1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 } 111 112 return msk->first; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 122 { 123 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 124 mptcp_sk(sk)->rmem_fwd_alloc + size); 125 } 126 127 static void mptcp_rmem_charge(struct sock *sk, int size) 128 { 129 mptcp_rmem_fwd_alloc_add(sk, -size); 130 } 131 132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 133 struct sk_buff *from) 134 { 135 bool fragstolen; 136 int delta; 137 138 if (MPTCP_SKB_CB(from)->offset || 139 !skb_try_coalesce(to, from, &fragstolen, &delta)) 140 return false; 141 142 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 143 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 144 to->len, MPTCP_SKB_CB(from)->end_seq); 145 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 146 147 /* note the fwd memory can reach a negative value after accounting 148 * for the delta, but the later skb free will restore a non 149 * negative one 150 */ 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 kfree_skb_partial(from, fragstolen); 154 155 return true; 156 } 157 158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 159 struct sk_buff *from) 160 { 161 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 162 return false; 163 164 return mptcp_try_coalesce((struct sock *)msk, to, from); 165 } 166 167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 168 { 169 amount >>= PAGE_SHIFT; 170 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 171 __sk_mem_reduce_allocated(sk, amount); 172 } 173 174 static void mptcp_rmem_uncharge(struct sock *sk, int size) 175 { 176 struct mptcp_sock *msk = mptcp_sk(sk); 177 int reclaimable; 178 179 mptcp_rmem_fwd_alloc_add(sk, size); 180 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 181 182 /* see sk_mem_uncharge() for the rationale behind the following schema */ 183 if (unlikely(reclaimable >= PAGE_SIZE)) 184 __mptcp_rmem_reclaim(sk, reclaimable); 185 } 186 187 static void mptcp_rfree(struct sk_buff *skb) 188 { 189 unsigned int len = skb->truesize; 190 struct sock *sk = skb->sk; 191 192 atomic_sub(len, &sk->sk_rmem_alloc); 193 mptcp_rmem_uncharge(sk, len); 194 } 195 196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 197 { 198 skb_orphan(skb); 199 skb->sk = sk; 200 skb->destructor = mptcp_rfree; 201 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 202 mptcp_rmem_charge(sk, skb->truesize); 203 } 204 205 /* "inspired" by tcp_data_queue_ofo(), main differences: 206 * - use mptcp seqs 207 * - don't cope with sacks 208 */ 209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 210 { 211 struct sock *sk = (struct sock *)msk; 212 struct rb_node **p, *parent; 213 u64 seq, end_seq, max_seq; 214 struct sk_buff *skb1; 215 216 seq = MPTCP_SKB_CB(skb)->map_seq; 217 end_seq = MPTCP_SKB_CB(skb)->end_seq; 218 max_seq = atomic64_read(&msk->rcv_wnd_sent); 219 220 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 221 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 222 if (after64(end_seq, max_seq)) { 223 /* out of window */ 224 mptcp_drop(sk, skb); 225 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 226 (unsigned long long)end_seq - (unsigned long)max_seq, 227 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 229 return; 230 } 231 232 p = &msk->out_of_order_queue.rb_node; 233 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 234 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 235 rb_link_node(&skb->rbnode, NULL, p); 236 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 237 msk->ooo_last_skb = skb; 238 goto end; 239 } 240 241 /* with 2 subflows, adding at end of ooo queue is quite likely 242 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 243 */ 244 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 247 return; 248 } 249 250 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 251 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 253 parent = &msk->ooo_last_skb->rbnode; 254 p = &parent->rb_right; 255 goto insert; 256 } 257 258 /* Find place to insert this segment. Handle overlaps on the way. */ 259 parent = NULL; 260 while (*p) { 261 parent = *p; 262 skb1 = rb_to_skb(parent); 263 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 264 p = &parent->rb_left; 265 continue; 266 } 267 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 /* All the bits are present. Drop. */ 270 mptcp_drop(sk, skb); 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 272 return; 273 } 274 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 275 /* partial overlap: 276 * | skb | 277 * | skb1 | 278 * continue traversing 279 */ 280 } else { 281 /* skb's seq == skb1's seq and skb covers skb1. 282 * Replace skb1 with skb. 283 */ 284 rb_replace_node(&skb1->rbnode, &skb->rbnode, 285 &msk->out_of_order_queue); 286 mptcp_drop(sk, skb1); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 goto merge_right; 289 } 290 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 292 return; 293 } 294 p = &parent->rb_right; 295 } 296 297 insert: 298 /* Insert segment into RB tree. */ 299 rb_link_node(&skb->rbnode, parent, p); 300 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 301 302 merge_right: 303 /* Remove other segments covered by skb. */ 304 while ((skb1 = skb_rb_next(skb)) != NULL) { 305 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 306 break; 307 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 308 mptcp_drop(sk, skb1); 309 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 310 } 311 /* If there is no skb after us, we are the last_skb ! */ 312 if (!skb1) 313 msk->ooo_last_skb = skb; 314 315 end: 316 skb_condense(skb); 317 mptcp_set_owner_r(skb, sk); 318 } 319 320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 321 { 322 struct mptcp_sock *msk = mptcp_sk(sk); 323 int amt, amount; 324 325 if (size <= msk->rmem_fwd_alloc) 326 return true; 327 328 size -= msk->rmem_fwd_alloc; 329 amt = sk_mem_pages(size); 330 amount = amt << PAGE_SHIFT; 331 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 332 return false; 333 334 mptcp_rmem_fwd_alloc_add(sk, amount); 335 return true; 336 } 337 338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 339 struct sk_buff *skb, unsigned int offset, 340 size_t copy_len) 341 { 342 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 343 struct sock *sk = (struct sock *)msk; 344 struct sk_buff *tail; 345 bool has_rxtstamp; 346 347 __skb_unlink(skb, &ssk->sk_receive_queue); 348 349 skb_ext_reset(skb); 350 skb_orphan(skb); 351 352 /* try to fetch required memory from subflow */ 353 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 354 goto drop; 355 356 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 357 358 /* the skb map_seq accounts for the skb offset: 359 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 360 * value 361 */ 362 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 363 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 364 MPTCP_SKB_CB(skb)->offset = offset; 365 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 366 367 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 368 /* in sequence */ 369 msk->bytes_received += copy_len; 370 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 371 tail = skb_peek_tail(&sk->sk_receive_queue); 372 if (tail && mptcp_try_coalesce(sk, tail, skb)) 373 return true; 374 375 mptcp_set_owner_r(skb, sk); 376 __skb_queue_tail(&sk->sk_receive_queue, skb); 377 return true; 378 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 379 mptcp_data_queue_ofo(msk, skb); 380 return false; 381 } 382 383 /* old data, keep it simple and drop the whole pkt, sender 384 * will retransmit as needed, if needed. 385 */ 386 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 387 drop: 388 mptcp_drop(sk, skb); 389 return false; 390 } 391 392 static void mptcp_stop_rtx_timer(struct sock *sk) 393 { 394 struct inet_connection_sock *icsk = inet_csk(sk); 395 396 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 397 mptcp_sk(sk)->timer_ival = 0; 398 } 399 400 static void mptcp_close_wake_up(struct sock *sk) 401 { 402 if (sock_flag(sk, SOCK_DEAD)) 403 return; 404 405 sk->sk_state_change(sk); 406 if (sk->sk_shutdown == SHUTDOWN_MASK || 407 sk->sk_state == TCP_CLOSE) 408 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 409 else 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 411 } 412 413 /* called under the msk socket lock */ 414 static bool mptcp_pending_data_fin_ack(struct sock *sk) 415 { 416 struct mptcp_sock *msk = mptcp_sk(sk); 417 418 return ((1 << sk->sk_state) & 419 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 420 msk->write_seq == READ_ONCE(msk->snd_una); 421 } 422 423 static void mptcp_check_data_fin_ack(struct sock *sk) 424 { 425 struct mptcp_sock *msk = mptcp_sk(sk); 426 427 /* Look for an acknowledged DATA_FIN */ 428 if (mptcp_pending_data_fin_ack(sk)) { 429 WRITE_ONCE(msk->snd_data_fin_enable, 0); 430 431 switch (sk->sk_state) { 432 case TCP_FIN_WAIT1: 433 mptcp_set_state(sk, TCP_FIN_WAIT2); 434 break; 435 case TCP_CLOSING: 436 case TCP_LAST_ACK: 437 mptcp_set_state(sk, TCP_CLOSE); 438 break; 439 } 440 441 mptcp_close_wake_up(sk); 442 } 443 } 444 445 /* can be called with no lock acquired */ 446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 if (READ_ONCE(msk->rcv_data_fin) && 451 ((1 << inet_sk_state_load(sk)) & 452 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 453 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 454 455 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 456 if (seq) 457 *seq = rcv_data_fin_seq; 458 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 static void mptcp_set_datafin_timeout(struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 u32 retransmits; 470 471 retransmits = min_t(u32, icsk->icsk_retransmits, 472 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 473 474 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 475 } 476 477 static void __mptcp_set_timeout(struct sock *sk, long tout) 478 { 479 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 480 } 481 482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 483 { 484 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 485 486 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 487 inet_csk(ssk)->icsk_timeout - jiffies : 0; 488 } 489 490 static void mptcp_set_timeout(struct sock *sk) 491 { 492 struct mptcp_subflow_context *subflow; 493 long tout = 0; 494 495 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 496 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 497 __mptcp_set_timeout(sk, tout); 498 } 499 500 static inline bool tcp_can_send_ack(const struct sock *ssk) 501 { 502 return !((1 << inet_sk_state_load(ssk)) & 503 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 504 } 505 506 void __mptcp_subflow_send_ack(struct sock *ssk) 507 { 508 if (tcp_can_send_ack(ssk)) 509 tcp_send_ack(ssk); 510 } 511 512 static void mptcp_subflow_send_ack(struct sock *ssk) 513 { 514 bool slow; 515 516 slow = lock_sock_fast(ssk); 517 __mptcp_subflow_send_ack(ssk); 518 unlock_sock_fast(ssk, slow); 519 } 520 521 static void mptcp_send_ack(struct mptcp_sock *msk) 522 { 523 struct mptcp_subflow_context *subflow; 524 525 mptcp_for_each_subflow(msk, subflow) 526 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 527 } 528 529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 530 { 531 bool slow; 532 533 slow = lock_sock_fast(ssk); 534 if (tcp_can_send_ack(ssk)) 535 tcp_cleanup_rbuf(ssk, 1); 536 unlock_sock_fast(ssk, slow); 537 } 538 539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 540 { 541 const struct inet_connection_sock *icsk = inet_csk(ssk); 542 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 543 const struct tcp_sock *tp = tcp_sk(ssk); 544 545 return (ack_pending & ICSK_ACK_SCHED) && 546 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 547 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 548 (rx_empty && ack_pending & 549 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 550 } 551 552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 553 { 554 int old_space = READ_ONCE(msk->old_wspace); 555 struct mptcp_subflow_context *subflow; 556 struct sock *sk = (struct sock *)msk; 557 int space = __mptcp_space(sk); 558 bool cleanup, rx_empty; 559 560 cleanup = (space > 0) && (space >= (old_space << 1)); 561 rx_empty = !__mptcp_rmem(sk); 562 563 mptcp_for_each_subflow(msk, subflow) { 564 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 565 566 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 567 mptcp_subflow_cleanup_rbuf(ssk); 568 } 569 } 570 571 static bool mptcp_check_data_fin(struct sock *sk) 572 { 573 struct mptcp_sock *msk = mptcp_sk(sk); 574 u64 rcv_data_fin_seq; 575 bool ret = false; 576 577 /* Need to ack a DATA_FIN received from a peer while this side 578 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 579 * msk->rcv_data_fin was set when parsing the incoming options 580 * at the subflow level and the msk lock was not held, so this 581 * is the first opportunity to act on the DATA_FIN and change 582 * the msk state. 583 * 584 * If we are caught up to the sequence number of the incoming 585 * DATA_FIN, send the DATA_ACK now and do state transition. If 586 * not caught up, do nothing and let the recv code send DATA_ACK 587 * when catching up. 588 */ 589 590 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 591 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 592 WRITE_ONCE(msk->rcv_data_fin, 0); 593 594 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 595 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 596 597 switch (sk->sk_state) { 598 case TCP_ESTABLISHED: 599 mptcp_set_state(sk, TCP_CLOSE_WAIT); 600 break; 601 case TCP_FIN_WAIT1: 602 mptcp_set_state(sk, TCP_CLOSING); 603 break; 604 case TCP_FIN_WAIT2: 605 mptcp_set_state(sk, TCP_CLOSE); 606 break; 607 default: 608 /* Other states not expected */ 609 WARN_ON_ONCE(1); 610 break; 611 } 612 613 ret = true; 614 if (!