1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 unsigned short family = READ_ONCE(sk->sk_family); 65 66 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 67 if (family == AF_INET6) 68 return &inet6_stream_ops; 69 #endif 70 WARN_ON_ONCE(family != AF_INET); 71 return &inet_stream_ops; 72 } 73 74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 75 { 76 struct net *net = sock_net((struct sock *)msk); 77 78 if (__mptcp_check_fallback(msk)) 79 return true; 80 81 /* The caller possibly is not holding the msk socket lock, but 82 * in the fallback case only the current subflow is touching 83 * the OoO queue. 84 */ 85 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 86 return false; 87 88 spin_lock_bh(&msk->fallback_lock); 89 if (!msk->allow_infinite_fallback) { 90 spin_unlock_bh(&msk->fallback_lock); 91 return false; 92 } 93 94 msk->allow_subflows = false; 95 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 96 __MPTCP_INC_STATS(net, fb_mib); 97 spin_unlock_bh(&msk->fallback_lock); 98 return true; 99 } 100 101 static int __mptcp_socket_create(struct mptcp_sock *msk) 102 { 103 struct mptcp_subflow_context *subflow; 104 struct sock *sk = (struct sock *)msk; 105 struct socket *ssock; 106 int err; 107 108 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 109 if (err) 110 return err; 111 112 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 113 WRITE_ONCE(msk->first, ssock->sk); 114 subflow = mptcp_subflow_ctx(ssock->sk); 115 list_add(&subflow->node, &msk->conn_list); 116 sock_hold(ssock->sk); 117 subflow->request_mptcp = 1; 118 subflow->subflow_id = msk->subflow_id++; 119 120 /* This is the first subflow, always with id 0 */ 121 WRITE_ONCE(subflow->local_id, 0); 122 mptcp_sock_graft(msk->first, sk->sk_socket); 123 iput(SOCK_INODE(ssock)); 124 125 return 0; 126 } 127 128 /* If the MPC handshake is not started, returns the first subflow, 129 * eventually allocating it. 130 */ 131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 132 { 133 struct sock *sk = (struct sock *)msk; 134 int ret; 135 136 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 137 return ERR_PTR(-EINVAL); 138 139 if (!msk->first) { 140 ret = __mptcp_socket_create(msk); 141 if (ret) 142 return ERR_PTR(ret); 143 } 144 145 return msk->first; 146 } 147 148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 149 { 150 sk_drops_skbadd(sk, skb); 151 __kfree_skb(skb); 152 } 153 154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 155 struct sk_buff *from, bool *fragstolen, 156 int *delta) 157 { 158 int limit = READ_ONCE(sk->sk_rcvbuf); 159 160 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 161 MPTCP_SKB_CB(from)->offset || 162 ((to->len + from->len) > (limit >> 3)) || 163 !skb_try_coalesce(to, from, fragstolen, delta)) 164 return false; 165 166 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 167 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 168 to->len, MPTCP_SKB_CB(from)->end_seq); 169 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 170 return true; 171 } 172 173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 174 struct sk_buff *from) 175 { 176 bool fragstolen; 177 int delta; 178 179 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 180 return false; 181 182 /* note the fwd memory can reach a negative value after accounting 183 * for the delta, but the later skb free will restore a non 184 * negative one 185 */ 186 atomic_add(delta, &sk->sk_rmem_alloc); 187 sk_mem_charge(sk, delta); 188 kfree_skb_partial(from, fragstolen); 189 190 return true; 191 } 192 193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 194 struct sk_buff *from) 195 { 196 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 197 return false; 198 199 return mptcp_try_coalesce((struct sock *)msk, to, from); 200 } 201 202 /* "inspired" by tcp_rcvbuf_grow(), main difference: 203 * - mptcp does not maintain a msk-level window clamp 204 * - returns true when the receive buffer is actually updated 205 */ 206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 207 { 208 struct mptcp_sock *msk = mptcp_sk(sk); 209 const struct net *net = sock_net(sk); 210 u32 rcvwin, rcvbuf, cap, oldval; 211 u64 grow; 212 213 oldval = msk->rcvq_space.space; 214 msk->rcvq_space.space = newval; 215 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 216 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 217 return false; 218 219 /* DRS is always one RTT late. */ 220 rcvwin = newval << 1; 221 222 /* slow start: allow the sender to double its rate. */ 223 grow = (u64)rcvwin * (newval - oldval); 224 do_div(grow, oldval); 225 rcvwin += grow << 1; 226 227 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 228 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 229 230 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 231 232 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 233 if (rcvbuf > sk->sk_rcvbuf) { 234 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 235 return true; 236 } 237 return false; 238 } 239 240 /* "inspired" by tcp_data_queue_ofo(), main differences: 241 * - use mptcp seqs 242 * - don't cope with sacks 243 */ 244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 245 { 246 struct sock *sk = (struct sock *)msk; 247 struct rb_node **p, *parent; 248 u64 seq, end_seq, max_seq; 249 struct sk_buff *skb1; 250 251 seq = MPTCP_SKB_CB(skb)->map_seq; 252 end_seq = MPTCP_SKB_CB(skb)->end_seq; 253 max_seq = atomic64_read(&msk->rcv_wnd_sent); 254 255 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 256 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 257 if (after64(end_seq, max_seq)) { 258 /* out of window */ 259 mptcp_drop(sk, skb); 260 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 261 (unsigned long long)end_seq - (unsigned long)max_seq, 262 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 264 return; 265 } 266 267 p = &msk->out_of_order_queue.rb_node; 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 269 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 270 rb_link_node(&skb->rbnode, NULL, p); 271 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 272 msk->ooo_last_skb = skb; 273 goto end; 274 } 275 276 /* with 2 subflows, adding at end of ooo queue is quite likely 277 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 278 */ 279 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 280 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 281 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 282 return; 283 } 284 285 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 286 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 288 parent = &msk->ooo_last_skb->rbnode; 289 p = &parent->rb_right; 290 goto insert; 291 } 292 293 /* Find place to insert this segment. Handle overlaps on the way. */ 294 parent = NULL; 295 while (*p) { 296 parent = *p; 297 skb1 = rb_to_skb(parent); 298 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 299 p = &parent->rb_left; 300 continue; 301 } 302 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 303 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 304 /* All the bits are present. Drop. */ 305 mptcp_drop(sk, skb); 306 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 307 return; 308 } 309 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 310 /* partial overlap: 311 * | skb | 312 * | skb1 | 313 * continue traversing 314 */ 315 } else { 316 /* skb's seq == skb1's seq and skb covers skb1. 317 * Replace skb1 with skb. 318 */ 319 rb_replace_node(&skb1->rbnode, &skb->rbnode, 320 &msk->out_of_order_queue); 321 mptcp_drop(sk, skb1); 322 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 323 goto merge_right; 324 } 325 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 326 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 327 return; 328 } 329 p = &parent->rb_right; 330 } 331 332 insert: 333 /* Insert segment into RB tree. */ 334 rb_link_node(&skb->rbnode, parent, p); 335 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 336 337 merge_right: 338 /* Remove other segments covered by skb. */ 339 while ((skb1 = skb_rb_next(skb)) != NULL) { 340 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 341 break; 342 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 343 mptcp_drop(sk, skb1); 344 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 345 } 346 /* If there is no skb after us, we are the last_skb ! */ 347 if (!skb1) 348 msk->ooo_last_skb = skb; 349 350 end: 351 skb_condense(skb); 352 skb_set_owner_r(skb, sk); 353 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 354 if (sk->sk_socket) 355 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 356 } 357 358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 359 int copy_len) 360 { 361 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 362 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 363 364 /* the skb map_seq accounts for the skb offset: 365 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 366 * value 367 */ 368 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 369 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 370 MPTCP_SKB_CB(skb)->offset = offset; 371 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 372 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 373 374 __skb_unlink(skb, &ssk->sk_receive_queue); 375 376 skb_ext_reset(skb); 377 skb_dst_drop(skb); 378 } 379 380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 381 { 382 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 383 struct mptcp_sock *msk = mptcp_sk(sk); 384 struct sk_buff *tail; 385 386 mptcp_borrow_fwdmem(sk, skb); 387 388 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 389 /* in sequence */ 390 msk->bytes_received += copy_len; 391 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 392 tail = skb_peek_tail(&sk->sk_receive_queue); 393 if (tail && mptcp_try_coalesce(sk, tail, skb)) 394 return true; 395 396 skb_set_owner_r(skb, sk); 397 __skb_queue_tail(&sk->sk_receive_queue, skb); 398 return true; 399 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 400 mptcp_data_queue_ofo(msk, skb); 401 return false; 402 } 403 404 /* old data, keep it simple and drop the whole pkt, sender 405 * will retransmit as needed, if needed. 406 */ 407 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 408 mptcp_drop(sk, skb); 409 return false; 410 } 411 412 static void mptcp_stop_rtx_timer(struct sock *sk) 413 { 414 sk_stop_timer(sk, &sk->mptcp_retransmit_timer); 415 mptcp_sk(sk)->timer_ival = 0; 416 } 417 418 static void mptcp_close_wake_up(struct sock *sk) 419 { 420 if (sock_flag(sk, SOCK_DEAD)) 421 return; 422 423 sk->sk_state_change(sk); 424 if (sk->sk_shutdown == SHUTDOWN_MASK || 425 sk->sk_state == TCP_CLOSE) 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 427 else 428 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 429 } 430 431 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 432 { 433 struct mptcp_subflow_context *subflow; 434 435 mptcp_for_each_subflow(msk, subflow) { 436 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 437 bool slow; 438 439 slow = lock_sock_fast(ssk); 440 tcp_shutdown(ssk, SEND_SHUTDOWN); 441 unlock_sock_fast(ssk, slow); 442 } 443 } 444 445 /* called under the msk socket lock */ 446 static bool mptcp_pending_data_fin_ack(struct sock *sk) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 return ((1 << sk->sk_state) & 451 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 452 msk->write_seq == READ_ONCE(msk->snd_una); 453 } 454 455 static void mptcp_check_data_fin_ack(struct sock *sk) 456 { 457 struct mptcp_sock *msk = mptcp_sk(sk); 458 459 /* Look for an acknowledged DATA_FIN */ 460 if (mptcp_pending_data_fin_ack(sk)) { 461 WRITE_ONCE(msk->snd_data_fin_enable, 0); 462 463 switch (sk->sk_state) { 464 case TCP_FIN_WAIT1: 465 mptcp_set_state(sk, TCP_FIN_WAIT2); 466 break; 467 case TCP_CLOSING: 468 case TCP_LAST_ACK: 469 mptcp_shutdown_subflows(msk); 470 mptcp_set_state(sk, TCP_CLOSE); 471 break; 472 } 473 474 mptcp_close_wake_up(sk); 475 } 476 } 477 478 /* can be called with no lock acquired */ 479 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 480 { 481 struct mptcp_sock *msk = mptcp_sk(sk); 482 483 if (READ_ONCE(msk->rcv_data_fin) && 484 ((1 << inet_sk_state_load(sk)) & 485 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 486 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 487 488 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 489 if (seq) 490 *seq = rcv_data_fin_seq; 491 492 return true; 493 } 494 } 495 496 return false; 497 } 498 499 static void mptcp_set_datafin_timeout(struct sock *sk) 500 { 501 struct inet_connection_sock *icsk = inet_csk(sk); 502 u32 retransmits; 503 504 retransmits = min_t(u32, icsk->icsk_retransmits, 505 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 506 507 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 508 } 509 510 static void __mptcp_set_timeout(struct sock *sk, long tout) 511 { 512 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 513 } 514 515 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 516 { 517 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 518 519 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 520 tcp_timeout_expires(ssk) - jiffies : 0; 521 } 522 523 static void mptcp_set_timeout(struct sock *sk) 524 { 525 struct mptcp_subflow_context *subflow; 526 long tout = 0; 527 528 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 529 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 530 __mptcp_set_timeout(sk, tout); 531 } 532 533 static inline bool tcp_can_send_ack(const struct sock *ssk) 534 { 535 return !((1 << inet_sk_state_load(ssk)) & 536 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 537 } 538 539 void __mptcp_subflow_send_ack(struct sock *ssk) 540 { 541 if (tcp_can_send_ack(ssk)) 542 tcp_send_ack(ssk); 543 } 544 545 static void mptcp_subflow_send_ack(struct sock *ssk) 546 { 547 bool slow; 548 549 slow = lock_sock_fast(ssk); 550 __mptcp_subflow_send_ack(ssk); 551 unlock_sock_fast(ssk, slow); 552 } 553 554 static void mptcp_send_ack(struct mptcp_sock *msk) 555 { 556 struct mptcp_subflow_context *subflow; 557 558 mptcp_for_each_subflow(msk, subflow) 559 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 560 } 561 562 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 563 { 564 bool slow; 565 566 slow = lock_sock_fast(ssk); 567 if (tcp_can_send_ack(ssk)) 568 tcp_cleanup_rbuf(ssk, copied); 569 unlock_sock_fast(ssk, slow); 570 } 571 572 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 573 { 574 const struct inet_connection_sock *icsk = inet_csk(ssk); 575 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 576 const struct tcp_sock *tp = tcp_sk(ssk); 577 578 return (ack_pending & ICSK_ACK_SCHED) && 579 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 580 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 581 (rx_empty && ack_pending & 582 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 583 } 584 585 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 586 { 587 int old_space = READ_ONCE(msk->old_wspace); 588 struct mptcp_subflow_context *subflow; 589 struct sock *sk = (struct sock *)msk; 590 int space = __mptcp_space(sk); 591 bool cleanup, rx_empty; 592 593 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 594 rx_empty = !sk_rmem_alloc_get(sk) && copied; 595 596 mptcp_for_each_subflow(msk, subflow) { 597 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 598 599 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 600 mptcp_subflow_cleanup_rbuf(ssk, copied); 601 } 602 } 603 604 static void mptcp_check_data_fin(struct sock *sk) 605 { 606 struct mptcp_sock *msk = mptcp_sk(sk); 607 u64 rcv_data_fin_seq; 608 609 /* Need to ack a DATA_FIN received from a peer while this side 610 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 611 * msk->rcv_data_fin was set when parsing the incoming options 612 * at the subflow level and the msk lock was not held, so this 613 * is the first opportunity to act on the DATA_FIN and change 614 * the msk state. 