xref: /linux/net/mptcp/protocol.c (revision 4adfc94d4aeca1177e1188ba83c20ed581523fe1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 	}
111 
112 	return msk->first;
113 }
114 
115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 	sk_drops_add(sk, skb);
118 	__kfree_skb(skb);
119 }
120 
121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
122 {
123 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
124 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
125 }
126 
127 static void mptcp_rmem_charge(struct sock *sk, int size)
128 {
129 	mptcp_rmem_fwd_alloc_add(sk, -size);
130 }
131 
132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
133 			       struct sk_buff *from)
134 {
135 	bool fragstolen;
136 	int delta;
137 
138 	if (MPTCP_SKB_CB(from)->offset ||
139 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
140 		return false;
141 
142 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
143 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
144 		 to->len, MPTCP_SKB_CB(from)->end_seq);
145 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
146 
147 	/* note the fwd memory can reach a negative value after accounting
148 	 * for the delta, but the later skb free will restore a non
149 	 * negative one
150 	 */
151 	atomic_add(delta, &sk->sk_rmem_alloc);
152 	mptcp_rmem_charge(sk, delta);
153 	kfree_skb_partial(from, fragstolen);
154 
155 	return true;
156 }
157 
158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
159 				   struct sk_buff *from)
160 {
161 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
162 		return false;
163 
164 	return mptcp_try_coalesce((struct sock *)msk, to, from);
165 }
166 
167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
168 {
169 	amount >>= PAGE_SHIFT;
170 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
171 	__sk_mem_reduce_allocated(sk, amount);
172 }
173 
174 static void mptcp_rmem_uncharge(struct sock *sk, int size)
175 {
176 	struct mptcp_sock *msk = mptcp_sk(sk);
177 	int reclaimable;
178 
179 	mptcp_rmem_fwd_alloc_add(sk, size);
180 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
181 
182 	/* see sk_mem_uncharge() for the rationale behind the following schema */
183 	if (unlikely(reclaimable >= PAGE_SIZE))
184 		__mptcp_rmem_reclaim(sk, reclaimable);
185 }
186 
187 static void mptcp_rfree(struct sk_buff *skb)
188 {
189 	unsigned int len = skb->truesize;
190 	struct sock *sk = skb->sk;
191 
192 	atomic_sub(len, &sk->sk_rmem_alloc);
193 	mptcp_rmem_uncharge(sk, len);
194 }
195 
196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
197 {
198 	skb_orphan(skb);
199 	skb->sk = sk;
200 	skb->destructor = mptcp_rfree;
201 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
202 	mptcp_rmem_charge(sk, skb->truesize);
203 }
204 
205 /* "inspired" by tcp_data_queue_ofo(), main differences:
206  * - use mptcp seqs
207  * - don't cope with sacks
208  */
209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
210 {
211 	struct sock *sk = (struct sock *)msk;
212 	struct rb_node **p, *parent;
213 	u64 seq, end_seq, max_seq;
214 	struct sk_buff *skb1;
215 
216 	seq = MPTCP_SKB_CB(skb)->map_seq;
217 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
218 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
219 
220 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
221 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
222 	if (after64(end_seq, max_seq)) {
223 		/* out of window */
224 		mptcp_drop(sk, skb);
225 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
226 			 (unsigned long long)end_seq - (unsigned long)max_seq,
227 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
228 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
229 		return;
230 	}
231 
232 	p = &msk->out_of_order_queue.rb_node;
233 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
234 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
235 		rb_link_node(&skb->rbnode, NULL, p);
236 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
237 		msk->ooo_last_skb = skb;
238 		goto end;
239 	}
240 
241 	/* with 2 subflows, adding at end of ooo queue is quite likely
242 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
243 	 */
244 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
247 		return;
248 	}
249 
250 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
251 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
252 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
253 		parent = &msk->ooo_last_skb->rbnode;
254 		p = &parent->rb_right;
255 		goto insert;
256 	}
257 
258 	/* Find place to insert this segment. Handle overlaps on the way. */
259 	parent = NULL;
260 	while (*p) {
261 		parent = *p;
262 		skb1 = rb_to_skb(parent);
263 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
264 			p = &parent->rb_left;
265 			continue;
266 		}
267 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
268 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 				/* All the bits are present. Drop. */
270 				mptcp_drop(sk, skb);
271 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
272 				return;
273 			}
274 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
275 				/* partial overlap:
276 				 *     |     skb      |
277 				 *  |     skb1    |
278 				 * continue traversing
279 				 */
280 			} else {
281 				/* skb's seq == skb1's seq and skb covers skb1.
