1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 } 111 112 return msk->first; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 122 { 123 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 124 mptcp_sk(sk)->rmem_fwd_alloc + size); 125 } 126 127 static void mptcp_rmem_charge(struct sock *sk, int size) 128 { 129 mptcp_rmem_fwd_alloc_add(sk, -size); 130 } 131 132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 133 struct sk_buff *from) 134 { 135 bool fragstolen; 136 int delta; 137 138 if (MPTCP_SKB_CB(from)->offset || 139 !skb_try_coalesce(to, from, &fragstolen, &delta)) 140 return false; 141 142 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 143 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 144 to->len, MPTCP_SKB_CB(from)->end_seq); 145 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 146 147 /* note the fwd memory can reach a negative value after accounting 148 * for the delta, but the later skb free will restore a non 149 * negative one 150 */ 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 kfree_skb_partial(from, fragstolen); 154 155 return true; 156 } 157 158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 159 struct sk_buff *from) 160 { 161 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 162 return false; 163 164 return mptcp_try_coalesce((struct sock *)msk, to, from); 165 } 166 167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 168 { 169 amount >>= PAGE_SHIFT; 170 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 171 __sk_mem_reduce_allocated(sk, amount); 172 } 173 174 static void mptcp_rmem_uncharge(struct sock *sk, int size) 175 { 176 struct mptcp_sock *msk = mptcp_sk(sk); 177 int reclaimable; 178 179 mptcp_rmem_fwd_alloc_add(sk, size); 180 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 181 182 /* see sk_mem_uncharge() for the rationale behind the following schema */ 183 if (unlikely(reclaimable >= PAGE_SIZE)) 184 __mptcp_rmem_reclaim(sk, reclaimable); 185 } 186 187 static void mptcp_rfree(struct sk_buff *skb) 188 { 189 unsigned int len = skb->truesize; 190 struct sock *sk = skb->sk; 191 192 atomic_sub(len, &sk->sk_rmem_alloc); 193 mptcp_rmem_uncharge(sk, len); 194 } 195 196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 197 { 198 skb_orphan(skb); 199 skb->sk = sk; 200 skb->destructor = mptcp_rfree; 201 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 202 mptcp_rmem_charge(sk, skb->truesize); 203 } 204 205 /* "inspired" by tcp_data_queue_ofo(), main differences: 206 * - use mptcp seqs 207 * - don't cope with sacks 208 */ 209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 210 { 211 struct sock *sk = (struct sock *)msk; 212 struct rb_node **p, *parent; 213 u64 seq, end_seq, max_seq; 214 struct sk_buff *skb1; 215 216 seq = MPTCP_SKB_CB(skb)->map_seq; 217 end_seq = MPTCP_SKB_CB(skb)->end_seq; 218 max_seq = atomic64_read(&msk->rcv_wnd_sent); 219 220 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 221 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 222 if (after64(end_seq, max_seq)) { 223 /* out of window */ 224 mptcp_drop(sk, skb); 225 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 226 (unsigned long long)end_seq - (unsigned long)max_seq, 227 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 229 return; 230 } 231 232 p = &msk->out_of_order_queue.rb_node; 233 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 234 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 235 rb_link_node(&skb->rbnode, NULL, p); 236 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 237 msk->ooo_last_skb = skb; 238 goto end; 239 } 240 241 /* with 2 subflows, adding at end of ooo queue is quite likely 242 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 243 */ 244 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 247 return; 248 } 249 250 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 251 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 253 parent = &msk->ooo_last_skb->rbnode; 254 p = &parent->rb_right; 255 goto insert; 256 } 257 258 /* Find place to insert this segment. Handle overlaps on the way. */ 259 parent = NULL; 260 while (*p) { 261 parent = *p; 262 skb1 = rb_to_skb(parent); 263 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 264 p = &parent->rb_left; 265 continue; 266 } 267 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 /* All the bits are present. Drop. */ 270 mptcp_drop(sk, skb); 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 272 return; 273 } 274 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 275 /* partial overlap: 276 * | skb | 277 * | skb1 | 278 * continue traversing 279 */ 280 } else { 281 /* skb's seq == skb1's seq and skb covers skb1. 282 * Replace skb1 with skb. 283 */ 284 rb_replace_node(&skb1->rbnode, &skb->rbnode, 285 &msk->out_of_order_queue); 286 mptcp_drop(sk, skb1); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 goto merge_right; 289 } 290 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 292 return; 293 } 294 p = &parent->rb_right; 295 } 296 297 insert: 298 /* Insert segment into RB tree. */ 299 rb_link_node(&skb->rbnode, parent, p); 300 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 301 302 merge_right: 303 /* Remove other segments covered by skb. */ 304 while ((skb1 = skb_rb_next(skb)) != NULL) { 305 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 306 break; 307 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 308 mptcp_drop(sk, skb1); 309 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 310 } 311 /* If there is no skb after us, we are the last_skb ! */ 312 if (!skb1) 313 msk->ooo_last_skb = skb; 314 315 end: 316 skb_condense(skb); 317 mptcp_set_owner_r(skb, sk); 318 } 319 320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 321 { 322 struct mptcp_sock *msk = mptcp_sk(sk); 323 int amt, amount; 324 325 if (size <= msk->rmem_fwd_alloc) 326 return true; 327 328 size -= msk->rmem_fwd_alloc; 329 amt = sk_mem_pages(size); 330 amount = amt << PAGE_SHIFT; 331 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 332 return false; 333 334 mptcp_rmem_fwd_alloc_add(sk, amount); 335 return true; 336 } 337 338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 339 struct sk_buff *skb, unsigned int offset, 340 size_t copy_len) 341 { 342 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 343 struct sock *sk = (struct sock *)msk; 344 struct sk_buff *tail; 345 bool has_rxtstamp; 346 347 __skb_unlink(skb, &ssk->sk_receive_queue); 348 349 skb_ext_reset(skb); 350 skb_orphan(skb); 351 352 /* try to fetch required memory from subflow */ 353 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 354 goto drop; 355 356 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 357 358 /* the skb map_seq accounts for the skb offset: 359 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 360 * value 361 */ 362 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 363 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 364 MPTCP_SKB_CB(skb)->offset = offset; 365 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 366 367 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 368 /* in sequence */ 369 msk->bytes_received += copy_len; 370 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 371 tail = skb_peek_tail(&sk->sk_receive_queue); 372 if (tail && mptcp_try_coalesce(sk, tail, skb)) 373 return true; 374 375 mptcp_set_owner_r(skb, sk); 376 __skb_queue_tail(&sk->sk_receive_queue, skb); 377 return true; 378 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 379 mptcp_data_queue_ofo(msk, skb); 380 return false; 381 } 382 383 /* old data, keep it simple and drop the whole pkt, sender 384 * will retransmit as needed, if needed. 385 */ 386 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 387 drop: 388 mptcp_drop(sk, skb); 389 return false; 390 } 391 392 static void mptcp_stop_rtx_timer(struct sock *sk) 393 { 394 struct inet_connection_sock *icsk = inet_csk(sk); 395 396 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 397 mptcp_sk(sk)->timer_ival = 0; 398 } 399 400 static void mptcp_close_wake_up(struct sock *sk) 401 { 402 if (sock_flag(sk, SOCK_DEAD)) 403 return; 404 405 sk->sk_state_change(sk); 406 if (sk->sk_shutdown == SHUTDOWN_MASK || 407 sk->sk_state == TCP_CLOSE) 408 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 409 else 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 411 } 412 413 static bool mptcp_pending_data_fin_ack(struct sock *sk) 414 { 415 struct mptcp_sock *msk = mptcp_sk(sk); 416 417 return ((1 << sk->sk_state) & 418 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 419 msk->write_seq == READ_ONCE(msk->snd_una); 420 } 421 422 static void mptcp_check_data_fin_ack(struct sock *sk) 423 { 424 struct mptcp_sock *msk = mptcp_sk(sk); 425 426 /* Look for an acknowledged DATA_FIN */ 427 if (mptcp_pending_data_fin_ack(sk)) { 428 WRITE_ONCE(msk->snd_data_fin_enable, 0); 429 430 switch (sk->sk_state) { 431 case TCP_FIN_WAIT1: 432 mptcp_set_state(sk, TCP_FIN_WAIT2); 433 break; 434 case TCP_CLOSING: 435 case TCP_LAST_ACK: 436 mptcp_set_state(sk, TCP_CLOSE); 437 break; 438 } 439 440 mptcp_close_wake_up(sk); 441 } 442 } 443 444 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 445 { 446 struct mptcp_sock *msk = mptcp_sk(sk); 447 448 if (READ_ONCE(msk->rcv_data_fin) && 449 ((1 << sk->sk_state) & 450 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 451 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 452 453 if (msk->ack_seq == rcv_data_fin_seq) { 454 if (seq) 455 *seq = rcv_data_fin_seq; 456 457 return true; 458 } 459 } 460 461 return false; 462 } 463 464 static void mptcp_set_datafin_timeout(struct sock *sk) 465 { 466 struct inet_connection_sock *icsk = inet_csk(sk); 467 u32 retransmits; 468 469 retransmits = min_t(u32, icsk->icsk_retransmits, 470 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 471 472 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 473 } 474 475 static void __mptcp_set_timeout(struct sock *sk, long tout) 476 { 477 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 478 } 479 480 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 481 { 482 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 483 484 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 485 inet_csk(ssk)->icsk_timeout - jiffies : 0; 486 } 487 488 static void mptcp_set_timeout(struct sock *sk) 489 { 490 struct mptcp_subflow_context *subflow; 491 long tout = 0; 492 493 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 494 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 495 __mptcp_set_timeout(sk, tout); 496 } 497 498 static inline bool tcp_can_send_ack(const struct sock *ssk) 499 { 500 return !((1 << inet_sk_state_load(ssk)) & 501 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 502 } 503 504 void __mptcp_subflow_send_ack(struct sock *ssk) 505 { 506 if (tcp_can_send_ack(ssk)) 507 tcp_send_ack(ssk); 508 } 509 510 static void mptcp_subflow_send_ack(struct sock *ssk) 511 { 512 bool slow; 513 514 slow = lock_sock_fast(ssk); 515 __mptcp_subflow_send_ack(ssk); 516 unlock_sock_fast(ssk, slow); 517 } 518 519 static void mptcp_send_ack(struct mptcp_sock *msk) 520 { 521 struct mptcp_subflow_context *subflow; 522 523 mptcp_for_each_subflow(msk, subflow) 524 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 525 } 526 527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 528 { 529 bool slow; 530 531 slow = lock_sock_fast(ssk); 532 if (tcp_can_send_ack(ssk)) 533 tcp_cleanup_rbuf(ssk, 1); 534 unlock_sock_fast(ssk, slow); 535 } 536 537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 538 { 539 const struct inet_connection_sock *icsk = inet_csk(ssk); 540 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 541 const struct tcp_sock *tp = tcp_sk(ssk); 542 543 return (ack_pending & ICSK_ACK_SCHED) && 544 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 545 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 546 (rx_empty && ack_pending & 547 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 548 } 549 550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 551 { 552 int old_space = READ_ONCE(msk->old_wspace); 553 struct mptcp_subflow_context *subflow; 554 struct sock *sk = (struct sock *)msk; 555 int space = __mptcp_space(sk); 556 bool cleanup, rx_empty; 557 558 cleanup = (space > 0) && (space >= (old_space << 1)); 559 rx_empty = !__mptcp_rmem(sk); 560 561 mptcp_for_each_subflow(msk, subflow) { 562 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 563 564 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 565 mptcp_subflow_cleanup_rbuf(ssk); 566 } 567 } 568 569 static bool mptcp_check_data_fin(struct sock *sk) 570 { 571 struct mptcp_sock *msk = mptcp_sk(sk); 572 u64 rcv_data_fin_seq; 573 bool ret = false; 574 575 /* Need to ack a DATA_FIN received from a peer while this side 576 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 577 * msk->rcv_data_fin was set when parsing the incoming options 578 * at the subflow level and the msk lock was not held, so this 579 * is the first opportunity to act on the DATA_FIN and change 580 * the msk state. 581 * 582 * If we are caught up to the sequence number of the incoming 583 * DATA_FIN, send the DATA_ACK now and do state transition. If 584 * not caught up, do nothing and let the recv code send DATA_ACK 585 * when catching up. 586 */ 587 588 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 589 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 590 WRITE_ONCE(msk->rcv_data_fin, 0); 591 592 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 593 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 594 595 switch (sk->sk_state) { 596 case TCP_ESTABLISHED: 597 mptcp_set_state(sk, TCP_CLOSE_WAIT); 598 break; 599 case TCP_FIN_WAIT1: 600 mptcp_set_state(sk, TCP_CLOSING); 601 break; 602 case TCP_FIN_WAIT2: 603 mptcp_set_state(sk, TCP_CLOSE); 604 break; 605 default: 606 /* Other states not expected */ 607 WARN_ON_ONCE(1); 608 break; 609 } 610 611 ret = true; 612 if (!