xref: /linux/net/mptcp/protocol.c (revision 4e887471e8e3a513607495d18333c44f59a82c5a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 	}
111 
112 	return msk->first;
113 }
114 
115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 	sk_drops_add(sk, skb);
118 	__kfree_skb(skb);
119 }
120 
121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
122 {
123 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
124 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
125 }
126 
127 static void mptcp_rmem_charge(struct sock *sk, int size)
128 {
129 	mptcp_rmem_fwd_alloc_add(sk, -size);
130 }
131 
132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
133 			       struct sk_buff *from)
134 {
135 	bool fragstolen;
136 	int delta;
137 
138 	if (MPTCP_SKB_CB(from)->offset ||
139 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
140 		return false;
141 
142 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
143 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
144 		 to->len, MPTCP_SKB_CB(from)->end_seq);
145 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
146 
147 	/* note the fwd memory can reach a negative value after accounting
148 	 * for the delta, but the later skb free will restore a non
149 	 * negative one
150 	 */
151 	atomic_add(delta, &sk->sk_rmem_alloc);
152 	mptcp_rmem_charge(sk, delta);
153 	kfree_skb_partial(from, fragstolen);
154 
155 	return true;
156 }
157 
158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
159 				   struct sk_buff *from)
160 {
161 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
162 		return false;
163 
164 	return mptcp_try_coalesce((struct sock *)msk, to, from);
165 }
166 
167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
168 {
169 	amount >>= PAGE_SHIFT;
170 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
171 	__sk_mem_reduce_allocated(sk, amount);
172 }
173 
174 static void mptcp_rmem_uncharge(struct sock *sk, int size)
175 {
176 	struct mptcp_sock *msk = mptcp_sk(sk);
177 	int reclaimable;
178 
179 	mptcp_rmem_fwd_alloc_add(sk, size);
180 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
181 
182 	/* see sk_mem_uncharge() for the rationale behind the following schema */
183 	if (unlikely(reclaimable >= PAGE_SIZE))
184 		__mptcp_rmem_reclaim(sk, reclaimable);
185 }
186 
187 static void mptcp_rfree(struct sk_buff *skb)
188 {
189 	unsigned int len = skb->truesize;
190 	struct sock *sk = skb->sk;
191 
192 	atomic_sub(len, &sk->sk_rmem_alloc);
193 	mptcp_rmem_uncharge(sk, len);
194 }
195 
196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
197 {
198 	skb_orphan(skb);
199 	skb->sk = sk;
200 	skb->destructor = mptcp_rfree;
201 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
202 	mptcp_rmem_charge(sk, skb->truesize);
203 }
204 
205 /* "inspired" by tcp_data_queue_ofo(), main differences:
206  * - use mptcp seqs
207  * - don't cope with sacks
208  */
209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
210 {
211 	struct sock *sk = (struct sock *)msk;
212 	struct rb_node **p, *parent;
213 	u64 seq, end_seq, max_seq;
214 	struct sk_buff *skb1;
215 
216 	seq = MPTCP_SKB_CB(skb)->map_seq;
217 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
218 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
219 
220 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
221 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
222 	if (after64(end_seq, max_seq)) {
223 		/* out of window */
224 		mptcp_drop(sk, skb);
225 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
226 			 (unsigned long long)end_seq - (unsigned long)max_seq,
227 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
228 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
229 		return;
230 	}
231 
232 	p = &msk->out_of_order_queue.rb_node;
233 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
234 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
235 		rb_link_node(&skb->rbnode, NULL, p);
236 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
237 		msk->ooo_last_skb = skb;
238 		goto end;
239 	}
240 
241 	/* with 2 subflows, adding at end of ooo queue is quite likely
242 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
243 	 */
244 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
247 		return;
248 	}
249 
250 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
251 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
252 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
253 		parent = &msk->ooo_last_skb->rbnode;
254 		p = &parent->rb_right;
255 		goto insert;
256 	}
257 
258 	/* Find place to insert this segment. Handle overlaps on the way. */
259 	parent = NULL;
260 	while (*p) {
261 		parent = *p;
262 		skb1 = rb_to_skb(parent);
263 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
264 			p = &parent->rb_left;
265 			continue;
266 		}
267 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
268 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 				/* All the bits are present. Drop. */
270 				mptcp_drop(sk, skb);
271 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
272 				return;
273 			}
274 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
275 				/* partial overlap:
276 				 *     |     skb      |
277 				 *  |     skb1    |
278 				 * continue traversing
279 				 */
280 			} else {
281 				/* skb's seq == skb1's seq and skb covers skb1.
282 				 * Replace skb1 with skb.
283 				 */
284 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
285 						&msk->out_of_order_queue);
286 				mptcp_drop(sk, skb1);
287 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 				goto merge_right;
289 			}
290 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
291 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
292 			return;
293 		}
294 		p = &parent->rb_right;
295 	}
296 
297 insert:
298 	/* Insert segment into RB tree. */
299 	rb_link_node(&skb->rbnode, parent, p);
300 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
301 
302 merge_right:
303 	/* Remove other segments covered by skb. */
304 	while ((skb1 = skb_rb_next(skb)) != NULL) {
305 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
306 			break;
307 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
308 		mptcp_drop(sk, skb1);
309 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
310 	}
311 	/* If there is no skb after us, we are the last_skb ! */
312 	if (!skb1)
313 		msk->ooo_last_skb = skb;
314 
315 end:
316 	skb_condense(skb);
317 	mptcp_set_owner_r(skb, sk);
318 }
319 
320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
321 {
322 	struct mptcp_sock *msk = mptcp_sk(sk);
323 	int amt, amount;
324 
325 	if (size <= msk->rmem_fwd_alloc)
326 		return true;
327 
328 	size -= msk->rmem_fwd_alloc;
329 	amt = sk_mem_pages(size);
330 	amount = amt << PAGE_SHIFT;
331 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
332 		return false;
333 
334 	mptcp_rmem_fwd_alloc_add(sk, amount);
335 	return true;
336 }
337 
338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
339 			     struct sk_buff *skb, unsigned int offset,
340 			     size_t copy_len)
341 {
342 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
343 	struct sock *sk = (struct sock *)msk;
344 	struct sk_buff *tail;
345 	bool has_rxtstamp;
346 
347 	__skb_unlink(skb, &ssk->sk_receive_queue);
348 
349 	skb_ext_reset(skb);
350 	skb_orphan(skb);
351 
352 	/* try to fetch required memory from subflow */
353 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
354 		goto drop;
355 
356 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
357 
358 	/* the skb map_seq accounts for the skb offset:
359 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
360 	 * value
361 	 */
362 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
363 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
364 	MPTCP_SKB_CB(skb)->offset = offset;
365 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
366 
367 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
368 		/* in sequence */
369 		msk->bytes_received += copy_len;
370 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
371 		tail = skb_peek_tail(&sk->sk_receive_queue);
372 		if (tail && mptcp_try_coalesce(sk, tail, skb))
373 			return true;
374 
375 		mptcp_set_owner_r(skb, sk);
376 		__skb_queue_tail(&sk->sk_receive_queue, skb);
377 		return true;
378 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
379 		mptcp_data_queue_ofo(msk, skb);
380 		return false;
381 	}
382 
383 	/* old data, keep it simple and drop the whole pkt, sender
384 	 * will retransmit as needed, if needed.
385 	 */
386 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
387 drop:
388 	mptcp_drop(sk, skb);
389 	return false;
390 }
391 
392 static void mptcp_stop_rtx_timer(struct sock *sk)
393 {
394 	struct inet_connection_sock *icsk = inet_csk(sk);
395 
396 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
397 	mptcp_sk(sk)->timer_ival = 0;
398 }
399 
400 static void mptcp_close_wake_up(struct sock *sk)
401 {
402 	if (sock_flag(sk, SOCK_DEAD))
403 		return;
404 
405 	sk->sk_state_change(sk);
406 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
407 	    sk->sk_state == TCP_CLOSE)
408 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
409 	else
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
411 }
412 
413 /* called under the msk socket lock */
414 static bool mptcp_pending_data_fin_ack(struct sock *sk)
415 {
416 	struct mptcp_sock *msk = mptcp_sk(sk);
417 
418 	return ((1 << sk->sk_state) &
419 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
420 	       msk->write_seq == READ_ONCE(msk->snd_una);
421 }
422 
423 static void mptcp_check_data_fin_ack(struct sock *sk)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	/* Look for an acknowledged DATA_FIN */
428 	if (mptcp_pending_data_fin_ack(sk)) {
429 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
430 
431 		switch (sk->sk_state) {
432 		case TCP_FIN_WAIT1:
433 			mptcp_set_state(sk, TCP_FIN_WAIT2);
434 			break;
435 		case TCP_CLOSING:
436 		case TCP_LAST_ACK:
437 			mptcp_set_state(sk, TCP_CLOSE);
438 			break;
439 		}
440 
441 		mptcp_close_wake_up(sk);
442 	}
443 }
444 
445 /* can be called with no lock acquired */
446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
447 {
448 	struct mptcp_sock *msk = mptcp_sk(sk);
449 
450 	if (READ_ONCE(msk->rcv_data_fin) &&
451 	    ((1 << inet_sk_state_load(sk)) &
452 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
453 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
454 
455 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
456 			if (seq)
457 				*seq = rcv_data_fin_seq;
458 
459 			return true;
460 		}
461 	}
462 
463 	return false;
464 }
465 
466 static void mptcp_set_datafin_timeout(struct sock *sk)
467 {
468 	struct inet_connection_sock *icsk = inet_csk(sk);
469 	u32 retransmits;
470 
471 	retransmits = min_t(u32, icsk->icsk_retransmits,
472 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
473 
474 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
475 }
476 
477 static void __mptcp_set_timeout(struct sock *sk, long tout)
478 {
479 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
480 }
481 
482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
483 {
484 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
485 
486 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
487 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
488 }
489 
490 static void mptcp_set_timeout(struct sock *sk)
491 {
492 	struct mptcp_subflow_context *subflow;
493 	long tout = 0;
494 
495 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
496 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
497 	__mptcp_set_timeout(sk, tout);
498 }
499 
500 static inline bool tcp_can_send_ack(const struct sock *ssk)
501 {
502 	return !((1 << inet_sk_state_load(ssk)) &
503 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
504 }
505 
506 void __mptcp_subflow_send_ack(struct sock *ssk)
507 {
508 	if (tcp_can_send_ack(ssk))
509 		tcp_send_ack(ssk);
510 }
511 
512 static void mptcp_subflow_send_ack(struct sock *ssk)
513 {
514 	bool slow;
515 
516 	slow = lock_sock_fast(ssk);
517 	__mptcp_subflow_send_ack(ssk);
518 	unlock_sock_fast(ssk, slow);
519 }
520 
521 static void mptcp_send_ack(struct mptcp_sock *msk)
522 {
523 	struct mptcp_subflow_context *subflow;
524 
525 	mptcp_for_each_subflow(msk, subflow)
526 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
527 }
528 
529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
530 {
531 	bool slow;
532 
533 	slow = lock_sock_fast(ssk);
534 	if (tcp_can_send_ack(ssk))
535 		tcp_cleanup_rbuf(ssk, 1);
536 	unlock_sock_fast(ssk, slow);
537 }
538 
539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
540 {
541 	const struct inet_connection_sock *icsk = inet_csk(ssk);
542 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
543 	const struct tcp_sock *tp = tcp_sk(ssk);
544 
545 	return (ack_pending & ICSK_ACK_SCHED) &&
546 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
547 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
548 		 (rx_empty && ack_pending &
549 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
550 }
551 
552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
553 {
554 	int old_space = READ_ONCE(msk->old_wspace);
555 	struct mptcp_subflow_context *subflow;
556 	struct sock *sk = (struct sock *)msk;
557 	int space =  __mptcp_space(sk);
558 	bool cleanup, rx_empty;
559 
560 	cleanup = (space > 0) && (space >= (old_space << 1));
561 	rx_empty = !__mptcp_rmem(sk);
562 
563 	mptcp_for_each_subflow(msk, subflow) {
564 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
565 
566 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
567 			mptcp_subflow_cleanup_rbuf(ssk);
568 	}
569 }
570 
571 static bool mptcp_check_data_fin(struct sock *sk)
572 {
573 	struct mptcp_sock *msk = mptcp_sk(sk);
574 	u64 rcv_data_fin_seq;
575 	bool ret = false;
576 
577 	/* Need to ack a DATA_FIN received from a peer while this side
578 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
579 	 * msk->rcv_data_fin was set when parsing the incoming options
580 	 * at the subflow level and the msk lock was not held, so this
581 	 * is the first opportunity to act on the DATA_FIN and change
582 	 * the msk state.
583 	 *
584 	 * If we are caught up to the sequence number of the incoming
585 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
586 	 * not caught up, do nothing and let the recv code send DATA_ACK
587 	 * when catching up.
588 	 */
589 
590 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
591 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
592 		WRITE_ONCE(msk->rcv_data_fin, 0);
593 
594 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
595 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
596 
597 		switch (sk->sk_state) {
598 		case TCP_ESTABLISHED:
599 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
600 			break;
601 		case TCP_FIN_WAIT1:
602 			mptcp_set_state(sk, TCP_CLOSING);
603 			break;
604 		case TCP_FIN_WAIT2:
605 			mptcp_set_state(sk, TCP_CLOSE);
606 			break;
607 		default:
608 			/* Other states not expected */
609 			WARN_ON_ONCE(1);
610 			break;
611 		}
612 
613 		ret = true;
614 		if (!__mptcp_check_fallback(msk))
615 			mptcp_send_ack(msk);
616 		mptcp_close_wake_up(sk);
617 	}
618 	return ret;
619 }
620 
621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
622 					   struct sock *ssk,
623 					   unsigned int *bytes)
624 {
625 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
626 	struct sock *sk = (struct sock *)msk;
627 	unsigned int moved = 0;
628 	bool more_data_avail;
629 	struct tcp_sock *tp;
630 	bool done = false;
631 	int sk_rbuf;
632 
633 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
634 
635 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
636 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
637 
638 		if (unlikely(ssk_rbuf > sk_rbuf)) {
639 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
640 			sk_rbuf = ssk_rbuf;
641 		}
642 	}
643 
644 	pr_debug("msk=%p ssk=%p", msk, ssk);
645 	tp = tcp_sk(ssk);
646 	do {
647 		u32 map_remaining, offset;
648 		u32 seq = tp->copied_seq;
649 		struct sk_buff *skb;
650 		bool fin;
651 
652 		/* try to move as much data as available */
653 		map_remaining = subflow->map_data_len -
654 				mptcp_subflow_get_map_offset(subflow);
655 
656 		skb = skb_peek(&ssk->sk_receive_queue);
657 		if (!skb) {
658 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
659 			 * a different CPU can have already processed the pending
660 			 * data, stop here or we can enter an infinite loop
661 			 */
662 			if (!moved)
663 				done = true;
664 			break;
665 		}
666 
667 		if (__mptcp_check_fallback(msk)) {
668 			/* Under fallback skbs have no MPTCP extension and TCP could
669 			 * collapse them between the dummy map creation and the
670 			 * current dequeue. Be sure to adjust the map size.