282 				 * Replace skb1 with skb.
283 				 */
284 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
285 						&msk->out_of_order_queue);
286 				mptcp_drop(sk, skb1);
287 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 				goto merge_right;
289 			}
290 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
291 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
292 			return;
293 		}
294 		p = &parent->rb_right;
295 	}
296 
297 insert:
298 	/* Insert segment into RB tree. */
299 	rb_link_node(&skb->rbnode, parent, p);
300 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
301 
302 merge_right:
303 	/* Remove other segments covered by skb. */
304 	while ((skb1 = skb_rb_next(skb)) != NULL) {
305 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
306 			break;
307 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
308 		mptcp_drop(sk, skb1);
309 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
310 	}
311 	/* If there is no skb after us, we are the last_skb ! */
312 	if (!skb1)
313 		msk->ooo_last_skb = skb;
314 
315 end:
316 	skb_condense(skb);
317 	mptcp_set_owner_r(skb, sk);
318 }
319 
320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
321 {
322 	struct mptcp_sock *msk = mptcp_sk(sk);
323 	int amt, amount;
324 
325 	if (size <= msk->rmem_fwd_alloc)
326 		return true;
327 
328 	size -= msk->rmem_fwd_alloc;
329 	amt = sk_mem_pages(size);
330 	amount = amt << PAGE_SHIFT;
331 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
332 		return false;
333 
334 	mptcp_rmem_fwd_alloc_add(sk, amount);
335 	return true;
336 }
337 
338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
339 			     struct sk_buff *skb, unsigned int offset,
340 			     size_t copy_len)
341 {
342 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
343 	struct sock *sk = (struct sock *)msk;
344 	struct sk_buff *tail;
345 	bool has_rxtstamp;
346 
347 	__skb_unlink(skb, &ssk->sk_receive_queue);
348 
349 	skb_ext_reset(skb);
350 	skb_orphan(skb);
351 
352 	/* try to fetch required memory from subflow */
353 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
354 		goto drop;
355 
356 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
357 
358 	/* the skb map_seq accounts for the skb offset:
359 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
360 	 * value
361 	 */
362 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
363 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
364 	MPTCP_SKB_CB(skb)->offset = offset;
365 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
366 
367 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
368 		/* in sequence */
369 		msk->bytes_received += copy_len;
370 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
371 		tail = skb_peek_tail(&sk->sk_receive_queue);
372 		if (tail && mptcp_try_coalesce(sk, tail, skb))
373 			return true;
374 
375 		mptcp_set_owner_r(skb, sk);
376 		__skb_queue_tail(&sk->sk_receive_queue, skb);
377 		return true;
378 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
379 		mptcp_data_queue_ofo(msk, skb);
380 		return false;
381 	}
382 
383 	/* old data, keep it simple and drop the whole pkt, sender
384 	 * will retransmit as needed, if needed.