__mptcp_check_fallback(msk)) 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 659 * a different CPU can have already processed the pending 660 * data, stop here or we can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* Under fallback skbs have no MPTCP extension and TCP could 669 * collapse them between the dummy map creation and the 670 * current dequeue. Be sure to adjust the map size. 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->bytes_received += end_seq - msk->ack_seq; 753 WRITE_ONCE(msk->ack_seq, end_seq); 754 moved = true; 755 } 756 return moved; 757 } 758 759 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 760 { 761 int err = sock_error(ssk); 762 int ssk_state; 763 764 if (!err) 765 return false; 766 767 /* only propagate errors on fallen-back sockets or 768 * on MPC connect 769 */ 770 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 771 return false; 772 773 /* We need to propagate only transition to CLOSE state. 774 * Orphaned socket will see such state change via 775 * subflow_sched_work_if_closed() and that path will properly 776 * destroy the msk as needed. 777 */ 778 ssk_state = inet_sk_state_load(ssk); 779 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 780 mptcp_set_state(sk, ssk_state); 781 WRITE_ONCE(sk->sk_err, -err); 782 783 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 784 smp_wmb(); 785 sk_error_report(sk); 786 return true; 787 } 788 789 void __mptcp_error_report(struct sock *sk) 790 { 791 struct mptcp_subflow_context *subflow; 792 struct mptcp_sock *msk = mptcp_sk(sk); 793 794 mptcp_for_each_subflow(msk, subflow) 795 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 796 break; 797 } 798 799 /* In most cases we will be able to lock the mptcp socket. If its already 800 * owned, we need to defer to the work queue to avoid ABBA deadlock. 801 */ 802 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 803 { 804 struct sock *sk = (struct sock *)msk; 805 unsigned int moved = 0; 806 807 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 808 __mptcp_ofo_queue(msk); 809 if (unlikely(ssk->sk_err)) { 810 if (!sock_owned_by_user(sk)) 811 __mptcp_error_report(sk); 812 else 813 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 814 } 815 816 /* If the moves have caught up with the DATA_FIN sequence number 817 * it's time to ack the DATA_FIN and change socket state, but 818 * this is not a good place to change state. Let the workqueue 819 * do it. 820 */ 821 if (mptcp_pending_data_fin(sk, NULL)) 822 mptcp_schedule_work(sk); 823 return moved > 0; 824 } 825 826 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 827 { 828 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 829 struct mptcp_sock *msk = mptcp_sk(sk); 830 int sk_rbuf, ssk_rbuf; 831 832 /* The peer can send data while we are shutting down this 833 * subflow at msk destruction time, but we must avoid enqueuing 834 * more data to the msk receive queue 835 */ 836 if (unlikely(subflow->disposable)) 837 return; 838 839 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 840 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 841 if (unlikely(ssk_rbuf > sk_rbuf)) 842 sk_rbuf = ssk_rbuf; 843 844 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 845 if (__mptcp_rmem(sk) > sk_rbuf) { 846 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 847 return; 848 } 849 850 /* Wake-up the reader only for in-sequence data */ 851 mptcp_data_lock(sk); 852 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 853 sk->sk_data_ready(sk); 854 mptcp_data_unlock(sk); 855 } 856 857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 858 { 859 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 860 WRITE_ONCE(msk->allow_infinite_fallback, false); 861 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 862 } 863 864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 865 { 866 struct sock *sk = (struct sock *)msk; 867 868 if (sk->sk_state != TCP_ESTABLISHED) 869 return false; 870 871 /* attach to msk socket only after we are sure we will deal with it 872 * at close time 873 */ 874 if (sk->sk_socket && !ssk->sk_socket) 875 mptcp_sock_graft(ssk, sk->sk_socket); 876 877 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 878 mptcp_sockopt_sync_locked(msk, ssk); 879 mptcp_subflow_joined(msk, ssk); 880 mptcp_stop_tout_timer(sk); 881 __mptcp_propagate_sndbuf(sk, ssk); 882 return true; 883 } 884 885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 886 { 887 struct mptcp_subflow_context *tmp, *subflow; 888 struct mptcp_sock *msk = mptcp_sk(sk); 889 890 list_for_each_entry_safe(subflow, tmp, join_list, node) { 891 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 892 bool slow = lock_sock_fast(ssk); 893 894 list_move_tail(&subflow->node, &msk->conn_list); 895 if (!__mptcp_finish_join(msk, ssk)) 896 mptcp_subflow_reset(ssk); 897 unlock_sock_fast(ssk, slow); 898 } 899 } 900 901 static bool mptcp_rtx_timer_pending(struct sock *sk) 902 { 903 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 904 } 905 906 static void mptcp_reset_rtx_timer(struct sock *sk) 907 { 908 struct inet_connection_sock *icsk = inet_csk(sk); 909 unsigned long tout; 910 911 /* prevent rescheduling on close */ 912 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 913 return; 914 915 tout = mptcp_sk(sk)->timer_ival; 916 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 917 } 918 919 bool mptcp_schedule_work(struct sock *sk) 920 { 921 if (inet_sk_state_load(sk) != TCP_CLOSE && 922 schedule_work(&mptcp_sk(sk)->work)) { 923 /* each subflow already holds a reference to the sk, and the 924 * workqueue is invoked by a subflow, so sk can't go away here. 925 */ 926 sock_hold(sk); 927 return true; 928 } 929 return false; 930 } 931 932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 933 { 934 struct mptcp_subflow_context *subflow; 935 936 msk_owned_by_me(msk); 937 938 mptcp_for_each_subflow(msk, subflow) { 939 if (READ_ONCE(subflow->data_avail)) 940 return mptcp_subflow_tcp_sock(subflow); 941 } 942 943 return NULL; 944 } 945 946 static bool mptcp_skb_can_collapse_to(u64 write_seq, 947 const struct sk_buff *skb, 948 const struct mptcp_ext *mpext) 949 { 950 if (!tcp_skb_can_collapse_to(skb)) 951 return false; 952 953 /* can collapse only if MPTCP level sequence is in order and this 954 * mapping has not been xmitted yet 955 */ 956 return mpext && mpext->data_seq + mpext->data_len == write_seq && 957 !mpext->frozen; 958 } 959 960 /* we can append data to the given data frag if: 961 * - there is space available in the backing page_frag 962 * - the data frag tail matches the current page_frag free offset 963 * - the data frag end sequence number matches the current write seq 964 */ 965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 966 const struct page_frag *pfrag, 967 const struct mptcp_data_frag *df) 968 { 969 return df && pfrag->page == df->page && 970 pfrag->size - pfrag->offset > 0 && 971 pfrag->offset == (df->offset + df->data_len) && 972 df->data_seq + df->data_len == msk->write_seq; 973 } 974 975 static void dfrag_uncharge(struct sock *sk, int len) 976 { 977 sk_mem_uncharge(sk, len); 978 sk_wmem_queued_add(sk, -len); 979 } 980 981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 982 { 983 int len = dfrag->data_len + dfrag->overhead; 984 985 list_del(&dfrag->list); 986 dfrag_uncharge(sk, len); 987 put_page(dfrag->page); 988 } 989 990 /* called under both the msk socket lock and the data lock */ 991 static void __mptcp_clean_una(struct sock *sk) 992 { 993 struct mptcp_sock *msk = mptcp_sk(sk); 994 struct mptcp_data_frag *dtmp, *dfrag; 995 u64 snd_una; 996 997 snd_una = msk->snd_una; 998 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 999 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1000 break; 1001 1002 if (unlikely(dfrag == msk->first_pending)) { 1003 /* in recovery mode can see ack after the current snd head */ 1004 if (WARN_ON_ONCE(!msk->recovery)) 1005 break; 1006 1007 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1008 } 1009 1010 dfrag_clear(sk, dfrag); 1011 } 1012 1013 dfrag = mptcp_rtx_head(sk); 1014 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1015 u64 delta = snd_una - dfrag->data_seq; 1016 1017 /* prevent wrap around in recovery mode */ 1018 if (unlikely(delta > dfrag->already_sent)) { 1019 if (WARN_ON_ONCE(!msk->recovery)) 1020 goto out; 1021 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1022 goto out; 1023 dfrag->already_sent += delta - dfrag->already_sent; 1024 } 1025 1026 dfrag->data_seq += delta; 1027 dfrag->offset += delta; 1028 dfrag->data_len -= delta; 1029 dfrag->already_sent -= delta; 1030 1031 dfrag_uncharge(sk, delta); 1032 } 1033 1034 /* all retransmitted data acked, recovery completed */ 1035 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1036 msk->recovery = false; 1037 1038 out: 1039 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1040 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1041 mptcp_stop_rtx_timer(sk); 1042 } else { 1043 mptcp_reset_rtx_timer(sk); 1044 } 1045 1046 if (mptcp_pending_data_fin_ack(sk)) 1047 mptcp_schedule_work(sk); 1048 } 1049 1050 static void __mptcp_clean_una_wakeup(struct sock *sk) 1051 { 1052 lockdep_assert_held_once(&sk->sk_lock.slock); 1053 1054 __mptcp_clean_una(sk); 1055 mptcp_write_space(sk); 1056 } 1057 1058 static void mptcp_clean_una_wakeup(struct sock *sk) 1059 { 1060 mptcp_data_lock(sk); 1061 __mptcp_clean_una_wakeup(sk); 1062 mptcp_data_unlock(sk); 1063 } 1064 1065 static void mptcp_enter_memory_pressure(struct sock *sk) 1066 { 1067 struct mptcp_subflow_context *subflow; 1068 struct mptcp_sock *msk = mptcp_sk(sk); 1069 bool first = true; 1070 1071 mptcp_for_each_subflow(msk, subflow) { 1072 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1073 1074 if (first) 1075 tcp_enter_memory_pressure(ssk); 1076 sk_stream_moderate_sndbuf(ssk); 1077 1078 first = false; 1079 } 1080 __mptcp_sync_sndbuf(sk); 1081 } 1082 1083 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1084 * data 1085 */ 1086 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1087 { 1088 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1089 pfrag, sk->sk_allocation))) 1090 return true; 1091 1092 mptcp_enter_memory_pressure(sk); 1093 return false; 1094 } 1095 1096 static struct mptcp_data_frag * 1097 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1098 int orig_offset) 1099 { 1100 int offset = ALIGN(orig_offset, sizeof(long)); 1101 struct mptcp_data_frag *dfrag; 1102 1103 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1104 dfrag->data_len = 0; 1105 dfrag->data_seq = msk->write_seq; 1106 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1107 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1108 dfrag->already_sent = 0; 1109 dfrag->page = pfrag->page; 1110 1111 return dfrag; 1112 } 1113 1114 struct mptcp_sendmsg_info { 1115 int mss_now; 1116 int size_goal; 1117 u16 limit; 1118 u16 sent; 1119 unsigned int flags; 1120 bool data_lock_held; 1121 }; 1122 1123 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1124 u64 data_seq, int avail_size) 1125 { 1126 u64 window_end = mptcp_wnd_end(msk); 1127 u64 mptcp_snd_wnd; 1128 1129 if (__mptcp_check_fallback(msk)) 1130 return avail_size; 1131 1132 mptcp_snd_wnd = window_end - data_seq; 1133 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1134 1135 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1136 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1137 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1138 } 1139 1140 return avail_size; 1141 } 1142 1143 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1144 { 1145 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1146 1147 if (!mpext) 1148 return false; 1149 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1150 return true; 1151 } 1152 1153 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1154 { 1155 struct sk_buff *skb; 1156 1157 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1158 if (likely(skb)) { 1159 if (likely(__mptcp_add_ext(skb, gfp))) { 1160 skb_reserve(skb, MAX_TCP_HEADER); 1161 skb->ip_summed = CHECKSUM_PARTIAL; 1162 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1163 return skb; 1164 } 1165 __kfree_skb(skb); 1166 } else { 1167 mptcp_enter_memory_pressure(sk); 1168 } 1169 return NULL; 1170 } 1171 1172 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1173 { 1174 struct sk_buff *skb; 1175 1176 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1177 if (!skb) 1178 return NULL; 1179 1180 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1181 tcp_skb_entail(ssk, skb); 1182 return skb; 1183 } 1184 tcp_skb_tsorted_anchor_cleanup(skb); 1185 kfree_skb(skb); 1186 return NULL; 1187 } 1188 1189 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1190 { 1191 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1192 1193 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1194 } 1195 1196 /* note: this always recompute the csum on the whole skb, even 1197 * if we just appended a single frag. More status info needed 1198 */ 1199 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1200 { 1201 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1202 __wsum csum = ~csum_unfold(mpext->csum); 1203 int offset = skb->len - added; 1204 1205 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1206 } 1207 1208 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1209 struct sock *ssk, 1210 struct mptcp_ext *mpext) 1211 { 1212 if (!mpext) 1213 return; 1214 1215 mpext->infinite_map = 1; 1216 mpext->data_len = 0; 1217 1218 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1219 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1220 pr_fallback(msk); 1221 mptcp_do_fallback(ssk); 1222 } 1223 1224 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1225 1226 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1227 struct mptcp_data_frag *dfrag, 1228 struct mptcp_sendmsg_info *info) 1229 { 1230 u64 data_seq = dfrag->data_seq + info->sent; 1231 int offset = dfrag->offset + info->sent; 1232 struct mptcp_sock *msk = mptcp_sk(sk); 1233 bool zero_window_probe = false; 1234 struct mptcp_ext *mpext = NULL; 1235 bool can_coalesce = false; 1236 bool reuse_skb = true; 1237 struct sk_buff *skb; 1238 size_t copy; 1239 int i; 1240 1241 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1242 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1243 1244 if (WARN_ON_ONCE(info->sent > info->limit || 1245 info->limit > dfrag->data_len)) 1246 return 0; 1247 1248 if (unlikely(!