615 * 616 * If we are caught up to the sequence number of the incoming 617 * DATA_FIN, send the DATA_ACK now and do state transition. If 618 * not caught up, do nothing and let the recv code send DATA_ACK 619 * when catching up. 620 */ 621 622 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 623 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 624 WRITE_ONCE(msk->rcv_data_fin, 0); 625 626 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 627 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 628 629 switch (sk->sk_state) { 630 case TCP_ESTABLISHED: 631 mptcp_set_state(sk, TCP_CLOSE_WAIT); 632 break; 633 case TCP_FIN_WAIT1: 634 mptcp_set_state(sk, TCP_CLOSING); 635 break; 636 case TCP_FIN_WAIT2: 637 mptcp_shutdown_subflows(msk); 638 mptcp_set_state(sk, TCP_CLOSE); 639 break; 640 default: 641 /* Other states not expected */ 642 WARN_ON_ONCE(1); 643 break; 644 } 645 646 if (!__mptcp_check_fallback(msk)) 647 mptcp_send_ack(msk); 648 mptcp_close_wake_up(sk); 649 } 650 } 651 652 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 653 { 654 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 655 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 656 mptcp_subflow_reset(ssk); 657 } 658 } 659 660 static void __mptcp_add_backlog(struct sock *sk, 661 struct mptcp_subflow_context *subflow, 662 struct sk_buff *skb) 663 { 664 struct mptcp_sock *msk = mptcp_sk(sk); 665 struct sk_buff *tail = NULL; 666 struct sock *ssk = skb->sk; 667 bool fragstolen; 668 int delta; 669 670 if (unlikely(sk->sk_state == TCP_CLOSE)) { 671 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 672 return; 673 } 674 675 /* Try to coalesce with the last skb in our backlog */ 676 if (!list_empty(&msk->backlog_list)) 677 tail = list_last_entry(&msk->backlog_list, struct sk_buff, list); 678 679 if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq && 680 ssk == tail->sk && 681 __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) { 682 skb->truesize -= delta; 683 kfree_skb_partial(skb, fragstolen); 684 __mptcp_subflow_lend_fwdmem(subflow, delta); 685 goto account; 686 } 687 688 list_add_tail(&skb->list, &msk->backlog_list); 689 mptcp_subflow_lend_fwdmem(subflow, skb); 690 delta = skb->truesize; 691 692 account: 693 WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta); 694 695 /* Possibly not accept()ed yet, keep track of memory not CG 696 * accounted, mptcp_graft_subflows() will handle it. 697 */ 698 if (!mem_cgroup_from_sk(ssk)) 699 msk->backlog_unaccounted += delta; 700 } 701 702 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 703 struct sock *ssk, bool own_msk) 704 { 705 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 706 struct sock *sk = (struct sock *)msk; 707 bool more_data_avail; 708 struct tcp_sock *tp; 709 bool ret = false; 710 711 pr_debug("msk=%p ssk=%p\n", msk, ssk); 712 tp = tcp_sk(ssk); 713 do { 714 u32 map_remaining, offset; 715 u32 seq = tp->copied_seq; 716 struct sk_buff *skb; 717 bool fin; 718 719 /* try to move as much data as available */ 720 map_remaining = subflow->map_data_len - 721 mptcp_subflow_get_map_offset(subflow); 722 723 skb = skb_peek(&ssk->sk_receive_queue); 724 if (unlikely(!skb)) 725 break; 726 727 if (__mptcp_check_fallback(msk)) { 728 /* Under fallback skbs have no MPTCP extension and TCP could 729 * collapse them between the dummy map creation and the 730 * current dequeue. Be sure to adjust the map size. 731 */ 732 map_remaining = skb->len; 733 subflow->map_data_len = skb->len; 734 } 735 736 offset = seq - TCP_SKB_CB(skb)->seq; 737 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 738 if (fin) 739 seq++; 740 741 if (offset < skb->len) { 742 size_t len = skb->len - offset; 743 744 mptcp_init_skb(ssk, skb, offset, len); 745 746 if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) { 747 mptcp_subflow_lend_fwdmem(subflow, skb); 748 ret |= __mptcp_move_skb(sk, skb); 749 } else { 750 __mptcp_add_backlog(sk, subflow, skb); 751 } 752 seq += len; 753 754 if (unlikely(map_remaining < len)) { 755 DEBUG_NET_WARN_ON_ONCE(1); 756 mptcp_dss_corruption(msk, ssk); 757 } 758 } else { 759 if (unlikely(!fin)) { 760 DEBUG_NET_WARN_ON_ONCE(1); 761 mptcp_dss_corruption(msk, ssk); 762 } 763 764 sk_eat_skb(ssk, skb); 765 } 766 767 WRITE_ONCE(tp->copied_seq, seq); 768 more_data_avail = mptcp_subflow_data_available(ssk); 769 770 } while (more_data_avail); 771 772 if (ret) 773 msk->last_data_recv = tcp_jiffies32; 774 return ret; 775 } 776 777 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 778 { 779 struct sock *sk = (struct sock *)msk; 780 struct sk_buff *skb, *tail; 781 bool moved = false; 782 struct rb_node *p; 783 u64 end_seq; 784 785 p = rb_first(&msk->out_of_order_queue); 786 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 787 while (p) { 788 skb = rb_to_skb(p); 789 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 790 break; 791 792 p = rb_next(p); 793 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 794 795 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 796 msk->ack_seq))) { 797 mptcp_drop(sk, skb); 798 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 799 continue; 800 } 801 802 end_seq = MPTCP_SKB_CB(skb)->end_seq; 803 tail = skb_peek_tail(&sk->sk_receive_queue); 804 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 805 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 806 807 /* skip overlapping data, if any */ 808 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 809 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 810 delta); 811 MPTCP_SKB_CB(skb)->offset += delta; 812 MPTCP_SKB_CB(skb)->map_seq += delta; 813 __skb_queue_tail(&sk->sk_receive_queue, skb); 814 } 815 msk->bytes_received += end_seq - msk->ack_seq; 816 WRITE_ONCE(msk->ack_seq, end_seq); 817 moved = true; 818 } 819 return moved; 820 } 821 822 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 823 { 824 int err = sock_error(ssk); 825 int ssk_state; 826 827 if (!err) 828 return false; 829 830 /* only propagate errors on fallen-back sockets or 831 * on MPC connect 832 */ 833 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 834 return false; 835 836 /* We need to propagate only transition to CLOSE state. 837 * Orphaned socket will see such state change via 838 * subflow_sched_work_if_closed() and that path will properly 839 * destroy the msk as needed. 840 */ 841 ssk_state = inet_sk_state_load(ssk); 842 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 843 mptcp_set_state(sk, ssk_state); 844 WRITE_ONCE(sk->sk_err, -err); 845 846 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 847 smp_wmb(); 848 sk_error_report(sk); 849 return true; 850 } 851 852 void __mptcp_error_report(struct sock *sk) 853 { 854 struct mptcp_subflow_context *subflow; 855 struct mptcp_sock *msk = mptcp_sk(sk); 856 857 mptcp_for_each_subflow(msk, subflow) 858 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 859 break; 860 } 861 862 /* In most cases we will be able to lock the mptcp socket. If its already 863 * owned, we need to defer to the work queue to avoid ABBA deadlock. 864 */ 865 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 866 { 867 struct sock *sk = (struct sock *)msk; 868 bool moved; 869 870 moved = __mptcp_move_skbs_from_subflow(msk, ssk, true); 871 __mptcp_ofo_queue(msk); 872 if (unlikely(ssk->sk_err)) 873 __mptcp_subflow_error_report(sk, ssk); 874 875 /* If the moves have caught up with the DATA_FIN sequence number 876 * it's time to ack the DATA_FIN and change socket state, but 877 * this is not a good place to change state. Let the workqueue 878 * do it. 879 */ 880 if (mptcp_pending_data_fin(sk, NULL)) 881 mptcp_schedule_work(sk); 882 return moved; 883 } 884 885 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 886 { 887 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 888 struct mptcp_sock *msk = mptcp_sk(sk); 889 890 /* The peer can send data while we are shutting down this 891 * subflow at subflow destruction time, but we must avoid enqueuing 892 * more data to the msk receive queue 893 */ 894 if (unlikely(subflow->closing)) 895 return; 896 897 mptcp_data_lock(sk); 898 if (!sock_owned_by_user(sk)) { 899 /* Wake-up the reader only for in-sequence data */ 900 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 901 sk->sk_data_ready(sk); 902 } else { 903 __mptcp_move_skbs_from_subflow(msk, ssk, false); 904 } 905 mptcp_data_unlock(sk); 906 } 907 908 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 909 { 910 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 911 msk->allow_infinite_fallback = false; 912 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 913 } 914 915 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 916 { 917 struct sock *sk = (struct sock *)msk; 918 919 if (sk->sk_state != TCP_ESTABLISHED) 920 return false; 921 922 spin_lock_bh(&msk->fallback_lock); 923 if (!msk->allow_subflows) { 924 spin_unlock_bh(&msk->fallback_lock); 925 return false; 926 } 927 mptcp_subflow_joined(msk, ssk); 928 spin_unlock_bh(&msk->fallback_lock); 929 930 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 931 mptcp_sockopt_sync_locked(msk, ssk); 932 mptcp_stop_tout_timer(sk); 933 __mptcp_propagate_sndbuf(sk, ssk); 934 return true; 935 } 936 937 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 938 { 939 struct mptcp_subflow_context *tmp, *subflow; 940 struct mptcp_sock *msk = mptcp_sk(sk); 941 942 list_for_each_entry_safe(subflow, tmp, join_list, node) { 943 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 944 bool slow = lock_sock_fast(ssk); 945 946 list_move_tail(&subflow->node, &msk->conn_list); 947 if (!__mptcp_finish_join(msk, ssk)) 948 mptcp_subflow_reset(ssk); 949 unlock_sock_fast(ssk, slow); 950 } 951 } 952 953 static bool mptcp_rtx_timer_pending(struct sock *sk) 954 { 955 return timer_pending(&sk->mptcp_retransmit_timer); 956 } 957 958 static void mptcp_reset_rtx_timer(struct sock *sk) 959 { 960 unsigned long tout; 961 962 /* prevent rescheduling on close */ 963 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 964 return; 965 966 tout = mptcp_sk(sk)->timer_ival; 967 sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout); 968 } 969 970 bool mptcp_schedule_work(struct sock *sk) 971 { 972 if (inet_sk_state_load(sk) == TCP_CLOSE) 973 return false; 974 975 /* Get a reference on this socket, mptcp_worker() will release it. 976 * As mptcp_worker() might complete before us, we can not avoid 977 * a sock_hold()/sock_put() if schedule_work() returns false. 978 */ 979 sock_hold(sk); 980 981 if (schedule_work(&mptcp_sk(sk)->work)) 982 return true; 983 984 sock_put(sk); 985 return false; 986 } 987 988 static bool mptcp_skb_can_collapse_to(u64 write_seq, 989 const struct sk_buff *skb, 990 const struct mptcp_ext *mpext) 991 { 992 if (!tcp_skb_can_collapse_to(skb)) 993 return false; 994 995 /* can collapse only if MPTCP level sequence is in order and this 996 * mapping has not been xmitted yet 997 */ 998 return mpext && mpext->data_seq + mpext->data_len == write_seq && 999 !mpext->frozen; 1000 } 1001 1002 /* we can append data to the given data frag if: 1003 * - there is space available in the backing page_frag 1004 * - the data frag tail matches the current page_frag free offset 1005 * - the data frag end sequence number matches the current write seq 1006 */ 1007 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 1008 const struct page_frag *pfrag, 1009 const struct mptcp_data_frag *df) 1010 { 1011 return df && pfrag->page == df->page && 1012 pfrag->size - pfrag->offset > 0 && 1013 pfrag->offset == (df->offset + df->data_len) && 1014 df->data_seq + df->data_len == msk->write_seq; 1015 } 1016 1017 static void dfrag_uncharge(struct sock *sk, int len) 1018 { 1019 sk_mem_uncharge(sk, len); 1020 sk_wmem_queued_add(sk, -len); 1021 } 1022 1023 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1024 { 1025 int len = dfrag->data_len + dfrag->overhead; 1026 1027 list_del(&dfrag->list); 1028 dfrag_uncharge(sk, len); 1029 put_page(dfrag->page); 1030 } 1031 1032 /* called under both the msk socket lock and the data lock */ 1033 static void __mptcp_clean_una(struct sock *sk) 1034 { 1035 struct mptcp_sock *msk = mptcp_sk(sk); 1036 struct mptcp_data_frag *dtmp, *dfrag; 1037 u64 snd_una; 1038 1039 snd_una = msk->snd_una; 1040 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1041 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1042 break; 1043 1044 if (unlikely(dfrag == msk->first_pending)) { 1045 /* in recovery mode can see ack after the current snd head */ 1046 if (WARN_ON_ONCE(!msk->recovery)) 1047 break; 1048 1049 msk->first_pending = mptcp_send_next(sk); 1050 } 1051 1052 dfrag_clear(sk, dfrag); 1053 } 1054 1055 dfrag = mptcp_rtx_head(sk); 1056 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1057 u64 delta = snd_una - dfrag->data_seq; 1058 1059 /* prevent wrap around in recovery mode */ 1060 if (unlikely(delta > dfrag->already_sent)) { 1061 if (WARN_ON_ONCE(!msk->recovery)) 1062 goto out; 1063 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1064 goto out; 1065 dfrag->already_sent += delta - dfrag->already_sent; 1066 } 1067 1068 dfrag->data_seq += delta; 1069 dfrag->offset += delta; 1070 dfrag->data_len -= delta; 1071 dfrag->already_sent -= delta; 1072 1073 dfrag_uncharge(sk, delta); 1074 } 1075 1076 /* all retransmitted data acked, recovery completed */ 1077 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1078 msk->recovery = false; 1079 1080 out: 1081 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1082 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1083 mptcp_stop_rtx_timer(sk); 1084 } else { 1085 mptcp_reset_rtx_timer(sk); 1086 } 1087 1088 if (mptcp_pending_data_fin_ack(sk)) 1089 mptcp_schedule_work(sk); 1090 } 1091 1092 static void __mptcp_clean_una_wakeup(struct sock *sk) 1093 { 1094 lockdep_assert_held_once(&sk->sk_lock.slock); 1095 1096 __mptcp_clean_una(sk); 1097 mptcp_write_space(sk); 1098 } 1099 1100 static void mptcp_clean_una_wakeup(struct sock *sk) 1101 { 1102 mptcp_data_lock(sk); 1103 __mptcp_clean_una_wakeup(sk); 1104 mptcp_data_unlock(sk); 1105 } 1106 1107 static void mptcp_enter_memory_pressure(struct sock *sk) 1108 { 1109 struct mptcp_subflow_context *subflow; 1110 struct mptcp_sock *msk = mptcp_sk(sk); 1111 bool first = true; 1112 1113 mptcp_for_each_subflow(msk, subflow) { 1114 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1115 1116 if (first && !ssk->sk_bypass_prot_mem) { 1117 tcp_enter_memory_pressure(ssk); 1118 first = false; 1119 } 1120 1121 sk_stream_moderate_sndbuf(ssk); 1122 } 1123 __mptcp_sync_sndbuf(sk); 1124 } 1125 1126 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1127 * data 1128 */ 1129 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1130 { 1131 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1132 pfrag, sk->sk_allocation))) 1133 return true; 1134 1135 mptcp_enter_memory_pressure(sk); 1136 return false; 1137 } 1138 1139 static struct mptcp_data_frag * 1140 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1141 int orig_offset) 1142 { 1143 int offset = ALIGN(orig_offset, sizeof(long)); 1144 struct mptcp_data_frag *dfrag; 1145 1146 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1147 dfrag->data_len = 0; 1148 dfrag->data_seq = msk->write_seq; 1149 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1150 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1151 dfrag->already_sent = 0; 1152 dfrag->page = pfrag->page; 1153 1154 return dfrag; 1155 } 1156 1157 struct mptcp_sendmsg_info { 1158 int mss_now; 1159 int size_goal; 1160 u16 limit; 1161 u16 sent; 1162 unsigned int flags; 1163 bool data_lock_held; 1164 }; 1165 1166 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1167 u64 data_seq, int avail_size) 1168 { 