385 	 */
386 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
387 drop:
388 	mptcp_drop(sk, skb);
389 	return false;
390 }
391 
392 static void mptcp_stop_rtx_timer(struct sock *sk)
393 {
394 	struct inet_connection_sock *icsk = inet_csk(sk);
395 
396 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
397 	mptcp_sk(sk)->timer_ival = 0;
398 }
399 
400 static void mptcp_close_wake_up(struct sock *sk)
401 {
402 	if (sock_flag(sk, SOCK_DEAD))
403 		return;
404 
405 	sk->sk_state_change(sk);
406 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
407 	    sk->sk_state == TCP_CLOSE)
408 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
409 	else
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
411 }
412 
413 static bool mptcp_pending_data_fin_ack(struct sock *sk)
414 {
415 	struct mptcp_sock *msk = mptcp_sk(sk);
416 
417 	return ((1 << sk->sk_state) &
418 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
419 	       msk->write_seq == READ_ONCE(msk->snd_una);
420 }
421 
422 static void mptcp_check_data_fin_ack(struct sock *sk)
423 {
424 	struct mptcp_sock *msk = mptcp_sk(sk);
425 
426 	/* Look for an acknowledged DATA_FIN */
427 	if (mptcp_pending_data_fin_ack(sk)) {
428 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
429 
430 		switch (sk->sk_state) {
431 		case TCP_FIN_WAIT1:
432 			mptcp_set_state(sk, TCP_FIN_WAIT2);
433 			break;
434 		case TCP_CLOSING:
435 		case TCP_LAST_ACK:
436 			mptcp_set_state(sk, TCP_CLOSE);
437 			break;
438 		}
439 
440 		mptcp_close_wake_up(sk);
441 	}
442 }
443 
444 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
445 {
446 	struct mptcp_sock *msk = mptcp_sk(sk);
447 
448 	if (READ_ONCE(msk->rcv_data_fin) &&
449 	    ((1 << sk->sk_state) &
450 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
451 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
452 
453 		if (msk->ack_seq == rcv_data_fin_seq) {
454 			if (seq)
455 				*seq = rcv_data_fin_seq;
456 
457 			return true;
458 		}
459 	}
460 
461 	return false;
462 }
463 
464 static void mptcp_set_datafin_timeout(struct sock *sk)
465 {
466 	struct inet_connection_sock *icsk = inet_csk(sk);
467 	u32 retransmits;
468 
469 	retransmits = min_t(u32, icsk->icsk_retransmits,
470 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
471 
472 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
473 }
474 
475 static void __mptcp_set_timeout(struct sock *sk, long tout)
476 {
477 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
478 }
479 
480 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
481 {
482 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
483 
484 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
485 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
486 }
487 
488 static void mptcp_set_timeout(struct sock *sk)
489 {
490 	struct mptcp_subflow_context *subflow;
491 	long tout = 0;
492 
493 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
494 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
495 	__mptcp_set_timeout(sk, tout);
496 }
497 
498 static inline bool tcp_can_send_ack(const struct sock *ssk)
499 {
500 	return !((1 << inet_sk_state_load(ssk)) &
501 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
502 }
503 
504 void __mptcp_subflow_send_ack(struct sock *ssk)
505 {
506 	if (tcp_can_send_ack(ssk))
507 		tcp_send_ack(ssk);
508 }
509 
510 static void mptcp_subflow_send_ack(struct sock *ssk)
511 {
512 	bool slow;
513 
514 	slow = lock_sock_fast(ssk);
515 	__mptcp_subflow_send_ack(ssk);
516 	unlock_sock_fast(ssk, slow);
517 }
518 
519 static void mptcp_send_ack(struct mptcp_sock *msk)
520 {
521 	struct mptcp_subflow_context *subflow;
522 
523 	mptcp_for_each_subflow(msk, subflow)
524 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
525 }
526 
527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
528 {
529 	bool slow;
530 
531 	slow = lock_sock_fast(ssk);
532 	if (tcp_can_send_ack(ssk))
533 		tcp_cleanup_rbuf(ssk, 1);
534 	unlock_sock_fast(ssk, slow);
535 }
536 
537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
538 {
539 	const struct inet_connection_sock *icsk = inet_csk(ssk);
