1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 WRITE_ONCE(sock->ops, &inet_stream_ops); 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 WRITE_ONCE(sock->ops, &inet6_stream_ops); 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 94 WRITE_ONCE(msk->first, ssock->sk); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 subflow->local_id_valid = 1; 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 iput(SOCK_INODE(ssock)); 105 106 return 0; 107 } 108 109 /* If the MPC handshake is not started, returns the first subflow, 110 * eventually allocating it. 111 */ 112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 113 { 114 struct sock *sk = (struct sock *)msk; 115 int ret; 116 117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 118 return ERR_PTR(-EINVAL); 119 120 if (!msk->first) { 121 ret = __mptcp_socket_create(msk); 122 if (ret) 123 return ERR_PTR(ret); 124 } 125 126 return msk->first; 127 } 128 129 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 130 { 131 sk_drops_add(sk, skb); 132 __kfree_skb(skb); 133 } 134 135 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 136 { 137 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 138 mptcp_sk(sk)->rmem_fwd_alloc + size); 139 } 140 141 static void mptcp_rmem_charge(struct sock *sk, int size) 142 { 143 mptcp_rmem_fwd_alloc_add(sk, -size); 144 } 145 146 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 147 struct sk_buff *from) 148 { 149 bool fragstolen; 150 int delta; 151 152 if (MPTCP_SKB_CB(from)->offset || 153 !skb_try_coalesce(to, from, &fragstolen, &delta)) 154 return false; 155 156 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 157 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 158 to->len, MPTCP_SKB_CB(from)->end_seq); 159 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 160 161 /* note the fwd memory can reach a negative value after accounting 162 * for the delta, but the later skb free will restore a non 163 * negative one 164 */ 165 atomic_add(delta, &sk->sk_rmem_alloc); 166 mptcp_rmem_charge(sk, delta); 167 kfree_skb_partial(from, fragstolen); 168 169 return true; 170 } 171 172 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 173 struct sk_buff *from) 174 { 175 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 176 return false; 177 178 return mptcp_try_coalesce((struct sock *)msk, to, from); 179 } 180 181 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 182 { 183 amount >>= PAGE_SHIFT; 184 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 185 __sk_mem_reduce_allocated(sk, amount); 186 } 187 188 static void mptcp_rmem_uncharge(struct sock *sk, int size) 189 { 190 struct mptcp_sock *msk = mptcp_sk(sk); 191 int reclaimable; 192 193 mptcp_rmem_fwd_alloc_add(sk, size); 194 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 195 196 /* see sk_mem_uncharge() for the rationale behind the following schema */ 197 if (unlikely(reclaimable >= PAGE_SIZE)) 198 __mptcp_rmem_reclaim(sk, reclaimable); 199 } 200 201 static void mptcp_rfree(struct sk_buff *skb) 202 { 203 unsigned int len = skb->truesize; 204 struct sock *sk = skb->sk; 205 206 atomic_sub(len, &sk->sk_rmem_alloc); 207 mptcp_rmem_uncharge(sk, len); 208 } 209 210 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 211 { 212 skb_orphan(skb); 213 skb->sk = sk; 214 skb->destructor = mptcp_rfree; 215 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 216 mptcp_rmem_charge(sk, skb->truesize); 217 } 218 219 /* "inspired" by tcp_data_queue_ofo(), main differences: 220 * - use mptcp seqs 221 * - don't cope with sacks 222 */ 223 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 224 { 225 struct sock *sk = (struct sock *)msk; 226 struct rb_node **p, *parent; 227 u64 seq, end_seq, max_seq; 228 struct sk_buff *skb1; 229 230 seq = MPTCP_SKB_CB(skb)->map_seq; 231 end_seq = MPTCP_SKB_CB(skb)->end_seq; 232 max_seq = atomic64_read(&msk->rcv_wnd_sent); 233 234 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 235 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 236 if (after64(end_seq, max_seq)) { 237 /* out of window */ 238 mptcp_drop(sk, skb); 239 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 240 (unsigned long long)end_seq - (unsigned long)max_seq, 241 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 242 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 243 return; 244 } 245 246 p = &msk->out_of_order_queue.rb_node; 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 248 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 249 rb_link_node(&skb->rbnode, NULL, p); 250 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 251 msk->ooo_last_skb = skb; 252 goto end; 253 } 254 255 /* with 2 subflows, adding at end of ooo queue is quite likely 256 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 257 */ 258 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 260 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 261 return; 262 } 263 264 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 265 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 266 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 267 parent = &msk->ooo_last_skb->rbnode; 268 p = &parent->rb_right; 269 goto insert; 270 } 271 272 /* Find place to insert this segment. Handle overlaps on the way. */ 273 parent = NULL; 274 while (*p) { 275 parent = *p; 276 skb1 = rb_to_skb(parent); 277 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 278 p = &parent->rb_left; 279 continue; 280 } 281 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 282 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 283 /* All the bits are present. Drop. */ 284 mptcp_drop(sk, skb); 285 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 286 return; 287 } 288 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 289 /* partial overlap: 290 * | skb | 291 * | skb1 | 292 * continue traversing 293 */ 294 } else { 295 /* skb's seq == skb1's seq and skb covers skb1. 296 * Replace skb1 with skb. 297 */ 298 rb_replace_node(&skb1->rbnode, &skb->rbnode, 299 &msk->out_of_order_queue); 300 mptcp_drop(sk, skb1); 301 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 302 goto merge_right; 303 } 304 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 305 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 306 return; 307 } 308 p = &parent->rb_right; 309 } 310 311 insert: 312 /* Insert segment into RB tree. */ 313 rb_link_node(&skb->rbnode, parent, p); 314 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 315 316 merge_right: 317 /* Remove other segments covered by skb. */ 318 while ((skb1 = skb_rb_next(skb)) != NULL) { 319 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 320 break; 321 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 322 mptcp_drop(sk, skb1); 323 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 324 } 325 /* If there is no skb after us, we are the last_skb ! */ 326 if (!skb1) 327 msk->ooo_last_skb = skb; 328 329 end: 330 skb_condense(skb); 331 mptcp_set_owner_r(skb, sk); 332 } 333 334 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 335 { 336 struct mptcp_sock *msk = mptcp_sk(sk); 337 int amt, amount; 338 339 if (size <= msk->rmem_fwd_alloc) 340 return true; 341 342 size -= msk->rmem_fwd_alloc; 343 amt = sk_mem_pages(size); 344 amount = amt << PAGE_SHIFT; 345 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 346 return false; 347 348 mptcp_rmem_fwd_alloc_add(sk, amount); 349 return true; 350 } 351 352 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 353 struct sk_buff *skb, unsigned int offset, 354 size_t copy_len) 355 { 356 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 357 struct sock *sk = (struct sock *)msk; 358 struct sk_buff *tail; 359 bool has_rxtstamp; 360 361 __skb_unlink(skb, &ssk->sk_receive_queue); 362 363 skb_ext_reset(skb); 364 skb_orphan(skb); 365 366 /* try to fetch required memory from subflow */ 367 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 368 goto drop; 369 370 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 371 372 /* the skb map_seq accounts for the skb offset: 373 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 374 * value 375 */ 376 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 377 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 378 MPTCP_SKB_CB(skb)->offset = offset; 379 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 380 381 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 382 /* in sequence */ 383 msk->bytes_received += copy_len; 384 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 385 tail = skb_peek_tail(&sk->sk_receive_queue); 386 if (tail && mptcp_try_coalesce(sk, tail, skb)) 387 return true; 388 389 mptcp_set_owner_r(skb, sk); 390 __skb_queue_tail(&sk->sk_receive_queue, skb); 391 return true; 392 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 393 mptcp_data_queue_ofo(msk, skb); 394 return false; 395 } 396 397 /* old data, keep it simple and drop the whole pkt, sender 398 * will retransmit as needed, if needed. 399 */ 400 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 401 drop: 402 mptcp_drop(sk, skb); 403 return false; 404 } 405 406 static void mptcp_stop_rtx_timer(struct sock *sk) 407 { 408 struct inet_connection_sock *icsk = inet_csk(sk); 409 410 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 411 mptcp_sk(sk)->timer_ival = 0; 412 } 413 414 static void mptcp_close_wake_up(struct sock *sk) 415 { 416 if (sock_flag(sk, SOCK_DEAD)) 417 return; 418 419 sk->sk_state_change(sk); 420 if (sk->sk_shutdown == SHUTDOWN_MASK || 421 sk->sk_state == TCP_CLOSE) 422 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 423 else 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 425 } 426 427 static bool mptcp_pending_data_fin_ack(struct sock *sk) 428 { 429 struct mptcp_sock *msk = mptcp_sk(sk); 430 431 return ((1 << sk->sk_state) & 432 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 433 msk->write_seq == READ_ONCE(msk->snd_una); 434 } 435 436 static void mptcp_check_data_fin_ack(struct sock *sk) 437 { 438 struct mptcp_sock *msk = mptcp_sk(sk); 439 440 /* Look for an acknowledged DATA_FIN */ 441 if (mptcp_pending_data_fin_ack(sk)) { 442 WRITE_ONCE(msk->snd_data_fin_enable, 0); 443 444 switch (sk->sk_state) { 445 case TCP_FIN_WAIT1: 446 inet_sk_state_store(sk, TCP_FIN_WAIT2); 447 break; 448 case TCP_CLOSING: 449 case TCP_LAST_ACK: 450 inet_sk_state_store(sk, TCP_CLOSE); 451 break; 452 } 453 454 mptcp_close_wake_up(sk); 455 } 456 } 457 458 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 459 { 460 struct mptcp_sock *msk = mptcp_sk(sk); 461 462 if (READ_ONCE(msk->rcv_data_fin) && 463 ((1 << sk->sk_state) & 464 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 465 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 466 467 if (msk->ack_seq == rcv_data_fin_seq) { 468 if (seq) 469 *seq = rcv_data_fin_seq; 470 471 return true; 472 } 473 } 474 475 return false; 476 } 477 478 static void mptcp_set_datafin_timeout(struct sock *sk) 479 { 480 struct inet_connection_sock *icsk = inet_csk(sk); 481 u32 retransmits; 482 483 retransmits = min_t(u32, icsk->icsk_retransmits, 484 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 485 486 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 487 } 488 489 static void __mptcp_set_timeout(struct sock *sk, long tout) 490 { 491 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 492 } 493 494 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 495 { 496 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 497 498 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 499 inet_csk(ssk)->icsk_timeout - jiffies : 0; 500 } 501 502 static void mptcp_set_timeout(struct sock *sk) 503 { 504 struct mptcp_subflow_context *subflow; 505 long tout = 0; 506 507 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 508 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 509 __mptcp_set_timeout(sk, tout); 510 } 511 512 static inline bool tcp_can_send_ack(const struct sock *ssk) 513 { 514 return !((1 << inet_sk_state_load(ssk)) & 515 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 516 } 517 518 void __mptcp_subflow_send_ack(struct sock *ssk) 519 { 520 if (tcp_can_send_ack(ssk)) 521 tcp_send_ack(ssk); 522 } 523 524 static void mptcp_subflow_send_ack(struct sock *ssk) 525 { 526 bool slow; 527 528 slow = lock_sock_fast(ssk); 529 __mptcp_subflow_send_ack(ssk); 530 unlock_sock_fast(ssk, slow); 531 } 532 533 static void mptcp_send_ack(struct mptcp_sock *msk) 534 { 535 struct mptcp_subflow_context *subflow; 536 537 mptcp_for_each_subflow(msk, subflow) 538 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 539 } 540 541 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 542 { 543 bool slow; 544 545 slow = lock_sock_fast(ssk); 546 if (tcp_can_send_ack(ssk)) 547 tcp_cleanup_rbuf(ssk, 1); 548 unlock_sock_fast(ssk, slow); 549 } 550 551 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 552 { 553 const struct inet_connection_sock *icsk = inet_csk(ssk); 554 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 555 const struct tcp_sock *tp = tcp_sk(ssk); 556 557 return (ack_pending & ICSK_ACK_SCHED) && 558 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 559 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 560 (rx_empty && ack_pending & 561 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 562 } 563 564 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 565 { 566 int old_space = READ_ONCE(msk->old_wspace); 567 struct mptcp_subflow_context *subflow; 568 struct sock *sk = (struct sock *)msk; 569 int space = __mptcp_space(sk); 570 bool cleanup, rx_empty; 571 572 cleanup = (space > 0) && (space >= (old_space << 1)); 573 rx_empty = !__mptcp_rmem(sk); 574 575 mptcp_for_each_subflow(msk, subflow) { 576 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 577 578 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 579 mptcp_subflow_cleanup_rbuf(ssk); 580 } 581 } 582 583 static bool mptcp_check_data_fin(struct sock *sk) 584 { 585 struct mptcp_sock *msk = mptcp_sk(sk); 586 u64 rcv_data_fin_seq; 587 bool ret = false; 588 589 /* Need to ack a DATA_FIN received from a peer while this side 590 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 591 * msk->rcv_data_fin was set when parsing the incoming options 592 * at the subflow level and the msk lock was not held, so this 593 * is the first opportunity to act on the DATA_FIN and change 594 * the msk state. 