671 			 */
672 			map_remaining = skb->len;
673 			subflow->map_data_len = skb->len;
674 		}
675 
676 		offset = seq - TCP_SKB_CB(skb)->seq;
677 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
678 		if (fin) {
679 			done = true;
680 			seq++;
681 		}
682 
683 		if (offset < skb->len) {
684 			size_t len = skb->len - offset;
685 
686 			if (tp->urg_data)
687 				done = true;
688 
689 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
690 				moved += len;
691 			seq += len;
692 
693 			if (WARN_ON_ONCE(map_remaining < len))
694 				break;
695 		} else {
696 			WARN_ON_ONCE(!fin);
697 			sk_eat_skb(ssk, skb);
698 			done = true;
699 		}
700 
701 		WRITE_ONCE(tp->copied_seq, seq);
702 		more_data_avail = mptcp_subflow_data_available(ssk);
703 
704 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
705 			done = true;
706 			break;
707 		}
708 	} while (more_data_avail);
709 
710 	*bytes += moved;
711 	return done;
712 }
713 
714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
715 {
716 	struct sock *sk = (struct sock *)msk;
717 	struct sk_buff *skb, *tail;
718 	bool moved = false;
719 	struct rb_node *p;
720 	u64 end_seq;
721 
722 	p = rb_first(&msk->out_of_order_queue);
723 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
724 	while (p) {
725 		skb = rb_to_skb(p);
726 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
727 			break;
728 
729 		p = rb_next(p);
730 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
731 
732 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
733 				      msk->ack_seq))) {
734 			mptcp_drop(sk, skb);
735 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
736 			continue;
737 		}
738 
739 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
740 		tail = skb_peek_tail(&sk->sk_receive_queue);
741 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
742 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
743 
744 			/* skip overlapping data, if any */
745 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
746 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
747 				 delta);
748 			MPTCP_SKB_CB(skb)->offset += delta;
749 			MPTCP_SKB_CB(skb)->map_seq += delta;
750 			__skb_queue_tail(&sk->sk_receive_queue, skb);
751 		}
752 		msk->bytes_received += end_seq - msk->ack_seq;
753 		WRITE_ONCE(msk->ack_seq, end_seq);
754 		moved = true;
755 	}
756 	return moved;
757 }
758 
759 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
760 {
761 	int err = sock_error(ssk);
762 	int ssk_state;
763 
764 	if (!err)
765 		return false;
766 
767 	/* only propagate errors on fallen-back sockets or
768 	 * on MPC connect
769 	 */
770 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
771 		return false;
772 
773 	/* We need to propagate only transition to CLOSE state.
774 	 * Orphaned socket will see such state change via
775 	 * subflow_sched_work_if_closed() and that path will properly
776 	 * destroy the msk as needed.
777 	 */
778 	ssk_state = inet_sk_state_load(ssk);
779 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
780 		mptcp_set_state(sk, ssk_state);
781 	WRITE_ONCE(sk->sk_err, -err);
782 
783 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
784 	smp_wmb();
785 	sk_error_report(sk);
786 	return true;
787 }
788 
789 void __mptcp_error_report(struct sock *sk)
790 {
791 	struct mptcp_subflow_context *subflow;
792 	struct mptcp_sock *msk = mptcp_sk(sk);
793 
794 	mptcp_for_each_subflow(msk, subflow)
795 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
796 			break;
797 }
798 
799 /* In most cases we will be able to lock the mptcp socket.  If its already
800  * owned, we need to defer to the work queue to avoid ABBA deadlock.
801  */
802 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
803 {
804 	struct sock *sk = (struct sock *)msk;
805 	unsigned int moved = 0;
806 
807 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
808 	__mptcp_ofo_queue(msk);
809 	if (unlikely(ssk->sk_err)) {
810 		if (!sock_owned_by_user(sk))
811 			__mptcp_error_report(sk);
812 		else
813 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
814 	}
815 
816 	/* If the moves have caught up with the DATA_FIN sequence number
817 	 * it's time to ack the DATA_FIN and change socket state, but
818 	 * this is not a good place to change state. Let the workqueue
819 	 * do it.
820 	 */
821 	if (mptcp_pending_data_fin(sk, NULL))
822 		mptcp_schedule_work(sk);
823 	return moved > 0;
824 }
825 
826 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
827 {
828 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
829 	struct mptcp_sock *msk = mptcp_sk(sk);
830 	int sk_rbuf, ssk_rbuf;
831 
832 	/* The peer can send data while we are shutting down this
833 	 * subflow at msk destruction time, but we must avoid enqueuing
834 	 * more data to the msk receive queue
835 	 */
836 	if (unlikely(subflow->disposable))
837 		return;
838 
839 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
840 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
841 	if (unlikely(ssk_rbuf > sk_rbuf))
842 		sk_rbuf = ssk_rbuf;
843 
844 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
845 	if (__mptcp_rmem(sk) > sk_rbuf) {
846 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
847 		return;
848 	}
849 
850 	/* Wake-up the reader only for in-sequence data */
851 	mptcp_data_lock(sk);
852 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
853 		sk->sk_data_ready(sk);
854 	mptcp_data_unlock(sk);
855 }
856 
857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
858 {
859 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
860 	WRITE_ONCE(msk->allow_infinite_fallback, false);
861 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
862 }
863 
864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
865 {
866 	struct sock *sk = (struct sock *)msk;
867 
868 	if (sk->sk_state != TCP_ESTABLISHED)
869 		return false;
870 
871 	/* attach to msk socket only after we are sure we will deal with it
872 	 * at close time
873 	 */
874 	if (sk->sk_socket && !ssk->sk_socket)
875 		mptcp_sock_graft(ssk, sk->sk_socket);
876 
877 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
878 	mptcp_sockopt_sync_locked(msk, ssk);
879 	mptcp_subflow_joined(msk, ssk);
880 	mptcp_stop_tout_timer(sk);
881 	__mptcp_propagate_sndbuf(sk, ssk);
882 	return true;
883 }
884 
885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
886 {
887 	struct mptcp_subflow_context *tmp, *subflow;
888 	struct mptcp_sock *msk = mptcp_sk(sk);
889 
890 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
891 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
892 		bool slow = lock_sock_fast(ssk);
893 
894 		list_move_tail(&subflow->node, &msk->conn_list);
895 		if (!__mptcp_finish_join(msk, ssk))
896 			mptcp_subflow_reset(ssk);
897 		unlock_sock_fast(ssk, slow);
898 	}
899 }
900 
901 static bool mptcp_rtx_timer_pending(struct sock *sk)
902 {
903 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
904 }
905 
906 static void mptcp_reset_rtx_timer(struct sock *sk)
907 {
908 	struct inet_connection_sock *icsk = inet_csk(sk);
909 	unsigned long tout;
910 
911 	/* prevent rescheduling on close */
912 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
913 		return;
914 
915 	tout = mptcp_sk(sk)->timer_ival;
916 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
917 }
918 
919 bool mptcp_schedule_work(struct sock *sk)
920 {
921 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
922 	    schedule_work(&mptcp_sk(sk)->work)) {
923 		/* each subflow already holds a reference to the sk, and the
924 		 * workqueue is invoked by a subflow, so sk can't go away here.
925 		 */
926 		sock_hold(sk);
927 		return true;
928 	}
929 	return false;
930 }
931 
932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
933 {
934 	struct mptcp_subflow_context *subflow;
935 
936 	msk_owned_by_me(msk);
937 
938 	mptcp_for_each_subflow(msk, subflow) {
939 		if (READ_ONCE(subflow->data_avail))
940 			return mptcp_subflow_tcp_sock(subflow);
941 	}
942 
943 	return NULL;
944 }
945 
946 static bool mptcp_skb_can_collapse_to(u64 write_seq,
947 				      const struct sk_buff *skb,
948 				      const struct mptcp_ext *mpext)
949 {
950 	if (!tcp_skb_can_collapse_to(skb))
951 		return false;
952 
953 	/* can collapse only if MPTCP level sequence is in order and this
954 	 * mapping has not been xmitted yet
955 	 */
956 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
957 	       !mpext->frozen;
958 }
959 
960 /* we can append data to the given data frag if:
961  * - there is space available in the backing page_frag
962  * - the data frag tail matches the current page_frag free offset
963  * - the data frag end sequence number matches the current write seq
964  */
965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
966 				       const struct page_frag *pfrag,
967 				       const struct mptcp_data_frag *df)
968 {
969 	return df && pfrag->page == df->page &&
970 		pfrag->size - pfrag->offset > 0 &&
971 		pfrag->offset == (df->offset + df->data_len) &&
972 		df->data_seq + df->data_len == msk->write_seq;
973 }
974 
975 static void dfrag_uncharge(struct sock *sk, int len)
976 {
977 	sk_mem_uncharge(sk, len);
978 	sk_wmem_queued_add(sk, -len);
979 }
980 
981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
982 {
983 	int len = dfrag->data_len + dfrag->overhead;
984 
985 	list_del(&dfrag->list);
986 	dfrag_uncharge(sk, len);
987 	put_page(dfrag->page);
988 }
989 
990 /* called under both the msk socket lock and the data lock */
991 static void __mptcp_clean_una(struct sock *sk)
992 {
993 	struct mptcp_sock *msk = mptcp_sk(sk);
994 	struct mptcp_data_frag *dtmp, *dfrag;
995 	u64 snd_una;
996 
997 	snd_una = msk->snd_una;
998 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
999 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1000 			break;
1001 
1002 		if (unlikely(dfrag == msk->first_pending)) {
1003 			/* in recovery mode can see ack after the current snd head */
1004 			if (WARN_ON_ONCE(!msk->recovery))
1005 				break;
1006 
1007 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1008 		}
1009 
1010 		dfrag_clear(sk, dfrag);
1011 	}
1012 
1013 	dfrag = mptcp_rtx_head(sk);
1014 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1015 		u64 delta = snd_una - dfrag->data_seq;
1016 
1017 		/* prevent wrap around in recovery mode */
1018 		if (unlikely(delta > dfrag->already_sent)) {
1019 			if (WARN_ON_ONCE(!msk->recovery))
1020 				goto out;
1021 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1022 				goto out;
1023 			dfrag->already_sent += delta - dfrag->already_sent;
1024 		}
1025 
1026 		dfrag->data_seq += delta;
1027 		dfrag->offset += delta;
1028 		dfrag->data_len -= delta;
1029 		dfrag->already_sent -= delta;
1030 
1031 		dfrag_uncharge(sk, delta);
1032 	}
1033 
1034 	/* all retransmitted data acked, recovery completed */
1035 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1036 		msk->recovery = false;
1037 
1038 out:
1039 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1040 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1041 			mptcp_stop_rtx_timer(sk);
1042 	} else {
1043 		mptcp_reset_rtx_timer(sk);
1044 	}
1045 
1046 	if (mptcp_pending_data_fin_ack(sk))
1047 		mptcp_schedule_work(sk);
1048 }
1049 
1050 static void __mptcp_clean_una_wakeup(struct sock *sk)
1051 {
1052 	lockdep_assert_held_once(&sk->sk_lock.slock);
1053 
1054 	__mptcp_clean_una(sk);
1055 	mptcp_write_space(sk);
1056 }
1057 
1058 static void mptcp_clean_una_wakeup(struct sock *sk)
1059 {
1060 	mptcp_data_lock(sk);
1061 	__mptcp_clean_una_wakeup(sk);
1062 	mptcp_data_unlock(sk);
1063 }
1064 
1065 static void mptcp_enter_memory_pressure(struct sock *sk)
1066 {
1067 	struct mptcp_subflow_context *subflow;
1068 	struct mptcp_sock *msk = mptcp_sk(sk);
1069 	bool first = true;
1070 
1071 	mptcp_for_each_subflow(msk, subflow) {
1072 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1073 
1074 		if (first)
1075 			tcp_enter_memory_pressure(ssk);
1076 		sk_stream_moderate_sndbuf(ssk);
1077 
1078 		first = false;
1079 	}
1080 	__mptcp_sync_sndbuf(sk);
1081 }
1082 
1083 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1084  * data
1085  */
1086 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1087 {
1088 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1089 					pfrag, sk->sk_allocation)))
1090 		return true;
1091 
1092 	mptcp_enter_memory_pressure(sk);
1093 	return false;
1094 }
1095 
1096 static struct mptcp_data_frag *
1097 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1098 		      int orig_offset)
1099 {
1100 	int offset = ALIGN(orig_offset, sizeof(long));
1101 	struct mptcp_data_frag *dfrag;
1102 
1103 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1104 	dfrag->data_len = 0;
1105 	dfrag->data_seq = msk->write_seq;
1106 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1107 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1108 	dfrag->already_sent = 0;
1109 	dfrag->page = pfrag->page;
1110 
1111 	return dfrag;
1112 }
1113 
1114 struct mptcp_sendmsg_info {
1115 	int mss_now;
1116 	int size_goal;
1117 	u16 limit;
1118 	u16 sent;
1119 	unsigned int flags;
1120 	bool data_lock_held;
1121 };
1122 
1123 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1124 				    u64 data_seq, int avail_size)
1125 {
1126 	u64 window_end = mptcp_wnd_end(msk);
1127 	u64 mptcp_snd_wnd;
1128 
1129 	if (__mptcp_check_fallback(msk))
1130 		return avail_size;
1131 
1132 	mptcp_snd_wnd = window_end - data_seq;
1133 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1134 
1135 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1136 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1137 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1138 	}
1139 
1140 	return avail_size;
1141 }
1142 
1143 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1144 {
1145 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1146 
1147 	if (!mpext)
1148 		return false;
1149 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1150 	return true;
1151 }
1152 
1153 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1154 {
1155 	struct sk_buff *skb;
1156 
1157 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1158 	if (likely(skb)) {
1159 		if (likely(__mptcp_add_ext(skb, gfp))) {
1160 			skb_reserve(skb, MAX_TCP_HEADER);
1161 			skb->ip_summed = CHECKSUM_PARTIAL;
1162 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1163 			return skb;
1164 		}
1165 		__kfree_skb(skb);
1166 	} else {
1167 		mptcp_enter_memory_pressure(sk);
1168 	}
1169 	return NULL;
1170 }
1171 
1172 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1173 {
1174 	struct sk_buff *skb;
1175 
1176 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1177 	if (!skb)
1178 		return NULL;
1179 
1180 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1181 		tcp_skb_entail(ssk, skb);
1182 		return skb;
1183 	}
1184 	tcp_skb_tsorted_anchor_cleanup(skb);
1185 	kfree_skb(skb);
1186 	return NULL;
1187 }
1188 
1189 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1190 {
1191 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1192 
1193 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1194 }
1195 
1196 /* note: this always recompute the csum on the whole skb, even
1197  * if we just appended a single frag. More status info needed
1198  */
1199 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1200 {
1201 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1202 	__wsum csum = ~csum_unfold(mpext->csum);
1203 	int offset = skb->len - added;
1204 
1205 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1206 }
1207 
1208 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1209 				      struct sock *ssk,
1210 				      struct mptcp_ext *mpext)
1211 {
1212 	if (!mpext)
1213 		return;
1214 
1215 	mpext->infinite_map = 1;
1216 	mpext->data_len = 0;
1217 
1218 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1219 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1220 	pr_fallback(msk);
1221 	mptcp_do_fallback(ssk);
1222 }
1223 
1224 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1225 
1226 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1227 			      struct mptcp_data_frag *dfrag,
1228 			      struct mptcp_sendmsg_info *info)
1229 {
1230 	u64 data_seq = dfrag->data_seq + info->sent;
1231 	int offset = dfrag->offset + info->sent;
1232 	struct mptcp_sock *msk = mptcp_sk(sk);
1233 	bool zero_window_probe = false;
1234 	struct mptcp_ext *mpext = NULL;
1235 	bool can_coalesce = false;
1236 	bool reuse_skb = true;
1237 	struct sk_buff *skb;
1238 	size_t copy;
1239 	int i;
1240 
1241 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1242 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1243 
1244 	if (WARN_ON_ONCE(info->sent > info->limit ||
1245 			 info->limit > dfrag->data_len))
1246 		return 0;
1247 
1248 	if (unlikely(!__tcp_can_send(ssk)))
1249 		return -EAGAIN;
1250 
1251 	/* compute send limit */
1252 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1253 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1254 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1255 	copy = info->size_goal;
1256 
1257 	skb = tcp_write_queue_tail(ssk);
1258 	if (skb && copy > skb->len) {
1259 		/* Limit the write to the size available in the
1260 		 * current skb, if any, so that we create at most a new skb.