1169 u64 window_end = mptcp_wnd_end(msk); 1170 u64 mptcp_snd_wnd; 1171 1172 if (__mptcp_check_fallback(msk)) 1173 return avail_size; 1174 1175 mptcp_snd_wnd = window_end - data_seq; 1176 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1177 1178 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1179 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1180 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1181 } 1182 1183 return avail_size; 1184 } 1185 1186 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1187 { 1188 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1189 1190 if (!mpext) 1191 return false; 1192 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1193 return true; 1194 } 1195 1196 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1197 { 1198 struct sk_buff *skb; 1199 1200 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1201 if (likely(skb)) { 1202 if (likely(__mptcp_add_ext(skb, gfp))) { 1203 skb_reserve(skb, MAX_TCP_HEADER); 1204 skb->ip_summed = CHECKSUM_PARTIAL; 1205 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1206 return skb; 1207 } 1208 __kfree_skb(skb); 1209 } else { 1210 mptcp_enter_memory_pressure(sk); 1211 } 1212 return NULL; 1213 } 1214 1215 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1216 { 1217 struct sk_buff *skb; 1218 1219 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1220 if (!skb) 1221 return NULL; 1222 1223 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1224 tcp_skb_entail(ssk, skb); 1225 return skb; 1226 } 1227 tcp_skb_tsorted_anchor_cleanup(skb); 1228 kfree_skb(skb); 1229 return NULL; 1230 } 1231 1232 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1233 { 1234 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1235 1236 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1237 } 1238 1239 /* note: this always recompute the csum on the whole skb, even 1240 * if we just appended a single frag. More status info needed 1241 */ 1242 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1243 { 1244 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1245 __wsum csum = ~csum_unfold(mpext->csum); 1246 int offset = skb->len - added; 1247 1248 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1249 } 1250 1251 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1252 struct sock *ssk, 1253 struct mptcp_ext *mpext) 1254 { 1255 if (!mpext) 1256 return; 1257 1258 mpext->infinite_map = 1; 1259 mpext->data_len = 0; 1260 1261 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1262 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1263 mptcp_subflow_reset(ssk); 1264 return; 1265 } 1266 1267 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1268 } 1269 1270 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1271 1272 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1273 struct mptcp_data_frag *dfrag, 1274 struct mptcp_sendmsg_info *info) 1275 { 1276 u64 data_seq = dfrag->data_seq + info->sent; 1277 int offset = dfrag->offset + info->sent; 1278 struct mptcp_sock *msk = mptcp_sk(sk); 1279 bool zero_window_probe = false; 1280 struct mptcp_ext *mpext = NULL; 1281 bool can_coalesce = false; 1282 bool reuse_skb = true; 1283 struct sk_buff *skb; 1284 size_t copy; 1285 int i; 1286 1287 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1288 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1289 1290 if (WARN_ON_ONCE(info->sent > info->limit || 1291 info->limit > dfrag->data_len)) 1292 return 0; 1293 1294 if (unlikely(!__tcp_can_send(ssk))) 1295 return -EAGAIN; 1296 1297 /* compute send limit */ 1298 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1299 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1300 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1301 copy = info->size_goal; 1302 1303 skb = tcp_write_queue_tail(ssk); 1304 if (skb && copy > skb->len) { 1305 /* Limit the write to the size available in the 1306 * current skb, if any, so that we create at most a new skb. 1307 * Explicitly tells TCP internals to avoid collapsing on later 1308 * queue management operation, to avoid breaking the ext <-> 1309 * SSN association set here 1310 */ 1311 mpext = mptcp_get_ext(skb); 1312 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1313 TCP_SKB_CB(skb)->eor = 1; 1314 tcp_mark_push(tcp_sk(ssk), skb); 1315 goto alloc_skb; 1316 } 1317 1318 i = skb_shinfo(skb)->nr_frags; 1319 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1320 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1321 tcp_mark_push(tcp_sk(ssk), skb); 1322 goto alloc_skb; 1323 } 1324 1325 copy -= skb->len; 1326 } else { 1327 alloc_skb: 1328 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1329 if (!skb) 1330 return -ENOMEM; 1331 1332 i = skb_shinfo(skb)->nr_frags; 1333 reuse_skb = false; 1334 mpext = mptcp_get_ext(skb); 1335 } 1336 1337 /* Zero window and all data acked? Probe. */ 1338 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1339 if (copy == 0) { 1340 u64 snd_una = READ_ONCE(msk->snd_una); 1341 1342 /* No need for zero probe if there are any data pending 1343 * either at the msk or ssk level; skb is the current write 1344 * queue tail and can be empty at this point. 1345 */ 1346 if (snd_una != msk->snd_nxt || skb->len || 1347 skb != tcp_send_head(ssk)) { 1348 tcp_remove_empty_skb(ssk); 1349 return 0; 1350 } 1351 1352 zero_window_probe = true; 1353 data_seq = snd_una - 1; 1354 copy = 1; 1355 } 1356 1357 copy = min_t(size_t, copy, info->limit - info->sent); 1358 if (!sk_wmem_schedule(ssk, copy)) { 1359 tcp_remove_empty_skb(ssk); 1360 return -ENOMEM; 1361 } 1362 1363 if (can_coalesce) { 1364 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1365 } else { 1366 get_page(dfrag->page); 1367 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1368 } 1369 1370 skb->len += copy; 1371 skb->data_len += copy; 1372 skb->truesize += copy; 1373 sk_wmem_queued_add(ssk, copy); 1374 sk_mem_charge(ssk, copy); 1375 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 /* on skb reuse we just need to update the DSS len */ 1380 if (reuse_skb) { 1381 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1382 mpext->data_len += copy; 1383 goto out; 1384 } 1385 1386 memset(mpext, 0, sizeof(*mpext)); 1387 mpext->data_seq = data_seq; 1388 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1389 mpext->data_len = copy; 1390 mpext->use_map = 1; 1391 mpext->dsn64 = 1; 1392 1393 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1394 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1395 mpext->dsn64); 1396 1397 if (zero_window_probe) { 1398 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1399 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1400 mpext->frozen = 1; 1401 if (READ_ONCE(msk->csum_enabled)) 1402 mptcp_update_data_checksum(skb, copy); 1403 tcp_push_pending_frames(ssk); 1404 return 0; 1405 } 1406 out: 1407 if (READ_ONCE(msk->csum_enabled)) 1408 mptcp_update_data_checksum(skb, copy); 1409 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1410 mptcp_update_infinite_map(msk, ssk, mpext); 1411 trace_mptcp_sendmsg_frag(mpext); 1412 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1413 return copy; 1414 } 1415 1416 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1417 sizeof(struct tcphdr) - \ 1418 MAX_TCP_OPTION_SPACE - \ 1419 sizeof(struct ipv6hdr) - \ 1420 sizeof(struct frag_hdr)) 1421 1422 struct subflow_send_info { 1423 struct sock *ssk; 1424 u64 linger_time; 1425 }; 1426 1427 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1428 { 1429 if (!subflow->stale) 1430 return; 1431 1432 subflow->stale = 0; 1433 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1434 } 1435 1436 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1437 { 1438 if (unlikely(subflow->stale)) { 1439 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1440 1441 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1442 return false; 1443 1444 mptcp_subflow_set_active(subflow); 1445 } 1446 return __mptcp_subflow_active(subflow); 1447 } 1448 1449 #define SSK_MODE_ACTIVE 0 1450 #define SSK_MODE_BACKUP 1 1451 #define SSK_MODE_MAX 2 1452 1453 /* implement the mptcp packet scheduler; 1454 * returns the subflow that will transmit the next DSS 1455 * additionally updates the rtx timeout 1456 */ 1457 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1458 { 1459 struct subflow_send_info send_info[SSK_MODE_MAX]; 1460 struct mptcp_subflow_context *subflow; 1461 struct sock *sk = (struct sock *)msk; 1462 u32 pace, burst, wmem; 1463 int i, nr_active = 0; 1464 struct sock *ssk; 1465 u64 linger_time; 1466 long tout = 0; 1467 1468 /* pick the subflow with the lower wmem/wspace ratio */ 1469 for (i = 0; i < SSK_MODE_MAX; ++i) { 1470 send_info[i].ssk = NULL; 1471 send_info[i].linger_time = -1; 1472 } 1473 1474 mptcp_for_each_subflow(msk, subflow) { 1475 bool backup = subflow->backup || subflow->request_bkup; 1476 1477 trace_mptcp_subflow_get_send(subflow); 1478 ssk = mptcp_subflow_tcp_sock(subflow); 1479 if (!mptcp_subflow_active(subflow)) 1480 continue; 1481 1482 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1483 nr_active += !backup; 1484 pace = subflow->avg_pacing_rate; 1485 if (unlikely(!pace)) { 1486 /* init pacing rate from socket */ 1487 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1488 pace = subflow->avg_pacing_rate; 1489 if (!pace) 1490 continue; 1491 } 1492 1493 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1494 if (linger_time < send_info[backup].linger_time) { 1495 send_info[backup].ssk = ssk; 1496 send_info[backup].linger_time = linger_time; 1497 } 1498 } 1499 __mptcp_set_timeout(sk, tout); 1500 1501 /* pick the best backup if no other subflow is active */ 1502 if (!nr_active) 1503 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1504 1505 /* According to the blest algorithm, to avoid HoL blocking for the 1506 * faster flow, we need to: 1507 * - estimate the faster flow linger time 1508 * - use the above to estimate the amount of byte transferred 1509 * by the faster flow 1510 * - check that the amount of queued data is greater than the above, 1511 * otherwise do not use the picked, slower, subflow 1512 * We select the subflow with the shorter estimated time to flush 1513 * the queued mem, which basically ensure the above. We just need 1514 * to check that subflow has a non empty cwin. 1515 */ 1516 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1517 if (!ssk || !sk_stream_memory_free(ssk)) 1518 return NULL; 1519 1520 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1521 wmem = READ_ONCE(ssk->sk_wmem_queued); 1522 if (!burst) 1523 return ssk; 1524 1525 subflow = mptcp_subflow_ctx(ssk); 1526 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1527 READ_ONCE(ssk->sk_pacing_rate) * burst, 1528 burst + wmem); 1529 msk->snd_burst = burst; 1530 return ssk; 1531 } 1532 1533 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1534 { 1535 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1536 release_sock(ssk); 1537 } 1538 1539 static void mptcp_update_post_push(struct mptcp_sock *msk, 1540 struct mptcp_data_frag *dfrag, 1541 u32 sent) 1542 { 1543 u64 snd_nxt_new = dfrag->data_seq; 1544 1545 dfrag->already_sent += sent; 1546 1547 msk->snd_burst -= sent; 1548 1549 snd_nxt_new += dfrag->already_sent; 1550 1551 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1552 * is recovering after a failover. In that event, this re-sends 1553 * old segments. 1554 * 1555 * Thus compute snd_nxt_new candidate based on 1556 * the dfrag->data_seq that was sent and the data 1557 * that has been handed to the subflow for transmission 1558 * and skip update in case it was old dfrag. 1559 */ 1560 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1561 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1562 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1563 } 1564 } 1565 1566 void mptcp_check_and_set_pending(struct sock *sk) 1567 { 1568 if (mptcp_send_head(sk)) { 1569 mptcp_data_lock(sk); 1570 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1571 mptcp_data_unlock(sk); 1572 } 1573 } 1574 1575 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1576 struct mptcp_sendmsg_info *info) 1577 { 1578 struct mptcp_sock *msk = mptcp_sk(sk); 1579 struct mptcp_data_frag *dfrag; 1580 int len, copied = 0, err = 0; 1581 1582 while ((dfrag = mptcp_send_head(sk))) { 1583 info->sent = dfrag->already_sent; 1584 info->limit = dfrag->data_len; 1585 len = dfrag->data_len - dfrag->already_sent; 1586 while (len > 0) { 1587 int ret = 0; 1588 1589 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1590 if (ret <= 0) { 1591 err = copied ? : ret; 1592 goto out; 1593 } 1594 1595 info->sent += ret; 1596 copied += ret; 1597 len -= ret; 1598 1599 mptcp_update_post_push(msk, dfrag, ret); 1600 } 1601 msk->first_pending = mptcp_send_next(sk); 1602 1603 if (msk->snd_burst <= 0 || 1604 !sk_stream_memory_free(ssk) || 1605 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1606 err = copied; 1607 goto out; 1608 } 1609 mptcp_set_timeout(sk); 1610 } 1611 err = copied; 1612 1613 out: 1614 if (err > 0) 1615 msk->last_data_sent = tcp_jiffies32; 1616 return err; 1617 } 1618 1619 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1620 { 1621 struct sock *prev_ssk = NULL, *ssk = NULL; 1622 struct mptcp_sock *msk = mptcp_sk(sk); 1623 struct mptcp_sendmsg_info info = { 1624 .flags = flags, 1625 }; 1626 bool copied = false; 1627 int push_count = 1; 1628 1629 while (mptcp_send_head(sk) && (push_count > 0)) { 1630 struct mptcp_subflow_context *subflow; 1631 int ret = 0; 1632 1633 if (mptcp_sched_get_send(msk)) 1634 break; 1635 1636 push_count = 0; 1637 1638 mptcp_for_each_subflow(msk, subflow) { 1639 if (READ_ONCE(subflow->scheduled)) { 1640 mptcp_subflow_set_scheduled(subflow, false); 1641 1642 prev_ssk = ssk; 1643 ssk = mptcp_subflow_tcp_sock(subflow); 1644 if (ssk != prev_ssk) { 1645 /* First check. If the ssk has changed since 1646 * the last round, release prev_ssk 1647 */ 1648 if (prev_ssk) 1649 mptcp_push_release(prev_ssk, &info); 1650 1651 /* Need to lock the new subflow only if different 1652 * from the previous one, otherwise we are still 1653 * helding the relevant lock 1654 */ 1655 lock_sock(ssk); 1656 } 1657 1658 push_count++; 1659 1660 ret = __subflow_push_pending(sk, ssk, &info); 1661 if (ret <= 0) { 1662 if (ret != -EAGAIN || 1663 (1 << ssk->sk_state) & 1664 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1665 push_count--; 1666 continue; 1667 } 1668 copied = true; 1669 } 1670 } 1671 } 1672 1673 /* at this point we held the socket lock for the last subflow we used */ 1674 if (ssk) 1675 mptcp_push_release(ssk, &info); 1676 1677 /* Avoid scheduling the rtx timer if no data has been pushed; the timer 1678 * will be updated on positive acks by __mptcp_cleanup_una(). 