540 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
541 	const struct tcp_sock *tp = tcp_sk(ssk);
542 
543 	return (ack_pending & ICSK_ACK_SCHED) &&
544 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
545 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
546 		 (rx_empty && ack_pending &
547 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
548 }
549 
550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
551 {
552 	int old_space = READ_ONCE(msk->old_wspace);
553 	struct mptcp_subflow_context *subflow;
554 	struct sock *sk = (struct sock *)msk;
555 	int space =  __mptcp_space(sk);
556 	bool cleanup, rx_empty;
557 
558 	cleanup = (space > 0) && (space >= (old_space << 1));
559 	rx_empty = !__mptcp_rmem(sk);
560 
561 	mptcp_for_each_subflow(msk, subflow) {
562 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
563 
564 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
565 			mptcp_subflow_cleanup_rbuf(ssk);
566 	}
567 }
568 
569 static bool mptcp_check_data_fin(struct sock *sk)
570 {
571 	struct mptcp_sock *msk = mptcp_sk(sk);
572 	u64 rcv_data_fin_seq;
573 	bool ret = false;
574 
575 	/* Need to ack a DATA_FIN received from a peer while this side
576 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
577 	 * msk->rcv_data_fin was set when parsing the incoming options
578 	 * at the subflow level and the msk lock was not held, so this
579 	 * is the first opportunity to act on the DATA_FIN and change
580 	 * the msk state.
581 	 *
582 	 * If we are caught up to the sequence number of the incoming
583 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
584 	 * not caught up, do nothing and let the recv code send DATA_ACK
585 	 * when catching up.
586 	 */
587 
588 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
589 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
590 		WRITE_ONCE(msk->rcv_data_fin, 0);
591 
592 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
593 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
594 
595 		switch (sk->sk_state) {
596 		case TCP_ESTABLISHED:
597 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
598 			break;
599 		case TCP_FIN_WAIT1:
600 			mptcp_set_state(sk, TCP_CLOSING);
601 			break;
602 		case TCP_FIN_WAIT2:
603 			mptcp_set_state(sk, TCP_CLOSE);
604 			break;
605 		default:
606 			/* Other states not expected */
607 			WARN_ON_ONCE(1);
608 			break;
609 		}
610 
611 		ret = true;
612 		if (!__mptcp_check_fallback(msk))
613 			mptcp_send_ack(msk);
614 		mptcp_close_wake_up(sk);
615 	}
616 	return ret;
617 }
618 
619 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
620 					   struct sock *ssk,
621 					   unsigned int *bytes)
622 {
623 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
624 	struct sock *sk = (struct sock *)msk;
625 	unsigned int moved = 0;
626 	bool more_data_avail;
627 	struct tcp_sock *tp;
628 	bool done = false;
629 	int sk_rbuf;
630 
631 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
632 
633 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
635 
636 		if (unlikely(ssk_rbuf > sk_rbuf)) {
637 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
638 			sk_rbuf = ssk_rbuf;
639 		}
640 	}
641 
642 	pr_debug("msk=%p ssk=%p", msk, ssk);
643 	tp = tcp_sk(ssk);
644 	do {
645 		u32 map_remaining, offset;
646 		u32 seq = tp->copied_seq;
647 		struct sk_buff *skb;
648 		bool fin;
649 
650 		/* try to move as much data as available */
651 		map_remaining = subflow->map_data_len -
652 				mptcp_subflow_get_map_offset(subflow);
653 
654 		skb = skb_peek(&ssk->sk_receive_queue);
655 		if (!skb) {
656 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
657 			 * a different CPU can have already processed the pending
658 			 * data, stop here or we can enter an infinite loop
659 			 */
660 			if (!moved)
661 				done = true;
662 			break;
663 		}
664 
665 		if (__mptcp_check_fallback(msk)) {
666 			/* Under fallback skbs have no MPTCP extension and TCP could
667 			 * collapse them between the dummy map creation and the
668 			 * current dequeue. Be sure to adjust the map size.