595 * 596 * If we are caught up to the sequence number of the incoming 597 * DATA_FIN, send the DATA_ACK now and do state transition. If 598 * not caught up, do nothing and let the recv code send DATA_ACK 599 * when catching up. 600 */ 601 602 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 603 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 604 WRITE_ONCE(msk->rcv_data_fin, 0); 605 606 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 607 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 608 609 switch (sk->sk_state) { 610 case TCP_ESTABLISHED: 611 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 612 break; 613 case TCP_FIN_WAIT1: 614 inet_sk_state_store(sk, TCP_CLOSING); 615 break; 616 case TCP_FIN_WAIT2: 617 inet_sk_state_store(sk, TCP_CLOSE); 618 break; 619 default: 620 /* Other states not expected */ 621 WARN_ON_ONCE(1); 622 break; 623 } 624 625 ret = true; 626 if (!__mptcp_check_fallback(msk)) 627 mptcp_send_ack(msk); 628 mptcp_close_wake_up(sk); 629 } 630 return ret; 631 } 632 633 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 634 struct sock *ssk, 635 unsigned int *bytes) 636 { 637 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 638 struct sock *sk = (struct sock *)msk; 639 unsigned int moved = 0; 640 bool more_data_avail; 641 struct tcp_sock *tp; 642 bool done = false; 643 int sk_rbuf; 644 645 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 646 647 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 648 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 649 650 if (unlikely(ssk_rbuf > sk_rbuf)) { 651 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 652 sk_rbuf = ssk_rbuf; 653 } 654 } 655 656 pr_debug("msk=%p ssk=%p", msk, ssk); 657 tp = tcp_sk(ssk); 658 do { 659 u32 map_remaining, offset; 660 u32 seq = tp->copied_seq; 661 struct sk_buff *skb; 662 bool fin; 663 664 /* try to move as much data as available */ 665 map_remaining = subflow->map_data_len - 666 mptcp_subflow_get_map_offset(subflow); 667 668 skb = skb_peek(&ssk->sk_receive_queue); 669 if (!skb) { 670 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 671 * a different CPU can have already processed the pending 672 * data, stop here or we can enter an infinite loop 673 */ 674 if (!moved) 675 done = true; 676 break; 677 } 678 679 if (__mptcp_check_fallback(msk)) { 680 /* Under fallback skbs have no MPTCP extension and TCP could 681 * collapse them between the dummy map creation and the 682 * current dequeue. Be sure to adjust the map size. 683 */ 684 map_remaining = skb->len; 685 subflow->map_data_len = skb->len; 686 } 687 688 offset = seq - TCP_SKB_CB(skb)->seq; 689 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 690 if (fin) { 691 done = true; 692 seq++; 693 } 694 695 if (offset < skb->len) { 696 size_t len = skb->len - offset; 697 698 if (tp->urg_data) 699 done = true; 700 701 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 702 moved += len; 703 seq += len; 704 705 if (WARN_ON_ONCE(map_remaining < len)) 706 break; 707 } else { 708 WARN_ON_ONCE(!fin); 709 sk_eat_skb(ssk, skb); 710 done = true; 711 } 712 713 WRITE_ONCE(tp->copied_seq, seq); 714 more_data_avail = mptcp_subflow_data_available(ssk); 715 716 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 717 done = true; 718 break; 719 } 720 } while (more_data_avail); 721 722 *bytes += moved; 723 return done; 724 } 725 726 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 727 { 728 struct sock *sk = (struct sock *)msk; 729 struct sk_buff *skb, *tail; 730 bool moved = false; 731 struct rb_node *p; 732 u64 end_seq; 733 734 p = rb_first(&msk->out_of_order_queue); 735 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 736 while (p) { 737 skb = rb_to_skb(p); 738 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 739 break; 740 741 p = rb_next(p); 742 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 743 744 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 745 msk->ack_seq))) { 746 mptcp_drop(sk, skb); 747 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 748 continue; 749 } 750 751 end_seq = MPTCP_SKB_CB(skb)->end_seq; 752 tail = skb_peek_tail(&sk->sk_receive_queue); 753 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 754 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 755 756 /* skip overlapping data, if any */ 757 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 758 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 759 delta); 760 MPTCP_SKB_CB(skb)->offset += delta; 761 MPTCP_SKB_CB(skb)->map_seq += delta; 762 __skb_queue_tail(&sk->sk_receive_queue, skb); 763 } 764 msk->bytes_received += end_seq - msk->ack_seq; 765 msk->ack_seq = end_seq; 766 moved = true; 767 } 768 return moved; 769 } 770 771 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 772 { 773 int err = sock_error(ssk); 774 int ssk_state; 775 776 if (!err) 777 return false; 778 779 /* only propagate errors on fallen-back sockets or 780 * on MPC connect 781 */ 782 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 783 return false; 784 785 /* We need to propagate only transition to CLOSE state. 786 * Orphaned socket will see such state change via 787 * subflow_sched_work_if_closed() and that path will properly 788 * destroy the msk as needed. 789 */ 790 ssk_state = inet_sk_state_load(ssk); 791 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 792 inet_sk_state_store(sk, ssk_state); 793 WRITE_ONCE(sk->sk_err, -err); 794 795 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 796 smp_wmb(); 797 sk_error_report(sk); 798 return true; 799 } 800 801 void __mptcp_error_report(struct sock *sk) 802 { 803 struct mptcp_subflow_context *subflow; 804 struct mptcp_sock *msk = mptcp_sk(sk); 805 806 mptcp_for_each_subflow(msk, subflow) 807 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 808 break; 809 } 810 811 /* In most cases we will be able to lock the mptcp socket. If its already 812 * owned, we need to defer to the work queue to avoid ABBA deadlock. 813 */ 814 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 815 { 816 struct sock *sk = (struct sock *)msk; 817 unsigned int moved = 0; 818 819 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 820 __mptcp_ofo_queue(msk); 821 if (unlikely(ssk->sk_err)) { 822 if (!sock_owned_by_user(sk)) 823 __mptcp_error_report(sk); 824 else 825 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 826 } 827 828 /* If the moves have caught up with the DATA_FIN sequence number 829 * it's time to ack the DATA_FIN and change socket state, but 830 * this is not a good place to change state. Let the workqueue 831 * do it. 832 */ 833 if (mptcp_pending_data_fin(sk, NULL)) 834 mptcp_schedule_work(sk); 835 return moved > 0; 836 } 837 838 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 839 { 840 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 841 struct mptcp_sock *msk = mptcp_sk(sk); 842 int sk_rbuf, ssk_rbuf; 843 844 /* The peer can send data while we are shutting down this 845 * subflow at msk destruction time, but we must avoid enqueuing 846 * more data to the msk receive queue 847 */ 848 if (unlikely(subflow->disposable)) 849 return; 850 851 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 852 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 853 if (unlikely(ssk_rbuf > sk_rbuf)) 854 sk_rbuf = ssk_rbuf; 855 856 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 857 if (__mptcp_rmem(sk) > sk_rbuf) { 858 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 859 return; 860 } 861 862 /* Wake-up the reader only for in-sequence data */ 863 mptcp_data_lock(sk); 864 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 865 sk->sk_data_ready(sk); 866 mptcp_data_unlock(sk); 867 } 868 869 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 870 { 871 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 872 WRITE_ONCE(msk->allow_infinite_fallback, false); 873 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 874 } 875 876 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 877 { 878 struct sock *sk = (struct sock *)msk; 879 880 if (sk->sk_state != TCP_ESTABLISHED) 881 return false; 882 883 /* attach to msk socket only after we are sure we will deal with it 884 * at close time 885 */ 886 if (sk->sk_socket && !ssk->sk_socket) 887 mptcp_sock_graft(ssk, sk->sk_socket); 888 889 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 890 mptcp_sockopt_sync_locked(msk, ssk); 891 mptcp_subflow_joined(msk, ssk); 892 mptcp_stop_tout_timer(sk); 893 __mptcp_propagate_sndbuf(sk, ssk); 894 return true; 895 } 896 897 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 898 { 899 struct mptcp_subflow_context *tmp, *subflow; 900 struct mptcp_sock *msk = mptcp_sk(sk); 901 902 list_for_each_entry_safe(subflow, tmp, join_list, node) { 903 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 904 bool slow = lock_sock_fast(ssk); 905 906 list_move_tail(&subflow->node, &msk->conn_list); 907 if (!__mptcp_finish_join(msk, ssk)) 908 mptcp_subflow_reset(ssk); 909 unlock_sock_fast(ssk, slow); 910 } 911 } 912 913 static bool mptcp_rtx_timer_pending(struct sock *sk) 914 { 915 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 916 } 917 918 static void mptcp_reset_rtx_timer(struct sock *sk) 919 { 920 struct inet_connection_sock *icsk = inet_csk(sk); 921 unsigned long tout; 922 923 /* prevent rescheduling on close */ 924 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 925 return; 926 927 tout = mptcp_sk(sk)->timer_ival; 928 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 929 } 930 931 bool mptcp_schedule_work(struct sock *sk) 932 { 933 if (inet_sk_state_load(sk) != TCP_CLOSE && 934 schedule_work(&mptcp_sk(sk)->work)) { 935 /* each subflow already holds a reference to the sk, and the 936 * workqueue is invoked by a subflow, so sk can't go away here. 937 */ 938 sock_hold(sk); 939 return true; 940 } 941 return false; 942 } 943 944 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 945 { 946 struct mptcp_subflow_context *subflow; 947 948 msk_owned_by_me(msk); 949 950 mptcp_for_each_subflow(msk, subflow) { 951 if (READ_ONCE(subflow->data_avail)) 952 return mptcp_subflow_tcp_sock(subflow); 953 } 954 955 return NULL; 956 } 957 958 static bool mptcp_skb_can_collapse_to(u64 write_seq, 959 const struct sk_buff *skb, 960 const struct mptcp_ext *mpext) 961 { 962 if (!tcp_skb_can_collapse_to(skb)) 963 return false; 964 965 /* can collapse only if MPTCP level sequence is in order and this 966 * mapping has not been xmitted yet 967 */ 968 return mpext && mpext->data_seq + mpext->data_len == write_seq && 969 !mpext->frozen; 970 } 971 972 /* we can append data to the given data frag if: 973 * - there is space available in the backing page_frag 974 * - the data frag tail matches the current page_frag free offset 975 * - the data frag end sequence number matches the current write seq 976 */ 977 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 978 const struct page_frag *pfrag, 979 const struct mptcp_data_frag *df) 980 { 981 return df && pfrag->page == df->page && 982 pfrag->size - pfrag->offset > 0 && 983 pfrag->offset == (df->offset + df->data_len) && 984 df->data_seq + df->data_len == msk->write_seq; 985 } 986 987 static void dfrag_uncharge(struct sock *sk, int len) 988 { 989 sk_mem_uncharge(sk, len); 990 sk_wmem_queued_add(sk, -len); 991 } 992 993 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 994 { 995 int len = dfrag->data_len + dfrag->overhead; 996 997 list_del(&dfrag->list); 998 dfrag_uncharge(sk, len); 999 put_page(dfrag->page); 1000 } 1001 1002 static void __mptcp_clean_una(struct sock *sk) 1003 { 1004 struct mptcp_sock *msk = mptcp_sk(sk); 1005 struct mptcp_data_frag *dtmp, *dfrag; 1006 u64 snd_una; 1007 1008 snd_una = msk->snd_una; 1009 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1010 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1011 break; 1012 1013 if (unlikely(dfrag == msk->first_pending)) { 1014 /* in recovery mode can see ack after the current snd head */ 1015 if (WARN_ON_ONCE(!msk->recovery)) 1016 break; 1017 1018 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1019 } 1020 1021 dfrag_clear(sk, dfrag); 1022 } 1023 1024 dfrag = mptcp_rtx_head(sk); 1025 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1026 u64 delta = snd_una - dfrag->data_seq; 1027 1028 /* prevent wrap around in recovery mode */ 1029 if (unlikely(delta > dfrag->already_sent)) { 1030 if (WARN_ON_ONCE(!msk->recovery)) 1031 goto out; 1032 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1033 goto out; 1034 dfrag->already_sent += delta - dfrag->already_sent; 1035 } 1036 1037 dfrag->data_seq += delta; 1038 dfrag->offset += delta; 1039 dfrag->data_len -= delta; 1040 dfrag->already_sent -= delta; 1041 1042 dfrag_uncharge(sk, delta); 1043 } 1044 1045 /* all retransmitted data acked, recovery completed */ 1046 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1047 msk->recovery = false; 1048 1049 out: 1050 if (snd_una == READ_ONCE(msk->snd_nxt) && 1051 snd_una == READ_ONCE(msk->write_seq)) { 1052 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1053 mptcp_stop_rtx_timer(sk); 1054 } else { 1055 mptcp_reset_rtx_timer(sk); 1056 } 1057 } 1058 1059 static void __mptcp_clean_una_wakeup(struct sock *sk) 1060 { 1061 lockdep_assert_held_once(&sk->sk_lock.slock); 1062 1063 __mptcp_clean_una(sk); 1064 mptcp_write_space(sk); 1065 } 1066 1067 static void mptcp_clean_una_wakeup(struct sock *sk) 1068 { 1069 mptcp_data_lock(sk); 1070 __mptcp_clean_una_wakeup(sk); 1071 mptcp_data_unlock(sk); 1072 } 1073 1074 static void mptcp_enter_memory_pressure(struct sock *sk) 1075 { 1076 struct mptcp_subflow_context *subflow; 1077 struct mptcp_sock *msk = mptcp_sk(sk); 1078 bool first = true; 1079 1080 mptcp_for_each_subflow(msk, subflow) { 1081 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1082 1083 if (first) 1084 tcp_enter_memory_pressure(ssk); 1085 sk_stream_moderate_sndbuf(ssk); 1086 1087 first = false; 1088 } 1089 __mptcp_sync_sndbuf(sk); 1090 } 1091 1092 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1093 * data 1094 */ 1095 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1096 { 1097 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1098 pfrag, sk->sk_allocation))) 1099 return true; 