__mptcp_check_fallback(msk)) 613 mptcp_send_ack(msk); 614 mptcp_close_wake_up(sk); 615 } 616 return ret; 617 } 618 619 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 620 struct sock *ssk, 621 unsigned int *bytes) 622 { 623 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 624 struct sock *sk = (struct sock *)msk; 625 unsigned int moved = 0; 626 bool more_data_avail; 627 struct tcp_sock *tp; 628 bool done = false; 629 int sk_rbuf; 630 631 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 632 633 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 634 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 635 636 if (unlikely(ssk_rbuf > sk_rbuf)) { 637 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 638 sk_rbuf = ssk_rbuf; 639 } 640 } 641 642 pr_debug("msk=%p ssk=%p", msk, ssk); 643 tp = tcp_sk(ssk); 644 do { 645 u32 map_remaining, offset; 646 u32 seq = tp->copied_seq; 647 struct sk_buff *skb; 648 bool fin; 649 650 /* try to move as much data as available */ 651 map_remaining = subflow->map_data_len - 652 mptcp_subflow_get_map_offset(subflow); 653 654 skb = skb_peek(&ssk->sk_receive_queue); 655 if (!skb) { 656 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 657 * a different CPU can have already processed the pending 658 * data, stop here or we can enter an infinite loop 659 */ 660 if (!moved) 661 done = true; 662 break; 663 } 664 665 if (__mptcp_check_fallback(msk)) { 666 /* Under fallback skbs have no MPTCP extension and TCP could 667 * collapse them between the dummy map creation and the 668 * current dequeue. Be sure to adjust the map size. 669 */ 670 map_remaining = skb->len; 671 subflow->map_data_len = skb->len; 672 } 673 674 offset = seq - TCP_SKB_CB(skb)->seq; 675 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 676 if (fin) { 677 done = true; 678 seq++; 679 } 680 681 if (offset < skb->len) { 682 size_t len = skb->len - offset; 683 684 if (tp->urg_data) 685 done = true; 686 687 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 688 moved += len; 689 seq += len; 690 691 if (WARN_ON_ONCE(map_remaining < len)) 692 break; 693 } else { 694 WARN_ON_ONCE(!fin); 695 sk_eat_skb(ssk, skb); 696 done = true; 697 } 698 699 WRITE_ONCE(tp->copied_seq, seq); 700 more_data_avail = mptcp_subflow_data_available(ssk); 701 702 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 703 done = true; 704 break; 705 } 706 } while (more_data_avail); 707 708 *bytes += moved; 709 return done; 710 } 711 712 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 713 { 714 struct sock *sk = (struct sock *)msk; 715 struct sk_buff *skb, *tail; 716 bool moved = false; 717 struct rb_node *p; 718 u64 end_seq; 719 720 p = rb_first(&msk->out_of_order_queue); 721 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 722 while (p) { 723 skb = rb_to_skb(p); 724 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 725 break; 726 727 p = rb_next(p); 728 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 729 730 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 731 msk->ack_seq))) { 732 mptcp_drop(sk, skb); 733 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 734 continue; 735 } 736 737 end_seq = MPTCP_SKB_CB(skb)->end_seq; 738 tail = skb_peek_tail(&sk->sk_receive_queue); 739 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 740 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 741 742 /* skip overlapping data, if any */ 743 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 744 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 745 delta); 746 MPTCP_SKB_CB(skb)->offset += delta; 747 MPTCP_SKB_CB(skb)->map_seq += delta; 748 __skb_queue_tail(&sk->sk_receive_queue, skb); 749 } 750 msk->bytes_received += end_seq - msk->ack_seq; 751 msk->ack_seq = end_seq; 752 moved = true; 753 } 754 return moved; 755 } 756 757 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 758 { 759 int err = sock_error(ssk); 760 int ssk_state; 761 762 if (!err) 763 return false; 764 765 /* only propagate errors on fallen-back sockets or 766 * on MPC connect 767 */ 768 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 769 return false; 770 771 /* We need to propagate only transition to CLOSE state. 772 * Orphaned socket will see such state change via 773 * subflow_sched_work_if_closed() and that path will properly 774 * destroy the msk as needed. 775 */ 776 ssk_state = inet_sk_state_load(ssk); 777 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 778 mptcp_set_state(sk, ssk_state); 779 WRITE_ONCE(sk->sk_err, -err); 780 781 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 782 smp_wmb(); 783 sk_error_report(sk); 784 return true; 785 } 786 787 void __mptcp_error_report(struct sock *sk) 788 { 789 struct mptcp_subflow_context *subflow; 790 struct mptcp_sock *msk = mptcp_sk(sk); 791 792 mptcp_for_each_subflow(msk, subflow) 793 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 794 break; 795 } 796 797 /* In most cases we will be able to lock the mptcp socket. If its already 798 * owned, we need to defer to the work queue to avoid ABBA deadlock. 799 */ 800 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 801 { 802 struct sock *sk = (struct sock *)msk; 803 unsigned int moved = 0; 804 805 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 806 __mptcp_ofo_queue(msk); 807 if (unlikely(ssk->sk_err)) { 808 if (!sock_owned_by_user(sk)) 809 __mptcp_error_report(sk); 810 else 811 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 812 } 813 814 /* If the moves have caught up with the DATA_FIN sequence number 815 * it's time to ack the DATA_FIN and change socket state, but 816 * this is not a good place to change state. Let the workqueue 817 * do it. 818 */ 819 if (mptcp_pending_data_fin(sk, NULL)) 820 mptcp_schedule_work(sk); 821 return moved > 0; 822 } 823 824 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 825 { 826 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 827 struct mptcp_sock *msk = mptcp_sk(sk); 828 int sk_rbuf, ssk_rbuf; 829 830 /* The peer can send data while we are shutting down this 831 * subflow at msk destruction time, but we must avoid enqueuing 832 * more data to the msk receive queue 833 */ 834 if (unlikely(subflow->disposable)) 835 return; 836 837 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 838 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 839 if (unlikely(ssk_rbuf > sk_rbuf)) 840 sk_rbuf = ssk_rbuf; 841 842 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 843 if (__mptcp_rmem(sk) > sk_rbuf) { 844 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 845 return; 846 } 847 848 /* Wake-up the reader only for in-sequence data */ 849 mptcp_data_lock(sk); 850 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 851 sk->sk_data_ready(sk); 852 mptcp_data_unlock(sk); 853 } 854 855 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 856 { 857 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 858 WRITE_ONCE(msk->allow_infinite_fallback, false); 859 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 860 } 861 862 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 863 { 864 struct sock *sk = (struct sock *)msk; 865 866 if (sk->sk_state != TCP_ESTABLISHED) 867 return false; 868 869 /* attach to msk socket only after we are sure we will deal with it 870 * at close time 871 */ 872 if (sk->sk_socket && !ssk->sk_socket) 873 mptcp_sock_graft(ssk, sk->sk_socket); 874 875 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 876 mptcp_sockopt_sync_locked(msk, ssk); 877 mptcp_subflow_joined(msk, ssk); 878 mptcp_stop_tout_timer(sk); 879 __mptcp_propagate_sndbuf(sk, ssk); 880 return true; 881 } 882 883 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 884 { 885 struct mptcp_subflow_context *tmp, *subflow; 886 struct mptcp_sock *msk = mptcp_sk(sk); 887 888 list_for_each_entry_safe(subflow, tmp, join_list, node) { 889 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 890 bool slow = lock_sock_fast(ssk); 891 892 list_move_tail(&subflow->node, &msk->conn_list); 893 if (!__mptcp_finish_join(msk, ssk)) 894 mptcp_subflow_reset(ssk); 895 unlock_sock_fast(ssk, slow); 896 } 897 } 898 899 static bool mptcp_rtx_timer_pending(struct sock *sk) 900 { 901 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 902 } 903 904 static void mptcp_reset_rtx_timer(struct sock *sk) 905 { 906 struct inet_connection_sock *icsk = inet_csk(sk); 907 unsigned long tout; 908 909 /* prevent rescheduling on close */ 910 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 911 return; 912 913 tout = mptcp_sk(sk)->timer_ival; 914 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 915 } 916 917 bool mptcp_schedule_work(struct sock *sk) 918 { 919 if (inet_sk_state_load(sk) != TCP_CLOSE && 920 schedule_work(&mptcp_sk(sk)->work)) { 921 /* each subflow already holds a reference to the sk, and the 922 * workqueue is invoked by a subflow, so sk can't go away here. 923 */ 924 sock_hold(sk); 925 return true; 926 } 927 return false; 928 } 929 930 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 931 { 932 struct mptcp_subflow_context *subflow; 933 934 msk_owned_by_me(msk); 935 936 mptcp_for_each_subflow(msk, subflow) { 937 if (READ_ONCE(subflow->data_avail)) 938 return mptcp_subflow_tcp_sock(subflow); 939 } 940 941 return NULL; 942 } 943 944 static bool mptcp_skb_can_collapse_to(u64 write_seq, 945 const struct sk_buff *skb, 946 const struct mptcp_ext *mpext) 947 { 948 if (!tcp_skb_can_collapse_to(skb)) 949 return false; 950 951 /* can collapse only if MPTCP level sequence is in order and this 952 * mapping has not been xmitted yet 953 */ 954 return mpext && mpext->data_seq + mpext->data_len == write_seq && 955 !mpext->frozen; 956 } 957 958 /* we can append data to the given data frag if: 959 * - there is space available in the backing page_frag 960 * - the data frag tail matches the current page_frag free offset 961 * - the data frag end sequence number matches the current write seq 962 */ 963 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 964 const struct page_frag *pfrag, 965 const struct mptcp_data_frag *df) 966 { 967 return df && pfrag->page == df->page && 968 pfrag->size - pfrag->offset > 0 && 969 pfrag->offset == (df->offset + df->data_len) && 970 df->data_seq + df->data_len == msk->write_seq; 971 } 972 973 static void dfrag_uncharge(struct sock *sk, int len) 974 { 975 sk_mem_uncharge(sk, len); 976 sk_wmem_queued_add(sk, -len); 977 } 978 979 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 980 { 981 int len = dfrag->data_len + dfrag->overhead; 982 983 list_del(&dfrag->list); 984 dfrag_uncharge(sk, len); 985 put_page(dfrag->page); 986 } 987 988 static void __mptcp_clean_una(struct sock *sk) 989 { 990 struct mptcp_sock *msk = mptcp_sk(sk); 991 struct mptcp_data_frag *dtmp, *dfrag; 992 u64 snd_una; 993 994 snd_una = msk->snd_una; 995 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 996 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 997 break; 998 999 if (unlikely(dfrag == msk->first_pending)) { 1000 /* in recovery mode can see ack after the current snd head */ 1001 if (WARN_ON_ONCE(!msk->recovery)) 1002 break; 1003 1004 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1005 } 1006 1007 dfrag_clear(sk, dfrag); 1008 } 1009 1010 dfrag = mptcp_rtx_head(sk); 1011 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1012 u64 delta = snd_una - dfrag->data_seq; 1013 1014 /* prevent wrap around in recovery mode */ 1015 if (unlikely(delta > dfrag->already_sent)) { 1016 if (WARN_ON_ONCE(!msk->recovery)) 1017 goto out; 1018 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1019 goto out; 1020 dfrag->already_sent += delta - dfrag->already_sent; 1021 } 1022 1023 dfrag->data_seq += delta; 1024 dfrag->offset += delta; 1025 dfrag->data_len -= delta; 1026 dfrag->already_sent -= delta; 1027 1028 dfrag_uncharge(sk, delta); 1029 } 1030 1031 /* all retransmitted data acked, recovery completed */ 1032 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1033 msk->recovery = false; 1034 1035 out: 1036 if (snd_una == READ_ONCE(msk->snd_nxt) && 1037 snd_una == READ_ONCE(msk->write_seq)) { 1038 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1039 mptcp_stop_rtx_timer(sk); 1040 } else { 1041 mptcp_reset_rtx_timer(sk); 1042 } 1043 } 1044 1045 static void __mptcp_clean_una_wakeup(struct sock *sk) 1046 { 1047 lockdep_assert_held_once(&sk->sk_lock.slock); 1048 1049 __mptcp_clean_una(sk); 1050 mptcp_write_space(sk); 1051 } 1052 1053 static void mptcp_clean_una_wakeup(struct sock *sk) 1054 { 1055 mptcp_data_lock(sk); 1056 __mptcp_clean_una_wakeup(sk); 1057 mptcp_data_unlock(sk); 1058 } 1059 1060 static void mptcp_enter_memory_pressure(struct sock *sk) 1061 { 1062 struct mptcp_subflow_context *subflow; 1063 struct mptcp_sock *msk = mptcp_sk(sk); 1064 bool first = true; 1065 1066 mptcp_for_each_subflow(msk, subflow) { 1067 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1068 1069 if (first) 1070 tcp_enter_memory_pressure(ssk); 1071 sk_stream_moderate_sndbuf(ssk); 1072 1073 first = false; 1074 } 1075 __mptcp_sync_sndbuf(sk); 1076 } 1077 1078 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1079 * data 1080 */ 1081 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1082 { 1083 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1084 pfrag, sk->sk_allocation))) 1085 return true; 1086 1087 mptcp_enter_memory_pressure(sk); 1088 return false; 1089 } 1090 1091 static struct mptcp_data_frag * 1092 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1093 int orig_offset) 1094 { 1095 int offset = ALIGN(orig_offset, sizeof(long)); 1096 struct mptcp_data_frag *dfrag; 1097 1098 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1099 dfrag->data_len = 0; 1100 dfrag->data_seq = msk->write_seq; 1101 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1102 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1103 dfrag->already_sent = 0; 1104 dfrag->page = pfrag->page; 1105 1106 return dfrag; 1107 } 1108 1109 struct mptcp_sendmsg_info { 1110 int mss_now; 1111 int size_goal; 1112 u16 limit; 1113 u16 sent; 1114 unsigned int flags; 1115 bool data_lock_held; 1116 }; 1117 1118 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1119 u64 data_seq, int avail_size) 1120 { 1121 u64 window_end = mptcp_wnd_end(msk); 1122 u64 mptcp_snd_wnd; 1123 1124 if (__mptcp_check_fallback(msk)) 1125 return avail_size; 1126 1127 mptcp_snd_wnd = window_end - data_seq; 1128 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1129 1130 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1131 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1132 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1133 } 1134 1135 return avail_size; 1136 } 1137 1138 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1139 { 1140 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1141 1142 if (!mpext) 1143 return false; 1144 