669 			 */
670 			map_remaining = skb->len;
671 			subflow->map_data_len = skb->len;
672 		}
673 
674 		offset = seq - TCP_SKB_CB(skb)->seq;
675 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
676 		if (fin) {
677 			done = true;
678 			seq++;
679 		}
680 
681 		if (offset < skb->len) {
682 			size_t len = skb->len - offset;
683 
684 			if (tp->urg_data)
685 				done = true;
686 
687 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
688 				moved += len;
689 			seq += len;
690 
691 			if (WARN_ON_ONCE(map_remaining < len))
692 				break;
693 		} else {
694 			WARN_ON_ONCE(!fin);
695 			sk_eat_skb(ssk, skb);
696 			done = true;
697 		}
698 
699 		WRITE_ONCE(tp->copied_seq, seq);
700 		more_data_avail = mptcp_subflow_data_available(ssk);
701 
702 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
703 			done = true;
704 			break;
705 		}
706 	} while (more_data_avail);
707 
708 	*bytes += moved;
709 	return done;
710 }
711 
712 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
713 {
714 	struct sock *sk = (struct sock *)msk;
715 	struct sk_buff *skb, *tail;
716 	bool moved = false;
717 	struct rb_node *p;
718 	u64 end_seq;
719 
720 	p = rb_first(&msk->out_of_order_queue);
721 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
722 	while (p) {
723 		skb = rb_to_skb(p);
724 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
725 			break;
726 
727 		p = rb_next(p);
728 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
729 
730 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
731 				      msk->ack_seq))) {
732 			mptcp_drop(sk, skb);
733 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
734 			continue;
735 		}
736 
737 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
738 		tail = skb_peek_tail(&sk->sk_receive_queue);
739 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
740 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
741 
742 			/* skip overlapping data, if any */
743 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
744 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
745 				 delta);
746 			MPTCP_SKB_CB(skb)->offset += delta;
747 			MPTCP_SKB_CB(skb)->map_seq += delta;
748 			__skb_queue_tail(&sk->sk_receive_queue, skb);
749 		}
750 		msk->bytes_received += end_seq - msk->ack_seq;
751 		msk->ack_seq = end_seq;
752 		moved = true;
753 	}
754 	return moved;
755 }
756 
757 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
758 {
759 	int err = sock_error(ssk);
760 	int ssk_state;
761 
762 	if (!err)
763 		return false;
764 
765 	/* only propagate errors on fallen-back sockets or
766 	 * on MPC connect
767 	 */
768 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
769 		return false;
770 
771 	/* We need to propagate only transition to CLOSE state.
772 	 * Orphaned socket will see such state change via
773 	 * subflow_sched_work_if_closed() and that path will properly
774 	 * destroy the msk as needed.
775 	 */
776 	ssk_state = inet_sk_state_load(ssk);
777 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
778 		mptcp_set_state(sk, ssk_state);
779 	WRITE_ONCE(sk->sk_err, -err);
780 
781 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
782 	smp_wmb();
783 	sk_error_report(sk);
784 	return true;
785 }
786 
787 void __mptcp_error_report(struct sock *sk)
788 {
789 	struct mptcp_subflow_context *subflow;
790 	struct mptcp_sock *msk = mptcp_sk(sk);
791 
792 	mptcp_for_each_subflow(msk, subflow)
793 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
794 			break;
795 }
796 
797 /* In most cases we will be able to lock the mptcp socket.  If its already
798  * owned, we need to defer to the work queue to avoid ABBA deadlock.
799  */
800 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
801 {
802 	struct sock *sk = (struct sock *)msk;
803 	unsigned int moved = 0;
804 
805 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
806 	__mptcp_ofo_queue(msk);
807 	if (unlikely(ssk->sk_err)) {
808 		if (!sock_owned_by_user(sk))
809 			__mptcp_error_report(sk);
810 		else
811 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
812 	}
813 
814 	/* If the moves have caught up with the DATA_FIN sequence number
815 	 * it's time to ack the DATA_FIN and change socket state, but
816 	 * this is not a good place to change state. Let the workqueue
817 	 * do it.