1100 1101 mptcp_enter_memory_pressure(sk); 1102 return false; 1103 } 1104 1105 static struct mptcp_data_frag * 1106 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1107 int orig_offset) 1108 { 1109 int offset = ALIGN(orig_offset, sizeof(long)); 1110 struct mptcp_data_frag *dfrag; 1111 1112 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1113 dfrag->data_len = 0; 1114 dfrag->data_seq = msk->write_seq; 1115 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1116 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1117 dfrag->already_sent = 0; 1118 dfrag->page = pfrag->page; 1119 1120 return dfrag; 1121 } 1122 1123 struct mptcp_sendmsg_info { 1124 int mss_now; 1125 int size_goal; 1126 u16 limit; 1127 u16 sent; 1128 unsigned int flags; 1129 bool data_lock_held; 1130 }; 1131 1132 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1133 u64 data_seq, int avail_size) 1134 { 1135 u64 window_end = mptcp_wnd_end(msk); 1136 u64 mptcp_snd_wnd; 1137 1138 if (__mptcp_check_fallback(msk)) 1139 return avail_size; 1140 1141 mptcp_snd_wnd = window_end - data_seq; 1142 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1143 1144 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1145 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1146 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1147 } 1148 1149 return avail_size; 1150 } 1151 1152 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1153 { 1154 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1155 1156 if (!mpext) 1157 return false; 1158 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1159 return true; 1160 } 1161 1162 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1163 { 1164 struct sk_buff *skb; 1165 1166 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1167 if (likely(skb)) { 1168 if (likely(__mptcp_add_ext(skb, gfp))) { 1169 skb_reserve(skb, MAX_TCP_HEADER); 1170 skb->ip_summed = CHECKSUM_PARTIAL; 1171 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1172 return skb; 1173 } 1174 __kfree_skb(skb); 1175 } else { 1176 mptcp_enter_memory_pressure(sk); 1177 } 1178 return NULL; 1179 } 1180 1181 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1182 { 1183 struct sk_buff *skb; 1184 1185 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1186 if (!skb) 1187 return NULL; 1188 1189 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1190 tcp_skb_entail(ssk, skb); 1191 return skb; 1192 } 1193 tcp_skb_tsorted_anchor_cleanup(skb); 1194 kfree_skb(skb); 1195 return NULL; 1196 } 1197 1198 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1199 { 1200 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1201 1202 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1203 } 1204 1205 /* note: this always recompute the csum on the whole skb, even 1206 * if we just appended a single frag. More status info needed 1207 */ 1208 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1209 { 1210 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1211 __wsum csum = ~csum_unfold(mpext->csum); 1212 int offset = skb->len - added; 1213 1214 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1215 } 1216 1217 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1218 struct sock *ssk, 1219 struct mptcp_ext *mpext) 1220 { 1221 if (!mpext) 1222 return; 1223 1224 mpext->infinite_map = 1; 1225 mpext->data_len = 0; 1226 1227 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1228 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1229 pr_fallback(msk); 1230 mptcp_do_fallback(ssk); 1231 } 1232 1233 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1234 struct mptcp_data_frag *dfrag, 1235 struct mptcp_sendmsg_info *info) 1236 { 1237 u64 data_seq = dfrag->data_seq + info->sent; 1238 int offset = dfrag->offset + info->sent; 1239 struct mptcp_sock *msk = mptcp_sk(sk); 1240 bool zero_window_probe = false; 1241 struct mptcp_ext *mpext = NULL; 1242 bool can_coalesce = false; 1243 bool reuse_skb = true; 1244 struct sk_buff *skb; 1245 size_t copy; 1246 int i; 1247 1248 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1249 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1250 1251 if (WARN_ON_ONCE(info->sent > info->limit || 1252 info->limit > dfrag->data_len)) 1253 return 0; 1254 1255 if (unlikely(!__tcp_can_send(ssk))) 1256 return -EAGAIN; 1257 1258 /* compute send limit */ 1259 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1260 copy = info->size_goal; 1261 1262 skb = tcp_write_queue_tail(ssk); 1263 if (skb && copy > skb->len) { 1264 /* Limit the write to the size available in the 1265 * current skb, if any, so that we create at most a new skb. 1266 * Explicitly tells TCP internals to avoid collapsing on later 1267 * queue management operation, to avoid breaking the ext <-> 1268 * SSN association set here 1269 */ 1270 mpext = mptcp_get_ext(skb); 1271 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1272 TCP_SKB_CB(skb)->eor = 1; 1273 goto alloc_skb; 1274 } 1275 1276 i = skb_shinfo(skb)->nr_frags; 1277 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1278 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1279 tcp_mark_push(tcp_sk(ssk), skb); 1280 goto alloc_skb; 1281 } 1282 1283 copy -= skb->len; 1284 } else { 1285 alloc_skb: 1286 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1287 if (!skb) 1288 return -ENOMEM; 1289 1290 i = skb_shinfo(skb)->nr_frags; 1291 reuse_skb = false; 1292 mpext = mptcp_get_ext(skb); 1293 } 1294 1295 /* Zero window and all data acked? Probe. */ 1296 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1297 if (copy == 0) { 1298 u64 snd_una = READ_ONCE(msk->snd_una); 1299 1300 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1301 tcp_remove_empty_skb(ssk); 1302 return 0; 1303 } 1304 1305 zero_window_probe = true; 1306 data_seq = snd_una - 1; 1307 copy = 1; 1308 } 1309 1310 copy = min_t(size_t, copy, info->limit - info->sent); 1311 if (!sk_wmem_schedule(ssk, copy)) { 1312 tcp_remove_empty_skb(ssk); 1313 return -ENOMEM; 1314 } 1315 1316 if (can_coalesce) { 1317 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1318 } else { 1319 get_page(dfrag->page); 1320 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1321 } 1322 1323 skb->len += copy; 1324 skb->data_len += copy; 1325 skb->truesize += copy; 1326 sk_wmem_queued_add(ssk, copy); 1327 sk_mem_charge(ssk, copy); 1328 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1329 TCP_SKB_CB(skb)->end_seq += copy; 1330 tcp_skb_pcount_set(skb, 0); 1331 1332 /* on skb reuse we just need to update the DSS len */ 1333 if (reuse_skb) { 1334 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1335 mpext->data_len += copy; 1336 goto out; 1337 } 1338 1339 memset(mpext, 0, sizeof(*mpext)); 1340 mpext->data_seq = data_seq; 1341 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1342 mpext->data_len = copy; 1343 mpext->use_map = 1; 1344 mpext->dsn64 = 1; 1345 1346 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1347 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1348 mpext->dsn64); 1349 1350 if (zero_window_probe) { 1351 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1352 mpext->frozen = 1; 1353 if (READ_ONCE(msk->csum_enabled)) 1354 mptcp_update_data_checksum(skb, copy); 1355 tcp_push_pending_frames(ssk); 1356 return 0; 1357 } 1358 out: 1359 if (READ_ONCE(msk->csum_enabled)) 1360 mptcp_update_data_checksum(skb, copy); 1361 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1362 mptcp_update_infinite_map(msk, ssk, mpext); 1363 trace_mptcp_sendmsg_frag(mpext); 1364 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1365 return copy; 1366 } 1367 1368 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1369 sizeof(struct tcphdr) - \ 1370 MAX_TCP_OPTION_SPACE - \ 1371 sizeof(struct ipv6hdr) - \ 1372 sizeof(struct frag_hdr)) 1373 1374 struct subflow_send_info { 1375 struct sock *ssk; 1376 u64 linger_time; 1377 }; 1378 1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1380 { 1381 if (!subflow->stale) 1382 return; 1383 1384 subflow->stale = 0; 1385 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1386 } 1387 1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1389 { 1390 if (unlikely(subflow->stale)) { 1391 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1392 1393 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1394 return false; 1395 1396 mptcp_subflow_set_active(subflow); 1397 } 1398 return __mptcp_subflow_active(subflow); 1399 } 1400 1401 #define SSK_MODE_ACTIVE 0 1402 #define SSK_MODE_BACKUP 1 1403 #define SSK_MODE_MAX 2 1404 1405 /* implement the mptcp packet scheduler; 1406 * returns the subflow that will transmit the next DSS 1407 * additionally updates the rtx timeout 1408 */ 1409 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1410 { 1411 struct subflow_send_info send_info[SSK_MODE_MAX]; 1412 struct mptcp_subflow_context *subflow; 1413 struct sock *sk = (struct sock *)msk; 1414 u32 pace, burst, wmem; 1415 int i, nr_active = 0; 1416 struct sock *ssk; 1417 u64 linger_time; 1418 long tout = 0; 1419 1420 /* pick the subflow with the lower wmem/wspace ratio */ 1421 for (i = 0; i < SSK_MODE_MAX; ++i) { 1422 send_info[i].ssk = NULL; 1423 send_info[i].linger_time = -1; 1424 } 1425 1426 mptcp_for_each_subflow(msk, subflow) { 1427 trace_mptcp_subflow_get_send(subflow); 1428 ssk = mptcp_subflow_tcp_sock(subflow); 1429 if (!mptcp_subflow_active(subflow)) 1430 continue; 1431 1432 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1433 nr_active += !subflow->backup; 1434 pace = subflow->avg_pacing_rate; 1435 if (unlikely(!pace)) { 1436 /* init pacing rate from socket */ 1437 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1438 pace = subflow->avg_pacing_rate; 1439 if (!pace) 1440 continue; 1441 } 1442 1443 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1444 if (linger_time < send_info[subflow->backup].linger_time) { 1445 send_info[subflow->backup].ssk = ssk; 1446 send_info[subflow->backup].linger_time = linger_time; 1447 } 1448 } 1449 __mptcp_set_timeout(sk, tout); 1450 1451 /* pick the best backup if no other subflow is active */ 1452 if (!nr_active) 1453 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1454 1455 /* According to the blest algorithm, to avoid HoL blocking for the 1456 * faster flow, we need to: 1457 * - estimate the faster flow linger time 1458 * - use the above to estimate the amount of byte transferred 1459 * by the faster flow 1460 * - check that the amount of queued data is greter than the above, 1461 * otherwise do not use the picked, slower, subflow 1462 * We select the subflow with the shorter estimated time to flush 1463 * the queued mem, which basically ensure the above. We just need 1464 * to check that subflow has a non empty cwin. 1465 */ 1466 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1467 if (!ssk || !sk_stream_memory_free(ssk)) 1468 return NULL; 1469 1470 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1471 wmem = READ_ONCE(ssk->sk_wmem_queued); 1472 if (!burst) 1473 return ssk; 1474 1475 subflow = mptcp_subflow_ctx(ssk); 1476 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1477 READ_ONCE(ssk->sk_pacing_rate) * burst, 1478 burst + wmem); 1479 msk->snd_burst = burst; 1480 return ssk; 1481 } 1482 1483 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1484 { 1485 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1486 release_sock(ssk); 1487 } 1488 1489 static void mptcp_update_post_push(struct mptcp_sock *msk, 1490 struct mptcp_data_frag *dfrag, 1491 u32 sent) 1492 { 1493 u64 snd_nxt_new = dfrag->data_seq; 1494 1495 dfrag->already_sent += sent; 1496 1497 msk->snd_burst -= sent; 1498 1499 snd_nxt_new += dfrag->already_sent; 1500 1501 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1502 * is recovering after a failover. In that event, this re-sends 1503 * old segments. 1504 * 1505 * Thus compute snd_nxt_new candidate based on 1506 * the dfrag->data_seq that was sent and the data 1507 * that has been handed to the subflow for transmission 1508 * and skip update in case it was old dfrag. 1509 */ 1510 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1511 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1512 msk->snd_nxt = snd_nxt_new; 1513 } 1514 } 1515 1516 void mptcp_check_and_set_pending(struct sock *sk) 1517 { 1518 if (mptcp_send_head(sk)) 1519 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1520 } 1521 1522 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1523 struct mptcp_sendmsg_info *info) 1524 { 1525 struct mptcp_sock *msk = mptcp_sk(sk); 1526 struct mptcp_data_frag *dfrag; 1527 int len, copied = 0, err = 0; 1528 1529 while ((dfrag = mptcp_send_head(sk))) { 1530 info->sent = dfrag->already_sent; 1531 info->limit = dfrag->data_len; 1532 len = dfrag->data_len - dfrag->already_sent; 1533 while (len > 0) { 1534 int ret = 0; 1535 1536 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1537 if (ret <= 0) { 1538 err = copied ? : ret; 1539 goto out; 1540 } 1541 1542 info->sent += ret; 1543 copied += ret; 1544 len -= ret; 1545 1546 mptcp_update_post_push(msk, dfrag, ret); 1547 } 1548 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1549 1550 if (msk->snd_burst <= 0 || 1551 !sk_stream_memory_free(ssk) || 1552 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1553 err = copied; 1554 goto out; 1555 } 1556 mptcp_set_timeout(sk); 1557 } 1558 err = copied; 1559 1560 out: 1561 return err; 1562 } 1563 1564 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1565 { 1566 struct sock *prev_ssk = NULL, *ssk = NULL; 1567 struct mptcp_sock *msk = mptcp_sk(sk); 1568 struct mptcp_sendmsg_info info = { 1569 .flags = flags, 1570 }; 1571 bool do_check_data_fin = false; 1572 int push_count = 1; 1573 1574 while (mptcp_send_head(sk) && (push_count > 0)) { 1575 struct mptcp_subflow_context *subflow; 1576 int ret = 0; 1577 1578 if (mptcp_sched_get_send(msk)) 1579 break; 1580 1581 push_count = 0; 1582 1583 mptcp_for_each_subflow(msk, subflow) { 1584 if (READ_ONCE(subflow->scheduled)) { 1585 mptcp_subflow_set_scheduled(subflow, false); 1586 1587 prev_ssk = ssk; 1588 ssk = mptcp_subflow_tcp_sock(subflow); 1589 if (ssk != prev_ssk) { 1590 /* First check. If the ssk has changed since 1591 * the last round, release prev_ssk 1592 */ 1593 if (prev_ssk) 1594 mptcp_push_release(prev_ssk, &info); 1595 1596 /* Need to lock the new subflow only if different 