__tcp_can_send(ssk))) 1249 return -EAGAIN; 1250 1251 /* compute send limit */ 1252 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1253 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1254 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1255 copy = info->size_goal; 1256 1257 skb = tcp_write_queue_tail(ssk); 1258 if (skb && copy > skb->len) { 1259 /* Limit the write to the size available in the 1260 * current skb, if any, so that we create at most a new skb. 1261 * Explicitly tells TCP internals to avoid collapsing on later 1262 * queue management operation, to avoid breaking the ext <-> 1263 * SSN association set here 1264 */ 1265 mpext = mptcp_get_ext(skb); 1266 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1267 TCP_SKB_CB(skb)->eor = 1; 1268 tcp_mark_push(tcp_sk(ssk), skb); 1269 goto alloc_skb; 1270 } 1271 1272 i = skb_shinfo(skb)->nr_frags; 1273 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1274 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1275 tcp_mark_push(tcp_sk(ssk), skb); 1276 goto alloc_skb; 1277 } 1278 1279 copy -= skb->len; 1280 } else { 1281 alloc_skb: 1282 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1283 if (!skb) 1284 return -ENOMEM; 1285 1286 i = skb_shinfo(skb)->nr_frags; 1287 reuse_skb = false; 1288 mpext = mptcp_get_ext(skb); 1289 } 1290 1291 /* Zero window and all data acked? Probe. */ 1292 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1293 if (copy == 0) { 1294 u64 snd_una = READ_ONCE(msk->snd_una); 1295 1296 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1297 tcp_remove_empty_skb(ssk); 1298 return 0; 1299 } 1300 1301 zero_window_probe = true; 1302 data_seq = snd_una - 1; 1303 copy = 1; 1304 } 1305 1306 copy = min_t(size_t, copy, info->limit - info->sent); 1307 if (!sk_wmem_schedule(ssk, copy)) { 1308 tcp_remove_empty_skb(ssk); 1309 return -ENOMEM; 1310 } 1311 1312 if (can_coalesce) { 1313 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1314 } else { 1315 get_page(dfrag->page); 1316 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1317 } 1318 1319 skb->len += copy; 1320 skb->data_len += copy; 1321 skb->truesize += copy; 1322 sk_wmem_queued_add(ssk, copy); 1323 sk_mem_charge(ssk, copy); 1324 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1325 TCP_SKB_CB(skb)->end_seq += copy; 1326 tcp_skb_pcount_set(skb, 0); 1327 1328 /* on skb reuse we just need to update the DSS len */ 1329 if (reuse_skb) { 1330 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1331 mpext->data_len += copy; 1332 goto out; 1333 } 1334 1335 memset(mpext, 0, sizeof(*mpext)); 1336 mpext->data_seq = data_seq; 1337 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1338 mpext->data_len = copy; 1339 mpext->use_map = 1; 1340 mpext->dsn64 = 1; 1341 1342 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1343 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1344 mpext->dsn64); 1345 1346 if (zero_window_probe) { 1347 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1348 mpext->frozen = 1; 1349 if (READ_ONCE(msk->csum_enabled)) 1350 mptcp_update_data_checksum(skb, copy); 1351 tcp_push_pending_frames(ssk); 1352 return 0; 1353 } 1354 out: 1355 if (READ_ONCE(msk->csum_enabled)) 1356 mptcp_update_data_checksum(skb, copy); 1357 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1358 mptcp_update_infinite_map(msk, ssk, mpext); 1359 trace_mptcp_sendmsg_frag(mpext); 1360 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1361 return copy; 1362 } 1363 1364 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1365 sizeof(struct tcphdr) - \ 1366 MAX_TCP_OPTION_SPACE - \ 1367 sizeof(struct ipv6hdr) - \ 1368 sizeof(struct frag_hdr)) 1369 1370 struct subflow_send_info { 1371 struct sock *ssk; 1372 u64 linger_time; 1373 }; 1374 1375 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1376 { 1377 if (!subflow->stale) 1378 return; 1379 1380 subflow->stale = 0; 1381 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1382 } 1383 1384 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1385 { 1386 if (unlikely(subflow->stale)) { 1387 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1388 1389 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1390 return false; 1391 1392 mptcp_subflow_set_active(subflow); 1393 } 1394 return __mptcp_subflow_active(subflow); 1395 } 1396 1397 #define SSK_MODE_ACTIVE 0 1398 #define SSK_MODE_BACKUP 1 1399 #define SSK_MODE_MAX 2 1400 1401 /* implement the mptcp packet scheduler; 1402 * returns the subflow that will transmit the next DSS 1403 * additionally updates the rtx timeout 1404 */ 1405 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1406 { 1407 struct subflow_send_info send_info[SSK_MODE_MAX]; 1408 struct mptcp_subflow_context *subflow; 1409 struct sock *sk = (struct sock *)msk; 1410 u32 pace, burst, wmem; 1411 int i, nr_active = 0; 1412 struct sock *ssk; 1413 u64 linger_time; 1414 long tout = 0; 1415 1416 /* pick the subflow with the lower wmem/wspace ratio */ 1417 for (i = 0; i < SSK_MODE_MAX; ++i) { 1418 send_info[i].ssk = NULL; 1419 send_info[i].linger_time = -1; 1420 } 1421 1422 mptcp_for_each_subflow(msk, subflow) { 1423 trace_mptcp_subflow_get_send(subflow); 1424 ssk = mptcp_subflow_tcp_sock(subflow); 1425 if (!mptcp_subflow_active(subflow)) 1426 continue; 1427 1428 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1429 nr_active += !subflow->backup; 1430 pace = subflow->avg_pacing_rate; 1431 if (unlikely(!pace)) { 1432 /* init pacing rate from socket */ 1433 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1434 pace = subflow->avg_pacing_rate; 1435 if (!pace) 1436 continue; 1437 } 1438 1439 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1440 if (linger_time < send_info[subflow->backup].linger_time) { 1441 send_info[subflow->backup].ssk = ssk; 1442 send_info[subflow->backup].linger_time = linger_time; 1443 } 1444 } 1445 __mptcp_set_timeout(sk, tout); 1446 1447 /* pick the best backup if no other subflow is active */ 1448 if (!nr_active) 1449 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1450 1451 /* According to the blest algorithm, to avoid HoL blocking for the 1452 * faster flow, we need to: 1453 * - estimate the faster flow linger time 1454 * - use the above to estimate the amount of byte transferred 1455 * by the faster flow 1456 * - check that the amount of queued data is greter than the above, 1457 * otherwise do not use the picked, slower, subflow 1458 * We select the subflow with the shorter estimated time to flush 1459 * the queued mem, which basically ensure the above. We just need 1460 * to check that subflow has a non empty cwin. 1461 */ 1462 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1463 if (!ssk || !sk_stream_memory_free(ssk)) 1464 return NULL; 1465 1466 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1467 wmem = READ_ONCE(ssk->sk_wmem_queued); 1468 if (!burst) 1469 return ssk; 1470 1471 subflow = mptcp_subflow_ctx(ssk); 1472 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1473 READ_ONCE(ssk->sk_pacing_rate) * burst, 1474 burst + wmem); 1475 msk->snd_burst = burst; 1476 return ssk; 1477 } 1478 1479 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1480 { 1481 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1482 release_sock(ssk); 1483 } 1484 1485 static void mptcp_update_post_push(struct mptcp_sock *msk, 1486 struct mptcp_data_frag *dfrag, 1487 u32 sent) 1488 { 1489 u64 snd_nxt_new = dfrag->data_seq; 1490 1491 dfrag->already_sent += sent; 1492 1493 msk->snd_burst -= sent; 1494 1495 snd_nxt_new += dfrag->already_sent; 1496 1497 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1498 * is recovering after a failover. In that event, this re-sends 1499 * old segments. 1500 * 1501 * Thus compute snd_nxt_new candidate based on 1502 * the dfrag->data_seq that was sent and the data 1503 * that has been handed to the subflow for transmission 1504 * and skip update in case it was old dfrag. 1505 */ 1506 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1507 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1508 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1509 } 1510 } 1511 1512 void mptcp_check_and_set_pending(struct sock *sk) 1513 { 1514 if (mptcp_send_head(sk)) { 1515 mptcp_data_lock(sk); 1516 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1517 mptcp_data_unlock(sk); 1518 } 1519 } 1520 1521 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1522 struct mptcp_sendmsg_info *info) 1523 { 1524 struct mptcp_sock *msk = mptcp_sk(sk); 1525 struct mptcp_data_frag *dfrag; 1526 int len, copied = 0, err = 0; 1527 1528 while ((dfrag = mptcp_send_head(sk))) { 1529 info->sent = dfrag->already_sent; 1530 info->limit = dfrag->data_len; 1531 len = dfrag->data_len - dfrag->already_sent; 1532 while (len > 0) { 1533 int ret = 0; 1534 1535 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1536 if (ret <= 0) { 1537 err = copied ? : ret; 1538 goto out; 1539 } 1540 1541 info->sent += ret; 1542 copied += ret; 1543 len -= ret; 1544 1545 mptcp_update_post_push(msk, dfrag, ret); 1546 } 1547 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1548 1549 if (msk->snd_burst <= 0 || 1550 !sk_stream_memory_free(ssk) || 1551 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1552 err = copied; 1553 goto out; 1554 } 1555 mptcp_set_timeout(sk); 1556 } 1557 err = copied; 1558 1559 out: 1560 return err; 1561 } 1562 1563 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1564 { 1565 struct sock *prev_ssk = NULL, *ssk = NULL; 1566 struct mptcp_sock *msk = mptcp_sk(sk); 1567 struct mptcp_sendmsg_info info = { 1568 .flags = flags, 1569 }; 1570 bool do_check_data_fin = false; 1571 int push_count = 1; 1572 1573 while (mptcp_send_head(sk) && (push_count > 0)) { 1574 struct mptcp_subflow_context *subflow; 1575 int ret = 0; 1576 1577 if (mptcp_sched_get_send(msk)) 1578 break; 1579 1580 push_count = 0; 1581 1582 mptcp_for_each_subflow(msk, subflow) { 1583 if (READ_ONCE(subflow->scheduled)) { 1584 mptcp_subflow_set_scheduled(subflow, false); 1585 1586 prev_ssk = ssk; 1587 ssk = mptcp_subflow_tcp_sock(subflow); 1588 if (ssk != prev_ssk) { 1589 /* First check. If the ssk has changed since 1590 * the last round, release prev_ssk 1591 */ 1592 if (prev_ssk) 1593 mptcp_push_release(prev_ssk, &info); 1594 1595 /* Need to lock the new subflow only if different 1596 * from the previous one, otherwise we are still 1597 * helding the relevant lock 1598 */ 1599 lock_sock(ssk); 1600 } 1601 1602 push_count++; 1603 1604 ret = __subflow_push_pending(sk, ssk, &info); 1605 if (ret <= 0) { 1606 if (ret != -EAGAIN || 1607 (1 << ssk->sk_state) & 1608 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1609 push_count--; 1610 continue; 1611 } 1612 do_check_data_fin = true; 1613 } 1614 } 1615 } 1616 1617 /* at this point we held the socket lock for the last subflow we used */ 1618 if (ssk) 1619 mptcp_push_release(ssk, &info); 1620 1621 /* ensure the rtx timer is running */ 1622 if (!mptcp_rtx_timer_pending(sk)) 1623 mptcp_reset_rtx_timer(sk); 1624 if (do_check_data_fin) 1625 mptcp_check_send_data_fin(sk); 1626 } 1627 1628 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1629 { 1630 struct mptcp_sock *msk = mptcp_sk(sk); 1631 struct mptcp_sendmsg_info info = { 1632 .data_lock_held = true, 1633 }; 1634 bool keep_pushing = true; 1635 struct sock *xmit_ssk; 1636 int copied = 0; 1637 1638 info.flags = 0; 1639 while (mptcp_send_head(sk) && keep_pushing) { 1640 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1641 int ret = 0; 1642 1643 /* check for a different subflow usage only after 1644 * spooling the first chunk of data 1645 */ 1646 if (first) { 1647 mptcp_subflow_set_scheduled(subflow, false); 1648 ret = __subflow_push_pending(sk, ssk, &info); 1649 first = false; 1650 if (ret <= 0) 1651 break; 1652 copied += ret; 1653 continue; 1654 } 1655 1656 if (mptcp_sched_get_send(msk)) 1657 goto out; 1658 1659 if (READ_ONCE(subflow->scheduled)) { 1660 mptcp_subflow_set_scheduled(subflow, false); 1661 ret = __subflow_push_pending(sk, ssk, &info); 1662 if (ret <= 0) 1663 keep_pushing = false; 1664 copied += ret; 1665 } 1666 1667 mptcp_for_each_subflow(msk, subflow) { 1668 if (READ_ONCE(subflow->scheduled)) { 1669 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1670 if (xmit_ssk != ssk) { 1671 mptcp_subflow_delegate(subflow, 1672 MPTCP_DELEGATE_SEND); 1673 keep_pushing = false; 1674 } 1675 } 1676 } 1677 } 1678 1679 out: 1680 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1681 * not going to flush it via release_sock() 1682 */ 1683 if (copied) { 1684 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1685 info.size_goal); 1686 if (!mptcp_rtx_timer_pending(sk)) 1687 mptcp_reset_rtx_timer(sk); 1688 1689 if (msk->snd_data_fin_enable && 1690 msk->snd_nxt + 1 == msk->write_seq) 1691 mptcp_schedule_work(sk); 1692 } 1693 } 1694 1695 static int mptcp_disconnect(struct sock *sk, int flags); 1696 1697 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1698 size_t len, int *copied_syn) 1699 { 1700 unsigned int saved_flags = msg->msg_flags; 1701 struct mptcp_sock *msk = mptcp_sk(sk); 1702 struct sock *ssk; 1703 int ret; 1704 1705 /* on flags based fastopen the mptcp is supposed to create the 1706 * first subflow right now. Otherwise we are in the defer_connect 1707 * path, and the first subflow must be already present. 1708 * Since the defer_connect flag is cleared after the first succsful 1709 * fastopen attempt, no need to check for additional subflow status. 