subflow->request_mptcp = 0;
3658 	__mptcp_do_fallback(msk);
3659 }
3660 
3661 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3662 {
3663 	struct mptcp_subflow_context *subflow;
3664 	struct mptcp_sock *msk = mptcp_sk(sk);
3665 	int err = -EINVAL;
3666 	struct sock *ssk;
3667 
3668 	ssk = __mptcp_nmpc_sk(msk);
3669 	if (IS_ERR(ssk))
3670 		return PTR_ERR(ssk);
3671 
3672 	inet_sk_state_store(sk, TCP_SYN_SENT);
3673 	subflow = mptcp_subflow_ctx(ssk);
3674 #ifdef CONFIG_TCP_MD5SIG
3675 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3676 	 * TCP option space.
3677 	 */
3678 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3679 		mptcp_subflow_early_fallback(msk, subflow);
3680 #endif
3681 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3682 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3683 		mptcp_subflow_early_fallback(msk, subflow);
3684 	}
3685 	if (likely(!__mptcp_check_fallback(msk)))
3686 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3687 
3688 	/* if reaching here via the fastopen/sendmsg path, the caller already
3689 	 * acquired the subflow socket lock, too.
3690 	 */
3691 	if (!msk->fastopening)
3692 		lock_sock(ssk);
3693 
3694 	/* the following mirrors closely a very small chunk of code from
3695 	 * __inet_stream_connect()
3696 	 */
3697 	if (ssk->sk_state != TCP_CLOSE)
3698 		goto out;
3699 
3700 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3701 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3702 		if (err)
3703 			goto out;
3704 	}
3705 
3706 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3707 	if (err < 0)
3708 		goto out;
3709 
3710 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3711 
3712 out:
3713 	if (!msk->fastopening)
3714 		release_sock(ssk);
3715 
3716 	/* on successful connect, the msk state will be moved to established by
3717 	 * subflow_finish_connect()
3718 	 */
3719 	if (unlikely(err)) {
3720 		/* avoid leaving a dangling token in an unconnected socket */
3721 		mptcp_token_destroy(msk);
3722 		inet_sk_state_store(sk, TCP_CLOSE);
3723 		return err;
3724 	}
3725 
3726 	mptcp_copy_inaddrs(sk, ssk);
3727 	return 0;
3728 }
3729 
3730 static struct proto mptcp_prot = {
3731 	.name		= "MPTCP",
3732 	.owner		= THIS_MODULE,
3733 	.init		= mptcp_init_sock,
3734 	.connect	= mptcp_connect,
3735 	.disconnect	= mptcp_disconnect,
3736 	.close		= mptcp_close,
3737 	.accept		= mptcp_accept,
3738 	.setsockopt	= mptcp_setsockopt,
3739 	.getsockopt	= mptcp_getsockopt,
3740 	.shutdown	= mptcp_shutdown,
3741 	.destroy	= mptcp_destroy,
3742 	.sendmsg	= mptcp_sendmsg,
3743 	.ioctl		= mptcp_ioctl,
3744 	.recvmsg	= mptcp_recvmsg,
3745 	.release_cb	= mptcp_release_cb,
3746 	.hash		= mptcp_hash,
3747 	.unhash		= mptcp_unhash,
3748 	.get_port	= mptcp_get_port,
3749 	.forward_alloc_get	= mptcp_forward_alloc_get,
3750 	.sockets_allocated	= &mptcp_sockets_allocated,
3751 
3752 	.memory_allocated	= &tcp_memory_allocated,
3753 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3754 
3755 	.memory_pressure	= &tcp_memory_pressure,
3756 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3757 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3758 	.sysctl_mem	= sysctl_tcp_mem,