1261 		 * Explicitly tells TCP internals to avoid collapsing on later
1262 		 * queue management operation, to avoid breaking the ext <->
1263 		 * SSN association set here
1264 		 */
1265 		mpext = mptcp_get_ext(skb);
1266 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1267 			TCP_SKB_CB(skb)->eor = 1;
1268 			tcp_mark_push(tcp_sk(ssk), skb);
1269 			goto alloc_skb;
1270 		}
1271 
1272 		i = skb_shinfo(skb)->nr_frags;
1273 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1274 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1275 			tcp_mark_push(tcp_sk(ssk), skb);
1276 			goto alloc_skb;
1277 		}
1278 
1279 		copy -= skb->len;
1280 	} else {
1281 alloc_skb:
1282 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1283 		if (!skb)
1284 			return -ENOMEM;
1285 
1286 		i = skb_shinfo(skb)->nr_frags;
1287 		reuse_skb = false;
1288 		mpext = mptcp_get_ext(skb);
1289 	}
1290 
1291 	/* Zero window and all data acked? Probe. */
1292 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1293 	if (copy == 0) {
1294 		u64 snd_una = READ_ONCE(msk->snd_una);
1295 
1296 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1297 			tcp_remove_empty_skb(ssk);
1298 			return 0;
1299 		}
1300 
1301 		zero_window_probe = true;
1302 		data_seq = snd_una - 1;
1303 		copy = 1;
1304 	}
1305 
1306 	copy = min_t(size_t, copy, info->limit - info->sent);
1307 	if (!sk_wmem_schedule(ssk, copy)) {
1308 		tcp_remove_empty_skb(ssk);
1309 		return -ENOMEM;
1310 	}
1311 
1312 	if (can_coalesce) {
1313 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1314 	} else {
1315 		get_page(dfrag->page);
1316 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1317 	}
1318 
1319 	skb->len += copy;
1320 	skb->data_len += copy;
1321 	skb->truesize += copy;
1322 	sk_wmem_queued_add(ssk, copy);
1323 	sk_mem_charge(ssk, copy);
1324 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1325 	TCP_SKB_CB(skb)->end_seq += copy;
1326 	tcp_skb_pcount_set(skb, 0);
1327 
1328 	/* on skb reuse we just need to update the DSS len */
1329 	if (reuse_skb) {
1330 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1331 		mpext->data_len += copy;
1332 		goto out;
1333 	}
1334 
1335 	memset(mpext, 0, sizeof(*mpext));
1336 	mpext->data_seq = data_seq;
1337 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1338 	mpext->data_len = copy;
1339 	mpext->use_map = 1;
1340 	mpext->dsn64 = 1;
1341 
1342 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1343 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1344 		 mpext->dsn64);
1345 
1346 	if (zero_window_probe) {
1347 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1348 		mpext->frozen = 1;
1349 		if (READ_ONCE(msk->csum_enabled))
1350 			mptcp_update_data_checksum(skb, copy);
1351 		tcp_push_pending_frames(ssk);
1352 		return 0;
1353 	}
1354 out:
1355 	if (READ_ONCE(msk->csum_enabled))
1356 		mptcp_update_data_checksum(skb, copy);
1357 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1358 		mptcp_update_infinite_map(msk, ssk, mpext);
1359 	trace_mptcp_sendmsg_frag(mpext);
1360 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1361 	return copy;
1362 }
1363 
1364 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1365 					 sizeof(struct tcphdr) - \
1366 					 MAX_TCP_OPTION_SPACE - \
1367 					 sizeof(struct ipv6hdr) - \
1368 					 sizeof(struct frag_hdr))
1369 
1370 struct subflow_send_info {
1371 	struct sock *ssk;
1372 	u64 linger_time;
1373 };
1374 
1375 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1376 {
1377 	if (!subflow->stale)
1378 		return;
1379 
1380 	subflow->stale = 0;
1381 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1382 }
1383 
1384 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1385 {
1386 	if (unlikely(subflow->stale)) {
1387 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1388 
1389 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1390 			return false;
1391 
1392 		mptcp_subflow_set_active(subflow);
1393 	}
1394 	return __mptcp_subflow_active(subflow);
1395 }
1396 
1397 #define SSK_MODE_ACTIVE	0
1398 #define SSK_MODE_BACKUP	1
1399 #define SSK_MODE_MAX	2
1400 
1401 /* implement the mptcp packet scheduler;
1402  * returns the subflow that will transmit the next DSS
1403  * additionally updates the rtx timeout
1404  */
1405 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1406 {
1407 	struct subflow_send_info send_info[SSK_MODE_MAX];
1408 	struct mptcp_subflow_context *subflow;
1409 	struct sock *sk = (struct sock *)msk;
1410 	u32 pace, burst, wmem;
1411 	int i, nr_active = 0;
1412 	struct sock *ssk;
1413 	u64 linger_time;
1414 	long tout = 0;
1415 
1416 	/* pick the subflow with the lower wmem/wspace ratio */
1417 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1418 		send_info[i].ssk = NULL;
1419 		send_info[i].linger_time = -1;
1420 	}
1421 
1422 	mptcp_for_each_subflow(msk, subflow) {
1423 		trace_mptcp_subflow_get_send(subflow);
1424 		ssk =  mptcp_subflow_tcp_sock(subflow);
1425 		if (!mptcp_subflow_active(subflow))
1426 			continue;
1427 
1428 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1429 		nr_active += !subflow->backup;
1430 		pace = subflow->avg_pacing_rate;
1431 		if (unlikely(!pace)) {
1432 			/* init pacing rate from socket */
1433 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1434 			pace = subflow->avg_pacing_rate;
1435 			if (!pace)
1436 				continue;
1437 		}
1438 
1439 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1440 		if (linger_time < send_info[subflow->backup].linger_time) {
1441 			send_info[subflow->backup].ssk = ssk;
1442 			send_info[subflow->backup].linger_time = linger_time;
1443 		}
1444 	}
1445 	__mptcp_set_timeout(sk, tout);
1446 
1447 	/* pick the best backup if no other subflow is active */
1448 	if (!nr_active)
1449 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1450 
1451 	/* According to the blest algorithm, to avoid HoL blocking for the
1452 	 * faster flow, we need to:
1453 	 * - estimate the faster flow linger time
1454 	 * - use the above to estimate the amount of byte transferred
1455 	 *   by the faster flow
1456 	 * - check that the amount of queued data is greter than the above,
1457 	 *   otherwise do not use the picked, slower, subflow
1458 	 * We select the subflow with the shorter estimated time to flush
1459 	 * the queued mem, which basically ensure the above. We just need
1460 	 * to check that subflow has a non empty cwin.
1461 	 */
1462 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1463 	if (!ssk || !sk_stream_memory_free(ssk))
1464 		return NULL;
1465 
1466 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1467 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1468 	if (!burst)
1469 		return ssk;
1470 
1471 	subflow = mptcp_subflow_ctx(ssk);
1472 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1473 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1474 					   burst + wmem);
1475 	msk->snd_burst = burst;
1476 	return ssk;
1477 }
1478 
1479 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1480 {
1481 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1482 	release_sock(ssk);
1483 }
1484 
1485 static void mptcp_update_post_push(struct mptcp_sock *msk,
1486 				   struct mptcp_data_frag *dfrag,
1487 				   u32 sent)
1488 {
1489 	u64 snd_nxt_new = dfrag->data_seq;
1490 
1491 	dfrag->already_sent += sent;
1492 
1493 	msk->snd_burst -= sent;
1494 
1495 	snd_nxt_new += dfrag->already_sent;
1496 
1497 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1498 	 * is recovering after a failover. In that event, this re-sends
1499 	 * old segments.
1500 	 *
1501 	 * Thus compute snd_nxt_new candidate based on
1502 	 * the dfrag->data_seq that was sent and the data
1503 	 * that has been handed to the subflow for transmission
1504 	 * and skip update in case it was old dfrag.
1505 	 */
1506 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1507 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1508 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1509 	}
1510 }
1511 
1512 void mptcp_check_and_set_pending(struct sock *sk)
1513 {
1514 	if (mptcp_send_head(sk)) {
1515 		mptcp_data_lock(sk);
1516 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1517 		mptcp_data_unlock(sk);
1518 	}
1519 }
1520 
1521 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1522 				  struct mptcp_sendmsg_info *info)
1523 {
1524 	struct mptcp_sock *msk = mptcp_sk(sk);
1525 	struct mptcp_data_frag *dfrag;
1526 	int len, copied = 0, err = 0;
1527 
1528 	while ((dfrag = mptcp_send_head(sk))) {
1529 		info->sent = dfrag->already_sent;
1530 		info->limit = dfrag->data_len;
1531 		len = dfrag->data_len - dfrag->already_sent;
1532 		while (len > 0) {
1533 			int ret = 0;
1534 
1535 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1536 			if (ret <= 0) {
1537 				err = copied ? : ret;
1538 				goto out;
1539 			}
1540 
1541 			info->sent += ret;
1542 			copied += ret;
1543 			len -= ret;
1544 
1545 			mptcp_update_post_push(msk, dfrag, ret);
1546 		}
1547 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1548 
1549 		if (msk->snd_burst <= 0 ||
1550 		    !sk_stream_memory_free(ssk) ||
1551 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1552 			err = copied;
1553 			goto out;
1554 		}
1555 		mptcp_set_timeout(sk);
1556 	}
1557 	err = copied;
1558 
1559 out:
1560 	return err;
1561 }
1562 
1563 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1564 {
1565 	struct sock *prev_ssk = NULL, *ssk = NULL;
1566 	struct mptcp_sock *msk = mptcp_sk(sk);
1567 	struct mptcp_sendmsg_info info = {
1568 				.flags = flags,
1569 	};
1570 	bool do_check_data_fin = false;
1571 	int push_count = 1;
1572 
1573 	while (mptcp_send_head(sk) && (push_count > 0)) {
1574 		struct mptcp_subflow_context *subflow;
1575 		int ret = 0;
1576 
1577 		if (mptcp_sched_get_send(msk))
1578 			break;
1579 
1580 		push_count = 0;
1581 
1582 		mptcp_for_each_subflow(msk, subflow) {
1583 			if (READ_ONCE(subflow->scheduled)) {
1584 				mptcp_subflow_set_scheduled(subflow, false);
1585 
1586 				prev_ssk = ssk;
1587 				ssk = mptcp_subflow_tcp_sock(subflow);
1588 				if (ssk != prev_ssk) {
1589 					/* First check. If the ssk has changed since
1590 					 * the last round, release prev_ssk
1591 					 */
1592 					if (prev_ssk)
1593 						mptcp_push_release(prev_ssk, &info);
1594 
1595 					/* Need to lock the new subflow only if different
1596 					 * from the previous one, otherwise we are still
1597 					 * helding the relevant lock
1598 					 */
1599 					lock_sock(ssk);
1600 				}
1601 
1602 				push_count++;
1603 
1604 				ret = __subflow_push_pending(sk, ssk, &info);
1605 				if (ret <= 0) {
1606 					if (ret != -EAGAIN ||
1607 					    (1 << ssk->sk_state) &
1608 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1609 						push_count--;
1610 					continue;
1611 				}
1612 				do_check_data_fin = true;
1613 			}
1614 		}
1615 	}
1616 
1617 	/* at this point we held the socket lock for the last subflow we used */
1618 	if (ssk)
1619 		mptcp_push_release(ssk, &info);
1620 
1621 	/* ensure the rtx timer is running */
1622 	if (!mptcp_rtx_timer_pending(sk))
1623 		mptcp_reset_rtx_timer(sk);
1624 	if (do_check_data_fin)
1625 		mptcp_check_send_data_fin(sk);
1626 }
1627 
1628 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1629 {
1630 	struct mptcp_sock *msk = mptcp_sk(sk);
1631 	struct mptcp_sendmsg_info info = {
1632 		.data_lock_held = true,
1633 	};
1634 	bool keep_pushing = true;
1635 	struct sock *xmit_ssk;
1636 	int copied = 0;
1637 
1638 	info.flags = 0;
1639 	while (mptcp_send_head(sk) && keep_pushing) {
1640 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1641 		int ret = 0;
1642 
1643 		/* check for a different subflow usage only after
1644 		 * spooling the first chunk of data
1645 		 */
1646 		if (first) {
1647 			mptcp_subflow_set_scheduled(subflow, false);
1648 			ret = __subflow_push_pending(sk, ssk, &info);
1649 			first = false;
1650 			if (ret <= 0)
1651 				break;
1652 			copied += ret;
1653 			continue;
1654 		}
1655 
1656 		if (mptcp_sched_get_send(msk))
1657 			goto out;
1658 
1659 		if (READ_ONCE(subflow->scheduled)) {
1660 			mptcp_subflow_set_scheduled(subflow, false);
1661 			ret = __subflow_push_pending(sk, ssk, &info);
1662 			if (ret <= 0)
1663 				keep_pushing = false;
1664 			copied += ret;
1665 		}
1666 
1667 		mptcp_for_each_subflow(msk, subflow) {
1668 			if (READ_ONCE(subflow->scheduled)) {
1669 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1670 				if (xmit_ssk != ssk) {
1671 					mptcp_subflow_delegate(subflow,
1672 							       MPTCP_DELEGATE_SEND);
1673 					keep_pushing = false;
1674 				}
1675 			}
1676 		}
1677 	}
1678 
1679 out:
1680 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1681 	 * not going to flush it via release_sock()
1682 	 */
1683 	if (copied) {
1684 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1685 			 info.size_goal);
1686 		if (!mptcp_rtx_timer_pending(sk))
1687 			mptcp_reset_rtx_timer(sk);
1688 
1689 		if (msk->snd_data_fin_enable &&
1690 		    msk->snd_nxt + 1 == msk->write_seq)
1691 			mptcp_schedule_work(sk);
1692 	}
1693 }
1694 
1695 static int mptcp_disconnect(struct sock *sk, int flags);
1696 
1697 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1698 				  size_t len, int *copied_syn)
1699 {
1700 	unsigned int saved_flags = msg->msg_flags;
1701 	struct mptcp_sock *msk = mptcp_sk(sk);
1702 	struct sock *ssk;
1703 	int ret;
1704 
1705 	/* on flags based fastopen the mptcp is supposed to create the
1706 	 * first subflow right now. Otherwise we are in the defer_connect
1707 	 * path, and the first subflow must be already present.