1710 */ 1711 if (msg->msg_flags & MSG_FASTOPEN) { 1712 ssk = __mptcp_nmpc_sk(msk); 1713 if (IS_ERR(ssk)) 1714 return PTR_ERR(ssk); 1715 } 1716 if (!msk->first) 1717 return -EINVAL; 1718 1719 ssk = msk->first; 1720 1721 lock_sock(ssk); 1722 msg->msg_flags |= MSG_DONTWAIT; 1723 msk->fastopening = 1; 1724 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1725 msk->fastopening = 0; 1726 msg->msg_flags = saved_flags; 1727 release_sock(ssk); 1728 1729 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1730 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1731 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1732 msg->msg_namelen, msg->msg_flags, 1); 1733 1734 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1735 * case of any error, except timeout or signal 1736 */ 1737 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1738 *copied_syn = 0; 1739 } else if (ret && ret != -EINPROGRESS) { 1740 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1741 * __inet_stream_connect() can fail, due to looking check, 1742 * see mptcp_disconnect(). 1743 * Attempt it again outside the problematic scope. 1744 */ 1745 if (!mptcp_disconnect(sk, 0)) 1746 sk->sk_socket->state = SS_UNCONNECTED; 1747 } 1748 inet_clear_bit(DEFER_CONNECT, sk); 1749 1750 return ret; 1751 } 1752 1753 static int do_copy_data_nocache(struct sock *sk, int copy, 1754 struct iov_iter *from, char *to) 1755 { 1756 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1757 if (!copy_from_iter_full_nocache(to, copy, from)) 1758 return -EFAULT; 1759 } else if (!copy_from_iter_full(to, copy, from)) { 1760 return -EFAULT; 1761 } 1762 return 0; 1763 } 1764 1765 /* open-code sk_stream_memory_free() plus sent limit computation to 1766 * avoid indirect calls in fast-path. 1767 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1768 * annotations. 1769 */ 1770 static u32 mptcp_send_limit(const struct sock *sk) 1771 { 1772 const struct mptcp_sock *msk = mptcp_sk(sk); 1773 u32 limit, not_sent; 1774 1775 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1776 return 0; 1777 1778 limit = mptcp_notsent_lowat(sk); 1779 if (limit == UINT_MAX) 1780 return UINT_MAX; 1781 1782 not_sent = msk->write_seq - msk->snd_nxt; 1783 if (not_sent >= limit) 1784 return 0; 1785 1786 return limit - not_sent; 1787 } 1788 1789 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1790 { 1791 struct mptcp_sock *msk = mptcp_sk(sk); 1792 struct page_frag *pfrag; 1793 size_t copied = 0; 1794 int ret = 0; 1795 long timeo; 1796 1797 /* silently ignore everything else */ 1798 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1799 1800 lock_sock(sk); 1801 1802 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1803 msg->msg_flags & MSG_FASTOPEN)) { 1804 int copied_syn = 0; 1805 1806 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1807 copied += copied_syn; 1808 if (ret == -EINPROGRESS && copied_syn > 0) 1809 goto out; 1810 else if (ret) 1811 goto do_error; 1812 } 1813 1814 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1815 1816 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1817 ret = sk_stream_wait_connect(sk, &timeo); 1818 if (ret) 1819 goto do_error; 1820 } 1821 1822 ret = -EPIPE; 1823 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1824 goto do_error; 1825 1826 pfrag = sk_page_frag(sk); 1827 1828 while (msg_data_left(msg)) { 1829 int total_ts, frag_truesize = 0; 1830 struct mptcp_data_frag *dfrag; 1831 bool dfrag_collapsed; 1832 size_t psize, offset; 1833 u32 copy_limit; 1834 1835 /* ensure fitting the notsent_lowat() constraint */ 1836 copy_limit = mptcp_send_limit(sk); 1837 if (!copy_limit) 1838 goto wait_for_memory; 1839 1840 /* reuse tail pfrag, if possible, or carve a new one from the 1841 * page allocator 1842 */ 1843 dfrag = mptcp_pending_tail(sk); 1844 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1845 if (!dfrag_collapsed) { 1846 if (!mptcp_page_frag_refill(sk, pfrag)) 1847 goto wait_for_memory; 1848 1849 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1850 frag_truesize = dfrag->overhead; 1851 } 1852 1853 /* we do not bound vs wspace, to allow a single packet. 1854 * memory accounting will prevent execessive memory usage 1855 * anyway 1856 */ 1857 offset = dfrag->offset + dfrag->data_len; 1858 psize = pfrag->size - offset; 1859 psize = min_t(size_t, psize, msg_data_left(msg)); 1860 psize = min_t(size_t, psize, copy_limit); 1861 total_ts = psize + frag_truesize; 1862 1863 if (!sk_wmem_schedule(sk, total_ts)) 1864 goto wait_for_memory; 1865 1866 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1867 page_address(dfrag->page) + offset); 1868 if (ret) 1869 goto do_error; 1870 1871 /* data successfully copied into the write queue */ 1872 sk_forward_alloc_add(sk, -total_ts); 1873 copied += psize; 1874 dfrag->data_len += psize; 1875 frag_truesize += psize; 1876 pfrag->offset += frag_truesize; 1877 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1878 1879 /* charge data on mptcp pending queue to the msk socket 1880 * Note: we charge such data both to sk and ssk 1881 */ 1882 sk_wmem_queued_add(sk, frag_truesize); 1883 if (!dfrag_collapsed) { 1884 get_page(dfrag->page); 1885 list_add_tail(&dfrag->list, &msk->rtx_queue); 1886 if (!msk->first_pending) 1887 WRITE_ONCE(msk->first_pending, dfrag); 1888 } 1889 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1890 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1891 !dfrag_collapsed); 1892 1893 continue; 1894 1895 wait_for_memory: 1896 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1897 __mptcp_push_pending(sk, msg->msg_flags); 1898 ret = sk_stream_wait_memory(sk, &timeo); 1899 if (ret) 1900 goto do_error; 1901 } 1902 1903 if (copied) 1904 __mptcp_push_pending(sk, msg->msg_flags); 1905 1906 out: 1907 release_sock(sk); 1908 return copied; 1909 1910 do_error: 1911 if (copied) 1912 goto out; 1913 1914 copied = sk_stream_error(sk, msg->msg_flags, ret); 1915 goto out; 1916 } 1917 1918 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1919 struct msghdr *msg, 1920 size_t len, int flags, 1921 struct scm_timestamping_internal *tss, 1922 int *cmsg_flags) 1923 { 1924 struct sk_buff *skb, *tmp; 1925 int copied = 0; 1926 1927 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1928 u32 offset = MPTCP_SKB_CB(skb)->offset; 1929 u32 data_len = skb->len - offset; 1930 u32 count = min_t(size_t, len - copied, data_len); 1931 int err; 1932 1933 if (!(flags & MSG_TRUNC)) { 1934 err = skb_copy_datagram_msg(skb, offset, msg, count); 1935 if (unlikely(err < 0)) { 1936 if (!copied) 1937 return err; 1938 break; 1939 } 1940 } 1941 1942 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1943 tcp_update_recv_tstamps(skb, tss); 1944 *cmsg_flags |= MPTCP_CMSG_TS; 1945 } 1946 1947 copied += count; 1948 1949 if (count < data_len) { 1950 if (!(flags & MSG_PEEK)) { 1951 MPTCP_SKB_CB(skb)->offset += count; 1952 MPTCP_SKB_CB(skb)->map_seq += count; 1953 msk->bytes_consumed += count; 1954 } 1955 break; 1956 } 1957 1958 if (!(flags & MSG_PEEK)) { 1959 /* we will bulk release the skb memory later */ 1960 skb->destructor = NULL; 1961 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1962 __skb_unlink(skb, &msk->receive_queue); 1963 __kfree_skb(skb); 1964 msk->bytes_consumed += count; 1965 } 1966 1967 if (copied >= len) 1968 break; 1969 } 1970 1971 return copied; 1972 } 1973 1974 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1975 * 1976 * Only difference: Use highest rtt estimate of the subflows in use. 1977 */ 1978 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1979 { 1980 struct mptcp_subflow_context *subflow; 1981 struct sock *sk = (struct sock *)msk; 1982 u8 scaling_ratio = U8_MAX; 1983 u32 time, advmss = 1; 1984 u64 rtt_us, mstamp; 1985 1986 msk_owned_by_me(msk); 1987 1988 if (copied <= 0) 1989 return; 1990 1991 if (!msk->rcvspace_init) 1992 mptcp_rcv_space_init(msk, msk->first); 1993 1994 msk->rcvq_space.copied += copied; 1995 1996 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1997 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1998 1999 rtt_us = msk->rcvq_space.rtt_us; 2000 if (rtt_us && time < (rtt_us >> 3)) 2001 return; 2002 2003 rtt_us = 0; 2004 mptcp_for_each_subflow(msk, subflow) { 2005 const struct tcp_sock *tp; 2006 u64 sf_rtt_us; 2007 u32 sf_advmss; 2008 2009 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2010 2011 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2012 sf_advmss = READ_ONCE(tp->advmss); 2013 2014 rtt_us = max(sf_rtt_us, rtt_us); 2015 advmss = max(sf_advmss, advmss); 2016 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2017 } 2018 2019 msk->rcvq_space.rtt_us = rtt_us; 2020 msk->scaling_ratio = scaling_ratio; 2021 if (time < (rtt_us >> 3) || rtt_us == 0) 2022 return; 2023 2024 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2025 goto new_measure; 2026 2027 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2028 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2029 u64 rcvwin, grow; 2030 int rcvbuf; 2031 2032 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2033 2034 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2035 2036 do_div(grow, msk->rcvq_space.space); 2037 rcvwin += (grow << 1); 2038 2039 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2040 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2041 2042 if (rcvbuf > sk->sk_rcvbuf) { 2043 u32 window_clamp; 2044 2045 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2046 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2047 2048 /* Make subflows follow along. If we do not do this, we 2049 * get drops at subflow level if skbs can't be moved to 2050 * the mptcp rx queue fast enough (announced rcv_win can 2051 * exceed ssk->sk_rcvbuf). 2052 */ 2053 mptcp_for_each_subflow(msk, subflow) { 2054 struct sock *ssk; 2055 bool slow; 2056 2057 ssk = mptcp_subflow_tcp_sock(subflow); 2058 slow = lock_sock_fast(ssk); 2059 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2060 tcp_sk(ssk)->window_clamp = window_clamp; 2061 tcp_cleanup_rbuf(ssk, 1); 2062 unlock_sock_fast(ssk, slow); 2063 } 2064 } 2065 } 2066 2067 msk->rcvq_space.space = msk->rcvq_space.copied; 2068 new_measure: 2069 msk->rcvq_space.copied = 0; 2070 msk->rcvq_space.time = mstamp; 2071 } 2072 2073 static void __mptcp_update_rmem(struct sock *sk) 2074 { 2075 struct mptcp_sock *msk = mptcp_sk(sk); 2076 2077 if (!msk->rmem_released) 2078 return; 2079 2080 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2081 mptcp_rmem_uncharge(sk, msk->rmem_released); 2082 WRITE_ONCE(msk->rmem_released, 0); 2083 } 2084 2085 static void __mptcp_splice_receive_queue(struct sock *sk) 2086 { 2087 struct mptcp_sock *msk = mptcp_sk(sk); 2088 2089 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2090 } 2091 2092 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2093 { 2094 struct sock *sk = (struct sock *)msk; 2095 unsigned int moved = 0; 2096 bool ret, done; 2097 2098 do { 2099 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2100 bool slowpath; 2101 2102 /* we can have data pending in the subflows only if the msk 2103 * receive buffer was full at subflow_data_ready() time, 2104 * that is an unlikely slow path. 2105 */ 2106 if (likely(!ssk)) 2107 break; 2108 2109 slowpath = lock_sock_fast(ssk); 2110 mptcp_data_lock(sk); 2111 __mptcp_update_rmem(sk); 2112 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2113 mptcp_data_unlock(sk); 2114 2115 if (unlikely(ssk->sk_err)) 2116 __mptcp_error_report(sk); 2117 unlock_sock_fast(ssk, slowpath); 2118 } while (!done); 2119 2120 /* acquire the data lock only if some input data is pending */ 2121 ret = moved > 0; 2122 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2123 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2124 mptcp_data_lock(sk); 2125 __mptcp_update_rmem(sk); 2126 ret |= __mptcp_ofo_queue(msk); 2127 __mptcp_splice_receive_queue(sk); 2128 mptcp_data_unlock(sk); 2129 } 2130 if (ret) 2131 mptcp_check_data_fin((struct sock *)msk); 2132 return !skb_queue_empty(&msk->receive_queue); 2133 } 2134 2135 static unsigned int mptcp_inq_hint(const struct sock *sk) 2136 { 2137 const struct mptcp_sock *msk = mptcp_sk(sk); 2138 const struct sk_buff *skb; 2139 2140 skb = skb_peek(&msk->receive_queue); 2141 if (skb) { 2142 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2143 2144 if (hint_val >= INT_MAX) 2145 return INT_MAX; 2146 2147 return (unsigned int)hint_val; 2148 } 2149 2150 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2151 return 1; 2152 2153 return 0; 2154 } 2155 2156 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2157 int flags, int *addr_len) 2158 { 2159 struct mptcp_sock *msk = mptcp_sk(sk); 2160 struct scm_timestamping_internal tss; 2161 int copied = 0, cmsg_flags = 0; 2162 int target; 2163 long timeo; 2164 2165 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2166 if (unlikely(flags & MSG_ERRQUEUE)) 2167 return inet_recv_error(sk, msg, len, addr_len); 2168 2169 lock_sock(sk); 2170 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2171 copied = -ENOTCONN; 2172 goto out_err; 2173 } 2174 2175 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2176 2177 len = min_t(size_t, len, INT_MAX); 2178 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2179 2180 if (unlikely(msk->recvmsg_inq)) 2181 cmsg_flags = MPTCP_CMSG_INQ; 2182 2183 while (copied < len) { 2184 int bytes_read; 2185 2186 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2187 if (unlikely(bytes_read < 0)) { 2188 if (!copied) 2189 copied = bytes_read; 2190 goto out_err; 2191 } 2192 2193 copied += bytes_read; 2194 2195 /* be sure to advertise window change */ 2196 mptcp_cleanup_rbuf(msk); 2197 2198 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2199 continue; 2200 2201 /* only the master socket status is relevant here. The exit 2202 * conditions mirror closely tcp_recvmsg() 2203 */ 2204 if (copied >= target) 2205 break; 2206 2207 if (copied) { 2208 if (sk->sk_err || 2209 sk->sk_state == TCP_CLOSE || 2210 (sk->sk_shutdown & RCV_SHUTDOWN) || 2211 !timeo || 2212 signal_pending(current)) 2213 break; 2214 } else { 2215 if (sk->sk_err) { 2216 copied = sock_error(sk); 2217 break; 2218 } 2219 2220 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2221 /* race breaker: the shutdown could be after the 2222 * previous receive queue check 2223 */ 2224 if (__mptcp_move_skbs(msk)) 2225 continue; 2226 break; 2227 } 2228 2229 if (sk->sk_state == TCP_CLOSE) { 2230 copied = -ENOTCONN; 2231 break; 2232 } 2233 2234 if (!timeo) { 2235 copied = -EAGAIN; 2236 break; 2237 } 2238 2239 if (signal_pending(current)) { 2240 copied = sock_intr_errno(timeo); 2241 break; 2242 } 2243 } 2244 2245 pr_debug("block timeout %ld", timeo); 2246 sk_wait_data(sk, &timeo, NULL); 2247 } 2248 2249 out_err: 2250 if (cmsg_flags && copied >= 0) { 2251 if (cmsg_flags & MPTCP_CMSG_TS) 2252 tcp_recv_timestamp(msg, sk, &tss); 2253 2254 if (cmsg_flags & MPTCP_CMSG_INQ) { 2255 unsigned int inq = mptcp_inq_hint(sk); 2256 2257 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2258 } 2259 } 2260 2261 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2262 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2263 skb_queue_empty(&msk->receive_queue), copied); 2264 if (!