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1145 return true; 1146 } 1147 1148 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1149 { 1150 struct sk_buff *skb; 1151 1152 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1153 if (likely(skb)) { 1154 if (likely(__mptcp_add_ext(skb, gfp))) { 1155 skb_reserve(skb, MAX_TCP_HEADER); 1156 skb->ip_summed = CHECKSUM_PARTIAL; 1157 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1158 return skb; 1159 } 1160 __kfree_skb(skb); 1161 } else { 1162 mptcp_enter_memory_pressure(sk); 1163 } 1164 return NULL; 1165 } 1166 1167 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1168 { 1169 struct sk_buff *skb; 1170 1171 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1172 if (!skb) 1173 return NULL; 1174 1175 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1176 tcp_skb_entail(ssk, skb); 1177 return skb; 1178 } 1179 tcp_skb_tsorted_anchor_cleanup(skb); 1180 kfree_skb(skb); 1181 return NULL; 1182 } 1183 1184 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1185 { 1186 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1187 1188 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1189 } 1190 1191 /* note: this always recompute the csum on the whole skb, even 1192 * if we just appended a single frag. More status info needed 1193 */ 1194 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1195 { 1196 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1197 __wsum csum = ~csum_unfold(mpext->csum); 1198 int offset = skb->len - added; 1199 1200 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1201 } 1202 1203 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1204 struct sock *ssk, 1205 struct mptcp_ext *mpext) 1206 { 1207 if (!mpext) 1208 return; 1209 1210 mpext->infinite_map = 1; 1211 mpext->data_len = 0; 1212 1213 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1214 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1215 pr_fallback(msk); 1216 mptcp_do_fallback(ssk); 1217 } 1218 1219 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1220 1221 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1222 struct mptcp_data_frag *dfrag, 1223 struct mptcp_sendmsg_info *info) 1224 { 1225 u64 data_seq = dfrag->data_seq + info->sent; 1226 int offset = dfrag->offset + info->sent; 1227 struct mptcp_sock *msk = mptcp_sk(sk); 1228 bool zero_window_probe = false; 1229 struct mptcp_ext *mpext = NULL; 1230 bool can_coalesce = false; 1231 bool reuse_skb = true; 1232 struct sk_buff *skb; 1233 size_t copy; 1234 int i; 1235 1236 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1237 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1238 1239 if (WARN_ON_ONCE(info->sent > info->limit || 1240 info->limit > dfrag->data_len)) 1241 return 0; 1242 1243 if (unlikely(!__tcp_can_send(ssk))) 1244 return -EAGAIN; 1245 1246 /* compute send limit */ 1247 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1248 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1249 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1250 copy = info->size_goal; 1251 1252 skb = tcp_write_queue_tail(ssk); 1253 if (skb && copy > skb->len) { 1254 /* Limit the write to the size available in the 1255 * current skb, if any, so that we create at most a new skb. 1256 * Explicitly tells TCP internals to avoid collapsing on later 1257 * queue management operation, to avoid breaking the ext <-> 1258 * SSN association set here 1259 */ 1260 mpext = mptcp_get_ext(skb); 1261 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1262 TCP_SKB_CB(skb)->eor = 1; 1263 tcp_mark_push(tcp_sk(ssk), skb); 1264 goto alloc_skb; 1265 } 1266 1267 i = skb_shinfo(skb)->nr_frags; 1268 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1269 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1270 tcp_mark_push(tcp_sk(ssk), skb); 1271 goto alloc_skb; 1272 } 1273 1274 copy -= skb->len; 1275 } else { 1276 alloc_skb: 1277 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1278 if (!skb) 1279 return -ENOMEM; 1280 1281 i = skb_shinfo(skb)->nr_frags; 1282 reuse_skb = false; 1283 mpext = mptcp_get_ext(skb); 1284 } 1285 1286 /* Zero window and all data acked? Probe. */ 1287 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1288 if (copy == 0) { 1289 u64 snd_una = READ_ONCE(msk->snd_una); 1290 1291 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1292 tcp_remove_empty_skb(ssk); 1293 return 0; 1294 } 1295 1296 zero_window_probe = true; 1297 data_seq = snd_una - 1; 1298 copy = 1; 1299 } 1300 1301 copy = min_t(size_t, copy, info->limit - info->sent); 1302 if (!sk_wmem_schedule(ssk, copy)) { 1303 tcp_remove_empty_skb(ssk); 1304 return -ENOMEM; 1305 } 1306 1307 if (can_coalesce) { 1308 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1309 } else { 1310 get_page(dfrag->page); 1311 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1312 } 1313 1314 skb->len += copy; 1315 skb->data_len += copy; 1316 skb->truesize += copy; 1317 sk_wmem_queued_add(ssk, copy); 1318 sk_mem_charge(ssk, copy); 1319 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1320 TCP_SKB_CB(skb)->end_seq += copy; 1321 tcp_skb_pcount_set(skb, 0); 1322 1323 /* on skb reuse we just need to update the DSS len */ 1324 if (reuse_skb) { 1325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1326 mpext->data_len += copy; 1327 goto out; 1328 } 1329 1330 memset(mpext, 0, sizeof(*mpext)); 1331 mpext->data_seq = data_seq; 1332 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1333 mpext->data_len = copy; 1334 mpext->use_map = 1; 1335 mpext->dsn64 = 1; 1336 1337 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1338 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1339 mpext->dsn64); 1340 1341 if (zero_window_probe) { 1342 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1343 mpext->frozen = 1; 1344 if (READ_ONCE(msk->csum_enabled)) 1345 mptcp_update_data_checksum(skb, copy); 1346 tcp_push_pending_frames(ssk); 1347 return 0; 1348 } 1349 out: 1350 if (READ_ONCE(msk->csum_enabled)) 1351 mptcp_update_data_checksum(skb, copy); 1352 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1353 mptcp_update_infinite_map(msk, ssk, mpext); 1354 trace_mptcp_sendmsg_frag(mpext); 1355 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1356 return copy; 1357 } 1358 1359 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1360 sizeof(struct tcphdr) - \ 1361 MAX_TCP_OPTION_SPACE - \ 1362 sizeof(struct ipv6hdr) - \ 1363 sizeof(struct frag_hdr)) 1364 1365 struct subflow_send_info { 1366 struct sock *ssk; 1367 u64 linger_time; 1368 }; 1369 1370 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1371 { 1372 if (!subflow->stale) 1373 return; 1374 1375 subflow->stale = 0; 1376 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1377 } 1378 1379 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1380 { 1381 if (unlikely(subflow->stale)) { 1382 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1383 1384 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1385 return false; 1386 1387 mptcp_subflow_set_active(subflow); 1388 } 1389 return __mptcp_subflow_active(subflow); 1390 } 1391 1392 #define SSK_MODE_ACTIVE 0 1393 #define SSK_MODE_BACKUP 1 1394 #define SSK_MODE_MAX 2 1395 1396 /* implement the mptcp packet scheduler; 1397 * returns the subflow that will transmit the next DSS 1398 * additionally updates the rtx timeout 1399 */ 1400 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1401 { 1402 struct subflow_send_info send_info[SSK_MODE_MAX]; 1403 struct mptcp_subflow_context *subflow; 1404 struct sock *sk = (struct sock *)msk; 1405 u32 pace, burst, wmem; 1406 int i, nr_active = 0; 1407 struct sock *ssk; 1408 u64 linger_time; 1409 long tout = 0; 1410 1411 /* pick the subflow with the lower wmem/wspace ratio */ 1412 for (i = 0; i < SSK_MODE_MAX; ++i) { 1413 send_info[i].ssk = NULL; 1414 send_info[i].linger_time = -1; 1415 } 1416 1417 mptcp_for_each_subflow(msk, subflow) { 1418 trace_mptcp_subflow_get_send(subflow); 1419 ssk = mptcp_subflow_tcp_sock(subflow); 1420 if (!mptcp_subflow_active(subflow)) 1421 continue; 1422 1423 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1424 nr_active += !subflow->backup; 1425 pace = subflow->avg_pacing_rate; 1426 if (unlikely(!pace)) { 1427 /* init pacing rate from socket */ 1428 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1429 pace = subflow->avg_pacing_rate; 1430 if (!pace) 1431 continue; 1432 } 1433 1434 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1435 if (linger_time < send_info[subflow->backup].linger_time) { 1436 send_info[subflow->backup].ssk = ssk; 1437 send_info[subflow->backup].linger_time = linger_time; 1438 } 1439 } 1440 __mptcp_set_timeout(sk, tout); 1441 1442 /* pick the best backup if no other subflow is active */ 1443 if (!nr_active) 1444 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1445 1446 /* According to the blest algorithm, to avoid HoL blocking for the 1447 * faster flow, we need to: 1448 * - estimate the faster flow linger time 1449 * - use the above to estimate the amount of byte transferred 1450 * by the faster flow 1451 * - check that the amount of queued data is greter than the above, 1452 * otherwise do not use the picked, slower, subflow 1453 * We select the subflow with the shorter estimated time to flush 1454 * the queued mem, which basically ensure the above. We just need 1455 * to check that subflow has a non empty cwin. 1456 */ 1457 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1458 if (!ssk || !sk_stream_memory_free(ssk)) 1459 return NULL; 1460 1461 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1462 wmem = READ_ONCE(ssk->sk_wmem_queued); 1463 if (!burst) 1464 return ssk; 1465 1466 subflow = mptcp_subflow_ctx(ssk); 1467 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1468 READ_ONCE(ssk->sk_pacing_rate) * burst, 1469 burst + wmem); 1470 msk->snd_burst = burst; 1471 return ssk; 1472 } 1473 1474 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1475 { 1476 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1477 release_sock(ssk); 1478 } 1479 1480 static void mptcp_update_post_push(struct mptcp_sock *msk, 1481 struct mptcp_data_frag *dfrag, 1482 u32 sent) 1483 { 1484 u64 snd_nxt_new = dfrag->data_seq; 1485 1486 dfrag->already_sent += sent; 1487 1488 msk->snd_burst -= sent; 1489 1490 snd_nxt_new += dfrag->already_sent; 1491 1492 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1493 * is recovering after a failover. In that event, this re-sends 1494 * old segments. 1495 * 1496 * Thus compute snd_nxt_new candidate based on 1497 * the dfrag->data_seq that was sent and the data 1498 * that has been handed to the subflow for transmission 1499 * and skip update in case it was old dfrag. 1500 */ 1501 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1502 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1503 msk->snd_nxt = snd_nxt_new; 1504 } 1505 } 1506 1507 void mptcp_check_and_set_pending(struct sock *sk) 1508 { 1509 if (mptcp_send_head(sk)) { 1510 mptcp_data_lock(sk); 1511 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1512 mptcp_data_unlock(sk); 1513 } 1514 } 1515 1516 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1517 struct mptcp_sendmsg_info *info) 1518 { 1519 struct mptcp_sock *msk = mptcp_sk(sk); 1520 struct mptcp_data_frag *dfrag; 1521 int len, copied = 0, err = 0; 1522 1523 while ((dfrag = mptcp_send_head(sk))) { 1524 info->sent = dfrag->already_sent; 1525 info->limit = dfrag->data_len; 1526 len = dfrag->data_len - dfrag->already_sent; 1527 while (len > 0) { 1528 int ret = 0; 1529 1530 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1531 if (ret <= 0) { 1532 err = copied ? : ret; 1533 goto out; 1534 } 1535 1536 info->sent += ret; 1537 copied += ret; 1538 len -= ret; 1539 1540 mptcp_update_post_push(msk, dfrag, ret); 1541 } 1542 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1543 1544 if (msk->snd_burst <= 0 || 1545 !sk_stream_memory_free(ssk) || 1546 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1547 err = copied; 1548 goto out; 1549 } 1550 mptcp_set_timeout(sk); 1551 } 1552 err = copied; 1553 1554 out: 1555 return err; 1556 } 1557 1558 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1559 { 1560 struct sock *prev_ssk = NULL, *ssk = NULL; 1561 struct mptcp_sock *msk = mptcp_sk(sk); 1562 struct mptcp_sendmsg_info info = { 1563 .flags = flags, 1564 }; 1565 bool do_check_data_fin = false; 1566 int push_count = 1; 1567 1568 while (mptcp_send_head(sk) && (push_count > 0)) { 1569 struct mptcp_subflow_context *subflow; 1570 int ret = 0; 1571 1572 if (mptcp_sched_get_send(msk)) 1573 break; 1574 1575 push_count = 0; 1576 1577 mptcp_for_each_subflow(msk, subflow) { 1578 if (READ_ONCE(subflow->scheduled)) { 1579 mptcp_subflow_set_scheduled(subflow, false); 1580 1581 prev_ssk = ssk; 1582 ssk = mptcp_subflow_tcp_sock(subflow); 1583 if (ssk != prev_ssk) { 1584 /* First check. If the ssk has changed since 1585 * the last round, release prev_ssk 1586 */ 1587 if (prev_ssk) 1588 mptcp_push_release(prev_ssk, &info); 1589 1590 /* Need to lock the new subflow only if different 1591 * from the previous one, otherwise we are still 1592 * helding the relevant lock 1593 */ 1594 lock_sock(ssk); 1595 } 1596 1597 push_count++; 1598 1599 ret = __subflow_push_pending(sk, ssk, &info); 1600 if (ret <= 0) { 1601 if (ret != -EAGAIN || 1602 (1 << ssk->sk_state) & 1603 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1604 push_count--; 1605 continue; 1606 } 1607 do_check_data_fin = true; 1608 } 1609 } 1610 } 1611 1612 /* at this point we held the socket lock for the last subflow we used */ 1613 if (ssk) 1614 mptcp_push_release(ssk, &info); 1615 1616 /* ensure the rtx timer is running */ 1617 if (!mptcp_rtx_timer_pending(sk)) 1618 mptcp_reset_rtx_timer(sk); 1619 if (do_check_data_fin) 1620 mptcp_check_send_data_fin(sk); 1621 } 1622 1623 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1624 { 1625 struct mptcp_sock *msk = mptcp_sk(sk); 1626 struct mptcp_sendmsg_info info = { 1627 .data_lock_held = true, 1628 }; 1629 bool keep_pushing = true; 1630 struct sock *xmit_ssk; 1631 int copied = 0; 1632 1633 info.flags = 0; 1634 while (mptcp_send_head(sk) && keep_pushing) { 1635 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1636 int ret = 0; 1637 1638 /* check for a different subflow usage only after 1639 * spooling the first chunk of data 1640 */ 1641 if (first) { 1642 mptcp_subflow_set_scheduled(subflow, false); 1643 ret = __subflow_push_pending(sk, ssk, &info); 1644 first = false; 1645 if (ret <= 0) 1646 break; 1647 copied += ret; 1648 continue; 1649 } 1650 1651 if (mptcp_sched_get_send(msk)) 1652 goto out; 1653 1654 if (READ_ONCE(subflow->scheduled)) { 1655 mptcp_subflow_set_scheduled(subflow, false); 1656 ret = __subflow_push_pending(sk, ssk, &info); 1657 if (ret <= 0) 1658 keep_pushing = false; 1659 copied += ret; 1660 } 1661 1662 mptcp_for_each_subflow(msk, subflow) { 1663 if (READ_ONCE(subflow->scheduled)) { 1664 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1665 if (xmit_ssk != ssk) { 1666 mptcp_subflow_delegate(subflow, 1667 MPTCP_DELEGATE_SEND); 1668 keep_pushing = false; 1669 } 1670 } 1671 } 1672 } 1673 1674 out: 1675 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1676 * not going to flush it via release_sock() 1677 */ 1678 if (copied) { 1679 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1680 info.size_goal); 1681 if (!mptcp_rtx_timer_pending(sk)) 1682 mptcp_reset_rtx_timer(sk); 1683 1684 if (msk->snd_data_fin_enable && 1685 msk->snd_nxt + 1 == msk->write_seq) 1686 mptcp_schedule_work(sk); 1687 } 1688 } 1689 1690 static void mptcp_set_nospace(struct sock *sk) 1691 { 1692 /* enable autotune */ 1693 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1694 1695 /* will be cleared on avail space */ 1696 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1697 } 1698 1699 static int mptcp_disconnect(struct sock *sk, int flags); 1700 1701 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1702 size_t len, int *copied_syn) 1703 { 1704 unsigned int saved_flags = msg->msg_flags; 1705 struct mptcp_sock *msk = mptcp_sk(sk); 1706 struct sock *ssk; 1707 int ret; 1708 1709 /* on flags based fastopen the mptcp is supposed to create the 1710 * first subflow right now. Otherwise we are in the defer_connect 1711 * path, and the first subflow must be already present. 