3759 	.obj_size	= sizeof(struct mptcp_sock),
3760 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3761 	.no_autobind	= true,
3762 };
3763 
3764 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3765 {
3766 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3767 	struct sock *ssk, *sk = sock->sk;
3768 	int err = -EINVAL;
3769 
3770 	lock_sock(sk);
3771 	ssk = __mptcp_nmpc_sk(msk);
3772 	if (IS_ERR(ssk)) {
3773 		err = PTR_ERR(ssk);
3774 		goto unlock;
3775 	}
3776 
3777 	if (sk->sk_family == AF_INET)
3778 		err = inet_bind_sk(ssk, uaddr, addr_len);
3779 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3780 	else if (sk->sk_family == AF_INET6)
3781 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3782 #endif
3783 	if (!err)
3784 		mptcp_copy_inaddrs(sk, ssk);
3785 
3786 unlock:
3787 	release_sock(sk);
3788 	return err;
3789 }
3790 
3791 static int mptcp_listen(struct socket *sock, int backlog)
3792 {
3793 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3794 	struct sock *sk = sock->sk;
3795 	struct sock *ssk;
3796 	int err;
3797 
3798 	pr_debug("msk=%p", msk);
3799 
3800 	lock_sock(sk);
3801 
3802 	err = -EINVAL;
3803 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3804 		goto unlock;
3805 
3806 	ssk = __mptcp_nmpc_sk(msk);
3807 	if (IS_ERR(ssk)) {
3808 		err = PTR_ERR(ssk);
3809 		goto unlock;
3810 	}
3811 
3812 	inet_sk_state_store(sk, TCP_LISTEN);
3813 	sock_set_flag(sk, SOCK_RCU_FREE);
3814 
3815 	lock_sock(ssk);
3816 	err = __inet_listen_sk(ssk, backlog);
3817 	release_sock(ssk);
3818 	inet_sk_state_store(sk, inet_sk_state_load(ssk));
3819 
3820 	if (!err) {
3821 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3822 		mptcp_copy_inaddrs(sk, ssk);
3823 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3824 	}
3825 
3826 unlock:
3827 	release_sock(sk);
3828 	return err;
3829 }
3830 
3831 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3832 			       int flags, bool kern)
3833 {
3834 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3835 	struct sock *ssk, *newsk;
3836 	int err;
3837 
3838 	pr_debug("msk=%p", msk);
3839 
3840 	/* Buggy applications can call accept on socket states other then LISTEN
3841 	 * but no need to allocate the first subflow just to error out.
3842 	 */
3843 	ssk = READ_ONCE(msk->first);
3844 	if (!ssk)
3845 		return -EINVAL;
3846 
3847 	newsk = mptcp_accept(ssk, flags, &err, kern);
3848 	if (!newsk)
3849 		return err;
3850 
3851 	lock_sock(newsk);
3852 
3853 	__inet_accept(sock, newsock, newsk);
3854 	if (!mptcp_is_tcpsk(newsock->sk)) {
3855 		struct mptcp_sock *msk = mptcp_sk(newsk);
3856 		struct mptcp_subflow_context *subflow;
3857 
3858 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3859 		msk->in_accept_queue = 0;
3860 
3861 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3862 		 * This is needed so NOSPACE flag can be set from tcp stack.
3863 		 */
3864 		mptcp_for_each_subflow(msk, subflow) {
3865 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3866 
3867 			if (!ssk->sk_socket)
3868 				mptcp_sock_graft(ssk, newsock);
3869 		}
3870 
3871 		/* Do late cleanup for the first subflow as necessary. Also
3872 		 * deal with bad peers not doing a complete shutdown.