(flags & MSG_PEEK)) 2265 mptcp_rcv_space_adjust(msk, copied); 2266 2267 release_sock(sk); 2268 return copied; 2269 } 2270 2271 static void mptcp_retransmit_timer(struct timer_list *t) 2272 { 2273 struct inet_connection_sock *icsk = from_timer(icsk, t, 2274 icsk_retransmit_timer); 2275 struct sock *sk = &icsk->icsk_inet.sk; 2276 struct mptcp_sock *msk = mptcp_sk(sk); 2277 2278 bh_lock_sock(sk); 2279 if (!sock_owned_by_user(sk)) { 2280 /* we need a process context to retransmit */ 2281 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2282 mptcp_schedule_work(sk); 2283 } else { 2284 /* delegate our work to tcp_release_cb() */ 2285 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2286 } 2287 bh_unlock_sock(sk); 2288 sock_put(sk); 2289 } 2290 2291 static void mptcp_tout_timer(struct timer_list *t) 2292 { 2293 struct sock *sk = from_timer(sk, t, sk_timer); 2294 2295 mptcp_schedule_work(sk); 2296 sock_put(sk); 2297 } 2298 2299 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2300 * level. 2301 * 2302 * A backup subflow is returned only if that is the only kind available. 2303 */ 2304 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2305 { 2306 struct sock *backup = NULL, *pick = NULL; 2307 struct mptcp_subflow_context *subflow; 2308 int min_stale_count = INT_MAX; 2309 2310 mptcp_for_each_subflow(msk, subflow) { 2311 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2312 2313 if (!__mptcp_subflow_active(subflow)) 2314 continue; 2315 2316 /* still data outstanding at TCP level? skip this */ 2317 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2318 mptcp_pm_subflow_chk_stale(msk, ssk); 2319 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2320 continue; 2321 } 2322 2323 if (subflow->backup) { 2324 if (!backup) 2325 backup = ssk; 2326 continue; 2327 } 2328 2329 if (!pick) 2330 pick = ssk; 2331 } 2332 2333 if (pick) 2334 return pick; 2335 2336 /* use backup only if there are no progresses anywhere */ 2337 return min_stale_count > 1 ? backup : NULL; 2338 } 2339 2340 bool __mptcp_retransmit_pending_data(struct sock *sk) 2341 { 2342 struct mptcp_data_frag *cur, *rtx_head; 2343 struct mptcp_sock *msk = mptcp_sk(sk); 2344 2345 if (__mptcp_check_fallback(msk)) 2346 return false; 2347 2348 /* the closing socket has some data untransmitted and/or unacked: 2349 * some data in the mptcp rtx queue has not really xmitted yet. 2350 * keep it simple and re-inject the whole mptcp level rtx queue 2351 */ 2352 mptcp_data_lock(sk); 2353 __mptcp_clean_una_wakeup(sk); 2354 rtx_head = mptcp_rtx_head(sk); 2355 if (!rtx_head) { 2356 mptcp_data_unlock(sk); 2357 return false; 2358 } 2359 2360 msk->recovery_snd_nxt = msk->snd_nxt; 2361 msk->recovery = true; 2362 mptcp_data_unlock(sk); 2363 2364 msk->first_pending = rtx_head; 2365 msk->snd_burst = 0; 2366 2367 /* be sure to clear the "sent status" on all re-injected fragments */ 2368 list_for_each_entry(cur, &msk->rtx_queue, list) { 2369 if (!cur->already_sent) 2370 break; 2371 cur->already_sent = 0; 2372 } 2373 2374 return true; 2375 } 2376 2377 /* flags for __mptcp_close_ssk() */ 2378 #define MPTCP_CF_PUSH BIT(1) 2379 #define MPTCP_CF_FASTCLOSE BIT(2) 2380 2381 /* be sure to send a reset only if the caller asked for it, also 2382 * clean completely the subflow status when the subflow reaches 2383 * TCP_CLOSE state 2384 */ 2385 static void __mptcp_subflow_disconnect(struct sock *ssk, 2386 struct mptcp_subflow_context *subflow, 2387 unsigned int flags) 2388 { 2389 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2390 (flags & MPTCP_CF_FASTCLOSE)) { 2391 /* The MPTCP code never wait on the subflow sockets, TCP-level 2392 * disconnect should never fail 2393 */ 2394 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2395 mptcp_subflow_ctx_reset(subflow); 2396 } else { 2397 tcp_shutdown(ssk, SEND_SHUTDOWN); 2398 } 2399 } 2400 2401 /* subflow sockets can be either outgoing (connect) or incoming 2402 * (accept). 2403 * 2404 * Outgoing subflows use in-kernel sockets. 2405 * Incoming subflows do not have their own 'struct socket' allocated, 2406 * so we need to use tcp_close() after detaching them from the mptcp 2407 * parent socket. 2408 */ 2409 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2410 struct mptcp_subflow_context *subflow, 2411 unsigned int flags) 2412 { 2413 struct mptcp_sock *msk = mptcp_sk(sk); 2414 bool dispose_it, need_push = false; 2415 2416 /* If the first subflow moved to a close state before accept, e.g. due 2417 * to an incoming reset or listener shutdown, the subflow socket is 2418 * already deleted by inet_child_forget() and the mptcp socket can't 2419 * survive too. 2420 */ 2421 if (msk->in_accept_queue && msk->first == ssk && 2422 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2423 /* ensure later check in mptcp_worker() will dispose the msk */ 2424 sock_set_flag(sk, SOCK_DEAD); 2425 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2426 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2427 mptcp_subflow_drop_ctx(ssk); 2428 goto out_release; 2429 } 2430 2431 dispose_it = msk->free_first || ssk != msk->first; 2432 if (dispose_it) 2433 list_del(&subflow->node); 2434 2435 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2436 2437 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2438 /* be sure to force the tcp_close path 2439 * to generate the egress reset 2440 */ 2441 ssk->sk_lingertime = 0; 2442 sock_set_flag(ssk, SOCK_LINGER); 2443 subflow->send_fastclose = 1; 2444 } 2445 2446 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2447 if (!dispose_it) { 2448 __mptcp_subflow_disconnect(ssk, subflow, flags); 2449 release_sock(ssk); 2450 2451 goto out; 2452 } 2453 2454 subflow->disposable = 1; 2455 2456 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2457 * the ssk has been already destroyed, we just need to release the 2458 * reference owned by msk; 2459 */ 2460 if (!inet_csk(ssk)->icsk_ulp_ops) { 2461 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2462 kfree_rcu(subflow, rcu); 2463 } else { 2464 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2465 __tcp_close(ssk, 0); 2466 2467 /* close acquired an extra ref */ 2468 __sock_put(ssk); 2469 } 2470 2471 out_release: 2472 __mptcp_subflow_error_report(sk, ssk); 2473 release_sock(ssk); 2474 2475 sock_put(ssk); 2476 2477 if (ssk == msk->first) 2478 WRITE_ONCE(msk->first, NULL); 2479 2480 out: 2481 __mptcp_sync_sndbuf(sk); 2482 if (need_push) 2483 __mptcp_push_pending(sk, 0); 2484 2485 /* Catch every 'all subflows closed' scenario, including peers silently 2486 * closing them, e.g. due to timeout. 2487 * For established sockets, allow an additional timeout before closing, 2488 * as the protocol can still create more subflows. 2489 */ 2490 if (list_is_singular(&msk->conn_list) && msk->first && 2491 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2492 if (sk->sk_state != TCP_ESTABLISHED || 2493 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2494 mptcp_set_state(sk, TCP_CLOSE); 2495 mptcp_close_wake_up(sk); 2496 } else { 2497 mptcp_start_tout_timer(sk); 2498 } 2499 } 2500 } 2501 2502 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2503 struct mptcp_subflow_context *subflow) 2504 { 2505 if (sk->sk_state == TCP_ESTABLISHED) 2506 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2507 2508 /* subflow aborted before reaching the fully_established status 2509 * attempt the creation of the next subflow 2510 */ 2511 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2512 2513 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2514 } 2515 2516 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2517 { 2518 return 0; 2519 } 2520 2521 static void __mptcp_close_subflow(struct sock *sk) 2522 { 2523 struct mptcp_subflow_context *subflow, *tmp; 2524 struct mptcp_sock *msk = mptcp_sk(sk); 2525 2526 might_sleep(); 2527 2528 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2529 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2530 2531 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2532 continue; 2533 2534 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2535 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2536 continue; 2537 2538 mptcp_close_ssk(sk, ssk, subflow); 2539 } 2540 2541 } 2542 2543 static bool mptcp_close_tout_expired(const struct sock *sk) 2544 { 2545 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2546 sk->sk_state == TCP_CLOSE) 2547 return false; 2548 2549 return time_after32(tcp_jiffies32, 2550 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2551 } 2552 2553 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2554 { 2555 struct mptcp_subflow_context *subflow, *tmp; 2556 struct sock *sk = (struct sock *)msk; 2557 2558 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2559 return; 2560 2561 mptcp_token_destroy(msk); 2562 2563 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2564 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2565 bool slow; 2566 2567 slow = lock_sock_fast(tcp_sk); 2568 if (tcp_sk->sk_state != TCP_CLOSE) { 2569 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2570 tcp_set_state(tcp_sk, TCP_CLOSE); 2571 } 2572 unlock_sock_fast(tcp_sk, slow); 2573 } 2574 2575 /* Mirror the tcp_reset() error propagation */ 2576 switch (sk->sk_state) { 2577 case TCP_SYN_SENT: 2578 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2579 break; 2580 case TCP_CLOSE_WAIT: 2581 WRITE_ONCE(sk->sk_err, EPIPE); 2582 break; 2583 case TCP_CLOSE: 2584 return; 2585 default: 2586 WRITE_ONCE(sk->sk_err, ECONNRESET); 2587 } 2588 2589 mptcp_set_state(sk, TCP_CLOSE); 2590 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2591 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2592 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2593 2594 /* the calling mptcp_worker will properly destroy the socket */ 2595 if (sock_flag(sk, SOCK_DEAD)) 2596 return; 2597 2598 sk->sk_state_change(sk); 2599 sk_error_report(sk); 2600 } 2601 2602 static void __mptcp_retrans(struct sock *sk) 2603 { 2604 struct mptcp_sock *msk = mptcp_sk(sk); 2605 struct mptcp_subflow_context *subflow; 2606 struct mptcp_sendmsg_info info = {}; 2607 struct mptcp_data_frag *dfrag; 2608 struct sock *ssk; 2609 int ret, err; 2610 u16 len = 0; 2611 2612 mptcp_clean_una_wakeup(sk); 2613 2614 /* first check ssk: need to kick "stale" logic */ 2615 err = mptcp_sched_get_retrans(msk); 2616 dfrag = mptcp_rtx_head(sk); 2617 if (!dfrag) { 2618 if (mptcp_data_fin_enabled(msk)) { 2619 struct inet_connection_sock *icsk = inet_csk(sk); 2620 2621 icsk->icsk_retransmits++; 2622 mptcp_set_datafin_timeout(sk); 2623 mptcp_send_ack(msk); 2624 2625 goto reset_timer; 2626 } 2627 2628 if (!mptcp_send_head(sk)) 2629 return; 2630 2631 goto reset_timer; 2632 } 2633 2634 if (err) 2635 goto reset_timer; 2636 2637 mptcp_for_each_subflow(msk, subflow) { 2638 if (READ_ONCE(subflow->scheduled)) { 2639 u16 copied = 0; 2640 2641 mptcp_subflow_set_scheduled(subflow, false); 2642 2643 ssk = mptcp_subflow_tcp_sock(subflow); 2644 2645 lock_sock(ssk); 2646 2647 /* limit retransmission to the bytes already sent on some subflows */ 2648 info.sent = 0; 2649 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2650 dfrag->already_sent; 2651 while (info.sent < info.limit) { 2652 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2653 if (ret <= 0) 2654 break; 2655 2656 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2657 copied += ret; 2658 info.sent += ret; 2659 } 2660 if (copied) { 2661 len = max(copied, len); 2662 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2663 info.size_goal); 2664 WRITE_ONCE(msk->allow_infinite_fallback, false); 2665 } 2666 2667 release_sock(ssk); 2668 } 2669 } 2670 2671 msk->bytes_retrans += len; 2672 dfrag->already_sent = max(dfrag->already_sent, len); 2673 2674 reset_timer: 2675 mptcp_check_and_set_pending(sk); 2676 2677 if (!mptcp_rtx_timer_pending(sk)) 2678 mptcp_reset_rtx_timer(sk); 2679 } 2680 2681 /* schedule the timeout timer for the relevant event: either close timeout 2682 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2683 */ 2684 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2685 { 2686 struct sock *sk = (struct sock *)msk; 2687 unsigned long timeout, close_timeout; 2688 2689 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2690 return; 2691 2692 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2693 mptcp_close_timeout(sk); 2694 2695 /* the close timeout takes precedence on the fail one, and here at least one of 2696 * them is active 2697 */ 2698 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2699 2700 sk_reset_timer(sk, &sk->sk_timer, timeout); 2701 } 2702 2703 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2704 { 2705 struct sock *ssk = msk->first; 2706 bool slow; 2707 2708 if (!ssk) 2709 return; 2710 2711 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2712 2713 slow = lock_sock_fast(ssk); 2714 mptcp_subflow_reset(ssk); 2715 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2716 unlock_sock_fast(ssk, slow); 2717 } 2718 2719 static void mptcp_do_fastclose(struct sock *sk) 2720 { 2721 struct mptcp_subflow_context *subflow, *tmp; 2722 struct mptcp_sock *msk = mptcp_sk(sk); 2723 2724 mptcp_set_state(sk, TCP_CLOSE); 2725 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2726 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2727 subflow, MPTCP_CF_FASTCLOSE); 2728 } 2729 2730 static void mptcp_worker(struct work_struct *work) 2731 { 2732 