1679 */ 1680 if (copied) { 1681 if (!mptcp_rtx_timer_pending(sk)) 1682 mptcp_reset_rtx_timer(sk); 1683 mptcp_check_send_data_fin(sk); 1684 } 1685 } 1686 1687 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1688 { 1689 struct mptcp_sock *msk = mptcp_sk(sk); 1690 struct mptcp_sendmsg_info info = { 1691 .data_lock_held = true, 1692 }; 1693 bool keep_pushing = true; 1694 struct sock *xmit_ssk; 1695 int copied = 0; 1696 1697 info.flags = 0; 1698 while (mptcp_send_head(sk) && keep_pushing) { 1699 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1700 int ret = 0; 1701 1702 /* check for a different subflow usage only after 1703 * spooling the first chunk of data 1704 */ 1705 if (first) { 1706 mptcp_subflow_set_scheduled(subflow, false); 1707 ret = __subflow_push_pending(sk, ssk, &info); 1708 first = false; 1709 if (ret <= 0) 1710 break; 1711 copied += ret; 1712 continue; 1713 } 1714 1715 if (mptcp_sched_get_send(msk)) 1716 goto out; 1717 1718 if (READ_ONCE(subflow->scheduled)) { 1719 mptcp_subflow_set_scheduled(subflow, false); 1720 ret = __subflow_push_pending(sk, ssk, &info); 1721 if (ret <= 0) 1722 keep_pushing = false; 1723 copied += ret; 1724 } 1725 1726 mptcp_for_each_subflow(msk, subflow) { 1727 if (READ_ONCE(subflow->scheduled)) { 1728 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1729 if (xmit_ssk != ssk) { 1730 mptcp_subflow_delegate(subflow, 1731 MPTCP_DELEGATE_SEND); 1732 keep_pushing = false; 1733 } 1734 } 1735 } 1736 } 1737 1738 out: 1739 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1740 * not going to flush it via release_sock() 1741 */ 1742 if (copied) { 1743 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1744 info.size_goal); 1745 if (!mptcp_rtx_timer_pending(sk)) 1746 mptcp_reset_rtx_timer(sk); 1747 1748 if (msk->snd_data_fin_enable && 1749 msk->snd_nxt + 1 == msk->write_seq) 1750 mptcp_schedule_work(sk); 1751 } 1752 } 1753 1754 static int mptcp_disconnect(struct sock *sk, int flags); 1755 1756 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1757 size_t len, int *copied_syn) 1758 { 1759 unsigned int saved_flags = msg->msg_flags; 1760 struct mptcp_sock *msk = mptcp_sk(sk); 1761 struct sock *ssk; 1762 int ret; 1763 1764 /* on flags based fastopen the mptcp is supposed to create the 1765 * first subflow right now. Otherwise we are in the defer_connect 1766 * path, and the first subflow must be already present. 1767 * Since the defer_connect flag is cleared after the first succsful 1768 * fastopen attempt, no need to check for additional subflow status. 1769 */ 1770 if (msg->msg_flags & MSG_FASTOPEN) { 1771 ssk = __mptcp_nmpc_sk(msk); 1772 if (IS_ERR(ssk)) 1773 return PTR_ERR(ssk); 1774 } 1775 if (!msk->first) 1776 return -EINVAL; 1777 1778 ssk = msk->first; 1779 1780 lock_sock(ssk); 1781 msg->msg_flags |= MSG_DONTWAIT; 1782 msk->fastopening = 1; 1783 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1784 msk->fastopening = 0; 1785 msg->msg_flags = saved_flags; 1786 release_sock(ssk); 1787 1788 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1789 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1790 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1791 msg->msg_namelen, msg->msg_flags, 1); 1792 1793 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1794 * case of any error, except timeout or signal 1795 */ 1796 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1797 *copied_syn = 0; 1798 } else if (ret && ret != -EINPROGRESS) { 1799 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1800 * __inet_stream_connect() can fail, due to looking check, 1801 * see mptcp_disconnect(). 1802 * Attempt it again outside the problematic scope. 1803 */ 1804 if (!mptcp_disconnect(sk, 0)) { 1805 sk->sk_disconnects++; 1806 sk->sk_socket->state = SS_UNCONNECTED; 1807 } 1808 } 1809 inet_clear_bit(DEFER_CONNECT, sk); 1810 1811 return ret; 1812 } 1813 1814 static int do_copy_data_nocache(struct sock *sk, int copy, 1815 struct iov_iter *from, char *to) 1816 { 1817 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1818 if (!copy_from_iter_full_nocache(to, copy, from)) 1819 return -EFAULT; 1820 } else if (!copy_from_iter_full(to, copy, from)) { 1821 return -EFAULT; 1822 } 1823 return 0; 1824 } 1825 1826 /* open-code sk_stream_memory_free() plus sent limit computation to 1827 * avoid indirect calls in fast-path. 1828 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1829 * annotations. 1830 */ 1831 static u32 mptcp_send_limit(const struct sock *sk) 1832 { 1833 const struct mptcp_sock *msk = mptcp_sk(sk); 1834 u32 limit, not_sent; 1835 1836 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1837 return 0; 1838 1839 limit = mptcp_notsent_lowat(sk); 1840 if (limit == UINT_MAX) 1841 return UINT_MAX; 1842 1843 not_sent = msk->write_seq - msk->snd_nxt; 1844 if (not_sent >= limit) 1845 return 0; 1846 1847 return limit - not_sent; 1848 } 1849 1850 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1851 { 1852 struct mptcp_subflow_context *subflow; 1853 1854 if (!rfs_is_needed()) 1855 return; 1856 1857 mptcp_for_each_subflow(msk, subflow) { 1858 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1859 1860 sock_rps_record_flow(ssk); 1861 } 1862 } 1863 1864 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1865 { 1866 struct mptcp_sock *msk = mptcp_sk(sk); 1867 struct page_frag *pfrag; 1868 size_t copied = 0; 1869 int ret = 0; 1870 long timeo; 1871 1872 /* silently ignore everything else */ 1873 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1874 1875 lock_sock(sk); 1876 1877 mptcp_rps_record_subflows(msk); 1878 1879 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1880 msg->msg_flags & MSG_FASTOPEN)) { 1881 int copied_syn = 0; 1882 1883 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1884 copied += copied_syn; 1885 if (ret == -EINPROGRESS && copied_syn > 0) 1886 goto out; 1887 else if (ret) 1888 goto do_error; 1889 } 1890 1891 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1892 1893 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1894 ret = sk_stream_wait_connect(sk, &timeo); 1895 if (ret) 1896 goto do_error; 1897 } 1898 1899 ret = -EPIPE; 1900 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1901 goto do_error; 1902 1903 pfrag = sk_page_frag(sk); 1904 1905 while (msg_data_left(msg)) { 1906 int total_ts, frag_truesize = 0; 1907 struct mptcp_data_frag *dfrag; 1908 bool dfrag_collapsed; 1909 size_t psize, offset; 1910 u32 copy_limit; 1911 1912 /* ensure fitting the notsent_lowat() constraint */ 1913 copy_limit = mptcp_send_limit(sk); 1914 if (!copy_limit) 1915 goto wait_for_memory; 1916 1917 /* reuse tail pfrag, if possible, or carve a new one from the 1918 * page allocator 1919 */ 1920 dfrag = mptcp_pending_tail(sk); 1921 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1922 if (!dfrag_collapsed) { 1923 if (!mptcp_page_frag_refill(sk, pfrag)) 1924 goto wait_for_memory; 1925 1926 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1927 frag_truesize = dfrag->overhead; 1928 } 1929 1930 /* we do not bound vs wspace, to allow a single packet. 1931 * memory accounting will prevent execessive memory usage 1932 * anyway 1933 */ 1934 offset = dfrag->offset + dfrag->data_len; 1935 psize = pfrag->size - offset; 1936 psize = min_t(size_t, psize, msg_data_left(msg)); 1937 psize = min_t(size_t, psize, copy_limit); 1938 total_ts = psize + frag_truesize; 1939 1940 if (!sk_wmem_schedule(sk, total_ts)) 1941 goto wait_for_memory; 1942 1943 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1944 page_address(dfrag->page) + offset); 1945 if (ret) 1946 goto do_error; 1947 1948 /* data successfully copied into the write queue */ 1949 sk_forward_alloc_add(sk, -total_ts); 1950 copied += psize; 1951 dfrag->data_len += psize; 1952 frag_truesize += psize; 1953 pfrag->offset += frag_truesize; 1954 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1955 1956 /* charge data on mptcp pending queue to the msk socket 1957 * Note: we charge such data both to sk and ssk 1958 */ 1959 sk_wmem_queued_add(sk, frag_truesize); 1960 if (!dfrag_collapsed) { 1961 get_page(dfrag->page); 1962 list_add_tail(&dfrag->list, &msk->rtx_queue); 1963 if (!msk->first_pending) 1964 msk->first_pending = dfrag; 1965 } 1966 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1967 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1968 !dfrag_collapsed); 1969 1970 continue; 1971 1972 wait_for_memory: 1973 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1974 __mptcp_push_pending(sk, msg->msg_flags); 1975 ret = sk_stream_wait_memory(sk, &timeo); 1976 if (ret) 1977 goto do_error; 1978 } 1979 1980 if (copied) 1981 __mptcp_push_pending(sk, msg->msg_flags); 1982 1983 out: 1984 release_sock(sk); 1985 return copied; 1986 1987 do_error: 1988 if (copied) 1989 goto out; 1990 1991 copied = sk_stream_error(sk, msg->msg_flags, ret); 1992 goto out; 1993 } 1994 1995 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1996 1997 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1998 size_t len, int flags, int copied_total, 1999 struct scm_timestamping_internal *tss, 2000 int *cmsg_flags) 2001 { 2002 struct mptcp_sock *msk = mptcp_sk(sk); 2003 struct sk_buff *skb, *tmp; 2004 int total_data_len = 0; 2005 int copied = 0; 2006 2007 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 2008 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 2009 u32 data_len = skb->len - offset; 2010 u32 count; 2011 int err; 2012 2013 if (flags & MSG_PEEK) { 2014 /* skip already peeked skbs */ 2015 if (total_data_len + data_len <= copied_total) { 2016 total_data_len += data_len; 2017 continue; 2018 } 2019 2020 /* skip the already peeked data in the current skb */ 2021 delta = copied_total - total_data_len; 2022 offset += delta; 2023 data_len -= delta; 2024 } 2025 2026 count = min_t(size_t, len - copied, data_len); 2027 if (!(flags & MSG_TRUNC)) { 2028 err = skb_copy_datagram_msg(skb, offset, msg, count); 2029 if (unlikely(err < 0)) { 2030 if (!copied) 2031 return err; 2032 break; 2033 } 2034 } 2035 2036 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 2037 tcp_update_recv_tstamps(skb, tss); 2038 *cmsg_flags |= MPTCP_CMSG_TS; 2039 } 2040 2041 copied += count; 2042 2043 if (!(flags & MSG_PEEK)) { 2044 msk->bytes_consumed += count; 2045 if (count < data_len) { 2046 MPTCP_SKB_CB(skb)->offset += count; 2047 MPTCP_SKB_CB(skb)->map_seq += count; 2048 break; 2049 } 2050 2051 /* avoid the indirect call, we know the destructor is sock_rfree */ 2052 skb->destructor = NULL; 2053 skb->sk = NULL; 2054 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2055 sk_mem_uncharge(sk, skb->truesize); 2056 __skb_unlink(skb, &sk->sk_receive_queue); 2057 skb_attempt_defer_free(skb); 2058 } 2059 2060 if (copied >= len) 2061 break; 2062 } 2063 2064 mptcp_rcv_space_adjust(msk, copied); 2065 return copied; 2066 } 2067 2068 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2069 * 2070 * Only difference: Use highest rtt estimate of the subflows in use. 2071 */ 2072 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2073 { 2074 struct mptcp_subflow_context *subflow; 2075 struct sock *sk = (struct sock *)msk; 2076 u8 scaling_ratio = U8_MAX; 2077 u32 time, advmss = 1; 2078 u64 rtt_us, mstamp; 2079 2080 msk_owned_by_me(msk); 2081 2082 if (copied <= 0) 2083 return; 2084 2085 if (!msk->rcvspace_init) 2086 mptcp_rcv_space_init(msk, msk->first); 2087 2088 msk->rcvq_space.copied += copied; 2089 2090 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2091 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2092 2093 rtt_us = msk->rcvq_space.rtt_us; 2094 if (rtt_us && time < (rtt_us >> 3)) 2095 return; 2096 2097 rtt_us = 0; 2098 mptcp_for_each_subflow(msk, subflow) { 2099 const struct tcp_sock *tp; 2100 u64 sf_rtt_us; 2101 u32 sf_advmss; 2102 2103 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2104 2105 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2106 sf_advmss = READ_ONCE(tp->advmss); 2107 2108 rtt_us = max(sf_rtt_us, rtt_us); 2109 advmss = max(sf_advmss, advmss); 2110 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2111 } 2112 2113 msk->rcvq_space.rtt_us = rtt_us; 2114 msk->scaling_ratio = scaling_ratio; 2115 if (time < (rtt_us >> 3) || rtt_us == 0) 2116 return; 2117 2118 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2119 goto new_measure; 2120 2121 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2122 /* Make subflows follow along. If we do not do this, we 2123 * get drops at subflow level if skbs can't be moved to 2124 * the mptcp rx queue fast enough (announced rcv_win can 2125 * exceed ssk->sk_rcvbuf). 2126 */ 2127 mptcp_for_each_subflow(msk, subflow) { 2128 struct sock *ssk; 2129 bool slow; 2130 2131 ssk = mptcp_subflow_tcp_sock(subflow); 2132 slow = lock_sock_fast(ssk); 2133 /* subflows can be added before tcp_init_transfer() */ 2134 if (tcp_sk(ssk)->rcvq_space.space) 2135 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2136 unlock_sock_fast(ssk, slow); 2137 } 2138 } 2139 2140 new_measure: 2141 msk->rcvq_space.copied = 0; 2142 msk->rcvq_space.time = mstamp; 2143 } 2144 2145 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta) 2146 { 2147 struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list); 2148 struct mptcp_sock *msk = mptcp_sk(sk); 2149 bool moved = false; 2150 2151 *delta = 0; 2152 while (1) { 2153 /* If the msk recvbuf is full stop, don't drop */ 2154 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2155 break; 2156 2157 prefetch(skb->next); 2158 list_del(&skb->list); 2159 *delta += skb->truesize; 2160 2161 moved |= __mptcp_move_skb(sk, skb); 2162 if (list_empty(skbs)) 2163 break; 2164 2165 skb = list_first_entry(skbs, struct sk_buff, list); 2166 } 2167 2168 __mptcp_ofo_queue(msk); 2169 if (moved) 2170 mptcp_check_data_fin((struct sock *)msk); 2171 return moved; 2172 } 2173 2174 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs) 2175 { 2176 struct mptcp_sock *msk = mptcp_sk(sk); 2177 2178 /* After CG initialization, subflows should never add skb before 2179 * gaining the CG themself. 2180 */ 2181 DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket && 2182 mem_cgroup_from_sk(sk)); 2183 2184 /* Don't spool the backlog if the rcvbuf is full. */ 2185 if (list_empty(&msk->backlog_list) || 2186 sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2187 return false; 2188 2189 INIT_LIST_HEAD(skbs); 2190 list_splice_init(&msk->backlog_list, skbs); 2191 return true; 2192 } 2193 2194 static void mptcp_backlog_spooled(struct sock *sk, u32 moved, 2195 struct list_head *skbs) 2196 { 2197 struct mptcp_sock *msk = mptcp_sk(sk); 2198 2199 WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved); 2200 list_splice(skbs, &msk->backlog_list); 2201 } 2202 2203 static bool mptcp_move_skbs(struct sock *sk) 2204 { 2205 struct list_head skbs; 2206 bool enqueued = false; 2207 u32 moved; 2208 2209 mptcp_data_lock(sk); 2210 while (mptcp_can_spool_backlog(sk, &skbs)) { 2211 mptcp_data_unlock(sk); 2212 enqueued |= __mptcp_move_skbs(sk, &skbs, &moved); 2213 2214 mptcp_data_lock(sk); 2215 mptcp_backlog_spooled(sk, moved, &skbs); 2216 } 2217 mptcp_data_unlock(sk); 2218 return enqueued; 2219 } 2220 2221 static unsigned int mptcp_inq_hint(const struct sock *sk) 2222 { 2223 const struct mptcp_sock *msk = mptcp_sk(sk); 2224 const struct sk_buff *skb; 2225 2226 skb = skb_peek(&sk->sk_receive_queue); 2227 if (skb) { 2228 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2229 2230 if (hint_val >= INT_MAX) 2231 return INT_MAX; 2232 2233 return (unsigned int)hint_val; 2234 } 2235 2236 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2237 return 1; 2238 2239 return 0; 2240 } 2241 2242 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2243 int flags, int *addr_len) 2244 { 2245 struct mptcp_sock *msk = mptcp_sk(sk); 2246 struct scm_timestamping_internal tss; 2247 int copied = 0, cmsg_flags = 0; 2248 int target; 2249 long timeo; 2250 2251 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2252 if (unlikely(flags & MSG_ERRQUEUE)) 2253 return inet_recv_error(sk, msg, len, addr_len); 2254 2255 lock_sock(sk); 2256 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2257 copied = -ENOTCONN; 2258 goto out_err; 2259 } 2260 2261 mptcp_rps_record_subflows(msk); 2262 2263 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2264 2265 len = min_t(size_t, len, INT_MAX); 2266 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2267 2268 if (unlikely(msk->recvmsg_inq)) 2269 cmsg_flags = MPTCP_CMSG_INQ; 2270 2271 while (copied < len) { 2272 int err, bytes_read; 2273 2274 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2275 copied, &tss, &cmsg_flags); 2276 if (unlikely(bytes_read < 0)) { 2277 if (!copied) 2278 copied = bytes_read; 2279 goto out_err; 2280 } 2281 2282 copied += bytes_read; 2283 2284 if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk)) 2285 continue; 2286 2287 /* only the MPTCP socket status is relevant here. The exit 2288 * conditions mirror closely tcp_recvmsg() 2289 */ 2290 if (copied >= target) 2291 break; 2292 2293 if (copied) { 2294 if (sk->sk_err || 2295 sk->sk_state == TCP_CLOSE || 2296 (sk->sk_shutdown & RCV_SHUTDOWN) || 2297 !timeo || 2298 signal_pending(current)) 2299 break; 2300 } else { 2301 if (sk->sk_err) { 2302 copied = sock_error(sk); 2303 break; 2304 } 2305 2306 if (sk->sk_shutdown & RCV_SHUTDOWN) 2307 break; 2308 2309 if (sk->sk_state == TCP_CLOSE) { 2310 copied = -ENOTCONN; 2311 break; 2312 } 2313 2314 if (!timeo) { 2315 copied = -EAGAIN; 2316 break; 2317 } 2318 2319 if (signal_pending(current)) { 2320 copied = sock_intr_errno(timeo); 2321 break; 2322 } 2323 } 2324 2325 pr_debug("block timeout %ld\n", timeo); 2326 mptcp_cleanup_rbuf(msk, copied); 2327 err = sk_wait_data(sk, &timeo, NULL); 2328 if (err < 0) { 2329 err = copied ? : err; 2330 goto out_err; 2331 } 2332 } 2333 2334 mptcp_cleanup_rbuf(msk, copied); 2335 2336 out_err: 2337 if (cmsg_flags && copied >= 0) { 2338 if (cmsg_flags & MPTCP_CMSG_TS) 2339 tcp_recv_timestamp(msg, sk, &tss); 2340 2341 if (cmsg_flags & MPTCP_CMSG_INQ) { 2342 unsigned int inq = mptcp_inq_hint(sk); 2343 2344 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2345 } 2346 } 2347 2348 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2349 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2350 2351 release_sock(sk); 2352 return copied; 2353 } 2354 2355 static void mptcp_retransmit_timer(struct timer_list *t) 2356 { 2357 struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer); 2358 struct mptcp_sock *msk = mptcp_sk(sk); 2359 2360 bh_lock_sock(sk); 2361 if (!sock_owned_by_user(sk)) { 2362 /* we need a process context to retransmit */ 2363 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2364 mptcp_schedule_work(sk); 2365 } else { 2366 /* delegate our work to tcp_release_cb() */ 2367 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2368 } 2369 bh_unlock_sock(sk); 2370 sock_put(sk); 2371 } 2372 2373 static void mptcp_tout_timer(struct timer_list *t) 2374 { 2375 struct inet_connection_sock *icsk = 2376 timer_container_of(icsk, t, mptcp_tout_timer); 2377 struct sock *sk = &icsk->icsk_inet.sk; 2378 2379 mptcp_schedule_work(sk); 2380 sock_put(sk); 2381 } 2382 2383 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2384 * level. 