1597 * from the previous one, otherwise we are still 1598 * helding the relevant lock 1599 */ 1600 lock_sock(ssk); 1601 } 1602 1603 push_count++; 1604 1605 ret = __subflow_push_pending(sk, ssk, &info); 1606 if (ret <= 0) { 1607 if (ret != -EAGAIN || 1608 (1 << ssk->sk_state) & 1609 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1610 push_count--; 1611 continue; 1612 } 1613 do_check_data_fin = true; 1614 } 1615 } 1616 } 1617 1618 /* at this point we held the socket lock for the last subflow we used */ 1619 if (ssk) 1620 mptcp_push_release(ssk, &info); 1621 1622 /* ensure the rtx timer is running */ 1623 if (!mptcp_rtx_timer_pending(sk)) 1624 mptcp_reset_rtx_timer(sk); 1625 if (do_check_data_fin) 1626 mptcp_check_send_data_fin(sk); 1627 } 1628 1629 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1630 { 1631 struct mptcp_sock *msk = mptcp_sk(sk); 1632 struct mptcp_sendmsg_info info = { 1633 .data_lock_held = true, 1634 }; 1635 bool keep_pushing = true; 1636 struct sock *xmit_ssk; 1637 int copied = 0; 1638 1639 info.flags = 0; 1640 while (mptcp_send_head(sk) && keep_pushing) { 1641 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1642 int ret = 0; 1643 1644 /* check for a different subflow usage only after 1645 * spooling the first chunk of data 1646 */ 1647 if (first) { 1648 mptcp_subflow_set_scheduled(subflow, false); 1649 ret = __subflow_push_pending(sk, ssk, &info); 1650 first = false; 1651 if (ret <= 0) 1652 break; 1653 copied += ret; 1654 continue; 1655 } 1656 1657 if (mptcp_sched_get_send(msk)) 1658 goto out; 1659 1660 if (READ_ONCE(subflow->scheduled)) { 1661 mptcp_subflow_set_scheduled(subflow, false); 1662 ret = __subflow_push_pending(sk, ssk, &info); 1663 if (ret <= 0) 1664 keep_pushing = false; 1665 copied += ret; 1666 } 1667 1668 mptcp_for_each_subflow(msk, subflow) { 1669 if (READ_ONCE(subflow->scheduled)) { 1670 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1671 if (xmit_ssk != ssk) { 1672 mptcp_subflow_delegate(subflow, 1673 MPTCP_DELEGATE_SEND); 1674 keep_pushing = false; 1675 } 1676 } 1677 } 1678 } 1679 1680 out: 1681 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1682 * not going to flush it via release_sock() 1683 */ 1684 if (copied) { 1685 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1686 info.size_goal); 1687 if (!mptcp_rtx_timer_pending(sk)) 1688 mptcp_reset_rtx_timer(sk); 1689 1690 if (msk->snd_data_fin_enable && 1691 msk->snd_nxt + 1 == msk->write_seq) 1692 mptcp_schedule_work(sk); 1693 } 1694 } 1695 1696 static void mptcp_set_nospace(struct sock *sk) 1697 { 1698 /* enable autotune */ 1699 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1700 1701 /* will be cleared on avail space */ 1702 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1703 } 1704 1705 static int mptcp_disconnect(struct sock *sk, int flags); 1706 1707 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1708 size_t len, int *copied_syn) 1709 { 1710 unsigned int saved_flags = msg->msg_flags; 1711 struct mptcp_sock *msk = mptcp_sk(sk); 1712 struct sock *ssk; 1713 int ret; 1714 1715 /* on flags based fastopen the mptcp is supposed to create the 1716 * first subflow right now. Otherwise we are in the defer_connect 1717 * path, and the first subflow must be already present. 1718 * Since the defer_connect flag is cleared after the first succsful 1719 * fastopen attempt, no need to check for additional subflow status. 1720 */ 1721 if (msg->msg_flags & MSG_FASTOPEN) { 1722 ssk = __mptcp_nmpc_sk(msk); 1723 if (IS_ERR(ssk)) 1724 return PTR_ERR(ssk); 1725 } 1726 if (!msk->first) 1727 return -EINVAL; 1728 1729 ssk = msk->first; 1730 1731 lock_sock(ssk); 1732 msg->msg_flags |= MSG_DONTWAIT; 1733 msk->fastopening = 1; 1734 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1735 msk->fastopening = 0; 1736 msg->msg_flags = saved_flags; 1737 release_sock(ssk); 1738 1739 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1740 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1741 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1742 msg->msg_namelen, msg->msg_flags, 1); 1743 1744 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1745 * case of any error, except timeout or signal 1746 */ 1747 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1748 *copied_syn = 0; 1749 } else if (ret && ret != -EINPROGRESS) { 1750 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1751 * __inet_stream_connect() can fail, due to looking check, 1752 * see mptcp_disconnect(). 1753 * Attempt it again outside the problematic scope. 1754 */ 1755 if (!mptcp_disconnect(sk, 0)) 1756 sk->sk_socket->state = SS_UNCONNECTED; 1757 } 1758 inet_clear_bit(DEFER_CONNECT, sk); 1759 1760 return ret; 1761 } 1762 1763 static int do_copy_data_nocache(struct sock *sk, int copy, 1764 struct iov_iter *from, char *to) 1765 { 1766 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1767 if (!copy_from_iter_full_nocache(to, copy, from)) 1768 return -EFAULT; 1769 } else if (!copy_from_iter_full(to, copy, from)) { 1770 return -EFAULT; 1771 } 1772 return 0; 1773 } 1774 1775 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1776 { 1777 struct mptcp_sock *msk = mptcp_sk(sk); 1778 struct page_frag *pfrag; 1779 size_t copied = 0; 1780 int ret = 0; 1781 long timeo; 1782 1783 /* silently ignore everything else */ 1784 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1785 1786 lock_sock(sk); 1787 1788 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1789 msg->msg_flags & MSG_FASTOPEN)) { 1790 int copied_syn = 0; 1791 1792 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1793 copied += copied_syn; 1794 if (ret == -EINPROGRESS && copied_syn > 0) 1795 goto out; 1796 else if (ret) 1797 goto do_error; 1798 } 1799 1800 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1801 1802 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1803 ret = sk_stream_wait_connect(sk, &timeo); 1804 if (ret) 1805 goto do_error; 1806 } 1807 1808 ret = -EPIPE; 1809 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1810 goto do_error; 1811 1812 pfrag = sk_page_frag(sk); 1813 1814 while (msg_data_left(msg)) { 1815 int total_ts, frag_truesize = 0; 1816 struct mptcp_data_frag *dfrag; 1817 bool dfrag_collapsed; 1818 size_t psize, offset; 1819 1820 /* reuse tail pfrag, if possible, or carve a new one from the 1821 * page allocator 1822 */ 1823 dfrag = mptcp_pending_tail(sk); 1824 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1825 if (!dfrag_collapsed) { 1826 if (!sk_stream_memory_free(sk)) 1827 goto wait_for_memory; 1828 1829 if (!mptcp_page_frag_refill(sk, pfrag)) 1830 goto wait_for_memory; 1831 1832 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1833 frag_truesize = dfrag->overhead; 1834 } 1835 1836 /* we do not bound vs wspace, to allow a single packet. 1837 * memory accounting will prevent execessive memory usage 1838 * anyway 1839 */ 1840 offset = dfrag->offset + dfrag->data_len; 1841 psize = pfrag->size - offset; 1842 psize = min_t(size_t, psize, msg_data_left(msg)); 1843 total_ts = psize + frag_truesize; 1844 1845 if (!sk_wmem_schedule(sk, total_ts)) 1846 goto wait_for_memory; 1847 1848 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1849 page_address(dfrag->page) + offset); 1850 if (ret) 1851 goto do_error; 1852 1853 /* data successfully copied into the write queue */ 1854 sk_forward_alloc_add(sk, -total_ts); 1855 copied += psize; 1856 dfrag->data_len += psize; 1857 frag_truesize += psize; 1858 pfrag->offset += frag_truesize; 1859 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1860 1861 /* charge data on mptcp pending queue to the msk socket 1862 * Note: we charge such data both to sk and ssk 1863 */ 1864 sk_wmem_queued_add(sk, frag_truesize); 1865 if (!dfrag_collapsed) { 1866 get_page(dfrag->page); 1867 list_add_tail(&dfrag->list, &msk->rtx_queue); 1868 if (!msk->first_pending) 1869 WRITE_ONCE(msk->first_pending, dfrag); 1870 } 1871 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1872 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1873 !dfrag_collapsed); 1874 1875 continue; 1876 1877 wait_for_memory: 1878 mptcp_set_nospace(sk); 1879 __mptcp_push_pending(sk, msg->msg_flags); 1880 ret = sk_stream_wait_memory(sk, &timeo); 1881 if (ret) 1882 goto do_error; 1883 } 1884 1885 if (copied) 1886 __mptcp_push_pending(sk, msg->msg_flags); 1887 1888 out: 1889 release_sock(sk); 1890 return copied; 1891 1892 do_error: 1893 if (copied) 1894 goto out; 1895 1896 copied = sk_stream_error(sk, msg->msg_flags, ret); 1897 goto out; 1898 } 1899 1900 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1901 struct msghdr *msg, 1902 size_t len, int flags, 1903 struct scm_timestamping_internal *tss, 1904 int *cmsg_flags) 1905 { 1906 struct sk_buff *skb, *tmp; 1907 int copied = 0; 1908 1909 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1910 u32 offset = MPTCP_SKB_CB(skb)->offset; 1911 u32 data_len = skb->len - offset; 1912 u32 count = min_t(size_t, len - copied, data_len); 1913 int err; 1914 1915 if (!(flags & MSG_TRUNC)) { 1916 err = skb_copy_datagram_msg(skb, offset, msg, count); 1917 if (unlikely(err < 0)) { 1918 if (!copied) 1919 return err; 1920 break; 1921 } 1922 } 1923 1924 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1925 tcp_update_recv_tstamps(skb, tss); 1926 *cmsg_flags |= MPTCP_CMSG_TS; 1927 } 1928 1929 copied += count; 1930 1931 if (count < data_len) { 1932 if (!(flags & MSG_PEEK)) { 1933 MPTCP_SKB_CB(skb)->offset += count; 1934 MPTCP_SKB_CB(skb)->map_seq += count; 1935 msk->bytes_consumed += count; 1936 } 1937 break; 1938 } 1939 1940 if (!(flags & MSG_PEEK)) { 1941 /* we will bulk release the skb memory later */ 1942 skb->destructor = NULL; 1943 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1944 __skb_unlink(skb, &msk->receive_queue); 1945 __kfree_skb(skb); 1946 msk->bytes_consumed += count; 1947 } 1948 1949 if (copied >= len) 1950 break; 1951 } 1952 1953 return copied; 1954 } 1955 1956 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1957 * 1958 * Only difference: Use highest rtt estimate of the subflows in use. 1959 */ 1960 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1961 { 1962 struct mptcp_subflow_context *subflow; 1963 struct sock *sk = (struct sock *)msk; 1964 u8 scaling_ratio = U8_MAX; 1965 u32 time, advmss = 1; 1966 u64 rtt_us, mstamp; 1967 1968 msk_owned_by_me(msk); 1969 1970 if (copied <= 0) 1971 return; 1972 1973 msk->rcvq_space.copied += copied; 1974 1975 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1976 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1977 1978 rtt_us = msk->rcvq_space.rtt_us; 1979 if (rtt_us && time < (rtt_us >> 3)) 1980 return; 1981 1982 rtt_us = 0; 1983 mptcp_for_each_subflow(msk, subflow) { 1984 const struct tcp_sock *tp; 1985 u64 sf_rtt_us; 1986 u32 sf_advmss; 1987 1988 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1989 1990 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1991 sf_advmss = READ_ONCE(tp->advmss); 1992 1993 rtt_us = max(sf_rtt_us, rtt_us); 1994 advmss = max(sf_advmss, advmss); 1995 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1996 } 1997 1998 msk->rcvq_space.rtt_us = rtt_us; 1999 msk->scaling_ratio = scaling_ratio; 2000 if (time < (rtt_us >> 3) || rtt_us == 0) 2001 return; 2002 2003 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2004 goto new_measure; 2005 2006 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2007 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2008 u64 rcvwin, grow; 2009 int rcvbuf; 2010 2011 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2012 2013 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2014 2015 do_div(grow, msk->rcvq_space.space); 2016 rcvwin += (grow << 1); 2017 2018 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2019 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2020 2021 if (rcvbuf > sk->sk_rcvbuf) { 2022 u32 window_clamp; 2023 2024 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2025 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2026 2027 /* Make subflows follow along. If we do not do this, we 2028 * get drops at subflow level if skbs can't be moved to 2029 * the mptcp rx queue fast enough (announced rcv_win can 2030 * exceed ssk->sk_rcvbuf). 