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2733 struct sock *sk = (struct sock *)msk; 2734 unsigned long fail_tout; 2735 int state; 2736 2737 lock_sock(sk); 2738 state = sk->sk_state; 2739 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2740 goto unlock; 2741 2742 mptcp_check_fastclose(msk); 2743 2744 mptcp_pm_nl_work(msk); 2745 2746 mptcp_check_send_data_fin(sk); 2747 mptcp_check_data_fin_ack(sk); 2748 mptcp_check_data_fin(sk); 2749 2750 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2751 __mptcp_close_subflow(sk); 2752 2753 if (mptcp_close_tout_expired(sk)) { 2754 mptcp_do_fastclose(sk); 2755 mptcp_close_wake_up(sk); 2756 } 2757 2758 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2759 __mptcp_destroy_sock(sk); 2760 goto unlock; 2761 } 2762 2763 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2764 __mptcp_retrans(sk); 2765 2766 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2767 if (fail_tout && time_after(jiffies, fail_tout)) 2768 mptcp_mp_fail_no_response(msk); 2769 2770 unlock: 2771 release_sock(sk); 2772 sock_put(sk); 2773 } 2774 2775 static void __mptcp_init_sock(struct sock *sk) 2776 { 2777 struct mptcp_sock *msk = mptcp_sk(sk); 2778 2779 INIT_LIST_HEAD(&msk->conn_list); 2780 INIT_LIST_HEAD(&msk->join_list); 2781 INIT_LIST_HEAD(&msk->rtx_queue); 2782 INIT_WORK(&msk->work, mptcp_worker); 2783 __skb_queue_head_init(&msk->receive_queue); 2784 msk->out_of_order_queue = RB_ROOT; 2785 msk->first_pending = NULL; 2786 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 2787 WRITE_ONCE(msk->rmem_released, 0); 2788 msk->timer_ival = TCP_RTO_MIN; 2789 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2790 2791 WRITE_ONCE(msk->first, NULL); 2792 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2793 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2794 WRITE_ONCE(msk->allow_infinite_fallback, true); 2795 msk->recovery = false; 2796 msk->subflow_id = 1; 2797 2798 mptcp_pm_data_init(msk); 2799 2800 /* re-use the csk retrans timer for MPTCP-level retrans */ 2801 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2802 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2803 } 2804 2805 static void mptcp_ca_reset(struct sock *sk) 2806 { 2807 struct inet_connection_sock *icsk = inet_csk(sk); 2808 2809 tcp_assign_congestion_control(sk); 2810 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2811 2812 /* no need to keep a reference to the ops, the name will suffice */ 2813 tcp_cleanup_congestion_control(sk); 2814 icsk->icsk_ca_ops = NULL; 2815 } 2816 2817 static int mptcp_init_sock(struct sock *sk) 2818 { 2819 struct net *net = sock_net(sk); 2820 int ret; 2821 2822 __mptcp_init_sock(sk); 2823 2824 if (!mptcp_is_enabled(net)) 2825 return -ENOPROTOOPT; 2826 2827 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2828 return -ENOMEM; 2829 2830 ret = mptcp_init_sched(mptcp_sk(sk), 2831 mptcp_sched_find(mptcp_get_scheduler(net))); 2832 if (ret) 2833 return ret; 2834 2835 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2836 2837 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2838 * propagate the correct value 2839 */ 2840 mptcp_ca_reset(sk); 2841 2842 sk_sockets_allocated_inc(sk); 2843 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2844 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2845 2846 return 0; 2847 } 2848 2849 static void __mptcp_clear_xmit(struct sock *sk) 2850 { 2851 struct mptcp_sock *msk = mptcp_sk(sk); 2852 struct mptcp_data_frag *dtmp, *dfrag; 2853 2854 WRITE_ONCE(msk->first_pending, NULL); 2855 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2856 dfrag_clear(sk, dfrag); 2857 } 2858 2859 void mptcp_cancel_work(struct sock *sk) 2860 { 2861 struct mptcp_sock *msk = mptcp_sk(sk); 2862 2863 if (cancel_work_sync(&msk->work)) 2864 __sock_put(sk); 2865 } 2866 2867 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2868 { 2869 lock_sock(ssk); 2870 2871 switch (ssk->sk_state) { 2872 case TCP_LISTEN: 2873 if (!(how & RCV_SHUTDOWN)) 2874 break; 2875 fallthrough; 2876 case TCP_SYN_SENT: 2877 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2878 break; 2879 default: 2880 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2881 pr_debug("Fallback"); 2882 ssk->sk_shutdown |= how; 2883 tcp_shutdown(ssk, how); 2884 2885 /* simulate the data_fin ack reception to let the state 2886 * machine move forward 2887 */ 2888 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2889 mptcp_schedule_work(sk); 2890 } else { 2891 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2892 tcp_send_ack(ssk); 2893 if (!mptcp_rtx_timer_pending(sk)) 2894 mptcp_reset_rtx_timer(sk); 2895 } 2896 break; 2897 } 2898 2899 release_sock(ssk); 2900 } 2901 2902 void mptcp_set_state(struct sock *sk, int state) 2903 { 2904 int oldstate = sk->sk_state; 2905 2906 switch (state) { 2907 case TCP_ESTABLISHED: 2908 if (oldstate != TCP_ESTABLISHED) 2909 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2910 break; 2911 2912 default: 2913 if (oldstate == TCP_ESTABLISHED) 2914 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2915 } 2916 2917 inet_sk_state_store(sk, state); 2918 } 2919 2920 static const unsigned char new_state[16] = { 2921 /* current state: new state: action: */ 2922 [0 /* (Invalid) */] = TCP_CLOSE, 2923 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2924 [TCP_SYN_SENT] = TCP_CLOSE, 2925 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2926 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2927 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2928 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2929 [TCP_CLOSE] = TCP_CLOSE, 2930 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2931 [TCP_LAST_ACK] = TCP_LAST_ACK, 2932 [TCP_LISTEN] = TCP_CLOSE, 2933 [TCP_CLOSING] = TCP_CLOSING, 2934 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2935 }; 2936 2937 static int mptcp_close_state(struct sock *sk) 2938 { 2939 int next = (int)new_state[sk->sk_state]; 2940 int ns = next & TCP_STATE_MASK; 2941 2942 mptcp_set_state(sk, ns); 2943 2944 return next & TCP_ACTION_FIN; 2945 } 2946 2947 static void mptcp_check_send_data_fin(struct sock *sk) 2948 { 2949 struct mptcp_subflow_context *subflow; 2950 struct mptcp_sock *msk = mptcp_sk(sk); 2951 2952 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2953 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2954 msk->snd_nxt, msk->write_seq); 2955 2956 /* we still need to enqueue subflows or not really shutting down, 2957 * skip this 2958 */ 2959 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2960 mptcp_send_head(sk)) 2961 return; 2962 2963 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2964 2965 mptcp_for_each_subflow(msk, subflow) { 2966 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2967 2968 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2969 } 2970 } 2971 2972 static void __mptcp_wr_shutdown(struct sock *sk) 2973 { 2974 struct mptcp_sock *msk = mptcp_sk(sk); 2975 2976 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2977 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2978 !!mptcp_send_head(sk)); 2979 2980 /* will be ignored by fallback sockets */ 2981 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2982 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2983 2984 mptcp_check_send_data_fin(sk); 2985 } 2986 2987 static void __mptcp_destroy_sock(struct sock *sk) 2988 { 2989 struct mptcp_sock *msk = mptcp_sk(sk); 2990 2991 pr_debug("msk=%p", msk); 2992 2993 might_sleep(); 2994 2995 mptcp_stop_rtx_timer(sk); 2996 sk_stop_timer(sk, &sk->sk_timer); 2997 msk->pm.status = 0; 2998 mptcp_release_sched(msk); 2999 3000 sk->sk_prot->destroy(sk); 3001 3002 WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc)); 3003 WARN_ON_ONCE(msk->rmem_released); 3004 sk_stream_kill_queues(sk); 3005 xfrm_sk_free_policy(sk); 3006 3007 sock_put(sk); 3008 } 3009 3010 void __mptcp_unaccepted_force_close(struct sock *sk) 3011 { 3012 sock_set_flag(sk, SOCK_DEAD); 3013 mptcp_do_fastclose(sk); 3014 __mptcp_destroy_sock(sk); 3015 } 3016 3017 static __poll_t mptcp_check_readable(struct sock *sk) 3018 { 3019 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3020 } 3021 3022 static void mptcp_check_listen_stop(struct sock *sk) 3023 { 3024 struct sock *ssk; 3025 3026 if (inet_sk_state_load(sk) != TCP_LISTEN) 3027 return; 3028 3029 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3030 ssk = mptcp_sk(sk)->first; 3031 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3032 return; 3033 3034 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3035 tcp_set_state(ssk, TCP_CLOSE); 3036 mptcp_subflow_queue_clean(sk, ssk); 3037 inet_csk_listen_stop(ssk); 3038 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3039 release_sock(ssk); 3040 } 3041 3042 bool __mptcp_close(struct sock *sk, long timeout) 3043 { 3044 struct mptcp_subflow_context *subflow; 3045 struct mptcp_sock *msk = mptcp_sk(sk); 3046 bool do_cancel_work = false; 3047 int subflows_alive = 0; 3048 3049 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3050 3051 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3052 mptcp_check_listen_stop(sk); 3053 mptcp_set_state(sk, TCP_CLOSE); 3054 goto cleanup; 3055 } 3056 3057 if (mptcp_data_avail(msk) || timeout < 0) { 3058 /* If the msk has read data, or the caller explicitly ask it, 3059 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3060 */ 3061 mptcp_do_fastclose(sk); 3062 timeout = 0; 3063 } else if (mptcp_close_state(sk)) { 3064 __mptcp_wr_shutdown(sk); 3065 } 3066 3067 sk_stream_wait_close(sk, timeout); 3068 3069 cleanup: 3070 /* orphan all the subflows */ 3071 mptcp_for_each_subflow(msk, subflow) { 3072 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3073 bool slow = lock_sock_fast_nested(ssk); 3074 3075 subflows_alive += ssk->sk_state != TCP_CLOSE; 3076 3077 /* since the close timeout takes precedence on the fail one, 3078 * cancel the latter 3079 */ 3080 if (ssk == msk->first) 3081 subflow->fail_tout = 0; 3082 3083 /* detach from the parent socket, but allow data_ready to 3084 * push incoming data into the mptcp stack, to properly ack it 3085 */ 3086 ssk->sk_socket = NULL; 3087 ssk->sk_wq = NULL; 3088 unlock_sock_fast(ssk, slow); 3089 } 3090 sock_orphan(sk); 3091 3092 /* all the subflows are closed, only timeout can change the msk 3093 * state, let's not keep resources busy for no reasons 3094 */ 3095 if (subflows_alive == 0) 3096 mptcp_set_state(sk, TCP_CLOSE); 3097 3098 sock_hold(sk); 3099 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3100 if (msk->token) 3101 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3102 3103 if (sk->sk_state == TCP_CLOSE) { 3104 __mptcp_destroy_sock(sk); 3105 do_cancel_work = true; 3106 } else { 3107 mptcp_start_tout_timer(sk); 3108 } 3109 3110 return do_cancel_work; 3111 } 3112 3113 static void mptcp_close(struct sock *sk, long timeout) 3114 { 3115 bool do_cancel_work; 3116 3117 lock_sock(sk); 3118 3119 do_cancel_work = __mptcp_close(sk, timeout); 3120 release_sock(sk); 3121 if (do_cancel_work) 3122 mptcp_cancel_work(sk); 3123 3124 sock_put(sk); 3125 } 3126 3127 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3128 { 3129 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3130 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3131 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3132 3133 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3134 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3135 3136 if (msk6 && ssk6) { 3137 msk6->saddr = ssk6->saddr; 3138 msk6->flow_label = ssk6->flow_label; 3139 } 3140 #endif 3141 3142 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3143 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3144 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3145 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3146 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3147 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3148 } 3149 3150 static int mptcp_disconnect(struct sock *sk, int flags) 3151 { 3152 struct mptcp_sock *msk = mptcp_sk(sk); 3153 3154 /* We are on the fastopen error path. We can't call straight into the 3155 * subflows cleanup code due to lock nesting (we are already under 3156 * msk->firstsocket lock). 