818 	 */
819 	if (mptcp_pending_data_fin(sk, NULL))
820 		mptcp_schedule_work(sk);
821 	return moved > 0;
822 }
823 
824 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
825 {
826 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
827 	struct mptcp_sock *msk = mptcp_sk(sk);
828 	int sk_rbuf, ssk_rbuf;
829 
830 	/* The peer can send data while we are shutting down this
831 	 * subflow at msk destruction time, but we must avoid enqueuing
832 	 * more data to the msk receive queue
833 	 */
834 	if (unlikely(subflow->disposable))
835 		return;
836 
837 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
838 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
839 	if (unlikely(ssk_rbuf > sk_rbuf))
840 		sk_rbuf = ssk_rbuf;
841 
842 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
843 	if (__mptcp_rmem(sk) > sk_rbuf) {
844 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
845 		return;
846 	}
847 
848 	/* Wake-up the reader only for in-sequence data */
849 	mptcp_data_lock(sk);
850 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
851 		sk->sk_data_ready(sk);
852 	mptcp_data_unlock(sk);
853 }
854 
855 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
856 {
857 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
858 	WRITE_ONCE(msk->allow_infinite_fallback, false);
859 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
860 }
861 
862 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
863 {
864 	struct sock *sk = (struct sock *)msk;
865 
866 	if (sk->sk_state != TCP_ESTABLISHED)
867 		return false;
868 
869 	/* attach to msk socket only after we are sure we will deal with it
870 	 * at close time
871 	 */
872 	if (sk->sk_socket && !ssk->sk_socket)
873 		mptcp_sock_graft(ssk, sk->sk_socket);
874 
875 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
876 	mptcp_sockopt_sync_locked(msk, ssk);
877 	mptcp_subflow_joined(msk, ssk);
878 	mptcp_stop_tout_timer(sk);
879 	__mptcp_propagate_sndbuf(sk, ssk);
880 	return true;
881 }
882 
883 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
884 {
885 	struct mptcp_subflow_context *tmp, *subflow;
886 	struct mptcp_sock *msk = mptcp_sk(sk);
887 
888 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
889 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
890 		bool slow = lock_sock_fast(ssk);
891 
892 		list_move_tail(&subflow->node, &msk->conn_list);
893 		if (!__mptcp_finish_join(msk, ssk))
894 			mptcp_subflow_reset(ssk);
895 		unlock_sock_fast(ssk, slow);
896 	}
897 }
898 
899 static bool mptcp_rtx_timer_pending(struct sock *sk)
900 {
901 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
902 }
903 
904 static void mptcp_reset_rtx_timer(struct sock *sk)
905 {
906 	struct inet_connection_sock *icsk = inet_csk(sk);
907 	unsigned long tout;
908 
909 	/* prevent rescheduling on close */
910 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
911 		return;
912 
913 	tout = mptcp_sk(sk)->timer_ival;
914 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
915 }
916 
917 bool mptcp_schedule_work(struct sock *sk)
918 {
919 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
920 	    schedule_work(&mptcp_sk(sk)->work)) {
921 		/* each subflow already holds a reference to the sk, and the
922 		 * workqueue is invoked by a subflow, so sk can't go away here.