2385 * 2386 * A backup subflow is returned only if that is the only kind available. 2387 */ 2388 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2389 { 2390 struct sock *backup = NULL, *pick = NULL; 2391 struct mptcp_subflow_context *subflow; 2392 int min_stale_count = INT_MAX; 2393 2394 mptcp_for_each_subflow(msk, subflow) { 2395 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2396 2397 if (!__mptcp_subflow_active(subflow)) 2398 continue; 2399 2400 /* still data outstanding at TCP level? skip this */ 2401 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2402 mptcp_pm_subflow_chk_stale(msk, ssk); 2403 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2404 continue; 2405 } 2406 2407 if (subflow->backup || subflow->request_bkup) { 2408 if (!backup) 2409 backup = ssk; 2410 continue; 2411 } 2412 2413 if (!pick) 2414 pick = ssk; 2415 } 2416 2417 if (pick) 2418 return pick; 2419 2420 /* use backup only if there are no progresses anywhere */ 2421 return min_stale_count > 1 ? backup : NULL; 2422 } 2423 2424 bool __mptcp_retransmit_pending_data(struct sock *sk) 2425 { 2426 struct mptcp_data_frag *cur, *rtx_head; 2427 struct mptcp_sock *msk = mptcp_sk(sk); 2428 2429 if (__mptcp_check_fallback(msk)) 2430 return false; 2431 2432 /* the closing socket has some data untransmitted and/or unacked: 2433 * some data in the mptcp rtx queue has not really xmitted yet. 2434 * keep it simple and re-inject the whole mptcp level rtx queue 2435 */ 2436 mptcp_data_lock(sk); 2437 __mptcp_clean_una_wakeup(sk); 2438 rtx_head = mptcp_rtx_head(sk); 2439 if (!rtx_head) { 2440 mptcp_data_unlock(sk); 2441 return false; 2442 } 2443 2444 msk->recovery_snd_nxt = msk->snd_nxt; 2445 msk->recovery = true; 2446 mptcp_data_unlock(sk); 2447 2448 msk->first_pending = rtx_head; 2449 msk->snd_burst = 0; 2450 2451 /* be sure to clear the "sent status" on all re-injected fragments */ 2452 list_for_each_entry(cur, &msk->rtx_queue, list) { 2453 if (!cur->already_sent) 2454 break; 2455 cur->already_sent = 0; 2456 } 2457 2458 return true; 2459 } 2460 2461 /* flags for __mptcp_close_ssk() */ 2462 #define MPTCP_CF_PUSH BIT(1) 2463 2464 /* be sure to send a reset only if the caller asked for it, also 2465 * clean completely the subflow status when the subflow reaches 2466 * TCP_CLOSE state 2467 */ 2468 static void __mptcp_subflow_disconnect(struct sock *ssk, 2469 struct mptcp_subflow_context *subflow, 2470 bool fastclosing) 2471 { 2472 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2473 fastclosing) { 2474 /* The MPTCP code never wait on the subflow sockets, TCP-level 2475 * disconnect should never fail 2476 */ 2477 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2478 mptcp_subflow_ctx_reset(subflow); 2479 } else { 2480 tcp_shutdown(ssk, SEND_SHUTDOWN); 2481 } 2482 } 2483 2484 /* subflow sockets can be either outgoing (connect) or incoming 2485 * (accept). 2486 * 2487 * Outgoing subflows use in-kernel sockets. 2488 * Incoming subflows do not have their own 'struct socket' allocated, 2489 * so we need to use tcp_close() after detaching them from the mptcp 2490 * parent socket. 2491 */ 2492 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2493 struct mptcp_subflow_context *subflow, 2494 unsigned int flags) 2495 { 2496 struct mptcp_sock *msk = mptcp_sk(sk); 2497 bool dispose_it, need_push = false; 2498 int fwd_remaining; 2499 2500 /* Do not pass RX data to the msk, even if the subflow socket is not 2501 * going to be freed (i.e. even for the first subflow on graceful 2502 * subflow close. 2503 */ 2504 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2505 subflow->closing = 1; 2506 2507 /* Borrow the fwd allocated page left-over; fwd memory for the subflow 2508 * could be negative at this point, but will be reach zero soon - when 2509 * the data allocated using such fragment will be freed. 2510 */ 2511 if (subflow->lent_mem_frag) { 2512 fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag; 2513 sk_forward_alloc_add(sk, fwd_remaining); 2514 sk_forward_alloc_add(ssk, -fwd_remaining); 2515 subflow->lent_mem_frag = 0; 2516 } 2517 2518 /* If the first subflow moved to a close state before accept, e.g. due 2519 * to an incoming reset or listener shutdown, the subflow socket is 2520 * already deleted by inet_child_forget() and the mptcp socket can't 2521 * survive too. 2522 */ 2523 if (msk->in_accept_queue && msk->first == ssk && 2524 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2525 /* ensure later check in mptcp_worker() will dispose the msk */ 2526 sock_set_flag(sk, SOCK_DEAD); 2527 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2528 mptcp_subflow_drop_ctx(ssk); 2529 goto out_release; 2530 } 2531 2532 dispose_it = msk->free_first || ssk != msk->first; 2533 if (dispose_it) 2534 list_del(&subflow->node); 2535 2536 if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE) 2537 tcp_set_state(ssk, TCP_CLOSE); 2538 2539 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2540 if (!dispose_it) { 2541 __mptcp_subflow_disconnect(ssk, subflow, msk->fastclosing); 2542 release_sock(ssk); 2543 2544 goto out; 2545 } 2546 2547 subflow->disposable = 1; 2548 2549 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2550 * the ssk has been already destroyed, we just need to release the 2551 * reference owned by msk; 2552 */ 2553 if (!inet_csk(ssk)->icsk_ulp_ops) { 2554 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2555 kfree_rcu(subflow, rcu); 2556 } else { 2557 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2558 __tcp_close(ssk, 0); 2559 2560 /* close acquired an extra ref */ 2561 __sock_put(ssk); 2562 } 2563 2564 out_release: 2565 __mptcp_subflow_error_report(sk, ssk); 2566 release_sock(ssk); 2567 2568 sock_put(ssk); 2569 2570 if (ssk == msk->first) 2571 WRITE_ONCE(msk->first, NULL); 2572 2573 out: 2574 __mptcp_sync_sndbuf(sk); 2575 if (need_push) 2576 __mptcp_push_pending(sk, 0); 2577 2578 /* Catch every 'all subflows closed' scenario, including peers silently 2579 * closing them, e.g. due to timeout. 2580 * For established sockets, allow an additional timeout before closing, 2581 * as the protocol can still create more subflows. 2582 */ 2583 if (list_is_singular(&msk->conn_list) && msk->first && 2584 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2585 if (sk->sk_state != TCP_ESTABLISHED || 2586 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2587 mptcp_set_state(sk, TCP_CLOSE); 2588 mptcp_close_wake_up(sk); 2589 } else { 2590 mptcp_start_tout_timer(sk); 2591 } 2592 } 2593 } 2594 2595 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2596 struct mptcp_subflow_context *subflow) 2597 { 2598 struct mptcp_sock *msk = mptcp_sk(sk); 2599 struct sk_buff *skb; 2600 2601 /* The first subflow can already be closed and still in the list */ 2602 if (subflow->close_event_done) 2603 return; 2604 2605 subflow->close_event_done = true; 2606 2607 if (sk->sk_state == TCP_ESTABLISHED) 2608 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2609 2610 /* Remove any reference from the backlog to this ssk; backlog skbs consume 2611 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc 2612 */ 2613 list_for_each_entry(skb, &msk->backlog_list, list) { 2614 if (skb->sk != ssk) 2615 continue; 2616 2617 atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc); 2618 skb->sk = NULL; 2619 } 2620 2621 /* subflow aborted before reaching the fully_established status 2622 * attempt the creation of the next subflow 2623 */ 2624 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2625 2626 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2627 } 2628 2629 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2630 { 2631 return 0; 2632 } 2633 2634 static void __mptcp_close_subflow(struct sock *sk) 2635 { 2636 struct mptcp_subflow_context *subflow, *tmp; 2637 struct mptcp_sock *msk = mptcp_sk(sk); 2638 2639 might_sleep(); 2640 2641 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2642 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2643 int ssk_state = inet_sk_state_load(ssk); 2644 2645 if (ssk_state != TCP_CLOSE && 2646 (ssk_state != TCP_CLOSE_WAIT || 2647 inet_sk_state_load(sk) != TCP_ESTABLISHED || 2648 __mptcp_check_fallback(msk))) 2649 continue; 2650 2651 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2652 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2653 continue; 2654 2655 mptcp_close_ssk(sk, ssk, subflow); 2656 } 2657 2658 } 2659 2660 static bool mptcp_close_tout_expired(const struct sock *sk) 2661 { 2662 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2663 sk->sk_state == TCP_CLOSE) 2664 return false; 2665 2666 return time_after32(tcp_jiffies32, 2667 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2668 } 2669 2670 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2671 { 2672 struct mptcp_subflow_context *subflow, *tmp; 2673 struct sock *sk = (struct sock *)msk; 2674 2675 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2676 return; 2677 2678 mptcp_token_destroy(msk); 2679 2680 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2681 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2682 bool slow; 2683 2684 slow = lock_sock_fast(tcp_sk); 2685 if (tcp_sk->sk_state != TCP_CLOSE) { 2686 mptcp_send_active_reset_reason(tcp_sk); 2687 tcp_set_state(tcp_sk, TCP_CLOSE); 2688 } 2689 unlock_sock_fast(tcp_sk, slow); 2690 } 2691 2692 /* Mirror the tcp_reset() error propagation */ 2693 switch (sk->sk_state) { 2694 case TCP_SYN_SENT: 2695 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2696 break; 2697 case TCP_CLOSE_WAIT: 2698 WRITE_ONCE(sk->sk_err, EPIPE); 2699 break; 2700 case TCP_CLOSE: 2701 return; 2702 default: 2703 WRITE_ONCE(sk->sk_err, ECONNRESET); 2704 } 2705 2706 mptcp_set_state(sk, TCP_CLOSE); 2707 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2708 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2709 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2710 2711 /* the calling mptcp_worker will properly destroy the socket */ 2712 if (sock_flag(sk, SOCK_DEAD)) 2713 return; 2714 2715 sk->sk_state_change(sk); 2716 sk_error_report(sk); 2717 } 2718 2719 static void __mptcp_retrans(struct sock *sk) 2720 { 2721 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2722 struct mptcp_sock *msk = mptcp_sk(sk); 2723 struct mptcp_subflow_context *subflow; 2724 struct mptcp_data_frag *dfrag; 2725 struct sock *ssk; 2726 int ret, err; 2727 u16 len = 0; 2728 2729 mptcp_clean_una_wakeup(sk); 2730 2731 /* first check ssk: need to kick "stale" logic */ 2732 err = mptcp_sched_get_retrans(msk); 2733 dfrag = mptcp_rtx_head(sk); 2734 if (!dfrag) { 2735 if (mptcp_data_fin_enabled(msk)) { 2736 struct inet_connection_sock *icsk = inet_csk(sk); 2737 2738 WRITE_ONCE(icsk->icsk_retransmits, 2739 icsk->icsk_retransmits + 1); 2740 mptcp_set_datafin_timeout(sk); 2741 mptcp_send_ack(msk); 2742 2743 goto reset_timer; 2744 } 2745 2746 if (!mptcp_send_head(sk)) 2747 goto clear_scheduled; 2748 2749 goto reset_timer; 2750 } 2751 2752 if (err) 2753 goto reset_timer; 2754 2755 mptcp_for_each_subflow(msk, subflow) { 2756 if (READ_ONCE(subflow->scheduled)) { 2757 u16 copied = 0; 2758 2759 mptcp_subflow_set_scheduled(subflow, false); 2760 2761 ssk = mptcp_subflow_tcp_sock(subflow); 2762 2763 lock_sock(ssk); 2764 2765 /* limit retransmission to the bytes already sent on some subflows */ 2766 info.sent = 0; 2767 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2768 dfrag->already_sent; 2769 2770 /* 2771 * make the whole retrans decision, xmit, disallow 2772 * fallback atomic, note that we can't retrans even 2773 * when an infinite fallback is in progress, i.e. new 2774 * subflows are disallowed. 2775 */ 2776 spin_lock_bh(&msk->fallback_lock); 2777 if (__mptcp_check_fallback(msk) || 2778 !msk->allow_subflows) { 2779 spin_unlock_bh(&msk->fallback_lock); 2780 release_sock(ssk); 2781 goto clear_scheduled; 2782 } 2783 2784 while (info.sent < info.limit) { 2785 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2786 if (ret <= 0) 2787 break; 2788 2789 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2790 copied += ret; 2791 info.sent += ret; 2792 } 2793 if (copied) { 2794 len = max(copied, len); 2795 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2796 info.size_goal); 2797 msk->allow_infinite_fallback = false; 2798 } 2799 spin_unlock_bh(&msk->fallback_lock); 2800 2801 release_sock(ssk); 2802 } 2803 } 2804 2805 msk->bytes_retrans += len; 2806 dfrag->already_sent = max(dfrag->already_sent, len); 2807 2808 reset_timer: 2809 mptcp_check_and_set_pending(sk); 2810 2811 if (!mptcp_rtx_timer_pending(sk)) 2812 mptcp_reset_rtx_timer(sk); 2813 2814 clear_scheduled: 2815 /* If no rtx data was available or in case of fallback, there 2816 * could be left-over scheduled subflows; clear them all 2817 * or later xmit could use bad ones 2818 */ 2819 mptcp_for_each_subflow(msk, subflow) 2820 if (READ_ONCE(subflow->scheduled)) 2821 mptcp_subflow_set_scheduled(subflow, false); 2822 } 2823 2824 /* schedule the timeout timer for the relevant event: either close timeout 2825 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2826 */ 2827 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2828 { 2829 struct sock *sk = (struct sock *)msk; 2830 unsigned long timeout, close_timeout; 2831 2832 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2833 return; 2834 2835 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2836 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2837 2838 /* the close timeout takes precedence on the fail one, and here at least one of 2839 * them is active 2840 */ 2841 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2842 2843 sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout); 2844 } 2845 2846 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2847 { 2848 struct sock *ssk = msk->first; 2849 bool slow; 2850 2851 if (!ssk) 2852 return; 2853 2854 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2855 2856 slow = lock_sock_fast(ssk); 2857 mptcp_subflow_reset(ssk); 2858 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2859 unlock_sock_fast(ssk, slow); 2860 } 2861 2862 static void mptcp_backlog_purge(struct sock *sk) 2863 { 2864 struct mptcp_sock *msk = mptcp_sk(sk); 2865 struct sk_buff *tmp, *skb; 2866 LIST_HEAD(backlog); 2867 2868 mptcp_data_lock(sk); 2869 list_splice_init(&msk->backlog_list, &backlog); 2870 msk->backlog_len = 0; 2871 mptcp_data_unlock(sk); 2872 2873 list_for_each_entry_safe(skb, tmp, &backlog, list) { 2874 mptcp_borrow_fwdmem(sk, skb); 2875 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 2876 } 2877 sk_mem_reclaim(sk); 2878 } 2879 2880 static void mptcp_do_fastclose(struct sock *sk) 2881 { 2882 struct mptcp_subflow_context *subflow, *tmp; 2883 struct mptcp_sock *msk = mptcp_sk(sk); 2884 2885 mptcp_set_state(sk, TCP_CLOSE); 2886 mptcp_backlog_purge(sk); 2887 msk->fastclosing = 1; 2888 2889 /* Explicitly send the fastclose reset as need */ 2890 if (__mptcp_check_fallback(msk)) 2891 return; 2892 2893 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2894 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2895 2896 lock_sock(ssk); 2897 2898 /* Some subflow socket states don't allow/need a reset.