1712 * Since the defer_connect flag is cleared after the first succsful 1713 * fastopen attempt, no need to check for additional subflow status. 1714 */ 1715 if (msg->msg_flags & MSG_FASTOPEN) { 1716 ssk = __mptcp_nmpc_sk(msk); 1717 if (IS_ERR(ssk)) 1718 return PTR_ERR(ssk); 1719 } 1720 if (!msk->first) 1721 return -EINVAL; 1722 1723 ssk = msk->first; 1724 1725 lock_sock(ssk); 1726 msg->msg_flags |= MSG_DONTWAIT; 1727 msk->fastopening = 1; 1728 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1729 msk->fastopening = 0; 1730 msg->msg_flags = saved_flags; 1731 release_sock(ssk); 1732 1733 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1734 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1735 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1736 msg->msg_namelen, msg->msg_flags, 1); 1737 1738 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1739 * case of any error, except timeout or signal 1740 */ 1741 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1742 *copied_syn = 0; 1743 } else if (ret && ret != -EINPROGRESS) { 1744 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1745 * __inet_stream_connect() can fail, due to looking check, 1746 * see mptcp_disconnect(). 1747 * Attempt it again outside the problematic scope. 1748 */ 1749 if (!mptcp_disconnect(sk, 0)) 1750 sk->sk_socket->state = SS_UNCONNECTED; 1751 } 1752 inet_clear_bit(DEFER_CONNECT, sk); 1753 1754 return ret; 1755 } 1756 1757 static int do_copy_data_nocache(struct sock *sk, int copy, 1758 struct iov_iter *from, char *to) 1759 { 1760 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1761 if (!copy_from_iter_full_nocache(to, copy, from)) 1762 return -EFAULT; 1763 } else if (!copy_from_iter_full(to, copy, from)) { 1764 return -EFAULT; 1765 } 1766 return 0; 1767 } 1768 1769 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1770 { 1771 struct mptcp_sock *msk = mptcp_sk(sk); 1772 struct page_frag *pfrag; 1773 size_t copied = 0; 1774 int ret = 0; 1775 long timeo; 1776 1777 /* silently ignore everything else */ 1778 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1779 1780 lock_sock(sk); 1781 1782 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1783 msg->msg_flags & MSG_FASTOPEN)) { 1784 int copied_syn = 0; 1785 1786 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1787 copied += copied_syn; 1788 if (ret == -EINPROGRESS && copied_syn > 0) 1789 goto out; 1790 else if (ret) 1791 goto do_error; 1792 } 1793 1794 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1795 1796 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1797 ret = sk_stream_wait_connect(sk, &timeo); 1798 if (ret) 1799 goto do_error; 1800 } 1801 1802 ret = -EPIPE; 1803 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1804 goto do_error; 1805 1806 pfrag = sk_page_frag(sk); 1807 1808 while (msg_data_left(msg)) { 1809 int total_ts, frag_truesize = 0; 1810 struct mptcp_data_frag *dfrag; 1811 bool dfrag_collapsed; 1812 size_t psize, offset; 1813 1814 /* reuse tail pfrag, if possible, or carve a new one from the 1815 * page allocator 1816 */ 1817 dfrag = mptcp_pending_tail(sk); 1818 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1819 if (!dfrag_collapsed) { 1820 if (!sk_stream_memory_free(sk)) 1821 goto wait_for_memory; 1822 1823 if (!mptcp_page_frag_refill(sk, pfrag)) 1824 goto wait_for_memory; 1825 1826 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1827 frag_truesize = dfrag->overhead; 1828 } 1829 1830 /* we do not bound vs wspace, to allow a single packet. 1831 * memory accounting will prevent execessive memory usage 1832 * anyway 1833 */ 1834 offset = dfrag->offset + dfrag->data_len; 1835 psize = pfrag->size - offset; 1836 psize = min_t(size_t, psize, msg_data_left(msg)); 1837 total_ts = psize + frag_truesize; 1838 1839 if (!sk_wmem_schedule(sk, total_ts)) 1840 goto wait_for_memory; 1841 1842 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1843 page_address(dfrag->page) + offset); 1844 if (ret) 1845 goto do_error; 1846 1847 /* data successfully copied into the write queue */ 1848 sk_forward_alloc_add(sk, -total_ts); 1849 copied += psize; 1850 dfrag->data_len += psize; 1851 frag_truesize += psize; 1852 pfrag->offset += frag_truesize; 1853 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1854 1855 /* charge data on mptcp pending queue to the msk socket 1856 * Note: we charge such data both to sk and ssk 1857 */ 1858 sk_wmem_queued_add(sk, frag_truesize); 1859 if (!dfrag_collapsed) { 1860 get_page(dfrag->page); 1861 list_add_tail(&dfrag->list, &msk->rtx_queue); 1862 if (!msk->first_pending) 1863 WRITE_ONCE(msk->first_pending, dfrag); 1864 } 1865 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1866 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1867 !dfrag_collapsed); 1868 1869 continue; 1870 1871 wait_for_memory: 1872 mptcp_set_nospace(sk); 1873 __mptcp_push_pending(sk, msg->msg_flags); 1874 ret = sk_stream_wait_memory(sk, &timeo); 1875 if (ret) 1876 goto do_error; 1877 } 1878 1879 if (copied) 1880 __mptcp_push_pending(sk, msg->msg_flags); 1881 1882 out: 1883 release_sock(sk); 1884 return copied; 1885 1886 do_error: 1887 if (copied) 1888 goto out; 1889 1890 copied = sk_stream_error(sk, msg->msg_flags, ret); 1891 goto out; 1892 } 1893 1894 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1895 struct msghdr *msg, 1896 size_t len, int flags, 1897 struct scm_timestamping_internal *tss, 1898 int *cmsg_flags) 1899 { 1900 struct sk_buff *skb, *tmp; 1901 int copied = 0; 1902 1903 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1904 u32 offset = MPTCP_SKB_CB(skb)->offset; 1905 u32 data_len = skb->len - offset; 1906 u32 count = min_t(size_t, len - copied, data_len); 1907 int err; 1908 1909 if (!(flags & MSG_TRUNC)) { 1910 err = skb_copy_datagram_msg(skb, offset, msg, count); 1911 if (unlikely(err < 0)) { 1912 if (!copied) 1913 return err; 1914 break; 1915 } 1916 } 1917 1918 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1919 tcp_update_recv_tstamps(skb, tss); 1920 *cmsg_flags |= MPTCP_CMSG_TS; 1921 } 1922 1923 copied += count; 1924 1925 if (count < data_len) { 1926 if (!(flags & MSG_PEEK)) { 1927 MPTCP_SKB_CB(skb)->offset += count; 1928 MPTCP_SKB_CB(skb)->map_seq += count; 1929 msk->bytes_consumed += count; 1930 } 1931 break; 1932 } 1933 1934 if (!(flags & MSG_PEEK)) { 1935 /* we will bulk release the skb memory later */ 1936 skb->destructor = NULL; 1937 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1938 __skb_unlink(skb, &msk->receive_queue); 1939 __kfree_skb(skb); 1940 msk->bytes_consumed += count; 1941 } 1942 1943 if (copied >= len) 1944 break; 1945 } 1946 1947 return copied; 1948 } 1949 1950 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1951 * 1952 * Only difference: Use highest rtt estimate of the subflows in use. 1953 */ 1954 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1955 { 1956 struct mptcp_subflow_context *subflow; 1957 struct sock *sk = (struct sock *)msk; 1958 u8 scaling_ratio = U8_MAX; 1959 u32 time, advmss = 1; 1960 u64 rtt_us, mstamp; 1961 1962 msk_owned_by_me(msk); 1963 1964 if (copied <= 0) 1965 return; 1966 1967 if (!msk->rcvspace_init) 1968 mptcp_rcv_space_init(msk, msk->first); 1969 1970 msk->rcvq_space.copied += copied; 1971 1972 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1973 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1974 1975 rtt_us = msk->rcvq_space.rtt_us; 1976 if (rtt_us && time < (rtt_us >> 3)) 1977 return; 1978 1979 rtt_us = 0; 1980 mptcp_for_each_subflow(msk, subflow) { 1981 const struct tcp_sock *tp; 1982 u64 sf_rtt_us; 1983 u32 sf_advmss; 1984 1985 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1986 1987 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1988 sf_advmss = READ_ONCE(tp->advmss); 1989 1990 rtt_us = max(sf_rtt_us, rtt_us); 1991 advmss = max(sf_advmss, advmss); 1992 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1993 } 1994 1995 msk->rcvq_space.rtt_us = rtt_us; 1996 msk->scaling_ratio = scaling_ratio; 1997 if (time < (rtt_us >> 3) || rtt_us == 0) 1998 return; 1999 2000 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2001 goto new_measure; 2002 2003 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2004 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2005 u64 rcvwin, grow; 2006 int rcvbuf; 2007 2008 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2009 2010 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2011 2012 do_div(grow, msk->rcvq_space.space); 2013 rcvwin += (grow << 1); 2014 2015 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2016 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2017 2018 if (rcvbuf > sk->sk_rcvbuf) { 2019 u32 window_clamp; 2020 2021 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2022 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2023 2024 /* Make subflows follow along. If we do not do this, we 2025 * get drops at subflow level if skbs can't be moved to 2026 * the mptcp rx queue fast enough (announced rcv_win can 2027 * exceed ssk->sk_rcvbuf). 2028 */ 2029 mptcp_for_each_subflow(msk, subflow) { 2030 struct sock *ssk; 2031 bool slow; 2032 2033 ssk = mptcp_subflow_tcp_sock(subflow); 2034 slow = lock_sock_fast(ssk); 2035 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2036 tcp_sk(ssk)->window_clamp = window_clamp; 2037 tcp_cleanup_rbuf(ssk, 1); 2038 unlock_sock_fast(ssk, slow); 2039 } 2040 } 2041 } 2042 2043 msk->rcvq_space.space = msk->rcvq_space.copied; 2044 new_measure: 2045 msk->rcvq_space.copied = 0; 2046 msk->rcvq_space.time = mstamp; 2047 } 2048 2049 static void __mptcp_update_rmem(struct sock *sk) 2050 { 2051 struct mptcp_sock *msk = mptcp_sk(sk); 2052 2053 if (!msk->rmem_released) 2054 return; 2055 2056 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2057 mptcp_rmem_uncharge(sk, msk->rmem_released); 2058 WRITE_ONCE(msk->rmem_released, 0); 2059 } 2060 2061 static void __mptcp_splice_receive_queue(struct sock *sk) 2062 { 2063 struct mptcp_sock *msk = mptcp_sk(sk); 2064 2065 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2066 } 2067 2068 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2069 { 2070 struct sock *sk = (struct sock *)msk; 2071 unsigned int moved = 0; 2072 bool ret, done; 2073 2074 do { 2075 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2076 bool slowpath; 2077 2078 /* we can have data pending in the subflows only if the msk 2079 * receive buffer was full at subflow_data_ready() time, 2080 * that is an unlikely slow path. 2081 */ 2082 if (likely(!ssk)) 2083 break; 2084 2085 slowpath = lock_sock_fast(ssk); 2086 mptcp_data_lock(sk); 2087 __mptcp_update_rmem(sk); 2088 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2089 mptcp_data_unlock(sk); 2090 2091 if (unlikely(ssk->sk_err)) 2092 __mptcp_error_report(sk); 2093 unlock_sock_fast(ssk, slowpath); 2094 } while (!done); 2095 2096 /* acquire the data lock only if some input data is pending */ 2097 ret = moved > 0; 2098 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2099 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2100 mptcp_data_lock(sk); 2101 __mptcp_update_rmem(sk); 2102 ret |= __mptcp_ofo_queue(msk); 2103 __mptcp_splice_receive_queue(sk); 2104 mptcp_data_unlock(sk); 2105 } 2106 if (ret) 2107 mptcp_check_data_fin((struct sock *)msk); 2108 return !skb_queue_empty(&msk->receive_queue); 2109 } 2110 2111 static unsigned int mptcp_inq_hint(const struct sock *sk) 2112 { 2113 const struct mptcp_sock *msk = mptcp_sk(sk); 2114 const struct sk_buff *skb; 2115 2116 skb = skb_peek(&msk->receive_queue); 2117 if (skb) { 2118 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2119 2120 if (hint_val >= INT_MAX) 2121 return INT_MAX; 2122 2123 return (unsigned int)hint_val; 2124 } 2125 2126 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2127 return 1; 2128 2129 return 0; 2130 } 2131 2132 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2133 int flags, int *addr_len) 2134 { 2135 struct mptcp_sock *msk = mptcp_sk(sk); 2136 struct scm_timestamping_internal tss; 2137 int copied = 0, cmsg_flags = 0; 2138 int target; 2139 long timeo; 2140 2141 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2142 if (unlikely(flags & MSG_ERRQUEUE)) 2143 return inet_recv_error(sk, msg, len, addr_len); 2144 2145 lock_sock(sk); 2146 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2147 copied = -ENOTCONN; 2148 goto out_err; 2149 } 2150 2151 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2152 2153 len = min_t(size_t, len, INT_MAX); 2154 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2155 2156 if (unlikely(msk->recvmsg_inq)) 2157 cmsg_flags = MPTCP_CMSG_INQ; 2158 2159 while (copied < len) { 2160 int bytes_read; 2161 2162 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2163 if (unlikely(bytes_read < 0)) { 2164 if (!copied) 2165 copied = bytes_read; 2166 goto out_err; 2167 } 2168 2169 copied += bytes_read; 2170 2171 /* be sure to advertise window change */ 2172 mptcp_cleanup_rbuf(msk); 2173 2174 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2175 continue; 2176 2177 /* only the master socket status is relevant here. The exit 2178 * conditions mirror closely tcp_recvmsg() 2179 */ 2180 if (copied >= target) 2181 break; 2182 2183 if (copied) { 2184 if (sk->sk_err || 2185 sk->sk_state == TCP_CLOSE || 2186 (sk->sk_shutdown & RCV_SHUTDOWN) || 2187 !timeo || 2188 signal_pending(current)) 2189 break; 2190 } else { 2191 if (sk->sk_err) { 2192 copied = sock_error(sk); 2193 break; 2194 } 2195 2196 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2197 /* race breaker: the shutdown could be after the 2198 * previous receive queue check 2199 */ 2200 if (__mptcp_move_skbs(msk)) 2201 continue; 2202 break; 2203 } 2204 2205 if (sk->sk_state == TCP_CLOSE) { 2206 copied = -ENOTCONN; 2207 break; 2208 } 2209 2210 if (!timeo) { 2211 copied = -EAGAIN; 2212 break; 2213 } 2214 2215 if (signal_pending(current)) { 2216 copied = sock_intr_errno(timeo); 2217 break; 2218 } 2219 } 2220 2221 pr_debug("block timeout %ld", timeo); 2222 sk_wait_data(sk, &timeo, NULL); 2223 } 2224 2225 out_err: 2226 if (cmsg_flags && copied >= 0) { 2227 if (cmsg_flags & MPTCP_CMSG_TS) 2228 tcp_recv_timestamp(msg, sk, &tss); 2229 2230 if (cmsg_flags & MPTCP_CMSG_INQ) { 2231 unsigned int inq = mptcp_inq_hint(sk); 2232 2233 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2234 } 2235 } 2236 2237 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2238 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2239 skb_queue_empty(&msk->receive_queue), copied); 2240 if (!