1708 	 * Since the defer_connect flag is cleared after the first succsful
1709 	 * fastopen attempt, no need to check for additional subflow status.
1710 	 */
1711 	if (msg->msg_flags & MSG_FASTOPEN) {
1712 		ssk = __mptcp_nmpc_sk(msk);
1713 		if (IS_ERR(ssk))
1714 			return PTR_ERR(ssk);
1715 	}
1716 	if (!msk->first)
1717 		return -EINVAL;
1718 
1719 	ssk = msk->first;
1720 
1721 	lock_sock(ssk);
1722 	msg->msg_flags |= MSG_DONTWAIT;
1723 	msk->fastopening = 1;
1724 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1725 	msk->fastopening = 0;
1726 	msg->msg_flags = saved_flags;
1727 	release_sock(ssk);
1728 
1729 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1730 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1731 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1732 					    msg->msg_namelen, msg->msg_flags, 1);
1733 
1734 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1735 		 * case of any error, except timeout or signal
1736 		 */
1737 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1738 			*copied_syn = 0;
1739 	} else if (ret && ret != -EINPROGRESS) {
1740 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1741 		 * __inet_stream_connect() can fail, due to looking check,
1742 		 * see mptcp_disconnect().
1743 		 * Attempt it again outside the problematic scope.
1744 		 */
1745 		if (!mptcp_disconnect(sk, 0))
1746 			sk->sk_socket->state = SS_UNCONNECTED;
1747 	}
1748 	inet_clear_bit(DEFER_CONNECT, sk);
1749 
1750 	return ret;
1751 }
1752 
1753 static int do_copy_data_nocache(struct sock *sk, int copy,
1754 				struct iov_iter *from, char *to)
1755 {
1756 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1757 		if (!copy_from_iter_full_nocache(to, copy, from))
1758 			return -EFAULT;
1759 	} else if (!copy_from_iter_full(to, copy, from)) {
1760 		return -EFAULT;
1761 	}
1762 	return 0;
1763 }
1764 
1765 /* open-code sk_stream_memory_free() plus sent limit computation to
1766  * avoid indirect calls in fast-path.
1767  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1768  * annotations.
1769  */
1770 static u32 mptcp_send_limit(const struct sock *sk)
1771 {
1772 	const struct mptcp_sock *msk = mptcp_sk(sk);
1773 	u32 limit, not_sent;
1774 
1775 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1776 		return 0;
1777 
1778 	limit = mptcp_notsent_lowat(sk);
1779 	if (limit == UINT_MAX)
1780 		return UINT_MAX;
1781 
1782 	not_sent = msk->write_seq - msk->snd_nxt;
1783 	if (not_sent >= limit)
1784 		return 0;
1785 
1786 	return limit - not_sent;
1787 }
1788 
1789 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1790 {
1791 	struct mptcp_sock *msk = mptcp_sk(sk);
1792 	struct page_frag *pfrag;
1793 	size_t copied = 0;
1794 	int ret = 0;
1795 	long timeo;
1796 
1797 	/* silently ignore everything else */
1798 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1799 
1800 	lock_sock(sk);
1801 
1802 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1803 		     msg->msg_flags & MSG_FASTOPEN)) {
1804 		int copied_syn = 0;
1805 
1806 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1807 		copied += copied_syn;
1808 		if (ret == -EINPROGRESS && copied_syn > 0)
1809 			goto out;
1810 		else if (ret)
1811 			goto do_error;
1812 	}
1813 
1814 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1815 
1816 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1817 		ret = sk_stream_wait_connect(sk, &timeo);
1818 		if (ret)
1819 			goto do_error;
1820 	}
1821 
1822 	ret = -EPIPE;
1823 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1824 		goto do_error;
1825 
1826 	pfrag = sk_page_frag(sk);
1827 
1828 	while (msg_data_left(msg)) {
1829 		int total_ts, frag_truesize = 0;
1830 		struct mptcp_data_frag *dfrag;
1831 		bool dfrag_collapsed;
1832 		size_t psize, offset;
1833 		u32 copy_limit;
1834 
1835 		/* ensure fitting the notsent_lowat() constraint */
1836 		copy_limit = mptcp_send_limit(sk);
1837 		if (!copy_limit)
1838 			goto wait_for_memory;
1839 
1840 		/* reuse tail pfrag, if possible, or carve a new one from the
1841 		 * page allocator
1842 		 */
1843 		dfrag = mptcp_pending_tail(sk);
1844 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1845 		if (!dfrag_collapsed) {
1846 			if (!mptcp_page_frag_refill(sk, pfrag))
1847 				goto wait_for_memory;
1848 
1849 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1850 			frag_truesize = dfrag->overhead;
1851 		}
1852 
1853 		/* we do not bound vs wspace, to allow a single packet.
1854 		 * memory accounting will prevent execessive memory usage
1855 		 * anyway
1856 		 */
1857 		offset = dfrag->offset + dfrag->data_len;
1858 		psize = pfrag->size - offset;
1859 		psize = min_t(size_t, psize, msg_data_left(msg));
1860 		psize = min_t(size_t, psize, copy_limit);
1861 		total_ts = psize + frag_truesize;
1862 
1863 		if (!sk_wmem_schedule(sk, total_ts))
1864 			goto wait_for_memory;
1865 
1866 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1867 					   page_address(dfrag->page) + offset);
1868 		if (ret)
1869 			goto do_error;
1870 
1871 		/* data successfully copied into the write queue */
1872 		sk_forward_alloc_add(sk, -total_ts);
1873 		copied += psize;
1874 		dfrag->data_len += psize;
1875 		frag_truesize += psize;
1876 		pfrag->offset += frag_truesize;
1877 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1878 
1879 		/* charge data on mptcp pending queue to the msk socket
1880 		 * Note: we charge such data both to sk and ssk
1881 		 */
1882 		sk_wmem_queued_add(sk, frag_truesize);
1883 		if (!dfrag_collapsed) {
1884 			get_page(dfrag->page);
1885 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1886 			if (!msk->first_pending)
1887 				WRITE_ONCE(msk->first_pending, dfrag);
1888 		}
1889 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1890 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1891 			 !dfrag_collapsed);
1892 
1893 		continue;
1894 
1895 wait_for_memory:
1896 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1897 		__mptcp_push_pending(sk, msg->msg_flags);
1898 		ret = sk_stream_wait_memory(sk, &timeo);
1899 		if (ret)
1900 			goto do_error;
1901 	}
1902 
1903 	if (copied)
1904 		__mptcp_push_pending(sk, msg->msg_flags);
1905 
1906 out:
1907 	release_sock(sk);
1908 	return copied;
1909 
1910 do_error:
1911 	if (copied)
1912 		goto out;
1913 
1914 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1915 	goto out;
1916 }
1917 
1918 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1919 				struct msghdr *msg,
1920 				size_t len, int flags,
1921 				struct scm_timestamping_internal *tss,
1922 				int *cmsg_flags)
1923 {
1924 	struct sk_buff *skb, *tmp;
1925 	int copied = 0;
1926 
1927 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1928 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1929 		u32 data_len = skb->len - offset;
1930 		u32 count = min_t(size_t, len - copied, data_len);
1931 		int err;
1932 
1933 		if (!(flags & MSG_TRUNC)) {
1934 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1935 			if (unlikely(err < 0)) {
1936 				if (!copied)
1937 					return err;
1938 				break;
1939 			}
1940 		}
1941 
1942 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1943 			tcp_update_recv_tstamps(skb, tss);
1944 			*cmsg_flags |= MPTCP_CMSG_TS;
1945 		}
1946 
1947 		copied += count;
1948 
1949 		if (count < data_len) {
1950 			if (!(flags & MSG_PEEK)) {
1951 				MPTCP_SKB_CB(skb)->offset += count;
1952 				MPTCP_SKB_CB(skb)->map_seq += count;
1953 				msk->bytes_consumed += count;
1954 			}
1955 			break;
1956 		}
1957 
1958 		if (!(flags & MSG_PEEK)) {
1959 			/* we will bulk release the skb memory later */
1960 			skb->destructor = NULL;
1961 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1962 			__skb_unlink(skb, &msk->receive_queue);
1963 			__kfree_skb(skb);
1964 			msk->bytes_consumed += count;
1965 		}
1966 
1967 		if (copied >= len)
1968 			break;
1969 	}
1970 
1971 	return copied;
1972 }
1973 
1974 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1975  *
1976  * Only difference: Use highest rtt estimate of the subflows in use.
1977  */
1978 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1979 {
1980 	struct mptcp_subflow_context *subflow;
1981 	struct sock *sk = (struct sock *)msk;
1982 	u8 scaling_ratio = U8_MAX;
1983 	u32 time, advmss = 1;
1984 	u64 rtt_us, mstamp;
1985 
1986 	msk_owned_by_me(msk);
1987 
1988 	if (copied <= 0)
1989 		return;
1990 
1991 	if (!msk->rcvspace_init)
1992 		mptcp_rcv_space_init(msk, msk->first);
1993 
1994 	msk->rcvq_space.copied += copied;
1995 
1996 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1997 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1998 
1999 	rtt_us = msk->rcvq_space.rtt_us;
2000 	if (rtt_us && time < (rtt_us >> 3))
2001 		return;
2002 
2003 	rtt_us = 0;
2004 	mptcp_for_each_subflow(msk, subflow) {
2005 		const struct tcp_sock *tp;
2006 		u64 sf_rtt_us;
2007 		u32 sf_advmss;
2008 
2009 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2010 
2011 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2012 		sf_advmss = READ_ONCE(tp->advmss);
2013 
2014 		rtt_us = max(sf_rtt_us, rtt_us);
2015 		advmss = max(sf_advmss, advmss);
2016 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2017 	}
2018 
2019 	msk->rcvq_space.rtt_us = rtt_us;
2020 	msk->scaling_ratio = scaling_ratio;
2021 	if (time < (rtt_us >> 3) || rtt_us == 0)
2022 		return;
2023 
2024 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2025 		goto new_measure;
2026 
2027 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2028 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2029 		u64 rcvwin, grow;
2030 		int rcvbuf;
2031 
2032 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2033 
2034 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2035 
2036 		do_div(grow, msk->rcvq_space.space);
2037 		rcvwin += (grow << 1);
2038 
2039 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2040 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2041 
2042 		if (rcvbuf > sk->sk_rcvbuf) {
2043 			u32 window_clamp;
2044 
2045 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2046 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2047 
2048 			/* Make subflows follow along.  If we do not do this, we
2049 			 * get drops at subflow level if skbs can't be moved to
2050 			 * the mptcp rx queue fast enough (announced rcv_win can
2051 			 * exceed ssk->sk_rcvbuf).
2052 			 */
2053 			mptcp_for_each_subflow(msk, subflow) {
2054 				struct sock *ssk;
2055 				bool slow;
2056 
2057 				ssk = mptcp_subflow_tcp_sock(subflow);
2058 				slow = lock_sock_fast(ssk);
2059 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2060 				tcp_sk(ssk)->window_clamp = window_clamp;
2061 				tcp_cleanup_rbuf(ssk, 1);
2062 				unlock_sock_fast(ssk, slow);
2063 			}
2064 		}
2065 	}
2066 
2067 	msk->rcvq_space.space = msk->rcvq_space.copied;
2068 new_measure:
2069 	msk->rcvq_space.copied = 0;
2070 	msk->rcvq_space.time = mstamp;
2071 }
2072 
2073 static void __mptcp_update_rmem(struct sock *sk)
2074 {
2075 	struct mptcp_sock *msk = mptcp_sk(sk);
2076 
2077 	if (!msk->rmem_released)
2078 		return;
2079 
2080 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2081 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2082 	WRITE_ONCE(msk->rmem_released, 0);
2083 }
2084 
2085 static void __mptcp_splice_receive_queue(struct sock *sk)
2086 {
2087 	struct mptcp_sock *msk = mptcp_sk(sk);
2088 
2089 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2090 }
2091 
2092 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2093 {
2094 	struct sock *sk = (struct sock *)msk;
2095 	unsigned int moved = 0;
2096 	bool ret, done;
2097 
2098 	do {
2099 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2100 		bool slowpath;
2101 
2102 		/* we can have data pending in the subflows only if the msk
2103 		 * receive buffer was full at subflow_data_ready() time,
2104 		 * that is an unlikely slow path.
2105 		 */
2106 		if (likely(!ssk))
2107 			break;
2108 
2109 		slowpath = lock_sock_fast(ssk);
2110 		mptcp_data_lock(sk);
2111 		__mptcp_update_rmem(sk);
2112 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2113 		mptcp_data_unlock(sk);
2114 
2115 		if (unlikely(ssk->sk_err))
2116 			__mptcp_error_report(sk);
2117 		unlock_sock_fast(ssk, slowpath);
2118 	} while (!done);
2119 
2120 	/* acquire the data lock only if some input data is pending */
2121 	ret = moved > 0;
2122 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2123 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2124 		mptcp_data_lock(sk);
2125 		__mptcp_update_rmem(sk);
2126 		ret |= __mptcp_ofo_queue(msk);
2127 		__mptcp_splice_receive_queue(sk);
2128 		mptcp_data_unlock(sk);
2129 	}
2130 	if (ret)
2131 		mptcp_check_data_fin((struct sock *)msk);
2132 	return !skb_queue_empty(&msk->receive_queue);
2133 }
2134 
2135 static unsigned int mptcp_inq_hint(const struct sock *sk)
2136 {
2137 	const struct mptcp_sock *msk = mptcp_sk(sk);
2138 	const struct sk_buff *skb;
2139 
2140 	skb = skb_peek(&msk->receive_queue);
2141 	if (skb) {
2142 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2143 
2144 		if (hint_val >= INT_MAX)
2145 			return INT_MAX;
2146 
2147 		return (unsigned int)hint_val;
2148 	}
2149 
2150 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2151 		return 1;
2152 
2153 	return 0;
2154 }
2155 
2156 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2157 			 int flags, int *addr_len)
2158 {
2159 	struct mptcp_sock *msk = mptcp_sk(sk);
2160 	struct scm_timestamping_internal tss;
2161 	int copied = 0, cmsg_flags = 0;
2162 	int target;
2163 	long timeo;
2164 
2165 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2166 	if (unlikely(flags & MSG_ERRQUEUE))
2167 		return inet_recv_error(sk, msg, len, addr_len);
2168 
2169 	lock_sock(sk);
2170 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2171 		copied = -ENOTCONN;
2172 		goto out_err;
2173 	}
2174 
2175 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2176 
2177 	len = min_t(size_t, len, INT_MAX);
2178 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2179 
2180 	if (unlikely(msk->recvmsg_inq))
2181 		cmsg_flags = MPTCP_CMSG_INQ;
2182 
2183 	while (copied < len) {
2184 		int bytes_read;
2185 
2186 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2187 		if (unlikely(bytes_read < 0)) {
2188 			if (!copied)
2189 				copied = bytes_read;
2190 			goto out_err;
2191 		}
2192 
2193 		copied += bytes_read;
2194 
2195 		/* be sure to advertise window change */
2196 		mptcp_cleanup_rbuf(msk);
2197 
2198 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2199 			continue;
2200 
2201 		/* only the master socket status is relevant here. The exit
2202 		 * conditions mirror closely tcp_recvmsg()
2203 		 */
2204 		if (copied >= target)
2205 			break;
2206 
2207 		if (copied) {
2208 			if (sk->sk_err ||
2209 			    sk->sk_state == TCP_CLOSE ||
2210 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2211 			    !timeo ||
2212 			    signal_pending(current))
2213 				break;
2214 		} else {
2215 			if (sk->sk_err) {
2216 				copied = sock_error(sk);
2217 				break;
2218 			}
2219 
2220 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2221 				/* race breaker: the shutdown could be after the
2222 				 * previous receive queue check
2223 				 */
2224 				if (__mptcp_move_skbs(msk))
2225 					continue;
2226 				break;
2227 			}
2228 
2229 			if (sk->sk_state == TCP_CLOSE) {
2230 				copied = -ENOTCONN;
2231 				break;
2232 			}
2233 
2234 			if (!timeo) {
2235 				copied = -EAGAIN;
2236 				break;
2237 			}
2238 
2239 			if (signal_pending(current)) {
2240 				copied = sock_intr_errno(timeo);
2241 				break;
2242 			}
2243 		}
2244 
2245 		pr_debug("block timeout %ld", timeo);
2246 		sk_wait_data(sk, &timeo, NULL);
2247 	}
2248 
2249 out_err:
2250 	if (cmsg_flags && copied >= 0) {
2251 		if (cmsg_flags & MPTCP_CMSG_TS)
2252 			tcp_recv_timestamp(msg, sk, &tss);
2253 
2254 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2255 			unsigned int inq = mptcp_inq_hint(sk);
2256 
2257 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2258 		}
2259 	}
2260 
2261 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2262 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2263 		 skb_queue_empty(&msk->receive_queue), copied);
2264 	if (!(flags & MSG_PEEK))
2265 		mptcp_rcv_space_adjust(msk, copied);
2266 
2267 	release_sock(sk);
2268 	return copied;
2269 }
2270 
2271 static void mptcp_retransmit_timer(struct timer_list *t)
2272 {
2273 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2274 						       icsk_retransmit_timer);
2275 	struct sock *sk = &icsk->icsk_inet.sk;
2276 	struct mptcp_sock *msk = mptcp_sk(sk);
2277 
2278 	bh_lock_sock(sk);
2279 	if (!sock_owned_by_user(sk)) {
2280 		/* we need a process context to retransmit */
2281 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2282 			mptcp_schedule_work(sk);
2283 	} else {
2284 		/* delegate our work to tcp_release_cb() */
2285 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2286 	}
2287 	bh_unlock_sock(sk);
2288 	sock_put(sk);
2289 }
2290 
2291 static void mptcp_tout_timer(struct timer_list *t)
2292 {
2293 	struct sock *sk = from_timer(sk, t, sk_timer);
2294 
2295 	mptcp_schedule_work(sk);
2296 	sock_put(sk);
2297 }
2298 
2299 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2300  * level.