*/ 2899 if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 2900 goto unlock; 2901 2902 subflow->send_fastclose = 1; 2903 2904 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2905 * issue in __tcp_select_window(), see tcp_disconnect(). 2906 */ 2907 inet_csk(ssk)->icsk_ack.rcv_mss = TCP_MIN_MSS; 2908 2909 tcp_send_active_reset(ssk, ssk->sk_allocation, 2910 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 2911 unlock: 2912 release_sock(ssk); 2913 } 2914 } 2915 2916 static void mptcp_worker(struct work_struct *work) 2917 { 2918 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2919 struct sock *sk = (struct sock *)msk; 2920 unsigned long fail_tout; 2921 int state; 2922 2923 lock_sock(sk); 2924 state = sk->sk_state; 2925 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2926 goto unlock; 2927 2928 mptcp_check_fastclose(msk); 2929 2930 mptcp_pm_worker(msk); 2931 2932 mptcp_check_send_data_fin(sk); 2933 mptcp_check_data_fin_ack(sk); 2934 mptcp_check_data_fin(sk); 2935 2936 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2937 __mptcp_close_subflow(sk); 2938 2939 if (mptcp_close_tout_expired(sk)) { 2940 struct mptcp_subflow_context *subflow, *tmp; 2941 2942 mptcp_do_fastclose(sk); 2943 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2944 __mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0); 2945 mptcp_close_wake_up(sk); 2946 } 2947 2948 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2949 __mptcp_destroy_sock(sk); 2950 goto unlock; 2951 } 2952 2953 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2954 __mptcp_retrans(sk); 2955 2956 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2957 if (fail_tout && time_after(jiffies, fail_tout)) 2958 mptcp_mp_fail_no_response(msk); 2959 2960 unlock: 2961 release_sock(sk); 2962 sock_put(sk); 2963 } 2964 2965 static void __mptcp_init_sock(struct sock *sk) 2966 { 2967 struct mptcp_sock *msk = mptcp_sk(sk); 2968 2969 INIT_LIST_HEAD(&msk->conn_list); 2970 INIT_LIST_HEAD(&msk->join_list); 2971 INIT_LIST_HEAD(&msk->rtx_queue); 2972 INIT_LIST_HEAD(&msk->backlog_list); 2973 INIT_WORK(&msk->work, mptcp_worker); 2974 msk->out_of_order_queue = RB_ROOT; 2975 msk->first_pending = NULL; 2976 msk->timer_ival = TCP_RTO_MIN; 2977 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2978 msk->backlog_len = 0; 2979 2980 WRITE_ONCE(msk->first, NULL); 2981 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2982 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2983 msk->allow_infinite_fallback = true; 2984 msk->allow_subflows = true; 2985 msk->recovery = false; 2986 msk->subflow_id = 1; 2987 msk->last_data_sent = tcp_jiffies32; 2988 msk->last_data_recv = tcp_jiffies32; 2989 msk->last_ack_recv = tcp_jiffies32; 2990 2991 mptcp_pm_data_init(msk); 2992 spin_lock_init(&msk->fallback_lock); 2993 2994 /* re-use the csk retrans timer for MPTCP-level retrans */ 2995 timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0); 2996 timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0); 2997 } 2998 2999 static void mptcp_ca_reset(struct sock *sk) 3000 { 3001 struct inet_connection_sock *icsk = inet_csk(sk); 3002 3003 tcp_assign_congestion_control(sk); 3004 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 3005 sizeof(mptcp_sk(sk)->ca_name)); 3006 3007 /* no need to keep a reference to the ops, the name will suffice */ 3008 tcp_cleanup_congestion_control(sk); 3009 icsk->icsk_ca_ops = NULL; 3010 } 3011 3012 static int mptcp_init_sock(struct sock *sk) 3013 { 3014 struct net *net = sock_net(sk); 3015 int ret; 3016 3017 __mptcp_init_sock(sk); 3018 3019 if (!mptcp_is_enabled(net)) 3020 return -ENOPROTOOPT; 3021 3022 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 3023 return -ENOMEM; 3024 3025 rcu_read_lock(); 3026 ret = mptcp_init_sched(mptcp_sk(sk), 3027 mptcp_sched_find(mptcp_get_scheduler(net))); 3028 rcu_read_unlock(); 3029 if (ret) 3030 return ret; 3031 3032 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 3033 3034 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 3035 * propagate the correct value 3036 */ 3037 mptcp_ca_reset(sk); 3038 3039 sk_sockets_allocated_inc(sk); 3040 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 3041 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 3042 3043 return 0; 3044 } 3045 3046 static void __mptcp_clear_xmit(struct sock *sk) 3047 { 3048 struct mptcp_sock *msk = mptcp_sk(sk); 3049 struct mptcp_data_frag *dtmp, *dfrag; 3050 3051 msk->first_pending = NULL; 3052 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 3053 dfrag_clear(sk, dfrag); 3054 } 3055 3056 void mptcp_cancel_work(struct sock *sk) 3057 { 3058 struct mptcp_sock *msk = mptcp_sk(sk); 3059 3060 if (cancel_work_sync(&msk->work)) 3061 __sock_put(sk); 3062 } 3063 3064 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 3065 { 3066 lock_sock(ssk); 3067 3068 switch (ssk->sk_state) { 3069 case TCP_LISTEN: 3070 if (!(how & RCV_SHUTDOWN)) 3071 break; 3072 fallthrough; 3073 case TCP_SYN_SENT: 3074 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 3075 break; 3076 default: 3077 if (__mptcp_check_fallback(mptcp_sk(sk))) { 3078 pr_debug("Fallback\n"); 3079 ssk->sk_shutdown |= how; 3080 tcp_shutdown(ssk, how); 3081 3082 /* simulate the data_fin ack reception to let the state 3083 * machine move forward 3084 */ 3085 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 3086 mptcp_schedule_work(sk); 3087 } else { 3088 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 3089 tcp_send_ack(ssk); 3090 if (!mptcp_rtx_timer_pending(sk)) 3091 mptcp_reset_rtx_timer(sk); 3092 } 3093 break; 3094 } 3095 3096 release_sock(ssk); 3097 } 3098 3099 void mptcp_set_state(struct sock *sk, int state) 3100 { 3101 int oldstate = sk->sk_state; 3102 3103 switch (state) { 3104 case TCP_ESTABLISHED: 3105 if (oldstate != TCP_ESTABLISHED) 3106 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3107 break; 3108 case TCP_CLOSE_WAIT: 3109 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 3110 * MPTCP "accepted" sockets will be created later on. So no 3111 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 3112 */ 3113 break; 3114 default: 3115 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 3116 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3117 } 3118 3119 inet_sk_state_store(sk, state); 3120 } 3121 3122 static const unsigned char new_state[16] = { 3123 /* current state: new state: action: */ 3124 [0 /* (Invalid) */] = TCP_CLOSE, 3125 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3126 [TCP_SYN_SENT] = TCP_CLOSE, 3127 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3128 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3129 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3130 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 3131 [TCP_CLOSE] = TCP_CLOSE, 3132 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3133 [TCP_LAST_ACK] = TCP_LAST_ACK, 3134 [TCP_LISTEN] = TCP_CLOSE, 3135 [TCP_CLOSING] = TCP_CLOSING, 3136 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3137 }; 3138 3139 static int mptcp_close_state(struct sock *sk) 3140 { 3141 int next = (int)new_state[sk->sk_state]; 3142 int ns = next & TCP_STATE_MASK; 3143 3144 mptcp_set_state(sk, ns); 3145 3146 return next & TCP_ACTION_FIN; 3147 } 3148 3149 static void mptcp_check_send_data_fin(struct sock *sk) 3150 { 3151 struct mptcp_subflow_context *subflow; 3152 struct mptcp_sock *msk = mptcp_sk(sk); 3153 3154 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3155 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3156 msk->snd_nxt, msk->write_seq); 3157 3158 /* we still need to enqueue subflows or not really shutting down, 3159 * skip this 3160 */ 3161 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3162 mptcp_send_head(sk)) 3163 return; 3164 3165 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3166 3167 mptcp_for_each_subflow(msk, subflow) { 3168 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3169 3170 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3171 } 3172 } 3173 3174 static void __mptcp_wr_shutdown(struct sock *sk) 3175 { 3176 struct mptcp_sock *msk = mptcp_sk(sk); 3177 3178 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3179 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3180 !!mptcp_send_head(sk)); 3181 3182 /* will be ignored by fallback sockets */ 3183 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3184 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3185 3186 mptcp_check_send_data_fin(sk); 3187 } 3188 3189 static void __mptcp_destroy_sock(struct sock *sk) 3190 { 3191 struct mptcp_sock *msk = mptcp_sk(sk); 3192 3193 pr_debug("msk=%p\n", msk); 3194 3195 might_sleep(); 3196 3197 mptcp_stop_rtx_timer(sk); 3198 sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer); 3199 msk->pm.status = 0; 3200 mptcp_release_sched(msk); 3201 3202 sk->sk_prot->destroy(sk); 3203 3204 sk_stream_kill_queues(sk); 3205 xfrm_sk_free_policy(sk); 3206 3207 sock_put(sk); 3208 } 3209 3210 void __mptcp_unaccepted_force_close(struct sock *sk) 3211 { 3212 sock_set_flag(sk, SOCK_DEAD); 3213 mptcp_do_fastclose(sk); 3214 __mptcp_destroy_sock(sk); 3215 } 3216 3217 static __poll_t mptcp_check_readable(struct sock *sk) 3218 { 3219 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3220 } 3221 3222 static void mptcp_check_listen_stop(struct sock *sk) 3223 { 3224 struct sock *ssk; 3225 3226 if (inet_sk_state_load(sk) != TCP_LISTEN) 3227 return; 3228 3229 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3230 ssk = mptcp_sk(sk)->first; 3231 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3232 return; 3233 3234 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3235 tcp_set_state(ssk, TCP_CLOSE); 3236 mptcp_subflow_queue_clean(sk, ssk); 3237 inet_csk_listen_stop(ssk); 3238 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3239 release_sock(ssk); 3240 } 3241 3242 bool __mptcp_close(struct sock *sk, long timeout) 3243 { 3244 struct mptcp_subflow_context *subflow; 3245 struct mptcp_sock *msk = mptcp_sk(sk); 3246 bool do_cancel_work = false; 3247 int subflows_alive = 0; 3248 3249 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3250 3251 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3252 mptcp_check_listen_stop(sk); 3253 mptcp_set_state(sk, TCP_CLOSE); 3254 goto cleanup; 3255 } 3256 3257 if (mptcp_data_avail(msk) || timeout < 0) { 3258 /* If the msk has read data, or the caller explicitly ask it, 3259 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3260 */ 3261 mptcp_do_fastclose(sk); 3262 timeout = 0; 3263 } else if (mptcp_close_state(sk)) { 3264 __mptcp_wr_shutdown(sk); 3265 } 3266 3267 sk_stream_wait_close(sk, timeout); 3268 3269 cleanup: 3270 /* orphan all the subflows */ 3271 mptcp_for_each_subflow(msk, subflow) { 3272 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3273 bool slow = lock_sock_fast_nested(ssk); 3274 3275 subflows_alive += ssk->sk_state != TCP_CLOSE; 3276 3277 /* since the close timeout takes precedence on the fail one, 3278 * cancel the latter 3279 */ 3280 if (ssk == msk->first) 3281 subflow->fail_tout = 0; 3282 3283 /* detach from the parent socket, but allow data_ready to 3284 * push incoming data into the mptcp stack, to properly ack it 3285 */ 3286 ssk->sk_socket = NULL; 3287 ssk->sk_wq = NULL; 3288 unlock_sock_fast(ssk, slow); 3289 } 3290 sock_orphan(sk); 3291 3292 /* all the subflows are closed, only timeout can change the msk 3293 * state, let's not keep resources busy for no reasons 3294 */ 3295 if (subflows_alive == 0) 3296 mptcp_set_state(sk, TCP_CLOSE); 3297 3298 sock_hold(sk); 3299 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3300 mptcp_pm_connection_closed(msk); 3301 3302 if (sk->sk_state == TCP_CLOSE) { 3303 __mptcp_destroy_sock(sk); 3304 do_cancel_work = true; 3305 } else { 3306 mptcp_start_tout_timer(sk); 3307 } 3308 3309 return do_cancel_work; 3310 } 3311 3312 static void mptcp_close(struct sock *sk, long timeout) 3313 { 3314 bool do_cancel_work; 3315 3316 lock_sock(sk); 3317 3318 do_cancel_work = __mptcp_close(sk, timeout); 3319 release_sock(sk); 3320 if (do_cancel_work) 3321 mptcp_cancel_work(sk); 3322 3323 sock_put(sk); 3324 } 3325 3326 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3327 { 3328 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3329 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3330 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3331 3332 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3333 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3334 3335 if (msk6 && ssk6) { 3336 msk6->saddr = ssk6->saddr; 3337 msk6->flow_label = ssk6->flow_label; 3338 } 3339 #endif 3340 3341 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3342 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3343 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3344 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3345 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3346 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3347 } 3348 3349 static void mptcp_destroy_common(struct mptcp_sock *msk) 3350 { 3351 struct mptcp_subflow_context *subflow, *tmp; 3352 struct sock *sk = (struct sock *)msk; 3353 3354 __mptcp_clear_xmit(sk); 3355 mptcp_backlog_purge(sk); 3356 3357 /* join list will be eventually flushed (with rst) at sock lock release time */ 3358 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3359 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0); 3360 3361 __skb_queue_purge(&sk->sk_receive_queue); 3362 skb_rbtree_purge(&msk->out_of_order_queue); 3363 3364 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3365 * inet_sock_destruct() will dispose it 3366 */ 3367 mptcp_token_destroy(msk); 3368 mptcp_pm_destroy(msk); 3369 } 3370 3371 static int mptcp_disconnect(struct sock *sk, int flags) 3372 { 3373 struct mptcp_sock *msk = mptcp_sk(sk); 3374 3375 /* We are on the fastopen error path. We can't call straight into the 3376 * subflows cleanup code due to lock nesting (we are already under 3377 * msk->firstsocket lock). 