2031 */ 2032 mptcp_for_each_subflow(msk, subflow) { 2033 struct sock *ssk; 2034 bool slow; 2035 2036 ssk = mptcp_subflow_tcp_sock(subflow); 2037 slow = lock_sock_fast(ssk); 2038 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2039 tcp_sk(ssk)->window_clamp = window_clamp; 2040 tcp_cleanup_rbuf(ssk, 1); 2041 unlock_sock_fast(ssk, slow); 2042 } 2043 } 2044 } 2045 2046 msk->rcvq_space.space = msk->rcvq_space.copied; 2047 new_measure: 2048 msk->rcvq_space.copied = 0; 2049 msk->rcvq_space.time = mstamp; 2050 } 2051 2052 static void __mptcp_update_rmem(struct sock *sk) 2053 { 2054 struct mptcp_sock *msk = mptcp_sk(sk); 2055 2056 if (!msk->rmem_released) 2057 return; 2058 2059 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2060 mptcp_rmem_uncharge(sk, msk->rmem_released); 2061 WRITE_ONCE(msk->rmem_released, 0); 2062 } 2063 2064 static void __mptcp_splice_receive_queue(struct sock *sk) 2065 { 2066 struct mptcp_sock *msk = mptcp_sk(sk); 2067 2068 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2069 } 2070 2071 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2072 { 2073 struct sock *sk = (struct sock *)msk; 2074 unsigned int moved = 0; 2075 bool ret, done; 2076 2077 do { 2078 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2079 bool slowpath; 2080 2081 /* we can have data pending in the subflows only if the msk 2082 * receive buffer was full at subflow_data_ready() time, 2083 * that is an unlikely slow path. 2084 */ 2085 if (likely(!ssk)) 2086 break; 2087 2088 slowpath = lock_sock_fast(ssk); 2089 mptcp_data_lock(sk); 2090 __mptcp_update_rmem(sk); 2091 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2092 mptcp_data_unlock(sk); 2093 2094 if (unlikely(ssk->sk_err)) 2095 __mptcp_error_report(sk); 2096 unlock_sock_fast(ssk, slowpath); 2097 } while (!done); 2098 2099 /* acquire the data lock only if some input data is pending */ 2100 ret = moved > 0; 2101 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2102 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2103 mptcp_data_lock(sk); 2104 __mptcp_update_rmem(sk); 2105 ret |= __mptcp_ofo_queue(msk); 2106 __mptcp_splice_receive_queue(sk); 2107 mptcp_data_unlock(sk); 2108 } 2109 if (ret) 2110 mptcp_check_data_fin((struct sock *)msk); 2111 return !skb_queue_empty(&msk->receive_queue); 2112 } 2113 2114 static unsigned int mptcp_inq_hint(const struct sock *sk) 2115 { 2116 const struct mptcp_sock *msk = mptcp_sk(sk); 2117 const struct sk_buff *skb; 2118 2119 skb = skb_peek(&msk->receive_queue); 2120 if (skb) { 2121 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2122 2123 if (hint_val >= INT_MAX) 2124 return INT_MAX; 2125 2126 return (unsigned int)hint_val; 2127 } 2128 2129 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2130 return 1; 2131 2132 return 0; 2133 } 2134 2135 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2136 int flags, int *addr_len) 2137 { 2138 struct mptcp_sock *msk = mptcp_sk(sk); 2139 struct scm_timestamping_internal tss; 2140 int copied = 0, cmsg_flags = 0; 2141 int target; 2142 long timeo; 2143 2144 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2145 if (unlikely(flags & MSG_ERRQUEUE)) 2146 return inet_recv_error(sk, msg, len, addr_len); 2147 2148 lock_sock(sk); 2149 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2150 copied = -ENOTCONN; 2151 goto out_err; 2152 } 2153 2154 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2155 2156 len = min_t(size_t, len, INT_MAX); 2157 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2158 2159 if (unlikely(msk->recvmsg_inq)) 2160 cmsg_flags = MPTCP_CMSG_INQ; 2161 2162 while (copied < len) { 2163 int bytes_read; 2164 2165 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2166 if (unlikely(bytes_read < 0)) { 2167 if (!copied) 2168 copied = bytes_read; 2169 goto out_err; 2170 } 2171 2172 copied += bytes_read; 2173 2174 /* be sure to advertise window change */ 2175 mptcp_cleanup_rbuf(msk); 2176 2177 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2178 continue; 2179 2180 /* only the master socket status is relevant here. The exit 2181 * conditions mirror closely tcp_recvmsg() 2182 */ 2183 if (copied >= target) 2184 break; 2185 2186 if (copied) { 2187 if (sk->sk_err || 2188 sk->sk_state == TCP_CLOSE || 2189 (sk->sk_shutdown & RCV_SHUTDOWN) || 2190 !timeo || 2191 signal_pending(current)) 2192 break; 2193 } else { 2194 if (sk->sk_err) { 2195 copied = sock_error(sk); 2196 break; 2197 } 2198 2199 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2200 /* race breaker: the shutdown could be after the 2201 * previous receive queue check 2202 */ 2203 if (__mptcp_move_skbs(msk)) 2204 continue; 2205 break; 2206 } 2207 2208 if (sk->sk_state == TCP_CLOSE) { 2209 copied = -ENOTCONN; 2210 break; 2211 } 2212 2213 if (!timeo) { 2214 copied = -EAGAIN; 2215 break; 2216 } 2217 2218 if (signal_pending(current)) { 2219 copied = sock_intr_errno(timeo); 2220 break; 2221 } 2222 } 2223 2224 pr_debug("block timeout %ld", timeo); 2225 sk_wait_data(sk, &timeo, NULL); 2226 } 2227 2228 out_err: 2229 if (cmsg_flags && copied >= 0) { 2230 if (cmsg_flags & MPTCP_CMSG_TS) 2231 tcp_recv_timestamp(msg, sk, &tss); 2232 2233 if (cmsg_flags & MPTCP_CMSG_INQ) { 2234 unsigned int inq = mptcp_inq_hint(sk); 2235 2236 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2237 } 2238 } 2239 2240 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2241 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2242 skb_queue_empty(&msk->receive_queue), copied); 2243 if (!(flags & MSG_PEEK)) 2244 mptcp_rcv_space_adjust(msk, copied); 2245 2246 release_sock(sk); 2247 return copied; 2248 } 2249 2250 static void mptcp_retransmit_timer(struct timer_list *t) 2251 { 2252 struct inet_connection_sock *icsk = from_timer(icsk, t, 2253 icsk_retransmit_timer); 2254 struct sock *sk = &icsk->icsk_inet.sk; 2255 struct mptcp_sock *msk = mptcp_sk(sk); 2256 2257 bh_lock_sock(sk); 2258 if (!sock_owned_by_user(sk)) { 2259 /* we need a process context to retransmit */ 2260 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2261 mptcp_schedule_work(sk); 2262 } else { 2263 /* delegate our work to tcp_release_cb() */ 2264 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2265 } 2266 bh_unlock_sock(sk); 2267 sock_put(sk); 2268 } 2269 2270 static void mptcp_tout_timer(struct timer_list *t) 2271 { 2272 struct sock *sk = from_timer(sk, t, sk_timer); 2273 2274 mptcp_schedule_work(sk); 2275 sock_put(sk); 2276 } 2277 2278 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2279 * level. 2280 * 2281 * A backup subflow is returned only if that is the only kind available. 2282 */ 2283 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2284 { 2285 struct sock *backup = NULL, *pick = NULL; 2286 struct mptcp_subflow_context *subflow; 2287 int min_stale_count = INT_MAX; 2288 2289 mptcp_for_each_subflow(msk, subflow) { 2290 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2291 2292 if (!__mptcp_subflow_active(subflow)) 2293 continue; 2294 2295 /* still data outstanding at TCP level? skip this */ 2296 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2297 mptcp_pm_subflow_chk_stale(msk, ssk); 2298 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2299 continue; 2300 } 2301 2302 if (subflow->backup) { 2303 if (!backup) 2304 backup = ssk; 2305 continue; 2306 } 2307 2308 if (!pick) 2309 pick = ssk; 2310 } 2311 2312 if (pick) 2313 return pick; 2314 2315 /* use backup only if there are no progresses anywhere */ 2316 return min_stale_count > 1 ? backup : NULL; 2317 } 2318 2319 bool __mptcp_retransmit_pending_data(struct sock *sk) 2320 { 2321 struct mptcp_data_frag *cur, *rtx_head; 2322 struct mptcp_sock *msk = mptcp_sk(sk); 2323 2324 if (__mptcp_check_fallback(msk)) 2325 return false; 2326 2327 if (tcp_rtx_and_write_queues_empty(sk)) 2328 return false; 2329 2330 /* the closing socket has some data untransmitted and/or unacked: 2331 * some data in the mptcp rtx queue has not really xmitted yet. 2332 * keep it simple and re-inject the whole mptcp level rtx queue 2333 */ 2334 mptcp_data_lock(sk); 2335 __mptcp_clean_una_wakeup(sk); 2336 rtx_head = mptcp_rtx_head(sk); 2337 if (!rtx_head) { 2338 mptcp_data_unlock(sk); 2339 return false; 2340 } 2341 2342 msk->recovery_snd_nxt = msk->snd_nxt; 2343 msk->recovery = true; 2344 mptcp_data_unlock(sk); 2345 2346 msk->first_pending = rtx_head; 2347 msk->snd_burst = 0; 2348 2349 /* be sure to clear the "sent status" on all re-injected fragments */ 2350 list_for_each_entry(cur, &msk->rtx_queue, list) { 2351 if (!cur->already_sent) 2352 break; 2353 cur->already_sent = 0; 2354 } 2355 2356 return true; 2357 } 2358 2359 /* flags for __mptcp_close_ssk() */ 2360 #define MPTCP_CF_PUSH BIT(1) 2361 #define MPTCP_CF_FASTCLOSE BIT(2) 2362 2363 /* be sure to send a reset only if the caller asked for it, also 2364 * clean completely the subflow status when the subflow reaches 2365 * TCP_CLOSE state 2366 */ 2367 static void __mptcp_subflow_disconnect(struct sock *ssk, 2368 struct mptcp_subflow_context *subflow, 2369 unsigned int flags) 2370 { 2371 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2372 (flags & MPTCP_CF_FASTCLOSE)) { 2373 /* The MPTCP code never wait on the subflow sockets, TCP-level 2374 * disconnect should never fail 2375 */ 2376 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2377 mptcp_subflow_ctx_reset(subflow); 2378 } else { 2379 tcp_shutdown(ssk, SEND_SHUTDOWN); 2380 } 2381 } 2382 2383 /* subflow sockets can be either outgoing (connect) or incoming 2384 * (accept). 2385 * 2386 * Outgoing subflows use in-kernel sockets. 2387 * Incoming subflows do not have their own 'struct socket' allocated, 2388 * so we need to use tcp_close() after detaching them from the mptcp 2389 * parent socket. 2390 */ 2391 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2392 struct mptcp_subflow_context *subflow, 2393 unsigned int flags) 2394 { 2395 struct mptcp_sock *msk = mptcp_sk(sk); 2396 bool dispose_it, need_push = false; 2397 2398 /* If the first subflow moved to a close state before accept, e.g. due 2399 * to an incoming reset or listener shutdown, the subflow socket is 2400 * already deleted by inet_child_forget() and the mptcp socket can't 2401 * survive too. 2402 */ 2403 if (msk->in_accept_queue && msk->first == ssk && 2404 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2405 /* ensure later check in mptcp_worker() will dispose the msk */ 2406 sock_set_flag(sk, SOCK_DEAD); 2407 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2408 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2409 mptcp_subflow_drop_ctx(ssk); 2410 goto out_release; 2411 } 2412 2413 dispose_it = msk->free_first || ssk != msk->first; 2414 if (dispose_it) 2415 list_del(&subflow->node); 2416 2417 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2418 2419 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2420 /* be sure to force the tcp_close path 2421 * to generate the egress reset 2422 */ 2423 ssk->sk_lingertime = 0; 2424 sock_set_flag(ssk, SOCK_LINGER); 2425 subflow->send_fastclose = 1; 2426 } 2427 2428 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2429 if (!dispose_it) { 2430 __mptcp_subflow_disconnect(ssk, subflow, flags); 2431 release_sock(ssk); 2432 2433 goto out; 2434 } 2435 2436 subflow->disposable = 1; 2437 2438 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2439 * the ssk has been already destroyed, we just need to release the 2440 * reference owned by msk; 2441 */ 2442 if (!inet_csk(ssk)->icsk_ulp_ops) { 2443 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2444 kfree_rcu(subflow, rcu); 2445 } else { 2446 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2447 __tcp_close(ssk, 0); 2448 2449 /* close acquired an extra ref */ 2450 __sock_put(ssk); 2451 } 2452 2453 out_release: 2454 __mptcp_subflow_error_report(sk, ssk); 2455 release_sock(ssk); 2456 2457 sock_put(ssk); 2458 2459 if (ssk == msk->first) 2460 WRITE_ONCE(msk->first, NULL); 2461 2462 out: 2463 __mptcp_sync_sndbuf(sk); 2464 if (need_push) 2465 __mptcp_push_pending(sk, 0); 2466 2467 /* Catch every 'all subflows closed' scenario, including peers silently 2468 * closing them, e.g. due to timeout. 2469 * For established sockets, allow an additional timeout before closing, 2470 * as the protocol can still create more subflows. 2471 */ 2472 if (list_is_singular(&msk->conn_list) && msk->first && 2473 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2474 if (sk->sk_state != TCP_ESTABLISHED || 2475 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2476 inet_sk_state_store(sk, TCP_CLOSE); 2477 mptcp_close_wake_up(sk); 2478 } else { 2479 mptcp_start_tout_timer(sk); 2480 } 2481 } 2482 } 2483 2484 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2485 struct mptcp_subflow_context *subflow) 2486 { 2487 if (sk->sk_state == TCP_ESTABLISHED) 2488 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2489 2490 /* subflow aborted before reaching the fully_established status 2491 * attempt the creation of the next subflow 2492 */ 2493 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2494 2495 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2496 } 2497 2498 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2499 { 2500 return 0; 2501 } 2502 2503 static void __mptcp_close_subflow(struct sock *sk) 2504 { 2505 struct mptcp_subflow_context *subflow, *tmp; 2506 struct mptcp_sock *msk = mptcp_sk(sk); 2507 2508 might_sleep(); 2509 2510 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2511 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2512 2513 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2514 continue; 2515 2516 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2517 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2518 continue; 2519 2520 mptcp_close_ssk(sk, ssk, subflow); 2521 } 2522 2523 } 2524 2525 static bool mptcp_close_tout_expired(const struct sock *sk) 2526 { 2527 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2528 sk->sk_state == TCP_CLOSE) 2529 return false; 2530 2531 return time_after32(tcp_jiffies32, 2532 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2533 } 2534 2535 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2536 { 2537 struct mptcp_subflow_context *subflow, *tmp; 2538 struct sock *sk = (struct sock *)msk; 2539 2540 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2541 return; 2542 2543 mptcp_token_destroy(msk); 2544 2545 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2546 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2547 bool slow; 2548 2549 slow = lock_sock_fast(tcp_sk); 2550 if (tcp_sk->sk_state != TCP_CLOSE) { 2551 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2552 tcp_set_state(tcp_sk, TCP_CLOSE); 2553 } 2554 unlock_sock_fast(tcp_sk, slow); 2555 } 2556 2557 /* Mirror the tcp_reset() error propagation */ 2558 switch (sk->sk_state) { 2559 case TCP_SYN_SENT: 2560 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2561 break; 2562 case TCP_CLOSE_WAIT: 2563 WRITE_ONCE(sk->sk_err, EPIPE); 2564 break; 2565 case TCP_CLOSE: 2566 return; 2567 default: 2568 WRITE_ONCE(sk->sk_err, ECONNRESET); 2569 } 2570 2571 inet_sk_state_store(sk, TCP_CLOSE); 2572 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2573 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2574 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2575 2576 /* the calling mptcp_worker will properly destroy the socket */ 2577 if (sock_flag(sk, SOCK_DEAD)) 2578 return; 2579 2580 sk->sk_state_change(sk); 2581 sk_error_report(sk); 2582 } 2583 2584 static void __mptcp_retrans(struct sock *sk) 2585 { 2586 struct mptcp_sock *msk = mptcp_sk(sk); 2587 struct mptcp_subflow_context *subflow; 2588 struct mptcp_sendmsg_info info = {}; 2589 struct mptcp_data_frag *dfrag; 2590 struct sock *ssk; 2591 int ret, err; 2592 u16 len = 0; 2593 2594 mptcp_clean_una_wakeup(sk); 2595 2596 /* first check ssk: need to kick "stale" logic */ 2597 err = mptcp_sched_get_retrans(msk); 2598 dfrag = mptcp_rtx_head(sk); 2599 if (!dfrag) { 2600 if (mptcp_data_fin_enabled(msk)) { 2601 struct inet_connection_sock *icsk = inet_csk(sk); 2602 2603 icsk->icsk_retransmits++; 2604 mptcp_set_datafin_timeout(sk); 2605 mptcp_send_ack(msk); 2606 2607 goto reset_timer; 2608 } 2609 2610 if (!mptcp_send_head(sk)) 2611 return; 2612 2613 goto reset_timer; 2614 } 2615 2616 if (err) 2617 goto reset_timer; 2618 2619 mptcp_for_each_subflow(msk, subflow) { 2620 if (READ_ONCE(subflow->scheduled)) { 2621 