2301  *
2302  * A backup subflow is returned only if that is the only kind available.
2303  */
2304 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2305 {
2306 	struct sock *backup = NULL, *pick = NULL;
2307 	struct mptcp_subflow_context *subflow;
2308 	int min_stale_count = INT_MAX;
2309 
2310 	mptcp_for_each_subflow(msk, subflow) {
2311 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2312 
2313 		if (!__mptcp_subflow_active(subflow))
2314 			continue;
2315 
2316 		/* still data outstanding at TCP level? skip this */
2317 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2318 			mptcp_pm_subflow_chk_stale(msk, ssk);
2319 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2320 			continue;
2321 		}
2322 
2323 		if (subflow->backup) {
2324 			if (!backup)
2325 				backup = ssk;
2326 			continue;
2327 		}
2328 
2329 		if (!pick)
2330 			pick = ssk;
2331 	}
2332 
2333 	if (pick)
2334 		return pick;
2335 
2336 	/* use backup only if there are no progresses anywhere */
2337 	return min_stale_count > 1 ? backup : NULL;
2338 }
2339 
2340 bool __mptcp_retransmit_pending_data(struct sock *sk)
2341 {
2342 	struct mptcp_data_frag *cur, *rtx_head;
2343 	struct mptcp_sock *msk = mptcp_sk(sk);
2344 
2345 	if (__mptcp_check_fallback(msk))
2346 		return false;
2347 
2348 	/* the closing socket has some data untransmitted and/or unacked:
2349 	 * some data in the mptcp rtx queue has not really xmitted yet.
2350 	 * keep it simple and re-inject the whole mptcp level rtx queue
2351 	 */
2352 	mptcp_data_lock(sk);
2353 	__mptcp_clean_una_wakeup(sk);
2354 	rtx_head = mptcp_rtx_head(sk);
2355 	if (!rtx_head) {
2356 		mptcp_data_unlock(sk);
2357 		return false;
2358 	}
2359 
2360 	msk->recovery_snd_nxt = msk->snd_nxt;
2361 	msk->recovery = true;
2362 	mptcp_data_unlock(sk);
2363 
2364 	msk->first_pending = rtx_head;
2365 	msk->snd_burst = 0;
2366 
2367 	/* be sure to clear the "sent status" on all re-injected fragments */
2368 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2369 		if (!cur->already_sent)
2370 			break;
2371 		cur->already_sent = 0;
2372 	}
2373 
2374 	return true;
2375 }
2376 
2377 /* flags for __mptcp_close_ssk() */
2378 #define MPTCP_CF_PUSH		BIT(1)
2379 #define MPTCP_CF_FASTCLOSE	BIT(2)
2380 
2381 /* be sure to send a reset only if the caller asked for it, also
2382  * clean completely the subflow status when the subflow reaches
2383  * TCP_CLOSE state
2384  */
2385 static void __mptcp_subflow_disconnect(struct sock *ssk,
2386 				       struct mptcp_subflow_context *subflow,
2387 				       unsigned int flags)
2388 {
2389 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2390 	    (flags & MPTCP_CF_FASTCLOSE)) {
2391 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2392 		 * disconnect should never fail
2393 		 */
2394 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2395 		mptcp_subflow_ctx_reset(subflow);
2396 	} else {
2397 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2398 	}
2399 }
2400 
2401 /* subflow sockets can be either outgoing (connect) or incoming
2402  * (accept).
2403  *
2404  * Outgoing subflows use in-kernel sockets.
2405  * Incoming subflows do not have their own 'struct socket' allocated,
2406  * so we need to use tcp_close() after detaching them from the mptcp
2407  * parent socket.
2408  */
2409 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2410 			      struct mptcp_subflow_context *subflow,
2411 			      unsigned int flags)
2412 {
2413 	struct mptcp_sock *msk = mptcp_sk(sk);
2414 	bool dispose_it, need_push = false;
2415 
2416 	/* If the first subflow moved to a close state before accept, e.g. due
2417 	 * to an incoming reset or listener shutdown, the subflow socket is
2418 	 * already deleted by inet_child_forget() and the mptcp socket can't
2419 	 * survive too.
2420 	 */
2421 	if (msk->in_accept_queue && msk->first == ssk &&
2422 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2423 		/* ensure later check in mptcp_worker() will dispose the msk */
2424 		sock_set_flag(sk, SOCK_DEAD);
2425 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2426 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2427 		mptcp_subflow_drop_ctx(ssk);
2428 		goto out_release;
2429 	}
2430 
2431 	dispose_it = msk->free_first || ssk != msk->first;
2432 	if (dispose_it)
2433 		list_del(&subflow->node);
2434 
2435 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2436 
2437 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2438 		/* be sure to force the tcp_close path
2439 		 * to generate the egress reset
2440 		 */
2441 		ssk->sk_lingertime = 0;
2442 		sock_set_flag(ssk, SOCK_LINGER);
2443 		subflow->send_fastclose = 1;
2444 	}
2445 
2446 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2447 	if (!dispose_it) {
2448 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2449 		release_sock(ssk);
2450 
2451 		goto out;
2452 	}
2453 
2454 	subflow->disposable = 1;
2455 
2456 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2457 	 * the ssk has been already destroyed, we just need to release the
2458 	 * reference owned by msk;
2459 	 */
2460 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2461 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2462 		kfree_rcu(subflow, rcu);
2463 	} else {
2464 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2465 		__tcp_close(ssk, 0);
2466 
2467 		/* close acquired an extra ref */
2468 		__sock_put(ssk);
2469 	}
2470 
2471 out_release:
2472 	__mptcp_subflow_error_report(sk, ssk);
2473 	release_sock(ssk);
2474 
2475 	sock_put(ssk);
2476 
2477 	if (ssk == msk->first)
2478 		WRITE_ONCE(msk->first, NULL);
2479 
2480 out:
2481 	__mptcp_sync_sndbuf(sk);
2482 	if (need_push)
2483 		__mptcp_push_pending(sk, 0);
2484 
2485 	/* Catch every 'all subflows closed' scenario, including peers silently
2486 	 * closing them, e.g. due to timeout.
2487 	 * For established sockets, allow an additional timeout before closing,
2488 	 * as the protocol can still create more subflows.
2489 	 */
2490 	if (list_is_singular(&msk->conn_list) && msk->first &&
2491 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2492 		if (sk->sk_state != TCP_ESTABLISHED ||
2493 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2494 			mptcp_set_state(sk, TCP_CLOSE);
2495 			mptcp_close_wake_up(sk);
2496 		} else {
2497 			mptcp_start_tout_timer(sk);
2498 		}
2499 	}
2500 }
2501 
2502 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2503 		     struct mptcp_subflow_context *subflow)
2504 {
2505 	if (sk->sk_state == TCP_ESTABLISHED)
2506 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2507 
2508 	/* subflow aborted before reaching the fully_established status
2509 	 * attempt the creation of the next subflow
2510 	 */
2511 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2512 
2513 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2514 }
2515 
2516 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2517 {
2518 	return 0;
2519 }
2520 
2521 static void __mptcp_close_subflow(struct sock *sk)
2522 {
2523 	struct mptcp_subflow_context *subflow, *tmp;
2524 	struct mptcp_sock *msk = mptcp_sk(sk);
2525 
2526 	might_sleep();
2527 
2528 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2529 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2530 
2531 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2532 			continue;
2533 
2534 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2535 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2536 			continue;
2537 
2538 		mptcp_close_ssk(sk, ssk, subflow);
2539 	}
2540 
2541 }
2542 
2543 static bool mptcp_close_tout_expired(const struct sock *sk)
2544 {
2545 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2546 	    sk->sk_state == TCP_CLOSE)
2547 		return false;
2548 
2549 	return time_after32(tcp_jiffies32,
2550 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2551 }
2552 
2553 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2554 {
2555 	struct mptcp_subflow_context *subflow, *tmp;
2556 	struct sock *sk = (struct sock *)msk;
2557 
2558 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2559 		return;
2560 
2561 	mptcp_token_destroy(msk);
2562 
2563 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2564 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2565 		bool slow;
2566 
2567 		slow = lock_sock_fast(tcp_sk);
2568 		if (tcp_sk->sk_state != TCP_CLOSE) {
2569 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2570 			tcp_set_state(tcp_sk, TCP_CLOSE);
2571 		}
2572 		unlock_sock_fast(tcp_sk, slow);
2573 	}
2574 
2575 	/* Mirror the tcp_reset() error propagation */
2576 	switch (sk->sk_state) {
2577 	case TCP_SYN_SENT:
2578 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2579 		break;
2580 	case TCP_CLOSE_WAIT:
2581 		WRITE_ONCE(sk->sk_err, EPIPE);
2582 		break;
2583 	case TCP_CLOSE:
2584 		return;
2585 	default:
2586 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2587 	}
2588 
2589 	mptcp_set_state(sk, TCP_CLOSE);
2590 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2591 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2592 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2593 
2594 	/* the calling mptcp_worker will properly destroy the socket */
2595 	if (sock_flag(sk, SOCK_DEAD))
2596 		return;
2597 
2598 	sk->sk_state_change(sk);
2599 	sk_error_report(sk);
2600 }
2601 
2602 static void __mptcp_retrans(struct sock *sk)
2603 {
2604 	struct mptcp_sock *msk = mptcp_sk(sk);
2605 	struct mptcp_subflow_context *subflow;
2606 	struct mptcp_sendmsg_info info = {};
2607 	struct mptcp_data_frag *dfrag;
2608 	struct sock *ssk;
2609 	int ret, err;
2610 	u16 len = 0;
2611 
2612 	mptcp_clean_una_wakeup(sk);
2613 
2614 	/* first check ssk: need to kick "stale" logic */
2615 	err = mptcp_sched_get_retrans(msk);
2616 	dfrag = mptcp_rtx_head(sk);
2617 	if (!dfrag) {
2618 		if (mptcp_data_fin_enabled(msk)) {
2619 			struct inet_connection_sock *icsk = inet_csk(sk);
2620 
2621 			icsk->icsk_retransmits++;
2622 			mptcp_set_datafin_timeout(sk);
2623 			mptcp_send_ack(msk);
2624 
2625 			goto reset_timer;
2626 		}
2627 
2628 		if (!mptcp_send_head(sk))
2629 			return;
2630 
2631 		goto reset_timer;
2632 	}
2633 
2634 	if (err)
2635 		goto reset_timer;
2636 
2637 	mptcp_for_each_subflow(msk, subflow) {
2638 		if (READ_ONCE(subflow->scheduled)) {
2639 			u16 copied = 0;
2640 
2641 			mptcp_subflow_set_scheduled(subflow, false);
2642 
2643 			ssk = mptcp_subflow_tcp_sock(subflow);
2644 
2645 			lock_sock(ssk);
2646 
2647 			/* limit retransmission to the bytes already sent on some subflows */
2648 			info.sent = 0;
2649 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2650 								    dfrag->already_sent;
2651 			while (info.sent < info.limit) {
2652 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2653 				if (ret <= 0)
2654 					break;
2655 
2656 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2657 				copied += ret;
2658 				info.sent += ret;
2659 			}
2660 			if (copied) {
2661 				len = max(copied, len);
2662 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2663 					 info.size_goal);
2664 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2665 			}
2666 
2667 			release_sock(ssk);
2668 		}
2669 	}
2670 
2671 	msk->bytes_retrans += len;
2672 	dfrag->already_sent = max(dfrag->already_sent, len);
2673 
2674 reset_timer:
2675 	mptcp_check_and_set_pending(sk);
2676 
2677 	if (!mptcp_rtx_timer_pending(sk))
2678 		mptcp_reset_rtx_timer(sk);
2679 }
2680 
2681 /* schedule the timeout timer for the relevant event: either close timeout
2682  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2683  */
2684 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2685 {
2686 	struct sock *sk = (struct sock *)msk;
2687 	unsigned long timeout, close_timeout;
2688 
2689 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2690 		return;
2691 
2692 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2693 			mptcp_close_timeout(sk);
2694 
2695 	/* the close timeout takes precedence on the fail one, and here at least one of
2696 	 * them is active
2697 	 */
2698 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2699 
2700 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2701 }
2702 
2703 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2704 {
2705 	struct sock *ssk = msk->first;
2706 	bool slow;
2707 
2708 	if (!ssk)
2709 		return;
2710 
2711 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2712 
2713 	slow = lock_sock_fast(ssk);
2714 	mptcp_subflow_reset(ssk);
2715 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2716 	unlock_sock_fast(ssk, slow);
2717 }
2718 
2719 static void mptcp_do_fastclose(struct sock *sk)
2720 {
2721 	struct mptcp_subflow_context *subflow, *tmp;
2722 	struct mptcp_sock *msk = mptcp_sk(sk);
2723 
2724 	mptcp_set_state(sk, TCP_CLOSE);