3378 */ 3379 if (msk->fastopening) 3380 return -EBUSY; 3381 3382 mptcp_check_listen_stop(sk); 3383 mptcp_set_state(sk, TCP_CLOSE); 3384 3385 mptcp_stop_rtx_timer(sk); 3386 mptcp_stop_tout_timer(sk); 3387 3388 mptcp_pm_connection_closed(msk); 3389 3390 /* msk->subflow is still intact, the following will not free the first 3391 * subflow 3392 */ 3393 mptcp_do_fastclose(sk); 3394 mptcp_destroy_common(msk); 3395 3396 /* The first subflow is already in TCP_CLOSE status, the following 3397 * can't overlap with a fallback anymore 3398 */ 3399 spin_lock_bh(&msk->fallback_lock); 3400 msk->allow_subflows = true; 3401 msk->allow_infinite_fallback = true; 3402 WRITE_ONCE(msk->flags, 0); 3403 spin_unlock_bh(&msk->fallback_lock); 3404 3405 msk->cb_flags = 0; 3406 msk->recovery = false; 3407 WRITE_ONCE(msk->can_ack, false); 3408 WRITE_ONCE(msk->fully_established, false); 3409 WRITE_ONCE(msk->rcv_data_fin, false); 3410 WRITE_ONCE(msk->snd_data_fin_enable, false); 3411 WRITE_ONCE(msk->rcv_fastclose, false); 3412 WRITE_ONCE(msk->use_64bit_ack, false); 3413 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3414 mptcp_pm_data_reset(msk); 3415 mptcp_ca_reset(sk); 3416 msk->bytes_consumed = 0; 3417 msk->bytes_acked = 0; 3418 msk->bytes_received = 0; 3419 msk->bytes_sent = 0; 3420 msk->bytes_retrans = 0; 3421 msk->rcvspace_init = 0; 3422 msk->fastclosing = 0; 3423 3424 /* for fallback's sake */ 3425 WRITE_ONCE(msk->ack_seq, 0); 3426 3427 WRITE_ONCE(sk->sk_shutdown, 0); 3428 sk_error_report(sk); 3429 return 0; 3430 } 3431 3432 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3433 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3434 { 3435 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3436 3437 return &msk6->np; 3438 } 3439 3440 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3441 { 3442 const struct ipv6_pinfo *np = inet6_sk(sk); 3443 struct ipv6_txoptions *opt; 3444 struct ipv6_pinfo *newnp; 3445 3446 newnp = inet6_sk(newsk); 3447 3448 rcu_read_lock(); 3449 opt = rcu_dereference(np->opt); 3450 if (opt) { 3451 opt = ipv6_dup_options(newsk, opt); 3452 if (!opt) 3453 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3454 } 3455 RCU_INIT_POINTER(newnp->opt, opt); 3456 rcu_read_unlock(); 3457 } 3458 #endif 3459 3460 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3461 { 3462 struct ip_options_rcu *inet_opt, *newopt = NULL; 3463 const struct inet_sock *inet = inet_sk(sk); 3464 struct inet_sock *newinet; 3465 3466 newinet = inet_sk(newsk); 3467 3468 rcu_read_lock(); 3469 inet_opt = rcu_dereference(inet->inet_opt); 3470 if (inet_opt) { 3471 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3472 inet_opt->opt.optlen, GFP_ATOMIC); 3473 if (!newopt) 3474 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3475 } 3476 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3477 rcu_read_unlock(); 3478 } 3479 3480 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3481 const struct mptcp_options_received *mp_opt, 3482 struct sock *ssk, 3483 struct request_sock *req) 3484 { 3485 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3486 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3487 struct mptcp_subflow_context *subflow; 3488 struct mptcp_sock *msk; 3489 3490 if (!nsk) 3491 return NULL; 3492 3493 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3494 if (nsk->sk_family == AF_INET6) 3495 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3496 #endif 3497 3498 __mptcp_init_sock(nsk); 3499 3500 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3501 if (nsk->sk_family == AF_INET6) 3502 mptcp_copy_ip6_options(nsk, sk); 3503 else 3504 #endif 3505 mptcp_copy_ip_options(nsk, sk); 3506 3507 msk = mptcp_sk(nsk); 3508 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3509 WRITE_ONCE(msk->token, subflow_req->token); 3510 msk->in_accept_queue = 1; 3511 WRITE_ONCE(msk->fully_established, false); 3512 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3513 WRITE_ONCE(msk->csum_enabled, true); 3514 3515 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3516 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3517 WRITE_ONCE(msk->snd_una, msk->write_seq); 3518 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3519 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3520 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3521 3522 /* passive msk is created after the first/MPC subflow */ 3523 msk->subflow_id = 2; 3524 3525 sock_reset_flag(nsk, SOCK_RCU_FREE); 3526 security_inet_csk_clone(nsk, req); 3527 3528 /* this can't race with mptcp_close(), as the msk is 3529 * not yet exposted to user-space 3530 */ 3531 mptcp_set_state(nsk, TCP_ESTABLISHED); 3532 3533 /* The msk maintain a ref to each subflow in the connections list */ 3534 WRITE_ONCE(msk->first, ssk); 3535 subflow = mptcp_subflow_ctx(ssk); 3536 list_add(&subflow->node, &msk->conn_list); 3537 sock_hold(ssk); 3538 3539 /* new mpc subflow takes ownership of the newly 3540 * created mptcp socket 3541 */ 3542 mptcp_token_accept(subflow_req, msk); 3543 3544 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3545 * uses the correct data 3546 */ 3547 mptcp_copy_inaddrs(nsk, ssk); 3548 __mptcp_propagate_sndbuf(nsk, ssk); 3549 3550 mptcp_rcv_space_init(msk, ssk); 3551 3552 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3553 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3554 bh_unlock_sock(nsk); 3555 3556 /* note: the newly allocated socket refcount is 2 now */ 3557 return nsk; 3558 } 3559 3560 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3561 { 3562 const struct tcp_sock *tp = tcp_sk(ssk); 3563 3564 msk->rcvspace_init = 1; 3565 msk->rcvq_space.copied = 0; 3566 msk->rcvq_space.rtt_us = 0; 3567 3568 msk->rcvq_space.time = tp->tcp_mstamp; 3569 3570 /* initial rcv_space offering made to peer */ 3571 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3572 TCP_INIT_CWND * tp->advmss); 3573 if (msk->rcvq_space.space == 0) 3574 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3575 } 3576 3577 static void mptcp_destroy(struct sock *sk) 3578 { 3579 struct mptcp_sock *msk = mptcp_sk(sk); 3580 3581 /* allow the following to close even the initial subflow */ 3582 msk->free_first = 1; 3583 mptcp_destroy_common(msk); 3584 sk_sockets_allocated_dec(sk); 3585 } 3586 3587 void __mptcp_data_acked(struct sock *sk) 3588 { 3589 if (!sock_owned_by_user(sk)) 3590 __mptcp_clean_una(sk); 3591 else 3592 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3593 } 3594 3595 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3596 { 3597 if (!sock_owned_by_user(sk)) 3598 __mptcp_subflow_push_pending(sk, ssk, false); 3599 else 3600 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3601 } 3602 3603 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3604 BIT(MPTCP_RETRANSMIT) | \ 3605 BIT(MPTCP_FLUSH_JOIN_LIST)) 3606 3607 /* processes deferred events and flush wmem */ 3608 static void mptcp_release_cb(struct sock *sk) 3609 __must_hold(&sk->sk_lock.slock) 3610 { 3611 struct mptcp_sock *msk = mptcp_sk(sk); 3612 3613 for (;;) { 3614 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3615 struct list_head join_list, skbs; 3616 bool spool_bl; 3617 u32 moved; 3618 3619 spool_bl = mptcp_can_spool_backlog(sk, &skbs); 3620 if (!flags && !spool_bl) 3621 break; 3622 3623 INIT_LIST_HEAD(&join_list); 3624 list_splice_init(&msk->join_list, &join_list); 3625 3626 /* the following actions acquire the subflow socket lock 3627 * 3628 * 1) can't be invoked in atomic scope 3629 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3630 * datapath acquires the msk socket spinlock while helding 3631 * the subflow socket lock 3632 */ 3633 msk->cb_flags &= ~flags; 3634 spin_unlock_bh(&sk->sk_lock.slock); 3635 3636 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3637 __mptcp_flush_join_list(sk, &join_list); 3638 if (flags & BIT(MPTCP_PUSH_PENDING)) 3639 __mptcp_push_pending(sk, 0); 3640 if (flags & BIT(MPTCP_RETRANSMIT)) 3641 __mptcp_retrans(sk); 3642 if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) { 3643 /* notify ack seq update */ 3644 mptcp_cleanup_rbuf(msk, 0); 3645 sk->sk_data_ready(sk); 3646 } 3647 3648 cond_resched(); 3649 spin_lock_bh(&sk->sk_lock.slock); 3650 if (spool_bl) 3651 mptcp_backlog_spooled(sk, moved, &skbs); 3652 } 3653 3654 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3655 __mptcp_clean_una_wakeup(sk); 3656 if (unlikely(msk->cb_flags)) { 3657 /* be sure to sync the msk state before taking actions 3658 * depending on sk_state (MPTCP_ERROR_REPORT) 3659 * On sk release avoid actions depending on the first subflow 3660 */ 3661 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3662 __mptcp_sync_state(sk, msk->pending_state); 3663 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3664 __mptcp_error_report(sk); 3665 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3666 __mptcp_sync_sndbuf(sk); 3667 } 3668 } 3669 3670 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3671 * TCP can't schedule delack timer before the subflow is fully established. 3672 * MPTCP uses the delack timer to do 3rd ack retransmissions 3673 */ 3674 static void schedule_3rdack_retransmission(struct sock *ssk) 3675 { 3676 struct inet_connection_sock *icsk = inet_csk(ssk); 3677 struct tcp_sock *tp = tcp_sk(ssk); 3678 unsigned long timeout; 3679 3680 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3681 return; 3682 3683 /* reschedule with a timeout above RTT, as we must look only for drop */ 3684 if (tp->srtt_us) 3685 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3686 else 3687 timeout = TCP_TIMEOUT_INIT; 3688 timeout += jiffies; 3689 3690 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3691 smp_store_release(&icsk->icsk_ack.pending, 3692 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3693 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3694 } 3695 3696 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3697 { 3698 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3699 struct sock *sk = subflow->conn; 3700 3701 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3702 mptcp_data_lock(sk); 3703 if (!sock_owned_by_user(sk)) 3704 __mptcp_subflow_push_pending(sk, ssk, true); 3705 else 3706 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3707 mptcp_data_unlock(sk); 3708 } 3709 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3710 mptcp_data_lock(sk); 3711 if (!sock_owned_by_user(sk)) 3712 __mptcp_sync_sndbuf(sk); 3713 else 3714 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3715 mptcp_data_unlock(sk); 3716 } 3717 if (status & BIT(MPTCP_DELEGATE_ACK)) 3718 schedule_3rdack_retransmission(ssk); 3719 } 3720 3721 static int mptcp_hash(struct sock *sk) 3722 { 3723 /* should never be called, 3724 * we hash the TCP subflows not the MPTCP socket 3725 */ 3726 WARN_ON_ONCE(1); 3727 return 0; 3728 } 3729 3730 static void mptcp_unhash(struct sock *sk) 3731 { 3732 /* called from sk_common_release(), but nothing to do here */ 3733 } 3734 3735 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3736 { 3737 struct mptcp_sock *msk = mptcp_sk(sk); 3738 3739 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3740 if (WARN_ON_ONCE(!msk->first)) 3741 return -EINVAL; 3742 3743 return inet_csk_get_port(msk->first, snum); 3744 } 3745 3746 void mptcp_finish_connect(struct sock *ssk) 3747 { 3748 struct mptcp_subflow_context *subflow; 3749 struct mptcp_sock *msk; 3750 struct sock *sk; 3751 3752 subflow = mptcp_subflow_ctx(ssk); 3753 sk = subflow->conn; 3754 msk = mptcp_sk(sk); 3755 3756 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3757 3758 subflow->map_seq = subflow->iasn; 3759 subflow->map_subflow_seq = 1; 3760 3761 /* the socket is not connected yet, no msk/subflow ops can access/race 3762 * accessing the field below 3763 */ 3764 WRITE_ONCE(msk->local_key, subflow->local_key); 3765 3766 mptcp_pm_new_connection(msk, ssk, 0); 3767 } 3768 3769 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3770 { 3771 write_lock_bh(&sk->sk_callback_lock); 3772 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3773 sk_set_socket(sk, parent); 3774 write_unlock_bh(&sk->sk_callback_lock); 3775 } 3776 3777 /* Can be called without holding the msk socket lock; use the callback lock 3778 * to avoid {READ_,WRITE_}ONCE annotations on sk_socket. 3779 */ 3780 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk) 3781 { 3782 struct socket *sock; 3783 3784 write_lock_bh(&sk->sk_callback_lock); 3785 sock = sk->sk_socket; 3786 write_unlock_bh(&sk->sk_callback_lock); 3787 if (sock) { 3788 mptcp_sock_graft(ssk, sock); 3789 __mptcp_inherit_cgrp_data(sk, ssk); 3790 __mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC); 3791 } 3792 } 3793 3794 bool mptcp_finish_join(struct sock *ssk) 3795 { 3796 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3797 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3798 struct sock *parent = (void *)msk; 3799 bool ret = true; 3800 3801 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3802 3803 /* mptcp socket already closing? */ 3804 if (!mptcp_is_fully_established(parent)) { 3805 subflow->reset_reason = MPTCP_RST_EMPTCP; 3806 return false; 3807 } 3808 3809 /* Active subflow, already present inside the conn_list; is grafted 3810 * either by __mptcp_subflow_connect() or accept. 3811 */ 3812 if (!list_empty(&subflow->node)) { 3813 spin_lock_bh(&msk->fallback_lock); 3814 if (!msk->allow_subflows) { 3815 spin_unlock_bh(&msk->fallback_lock); 3816 return false; 3817 } 3818 mptcp_subflow_joined(msk, ssk); 3819 spin_unlock_bh(&msk->fallback_lock); 3820 mptcp_propagate_sndbuf(parent, ssk); 3821 return true; 3822 } 3823 3824 if (!mptcp_pm_allow_new_subflow(msk)) { 3825 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3826 goto err_prohibited; 3827 } 3828 3829 /* If we can't acquire msk socket lock here, let the release callback 3830 * handle it 3831 */ 3832 mptcp_data_lock(parent); 3833 if (!sock_owned_by_user(parent)) { 3834 ret = __mptcp_finish_join(msk, ssk); 3835 if (ret) { 3836 sock_hold(ssk); 3837 list_add_tail(&subflow->node, &msk->conn_list); 3838 mptcp_sock_check_graft(parent, ssk); 3839 } 3840 } else { 3841 sock_hold(ssk); 3842 list_add_tail(&subflow->node, &msk->join_list); 3843 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3844 3845 /* In case of later failures, __mptcp_flush_join_list() will 3846 * properly orphan the ssk via mptcp_close_ssk(). 3847 */ 3848 mptcp_sock_check_graft(parent, ssk); 3849 } 3850 mptcp_data_unlock(parent); 3851 3852 if (!ret) { 3853 err_prohibited: 3854 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3855 return false; 3856 } 3857 3858 return true; 3859 } 3860 3861 static void mptcp_shutdown(struct sock *sk, int how) 3862 { 3863 pr_debug("sk=%p, how=%d\n", sk, how); 3864 3865 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3866 __mptcp_wr_shutdown(sk); 3867 } 3868 3869 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3870 { 3871 const struct sock *sk = (void *)msk; 3872 u64 delta; 3873 3874 if (sk->sk_state == TCP_LISTEN) 3875 return -EINVAL; 3876 3877 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3878 return 0; 3879 3880 delta = msk->write_seq - v; 3881 if (__mptcp_check_fallback(msk) && msk->first) { 3882 struct tcp_sock *tp = tcp_sk(msk->first); 3883 3884 /* the first subflow is disconnected after close - see 3885 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3886 * so ignore that status, too. 3887 */ 3888 if (!((1 << msk->first->sk_state) & 3889 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3890 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3891 } 3892 if (delta > INT_MAX) 3893 delta = INT_MAX; 3894 3895 return (int)delta; 3896 } 3897 3898 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3899 { 3900 struct mptcp_sock *msk = mptcp_sk(sk); 3901 bool slow; 3902 3903 switch (cmd) { 3904 case SIOCINQ: 3905 if (sk->sk_state == TCP_LISTEN) 3906 return -EINVAL; 3907 3908 lock_sock(sk); 3909 if (mptcp_move_skbs(sk)) 3910 mptcp_cleanup_rbuf(msk, 0); 3911 *karg = mptcp_inq_hint(sk); 3912 release_sock(sk); 3913 break; 3914 case SIOCOUTQ: 3915 slow = lock_sock_fast(sk); 3916 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3917 unlock_sock_fast(sk, slow); 3918 break; 3919 case SIOCOUTQNSD: 3920 slow = lock_sock_fast(sk); 3921 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3922 unlock_sock_fast(sk, slow); 3923 break; 3924 default: 3925 return -ENOIOCTLCMD; 3926 } 3927 3928 return 0; 3929 } 3930 3931 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 3932 int addr_len) 3933 { 3934 struct mptcp_subflow_context *subflow; 3935 struct mptcp_sock *msk = mptcp_sk(sk); 3936 int err = -EINVAL; 3937 struct sock *ssk; 3938 3939 ssk = __mptcp_nmpc_sk(msk); 3940 if (IS_ERR(ssk)) 3941 return PTR_ERR(ssk); 3942 3943 mptcp_set_state(sk, TCP_SYN_SENT); 3944 subflow = mptcp_subflow_ctx(ssk); 3945 #ifdef CONFIG_TCP_MD5SIG 3946 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3947 * TCP option space. 