3157 */ 3158 if (msk->fastopening) 3159 return -EBUSY; 3160 3161 mptcp_check_listen_stop(sk); 3162 mptcp_set_state(sk, TCP_CLOSE); 3163 3164 mptcp_stop_rtx_timer(sk); 3165 mptcp_stop_tout_timer(sk); 3166 3167 if (msk->token) 3168 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3169 3170 /* msk->subflow is still intact, the following will not free the first 3171 * subflow 3172 */ 3173 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3174 WRITE_ONCE(msk->flags, 0); 3175 msk->cb_flags = 0; 3176 msk->recovery = false; 3177 WRITE_ONCE(msk->can_ack, false); 3178 WRITE_ONCE(msk->fully_established, false); 3179 WRITE_ONCE(msk->rcv_data_fin, false); 3180 WRITE_ONCE(msk->snd_data_fin_enable, false); 3181 WRITE_ONCE(msk->rcv_fastclose, false); 3182 WRITE_ONCE(msk->use_64bit_ack, false); 3183 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3184 mptcp_pm_data_reset(msk); 3185 mptcp_ca_reset(sk); 3186 msk->bytes_consumed = 0; 3187 msk->bytes_acked = 0; 3188 msk->bytes_received = 0; 3189 msk->bytes_sent = 0; 3190 msk->bytes_retrans = 0; 3191 msk->rcvspace_init = 0; 3192 3193 WRITE_ONCE(sk->sk_shutdown, 0); 3194 sk_error_report(sk); 3195 return 0; 3196 } 3197 3198 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3199 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3200 { 3201 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3202 3203 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3204 } 3205 3206 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3207 { 3208 const struct ipv6_pinfo *np = inet6_sk(sk); 3209 struct ipv6_txoptions *opt; 3210 struct ipv6_pinfo *newnp; 3211 3212 newnp = inet6_sk(newsk); 3213 3214 rcu_read_lock(); 3215 opt = rcu_dereference(np->opt); 3216 if (opt) { 3217 opt = ipv6_dup_options(newsk, opt); 3218 if (!opt) 3219 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3220 } 3221 RCU_INIT_POINTER(newnp->opt, opt); 3222 rcu_read_unlock(); 3223 } 3224 #endif 3225 3226 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3227 { 3228 struct ip_options_rcu *inet_opt, *newopt = NULL; 3229 const struct inet_sock *inet = inet_sk(sk); 3230 struct inet_sock *newinet; 3231 3232 newinet = inet_sk(newsk); 3233 3234 rcu_read_lock(); 3235 inet_opt = rcu_dereference(inet->inet_opt); 3236 if (inet_opt) { 3237 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3238 inet_opt->opt.optlen, GFP_ATOMIC); 3239 if (newopt) 3240 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3241 inet_opt->opt.optlen); 3242 else 3243 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3244 } 3245 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3246 rcu_read_unlock(); 3247 } 3248 3249 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3250 const struct mptcp_options_received *mp_opt, 3251 struct sock *ssk, 3252 struct request_sock *req) 3253 { 3254 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3255 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3256 struct mptcp_subflow_context *subflow; 3257 struct mptcp_sock *msk; 3258 3259 if (!nsk) 3260 return NULL; 3261 3262 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3263 if (nsk->sk_family == AF_INET6) 3264 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3265 #endif 3266 3267 __mptcp_init_sock(nsk); 3268 3269 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3270 if (nsk->sk_family == AF_INET6) 3271 mptcp_copy_ip6_options(nsk, sk); 3272 else 3273 #endif 3274 mptcp_copy_ip_options(nsk, sk); 3275 3276 msk = mptcp_sk(nsk); 3277 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3278 WRITE_ONCE(msk->token, subflow_req->token); 3279 msk->in_accept_queue = 1; 3280 WRITE_ONCE(msk->fully_established, false); 3281 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3282 WRITE_ONCE(msk->csum_enabled, true); 3283 3284 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3285 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3286 WRITE_ONCE(msk->snd_una, msk->write_seq); 3287 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3288 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3289 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3290 3291 /* passive msk is created after the first/MPC subflow */ 3292 msk->subflow_id = 2; 3293 3294 sock_reset_flag(nsk, SOCK_RCU_FREE); 3295 security_inet_csk_clone(nsk, req); 3296 3297 /* this can't race with mptcp_close(), as the msk is 3298 * not yet exposted to user-space 3299 */ 3300 mptcp_set_state(nsk, TCP_ESTABLISHED); 3301 3302 /* The msk maintain a ref to each subflow in the connections list */ 3303 WRITE_ONCE(msk->first, ssk); 3304 subflow = mptcp_subflow_ctx(ssk); 3305 list_add(&subflow->node, &msk->conn_list); 3306 sock_hold(ssk); 3307 3308 /* new mpc subflow takes ownership of the newly 3309 * created mptcp socket 3310 */ 3311 mptcp_token_accept(subflow_req, msk); 3312 3313 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3314 * uses the correct data 3315 */ 3316 mptcp_copy_inaddrs(nsk, ssk); 3317 __mptcp_propagate_sndbuf(nsk, ssk); 3318 3319 mptcp_rcv_space_init(msk, ssk); 3320 3321 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3322 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3323 bh_unlock_sock(nsk); 3324 3325 /* note: the newly allocated socket refcount is 2 now */ 3326 return nsk; 3327 } 3328 3329 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3330 { 3331 const struct tcp_sock *tp = tcp_sk(ssk); 3332 3333 msk->rcvspace_init = 1; 3334 msk->rcvq_space.copied = 0; 3335 msk->rcvq_space.rtt_us = 0; 3336 3337 msk->rcvq_space.time = tp->tcp_mstamp; 3338 3339 /* initial rcv_space offering made to peer */ 3340 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3341 TCP_INIT_CWND * tp->advmss); 3342 if (msk->rcvq_space.space == 0) 3343 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3344 } 3345 3346 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3347 { 3348 struct mptcp_subflow_context *subflow, *tmp; 3349 struct sock *sk = (struct sock *)msk; 3350 3351 __mptcp_clear_xmit(sk); 3352 3353 /* join list will be eventually flushed (with rst) at sock lock release time */ 3354 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3355 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3356 3357 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3358 mptcp_data_lock(sk); 3359 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3360 __skb_queue_purge(&sk->sk_receive_queue); 3361 skb_rbtree_purge(&msk->out_of_order_queue); 3362 mptcp_data_unlock(sk); 3363 3364 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3365 * inet_sock_destruct() will dispose it 3366 */ 3367 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3368 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3369 mptcp_token_destroy(msk); 3370 mptcp_pm_free_anno_list(msk); 3371 mptcp_free_local_addr_list(msk); 3372 } 3373 3374 static void mptcp_destroy(struct sock *sk) 3375 { 3376 struct mptcp_sock *msk = mptcp_sk(sk); 3377 3378 /* allow the following to close even the initial subflow */ 3379 msk->free_first = 1; 3380 mptcp_destroy_common(msk, 0); 3381 sk_sockets_allocated_dec(sk); 3382 } 3383 3384 void __mptcp_data_acked(struct sock *sk) 3385 { 3386 if (!sock_owned_by_user(sk)) 3387 __mptcp_clean_una(sk); 3388 else 3389 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3390 } 3391 3392 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3393 { 3394 if (!mptcp_send_head(sk)) 3395 return; 3396 3397 if (!sock_owned_by_user(sk)) 3398 __mptcp_subflow_push_pending(sk, ssk, false); 3399 else 3400 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3401 } 3402 3403 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3404 BIT(MPTCP_RETRANSMIT) | \ 3405 BIT(MPTCP_FLUSH_JOIN_LIST)) 3406 3407 /* processes deferred events and flush wmem */ 3408 static void mptcp_release_cb(struct sock *sk) 3409 __must_hold(&sk->sk_lock.slock) 3410 { 3411 struct mptcp_sock *msk = mptcp_sk(sk); 3412 3413 for (;;) { 3414 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3415 struct list_head join_list; 3416 3417 if (!flags) 3418 break; 3419 3420 INIT_LIST_HEAD(&join_list); 3421 list_splice_init(&msk->join_list, &join_list); 3422 3423 /* the following actions acquire the subflow socket lock 3424 * 3425 * 1) can't be invoked in atomic scope 3426 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3427 * datapath acquires the msk socket spinlock while helding 3428 * the subflow socket lock 3429 */ 3430 msk->cb_flags &= ~flags; 3431 spin_unlock_bh(&sk->sk_lock.slock); 3432 3433 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3434 __mptcp_flush_join_list(sk, &join_list); 3435 if (flags & BIT(MPTCP_PUSH_PENDING)) 3436 __mptcp_push_pending(sk, 0); 3437 if (flags & BIT(MPTCP_RETRANSMIT)) 3438 __mptcp_retrans(sk); 3439 3440 cond_resched(); 3441 spin_lock_bh(&sk->sk_lock.slock); 3442 } 3443 3444 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3445 __mptcp_clean_una_wakeup(sk); 3446 if (unlikely(msk->cb_flags)) { 3447 /* be sure to sync the msk state before taking actions 3448 * depending on sk_state (MPTCP_ERROR_REPORT) 3449 * On sk release avoid actions depending on the first subflow 3450 */ 3451 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3452 __mptcp_sync_state(sk, msk->pending_state); 3453 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3454 __mptcp_error_report(sk); 3455 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3456 __mptcp_sync_sndbuf(sk); 3457 } 3458 3459 __mptcp_update_rmem(sk); 3460 } 3461 3462 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3463 * TCP can't schedule delack timer before the subflow is fully established. 3464 * MPTCP uses the delack timer to do 3rd ack retransmissions 3465 */ 3466 static void schedule_3rdack_retransmission(struct sock *ssk) 3467 { 3468 struct inet_connection_sock *icsk = inet_csk(ssk); 3469 struct tcp_sock *tp = tcp_sk(ssk); 3470 unsigned long timeout; 3471 3472 if (mptcp_subflow_ctx(ssk)->fully_established) 3473 return; 3474 3475 /* reschedule with a timeout above RTT, as we must look only for drop */ 3476 if (tp->srtt_us) 3477 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3478 else 3479 timeout = TCP_TIMEOUT_INIT; 3480 timeout += jiffies; 3481 3482 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3483 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3484 icsk->icsk_ack.timeout = timeout; 3485 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3486 } 3487 3488 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3489 { 3490 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3491 struct sock *sk = subflow->conn; 3492 3493 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3494 mptcp_data_lock(sk); 3495 if (!sock_owned_by_user(sk)) 3496 __mptcp_subflow_push_pending(sk, ssk, true); 3497 else 3498 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3499 mptcp_data_unlock(sk); 3500 } 3501 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3502 mptcp_data_lock(sk); 3503 if (!sock_owned_by_user(sk)) 3504 __mptcp_sync_sndbuf(sk); 3505 else 3506 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3507 mptcp_data_unlock(sk); 3508 } 3509 if (status & BIT(MPTCP_DELEGATE_ACK)) 3510 schedule_3rdack_retransmission(ssk); 3511 } 3512 3513 static int mptcp_hash(struct sock *sk) 3514 { 3515 /* should never be called, 3516 * we hash the TCP subflows not the master socket 3517 */ 3518 WARN_ON_ONCE(1); 3519 return 0; 3520 } 3521 3522 static void mptcp_unhash(struct sock *sk) 3523 { 3524 /* called from sk_common_release(), but nothing to do here */ 3525 } 3526 3527 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3528 { 3529 struct mptcp_sock *msk = mptcp_sk(sk); 3530 3531 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3532 if (WARN_ON_ONCE(!msk->first)) 3533 return -EINVAL; 3534 3535 return inet_csk_get_port(msk->first, snum); 3536 } 3537 3538 void mptcp_finish_connect(struct sock *ssk) 3539 { 3540 struct mptcp_subflow_context *subflow; 3541 struct mptcp_sock *msk; 3542 struct sock *sk; 3543 3544 subflow = mptcp_subflow_ctx(ssk); 3545 sk = subflow->conn; 3546 msk = mptcp_sk(sk); 3547 3548 pr_debug("msk=%p, token=%u", sk, subflow->token); 3549 3550 subflow->map_seq = subflow->iasn; 3551 subflow->map_subflow_seq = 1; 3552 3553 /* the socket is not connected yet, no msk/subflow ops can access/race 3554 * accessing the field below 3555 */ 3556 WRITE_ONCE(msk->local_key, subflow->local_key); 3557 3558 mptcp_pm_new_connection(msk, ssk, 0); 3559 } 3560 3561 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3562 { 3563 write_lock_bh(&sk->sk_callback_lock); 3564 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3565 sk_set_socket(sk, parent); 3566 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3567 write_unlock_bh(&sk->sk_callback_lock); 3568 } 3569 3570 bool mptcp_finish_join(struct sock *ssk) 3571 { 3572 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3573 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3574 struct sock *parent = (void *)msk; 3575 bool ret = true; 3576 3577 pr_debug("msk=%p, subflow=%p", msk, subflow); 3578 3579 /* mptcp socket already closing? */ 3580 if (!mptcp_is_fully_established(parent)) { 3581 subflow->reset_reason = MPTCP_RST_EMPTCP; 3582 return false; 3583 } 3584 3585 /* active subflow, already present inside the conn_list */ 3586 if (!list_empty(&subflow->node)) { 3587 mptcp_subflow_joined(msk, ssk); 3588 mptcp_propagate_sndbuf(parent, ssk); 3589 return true; 3590 } 3591 3592 if (!mptcp_pm_allow_new_subflow(msk)) 3593 goto err_prohibited; 3594 3595 /* If we can't acquire msk socket lock here, let the release callback 3596 * handle it 3597 */ 3598 mptcp_data_lock(parent); 3599 if (!sock_owned_by_user(parent)) { 3600 ret = __mptcp_finish_join(msk, ssk); 3601 if (ret) { 3602 sock_hold(ssk); 3603 list_add_tail(&subflow->node, &msk->conn_list); 3604 } 3605 } else { 3606 sock_hold(ssk); 3607 list_add_tail(&subflow->node, &msk->join_list); 3608 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3609 } 3610 mptcp_data_unlock(parent); 3611 3612 if (!ret) { 3613 err_prohibited: 3614 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3615 return false; 3616 } 3617 3618 return true; 3619 } 3620 3621 static void mptcp_shutdown(struct sock *sk, int how) 3622 { 3623 pr_debug("sk=%p, how=%d", sk, how); 3624 3625 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3626 __mptcp_wr_shutdown(sk); 3627 } 3628 3629 static int mptcp_forward_alloc_get(const struct sock *sk) 3630 { 3631 return READ_ONCE(sk->sk_forward_alloc) + 3632 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3633 } 3634 3635 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3636 { 3637 const struct sock *sk = (void *)msk; 3638 u64 delta; 3639 3640 if (sk->sk_state == TCP_LISTEN) 3641 return -EINVAL; 3642 3643 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3644 return 0; 3645 3646 delta = msk->write_seq - v; 3647 if (__mptcp_check_fallback(msk) && msk->first) { 3648 struct tcp_sock *tp = tcp_sk(msk->first); 3649 3650 /* the first subflow is disconnected after close - see 3651 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3652 * so ignore that status, too. 3653 */ 3654 if (!((1 << msk->first->sk_state) & 3655 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3656 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3657 } 3658 if (delta > INT_MAX) 3659 delta = INT_MAX; 3660 3661 return (int)delta; 3662 } 3663 3664 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3665 { 3666 struct mptcp_sock *msk = mptcp_sk(sk); 3667 bool slow; 3668 3669 switch (cmd) { 3670 case SIOCINQ: 3671 if (sk->sk_state == TCP_LISTEN) 3672 return -EINVAL; 3673 3674 lock_sock(sk); 3675 __mptcp_move_skbs(msk); 3676 *karg = mptcp_inq_hint(sk); 3677 release_sock(sk); 3678 break; 3679 case SIOCOUTQ: 3680 slow = lock_sock_fast(sk); 3681 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3682 unlock_sock_fast(sk, slow); 3683 break; 3684 case SIOCOUTQNSD: 3685 slow = lock_sock_fast(sk); 3686 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3687 unlock_sock_fast(sk, slow); 3688 break; 3689 default: 3690 return -ENOIOCTLCMD; 3691 } 3692 3693 return 0; 3694 } 3695 3696 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3697 struct mptcp_subflow_context *subflow) 3698 { 3699 subflow->request_mptcp = 0; 3700 __mptcp_do_fallback(msk); 3701 } 3702 3703 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3704 { 3705 struct mptcp_subflow_context *subflow; 3706 struct mptcp_sock *msk = mptcp_sk(sk); 3707 int err = -EINVAL; 3708 struct sock *ssk; 3709 3710 ssk = __mptcp_nmpc_sk(msk); 3711 if (IS_ERR(ssk)) 3712 return PTR_ERR(ssk); 3713 3714 mptcp_set_state(sk, TCP_SYN_SENT); 3715 subflow = mptcp_subflow_ctx(ssk); 3716 #ifdef CONFIG_TCP_MD5SIG 3717 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3718 * TCP option space. 