2725 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2726 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2727 				  subflow, MPTCP_CF_FASTCLOSE);
2728 }
2729 
2730 static void mptcp_worker(struct work_struct *work)
2731 {
2732 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2733 	struct sock *sk = (struct sock *)msk;
2734 	unsigned long fail_tout;
2735 	int state;
2736 
2737 	lock_sock(sk);
2738 	state = sk->sk_state;
2739 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2740 		goto unlock;
2741 
2742 	mptcp_check_fastclose(msk);
2743 
2744 	mptcp_pm_nl_work(msk);
2745 
2746 	mptcp_check_send_data_fin(sk);
2747 	mptcp_check_data_fin_ack(sk);
2748 	mptcp_check_data_fin(sk);
2749 
2750 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2751 		__mptcp_close_subflow(sk);
2752 
2753 	if (mptcp_close_tout_expired(sk)) {
2754 		mptcp_do_fastclose(sk);
2755 		mptcp_close_wake_up(sk);
2756 	}
2757 
2758 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2759 		__mptcp_destroy_sock(sk);
2760 		goto unlock;
2761 	}
2762 
2763 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2764 		__mptcp_retrans(sk);
2765 
2766 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2767 	if (fail_tout && time_after(jiffies, fail_tout))
2768 		mptcp_mp_fail_no_response(msk);
2769 
2770 unlock:
2771 	release_sock(sk);
2772 	sock_put(sk);
2773 }
2774 
2775 static void __mptcp_init_sock(struct sock *sk)
2776 {
2777 	struct mptcp_sock *msk = mptcp_sk(sk);
2778 
2779 	INIT_LIST_HEAD(&msk->conn_list);
2780 	INIT_LIST_HEAD(&msk->join_list);
2781 	INIT_LIST_HEAD(&msk->rtx_queue);
2782 	INIT_WORK(&msk->work, mptcp_worker);
2783 	__skb_queue_head_init(&msk->receive_queue);
2784 	msk->out_of_order_queue = RB_ROOT;
2785 	msk->first_pending = NULL;
2786 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
2787 	WRITE_ONCE(msk->rmem_released, 0);
2788 	msk->timer_ival = TCP_RTO_MIN;
2789 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2790 
2791 	WRITE_ONCE(msk->first, NULL);
2792 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2793 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2794 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2795 	msk->recovery = false;
2796 	msk->subflow_id = 1;
2797 
2798 	mptcp_pm_data_init(msk);
2799 
2800 	/* re-use the csk retrans timer for MPTCP-level retrans */
2801 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2802 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2803 }
2804 
2805 static void mptcp_ca_reset(struct sock *sk)
2806 {
2807 	struct inet_connection_sock *icsk = inet_csk(sk);
2808 
2809 	tcp_assign_congestion_control(sk);
2810 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2811 
2812 	/* no need to keep a reference to the ops, the name will suffice */
2813 	tcp_cleanup_congestion_control(sk);
2814 	icsk->icsk_ca_ops = NULL;
2815 }
2816 
2817 static int mptcp_init_sock(struct sock *sk)
2818 {
2819 	struct net *net = sock_net(sk);
2820 	int ret;
2821 
2822 	__mptcp_init_sock(sk);
2823 
2824 	if (!mptcp_is_enabled(net))
2825 		return -ENOPROTOOPT;
2826 
2827 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2828 		return -ENOMEM;
2829 
2830 	ret = mptcp_init_sched(mptcp_sk(sk),
2831 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2832 	if (ret)
2833 		return ret;
2834 
2835 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2836 
2837 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2838 	 * propagate the correct value
2839 	 */
2840 	mptcp_ca_reset(sk);
2841 
2842 	sk_sockets_allocated_inc(sk);
2843 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2844 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2845 
2846 	return 0;
2847 }
2848 
2849 static void __mptcp_clear_xmit(struct sock *sk)
2850 {
2851 	struct mptcp_sock *msk = mptcp_sk(sk);
2852 	struct mptcp_data_frag *dtmp, *dfrag;
2853 
2854 	WRITE_ONCE(msk->first_pending, NULL);
2855 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2856 		dfrag_clear(sk, dfrag);
2857 }
2858 
2859 void mptcp_cancel_work(struct sock *sk)
2860 {
2861 	struct mptcp_sock *msk = mptcp_sk(sk);
2862 
2863 	if (cancel_work_sync(&msk->work))
2864 		__sock_put(sk);
2865 }
2866 
2867 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2868 {
2869 	lock_sock(ssk);
2870 
2871 	switch (ssk->sk_state) {
2872 	case TCP_LISTEN:
2873 		if (!(how & RCV_SHUTDOWN))
2874 			break;
2875 		fallthrough;
2876 	case TCP_SYN_SENT:
2877 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2878 		break;
2879 	default:
2880 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2881 			pr_debug("Fallback");
2882 			ssk->sk_shutdown |= how;
2883 			tcp_shutdown(ssk, how);
2884 
2885 			/* simulate the data_fin ack reception to let the state
2886 			 * machine move forward
2887 			 */
2888 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2889 			mptcp_schedule_work(sk);
2890 		} else {
2891 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2892 			tcp_send_ack(ssk);
2893 			if (!mptcp_rtx_timer_pending(sk))
2894 				mptcp_reset_rtx_timer(sk);
2895 		}
2896 		break;
2897 	}
2898 
2899 	release_sock(ssk);
2900 }
2901 
2902 void mptcp_set_state(struct sock *sk, int state)
2903 {
2904 	int oldstate = sk->sk_state;
2905 
2906 	switch (state) {
2907 	case TCP_ESTABLISHED:
2908 		if (oldstate != TCP_ESTABLISHED)
2909 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2910 		break;
2911 
2912 	default:
2913 		if (oldstate == TCP_ESTABLISHED)
2914 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2915 	}
2916 
2917 	inet_sk_state_store(sk, state);
2918 }
2919 
2920 static const unsigned char new_state[16] = {
2921 	/* current state:     new state:      action:	*/
2922 	[0 /* (Invalid) */] = TCP_CLOSE,
2923 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2924 	[TCP_SYN_SENT]      = TCP_CLOSE,
2925 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2926 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2927 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2928 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2929 	[TCP_CLOSE]         = TCP_CLOSE,
2930 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2931 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2932 	[TCP_LISTEN]        = TCP_CLOSE,
2933 	[TCP_CLOSING]       = TCP_CLOSING,
2934 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2935 };
2936 
2937 static int mptcp_close_state(struct sock *sk)
2938 {
2939 	int next = (int)new_state[sk->sk_state];
2940 	int ns = next & TCP_STATE_MASK;
2941 
2942 	mptcp_set_state(sk, ns);
2943 
2944 	return next & TCP_ACTION_FIN;
2945 }
2946 
2947 static void mptcp_check_send_data_fin(struct sock *sk)
2948 {
2949 	struct mptcp_subflow_context *subflow;
2950 	struct mptcp_sock *msk = mptcp_sk(sk);
2951 
2952 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2953 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2954 		 msk->snd_nxt, msk->write_seq);
2955 
2956 	/* we still need to enqueue subflows or not really shutting down,
2957 	 * skip this
2958 	 */
2959 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2960 	    mptcp_send_head(sk))
2961 		return;
2962 
2963 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2964 
2965 	mptcp_for_each_subflow(msk, subflow) {
2966 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2967 
2968 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2969 	}
2970 }
2971 
2972 static void __mptcp_wr_shutdown(struct sock *sk)
2973 {
2974 	struct mptcp_sock *msk = mptcp_sk(sk);
2975 
2976 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2977 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2978 		 !!mptcp_send_head(sk));
2979 
2980 	/* will be ignored by fallback sockets */
2981 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2982 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2983 
2984 	mptcp_check_send_data_fin(sk);
2985 }
2986 
2987 static void __mptcp_destroy_sock(struct sock *sk)
2988 {
2989 	struct mptcp_sock *msk = mptcp_sk(sk);
2990 
2991 	pr_debug("msk=%p", msk);
2992 
2993 	might_sleep();
2994 
2995 	mptcp_stop_rtx_timer(sk);
2996 	sk_stop_timer(sk, &sk->sk_timer);
2997 	msk->pm.status = 0;
2998 	mptcp_release_sched(msk);
2999 
3000 	sk->sk_prot->destroy(sk);
3001 
3002 	WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
3003 	WARN_ON_ONCE(msk->rmem_released);
3004 	sk_stream_kill_queues(sk);
3005 	xfrm_sk_free_policy(sk);
3006 
3007 	sock_put(sk);
3008 }
3009 
3010 void __mptcp_unaccepted_force_close(struct sock *sk)
3011 {
3012 	sock_set_flag(sk, SOCK_DEAD);
3013 	mptcp_do_fastclose(sk);
3014 	__mptcp_destroy_sock(sk);
3015 }
3016 
3017 static __poll_t mptcp_check_readable(struct sock *sk)
3018 {
3019 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3020 }
3021 
3022 static void mptcp_check_listen_stop(struct sock *sk)
3023 {
3024 	struct sock *ssk;
3025 
3026 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3027 		return;
3028 
3029 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3030 	ssk = mptcp_sk(sk)->first;
3031 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3032 		return;
3033 
3034 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3035 	tcp_set_state(ssk, TCP_CLOSE);
3036 	mptcp_subflow_queue_clean(sk, ssk);
3037 	inet_csk_listen_stop(ssk);
3038 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3039 	release_sock(ssk);
3040 }
3041 
3042 bool __mptcp_close(struct sock *sk, long timeout)
3043 {
3044 	struct mptcp_subflow_context *subflow;
3045 	struct mptcp_sock *msk = mptcp_sk(sk);
3046 	bool do_cancel_work = false;
3047 	int subflows_alive = 0;
3048 
3049 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3050 
3051 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3052 		mptcp_check_listen_stop(sk);
3053 		mptcp_set_state(sk, TCP_CLOSE);
3054 		goto cleanup;
3055 	}
3056 
3057 	if (mptcp_data_avail(msk) || timeout < 0) {
3058 		/* If the msk has read data, or the caller explicitly ask it,
3059 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3060 		 */
3061 		mptcp_do_fastclose(sk);
3062 		timeout = 0;
3063 	} else if (mptcp_close_state(sk)) {
3064 		__mptcp_wr_shutdown(sk);
3065 	}
3066 
3067 	sk_stream_wait_close(sk, timeout);
3068 
3069 cleanup:
3070 	/* orphan all the subflows */
3071 	mptcp_for_each_subflow(msk, subflow) {
3072 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3073 		bool slow = lock_sock_fast_nested(ssk);
3074 
3075 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3076 
3077 		/* since the close timeout takes precedence on the fail one,
3078 		 * cancel the latter
3079 		 */
3080 		if (ssk == msk->first)
3081 			subflow->fail_tout = 0;
3082 
3083 		/* detach from the parent socket, but allow data_ready to
3084 		 * push incoming data into the mptcp stack, to properly ack it
3085 		 */
3086 		ssk->sk_socket = NULL;
3087 		ssk->sk_wq = NULL;
3088 		unlock_sock_fast(ssk, slow);
3089 	}
3090 	sock_orphan(sk);
3091 
3092 	/* all the subflows are closed, only timeout can change the msk
3093 	 * state, let's not keep resources busy for no reasons
3094 	 */
3095 	if (subflows_alive == 0)
3096 		mptcp_set_state(sk, TCP_CLOSE);
3097 
3098 	sock_hold(sk);
3099 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3100 	if (msk->token)
3101 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3102 
3103 	if (sk->sk_state == TCP_CLOSE) {
3104 		__mptcp_destroy_sock(sk);
3105 		do_cancel_work = true;
3106 	} else {
3107 		mptcp_start_tout_timer(sk);
3108 	}
3109 
3110 	return do_cancel_work;
3111 }
3112 
3113 static void mptcp_close(struct sock *sk, long timeout)
3114 {
3115 	bool do_cancel_work;
3116 
3117 	lock_sock(sk);
3118 
3119 	do_cancel_work = __mptcp_close(sk, timeout);
3120 	release_sock(sk);
3121 	if (do_cancel_work)
3122 		mptcp_cancel_work(sk);
3123 
3124 	sock_put(sk);
3125 }
3126 
3127 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3128 {
3129 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3130 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3131 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3132 
3133 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3134 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3135 
3136 	if (msk6 && ssk6) {
3137 		msk6->saddr = ssk6->saddr;
3138 		msk6->flow_label = ssk6->flow_label;
3139 	}
3140 #endif
3141 
3142 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3143 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3144 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3145 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3146 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3147 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3148 }
3149 
3150 static int mptcp_disconnect(struct sock *sk, int flags)
3151 {
3152 	struct mptcp_sock *msk = mptcp_sk(sk);
3153 
3154 	/* We are on the fastopen error path. We can't call straight into the
3155 	 * subflows cleanup code due to lock nesting (we are already under
3156 	 * msk->firstsocket lock).