3948 */ 3949 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3950 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3951 #endif 3952 if (subflow->request_mptcp) { 3953 if (mptcp_active_should_disable(sk)) 3954 mptcp_early_fallback(msk, subflow, 3955 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3956 else if (mptcp_token_new_connect(ssk) < 0) 3957 mptcp_early_fallback(msk, subflow, 3958 MPTCP_MIB_TOKENFALLBACKINIT); 3959 } 3960 3961 WRITE_ONCE(msk->write_seq, subflow->idsn); 3962 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3963 WRITE_ONCE(msk->snd_una, subflow->idsn); 3964 if (likely(!__mptcp_check_fallback(msk))) 3965 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3966 3967 /* if reaching here via the fastopen/sendmsg path, the caller already 3968 * acquired the subflow socket lock, too. 3969 */ 3970 if (!msk->fastopening) 3971 lock_sock(ssk); 3972 3973 /* the following mirrors closely a very small chunk of code from 3974 * __inet_stream_connect() 3975 */ 3976 if (ssk->sk_state != TCP_CLOSE) 3977 goto out; 3978 3979 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3980 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3981 if (err) 3982 goto out; 3983 } 3984 3985 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3986 if (err < 0) 3987 goto out; 3988 3989 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3990 3991 out: 3992 if (!msk->fastopening) 3993 release_sock(ssk); 3994 3995 /* on successful connect, the msk state will be moved to established by 3996 * subflow_finish_connect() 3997 */ 3998 if (unlikely(err)) { 3999 /* avoid leaving a dangling token in an unconnected socket */ 4000 mptcp_token_destroy(msk); 4001 mptcp_set_state(sk, TCP_CLOSE); 4002 return err; 4003 } 4004 4005 mptcp_copy_inaddrs(sk, ssk); 4006 return 0; 4007 } 4008 4009 static struct proto mptcp_prot = { 4010 .name = "MPTCP", 4011 .owner = THIS_MODULE, 4012 .init = mptcp_init_sock, 4013 .connect = mptcp_connect, 4014 .disconnect = mptcp_disconnect, 4015 .close = mptcp_close, 4016 .setsockopt = mptcp_setsockopt, 4017 .getsockopt = mptcp_getsockopt, 4018 .shutdown = mptcp_shutdown, 4019 .destroy = mptcp_destroy, 4020 .sendmsg = mptcp_sendmsg, 4021 .ioctl = mptcp_ioctl, 4022 .recvmsg = mptcp_recvmsg, 4023 .release_cb = mptcp_release_cb, 4024 .hash = mptcp_hash, 4025 .unhash = mptcp_unhash, 4026 .get_port = mptcp_get_port, 4027 .stream_memory_free = mptcp_stream_memory_free, 4028 .sockets_allocated = &mptcp_sockets_allocated, 4029 4030 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 4031 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 4032 4033 .memory_pressure = &tcp_memory_pressure, 4034 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 4035 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 4036 .sysctl_mem = sysctl_tcp_mem, 4037 .obj_size = sizeof(struct mptcp_sock), 4038 .slab_flags = SLAB_TYPESAFE_BY_RCU, 4039 .no_autobind = true, 4040 }; 4041 4042 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len) 4043 { 4044 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4045 struct sock *ssk, *sk = sock->sk; 4046 int err = -EINVAL; 4047 4048 lock_sock(sk); 4049 ssk = __mptcp_nmpc_sk(msk); 4050 if (IS_ERR(ssk)) { 4051 err = PTR_ERR(ssk); 4052 goto unlock; 4053 } 4054 4055 if (sk->sk_family == AF_INET) 4056 err = inet_bind_sk(ssk, uaddr, addr_len); 4057 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4058 else if (sk->sk_family == AF_INET6) 4059 err = inet6_bind_sk(ssk, uaddr, addr_len); 4060 #endif 4061 if (!err) 4062 mptcp_copy_inaddrs(sk, ssk); 4063 4064 unlock: 4065 release_sock(sk); 4066 return err; 4067 } 4068 4069 static int mptcp_listen(struct socket *sock, int backlog) 4070 { 4071 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4072 struct sock *sk = sock->sk; 4073 struct sock *ssk; 4074 int err; 4075 4076 pr_debug("msk=%p\n", msk); 4077 4078 lock_sock(sk); 4079 4080 err = -EINVAL; 4081 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 4082 goto unlock; 4083 4084 ssk = __mptcp_nmpc_sk(msk); 4085 if (IS_ERR(ssk)) { 4086 err = PTR_ERR(ssk); 4087 goto unlock; 4088 } 4089 4090 mptcp_set_state(sk, TCP_LISTEN); 4091 sock_set_flag(sk, SOCK_RCU_FREE); 4092 4093 lock_sock(ssk); 4094 err = __inet_listen_sk(ssk, backlog); 4095 release_sock(ssk); 4096 mptcp_set_state(sk, inet_sk_state_load(ssk)); 4097 4098 if (!err) { 4099 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 4100 mptcp_copy_inaddrs(sk, ssk); 4101 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 4102 } 4103 4104 unlock: 4105 release_sock(sk); 4106 return err; 4107 } 4108 4109 static void mptcp_graft_subflows(struct sock *sk) 4110 { 4111 struct mptcp_subflow_context *subflow; 4112 struct mptcp_sock *msk = mptcp_sk(sk); 4113 4114 if (mem_cgroup_sockets_enabled) { 4115 LIST_HEAD(join_list); 4116 4117 /* Subflows joining after __inet_accept() will get the 4118 * mem CG properly initialized at mptcp_finish_join() time, 4119 * but subflows pending in join_list need explicit 4120 * initialization before flushing `backlog_unaccounted` 4121 * or MPTCP can later unexpectedly observe unaccounted memory. 4122 */ 4123 mptcp_data_lock(sk); 4124 list_splice_init(&msk->join_list, &join_list); 4125 mptcp_data_unlock(sk); 4126 4127 __mptcp_flush_join_list(sk, &join_list); 4128 } 4129 4130 mptcp_for_each_subflow(msk, subflow) { 4131 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4132 4133 lock_sock(ssk); 4134 4135 /* Set ssk->sk_socket of accept()ed flows to mptcp socket. 4136 * This is needed so NOSPACE flag can be set from tcp stack. 4137 */ 4138 if (!ssk->sk_socket) 4139 mptcp_sock_graft(ssk, sk->sk_socket); 4140 4141 if (!mem_cgroup_sk_enabled(sk)) 4142 goto unlock; 4143 4144 __mptcp_inherit_cgrp_data(sk, ssk); 4145 __mptcp_inherit_memcg(sk, ssk, GFP_KERNEL); 4146 4147 unlock: 4148 release_sock(ssk); 4149 } 4150 4151 if (mem_cgroup_sk_enabled(sk)) { 4152 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 4153 int amt; 4154 4155 /* Account the backlog memory; prior accept() is aware of 4156 * fwd and rmem only. 4157 */ 4158 mptcp_data_lock(sk); 4159 amt = sk_mem_pages(sk->sk_forward_alloc + 4160 msk->backlog_unaccounted + 4161 atomic_read(&sk->sk_rmem_alloc)) - 4162 sk_mem_pages(sk->sk_forward_alloc + 4163 atomic_read(&sk->sk_rmem_alloc)); 4164 msk->backlog_unaccounted = 0; 4165 mptcp_data_unlock(sk); 4166 4167 if (amt) 4168 mem_cgroup_sk_charge(sk, amt, gfp); 4169 } 4170 } 4171 4172 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 4173 struct proto_accept_arg *arg) 4174 { 4175 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4176 struct sock *ssk, *newsk; 4177 4178 pr_debug("msk=%p\n", msk); 4179 4180 /* Buggy applications can call accept on socket states other then LISTEN 4181 * but no need to allocate the first subflow just to error out. 4182 */ 4183 ssk = READ_ONCE(msk->first); 4184 if (!ssk) 4185 return -EINVAL; 4186 4187 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 4188 newsk = inet_csk_accept(ssk, arg); 4189 if (!newsk) 4190 return arg->err; 4191 4192 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 4193 if (sk_is_mptcp(newsk)) { 4194 struct mptcp_subflow_context *subflow; 4195 struct sock *new_mptcp_sock; 4196 4197 subflow = mptcp_subflow_ctx(newsk); 4198 new_mptcp_sock = subflow->conn; 4199 4200 /* is_mptcp should be false if subflow->conn is missing, see 4201 * subflow_syn_recv_sock() 4202 */ 4203 if (WARN_ON_ONCE(!new_mptcp_sock)) { 4204 tcp_sk(newsk)->is_mptcp = 0; 4205 goto tcpfallback; 4206 } 4207 4208 newsk = new_mptcp_sock; 4209 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 4210 4211 newsk->sk_kern_sock = arg->kern; 4212 lock_sock(newsk); 4213 __inet_accept(sock, newsock, newsk); 4214 4215 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 4216 msk = mptcp_sk(newsk); 4217 msk->in_accept_queue = 0; 4218 4219 mptcp_graft_subflows(newsk); 4220 mptcp_rps_record_subflows(msk); 4221 4222 /* Do late cleanup for the first subflow as necessary. Also 4223 * deal with bad peers not doing a complete shutdown. 4224 */ 4225 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 4226 if (unlikely(list_is_singular(&msk->conn_list))) 4227 mptcp_set_state(newsk, TCP_CLOSE); 4228 mptcp_close_ssk(newsk, msk->first, 4229 mptcp_subflow_ctx(msk->first)); 4230 } 4231 } else { 4232 tcpfallback: 4233 newsk->sk_kern_sock = arg->kern; 4234 lock_sock(newsk); 4235 __inet_accept(sock, newsock, newsk); 4236 /* we are being invoked after accepting a non-mp-capable 4237 * flow: sk is a tcp_sk, not an mptcp one. 4238 * 4239 * Hand the socket over to tcp so all further socket ops 4240 * bypass mptcp. 4241 */ 4242 WRITE_ONCE(newsock->sk->sk_socket->ops, 4243 mptcp_fallback_tcp_ops(newsock->sk)); 4244 } 4245 release_sock(newsk); 4246 4247 return 0; 4248 } 4249 4250 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4251 { 4252 struct sock *sk = (struct sock *)msk; 4253 4254 if (__mptcp_stream_is_writeable(sk, 1)) 4255 return EPOLLOUT | EPOLLWRNORM; 4256 4257 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4258 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4259 if (__mptcp_stream_is_writeable(sk, 1)) 4260 return EPOLLOUT | EPOLLWRNORM; 4261 4262 return 0; 4263 } 4264 4265 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4266 struct poll_table_struct *wait) 4267 { 4268 struct sock *sk = sock->sk; 4269 struct mptcp_sock *msk; 4270 __poll_t mask = 0; 4271 u8 shutdown; 4272 int state; 4273 4274 msk = mptcp_sk(sk); 4275 sock_poll_wait(file, sock, wait); 4276 4277 state = inet_sk_state_load(sk); 4278 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4279 if (state == TCP_LISTEN) { 4280 struct sock *ssk = READ_ONCE(msk->first); 4281 4282 if (WARN_ON_ONCE(!ssk)) 4283 return 0; 4284 4285 return inet_csk_listen_poll(ssk); 4286 } 4287 4288 shutdown = READ_ONCE(sk->sk_shutdown); 4289 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4290 mask |= EPOLLHUP; 4291 if (shutdown & RCV_SHUTDOWN) 4292 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4293 4294 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4295 mask |= mptcp_check_readable(sk); 4296 if (shutdown & SEND_SHUTDOWN) 4297 mask |= EPOLLOUT | EPOLLWRNORM; 4298 else 4299 mask |= mptcp_check_writeable(msk); 4300 } else if (state == TCP_SYN_SENT && 4301 inet_test_bit(DEFER_CONNECT, sk)) { 4302 /* cf tcp_poll() note about TFO */ 4303 mask |= EPOLLOUT | EPOLLWRNORM; 4304 } 4305 4306 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4307 smp_rmb(); 4308 if (READ_ONCE(sk->sk_err)) 4309 mask |= EPOLLERR; 4310 4311 return mask; 4312 } 4313 4314 static const struct proto_ops mptcp_stream_ops = { 4315 .family = PF_INET, 4316 .owner = THIS_MODULE, 4317 .release = inet_release, 4318 .bind = mptcp_bind, 4319 .connect = inet_stream_connect, 4320 .socketpair = sock_no_socketpair, 4321 .accept = mptcp_stream_accept, 4322 .getname = inet_getname, 4323 .poll = mptcp_poll, 4324 .ioctl = inet_ioctl, 4325 .gettstamp = sock_gettstamp, 4326 .listen = mptcp_listen, 4327 .shutdown = inet_shutdown, 4328 .setsockopt = sock_common_setsockopt, 4329 .getsockopt = sock_common_getsockopt, 4330 .sendmsg = inet_sendmsg, 4331 .recvmsg = inet_recvmsg, 4332 .mmap = sock_no_mmap, 4333 .set_rcvlowat = mptcp_set_rcvlowat, 4334 }; 4335 4336 static struct inet_protosw mptcp_protosw = { 4337 .type = SOCK_STREAM, 4338 .protocol = IPPROTO_MPTCP, 4339 .prot = &mptcp_prot, 4340 .ops = &mptcp_stream_ops, 4341 .flags = INET_PROTOSW_ICSK, 4342 }; 4343 4344 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4345 { 4346 struct mptcp_delegated_action *delegated; 4347 struct mptcp_subflow_context *subflow; 4348 int work_done = 0; 4349 4350 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4351 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4352 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4353 4354 bh_lock_sock_nested(ssk); 4355 if (!sock_owned_by_user(ssk)) { 4356 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4357 } else { 4358 /* tcp_release_cb_override already processed 4359 * the action or will do at next release_sock(). 4360 * In both case must dequeue the subflow here - on the same 4361 * CPU that scheduled it. 4362 */ 4363 smp_wmb(); 4364 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4365 } 4366 bh_unlock_sock(ssk); 4367 sock_put(ssk); 4368 4369 if (++work_done == budget) 4370 return budget; 4371 } 4372 4373 /* always provide a 0 'work_done' argument, so that napi_complete_done 4374 * will not try accessing the NULL napi->dev ptr 4375 */ 4376 napi_complete_done(napi, 0); 4377 return work_done; 4378 } 4379 4380 void __init mptcp_proto_init(void) 4381 { 4382 struct mptcp_delegated_action *delegated; 4383 int cpu; 4384 4385 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4386 4387 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4388 panic("Failed to allocate MPTCP pcpu counter\n"); 4389 4390 mptcp_napi_dev = alloc_netdev_dummy(0); 4391 if (!mptcp_napi_dev) 4392 panic("Failed to allocate MPTCP dummy netdev\n"); 4393 for_each_possible_cpu(cpu) { 4394 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4395 INIT_LIST_HEAD(&delegated->head); 4396 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4397 mptcp_napi_poll); 4398 napi_enable(&delegated->napi); 4399 } 4400 4401 mptcp_subflow_init(); 4402 mptcp_pm_init(); 4403 mptcp_sched_init(); 4404 mptcp_token_init(); 4405 4406 if (proto_register(&mptcp_prot, 1) != 0) 4407 panic("Failed to register MPTCP proto.\n"); 4408 4409 inet_register_protosw(&mptcp_protosw); 4410 4411 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4412 } 4413 4414 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4415 static const struct proto_ops mptcp_v6_stream_ops = { 4416 .family = PF_INET6, 4417 .owner = THIS_MODULE, 4418 .release = inet6_release, 4419 .bind = mptcp_bind, 4420 .connect = inet_stream_connect, 4421 .socketpair = sock_no_socketpair, 4422 .accept = mptcp_stream_accept, 4423 .getname = inet6_getname, 4424 .poll = mptcp_poll, 4425 .ioctl = inet6_ioctl, 4426 .gettstamp = sock_gettstamp, 4427 .listen = mptcp_listen, 4428 .shutdown = inet_shutdown, 4429 .setsockopt = sock_common_setsockopt, 4430 .getsockopt = sock_common_getsockopt, 4431 .sendmsg = inet6_sendmsg, 4432 .recvmsg = inet6_recvmsg, 4433 .mmap = sock_no_mmap, 4434 #ifdef CONFIG_COMPAT 4435 .compat_ioctl = inet6_compat_ioctl, 4436 #endif 4437 .set_rcvlowat = mptcp_set_rcvlowat, 4438 }; 4439 4440 static struct proto mptcp_v6_prot; 4441 4442 static struct inet_protosw mptcp_v6_protosw = { 4443 .type = SOCK_STREAM, 4444 .protocol = IPPROTO_MPTCP, 4445 .prot = &mptcp_v6_prot, 4446 .ops = &mptcp_v6_stream_ops, 4447 .flags = INET_PROTOSW_ICSK, 4448 }; 4449 4450 int __init mptcp_proto_v6_init(void) 4451 { 4452 int err; 4453 4454 mptcp_v6_prot = mptcp_prot; 4455 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4456 mptcp_v6_prot.slab = NULL; 4457 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4458 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4459 4460 err = proto_register(&mptcp_v6_prot, 1); 4461 if (err) 4462 return err; 4463 4464 err = inet6_register_protosw(&mptcp_v6_protosw); 4465 if (err) 4466 proto_unregister(&mptcp_v6_prot); 4467 4468 return err; 4469 } 4470 #endif 4471