u16 copied = 0; 2622 2623 mptcp_subflow_set_scheduled(subflow, false); 2624 2625 ssk = mptcp_subflow_tcp_sock(subflow); 2626 2627 lock_sock(ssk); 2628 2629 /* limit retransmission to the bytes already sent on some subflows */ 2630 info.sent = 0; 2631 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2632 dfrag->already_sent; 2633 while (info.sent < info.limit) { 2634 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2635 if (ret <= 0) 2636 break; 2637 2638 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2639 copied += ret; 2640 info.sent += ret; 2641 } 2642 if (copied) { 2643 len = max(copied, len); 2644 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2645 info.size_goal); 2646 WRITE_ONCE(msk->allow_infinite_fallback, false); 2647 } 2648 2649 release_sock(ssk); 2650 } 2651 } 2652 2653 msk->bytes_retrans += len; 2654 dfrag->already_sent = max(dfrag->already_sent, len); 2655 2656 reset_timer: 2657 mptcp_check_and_set_pending(sk); 2658 2659 if (!mptcp_rtx_timer_pending(sk)) 2660 mptcp_reset_rtx_timer(sk); 2661 } 2662 2663 /* schedule the timeout timer for the relevant event: either close timeout 2664 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2665 */ 2666 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2667 { 2668 struct sock *sk = (struct sock *)msk; 2669 unsigned long timeout, close_timeout; 2670 2671 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2672 return; 2673 2674 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2675 mptcp_close_timeout(sk); 2676 2677 /* the close timeout takes precedence on the fail one, and here at least one of 2678 * them is active 2679 */ 2680 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2681 2682 sk_reset_timer(sk, &sk->sk_timer, timeout); 2683 } 2684 2685 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2686 { 2687 struct sock *ssk = msk->first; 2688 bool slow; 2689 2690 if (!ssk) 2691 return; 2692 2693 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2694 2695 slow = lock_sock_fast(ssk); 2696 mptcp_subflow_reset(ssk); 2697 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2698 unlock_sock_fast(ssk, slow); 2699 } 2700 2701 static void mptcp_do_fastclose(struct sock *sk) 2702 { 2703 struct mptcp_subflow_context *subflow, *tmp; 2704 struct mptcp_sock *msk = mptcp_sk(sk); 2705 2706 inet_sk_state_store(sk, TCP_CLOSE); 2707 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2708 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2709 subflow, MPTCP_CF_FASTCLOSE); 2710 } 2711 2712 static void mptcp_worker(struct work_struct *work) 2713 { 2714 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2715 struct sock *sk = (struct sock *)msk; 2716 unsigned long fail_tout; 2717 int state; 2718 2719 lock_sock(sk); 2720 state = sk->sk_state; 2721 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2722 goto unlock; 2723 2724 mptcp_check_fastclose(msk); 2725 2726 mptcp_pm_nl_work(msk); 2727 2728 mptcp_check_send_data_fin(sk); 2729 mptcp_check_data_fin_ack(sk); 2730 mptcp_check_data_fin(sk); 2731 2732 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2733 __mptcp_close_subflow(sk); 2734 2735 if (mptcp_close_tout_expired(sk)) { 2736 mptcp_do_fastclose(sk); 2737 mptcp_close_wake_up(sk); 2738 } 2739 2740 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2741 __mptcp_destroy_sock(sk); 2742 goto unlock; 2743 } 2744 2745 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2746 __mptcp_retrans(sk); 2747 2748 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2749 if (fail_tout && time_after(jiffies, fail_tout)) 2750 mptcp_mp_fail_no_response(msk); 2751 2752 unlock: 2753 release_sock(sk); 2754 sock_put(sk); 2755 } 2756 2757 static void __mptcp_init_sock(struct sock *sk) 2758 { 2759 struct mptcp_sock *msk = mptcp_sk(sk); 2760 2761 INIT_LIST_HEAD(&msk->conn_list); 2762 INIT_LIST_HEAD(&msk->join_list); 2763 INIT_LIST_HEAD(&msk->rtx_queue); 2764 INIT_WORK(&msk->work, mptcp_worker); 2765 __skb_queue_head_init(&msk->receive_queue); 2766 msk->out_of_order_queue = RB_ROOT; 2767 msk->first_pending = NULL; 2768 msk->rmem_fwd_alloc = 0; 2769 WRITE_ONCE(msk->rmem_released, 0); 2770 msk->timer_ival = TCP_RTO_MIN; 2771 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2772 2773 WRITE_ONCE(msk->first, NULL); 2774 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2775 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2776 WRITE_ONCE(msk->allow_infinite_fallback, true); 2777 msk->recovery = false; 2778 msk->subflow_id = 1; 2779 2780 mptcp_pm_data_init(msk); 2781 2782 /* re-use the csk retrans timer for MPTCP-level retrans */ 2783 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2784 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2785 } 2786 2787 static void mptcp_ca_reset(struct sock *sk) 2788 { 2789 struct inet_connection_sock *icsk = inet_csk(sk); 2790 2791 tcp_assign_congestion_control(sk); 2792 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2793 2794 /* no need to keep a reference to the ops, the name will suffice */ 2795 tcp_cleanup_congestion_control(sk); 2796 icsk->icsk_ca_ops = NULL; 2797 } 2798 2799 static int mptcp_init_sock(struct sock *sk) 2800 { 2801 struct net *net = sock_net(sk); 2802 int ret; 2803 2804 __mptcp_init_sock(sk); 2805 2806 if (!mptcp_is_enabled(net)) 2807 return -ENOPROTOOPT; 2808 2809 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2810 return -ENOMEM; 2811 2812 ret = mptcp_init_sched(mptcp_sk(sk), 2813 mptcp_sched_find(mptcp_get_scheduler(net))); 2814 if (ret) 2815 return ret; 2816 2817 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2818 2819 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2820 * propagate the correct value 2821 */ 2822 mptcp_ca_reset(sk); 2823 2824 sk_sockets_allocated_inc(sk); 2825 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2826 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2827 2828 return 0; 2829 } 2830 2831 static void __mptcp_clear_xmit(struct sock *sk) 2832 { 2833 struct mptcp_sock *msk = mptcp_sk(sk); 2834 struct mptcp_data_frag *dtmp, *dfrag; 2835 2836 WRITE_ONCE(msk->first_pending, NULL); 2837 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2838 dfrag_clear(sk, dfrag); 2839 } 2840 2841 void mptcp_cancel_work(struct sock *sk) 2842 { 2843 struct mptcp_sock *msk = mptcp_sk(sk); 2844 2845 if (cancel_work_sync(&msk->work)) 2846 __sock_put(sk); 2847 } 2848 2849 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2850 { 2851 lock_sock(ssk); 2852 2853 switch (ssk->sk_state) { 2854 case TCP_LISTEN: 2855 if (!(how & RCV_SHUTDOWN)) 2856 break; 2857 fallthrough; 2858 case TCP_SYN_SENT: 2859 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2860 break; 2861 default: 2862 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2863 pr_debug("Fallback"); 2864 ssk->sk_shutdown |= how; 2865 tcp_shutdown(ssk, how); 2866 2867 /* simulate the data_fin ack reception to let the state 2868 * machine move forward 2869 */ 2870 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2871 mptcp_schedule_work(sk); 2872 } else { 2873 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2874 tcp_send_ack(ssk); 2875 if (!mptcp_rtx_timer_pending(sk)) 2876 mptcp_reset_rtx_timer(sk); 2877 } 2878 break; 2879 } 2880 2881 release_sock(ssk); 2882 } 2883 2884 static const unsigned char new_state[16] = { 2885 /* current state: new state: action: */ 2886 [0 /* (Invalid) */] = TCP_CLOSE, 2887 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2888 [TCP_SYN_SENT] = TCP_CLOSE, 2889 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2890 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2891 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2892 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2893 [TCP_CLOSE] = TCP_CLOSE, 2894 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2895 [TCP_LAST_ACK] = TCP_LAST_ACK, 2896 [TCP_LISTEN] = TCP_CLOSE, 2897 [TCP_CLOSING] = TCP_CLOSING, 2898 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2899 }; 2900 2901 static int mptcp_close_state(struct sock *sk) 2902 { 2903 int next = (int)new_state[sk->sk_state]; 2904 int ns = next & TCP_STATE_MASK; 2905 2906 inet_sk_state_store(sk, ns); 2907 2908 return next & TCP_ACTION_FIN; 2909 } 2910 2911 static void mptcp_check_send_data_fin(struct sock *sk) 2912 { 2913 struct mptcp_subflow_context *subflow; 2914 struct mptcp_sock *msk = mptcp_sk(sk); 2915 2916 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2917 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2918 msk->snd_nxt, msk->write_seq); 2919 2920 /* we still need to enqueue subflows or not really shutting down, 2921 * skip this 2922 */ 2923 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2924 mptcp_send_head(sk)) 2925 return; 2926 2927 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2928 2929 mptcp_for_each_subflow(msk, subflow) { 2930 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2931 2932 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2933 } 2934 } 2935 2936 static void __mptcp_wr_shutdown(struct sock *sk) 2937 { 2938 struct mptcp_sock *msk = mptcp_sk(sk); 2939 2940 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2941 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2942 !!mptcp_send_head(sk)); 2943 2944 /* will be ignored by fallback sockets */ 2945 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2946 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2947 2948 mptcp_check_send_data_fin(sk); 2949 } 2950 2951 static void __mptcp_destroy_sock(struct sock *sk) 2952 { 2953 struct mptcp_sock *msk = mptcp_sk(sk); 2954 2955 pr_debug("msk=%p", msk); 2956 2957 might_sleep(); 2958 2959 mptcp_stop_rtx_timer(sk); 2960 sk_stop_timer(sk, &sk->sk_timer); 2961 msk->pm.status = 0; 2962 mptcp_release_sched(msk); 2963 2964 sk->sk_prot->destroy(sk); 2965 2966 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2967 WARN_ON_ONCE(msk->rmem_released); 2968 sk_stream_kill_queues(sk); 2969 xfrm_sk_free_policy(sk); 2970 2971 sock_put(sk); 2972 } 2973 2974 void __mptcp_unaccepted_force_close(struct sock *sk) 2975 { 2976 sock_set_flag(sk, SOCK_DEAD); 2977 mptcp_do_fastclose(sk); 2978 __mptcp_destroy_sock(sk); 2979 } 2980 2981 static __poll_t mptcp_check_readable(struct sock *sk) 2982 { 2983 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2984 } 2985 2986 static void mptcp_check_listen_stop(struct sock *sk) 2987 { 2988 struct sock *ssk; 2989 2990 if (inet_sk_state_load(sk) != TCP_LISTEN) 2991 return; 2992 2993 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2994 ssk = mptcp_sk(sk)->first; 2995 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2996 return; 2997 2998 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2999 tcp_set_state(ssk, TCP_CLOSE); 3000 mptcp_subflow_queue_clean(sk, ssk); 3001 inet_csk_listen_stop(ssk); 3002 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3003 release_sock(ssk); 3004 } 3005 3006 bool __mptcp_close(struct sock *sk, long timeout) 3007 { 3008 struct mptcp_subflow_context *subflow; 3009 struct mptcp_sock *msk = mptcp_sk(sk); 3010 bool do_cancel_work = false; 3011 int subflows_alive = 0; 3012 3013 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3014 3015 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3016 mptcp_check_listen_stop(sk); 3017 inet_sk_state_store(sk, TCP_CLOSE); 3018 goto cleanup; 3019 } 3020 3021 if (mptcp_data_avail(msk) || timeout < 0) { 3022 /* If the msk has read data, or the caller explicitly ask it, 3023 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3024 */ 3025 mptcp_do_fastclose(sk); 3026 timeout = 0; 3027 } else if (mptcp_close_state(sk)) { 3028 __mptcp_wr_shutdown(sk); 3029 } 3030 3031 sk_stream_wait_close(sk, timeout); 3032 3033 cleanup: 3034 /* orphan all the subflows */ 3035 mptcp_for_each_subflow(msk, subflow) { 3036 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3037 bool slow = lock_sock_fast_nested(ssk); 3038 3039 subflows_alive += ssk->sk_state != TCP_CLOSE; 3040 3041 /* since the close timeout takes precedence on the fail one, 3042 * cancel the latter 3043 */ 3044 if (ssk == msk->first) 3045 subflow->fail_tout = 0; 3046 3047 /* detach from the parent socket, but allow data_ready to 3048 * push incoming data into the mptcp stack, to properly ack it 3049 */ 3050 ssk->sk_socket = NULL; 3051 ssk->sk_wq = NULL; 3052 unlock_sock_fast(ssk, slow); 3053 } 3054 sock_orphan(sk); 3055 3056 /* all the subflows are closed, only timeout can change the msk 3057 * state, let's not keep resources busy for no reasons 3058 */ 3059 if (subflows_alive == 0) 3060 inet_sk_state_store(sk, TCP_CLOSE); 3061 3062 sock_hold(sk); 3063 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3064 if (msk->token) 3065 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3066 3067 if (sk->sk_state == TCP_CLOSE) { 3068 __mptcp_destroy_sock(sk); 3069 do_cancel_work = true; 3070 } else { 3071 mptcp_start_tout_timer(sk); 3072 } 3073 3074 return do_cancel_work; 3075 } 3076 3077 static void mptcp_close(struct sock *sk, long timeout) 3078 { 3079 bool do_cancel_work; 3080 3081 lock_sock(sk); 3082 3083 do_cancel_work = __mptcp_close(sk, timeout); 3084 release_sock(sk); 3085 if (do_cancel_work) 3086 mptcp_cancel_work(sk); 3087 3088 sock_put(sk); 3089 } 3090 3091 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3092 { 3093 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3094 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3095 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3096 3097 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3098 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3099 3100 if (msk6 && ssk6) { 3101 msk6->saddr = ssk6->saddr; 3102 msk6->flow_label = ssk6->flow_label; 3103 } 3104 #endif 3105 3106 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3107 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3108 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3109 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3110 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3111 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3112 } 3113 3114 static int mptcp_disconnect(struct sock *sk, int flags) 3115 { 3116 struct mptcp_sock *msk = mptcp_sk(sk); 3117 3118 /* We are on the fastopen error path. We can't call straight into the 3119 * subflows cleanup code due to lock nesting (we are already under 3120 * msk->firstsocket lock). 