3873 		 */
3874 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3875 			__mptcp_close_ssk(newsk, msk->first,
3876 					  mptcp_subflow_ctx(msk->first), 0);
3877 			if (unlikely(list_is_singular(&msk->conn_list)))
3878 				inet_sk_state_store(newsk, TCP_CLOSE);
3879 		}
3880 	}
3881 	release_sock(newsk);
3882 
3883 	return 0;
3884 }
3885 
3886 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3887 {
3888 	struct sock *sk = (struct sock *)msk;
3889 
3890 	if (sk_stream_is_writeable(sk))
3891 		return EPOLLOUT | EPOLLWRNORM;
3892 
3893 	mptcp_set_nospace(sk);
3894 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3895 	if (sk_stream_is_writeable(sk))
3896 		return EPOLLOUT | EPOLLWRNORM;
3897 
3898 	return 0;
3899 }
3900 
3901 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3902 			   struct poll_table_struct *wait)
3903 {
3904 	struct sock *sk = sock->sk;
3905 	struct mptcp_sock *msk;
3906 	__poll_t mask = 0;
3907 	u8 shutdown;
3908 	int state;
3909 
3910 	msk = mptcp_sk(sk);
3911 	sock_poll_wait(file, sock, wait);
3912 
3913 	state = inet_sk_state_load(sk);
3914 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3915 	if (state == TCP_LISTEN) {
3916 		struct sock *ssk = READ_ONCE(msk->first);
3917 
3918 		if (WARN_ON_ONCE(!ssk))
3919 			return 0;
3920 
3921 		return inet_csk_listen_poll(ssk);
3922 	}
3923 
3924 	shutdown = READ_ONCE(sk->sk_shutdown);
3925 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3926 		mask |= EPOLLHUP;
3927 	if (shutdown & RCV_SHUTDOWN)
3928 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3929 
3930 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3931 		mask |= mptcp_check_readable(sk);
3932 		if (shutdown & SEND_SHUTDOWN)
3933 			mask |= EPOLLOUT | EPOLLWRNORM;
3934 		else
3935 			mask |= mptcp_check_writeable(msk);
3936 	} else if (state == TCP_SYN_SENT &&
3937 		   inet_test_bit(DEFER_CONNECT, sk)) {
3938 		/* cf tcp_poll() note about TFO */
3939 		mask |= EPOLLOUT | EPOLLWRNORM;
3940 	}
3941 
3942 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3943 	smp_rmb();
3944 	if (READ_ONCE(sk->sk_err))
3945 		mask |= EPOLLERR;
3946 
3947 	return mask;
3948 }
3949 
3950 static const struct proto_ops mptcp_stream_ops = {
3951 	.family		   = PF_INET,
3952 	.owner		   = THIS_MODULE,
3953 	.release	   = inet_release,
3954 	.bind		   = mptcp_bind,
3955 	.connect	   = inet_stream_connect,
3956 	.socketpair	   = sock_no_socketpair,
3957 	.accept		   = mptcp_stream_accept,
3958 	.getname	   = inet_getname,
3959 	.poll		   = mptcp_poll,
3960 	.ioctl		   = inet_ioctl,
3961 	.gettstamp	   = sock_gettstamp,
3962 	.listen		   = mptcp_listen,
3963 	.shutdown	   = inet_shutdown,
3964 	.setsockopt	   = sock_common_setsockopt,
3965 	.getsockopt	   = sock_common_getsockopt,
3966 	.sendmsg	   = inet_sendmsg,
3967 	.recvmsg	   = inet_recvmsg,
3968 	.mmap		   = sock_no_mmap,
3969 	.set_rcvlowat	   = mptcp_set_rcvlowat,
3970 };
3971 
3972 static struct inet_protosw mptcp_protosw = {
3973 	.type		= SOCK_STREAM,
3974 	.protocol	= IPPROTO_MPTCP,
3975 	.prot		= &mptcp_prot,
3976 	.ops		= &mptcp_stream_ops,
3977 	.flags		= INET_PROTOSW_ICSK,
3978 };
3979 
3980 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3981 {
3982 	struct mptcp_delegated_action *delegated;
3983 	struct mptcp_subflow_context *subflow;
3984 	int work_done = 0;
3985 
3986 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3987 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3988 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3989 
3990 		bh_lock_sock_nested(ssk);
3991 		if (!sock_owned_by_user(ssk)) {
3992 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
3993 		} else {
3994 			/* tcp_release_cb_override already processed
3995 			 * the action or will do at next release_sock().