3157 	 */
3158 	if (msk->fastopening)
3159 		return -EBUSY;
3160 
3161 	mptcp_check_listen_stop(sk);
3162 	mptcp_set_state(sk, TCP_CLOSE);
3163 
3164 	mptcp_stop_rtx_timer(sk);
3165 	mptcp_stop_tout_timer(sk);
3166 
3167 	if (msk->token)
3168 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3169 
3170 	/* msk->subflow is still intact, the following will not free the first
3171 	 * subflow
3172 	 */
3173 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3174 	WRITE_ONCE(msk->flags, 0);
3175 	msk->cb_flags = 0;
3176 	msk->recovery = false;
3177 	WRITE_ONCE(msk->can_ack, false);
3178 	WRITE_ONCE(msk->fully_established, false);
3179 	WRITE_ONCE(msk->rcv_data_fin, false);
3180 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3181 	WRITE_ONCE(msk->rcv_fastclose, false);
3182 	WRITE_ONCE(msk->use_64bit_ack, false);
3183 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3184 	mptcp_pm_data_reset(msk);
3185 	mptcp_ca_reset(sk);
3186 	msk->bytes_consumed = 0;
3187 	msk->bytes_acked = 0;
3188 	msk->bytes_received = 0;
3189 	msk->bytes_sent = 0;
3190 	msk->bytes_retrans = 0;
3191 	msk->rcvspace_init = 0;
3192 
3193 	WRITE_ONCE(sk->sk_shutdown, 0);
3194 	sk_error_report(sk);
3195 	return 0;
3196 }
3197 
3198 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3199 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3200 {
3201 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3202 
3203 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3204 }
3205 
3206 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3207 {
3208 	const struct ipv6_pinfo *np = inet6_sk(sk);
3209 	struct ipv6_txoptions *opt;
3210 	struct ipv6_pinfo *newnp;
3211 
3212 	newnp = inet6_sk(newsk);
3213 
3214 	rcu_read_lock();
3215 	opt = rcu_dereference(np->opt);
3216 	if (opt) {
3217 		opt = ipv6_dup_options(newsk, opt);
3218 		if (!opt)
3219 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3220 	}
3221 	RCU_INIT_POINTER(newnp->opt, opt);
3222 	rcu_read_unlock();
3223 }
3224 #endif
3225 
3226 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3227 {
3228 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3229 	const struct inet_sock *inet = inet_sk(sk);
3230 	struct inet_sock *newinet;
3231 
3232 	newinet = inet_sk(newsk);
3233 
3234 	rcu_read_lock();
3235 	inet_opt = rcu_dereference(inet->inet_opt);
3236 	if (inet_opt) {
3237 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3238 				      inet_opt->opt.optlen, GFP_ATOMIC);
3239 		if (newopt)
3240 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3241 			       inet_opt->opt.optlen);
3242 		else
3243 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3244 	}
3245 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3246 	rcu_read_unlock();
3247 }
3248 
3249 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3250 				 const struct mptcp_options_received *mp_opt,
3251 				 struct sock *ssk,
3252 				 struct request_sock *req)
3253 {
3254 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3255 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3256 	struct mptcp_subflow_context *subflow;
3257 	struct mptcp_sock *msk;
3258 
3259 	if (!nsk)
3260 		return NULL;
3261 
3262 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3263 	if (nsk->sk_family == AF_INET6)
3264 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3265 #endif
3266 
3267 	__mptcp_init_sock(nsk);
3268 
3269 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3270 	if (nsk->sk_family == AF_INET6)
3271 		mptcp_copy_ip6_options(nsk, sk);
3272 	else
3273 #endif
3274 		mptcp_copy_ip_options(nsk, sk);
3275 
3276 	msk = mptcp_sk(nsk);
3277 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3278 	WRITE_ONCE(msk->token, subflow_req->token);
3279 	msk->in_accept_queue = 1;
3280 	WRITE_ONCE(msk->fully_established, false);
3281 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3282 		WRITE_ONCE(msk->csum_enabled, true);
3283 
3284 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3285 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3286 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3287 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3288 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3289 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3290 
3291 	/* passive msk is created after the first/MPC subflow */
3292 	msk->subflow_id = 2;
3293 
3294 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3295 	security_inet_csk_clone(nsk, req);
3296 
3297 	/* this can't race with mptcp_close(), as the msk is
3298 	 * not yet exposted to user-space
3299 	 */
3300 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3301 
3302 	/* The msk maintain a ref to each subflow in the connections list */
3303 	WRITE_ONCE(msk->first, ssk);
3304 	subflow = mptcp_subflow_ctx(ssk);
3305 	list_add(&subflow->node, &msk->conn_list);
3306 	sock_hold(ssk);
3307 
3308 	/* new mpc subflow takes ownership of the newly
3309 	 * created mptcp socket
3310 	 */
3311 	mptcp_token_accept(subflow_req, msk);
3312 
3313 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3314 	 * uses the correct data
3315 	 */
3316 	mptcp_copy_inaddrs(nsk, ssk);
3317 	__mptcp_propagate_sndbuf(nsk, ssk);
3318 
3319 	mptcp_rcv_space_init(msk, ssk);
3320 
3321 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3322 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3323 	bh_unlock_sock(nsk);
3324 
3325 	/* note: the newly allocated socket refcount is 2 now */
3326 	return nsk;
3327 }
3328 
3329 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3330 {
3331 	const struct tcp_sock *tp = tcp_sk(ssk);
3332 
3333 	msk->rcvspace_init = 1;
3334 	msk->rcvq_space.copied = 0;
3335 	msk->rcvq_space.rtt_us = 0;
3336 
3337 	msk->rcvq_space.time = tp->tcp_mstamp;
3338 
3339 	/* initial rcv_space offering made to peer */
3340 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3341 				      TCP_INIT_CWND * tp->advmss);
3342 	if (msk->rcvq_space.space == 0)
3343 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3344 }
3345 
3346 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3347 {
3348 	struct mptcp_subflow_context *subflow, *tmp;
3349 	struct sock *sk = (struct sock *)msk;
3350 
3351 	__mptcp_clear_xmit(sk);
3352 
3353 	/* join list will be eventually flushed (with rst) at sock lock release time */
3354 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3355 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3356 
3357 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3358 	mptcp_data_lock(sk);
3359 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3360 	__skb_queue_purge(&sk->sk_receive_queue);
3361 	skb_rbtree_purge(&msk->out_of_order_queue);
3362 	mptcp_data_unlock(sk);
3363 
3364 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3365 	 * inet_sock_destruct() will dispose it
3366 	 */
3367 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3368 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3369 	mptcp_token_destroy(msk);
3370 	mptcp_pm_free_anno_list(msk);
3371 	mptcp_free_local_addr_list(msk);
3372 }
3373 
3374 static void mptcp_destroy(struct sock *sk)
3375 {
3376 	struct mptcp_sock *msk = mptcp_sk(sk);
3377 
3378 	/* allow the following to close even the initial subflow */
3379 	msk->free_first = 1;
3380 	mptcp_destroy_common(msk, 0);
3381 	sk_sockets_allocated_dec(sk);
3382 }
3383 
3384 void __mptcp_data_acked(struct sock *sk)
3385 {
3386 	if (!sock_owned_by_user(sk))
3387 		__mptcp_clean_una(sk);
3388 	else
3389 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3390 }
3391 
3392 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3393 {
3394 	if (!mptcp_send_head(sk))
3395 		return;
3396 
3397 	if (!sock_owned_by_user(sk))
3398 		__mptcp_subflow_push_pending(sk, ssk, false);
3399 	else
3400 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3401 }
3402 
3403 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3404 				      BIT(MPTCP_RETRANSMIT) | \
3405 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3406 
3407 /* processes deferred events and flush wmem */
3408 static void mptcp_release_cb(struct sock *sk)
3409 	__must_hold(&sk->sk_lock.slock)
3410 {
3411 	struct mptcp_sock *msk = mptcp_sk(sk);
3412 
3413 	for (;;) {
3414 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3415 		struct list_head join_list;
3416 
3417 		if (!flags)
3418 			break;
3419 
3420 		INIT_LIST_HEAD(&join_list);
3421 		list_splice_init(&msk->join_list, &join_list);
3422 
3423 		/* the following actions acquire the subflow socket lock
3424 		 *
3425 		 * 1) can't be invoked in atomic scope
3426 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3427 		 *    datapath acquires the msk socket spinlock while helding
3428 		 *    the subflow socket lock
3429 		 */
3430 		msk->cb_flags &= ~flags;
3431 		spin_unlock_bh(&sk->sk_lock.slock);
3432 
3433 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3434 			__mptcp_flush_join_list(sk, &join_list);
3435 		if (flags & BIT(MPTCP_PUSH_PENDING))
3436 			__mptcp_push_pending(sk, 0);
3437 		if (flags & BIT(MPTCP_RETRANSMIT))
3438 			__mptcp_retrans(sk);
3439 
3440 		cond_resched();
3441 		spin_lock_bh(&sk->sk_lock.slock);
3442 	}
3443 
3444 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3445 		__mptcp_clean_una_wakeup(sk);
3446 	if (unlikely(msk->cb_flags)) {
3447 		/* be sure to sync the msk state before taking actions
3448 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3449 		 * On sk release avoid actions depending on the first subflow
3450 		 */
3451 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3452 			__mptcp_sync_state(sk, msk->pending_state);
3453 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3454 			__mptcp_error_report(sk);
3455 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3456 			__mptcp_sync_sndbuf(sk);
3457 	}
3458 
3459 	__mptcp_update_rmem(sk);
3460 }
3461 
3462 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3463  * TCP can't schedule delack timer before the subflow is fully established.
3464  * MPTCP uses the delack timer to do 3rd ack retransmissions
3465  */
3466 static void schedule_3rdack_retransmission(struct sock *ssk)
3467 {
3468 	struct inet_connection_sock *icsk = inet_csk(ssk);
3469 	struct tcp_sock *tp = tcp_sk(ssk);
3470 	unsigned long timeout;
3471 
3472 	if (mptcp_subflow_ctx(ssk)->fully_established)
3473 		return;
3474 
3475 	/* reschedule with a timeout above RTT, as we must look only for drop */
3476 	if (tp->srtt_us)
3477 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3478 	else
3479 		timeout = TCP_TIMEOUT_INIT;
3480 	timeout += jiffies;
3481 
3482 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3483 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3484 	icsk->icsk_ack.timeout = timeout;
3485 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3486 }
3487 
3488 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3489 {
3490 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3491 	struct sock *sk = subflow->conn;
3492 
3493 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3494 		mptcp_data_lock(sk);
3495 		if (!sock_owned_by_user(sk))
3496 			__mptcp_subflow_push_pending(sk, ssk, true);
3497 		else
3498 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3499 		mptcp_data_unlock(sk);
3500 	}
3501 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3502 		mptcp_data_lock(sk);
3503 		if (!sock_owned_by_user(sk))
3504 			__mptcp_sync_sndbuf(sk);
3505 		else
3506 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3507 		mptcp_data_unlock(sk);
3508 	}
3509 	if (status & BIT(MPTCP_DELEGATE_ACK))
3510 		schedule_3rdack_retransmission(ssk);
3511 }
3512 
3513 static int mptcp_hash(struct sock *sk)
3514 {
3515 	/* should never be called,
3516 	 * we hash the TCP subflows not the master socket
3517 	 */
3518 	WARN_ON_ONCE(1);
3519 	return 0;
3520 }
3521 
3522 static void mptcp_unhash(struct sock *sk)
3523 {
3524 	/* called from sk_common_release(), but nothing to do here */
3525 }
3526 
3527 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3528 {
3529 	struct mptcp_sock *msk = mptcp_sk(sk);
3530 
3531 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3532 	if (WARN_ON_ONCE(!msk->first))
3533 		return -EINVAL;
3534 
3535 	return inet_csk_get_port(msk->first, snum);
3536 }
3537 
3538 void mptcp_finish_connect(struct sock *ssk)
3539 {
3540 	struct mptcp_subflow_context *subflow;
3541 	struct mptcp_sock *msk;
3542 	struct sock *sk;
3543 
3544 	subflow = mptcp_subflow_ctx(ssk);
3545 	sk = subflow->conn;
3546 	msk = mptcp_sk(sk);
3547 
3548 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3549 
3550 	subflow->map_seq = subflow->iasn;
3551 	subflow->map_subflow_seq = 1;
3552 
3553 	/* the socket is not connected yet, no msk/subflow ops can access/race
3554 	 * accessing the field below
3555 	 */
3556 	WRITE_ONCE(msk->local_key, subflow->local_key);
3557 
3558 	mptcp_pm_new_connection(msk, ssk, 0);
3559 }
3560 
3561 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3562 {
3563 	write_lock_bh(&sk->sk_callback_lock);
3564 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3565 	sk_set_socket(sk, parent);
3566 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3567 	write_unlock_bh(&sk->sk_callback_lock);
3568 }
3569 
3570 bool mptcp_finish_join(struct sock *ssk)
3571 {
3572 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3573 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3574 	struct sock *parent = (void *)msk;
3575 	bool ret = true;
3576 
3577 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3578 
3579 	/* mptcp socket already closing? */
3580 	if (!mptcp_is_fully_established(parent)) {
3581 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3582 		return false;
3583 	}
3584 
3585 	/* active subflow, already present inside the conn_list */
3586 	if (!list_empty(&subflow->node)) {
3587 		mptcp_subflow_joined(msk, ssk);
3588 		mptcp_propagate_sndbuf(parent, ssk);
3589 		return true;
3590 	}
3591 
3592 	if (!mptcp_pm_allow_new_subflow(msk))
3593 		goto err_prohibited;
3594 
3595 	/* If we can't acquire msk socket lock here, let the release callback
3596 	 * handle it
3597 	 */
3598 	mptcp_data_lock(parent);
3599 	if (!sock_owned_by_user(parent)) {
3600 		ret = __mptcp_finish_join(msk, ssk);
3601 		if (ret) {
3602 			sock_hold(ssk);
3603 			list_add_tail(&subflow->node, &msk->conn_list);
3604 		}
3605 	} else {
3606 		sock_hold(ssk);
3607 		list_add_tail(&subflow->node, &msk->join_list);
3608 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3609 	}
3610 	mptcp_data_unlock(parent);
3611 
3612 	if (!ret) {
3613 err_prohibited:
3614 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3615 		return false;
3616 	}
3617 
3618 	return true;
3619 }
3620 
3621 static void mptcp_shutdown(struct sock *sk, int how)
3622 {
3623 	pr_debug("sk=%p, how=%d", sk, how);
3624 
3625 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3626 		__mptcp_wr_shutdown(sk);
3627 }
3628 
3629 static int mptcp_forward_alloc_get(const struct sock *sk)
3630 {
3631 	return READ_ONCE(sk->sk_forward_alloc) +
3632 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3633 }
3634 
3635 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3636 {
3637 	const struct sock *sk = (void *)msk;
3638 	u64 delta;
3639 
3640 	if (sk->sk_state == TCP_LISTEN)
3641 		return -EINVAL;
3642 
3643 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3644 		return 0;
3645 
3646 	delta = msk->write_seq - v;
3647 	if (__mptcp_check_fallback(msk) && msk->first) {
3648 		struct tcp_sock *tp = tcp_sk(msk->first);
3649 
3650 		/* the first subflow is disconnected after close - see
3651 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3652 		 * so ignore that status, too.
3653 		 */
3654 		if (!((1 << msk->first->sk_state) &
3655 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3656 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3657 	}
3658 	if (delta > INT_MAX)
3659 		delta = INT_MAX;
3660 
3661 	return (int)delta;
3662 }
3663 
3664 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3665 {
3666 	struct mptcp_sock *msk = mptcp_sk(sk);
3667 	bool slow;
3668 
3669 	switch (cmd) {
3670 	case SIOCINQ:
3671 		if (sk->sk_state == TCP_LISTEN)
3672 			return -EINVAL;
3673 
3674 		lock_sock(sk);
3675 		__mptcp_move_skbs(msk);
3676 		*karg = mptcp_inq_hint(sk);
3677 		release_sock(sk);
3678 		break;
3679 	case SIOCOUTQ:
3680 		slow = lock_sock_fast(sk);
3681 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3682 		unlock_sock_fast(sk, slow);
3683 		break;
3684 	case SIOCOUTQNSD:
3685 		slow = lock_sock_fast(sk);
3686 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3687 		unlock_sock_fast(sk, slow);
3688 		break;
3689 	default:
3690 		return -ENOIOCTLCMD;
3691 	}
3692 
3693 	return 0;
3694 }
3695 
3696 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3697 					 struct mptcp_subflow_context *subflow)
3698 {
3699 	subflow->request_mptcp = 0;
3700 	__mptcp_do_fallback(msk);
3701 }
3702 
3703 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3704 {
3705 	struct mptcp_subflow_context *subflow;
3706 	struct mptcp_sock *msk = mptcp_sk(sk);
3707 	int err = -EINVAL;
3708 	struct sock *ssk;
3709 
3710 	ssk = __mptcp_nmpc_sk(msk);
3711 	if (IS_ERR(ssk))
3712 		return PTR_ERR(ssk);
3713 
3714 	mptcp_set_state(sk, TCP_SYN_SENT);
3715 	subflow = mptcp_subflow_ctx(ssk);
3716 #ifdef CONFIG_TCP_MD5SIG
3717 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3718 	 * TCP option space.