3121 */ 3122 if (msk->fastopening) 3123 return -EBUSY; 3124 3125 mptcp_check_listen_stop(sk); 3126 inet_sk_state_store(sk, TCP_CLOSE); 3127 3128 mptcp_stop_rtx_timer(sk); 3129 mptcp_stop_tout_timer(sk); 3130 3131 if (msk->token) 3132 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3133 3134 /* msk->subflow is still intact, the following will not free the first 3135 * subflow 3136 */ 3137 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3138 WRITE_ONCE(msk->flags, 0); 3139 msk->cb_flags = 0; 3140 msk->push_pending = 0; 3141 msk->recovery = false; 3142 msk->can_ack = false; 3143 msk->fully_established = false; 3144 msk->rcv_data_fin = false; 3145 msk->snd_data_fin_enable = false; 3146 msk->rcv_fastclose = false; 3147 msk->use_64bit_ack = false; 3148 msk->bytes_consumed = 0; 3149 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3150 mptcp_pm_data_reset(msk); 3151 mptcp_ca_reset(sk); 3152 msk->bytes_acked = 0; 3153 msk->bytes_received = 0; 3154 msk->bytes_sent = 0; 3155 msk->bytes_retrans = 0; 3156 3157 WRITE_ONCE(sk->sk_shutdown, 0); 3158 sk_error_report(sk); 3159 return 0; 3160 } 3161 3162 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3163 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3164 { 3165 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3166 3167 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3168 } 3169 #endif 3170 3171 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3172 const struct mptcp_options_received *mp_opt, 3173 struct sock *ssk, 3174 struct request_sock *req) 3175 { 3176 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3177 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3178 struct mptcp_sock *msk; 3179 3180 if (!nsk) 3181 return NULL; 3182 3183 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3184 if (nsk->sk_family == AF_INET6) 3185 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3186 #endif 3187 3188 __mptcp_init_sock(nsk); 3189 3190 msk = mptcp_sk(nsk); 3191 msk->local_key = subflow_req->local_key; 3192 msk->token = subflow_req->token; 3193 msk->in_accept_queue = 1; 3194 WRITE_ONCE(msk->fully_established, false); 3195 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3196 WRITE_ONCE(msk->csum_enabled, true); 3197 3198 msk->write_seq = subflow_req->idsn + 1; 3199 msk->snd_nxt = msk->write_seq; 3200 msk->snd_una = msk->write_seq; 3201 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3202 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3203 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3204 3205 /* passive msk is created after the first/MPC subflow */ 3206 msk->subflow_id = 2; 3207 3208 sock_reset_flag(nsk, SOCK_RCU_FREE); 3209 security_inet_csk_clone(nsk, req); 3210 3211 /* this can't race with mptcp_close(), as the msk is 3212 * not yet exposted to user-space 3213 */ 3214 inet_sk_state_store(nsk, TCP_ESTABLISHED); 3215 3216 /* The msk maintain a ref to each subflow in the connections list */ 3217 WRITE_ONCE(msk->first, ssk); 3218 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3219 sock_hold(ssk); 3220 3221 /* new mpc subflow takes ownership of the newly 3222 * created mptcp socket 3223 */ 3224 mptcp_token_accept(subflow_req, msk); 3225 3226 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3227 * uses the correct data 3228 */ 3229 mptcp_copy_inaddrs(nsk, ssk); 3230 __mptcp_propagate_sndbuf(nsk, ssk); 3231 3232 mptcp_rcv_space_init(msk, ssk); 3233 bh_unlock_sock(nsk); 3234 3235 /* note: the newly allocated socket refcount is 2 now */ 3236 return nsk; 3237 } 3238 3239 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3240 { 3241 const struct tcp_sock *tp = tcp_sk(ssk); 3242 3243 msk->rcvq_space.copied = 0; 3244 msk->rcvq_space.rtt_us = 0; 3245 3246 msk->rcvq_space.time = tp->tcp_mstamp; 3247 3248 /* initial rcv_space offering made to peer */ 3249 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3250 TCP_INIT_CWND * tp->advmss); 3251 if (msk->rcvq_space.space == 0) 3252 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3253 3254 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3255 } 3256 3257 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err, 3258 bool kern) 3259 { 3260 struct sock *newsk; 3261 3262 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3263 newsk = inet_csk_accept(ssk, flags, err, kern); 3264 if (!newsk) 3265 return NULL; 3266 3267 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3268 if (sk_is_mptcp(newsk)) { 3269 struct mptcp_subflow_context *subflow; 3270 struct sock *new_mptcp_sock; 3271 3272 subflow = mptcp_subflow_ctx(newsk); 3273 new_mptcp_sock = subflow->conn; 3274 3275 /* is_mptcp should be false if subflow->conn is missing, see 3276 * subflow_syn_recv_sock() 3277 */ 3278 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3279 tcp_sk(newsk)->is_mptcp = 0; 3280 goto out; 3281 } 3282 3283 newsk = new_mptcp_sock; 3284 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3285 } else { 3286 MPTCP_INC_STATS(sock_net(ssk), 3287 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3288 } 3289 3290 out: 3291 newsk->sk_kern_sock = kern; 3292 return newsk; 3293 } 3294 3295 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3296 { 3297 struct mptcp_subflow_context *subflow, *tmp; 3298 struct sock *sk = (struct sock *)msk; 3299 3300 __mptcp_clear_xmit(sk); 3301 3302 /* join list will be eventually flushed (with rst) at sock lock release time */ 3303 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3304 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3305 3306 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3307 mptcp_data_lock(sk); 3308 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3309 __skb_queue_purge(&sk->sk_receive_queue); 3310 skb_rbtree_purge(&msk->out_of_order_queue); 3311 mptcp_data_unlock(sk); 3312 3313 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3314 * inet_sock_destruct() will dispose it 3315 */ 3316 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3317 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3318 mptcp_token_destroy(msk); 3319 mptcp_pm_free_anno_list(msk); 3320 mptcp_free_local_addr_list(msk); 3321 } 3322 3323 static void mptcp_destroy(struct sock *sk) 3324 { 3325 struct mptcp_sock *msk = mptcp_sk(sk); 3326 3327 /* allow the following to close even the initial subflow */ 3328 msk->free_first = 1; 3329 mptcp_destroy_common(msk, 0); 3330 sk_sockets_allocated_dec(sk); 3331 } 3332 3333 void __mptcp_data_acked(struct sock *sk) 3334 { 3335 if (!sock_owned_by_user(sk)) 3336 __mptcp_clean_una(sk); 3337 else 3338 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3339 3340 if (mptcp_pending_data_fin_ack(sk)) 3341 mptcp_schedule_work(sk); 3342 } 3343 3344 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3345 { 3346 if (!mptcp_send_head(sk)) 3347 return; 3348 3349 if (!sock_owned_by_user(sk)) 3350 __mptcp_subflow_push_pending(sk, ssk, false); 3351 else 3352 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3353 } 3354 3355 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3356 BIT(MPTCP_RETRANSMIT) | \ 3357 BIT(MPTCP_FLUSH_JOIN_LIST)) 3358 3359 /* processes deferred events and flush wmem */ 3360 static void mptcp_release_cb(struct sock *sk) 3361 __must_hold(&sk->sk_lock.slock) 3362 { 3363 struct mptcp_sock *msk = mptcp_sk(sk); 3364 3365 for (;;) { 3366 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3367 msk->push_pending; 3368 struct list_head join_list; 3369 3370 if (!flags) 3371 break; 3372 3373 INIT_LIST_HEAD(&join_list); 3374 list_splice_init(&msk->join_list, &join_list); 3375 3376 /* the following actions acquire the subflow socket lock 3377 * 3378 * 1) can't be invoked in atomic scope 3379 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3380 * datapath acquires the msk socket spinlock while helding 3381 * the subflow socket lock 3382 */ 3383 msk->push_pending = 0; 3384 msk->cb_flags &= ~flags; 3385 spin_unlock_bh(&sk->sk_lock.slock); 3386 3387 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3388 __mptcp_flush_join_list(sk, &join_list); 3389 if (flags & BIT(MPTCP_PUSH_PENDING)) 3390 __mptcp_push_pending(sk, 0); 3391 if (flags & BIT(MPTCP_RETRANSMIT)) 3392 __mptcp_retrans(sk); 3393 3394 cond_resched(); 3395 spin_lock_bh(&sk->sk_lock.slock); 3396 } 3397 3398 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3399 __mptcp_clean_una_wakeup(sk); 3400 if (unlikely(msk->cb_flags)) { 3401 /* be sure to set the current sk state before tacking actions 3402 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3403 */ 3404 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3405 __mptcp_set_connected(sk); 3406 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3407 __mptcp_error_report(sk); 3408 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3409 __mptcp_sync_sndbuf(sk); 3410 } 3411 3412 __mptcp_update_rmem(sk); 3413 } 3414 3415 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3416 * TCP can't schedule delack timer before the subflow is fully established. 3417 * MPTCP uses the delack timer to do 3rd ack retransmissions 3418 */ 3419 static void schedule_3rdack_retransmission(struct sock *ssk) 3420 { 3421 struct inet_connection_sock *icsk = inet_csk(ssk); 3422 struct tcp_sock *tp = tcp_sk(ssk); 3423 unsigned long timeout; 3424 3425 if (mptcp_subflow_ctx(ssk)->fully_established) 3426 return; 3427 3428 /* reschedule with a timeout above RTT, as we must look only for drop */ 3429 if (tp->srtt_us) 3430 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3431 else 3432 timeout = TCP_TIMEOUT_INIT; 3433 timeout += jiffies; 3434 3435 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3436 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3437 icsk->icsk_ack.timeout = timeout; 3438 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3439 } 3440 3441 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3442 { 3443 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3444 struct sock *sk = subflow->conn; 3445 3446 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3447 mptcp_data_lock(sk); 3448 if (!sock_owned_by_user(sk)) 3449 __mptcp_subflow_push_pending(sk, ssk, true); 3450 else 3451 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3452 mptcp_data_unlock(sk); 3453 } 3454 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3455 mptcp_data_lock(sk); 3456 if (!sock_owned_by_user(sk)) 3457 __mptcp_sync_sndbuf(sk); 3458 else 3459 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3460 mptcp_data_unlock(sk); 3461 } 3462 if (status & BIT(MPTCP_DELEGATE_ACK)) 3463 schedule_3rdack_retransmission(ssk); 3464 } 3465 3466 static int mptcp_hash(struct sock *sk) 3467 { 3468 /* should never be called, 3469 * we hash the TCP subflows not the master socket 3470 */ 3471 WARN_ON_ONCE(1); 3472 return 0; 3473 } 3474 3475 static void mptcp_unhash(struct sock *sk) 3476 { 3477 /* called from sk_common_release(), but nothing to do here */ 3478 } 3479 3480 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3481 { 3482 struct mptcp_sock *msk = mptcp_sk(sk); 3483 3484 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3485 if (WARN_ON_ONCE(!msk->first)) 3486 return -EINVAL; 3487 3488 return inet_csk_get_port(msk->first, snum); 3489 } 3490 3491 void mptcp_finish_connect(struct sock *ssk) 3492 { 3493 struct mptcp_subflow_context *subflow; 3494 struct mptcp_sock *msk; 3495 struct sock *sk; 3496 3497 subflow = mptcp_subflow_ctx(ssk); 3498 sk = subflow->conn; 3499 msk = mptcp_sk(sk); 3500 3501 pr_debug("msk=%p, token=%u", sk, subflow->token); 3502 3503 subflow->map_seq = subflow->iasn; 3504 subflow->map_subflow_seq = 1; 3505 3506 /* the socket is not connected yet, no msk/subflow ops can access/race 3507 * accessing the field below 3508 */ 3509 WRITE_ONCE(msk->local_key, subflow->local_key); 3510 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3511 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3512 WRITE_ONCE(msk->snd_una, msk->write_seq); 3513 3514 mptcp_pm_new_connection(msk, ssk, 0); 3515 3516 mptcp_rcv_space_init(msk, ssk); 3517 } 3518 3519 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3520 { 3521 write_lock_bh(&sk->sk_callback_lock); 3522 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3523 sk_set_socket(sk, parent); 3524 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3525 write_unlock_bh(&sk->sk_callback_lock); 3526 } 3527 3528 bool mptcp_finish_join(struct sock *ssk) 3529 { 3530 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3531 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3532 struct sock *parent = (void *)msk; 3533 bool ret = true; 3534 3535 pr_debug("msk=%p, subflow=%p", msk, subflow); 3536 3537 /* mptcp socket already closing? */ 3538 if (!mptcp_is_fully_established(parent)) { 3539 subflow->reset_reason = MPTCP_RST_EMPTCP; 3540 return false; 3541 } 3542 3543 /* active subflow, already present inside the conn_list */ 3544 if (!list_empty(&subflow->node)) { 3545 mptcp_subflow_joined(msk, ssk); 3546 mptcp_propagate_sndbuf(parent, ssk); 3547 return true; 3548 } 3549 3550 if (!mptcp_pm_allow_new_subflow(msk)) 3551 goto err_prohibited; 3552 3553 /* If we can't acquire msk socket lock here, let the release callback 3554 * handle it 3555 */ 3556 mptcp_data_lock(parent); 3557 if (!sock_owned_by_user(parent)) { 3558 ret = __mptcp_finish_join(msk, ssk); 3559 if (ret) { 3560 sock_hold(ssk); 3561 list_add_tail(&subflow->node, &msk->conn_list); 3562 } 3563 } else { 3564 sock_hold(ssk); 3565 list_add_tail(&subflow->node, &msk->join_list); 3566 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3567 } 3568 mptcp_data_unlock(parent); 3569 3570 if (!ret) { 3571 err_prohibited: 3572 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3573 return false; 3574 } 3575 3576 return true; 3577 } 3578 3579 static void mptcp_shutdown(struct sock *sk, int how) 3580 { 3581 pr_debug("sk=%p, how=%d", sk, how); 3582 3583 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3584 __mptcp_wr_shutdown(sk); 3585 } 3586 3587 static int mptcp_forward_alloc_get(const struct sock *sk) 3588 { 3589 return READ_ONCE(sk->sk_forward_alloc) + 3590 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3591 } 3592 3593 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3594 { 3595 const struct sock *sk = (void *)msk; 3596 u64 delta; 3597 3598 if (sk->sk_state == TCP_LISTEN) 3599 return -EINVAL; 3600 3601 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3602 return 0; 3603 3604 delta = msk->write_seq - v; 3605 if (__mptcp_check_fallback(msk) && msk->first) { 3606 struct tcp_sock *tp = tcp_sk(msk->first); 3607 3608 /* the first subflow is disconnected after close - see 3609 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3610 * so ignore that status, too. 3611 */ 3612 if (!