3996 			 * In both case must dequeue the subflow here - on the same
3997 			 * CPU that scheduled it.
3998 			 */
3999 			smp_wmb();
4000 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4001 		}
4002 		bh_unlock_sock(ssk);
4003 		sock_put(ssk);
4004 
4005 		if (++work_done == budget)
4006 			return budget;
4007 	}
4008 
4009 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4010 	 * will not try accessing the NULL napi->dev ptr
4011 	 */
4012 	napi_complete_done(napi, 0);
4013 	return work_done;
4014 }
4015 
4016 void __init mptcp_proto_init(void)
4017 {
4018 	struct mptcp_delegated_action *delegated;
4019 	int cpu;
4020 
4021 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4022 
4023 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4024 		panic("Failed to allocate MPTCP pcpu counter\n");
4025 
4026 	init_dummy_netdev(&mptcp_napi_dev);
4027 	for_each_possible_cpu(cpu) {
4028 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4029 		INIT_LIST_HEAD(&delegated->head);
4030 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4031 				  mptcp_napi_poll);
4032 		napi_enable(&delegated->napi);
4033 	}
4034 
4035 	mptcp_subflow_init();
4036 	mptcp_pm_init();
4037 	mptcp_sched_init();
4038 	mptcp_token_init();
4039 
4040 	if (proto_register(&mptcp_prot, 1) != 0)
4041 		panic("Failed to register MPTCP proto.\n");
4042 
4043 	inet_register_protosw(&mptcp_protosw);
4044 
4045 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4046 }
4047 
4048 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4049 static const struct proto_ops mptcp_v6_stream_ops = {
4050 	.family		   = PF_INET6,
4051 	.owner		   = THIS_MODULE,
4052 	.release	   = inet6_release,
4053 	.bind		   = mptcp_bind,
4054 	.connect	   = inet_stream_connect,
4055 	.socketpair	   = sock_no_socketpair,
4056 	.accept		   = mptcp_stream_accept,
4057 	.getname	   = inet6_getname,
4058 	.poll		   = mptcp_poll,
4059 	.ioctl		   = inet6_ioctl,
4060 	.gettstamp	   = sock_gettstamp,
4061 	.listen		   = mptcp_listen,
4062 	.shutdown	   = inet_shutdown,
4063 	.setsockopt	   = sock_common_setsockopt,
4064 	.getsockopt	   = sock_common_getsockopt,
4065 	.sendmsg	   = inet6_sendmsg,
4066 	.recvmsg	   = inet6_recvmsg,
4067 	.mmap		   = sock_no_mmap,
4068 #ifdef CONFIG_COMPAT
4069 	.compat_ioctl	   = inet6_compat_ioctl,
4070 #endif
4071 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4072 };
4073 
4074 static struct proto mptcp_v6_prot;
4075 
4076 static struct inet_protosw mptcp_v6_protosw = {
4077 	.type		= SOCK_STREAM,
4078 	.protocol	= IPPROTO_MPTCP,
4079 	.prot		= &mptcp_v6_prot,
4080 	.ops		= &mptcp_v6_stream_ops,
4081 	.flags		= INET_PROTOSW_ICSK,
4082 };
4083 
4084 int __init mptcp_proto_v6_init(void)
4085 {
4086 	int err;
4087 
4088 	mptcp_v6_prot = mptcp_prot;
4089 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4090 	mptcp_v6_prot.slab = NULL;
4091 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4092 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4093 
4094 	err = proto_register(&mptcp_v6_prot, 1);
4095 	if (err)
4096 		return err;
4097 
4098 	err = inet6_register_protosw(&mptcp_v6_protosw);
4099 	if (err)
4100 		proto_unregister(&mptcp_v6_prot);
4101 
4102 	return err;
4103 }
4104 #endif
4105