3719 	 */
3720 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3721 		mptcp_subflow_early_fallback(msk, subflow);
3722 #endif
3723 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3724 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3725 		mptcp_subflow_early_fallback(msk, subflow);
3726 	}
3727 	if (likely(!__mptcp_check_fallback(msk)))
3728 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3729 
3730 	/* if reaching here via the fastopen/sendmsg path, the caller already
3731 	 * acquired the subflow socket lock, too.
3732 	 */
3733 	if (!msk->fastopening)
3734 		lock_sock(ssk);
3735 
3736 	/* the following mirrors closely a very small chunk of code from
3737 	 * __inet_stream_connect()
3738 	 */
3739 	if (ssk->sk_state != TCP_CLOSE)
3740 		goto out;
3741 
3742 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3743 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3744 		if (err)
3745 			goto out;
3746 	}
3747 
3748 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3749 	if (err < 0)
3750 		goto out;
3751 
3752 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3753 
3754 out:
3755 	if (!msk->fastopening)
3756 		release_sock(ssk);
3757 
3758 	/* on successful connect, the msk state will be moved to established by
3759 	 * subflow_finish_connect()
3760 	 */
3761 	if (unlikely(err)) {
3762 		/* avoid leaving a dangling token in an unconnected socket */
3763 		mptcp_token_destroy(msk);
3764 		mptcp_set_state(sk, TCP_CLOSE);
3765 		return err;
3766 	}
3767 
3768 	mptcp_copy_inaddrs(sk, ssk);
3769 	return 0;
3770 }
3771 
3772 static struct proto mptcp_prot = {
3773 	.name		= "MPTCP",
3774 	.owner		= THIS_MODULE,
3775 	.init		= mptcp_init_sock,
3776 	.connect	= mptcp_connect,
3777 	.disconnect	= mptcp_disconnect,
3778 	.close		= mptcp_close,
3779 	.setsockopt	= mptcp_setsockopt,
3780 	.getsockopt	= mptcp_getsockopt,
3781 	.shutdown	= mptcp_shutdown,
3782 	.destroy	= mptcp_destroy,
3783 	.sendmsg	= mptcp_sendmsg,
3784 	.ioctl		= mptcp_ioctl,
3785 	.recvmsg	= mptcp_recvmsg,
3786 	.release_cb	= mptcp_release_cb,
3787 	.hash		= mptcp_hash,
3788 	.unhash		= mptcp_unhash,
3789 	.get_port	= mptcp_get_port,
3790 	.forward_alloc_get	= mptcp_forward_alloc_get,
3791 	.stream_memory_free	= mptcp_stream_memory_free,
3792 	.sockets_allocated	= &mptcp_sockets_allocated,
3793 
3794 	.memory_allocated	= &tcp_memory_allocated,
3795 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3796 
3797 	.memory_pressure	= &tcp_memory_pressure,
3798 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3799 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3800 	.sysctl_mem	= sysctl_tcp_mem,
3801 	.obj_size	= sizeof(struct mptcp_sock),
3802 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3803 	.no_autobind	= true,
3804 };
3805 
3806 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3807 {
3808 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3809 	struct sock *ssk, *sk = sock->sk;
3810 	int err = -EINVAL;
3811 
3812 	lock_sock(sk);
3813 	ssk = __mptcp_nmpc_sk(msk);
3814 	if (IS_ERR(ssk)) {
3815 		err = PTR_ERR(ssk);
3816 		goto unlock;
3817 	}
3818 
3819 	if (sk->sk_family == AF_INET)
3820 		err = inet_bind_sk(ssk, uaddr, addr_len);
3821 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3822 	else if (sk->sk_family == AF_INET6)
3823 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3824 #endif
3825 	if (!err)
3826 		mptcp_copy_inaddrs(sk, ssk);
3827 
3828 unlock:
3829 	release_sock(sk);
3830 	return err;
3831 }
3832 
3833 static int mptcp_listen(struct socket *sock, int backlog)
3834 {
3835 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3836 	struct sock *sk = sock->sk;
3837 	struct sock *ssk;
3838 	int err;
3839 
3840 	pr_debug("msk=%p", msk);
3841 
3842 	lock_sock(sk);
3843 
3844 	err = -EINVAL;
3845 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3846 		goto unlock;
3847 
3848 	ssk = __mptcp_nmpc_sk(msk);
3849 	if (IS_ERR(ssk)) {
3850 		err = PTR_ERR(ssk);
3851 		goto unlock;
3852 	}
3853 
3854 	mptcp_set_state(sk, TCP_LISTEN);
3855 	sock_set_flag(sk, SOCK_RCU_FREE);
3856 
3857 	lock_sock(ssk);
3858 	err = __inet_listen_sk(ssk, backlog);
3859 	release_sock(ssk);
3860 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3861 
3862 	if (!err) {
3863 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3864 		mptcp_copy_inaddrs(sk, ssk);
3865 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3866 	}
3867 
3868 unlock:
3869 	release_sock(sk);
3870 	return err;
3871 }
3872 
3873 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3874 			       int flags, bool kern)
3875 {
3876 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3877 	struct sock *ssk, *newsk;
3878 	int err;
3879 
3880 	pr_debug("msk=%p", msk);
3881 
3882 	/* Buggy applications can call accept on socket states other then LISTEN
3883 	 * but no need to allocate the first subflow just to error out.
3884 	 */
3885 	ssk = READ_ONCE(msk->first);
3886 	if (!ssk)
3887 		return -EINVAL;
3888 
3889 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3890 	newsk = inet_csk_accept(ssk, flags, &err, kern);
3891 	if (!newsk)
3892 		return err;
3893 
3894 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3895 	if (sk_is_mptcp(newsk)) {
3896 		struct mptcp_subflow_context *subflow;
3897 		struct sock *new_mptcp_sock;
3898 
3899 		subflow = mptcp_subflow_ctx(newsk);
3900 		new_mptcp_sock = subflow->conn;
3901 
3902 		/* is_mptcp should be false if subflow->conn is missing, see
3903 		 * subflow_syn_recv_sock()
3904 		 */
3905 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3906 			tcp_sk(newsk)->is_mptcp = 0;
3907 			goto tcpfallback;
3908 		}
3909 
3910 		newsk = new_mptcp_sock;
3911 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3912 
3913 		newsk->sk_kern_sock = kern;
3914 		lock_sock(newsk);
3915 		__inet_accept(sock, newsock, newsk);
3916 
3917 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3918 		msk = mptcp_sk(newsk);
3919 		msk->in_accept_queue = 0;
3920 
3921 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3922 		 * This is needed so NOSPACE flag can be set from tcp stack.
3923 		 */
3924 		mptcp_for_each_subflow(msk, subflow) {
3925 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3926 
3927 			if (!ssk->sk_socket)
3928 				mptcp_sock_graft(ssk, newsock);
3929 		}
3930 
3931 		/* Do late cleanup for the first subflow as necessary. Also
3932 		 * deal with bad peers not doing a complete shutdown.
3933 		 */
3934 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3935 			__mptcp_close_ssk(newsk, msk->first,
3936 					  mptcp_subflow_ctx(msk->first), 0);
3937 			if (unlikely(list_is_singular(&msk->conn_list)))
3938 				mptcp_set_state(newsk, TCP_CLOSE);
3939 		}
3940 	} else {
3941 		MPTCP_INC_STATS(sock_net(ssk),
3942 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3943 tcpfallback:
3944 		newsk->sk_kern_sock = kern;
3945 		lock_sock(newsk);
3946 		__inet_accept(sock, newsock, newsk);
3947 		/* we are being invoked after accepting a non-mp-capable
3948 		 * flow: sk is a tcp_sk, not an mptcp one.
3949 		 *
3950 		 * Hand the socket over to tcp so all further socket ops
3951 		 * bypass mptcp.
3952 		 */
3953 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3954 			   mptcp_fallback_tcp_ops(newsock->sk));
3955 	}
3956 	release_sock(newsk);
3957 
3958 	return 0;
3959 }
3960 
3961 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3962 {
3963 	struct sock *sk = (struct sock *)msk;
3964 
3965 	if (__mptcp_stream_is_writeable(sk, 1))
3966 		return EPOLLOUT | EPOLLWRNORM;
3967 
3968 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3969 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3970 	if (__mptcp_stream_is_writeable(sk, 1))
3971 		return EPOLLOUT | EPOLLWRNORM;
3972 
3973 	return 0;
3974 }
3975 
3976 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3977 			   struct poll_table_struct *wait)
3978 {
3979 	struct sock *sk = sock->sk;
3980 	struct mptcp_sock *msk;
3981 	__poll_t mask = 0;
3982 	u8 shutdown;
3983 	int state;
3984 
3985 	msk = mptcp_sk(sk);
3986 	sock_poll_wait(file, sock, wait);
3987 
3988 	state = inet_sk_state_load(sk);
3989 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3990 	if (state == TCP_LISTEN) {
3991 		struct sock *ssk = READ_ONCE(msk->first);
3992 
3993 		if (WARN_ON_ONCE(!ssk))
3994 			return 0;
3995 
3996 		return inet_csk_listen_poll(ssk);
3997 	}
3998 
3999 	shutdown = READ_ONCE(sk->sk_shutdown);
4000 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4001 		mask |= EPOLLHUP;
4002 	if (shutdown & RCV_SHUTDOWN)
4003 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4004 
4005 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4006 		mask |= mptcp_check_readable(sk);
4007 		if (shutdown & SEND_SHUTDOWN)
4008 			mask |= EPOLLOUT | EPOLLWRNORM;
4009 		else
4010 			mask |= mptcp_check_writeable(msk);
4011 	} else if (state == TCP_SYN_SENT &&
4012 		   inet_test_bit(DEFER_CONNECT, sk)) {
4013 		/* cf tcp_poll() note about TFO */
4014 		mask |= EPOLLOUT | EPOLLWRNORM;
4015 	}
4016 
4017 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4018 	smp_rmb();
4019 	if (READ_ONCE(sk->sk_err))
4020 		mask |= EPOLLERR;
4021 
4022 	return mask;
4023 }
4024 
4025 static const struct proto_ops mptcp_stream_ops = {
4026 	.family		   = PF_INET,
4027 	.owner		   = THIS_MODULE,
4028 	.release	   = inet_release,
4029 	.bind		   = mptcp_bind,
4030 	.connect	   = inet_stream_connect,
4031 	.socketpair	   = sock_no_socketpair,
4032 	.accept		   = mptcp_stream_accept,
4033 	.getname	   = inet_getname,
4034 	.poll		   = mptcp_poll,
4035 	.ioctl		   = inet_ioctl,
4036 	.gettstamp	   = sock_gettstamp,
4037 	.listen		   = mptcp_listen,
4038 	.shutdown	   = inet_shutdown,
4039 	.setsockopt	   = sock_common_setsockopt,
4040 	.getsockopt	   = sock_common_getsockopt,
4041 	.sendmsg	   = inet_sendmsg,
4042 	.recvmsg	   = inet_recvmsg,
4043 	.mmap		   = sock_no_mmap,
4044 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4045 };
4046 
4047 static struct inet_protosw mptcp_protosw = {
4048 	.type		= SOCK_STREAM,
4049 	.protocol	= IPPROTO_MPTCP,
4050 	.prot		= &mptcp_prot,
4051 	.ops		= &mptcp_stream_ops,
4052 	.flags		= INET_PROTOSW_ICSK,
4053 };
4054 
4055 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4056 {
4057 	struct mptcp_delegated_action *delegated;
4058 	struct mptcp_subflow_context *subflow;
4059 	int work_done = 0;
4060 
4061 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4062 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4063 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4064 
4065 		bh_lock_sock_nested(ssk);
4066 		if (!sock_owned_by_user(ssk)) {
4067 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4068 		} else {
4069 			/* tcp_release_cb_override already processed
4070 			 * the action or will do at next release_sock().
4071 			 * In both case must dequeue the subflow here - on the same
4072 			 * CPU that scheduled it.
4073 			 */
4074 			smp_wmb();
4075 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4076 		}
4077 		bh_unlock_sock(ssk);
4078 		sock_put(ssk);
4079 
4080 		if (++work_done == budget)
4081 			return budget;
4082 	}
4083 
4084 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4085 	 * will not try accessing the NULL napi->dev ptr
4086 	 */
4087 	napi_complete_done(napi, 0);
4088 	return work_done;
4089 }
4090 
4091 void __init mptcp_proto_init(void)
4092 {
4093 	struct mptcp_delegated_action *delegated;
4094 	int cpu;
4095 
4096 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4097 
4098 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4099 		panic("Failed to allocate MPTCP pcpu counter\n");
4100 
4101 	init_dummy_netdev(&mptcp_napi_dev);
4102 	for_each_possible_cpu(cpu) {
4103 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4104 		INIT_LIST_HEAD(&delegated->head);
4105 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4106 				  mptcp_napi_poll);
4107 		napi_enable(&delegated->napi);
4108 	}
4109 
4110 	mptcp_subflow_init();
4111 	mptcp_pm_init();
4112 	mptcp_sched_init();
4113 	mptcp_token_init();
4114 
4115 	if (proto_register(&mptcp_prot, 1) != 0)
4116 		panic("Failed to register MPTCP proto.\n");
4117 
4118 	inet_register_protosw(&mptcp_protosw);
4119 
4120 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4121 }
4122 
4123 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4124 static const struct proto_ops mptcp_v6_stream_ops = {
4125 	.family		   = PF_INET6,
4126 	.owner		   = THIS_MODULE,
4127 	.release	   = inet6_release,
4128 	.bind		   = mptcp_bind,
4129 	.connect	   = inet_stream_connect,
4130 	.socketpair	   = sock_no_socketpair,
4131 	.accept		   = mptcp_stream_accept,
4132 	.getname	   = inet6_getname,
4133 	.poll		   = mptcp_poll,
4134 	.ioctl		   = inet6_ioctl,
4135 	.gettstamp	   = sock_gettstamp,
4136 	.listen		   = mptcp_listen,
4137 	.shutdown	   = inet_shutdown,
4138 	.setsockopt	   = sock_common_setsockopt,
4139 	.getsockopt	   = sock_common_getsockopt,
4140 	.sendmsg	   = inet6_sendmsg,
4141 	.recvmsg	   = inet6_recvmsg,
4142 	.mmap		   = sock_no_mmap,
4143 #ifdef CONFIG_COMPAT
4144 	.compat_ioctl	   = inet6_compat_ioctl,
4145 #endif
4146 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4147 };
4148 
4149 static struct proto mptcp_v6_prot;
4150 
4151 static struct inet_protosw mptcp_v6_protosw = {
4152 	.type		= SOCK_STREAM,
4153 	.protocol	= IPPROTO_MPTCP,
4154 	.prot		= &mptcp_v6_prot,
4155 	.ops		= &mptcp_v6_stream_ops,
4156 	.flags		= INET_PROTOSW_ICSK,
4157 };
4158 
4159 int __init mptcp_proto_v6_init(void)
4160 {
4161 	int err;
4162 
4163 	mptcp_v6_prot = mptcp_prot;
4164 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4165 	mptcp_v6_prot.slab = NULL;
4166 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4167 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4168 
4169 	err = proto_register(&mptcp_v6_prot, 1);
4170 	if (err)
4171 		return err;
4172 
4173 	err = inet6_register_protosw(&mptcp_v6_protosw);
4174 	if (err)
4175 		proto_unregister(&mptcp_v6_prot);
4176 
4177 	return err;
4178 }
4179 #endif
4180