(flags & MSG_PEEK)) 2241 mptcp_rcv_space_adjust(msk, copied); 2242 2243 release_sock(sk); 2244 return copied; 2245 } 2246 2247 static void mptcp_retransmit_timer(struct timer_list *t) 2248 { 2249 struct inet_connection_sock *icsk = from_timer(icsk, t, 2250 icsk_retransmit_timer); 2251 struct sock *sk = &icsk->icsk_inet.sk; 2252 struct mptcp_sock *msk = mptcp_sk(sk); 2253 2254 bh_lock_sock(sk); 2255 if (!sock_owned_by_user(sk)) { 2256 /* we need a process context to retransmit */ 2257 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2258 mptcp_schedule_work(sk); 2259 } else { 2260 /* delegate our work to tcp_release_cb() */ 2261 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2262 } 2263 bh_unlock_sock(sk); 2264 sock_put(sk); 2265 } 2266 2267 static void mptcp_tout_timer(struct timer_list *t) 2268 { 2269 struct sock *sk = from_timer(sk, t, sk_timer); 2270 2271 mptcp_schedule_work(sk); 2272 sock_put(sk); 2273 } 2274 2275 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2276 * level. 2277 * 2278 * A backup subflow is returned only if that is the only kind available. 2279 */ 2280 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2281 { 2282 struct sock *backup = NULL, *pick = NULL; 2283 struct mptcp_subflow_context *subflow; 2284 int min_stale_count = INT_MAX; 2285 2286 mptcp_for_each_subflow(msk, subflow) { 2287 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2288 2289 if (!__mptcp_subflow_active(subflow)) 2290 continue; 2291 2292 /* still data outstanding at TCP level? skip this */ 2293 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2294 mptcp_pm_subflow_chk_stale(msk, ssk); 2295 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2296 continue; 2297 } 2298 2299 if (subflow->backup) { 2300 if (!backup) 2301 backup = ssk; 2302 continue; 2303 } 2304 2305 if (!pick) 2306 pick = ssk; 2307 } 2308 2309 if (pick) 2310 return pick; 2311 2312 /* use backup only if there are no progresses anywhere */ 2313 return min_stale_count > 1 ? backup : NULL; 2314 } 2315 2316 bool __mptcp_retransmit_pending_data(struct sock *sk) 2317 { 2318 struct mptcp_data_frag *cur, *rtx_head; 2319 struct mptcp_sock *msk = mptcp_sk(sk); 2320 2321 if (__mptcp_check_fallback(msk)) 2322 return false; 2323 2324 /* the closing socket has some data untransmitted and/or unacked: 2325 * some data in the mptcp rtx queue has not really xmitted yet. 2326 * keep it simple and re-inject the whole mptcp level rtx queue 2327 */ 2328 mptcp_data_lock(sk); 2329 __mptcp_clean_una_wakeup(sk); 2330 rtx_head = mptcp_rtx_head(sk); 2331 if (!rtx_head) { 2332 mptcp_data_unlock(sk); 2333 return false; 2334 } 2335 2336 msk->recovery_snd_nxt = msk->snd_nxt; 2337 msk->recovery = true; 2338 mptcp_data_unlock(sk); 2339 2340 msk->first_pending = rtx_head; 2341 msk->snd_burst = 0; 2342 2343 /* be sure to clear the "sent status" on all re-injected fragments */ 2344 list_for_each_entry(cur, &msk->rtx_queue, list) { 2345 if (!cur->already_sent) 2346 break; 2347 cur->already_sent = 0; 2348 } 2349 2350 return true; 2351 } 2352 2353 /* flags for __mptcp_close_ssk() */ 2354 #define MPTCP_CF_PUSH BIT(1) 2355 #define MPTCP_CF_FASTCLOSE BIT(2) 2356 2357 /* be sure to send a reset only if the caller asked for it, also 2358 * clean completely the subflow status when the subflow reaches 2359 * TCP_CLOSE state 2360 */ 2361 static void __mptcp_subflow_disconnect(struct sock *ssk, 2362 struct mptcp_subflow_context *subflow, 2363 unsigned int flags) 2364 { 2365 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2366 (flags & MPTCP_CF_FASTCLOSE)) { 2367 /* The MPTCP code never wait on the subflow sockets, TCP-level 2368 * disconnect should never fail 2369 */ 2370 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2371 mptcp_subflow_ctx_reset(subflow); 2372 } else { 2373 tcp_shutdown(ssk, SEND_SHUTDOWN); 2374 } 2375 } 2376 2377 /* subflow sockets can be either outgoing (connect) or incoming 2378 * (accept). 2379 * 2380 * Outgoing subflows use in-kernel sockets. 2381 * Incoming subflows do not have their own 'struct socket' allocated, 2382 * so we need to use tcp_close() after detaching them from the mptcp 2383 * parent socket. 2384 */ 2385 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2386 struct mptcp_subflow_context *subflow, 2387 unsigned int flags) 2388 { 2389 struct mptcp_sock *msk = mptcp_sk(sk); 2390 bool dispose_it, need_push = false; 2391 2392 /* If the first subflow moved to a close state before accept, e.g. due 2393 * to an incoming reset or listener shutdown, the subflow socket is 2394 * already deleted by inet_child_forget() and the mptcp socket can't 2395 * survive too. 2396 */ 2397 if (msk->in_accept_queue && msk->first == ssk && 2398 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2399 /* ensure later check in mptcp_worker() will dispose the msk */ 2400 sock_set_flag(sk, SOCK_DEAD); 2401 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2402 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2403 mptcp_subflow_drop_ctx(ssk); 2404 goto out_release; 2405 } 2406 2407 dispose_it = msk->free_first || ssk != msk->first; 2408 if (dispose_it) 2409 list_del(&subflow->node); 2410 2411 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2412 2413 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2414 /* be sure to force the tcp_close path 2415 * to generate the egress reset 2416 */ 2417 ssk->sk_lingertime = 0; 2418 sock_set_flag(ssk, SOCK_LINGER); 2419 subflow->send_fastclose = 1; 2420 } 2421 2422 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2423 if (!dispose_it) { 2424 __mptcp_subflow_disconnect(ssk, subflow, flags); 2425 release_sock(ssk); 2426 2427 goto out; 2428 } 2429 2430 subflow->disposable = 1; 2431 2432 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2433 * the ssk has been already destroyed, we just need to release the 2434 * reference owned by msk; 2435 */ 2436 if (!inet_csk(ssk)->icsk_ulp_ops) { 2437 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2438 kfree_rcu(subflow, rcu); 2439 } else { 2440 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2441 __tcp_close(ssk, 0); 2442 2443 /* close acquired an extra ref */ 2444 __sock_put(ssk); 2445 } 2446 2447 out_release: 2448 __mptcp_subflow_error_report(sk, ssk); 2449 release_sock(ssk); 2450 2451 sock_put(ssk); 2452 2453 if (ssk == msk->first) 2454 WRITE_ONCE(msk->first, NULL); 2455 2456 out: 2457 __mptcp_sync_sndbuf(sk); 2458 if (need_push) 2459 __mptcp_push_pending(sk, 0); 2460 2461 /* Catch every 'all subflows closed' scenario, including peers silently 2462 * closing them, e.g. due to timeout. 2463 * For established sockets, allow an additional timeout before closing, 2464 * as the protocol can still create more subflows. 2465 */ 2466 if (list_is_singular(&msk->conn_list) && msk->first && 2467 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2468 if (sk->sk_state != TCP_ESTABLISHED || 2469 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2470 mptcp_set_state(sk, TCP_CLOSE); 2471 mptcp_close_wake_up(sk); 2472 } else { 2473 mptcp_start_tout_timer(sk); 2474 } 2475 } 2476 } 2477 2478 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2479 struct mptcp_subflow_context *subflow) 2480 { 2481 if (sk->sk_state == TCP_ESTABLISHED) 2482 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2483 2484 /* subflow aborted before reaching the fully_established status 2485 * attempt the creation of the next subflow 2486 */ 2487 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2488 2489 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2490 } 2491 2492 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2493 { 2494 return 0; 2495 } 2496 2497 static void __mptcp_close_subflow(struct sock *sk) 2498 { 2499 struct mptcp_subflow_context *subflow, *tmp; 2500 struct mptcp_sock *msk = mptcp_sk(sk); 2501 2502 might_sleep(); 2503 2504 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2505 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2506 2507 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2508 continue; 2509 2510 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2511 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2512 continue; 2513 2514 mptcp_close_ssk(sk, ssk, subflow); 2515 } 2516 2517 } 2518 2519 static bool mptcp_close_tout_expired(const struct sock *sk) 2520 { 2521 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2522 sk->sk_state == TCP_CLOSE) 2523 return false; 2524 2525 return time_after32(tcp_jiffies32, 2526 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2527 } 2528 2529 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2530 { 2531 struct mptcp_subflow_context *subflow, *tmp; 2532 struct sock *sk = (struct sock *)msk; 2533 2534 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2535 return; 2536 2537 mptcp_token_destroy(msk); 2538 2539 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2540 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2541 bool slow; 2542 2543 slow = lock_sock_fast(tcp_sk); 2544 if (tcp_sk->sk_state != TCP_CLOSE) { 2545 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2546 tcp_set_state(tcp_sk, TCP_CLOSE); 2547 } 2548 unlock_sock_fast(tcp_sk, slow); 2549 } 2550 2551 /* Mirror the tcp_reset() error propagation */ 2552 switch (sk->sk_state) { 2553 case TCP_SYN_SENT: 2554 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2555 break; 2556 case TCP_CLOSE_WAIT: 2557 WRITE_ONCE(sk->sk_err, EPIPE); 2558 break; 2559 case TCP_CLOSE: 2560 return; 2561 default: 2562 WRITE_ONCE(sk->sk_err, ECONNRESET); 2563 } 2564 2565 mptcp_set_state(sk, TCP_CLOSE); 2566 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2567 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2568 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2569 2570 /* the calling mptcp_worker will properly destroy the socket */ 2571 if (sock_flag(sk, SOCK_DEAD)) 2572 return; 2573 2574 sk->sk_state_change(sk); 2575 sk_error_report(sk); 2576 } 2577 2578 static void __mptcp_retrans(struct sock *sk) 2579 { 2580 struct mptcp_sock *msk = mptcp_sk(sk); 2581 struct mptcp_subflow_context *subflow; 2582 struct mptcp_sendmsg_info info = {}; 2583 struct mptcp_data_frag *dfrag; 2584 struct sock *ssk; 2585 int ret, err; 2586 u16 len = 0; 2587 2588 mptcp_clean_una_wakeup(sk); 2589 2590 /* first check ssk: need to kick "stale" logic */ 2591 err = mptcp_sched_get_retrans(msk); 2592 dfrag = mptcp_rtx_head(sk); 2593 if (!dfrag) { 2594 if (mptcp_data_fin_enabled(msk)) { 2595 struct inet_connection_sock *icsk = inet_csk(sk); 2596 2597 icsk->icsk_retransmits++; 2598 mptcp_set_datafin_timeout(sk); 2599 mptcp_send_ack(msk); 2600 2601 goto reset_timer; 2602 } 2603 2604 if (!mptcp_send_head(sk)) 2605 return; 2606 2607 goto reset_timer; 2608 } 2609 2610 if (err) 2611 goto reset_timer; 2612 2613 mptcp_for_each_subflow(msk, subflow) { 2614 if (READ_ONCE(subflow->scheduled)) { 2615 u16 copied = 0; 2616 2617 mptcp_subflow_set_scheduled(subflow, false); 2618 2619 ssk = mptcp_subflow_tcp_sock(subflow); 2620 2621 lock_sock(ssk); 2622 2623 /* limit retransmission to the bytes already sent on some subflows */ 2624 info.sent = 0; 2625 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2626 dfrag->already_sent; 2627 while (info.sent < info.limit) { 2628 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2629 if (ret <= 0) 2630 break; 2631 2632 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2633 copied += ret; 2634 info.sent += ret; 2635 } 2636 if (copied) { 2637 len = max(copied, len); 2638 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2639 info.size_goal); 2640 WRITE_ONCE(msk->allow_infinite_fallback, false); 2641 } 2642 2643 release_sock(ssk); 2644 } 2645 } 2646 2647 msk->bytes_retrans += len; 2648 dfrag->already_sent = max(dfrag->already_sent, len); 2649 2650 reset_timer: 2651 mptcp_check_and_set_pending(sk); 2652 2653 if (!mptcp_rtx_timer_pending(sk)) 2654 mptcp_reset_rtx_timer(sk); 2655 } 2656 2657 /* schedule the timeout timer for the relevant event: either close timeout 2658 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2659 */ 2660 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2661 { 2662 struct sock *sk = (struct sock *)msk; 2663 unsigned long timeout, close_timeout; 2664 2665 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2666 return; 2667 2668 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2669 mptcp_close_timeout(sk); 2670 2671 /* the close timeout takes precedence on the fail one, and here at least one of 2672 * them is active 2673 */ 2674 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2675 2676 sk_reset_timer(sk, &sk->sk_timer, timeout); 2677 } 2678 2679 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2680 { 2681 struct sock *ssk = msk->first; 2682 bool slow; 2683 2684 if (!ssk) 2685 return; 2686 2687 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2688 2689 slow = lock_sock_fast(ssk); 2690 mptcp_subflow_reset(ssk); 2691 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2692 unlock_sock_fast(ssk, slow); 2693 } 2694 2695 static void mptcp_do_fastclose(struct sock *sk) 2696 { 2697 struct mptcp_subflow_context *subflow, *tmp; 2698 struct mptcp_sock *msk = mptcp_sk(sk); 2699 2700 mptcp_set_state(sk, TCP_CLOSE); 2701 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2702 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2703 subflow, MPTCP_CF_FASTCLOSE); 2704 } 2705 2706 static void mptcp_worker(struct work_struct *work) 2707 { 2708 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2709 struct sock *sk = (struct sock *)msk; 2710 unsigned long fail_tout; 2711 int state; 2712 2713 lock_sock(sk); 2714 state = sk->sk_state; 2715 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2716 goto unlock; 2717 2718 mptcp_check_fastclose(msk); 2719 2720 mptcp_pm_nl_work(msk); 2721 2722 mptcp_check_send_data_fin(sk); 2723 mptcp_check_data_fin_ack(sk); 2724 mptcp_check_data_fin(sk); 2725 2726 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2727 __mptcp_close_subflow(sk); 2728 2729 if (mptcp_close_tout_expired(sk)) { 2730 mptcp_do_fastclose(sk); 2731 mptcp_close_wake_up(sk); 2732 } 2733 2734 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2735 __mptcp_destroy_sock(sk); 2736 goto unlock; 2737 } 2738 2739 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2740 __mptcp_retrans(sk); 2741 2742 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2743 if (fail_tout && time_after(jiffies, fail_tout)) 2744 mptcp_mp_fail_no_response(msk); 2745 2746 unlock: 2747 release_sock(sk); 2748 sock_put(sk); 2749 } 2750 2751 static void __mptcp_init_sock(struct sock *sk) 2752 { 2753 struct mptcp_sock *msk = mptcp_sk(sk); 2754 2755 INIT_LIST_HEAD(&msk->conn_list); 2756 INIT_LIST_HEAD(&msk->join_list); 2757 INIT_LIST_HEAD(&msk->rtx_queue); 2758 INIT_WORK(&msk->work, mptcp_worker); 2759 __skb_queue_head_init(&msk->receive_queue); 2760 msk->out_of_order_queue = RB_ROOT; 2761 msk->first_pending = NULL; 2762 msk->rmem_fwd_alloc = 0; 2763 WRITE_ONCE(msk->rmem_released, 0); 2764 msk->timer_ival = TCP_RTO_MIN; 2765 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2766 2767 WRITE_ONCE(msk->first, NULL); 2768 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2769 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2770 WRITE_ONCE(msk->allow_infinite_fallback, true); 2771 msk->recovery = false; 2772 msk->subflow_id = 1; 2773 2774 mptcp_pm_data_init(msk); 2775 2776 /* re-use the csk retrans timer for MPTCP-level retrans */ 2777 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2778 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2779 } 2780 2781 static void mptcp_ca_reset(struct sock *sk) 2782 { 2783 struct inet_connection_sock *icsk = inet_csk(sk); 2784 2785 tcp_assign_congestion_control(sk); 2786 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2787 2788 /* no need to keep a reference to the ops, the name will suffice */ 2789 tcp_cleanup_congestion_control(sk); 2790 icsk->icsk_ca_ops = NULL; 2791 } 2792 2793 static int mptcp_init_sock(struct sock *sk) 2794 { 2795 struct net *net = sock_net(sk); 2796 int ret; 2797 2798 __mptcp_init_sock(sk); 2799 2800 if (!mptcp_is_enabled(net)) 2801 return -ENOPROTOOPT; 2802 2803 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2804 return -ENOMEM; 2805 2806 ret = mptcp_init_sched(mptcp_sk(sk), 2807 mptcp_sched_find(mptcp_get_scheduler(net))); 2808 if (ret) 2809 return ret; 2810 2811 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2812 2813 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2814 * propagate the correct value 2815 */ 2816 mptcp_ca_reset(sk); 2817 2818 sk_sockets_allocated_inc(sk); 2819 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2820 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2821 2822 return 0; 2823 } 2824 2825 static void __mptcp_clear_xmit(struct sock *sk) 2826 { 2827 struct mptcp_sock *msk = mptcp_sk(sk); 2828 struct mptcp_data_frag *dtmp, *dfrag; 2829 2830 WRITE_ONCE(msk->first_pending, NULL); 2831 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2832 dfrag_clear(sk, dfrag); 2833 } 2834 2835 void mptcp_cancel_work(struct sock *sk) 2836 { 2837 struct mptcp_sock *msk = mptcp_sk(sk); 2838 2839 if (cancel_work_sync(&msk->work)) 2840 __sock_put(sk); 2841 } 2842 2843 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2844 { 2845 lock_sock(ssk); 2846 2847 switch (ssk->sk_state) { 2848 case TCP_LISTEN: 2849 if (!(how & RCV_SHUTDOWN)) 2850 break; 2851 fallthrough; 2852 case TCP_SYN_SENT: 2853 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2854 break; 2855 default: 2856 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2857 pr_debug("Fallback"); 2858 ssk->sk_shutdown |= how; 2859 tcp_shutdown(ssk, how); 2860 2861 /* simulate the data_fin ack reception to let the state 2862 * machine move forward 2863 */ 2864 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2865 mptcp_schedule_work(sk); 2866 } else { 2867 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2868 tcp_send_ack(ssk); 2869 if (!mptcp_rtx_timer_pending(sk)) 2870 mptcp_reset_rtx_timer(sk); 2871 } 2872 break; 2873 } 2874 2875 release_sock(ssk); 2876 } 2877 2878 void mptcp_set_state(struct sock *sk, int state) 2879 { 2880 int oldstate = sk->sk_state; 2881 2882 switch (state) { 2883 case TCP_ESTABLISHED: 2884 if (oldstate != TCP_ESTABLISHED) 2885 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2886 break; 2887 2888 default: 2889 if (oldstate == TCP_ESTABLISHED) 2890 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2891 } 2892 2893 inet_sk_state_store(sk, state); 2894 } 2895 2896 static const unsigned char new_state[16] = { 2897 /* current state: new state: action: */ 2898 [0 /* (Invalid) */] = TCP_CLOSE, 2899 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2900 [TCP_SYN_SENT] = TCP_CLOSE, 2901 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2902 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2903 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2904 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2905 [TCP_CLOSE] = TCP_CLOSE, 2906 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2907 [TCP_LAST_ACK] = TCP_LAST_ACK, 2908 [TCP_LISTEN] = TCP_CLOSE, 2909 [TCP_CLOSING] = TCP_CLOSING, 2910 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2911 }; 2912 2913 static int mptcp_close_state(struct sock *sk) 2914 { 2915 int next = (int)new_state[sk->sk_state]; 2916 int ns = next & TCP_STATE_MASK; 2917 2918 mptcp_set_state(sk, ns); 2919 2920 return next & TCP_ACTION_FIN; 2921 } 2922 2923 static void mptcp_check_send_data_fin(struct sock *sk) 2924 { 2925 struct mptcp_subflow_context *subflow; 2926 struct mptcp_sock *msk = mptcp_sk(sk); 2927 2928 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2929 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2930 msk->snd_nxt, msk->write_seq); 2931 2932 /* we still need to enqueue subflows or not really shutting down, 2933 * skip this 2934 */ 2935 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2936 mptcp_send_head(sk)) 2937 return; 2938 2939 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2940 2941 mptcp_for_each_subflow(msk, subflow) { 2942 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2943 2944 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2945 } 2946 } 2947 2948 static void __mptcp_wr_shutdown(struct sock *sk) 2949 { 2950 struct mptcp_sock *msk = mptcp_sk(sk); 2951 2952 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2953 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2954 !!mptcp_send_head(sk)); 2955 2956 /* will be ignored by fallback sockets */ 2957 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2958 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2959 2960 mptcp_check_send_data_fin(sk); 2961 } 2962 2963 static void __mptcp_destroy_sock(struct sock *sk) 2964 { 2965 struct mptcp_sock *msk = mptcp_sk(sk); 2966 2967 pr_debug("msk=%p", msk); 2968 2969 might_sleep(); 2970 2971 mptcp_stop_rtx_timer(sk); 2972 sk_stop_timer(sk, &sk->sk_timer); 2973 msk->pm.status = 0; 2974 mptcp_release_sched(msk); 2975 2976 sk->sk_prot->destroy(sk); 2977 2978 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2979 WARN_ON_ONCE(msk->rmem_released); 2980 sk_stream_kill_queues(sk); 2981 xfrm_sk_free_policy(sk); 2982 2983 sock_put(sk); 2984 } 2985 2986 void __mptcp_unaccepted_force_close(struct sock *sk) 2987 { 2988 sock_set_flag(sk, SOCK_DEAD); 2989 mptcp_do_fastclose(sk); 2990 __mptcp_destroy_sock(sk); 2991 } 2992 2993 static __poll_t mptcp_check_readable(struct sock *sk) 2994 { 2995 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2996 } 2997 2998 static void mptcp_check_listen_stop(struct sock *sk) 2999 { 3000 struct sock *ssk; 3001 3002 if (inet_sk_state_load(sk) != TCP_LISTEN) 3003 return; 3004 3005 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3006 ssk = mptcp_sk(sk)->first; 3007 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3008 return; 3009 3010 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3011 tcp_set_state(ssk, TCP_CLOSE); 3012 mptcp_subflow_queue_clean(sk, ssk); 3013 inet_csk_listen_stop(ssk); 3014 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3015 release_sock(ssk); 3016 } 3017 3018 bool __mptcp_close(struct sock *sk, long timeout) 3019 { 3020 struct mptcp_subflow_context *subflow; 3021 struct mptcp_sock *msk = mptcp_sk(sk); 3022 bool do_cancel_work = false; 3023 int subflows_alive = 0; 3024 3025 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3026 3027 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3028 mptcp_check_listen_stop(sk); 3029 mptcp_set_state(sk, TCP_CLOSE); 3030 goto cleanup; 3031 } 3032 3033 if (mptcp_data_avail(msk) || timeout < 0) { 3034 /* If the msk has read data, or the caller explicitly ask it, 3035 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3036 */ 3037 mptcp_do_fastclose(sk); 3038 timeout = 0; 3039 } else if (mptcp_close_state(sk)) { 3040 __mptcp_wr_shutdown(sk); 3041 } 3042 3043 sk_stream_wait_close(sk, timeout); 3044 3045 cleanup: 3046 /* orphan all the subflows */ 3047 mptcp_for_each_subflow(msk, subflow) { 3048 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3049 bool slow = lock_sock_fast_nested(ssk); 3050 3051 subflows_alive += ssk->sk_state != TCP_CLOSE; 3052 3053 /* since the close timeout takes precedence on the fail one, 3054 * cancel the latter 3055 */ 3056 if (ssk == msk->first) 3057 subflow->fail_tout = 0; 3058 3059 /* detach from the parent socket, but allow data_ready to 3060 * push incoming data into the mptcp stack, to properly ack it 3061 */ 3062 ssk->sk_socket = NULL; 3063 ssk->sk_wq = NULL; 3064 unlock_sock_fast(ssk, slow); 3065 } 3066 sock_orphan(sk); 3067 3068 /* all the subflows are closed, only timeout can change the msk 3069 * state, let's not keep resources busy for no reasons 3070 */ 3071 if (subflows_alive == 0) 3072 mptcp_set_state(sk, TCP_CLOSE); 3073 3074 sock_hold(sk); 3075 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3076 if (msk->token) 3077 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3078 3079 if (sk->sk_state == TCP_CLOSE) { 3080 __mptcp_destroy_sock(sk); 3081 do_cancel_work = true; 3082 } else { 3083 mptcp_start_tout_timer(sk); 3084 } 3085 3086 return do_cancel_work; 3087 } 3088 3089 static void mptcp_close(struct sock *sk, long timeout) 3090 { 3091 bool do_cancel_work; 3092 3093 lock_sock(sk); 3094 3095 do_cancel_work = __mptcp_close(sk, timeout); 3096 release_sock(sk); 3097 if (do_cancel_work) 3098 mptcp_cancel_work(sk); 3099 3100 sock_put(sk); 3101 } 3102 3103 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3104 { 3105 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3106 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3107 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3108 3109 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3110 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3111 3112 if (msk6 && ssk6) { 3113 msk6->saddr = ssk6->saddr; 3114 msk6->flow_label = ssk6->flow_label; 3115 } 3116 #endif 3117 3118 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3119 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3120 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3121 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3122 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3123 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3124 } 3125 3126 static int mptcp_disconnect(struct sock *sk, int flags) 3127 { 3128 struct mptcp_sock *msk = mptcp_sk(sk); 3129 3130 /* We are on the fastopen error path. We can't call straight into the 3131 * subflows cleanup code due to lock nesting (we are already under 3132 * msk->firstsocket lock). 