((1 << msk->first->sk_state) & 3613 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3614 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3615 } 3616 if (delta > INT_MAX) 3617 delta = INT_MAX; 3618 3619 return (int)delta; 3620 } 3621 3622 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3623 { 3624 struct mptcp_sock *msk = mptcp_sk(sk); 3625 bool slow; 3626 3627 switch (cmd) { 3628 case SIOCINQ: 3629 if (sk->sk_state == TCP_LISTEN) 3630 return -EINVAL; 3631 3632 lock_sock(sk); 3633 __mptcp_move_skbs(msk); 3634 *karg = mptcp_inq_hint(sk); 3635 release_sock(sk); 3636 break; 3637 case SIOCOUTQ: 3638 slow = lock_sock_fast(sk); 3639 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3640 unlock_sock_fast(sk, slow); 3641 break; 3642 case SIOCOUTQNSD: 3643 slow = lock_sock_fast(sk); 3644 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3645 unlock_sock_fast(sk, slow); 3646 break; 3647 default: 3648 return -ENOIOCTLCMD; 3649 } 3650 3651 return 0; 3652 } 3653 3654 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3655 struct mptcp_subflow_context *subflow) 3656 { 3657 subflow->request_mptcp = 0; 3658 __mptcp_do_fallback(msk); 3659 } 3660 3661 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3662 { 3663 struct mptcp_subflow_context *subflow; 3664 struct mptcp_sock *msk = mptcp_sk(sk); 3665 int err = -EINVAL; 3666 struct sock *ssk; 3667 3668 ssk = __mptcp_nmpc_sk(msk); 3669 if (IS_ERR(ssk)) 3670 return PTR_ERR(ssk); 3671 3672 inet_sk_state_store(sk, TCP_SYN_SENT); 3673 subflow = mptcp_subflow_ctx(ssk); 3674 #ifdef CONFIG_TCP_MD5SIG 3675 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3676 * TCP option space. 3677 */ 3678 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3679 mptcp_subflow_early_fallback(msk, subflow); 3680 #endif 3681 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3682 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3683 mptcp_subflow_early_fallback(msk, subflow); 3684 } 3685 if (likely(!__mptcp_check_fallback(msk))) 3686 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3687 3688 /* if reaching here via the fastopen/sendmsg path, the caller already 3689 * acquired the subflow socket lock, too. 3690 */ 3691 if (!msk->fastopening) 3692 lock_sock(ssk); 3693 3694 /* the following mirrors closely a very small chunk of code from 3695 * __inet_stream_connect() 3696 */ 3697 if (ssk->sk_state != TCP_CLOSE) 3698 goto out; 3699 3700 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3701 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3702 if (err) 3703 goto out; 3704 } 3705 3706 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3707 if (err < 0) 3708 goto out; 3709 3710 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3711 3712 out: 3713 if (!msk->fastopening) 3714 release_sock(ssk); 3715 3716 /* on successful connect, the msk state will be moved to established by 3717 * subflow_finish_connect() 3718 */ 3719 if (unlikely(err)) { 3720 /* avoid leaving a dangling token in an unconnected socket */ 3721 mptcp_token_destroy(msk); 3722 inet_sk_state_store(sk, TCP_CLOSE); 3723 return err; 3724 } 3725 3726 mptcp_copy_inaddrs(sk, ssk); 3727 return 0; 3728 } 3729 3730 static struct proto mptcp_prot = { 3731 .name = "MPTCP", 3732 .owner = THIS_MODULE, 3733 .init = mptcp_init_sock, 3734 .connect = mptcp_connect, 3735 .disconnect = mptcp_disconnect, 3736 .close = mptcp_close, 3737 .accept = mptcp_accept, 3738 .setsockopt = mptcp_setsockopt, 3739 .getsockopt = mptcp_getsockopt, 3740 .shutdown = mptcp_shutdown, 3741 .destroy = mptcp_destroy, 3742 .sendmsg = mptcp_sendmsg, 3743 .ioctl = mptcp_ioctl, 3744 .recvmsg = mptcp_recvmsg, 3745 .release_cb = mptcp_release_cb, 3746 .hash = mptcp_hash, 3747 .unhash = mptcp_unhash, 3748 .get_port = mptcp_get_port, 3749 .forward_alloc_get = mptcp_forward_alloc_get, 3750 .sockets_allocated = &mptcp_sockets_allocated, 3751 3752 .memory_allocated = &tcp_memory_allocated, 3753 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3754 3755 .memory_pressure = &tcp_memory_pressure, 3756 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3757 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3758 .sysctl_mem = sysctl_tcp_mem, 3759 .obj_size = sizeof(struct mptcp_sock), 3760 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3761 .no_autobind = true, 3762 }; 3763 3764 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3765 { 3766 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3767 struct sock *ssk, *sk = sock->sk; 3768 int err = -EINVAL; 3769 3770 lock_sock(sk); 3771 ssk = __mptcp_nmpc_sk(msk); 3772 if (IS_ERR(ssk)) { 3773 err = PTR_ERR(ssk); 3774 goto unlock; 3775 } 3776 3777 if (sk->sk_family == AF_INET) 3778 err = inet_bind_sk(ssk, uaddr, addr_len); 3779 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3780 else if (sk->sk_family == AF_INET6) 3781 err = inet6_bind_sk(ssk, uaddr, addr_len); 3782 #endif 3783 if (!err) 3784 mptcp_copy_inaddrs(sk, ssk); 3785 3786 unlock: 3787 release_sock(sk); 3788 return err; 3789 } 3790 3791 static int mptcp_listen(struct socket *sock, int backlog) 3792 { 3793 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3794 struct sock *sk = sock->sk; 3795 struct sock *ssk; 3796 int err; 3797 3798 pr_debug("msk=%p", msk); 3799 3800 lock_sock(sk); 3801 3802 err = -EINVAL; 3803 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3804 goto unlock; 3805 3806 ssk = __mptcp_nmpc_sk(msk); 3807 if (IS_ERR(ssk)) { 3808 err = PTR_ERR(ssk); 3809 goto unlock; 3810 } 3811 3812 inet_sk_state_store(sk, TCP_LISTEN); 3813 sock_set_flag(sk, SOCK_RCU_FREE); 3814 3815 lock_sock(ssk); 3816 err = __inet_listen_sk(ssk, backlog); 3817 release_sock(ssk); 3818 inet_sk_state_store(sk, inet_sk_state_load(ssk)); 3819 3820 if (!err) { 3821 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3822 mptcp_copy_inaddrs(sk, ssk); 3823 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3824 } 3825 3826 unlock: 3827 release_sock(sk); 3828 return err; 3829 } 3830 3831 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3832 int flags, bool kern) 3833 { 3834 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3835 struct sock *ssk, *newsk; 3836 int err; 3837 3838 pr_debug("msk=%p", msk); 3839 3840 /* Buggy applications can call accept on socket states other then LISTEN 3841 * but no need to allocate the first subflow just to error out. 3842 */ 3843 ssk = READ_ONCE(msk->first); 3844 if (!ssk) 3845 return -EINVAL; 3846 3847 newsk = mptcp_accept(ssk, flags, &err, kern); 3848 if (!newsk) 3849 return err; 3850 3851 lock_sock(newsk); 3852 3853 __inet_accept(sock, newsock, newsk); 3854 if (!mptcp_is_tcpsk(newsock->sk)) { 3855 struct mptcp_sock *msk = mptcp_sk(newsk); 3856 struct mptcp_subflow_context *subflow; 3857 3858 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3859 msk->in_accept_queue = 0; 3860 3861 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3862 * This is needed so NOSPACE flag can be set from tcp stack. 3863 */ 3864 mptcp_for_each_subflow(msk, subflow) { 3865 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3866 3867 if (!ssk->sk_socket) 3868 mptcp_sock_graft(ssk, newsock); 3869 } 3870 3871 /* Do late cleanup for the first subflow as necessary. Also 3872 * deal with bad peers not doing a complete shutdown. 3873 */ 3874 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3875 __mptcp_close_ssk(newsk, msk->first, 3876 mptcp_subflow_ctx(msk->first), 0); 3877 if (unlikely(list_is_singular(&msk->conn_list))) 3878 inet_sk_state_store(newsk, TCP_CLOSE); 3879 } 3880 } 3881 release_sock(newsk); 3882 3883 return 0; 3884 } 3885 3886 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3887 { 3888 struct sock *sk = (struct sock *)msk; 3889 3890 if (sk_stream_is_writeable(sk)) 3891 return EPOLLOUT | EPOLLWRNORM; 3892 3893 mptcp_set_nospace(sk); 3894 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3895 if (sk_stream_is_writeable(sk)) 3896 return EPOLLOUT | EPOLLWRNORM; 3897 3898 return 0; 3899 } 3900 3901 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3902 struct poll_table_struct *wait) 3903 { 3904 struct sock *sk = sock->sk; 3905 struct mptcp_sock *msk; 3906 __poll_t mask = 0; 3907 u8 shutdown; 3908 int state; 3909 3910 msk = mptcp_sk(sk); 3911 sock_poll_wait(file, sock, wait); 3912 3913 state = inet_sk_state_load(sk); 3914 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3915 if (state == TCP_LISTEN) { 3916 struct sock *ssk = READ_ONCE(msk->first); 3917 3918 if (WARN_ON_ONCE(!ssk)) 3919 return 0; 3920 3921 return inet_csk_listen_poll(ssk); 3922 } 3923 3924 shutdown = READ_ONCE(sk->sk_shutdown); 3925 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3926 mask |= EPOLLHUP; 3927 if (shutdown & RCV_SHUTDOWN) 3928 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3929 3930 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3931 mask |= mptcp_check_readable(sk); 3932 if (shutdown & SEND_SHUTDOWN) 3933 mask |= EPOLLOUT | EPOLLWRNORM; 3934 else 3935 mask |= mptcp_check_writeable(msk); 3936 } else if (state == TCP_SYN_SENT && 3937 inet_test_bit(DEFER_CONNECT, sk)) { 3938 /* cf tcp_poll() note about TFO */ 3939 mask |= EPOLLOUT | EPOLLWRNORM; 3940 } 3941 3942 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3943 smp_rmb(); 3944 if (READ_ONCE(sk->sk_err)) 3945 mask |= EPOLLERR; 3946 3947 return mask; 3948 } 3949 3950 static const struct proto_ops mptcp_stream_ops = { 3951 .family = PF_INET, 3952 .owner = THIS_MODULE, 3953 .release = inet_release, 3954 .bind = mptcp_bind, 3955 .connect = inet_stream_connect, 3956 .socketpair = sock_no_socketpair, 3957 .accept = mptcp_stream_accept, 3958 .getname = inet_getname, 3959 .poll = mptcp_poll, 3960 .ioctl = inet_ioctl, 3961 .gettstamp = sock_gettstamp, 3962 .listen = mptcp_listen, 3963 .shutdown = inet_shutdown, 3964 .setsockopt = sock_common_setsockopt, 3965 .getsockopt = sock_common_getsockopt, 3966 .sendmsg = inet_sendmsg, 3967 .recvmsg = inet_recvmsg, 3968 .mmap = sock_no_mmap, 3969 .set_rcvlowat = mptcp_set_rcvlowat, 3970 }; 3971 3972 static struct inet_protosw mptcp_protosw = { 3973 .type = SOCK_STREAM, 3974 .protocol = IPPROTO_MPTCP, 3975 .prot = &mptcp_prot, 3976 .ops = &mptcp_stream_ops, 3977 .flags = INET_PROTOSW_ICSK, 3978 }; 3979 3980 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3981 { 3982 struct mptcp_delegated_action *delegated; 3983 struct mptcp_subflow_context *subflow; 3984 int work_done = 0; 3985 3986 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3987 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3988 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3989 3990 bh_lock_sock_nested(ssk); 3991 if (!sock_owned_by_user(ssk)) { 3992 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 3993 } else { 3994 /* tcp_release_cb_override already processed 3995 * the action or will do at next release_sock(). 3996 * In both case must dequeue the subflow here - on the same 3997 * CPU that scheduled it. 3998 */ 3999 smp_wmb(); 4000 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4001 } 4002 bh_unlock_sock(ssk); 4003 sock_put(ssk); 4004 4005 if (++work_done == budget) 4006 return budget; 4007 } 4008 4009 /* always provide a 0 'work_done' argument, so that napi_complete_done 4010 * will not try accessing the NULL napi->dev ptr 4011 */ 4012 napi_complete_done(napi, 0); 4013 return work_done; 4014 } 4015 4016 void __init mptcp_proto_init(void) 4017 { 4018 struct mptcp_delegated_action *delegated; 4019 int cpu; 4020 4021 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4022 4023 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4024 panic("Failed to allocate MPTCP pcpu counter\n"); 4025 4026 init_dummy_netdev(&mptcp_napi_dev); 4027 for_each_possible_cpu(cpu) { 4028 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4029 INIT_LIST_HEAD(&delegated->head); 4030 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4031 mptcp_napi_poll); 4032 napi_enable(&delegated->napi); 4033 } 4034 4035 mptcp_subflow_init(); 4036 mptcp_pm_init(); 4037 mptcp_sched_init(); 4038 mptcp_token_init(); 4039 4040 if (proto_register(&mptcp_prot, 1) != 0) 4041 panic("Failed to register MPTCP proto.\n"); 4042 4043 inet_register_protosw(&mptcp_protosw); 4044 4045 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4046 } 4047 4048 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4049 static const struct proto_ops mptcp_v6_stream_ops = { 4050 .family = PF_INET6, 4051 .owner = THIS_MODULE, 4052 .release = inet6_release, 4053 .bind = mptcp_bind, 4054 .connect = inet_stream_connect, 4055 .socketpair = sock_no_socketpair, 4056 .accept = mptcp_stream_accept, 4057 .getname = inet6_getname, 4058 .poll = mptcp_poll, 4059 .ioctl = inet6_ioctl, 4060 .gettstamp = sock_gettstamp, 4061 .listen = mptcp_listen, 4062 .shutdown = inet_shutdown, 4063 .setsockopt = sock_common_setsockopt, 4064 .getsockopt = sock_common_getsockopt, 4065 .sendmsg = inet6_sendmsg, 4066 .recvmsg = inet6_recvmsg, 4067 .mmap = sock_no_mmap, 4068 #ifdef CONFIG_COMPAT 4069 .compat_ioctl = inet6_compat_ioctl, 4070 #endif 4071 .set_rcvlowat = mptcp_set_rcvlowat, 4072 }; 4073 4074 static struct proto mptcp_v6_prot; 4075 4076 static struct inet_protosw mptcp_v6_protosw = { 4077 .type = SOCK_STREAM, 4078 .protocol = IPPROTO_MPTCP, 4079 .prot = &mptcp_v6_prot, 4080 .ops = &mptcp_v6_stream_ops, 4081 .flags = INET_PROTOSW_ICSK, 4082 }; 4083 4084 int __init mptcp_proto_v6_init(void) 4085 { 4086 int err; 4087 4088 mptcp_v6_prot = mptcp_prot; 4089 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4090 mptcp_v6_prot.slab = NULL; 4091 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4092 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4093 4094 err = proto_register(&mptcp_v6_prot, 1); 4095 if (err) 4096 return err; 4097 4098 err = inet6_register_protosw(&mptcp_v6_protosw); 4099 if (err) 4100 proto_unregister(&mptcp_v6_prot); 4101 4102 return err; 4103 } 4104 #endif 4105