3719 */ 3720 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3721 mptcp_subflow_early_fallback(msk, subflow); 3722 #endif 3723 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3724 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3725 mptcp_subflow_early_fallback(msk, subflow); 3726 } 3727 if (likely(!__mptcp_check_fallback(msk))) 3728 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3729 3730 /* if reaching here via the fastopen/sendmsg path, the caller already 3731 * acquired the subflow socket lock, too. 3732 */ 3733 if (!msk->fastopening) 3734 lock_sock(ssk); 3735 3736 /* the following mirrors closely a very small chunk of code from 3737 * __inet_stream_connect() 3738 */ 3739 if (ssk->sk_state != TCP_CLOSE) 3740 goto out; 3741 3742 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3743 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3744 if (err) 3745 goto out; 3746 } 3747 3748 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3749 if (err < 0) 3750 goto out; 3751 3752 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3753 3754 out: 3755 if (!msk->fastopening) 3756 release_sock(ssk); 3757 3758 /* on successful connect, the msk state will be moved to established by 3759 * subflow_finish_connect() 3760 */ 3761 if (unlikely(err)) { 3762 /* avoid leaving a dangling token in an unconnected socket */ 3763 mptcp_token_destroy(msk); 3764 mptcp_set_state(sk, TCP_CLOSE); 3765 return err; 3766 } 3767 3768 mptcp_copy_inaddrs(sk, ssk); 3769 return 0; 3770 } 3771 3772 static struct proto mptcp_prot = { 3773 .name = "MPTCP", 3774 .owner = THIS_MODULE, 3775 .init = mptcp_init_sock, 3776 .connect = mptcp_connect, 3777 .disconnect = mptcp_disconnect, 3778 .close = mptcp_close, 3779 .setsockopt = mptcp_setsockopt, 3780 .getsockopt = mptcp_getsockopt, 3781 .shutdown = mptcp_shutdown, 3782 .destroy = mptcp_destroy, 3783 .sendmsg = mptcp_sendmsg, 3784 .ioctl = mptcp_ioctl, 3785 .recvmsg = mptcp_recvmsg, 3786 .release_cb = mptcp_release_cb, 3787 .hash = mptcp_hash, 3788 .unhash = mptcp_unhash, 3789 .get_port = mptcp_get_port, 3790 .forward_alloc_get = mptcp_forward_alloc_get, 3791 .stream_memory_free = mptcp_stream_memory_free, 3792 .sockets_allocated = &mptcp_sockets_allocated, 3793 3794 .memory_allocated = &tcp_memory_allocated, 3795 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3796 3797 .memory_pressure = &tcp_memory_pressure, 3798 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3799 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3800 .sysctl_mem = sysctl_tcp_mem, 3801 .obj_size = sizeof(struct mptcp_sock), 3802 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3803 .no_autobind = true, 3804 }; 3805 3806 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3807 { 3808 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3809 struct sock *ssk, *sk = sock->sk; 3810 int err = -EINVAL; 3811 3812 lock_sock(sk); 3813 ssk = __mptcp_nmpc_sk(msk); 3814 if (IS_ERR(ssk)) { 3815 err = PTR_ERR(ssk); 3816 goto unlock; 3817 } 3818 3819 if (sk->sk_family == AF_INET) 3820 err = inet_bind_sk(ssk, uaddr, addr_len); 3821 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3822 else if (sk->sk_family == AF_INET6) 3823 err = inet6_bind_sk(ssk, uaddr, addr_len); 3824 #endif 3825 if (!err) 3826 mptcp_copy_inaddrs(sk, ssk); 3827 3828 unlock: 3829 release_sock(sk); 3830 return err; 3831 } 3832 3833 static int mptcp_listen(struct socket *sock, int backlog) 3834 { 3835 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3836 struct sock *sk = sock->sk; 3837 struct sock *ssk; 3838 int err; 3839 3840 pr_debug("msk=%p", msk); 3841 3842 lock_sock(sk); 3843 3844 err = -EINVAL; 3845 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3846 goto unlock; 3847 3848 ssk = __mptcp_nmpc_sk(msk); 3849 if (IS_ERR(ssk)) { 3850 err = PTR_ERR(ssk); 3851 goto unlock; 3852 } 3853 3854 mptcp_set_state(sk, TCP_LISTEN); 3855 sock_set_flag(sk, SOCK_RCU_FREE); 3856 3857 lock_sock(ssk); 3858 err = __inet_listen_sk(ssk, backlog); 3859 release_sock(ssk); 3860 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3861 3862 if (!err) { 3863 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3864 mptcp_copy_inaddrs(sk, ssk); 3865 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3866 } 3867 3868 unlock: 3869 release_sock(sk); 3870 return err; 3871 } 3872 3873 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3874 int flags, bool kern) 3875 { 3876 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3877 struct sock *ssk, *newsk; 3878 int err; 3879 3880 pr_debug("msk=%p", msk); 3881 3882 /* Buggy applications can call accept on socket states other then LISTEN 3883 * but no need to allocate the first subflow just to error out. 3884 */ 3885 ssk = READ_ONCE(msk->first); 3886 if (!ssk) 3887 return -EINVAL; 3888 3889 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3890 newsk = inet_csk_accept(ssk, flags, &err, kern); 3891 if (!newsk) 3892 return err; 3893 3894 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3895 if (sk_is_mptcp(newsk)) { 3896 struct mptcp_subflow_context *subflow; 3897 struct sock *new_mptcp_sock; 3898 3899 subflow = mptcp_subflow_ctx(newsk); 3900 new_mptcp_sock = subflow->conn; 3901 3902 /* is_mptcp should be false if subflow->conn is missing, see 3903 * subflow_syn_recv_sock() 3904 */ 3905 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3906 tcp_sk(newsk)->is_mptcp = 0; 3907 goto tcpfallback; 3908 } 3909 3910 newsk = new_mptcp_sock; 3911 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3912 3913 newsk->sk_kern_sock = kern; 3914 lock_sock(newsk); 3915 __inet_accept(sock, newsock, newsk); 3916 3917 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3918 msk = mptcp_sk(newsk); 3919 msk->in_accept_queue = 0; 3920 3921 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3922 * This is needed so NOSPACE flag can be set from tcp stack. 3923 */ 3924 mptcp_for_each_subflow(msk, subflow) { 3925 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3926 3927 if (!ssk->sk_socket) 3928 mptcp_sock_graft(ssk, newsock); 3929 } 3930 3931 /* Do late cleanup for the first subflow as necessary. Also 3932 * deal with bad peers not doing a complete shutdown. 3933 */ 3934 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3935 __mptcp_close_ssk(newsk, msk->first, 3936 mptcp_subflow_ctx(msk->first), 0); 3937 if (unlikely(list_is_singular(&msk->conn_list))) 3938 mptcp_set_state(newsk, TCP_CLOSE); 3939 } 3940 } else { 3941 MPTCP_INC_STATS(sock_net(ssk), 3942 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3943 tcpfallback: 3944 newsk->sk_kern_sock = kern; 3945 lock_sock(newsk); 3946 __inet_accept(sock, newsock, newsk); 3947 /* we are being invoked after accepting a non-mp-capable 3948 * flow: sk is a tcp_sk, not an mptcp one. 3949 * 3950 * Hand the socket over to tcp so all further socket ops 3951 * bypass mptcp. 3952 */ 3953 WRITE_ONCE(newsock->sk->sk_socket->ops, 3954 mptcp_fallback_tcp_ops(newsock->sk)); 3955 } 3956 release_sock(newsk); 3957 3958 return 0; 3959 } 3960 3961 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3962 { 3963 struct sock *sk = (struct sock *)msk; 3964 3965 if (__mptcp_stream_is_writeable(sk, 1)) 3966 return EPOLLOUT | EPOLLWRNORM; 3967 3968 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3969 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3970 if (__mptcp_stream_is_writeable(sk, 1)) 3971 return EPOLLOUT | EPOLLWRNORM; 3972 3973 return 0; 3974 } 3975 3976 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3977 struct poll_table_struct *wait) 3978 { 3979 struct sock *sk = sock->sk; 3980 struct mptcp_sock *msk; 3981 __poll_t mask = 0; 3982 u8 shutdown; 3983 int state; 3984 3985 msk = mptcp_sk(sk); 3986 sock_poll_wait(file, sock, wait); 3987 3988 state = inet_sk_state_load(sk); 3989 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3990 if (state == TCP_LISTEN) { 3991 struct sock *ssk = READ_ONCE(msk->first); 3992 3993 if (WARN_ON_ONCE(!ssk)) 3994 return 0; 3995 3996 return inet_csk_listen_poll(ssk); 3997 } 3998 3999 shutdown = READ_ONCE(sk->sk_shutdown); 4000 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4001 mask |= EPOLLHUP; 4002 if (shutdown & RCV_SHUTDOWN) 4003 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4004 4005 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4006 mask |= mptcp_check_readable(sk); 4007 if (shutdown & SEND_SHUTDOWN) 4008 mask |= EPOLLOUT | EPOLLWRNORM; 4009 else 4010 mask |= mptcp_check_writeable(msk); 4011 } else if (state == TCP_SYN_SENT && 4012 inet_test_bit(DEFER_CONNECT, sk)) { 4013 /* cf tcp_poll() note about TFO */ 4014 mask |= EPOLLOUT | EPOLLWRNORM; 4015 } 4016 4017 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4018 smp_rmb(); 4019 if (READ_ONCE(sk->sk_err)) 4020 mask |= EPOLLERR; 4021 4022 return mask; 4023 } 4024 4025 static const struct proto_ops mptcp_stream_ops = { 4026 .family = PF_INET, 4027 .owner = THIS_MODULE, 4028 .release = inet_release, 4029 .bind = mptcp_bind, 4030 .connect = inet_stream_connect, 4031 .socketpair = sock_no_socketpair, 4032 .accept = mptcp_stream_accept, 4033 .getname = inet_getname, 4034 .poll = mptcp_poll, 4035 .ioctl = inet_ioctl, 4036 .gettstamp = sock_gettstamp, 4037 .listen = mptcp_listen, 4038 .shutdown = inet_shutdown, 4039 .setsockopt = sock_common_setsockopt, 4040 .getsockopt = sock_common_getsockopt, 4041 .sendmsg = inet_sendmsg, 4042 .recvmsg = inet_recvmsg, 4043 .mmap = sock_no_mmap, 4044 .set_rcvlowat = mptcp_set_rcvlowat, 4045 }; 4046 4047 static struct inet_protosw mptcp_protosw = { 4048 .type = SOCK_STREAM, 4049 .protocol = IPPROTO_MPTCP, 4050 .prot = &mptcp_prot, 4051 .ops = &mptcp_stream_ops, 4052 .flags = INET_PROTOSW_ICSK, 4053 }; 4054 4055 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4056 { 4057 struct mptcp_delegated_action *delegated; 4058 struct mptcp_subflow_context *subflow; 4059 int work_done = 0; 4060 4061 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4062 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4063 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4064 4065 bh_lock_sock_nested(ssk); 4066 if (!sock_owned_by_user(ssk)) { 4067 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4068 } else { 4069 /* tcp_release_cb_override already processed 4070 * the action or will do at next release_sock(). 4071 * In both case must dequeue the subflow here - on the same 4072 * CPU that scheduled it. 4073 */ 4074 smp_wmb(); 4075 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4076 } 4077 bh_unlock_sock(ssk); 4078 sock_put(ssk); 4079 4080 if (++work_done == budget) 4081 return budget; 4082 } 4083 4084 /* always provide a 0 'work_done' argument, so that napi_complete_done 4085 * will not try accessing the NULL napi->dev ptr 4086 */ 4087 napi_complete_done(napi, 0); 4088 return work_done; 4089 } 4090 4091 void __init mptcp_proto_init(void) 4092 { 4093 struct mptcp_delegated_action *delegated; 4094 int cpu; 4095 4096 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4097 4098 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4099 panic("Failed to allocate MPTCP pcpu counter\n"); 4100 4101 init_dummy_netdev(&mptcp_napi_dev); 4102 for_each_possible_cpu(cpu) { 4103 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4104 INIT_LIST_HEAD(&delegated->head); 4105 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4106 mptcp_napi_poll); 4107 napi_enable(&delegated->napi); 4108 } 4109 4110 mptcp_subflow_init(); 4111 mptcp_pm_init(); 4112 mptcp_sched_init(); 4113 mptcp_token_init(); 4114 4115 if (proto_register(&mptcp_prot, 1) != 0) 4116 panic("Failed to register MPTCP proto.\n"); 4117 4118 inet_register_protosw(&mptcp_protosw); 4119 4120 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4121 } 4122 4123 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4124 static const struct proto_ops mptcp_v6_stream_ops = { 4125 .family = PF_INET6, 4126 .owner = THIS_MODULE, 4127 .release = inet6_release, 4128 .bind = mptcp_bind, 4129 .connect = inet_stream_connect, 4130 .socketpair = sock_no_socketpair, 4131 .accept = mptcp_stream_accept, 4132 .getname = inet6_getname, 4133 .poll = mptcp_poll, 4134 .ioctl = inet6_ioctl, 4135 .gettstamp = sock_gettstamp, 4136 .listen = mptcp_listen, 4137 .shutdown = inet_shutdown, 4138 .setsockopt = sock_common_setsockopt, 4139 .getsockopt = sock_common_getsockopt, 4140 .sendmsg = inet6_sendmsg, 4141 .recvmsg = inet6_recvmsg, 4142 .mmap = sock_no_mmap, 4143 #ifdef CONFIG_COMPAT 4144 .compat_ioctl = inet6_compat_ioctl, 4145 #endif 4146 .set_rcvlowat = mptcp_set_rcvlowat, 4147 }; 4148 4149 static struct proto mptcp_v6_prot; 4150 4151 static struct inet_protosw mptcp_v6_protosw = { 4152 .type = SOCK_STREAM, 4153 .protocol = IPPROTO_MPTCP, 4154 .prot = &mptcp_v6_prot, 4155 .ops = &mptcp_v6_stream_ops, 4156 .flags = INET_PROTOSW_ICSK, 4157 }; 4158 4159 int __init mptcp_proto_v6_init(void) 4160 { 4161 int err; 4162 4163 mptcp_v6_prot = mptcp_prot; 4164 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4165 mptcp_v6_prot.slab = NULL; 4166 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4167 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4168 4169 err = proto_register(&mptcp_v6_prot, 1); 4170 if (err) 4171 return err; 4172 4173 err = inet6_register_protosw(&mptcp_v6_protosw); 4174 if (err) 4175 proto_unregister(&mptcp_v6_prot); 4176 4177 return err; 4178 } 4179 #endif 4180