3133 */ 3134 if (msk->fastopening) 3135 return -EBUSY; 3136 3137 mptcp_check_listen_stop(sk); 3138 mptcp_set_state(sk, TCP_CLOSE); 3139 3140 mptcp_stop_rtx_timer(sk); 3141 mptcp_stop_tout_timer(sk); 3142 3143 if (msk->token) 3144 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3145 3146 /* msk->subflow is still intact, the following will not free the first 3147 * subflow 3148 */ 3149 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3150 WRITE_ONCE(msk->flags, 0); 3151 msk->cb_flags = 0; 3152 msk->recovery = false; 3153 msk->can_ack = false; 3154 msk->fully_established = false; 3155 msk->rcv_data_fin = false; 3156 msk->snd_data_fin_enable = false; 3157 msk->rcv_fastclose = false; 3158 msk->use_64bit_ack = false; 3159 msk->bytes_consumed = 0; 3160 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3161 mptcp_pm_data_reset(msk); 3162 mptcp_ca_reset(sk); 3163 msk->bytes_acked = 0; 3164 msk->bytes_received = 0; 3165 msk->bytes_sent = 0; 3166 msk->bytes_retrans = 0; 3167 msk->rcvspace_init = 0; 3168 3169 WRITE_ONCE(sk->sk_shutdown, 0); 3170 sk_error_report(sk); 3171 return 0; 3172 } 3173 3174 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3175 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3176 { 3177 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3178 3179 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3180 } 3181 3182 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3183 { 3184 const struct ipv6_pinfo *np = inet6_sk(sk); 3185 struct ipv6_txoptions *opt; 3186 struct ipv6_pinfo *newnp; 3187 3188 newnp = inet6_sk(newsk); 3189 3190 rcu_read_lock(); 3191 opt = rcu_dereference(np->opt); 3192 if (opt) { 3193 opt = ipv6_dup_options(newsk, opt); 3194 if (!opt) 3195 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3196 } 3197 RCU_INIT_POINTER(newnp->opt, opt); 3198 rcu_read_unlock(); 3199 } 3200 #endif 3201 3202 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3203 { 3204 struct ip_options_rcu *inet_opt, *newopt = NULL; 3205 const struct inet_sock *inet = inet_sk(sk); 3206 struct inet_sock *newinet; 3207 3208 newinet = inet_sk(newsk); 3209 3210 rcu_read_lock(); 3211 inet_opt = rcu_dereference(inet->inet_opt); 3212 if (inet_opt) { 3213 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3214 inet_opt->opt.optlen, GFP_ATOMIC); 3215 if (newopt) 3216 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3217 inet_opt->opt.optlen); 3218 else 3219 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3220 } 3221 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3222 rcu_read_unlock(); 3223 } 3224 3225 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3226 const struct mptcp_options_received *mp_opt, 3227 struct sock *ssk, 3228 struct request_sock *req) 3229 { 3230 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3231 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3232 struct mptcp_subflow_context *subflow; 3233 struct mptcp_sock *msk; 3234 3235 if (!nsk) 3236 return NULL; 3237 3238 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3239 if (nsk->sk_family == AF_INET6) 3240 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3241 #endif 3242 3243 __mptcp_init_sock(nsk); 3244 3245 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3246 if (nsk->sk_family == AF_INET6) 3247 mptcp_copy_ip6_options(nsk, sk); 3248 else 3249 #endif 3250 mptcp_copy_ip_options(nsk, sk); 3251 3252 msk = mptcp_sk(nsk); 3253 msk->local_key = subflow_req->local_key; 3254 msk->token = subflow_req->token; 3255 msk->in_accept_queue = 1; 3256 WRITE_ONCE(msk->fully_established, false); 3257 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3258 WRITE_ONCE(msk->csum_enabled, true); 3259 3260 msk->write_seq = subflow_req->idsn + 1; 3261 msk->snd_nxt = msk->write_seq; 3262 msk->snd_una = msk->write_seq; 3263 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd; 3264 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3265 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3266 3267 /* passive msk is created after the first/MPC subflow */ 3268 msk->subflow_id = 2; 3269 3270 sock_reset_flag(nsk, SOCK_RCU_FREE); 3271 security_inet_csk_clone(nsk, req); 3272 3273 /* this can't race with mptcp_close(), as the msk is 3274 * not yet exposted to user-space 3275 */ 3276 mptcp_set_state(nsk, TCP_ESTABLISHED); 3277 3278 /* The msk maintain a ref to each subflow in the connections list */ 3279 WRITE_ONCE(msk->first, ssk); 3280 subflow = mptcp_subflow_ctx(ssk); 3281 list_add(&subflow->node, &msk->conn_list); 3282 sock_hold(ssk); 3283 3284 /* new mpc subflow takes ownership of the newly 3285 * created mptcp socket 3286 */ 3287 mptcp_token_accept(subflow_req, msk); 3288 3289 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3290 * uses the correct data 3291 */ 3292 mptcp_copy_inaddrs(nsk, ssk); 3293 __mptcp_propagate_sndbuf(nsk, ssk); 3294 3295 mptcp_rcv_space_init(msk, ssk); 3296 3297 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3298 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3299 bh_unlock_sock(nsk); 3300 3301 /* note: the newly allocated socket refcount is 2 now */ 3302 return nsk; 3303 } 3304 3305 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3306 { 3307 const struct tcp_sock *tp = tcp_sk(ssk); 3308 3309 msk->rcvspace_init = 1; 3310 msk->rcvq_space.copied = 0; 3311 msk->rcvq_space.rtt_us = 0; 3312 3313 msk->rcvq_space.time = tp->tcp_mstamp; 3314 3315 /* initial rcv_space offering made to peer */ 3316 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3317 TCP_INIT_CWND * tp->advmss); 3318 if (msk->rcvq_space.space == 0) 3319 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3320 } 3321 3322 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3323 { 3324 struct mptcp_subflow_context *subflow, *tmp; 3325 struct sock *sk = (struct sock *)msk; 3326 3327 __mptcp_clear_xmit(sk); 3328 3329 /* join list will be eventually flushed (with rst) at sock lock release time */ 3330 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3331 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3332 3333 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3334 mptcp_data_lock(sk); 3335 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3336 __skb_queue_purge(&sk->sk_receive_queue); 3337 skb_rbtree_purge(&msk->out_of_order_queue); 3338 mptcp_data_unlock(sk); 3339 3340 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3341 * inet_sock_destruct() will dispose it 3342 */ 3343 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3344 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3345 mptcp_token_destroy(msk); 3346 mptcp_pm_free_anno_list(msk); 3347 mptcp_free_local_addr_list(msk); 3348 } 3349 3350 static void mptcp_destroy(struct sock *sk) 3351 { 3352 struct mptcp_sock *msk = mptcp_sk(sk); 3353 3354 /* allow the following to close even the initial subflow */ 3355 msk->free_first = 1; 3356 mptcp_destroy_common(msk, 0); 3357 sk_sockets_allocated_dec(sk); 3358 } 3359 3360 void __mptcp_data_acked(struct sock *sk) 3361 { 3362 if (!sock_owned_by_user(sk)) 3363 __mptcp_clean_una(sk); 3364 else 3365 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3366 3367 if (mptcp_pending_data_fin_ack(sk)) 3368 mptcp_schedule_work(sk); 3369 } 3370 3371 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3372 { 3373 if (!mptcp_send_head(sk)) 3374 return; 3375 3376 if (!sock_owned_by_user(sk)) 3377 __mptcp_subflow_push_pending(sk, ssk, false); 3378 else 3379 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3380 } 3381 3382 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3383 BIT(MPTCP_RETRANSMIT) | \ 3384 BIT(MPTCP_FLUSH_JOIN_LIST)) 3385 3386 /* processes deferred events and flush wmem */ 3387 static void mptcp_release_cb(struct sock *sk) 3388 __must_hold(&sk->sk_lock.slock) 3389 { 3390 struct mptcp_sock *msk = mptcp_sk(sk); 3391 3392 for (;;) { 3393 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3394 struct list_head join_list; 3395 3396 if (!flags) 3397 break; 3398 3399 INIT_LIST_HEAD(&join_list); 3400 list_splice_init(&msk->join_list, &join_list); 3401 3402 /* the following actions acquire the subflow socket lock 3403 * 3404 * 1) can't be invoked in atomic scope 3405 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3406 * datapath acquires the msk socket spinlock while helding 3407 * the subflow socket lock 3408 */ 3409 msk->cb_flags &= ~flags; 3410 spin_unlock_bh(&sk->sk_lock.slock); 3411 3412 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3413 __mptcp_flush_join_list(sk, &join_list); 3414 if (flags & BIT(MPTCP_PUSH_PENDING)) 3415 __mptcp_push_pending(sk, 0); 3416 if (flags & BIT(MPTCP_RETRANSMIT)) 3417 __mptcp_retrans(sk); 3418 3419 cond_resched(); 3420 spin_lock_bh(&sk->sk_lock.slock); 3421 } 3422 3423 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3424 __mptcp_clean_una_wakeup(sk); 3425 if (unlikely(msk->cb_flags)) { 3426 /* be sure to sync the msk state before taking actions 3427 * depending on sk_state (MPTCP_ERROR_REPORT) 3428 * On sk release avoid actions depending on the first subflow 3429 */ 3430 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3431 __mptcp_sync_state(sk, msk->pending_state); 3432 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3433 __mptcp_error_report(sk); 3434 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3435 __mptcp_sync_sndbuf(sk); 3436 } 3437 3438 __mptcp_update_rmem(sk); 3439 } 3440 3441 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3442 * TCP can't schedule delack timer before the subflow is fully established. 3443 * MPTCP uses the delack timer to do 3rd ack retransmissions 3444 */ 3445 static void schedule_3rdack_retransmission(struct sock *ssk) 3446 { 3447 struct inet_connection_sock *icsk = inet_csk(ssk); 3448 struct tcp_sock *tp = tcp_sk(ssk); 3449 unsigned long timeout; 3450 3451 if (mptcp_subflow_ctx(ssk)->fully_established) 3452 return; 3453 3454 /* reschedule with a timeout above RTT, as we must look only for drop */ 3455 if (tp->srtt_us) 3456 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3457 else 3458 timeout = TCP_TIMEOUT_INIT; 3459 timeout += jiffies; 3460 3461 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3462 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3463 icsk->icsk_ack.timeout = timeout; 3464 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3465 } 3466 3467 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3468 { 3469 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3470 struct sock *sk = subflow->conn; 3471 3472 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3473 mptcp_data_lock(sk); 3474 if (!sock_owned_by_user(sk)) 3475 __mptcp_subflow_push_pending(sk, ssk, true); 3476 else 3477 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3478 mptcp_data_unlock(sk); 3479 } 3480 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3481 mptcp_data_lock(sk); 3482 if (!sock_owned_by_user(sk)) 3483 __mptcp_sync_sndbuf(sk); 3484 else 3485 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3486 mptcp_data_unlock(sk); 3487 } 3488 if (status & BIT(MPTCP_DELEGATE_ACK)) 3489 schedule_3rdack_retransmission(ssk); 3490 } 3491 3492 static int mptcp_hash(struct sock *sk) 3493 { 3494 /* should never be called, 3495 * we hash the TCP subflows not the master socket 3496 */ 3497 WARN_ON_ONCE(1); 3498 return 0; 3499 } 3500 3501 static void mptcp_unhash(struct sock *sk) 3502 { 3503 /* called from sk_common_release(), but nothing to do here */ 3504 } 3505 3506 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3507 { 3508 struct mptcp_sock *msk = mptcp_sk(sk); 3509 3510 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3511 if (WARN_ON_ONCE(!msk->first)) 3512 return -EINVAL; 3513 3514 return inet_csk_get_port(msk->first, snum); 3515 } 3516 3517 void mptcp_finish_connect(struct sock *ssk) 3518 { 3519 struct mptcp_subflow_context *subflow; 3520 struct mptcp_sock *msk; 3521 struct sock *sk; 3522 3523 subflow = mptcp_subflow_ctx(ssk); 3524 sk = subflow->conn; 3525 msk = mptcp_sk(sk); 3526 3527 pr_debug("msk=%p, token=%u", sk, subflow->token); 3528 3529 subflow->map_seq = subflow->iasn; 3530 subflow->map_subflow_seq = 1; 3531 3532 /* the socket is not connected yet, no msk/subflow ops can access/race 3533 * accessing the field below 3534 */ 3535 WRITE_ONCE(msk->local_key, subflow->local_key); 3536 3537 mptcp_pm_new_connection(msk, ssk, 0); 3538 } 3539 3540 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3541 { 3542 write_lock_bh(&sk->sk_callback_lock); 3543 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3544 sk_set_socket(sk, parent); 3545 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3546 write_unlock_bh(&sk->sk_callback_lock); 3547 } 3548 3549 bool mptcp_finish_join(struct sock *ssk) 3550 { 3551 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3552 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3553 struct sock *parent = (void *)msk; 3554 bool ret = true; 3555 3556 pr_debug("msk=%p, subflow=%p", msk, subflow); 3557 3558 /* mptcp socket already closing? */ 3559 if (!mptcp_is_fully_established(parent)) { 3560 subflow->reset_reason = MPTCP_RST_EMPTCP; 3561 return false; 3562 } 3563 3564 /* active subflow, already present inside the conn_list */ 3565 if (!list_empty(&subflow->node)) { 3566 mptcp_subflow_joined(msk, ssk); 3567 mptcp_propagate_sndbuf(parent, ssk); 3568 return true; 3569 } 3570 3571 if (!mptcp_pm_allow_new_subflow(msk)) 3572 goto err_prohibited; 3573 3574 /* If we can't acquire msk socket lock here, let the release callback 3575 * handle it 3576 */ 3577 mptcp_data_lock(parent); 3578 if (!sock_owned_by_user(parent)) { 3579 ret = __mptcp_finish_join(msk, ssk); 3580 if (ret) { 3581 sock_hold(ssk); 3582 list_add_tail(&subflow->node, &msk->conn_list); 3583 } 3584 } else { 3585 sock_hold(ssk); 3586 list_add_tail(&subflow->node, &msk->join_list); 3587 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3588 } 3589 mptcp_data_unlock(parent); 3590 3591 if (!ret) { 3592 err_prohibited: 3593 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3594 return false; 3595 } 3596 3597 return true; 3598 } 3599 3600 static void mptcp_shutdown(struct sock *sk, int how) 3601 { 3602 pr_debug("sk=%p, how=%d", sk, how); 3603 3604 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3605 __mptcp_wr_shutdown(sk); 3606 } 3607 3608 static int mptcp_forward_alloc_get(const struct sock *sk) 3609 { 3610 return READ_ONCE(sk->sk_forward_alloc) + 3611 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3612 } 3613 3614 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3615 { 3616 const struct sock *sk = (void *)msk; 3617 u64 delta; 3618 3619 if (sk->sk_state == TCP_LISTEN) 3620 return -EINVAL; 3621 3622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3623 return 0; 3624 3625 delta = msk->write_seq - v; 3626 if (__mptcp_check_fallback(msk) && msk->first) { 3627 struct tcp_sock *tp = tcp_sk(msk->first); 3628 3629 /* the first subflow is disconnected after close - see 3630 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3631 * so ignore that status, too. 3632 */ 3633 if (!((1 << msk->first->sk_state) & 3634 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3635 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3636 } 3637 if (delta > INT_MAX) 3638 delta = INT_MAX; 3639 3640 return (int)delta; 3641 } 3642 3643 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3644 { 3645 struct mptcp_sock *msk = mptcp_sk(sk); 3646 bool slow; 3647 3648 switch (cmd) { 3649 case SIOCINQ: 3650 if (sk->sk_state == TCP_LISTEN) 3651 return -EINVAL; 3652 3653 lock_sock(sk); 3654 __mptcp_move_skbs(msk); 3655 *karg = mptcp_inq_hint(sk); 3656 release_sock(sk); 3657 break; 3658 case SIOCOUTQ: 3659 slow = lock_sock_fast(sk); 3660 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3661 unlock_sock_fast(sk, slow); 3662 break; 3663 case SIOCOUTQNSD: 3664 slow = lock_sock_fast(sk); 3665 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3666 unlock_sock_fast(sk, slow); 3667 break; 3668 default: 3669 return -ENOIOCTLCMD; 3670 } 3671 3672 return 0; 3673 } 3674 3675 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3676 struct mptcp_subflow_context *subflow) 3677 { 3678 subflow->request_mptcp = 0; 3679 __mptcp_do_fallback(msk); 3680 } 3681 3682 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3683 { 3684 struct mptcp_subflow_context *subflow; 3685 struct mptcp_sock *msk = mptcp_sk(sk); 3686 int err = -EINVAL; 3687 struct sock *ssk; 3688 3689 ssk = __mptcp_nmpc_sk(msk); 3690 if (IS_ERR(ssk)) 3691 return PTR_ERR(ssk); 3692 3693 mptcp_set_state(sk, TCP_SYN_SENT); 3694 subflow = mptcp_subflow_ctx(ssk); 3695 #ifdef CONFIG_TCP_MD5SIG 3696 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3697 * TCP option space. 3698 */ 3699 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3700 mptcp_subflow_early_fallback(msk, subflow); 3701 #endif 3702 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3703 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3704 mptcp_subflow_early_fallback(msk, subflow); 3705 } 3706 if (likely(!__mptcp_check_fallback(msk))) 3707 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3708 3709 /* if reaching here via the fastopen/sendmsg path, the caller already 3710 * acquired the subflow socket lock, too. 3711 */ 3712 if (!msk->fastopening) 3713 lock_sock(ssk); 3714 3715 /* the following mirrors closely a very small chunk of code from 3716 * __inet_stream_connect() 3717 */ 3718 if (ssk->sk_state != TCP_CLOSE) 3719 goto out; 3720 3721 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3722 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3723 if (err) 3724 goto out; 3725 } 3726 3727 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3728 if (err < 0) 3729 goto out; 3730 3731 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3732 3733 out: 3734 if (!msk->fastopening) 3735 release_sock(ssk); 3736 3737 /* on successful connect, the msk state will be moved to established by 3738 * subflow_finish_connect() 3739 */ 3740 if (unlikely(err)) { 3741 /* avoid leaving a dangling token in an unconnected socket */ 3742 mptcp_token_destroy(msk); 3743 mptcp_set_state(sk, TCP_CLOSE); 3744 return err; 3745 } 3746 3747 mptcp_copy_inaddrs(sk, ssk); 3748 return 0; 3749 } 3750 3751 static struct proto mptcp_prot = { 3752 .name = "MPTCP", 3753 .owner = THIS_MODULE, 3754 .init = mptcp_init_sock, 3755 .connect = mptcp_connect, 3756 .disconnect = mptcp_disconnect, 3757 .close = mptcp_close, 3758 .setsockopt = mptcp_setsockopt, 3759 .getsockopt = mptcp_getsockopt, 3760 .shutdown = mptcp_shutdown, 3761 .destroy = mptcp_destroy, 3762 .sendmsg = mptcp_sendmsg, 3763 .ioctl = mptcp_ioctl, 3764 .recvmsg = mptcp_recvmsg, 3765 .release_cb = mptcp_release_cb, 3766 .hash = mptcp_hash, 3767 .unhash = mptcp_unhash, 3768 .get_port = mptcp_get_port, 3769 .forward_alloc_get = mptcp_forward_alloc_get, 3770 .sockets_allocated = &mptcp_sockets_allocated, 3771 3772 .memory_allocated = &tcp_memory_allocated, 3773 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3774 3775 .memory_pressure = &tcp_memory_pressure, 3776 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3777 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3778 .sysctl_mem = sysctl_tcp_mem, 3779 .obj_size = sizeof(struct mptcp_sock), 3780 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3781 .no_autobind = true, 3782 }; 3783 3784 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3785 { 3786 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3787 struct sock *ssk, *sk = sock->sk; 3788 int err = -EINVAL; 3789 3790 lock_sock(sk); 3791 ssk = __mptcp_nmpc_sk(msk); 3792 if (IS_ERR(ssk)) { 3793 err = PTR_ERR(ssk); 3794 goto unlock; 3795 } 3796 3797 if (sk->sk_family == AF_INET) 3798 err = inet_bind_sk(ssk, uaddr, addr_len); 3799 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3800 else if (sk->sk_family == AF_INET6) 3801 err = inet6_bind_sk(ssk, uaddr, addr_len); 3802 #endif 3803 if (!err) 3804 mptcp_copy_inaddrs(sk, ssk); 3805 3806 unlock: 3807 release_sock(sk); 3808 return err; 3809 } 3810 3811 static int mptcp_listen(struct socket *sock, int backlog) 3812 { 3813 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3814 struct sock *sk = sock->sk; 3815 struct sock *ssk; 3816 int err; 3817 3818 pr_debug("msk=%p", msk); 3819 3820 lock_sock(sk); 3821 3822 err = -EINVAL; 3823 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3824 goto unlock; 3825 3826 ssk = __mptcp_nmpc_sk(msk); 3827 if (IS_ERR(ssk)) { 3828 err = PTR_ERR(ssk); 3829 goto unlock; 3830 } 3831 3832 mptcp_set_state(sk, TCP_LISTEN); 3833 sock_set_flag(sk, SOCK_RCU_FREE); 3834 3835 lock_sock(ssk); 3836 err = __inet_listen_sk(ssk, backlog); 3837 release_sock(ssk); 3838 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3839 3840 if (!err) { 3841 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3842 mptcp_copy_inaddrs(sk, ssk); 3843 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3844 } 3845 3846 unlock: 3847 release_sock(sk); 3848 return err; 3849 } 3850 3851 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3852 int flags, bool kern) 3853 { 3854 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3855 struct sock *ssk, *newsk; 3856 int err; 3857 3858 pr_debug("msk=%p", msk); 3859 3860 /* Buggy applications can call accept on socket states other then LISTEN 3861 * but no need to allocate the first subflow just to error out. 3862 */ 3863 ssk = READ_ONCE(msk->first); 3864 if (!ssk) 3865 return -EINVAL; 3866 3867 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3868 newsk = inet_csk_accept(ssk, flags, &err, kern); 3869 if (!newsk) 3870 return err; 3871 3872 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3873 if (sk_is_mptcp(newsk)) { 3874 struct mptcp_subflow_context *subflow; 3875 struct sock *new_mptcp_sock; 3876 3877 subflow = mptcp_subflow_ctx(newsk); 3878 new_mptcp_sock = subflow->conn; 3879 3880 /* is_mptcp should be false if subflow->conn is missing, see 3881 * subflow_syn_recv_sock() 3882 */ 3883 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3884 tcp_sk(newsk)->is_mptcp = 0; 3885 goto tcpfallback; 3886 } 3887 3888 newsk = new_mptcp_sock; 3889 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3890 3891 newsk->sk_kern_sock = kern; 3892 lock_sock(newsk); 3893 __inet_accept(sock, newsock, newsk); 3894 3895 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3896 msk = mptcp_sk(newsk); 3897 msk->in_accept_queue = 0; 3898 3899 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3900 * This is needed so NOSPACE flag can be set from tcp stack. 3901 */ 3902 mptcp_for_each_subflow(msk, subflow) { 3903 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3904 3905 if (!ssk->sk_socket) 3906 mptcp_sock_graft(ssk, newsock); 3907 } 3908 3909 /* Do late cleanup for the first subflow as necessary. Also 3910 * deal with bad peers not doing a complete shutdown. 3911 */ 3912 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3913 __mptcp_close_ssk(newsk, msk->first, 3914 mptcp_subflow_ctx(msk->first), 0); 3915 if (unlikely(list_is_singular(&msk->conn_list))) 3916 mptcp_set_state(newsk, TCP_CLOSE); 3917 } 3918 } else { 3919 MPTCP_INC_STATS(sock_net(ssk), 3920 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3921 tcpfallback: 3922 newsk->sk_kern_sock = kern; 3923 lock_sock(newsk); 3924 __inet_accept(sock, newsock, newsk); 3925 /* we are being invoked after accepting a non-mp-capable 3926 * flow: sk is a tcp_sk, not an mptcp one. 3927 * 3928 * Hand the socket over to tcp so all further socket ops 3929 * bypass mptcp. 3930 */ 3931 WRITE_ONCE(newsock->sk->sk_socket->ops, 3932 mptcp_fallback_tcp_ops(newsock->sk)); 3933 } 3934 release_sock(newsk); 3935 3936 return 0; 3937 } 3938 3939 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3940 { 3941 struct sock *sk = (struct sock *)msk; 3942 3943 if (sk_stream_is_writeable(sk)) 3944 return EPOLLOUT | EPOLLWRNORM; 3945 3946 mptcp_set_nospace(sk); 3947 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3948 if (sk_stream_is_writeable(sk)) 3949 return EPOLLOUT | EPOLLWRNORM; 3950 3951 return 0; 3952 } 3953 3954 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3955 struct poll_table_struct *wait) 3956 { 3957 struct sock *sk = sock->sk; 3958 struct mptcp_sock *msk; 3959 __poll_t mask = 0; 3960 u8 shutdown; 3961 int state; 3962 3963 msk = mptcp_sk(sk); 3964 sock_poll_wait(file, sock, wait); 3965 3966 state = inet_sk_state_load(sk); 3967 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3968 if (state == TCP_LISTEN) { 3969 struct sock *ssk = READ_ONCE(msk->first); 3970 3971 if (WARN_ON_ONCE(!ssk)) 3972 return 0; 3973 3974 return inet_csk_listen_poll(ssk); 3975 } 3976 3977 shutdown = READ_ONCE(sk->sk_shutdown); 3978 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3979 mask |= EPOLLHUP; 3980 if (shutdown & RCV_SHUTDOWN) 3981 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3982 3983 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3984 mask |= mptcp_check_readable(sk); 3985 if (shutdown & SEND_SHUTDOWN) 3986 mask |= EPOLLOUT | EPOLLWRNORM; 3987 else 3988 mask |= mptcp_check_writeable(msk); 3989 } else if (state == TCP_SYN_SENT && 3990 inet_test_bit(DEFER_CONNECT, sk)) { 3991 /* cf tcp_poll() note about TFO */ 3992 mask |= EPOLLOUT | EPOLLWRNORM; 3993 } 3994 3995 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3996 smp_rmb(); 3997 if (READ_ONCE(sk->sk_err)) 3998 mask |= EPOLLERR; 3999 4000 return mask; 4001 } 4002 4003 static const struct proto_ops mptcp_stream_ops = { 4004 .family = PF_INET, 4005 .owner = THIS_MODULE, 4006 .release = inet_release, 4007 .bind = mptcp_bind, 4008 .connect = inet_stream_connect, 4009 .socketpair = sock_no_socketpair, 4010 .accept = mptcp_stream_accept, 4011 .getname = inet_getname, 4012 .poll = mptcp_poll, 4013 .ioctl = inet_ioctl, 4014 .gettstamp = sock_gettstamp, 4015 .listen = mptcp_listen, 4016 .shutdown = inet_shutdown, 4017 .setsockopt = sock_common_setsockopt, 4018 .getsockopt = sock_common_getsockopt, 4019 .sendmsg = inet_sendmsg, 4020 .recvmsg = inet_recvmsg, 4021 .mmap = sock_no_mmap, 4022 .set_rcvlowat = mptcp_set_rcvlowat, 4023 }; 4024 4025 static struct inet_protosw mptcp_protosw = { 4026 .type = SOCK_STREAM, 4027 .protocol = IPPROTO_MPTCP, 4028 .prot = &mptcp_prot, 4029 .ops = &mptcp_stream_ops, 4030 .flags = INET_PROTOSW_ICSK, 4031 }; 4032 4033 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4034 { 4035 struct mptcp_delegated_action *delegated; 4036 struct mptcp_subflow_context *subflow; 4037 int work_done = 0; 4038 4039 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4040 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4041 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4042 4043 bh_lock_sock_nested(ssk); 4044 if (!sock_owned_by_user(ssk)) { 4045 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4046 } else { 4047 /* tcp_release_cb_override already processed 4048 * the action or will do at next release_sock(). 4049 * In both case must dequeue the subflow here - on the same 4050 * CPU that scheduled it. 4051 */ 4052 smp_wmb(); 4053 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4054 } 4055 bh_unlock_sock(ssk); 4056 sock_put(ssk); 4057 4058 if (++work_done == budget) 4059 return budget; 4060 } 4061 4062 /* always provide a 0 'work_done' argument, so that napi_complete_done 4063 * will not try accessing the NULL napi->dev ptr 4064 */ 4065 napi_complete_done(napi, 0); 4066 return work_done; 4067 } 4068 4069 void __init mptcp_proto_init(void) 4070 { 4071 struct mptcp_delegated_action *delegated; 4072 int cpu; 4073 4074 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4075 4076 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4077 panic("Failed to allocate MPTCP pcpu counter\n"); 4078 4079 init_dummy_netdev(&mptcp_napi_dev); 4080 for_each_possible_cpu(cpu) { 4081 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4082 INIT_LIST_HEAD(&delegated->head); 4083 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4084 mptcp_napi_poll); 4085 napi_enable(&delegated->napi); 4086 } 4087 4088 mptcp_subflow_init(); 4089 mptcp_pm_init(); 4090 mptcp_sched_init(); 4091 mptcp_token_init(); 4092 4093 if (proto_register(&mptcp_prot, 1) != 0) 4094 panic("Failed to register MPTCP proto.\n"); 4095 4096 inet_register_protosw(&mptcp_protosw); 4097 4098 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4099 } 4100 4101 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4102 static const struct proto_ops mptcp_v6_stream_ops = { 4103 .family = PF_INET6, 4104 .owner = THIS_MODULE, 4105 .release = inet6_release, 4106 .bind = mptcp_bind, 4107 .connect = inet_stream_connect, 4108 .socketpair = sock_no_socketpair, 4109 .accept = mptcp_stream_accept, 4110 .getname = inet6_getname, 4111 .poll = mptcp_poll, 4112 .ioctl = inet6_ioctl, 4113 .gettstamp = sock_gettstamp, 4114 .listen = mptcp_listen, 4115 .shutdown = inet_shutdown, 4116 .setsockopt = sock_common_setsockopt, 4117 .getsockopt = sock_common_getsockopt, 4118 .sendmsg = inet6_sendmsg, 4119 .recvmsg = inet6_recvmsg, 4120 .mmap = sock_no_mmap, 4121 #ifdef CONFIG_COMPAT 4122 .compat_ioctl = inet6_compat_ioctl, 4123 #endif 4124 .set_rcvlowat = mptcp_set_rcvlowat, 4125 }; 4126 4127 static struct proto mptcp_v6_prot; 4128 4129 static struct inet_protosw mptcp_v6_protosw = { 4130 .type = SOCK_STREAM, 4131 .protocol = IPPROTO_MPTCP, 4132 .prot = &mptcp_v6_prot, 4133 .ops = &mptcp_v6_stream_ops, 4134 .flags = INET_PROTOSW_ICSK, 4135 }; 4136 4137 int __init mptcp_proto_v6_init(void) 4138 { 4139 int err; 4140 4141 mptcp_v6_prot = mptcp_prot; 4142 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4143 mptcp_v6_prot.slab = NULL; 4144 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4145 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4146 4147 err = proto_register(&mptcp_v6_prot, 1); 4148 if (err) 4149 return err; 4150 4151 err = inet6_register_protosw(&mptcp_v6_protosw); 4152 if (err) 4153 proto_unregister(&mptcp_v6_prot); 4154 4155 return err; 4156 } 4157 #endif 4158