923 		 */
924 		sock_hold(sk);
925 		return true;
926 	}
927 	return false;
928 }
929 
930 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
931 {
932 	struct mptcp_subflow_context *subflow;
933 
934 	msk_owned_by_me(msk);
935 
936 	mptcp_for_each_subflow(msk, subflow) {
937 		if (READ_ONCE(subflow->data_avail))
938 			return mptcp_subflow_tcp_sock(subflow);
939 	}
940 
941 	return NULL;
942 }
943 
944 static bool mptcp_skb_can_collapse_to(u64 write_seq,
945 				      const struct sk_buff *skb,
946 				      const struct mptcp_ext *mpext)
947 {
948 	if (!tcp_skb_can_collapse_to(skb))
949 		return false;
950 
951 	/* can collapse only if MPTCP level sequence is in order and this
952 	 * mapping has not been xmitted yet
953 	 */
954 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
955 	       !mpext->frozen;
956 }
957 
958 /* we can append data to the given data frag if:
959  * - there is space available in the backing page_frag
960  * - the data frag tail matches the current page_frag free offset
961  * - the data frag end sequence number matches the current write seq
962  */
963 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
964 				       const struct page_frag *pfrag,
965 				       const struct mptcp_data_frag *df)
966 {
967 	return df && pfrag->page == df->page &&
968 		pfrag->size - pfrag->offset > 0 &&
969 		pfrag->offset == (df->offset + df->data_len) &&
970 		df->data_seq + df->data_len == msk->write_seq;
971 }
972 
973 static void dfrag_uncharge(struct sock *sk, int len)
974 {
975 	sk_mem_uncharge(sk, len);
976 	sk_wmem_queued_add(sk, -len);
977 }
978 
979 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
980 {
981 	int len = dfrag->data_len + dfrag->overhead;
982 
983 	list_del(&dfrag->list);
984 	dfrag_uncharge(sk, len);
985 	put_page(dfrag->page);
986 }
987 
988 static void __mptcp_clean_una(struct sock *sk)
989 {
990 	struct mptcp_sock *msk = mptcp_sk(sk);
991 	struct mptcp_data_frag *dtmp, *dfrag;
992 	u64 snd_una;
993 
994 	snd_una = msk->snd_una;
995 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
996 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
997 			break;
998 
999 		if (unlikely(dfrag == msk->first_pending)) {
1000 			/* in recovery mode can see ack after the current snd head */
1001 			if (WARN_ON_ONCE(!msk->recovery))
1002 				break;
1003 
1004 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1005 		}
1006 
1007 		dfrag_clear(sk, dfrag);
1008 	}
1009 
1010 	dfrag = mptcp_rtx_head(sk);
1011 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1012 		u64 delta = snd_una - dfrag->data_seq;
1013 
1014 		/* prevent wrap around in recovery mode */
1015 		if (unlikely(delta > dfrag->already_sent)) {
1016 			if (WARN_ON_ONCE(!msk->recovery))
1017 				goto out;
1018 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1019 				goto out;
1020 			dfrag->already_sent += delta - dfrag->already_sent;
1021 		}
1022 
1023 		dfrag->data_seq += delta;
1024 		dfrag->offset += delta;
1025 		dfrag->data_len -= delta;
1026 		dfrag->already_sent -= delta;
1027 
1028 		dfrag_uncharge(sk, delta);
1029 	}
1030 
1031 	/* all retransmitted data acked, recovery completed */
1032 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1033 		msk->recovery = false;
1034 
1035 out:
1036 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1037 	    snd_una == READ_ONCE(msk->write_seq)) {
1038 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1039 			mptcp_stop_rtx_timer(sk);
1040 	} else {
1041 		mptcp_reset_rtx_timer(sk);
1042 	}
1043 }
1044 
1045 static void __mptcp_clean_una_wakeup(struct sock *sk)
1046 {
1047 	lockdep_assert_held_once(&sk->sk_lock.slock);
1048 
1049 	__mptcp_clean_una(sk);
1050 	mptcp_write_space(sk);
1051 }
1052 
1053 static void mptcp_clean_una_wakeup(struct sock *sk)
1054 {
1055 	mptcp_data_lock(sk);
1056 	__mptcp_clean_una_wakeup(sk);
1057 	mptcp_data_unlock(sk);
1058 }
1059 
1060 static void mptcp_enter_memory_pressure(struct sock *sk)
1061 {
1062 	struct mptcp_subflow_context *subflow;
1063 	struct mptcp_sock *msk = mptcp_sk(sk);
1064 	bool first = true;
1065 
1066 	mptcp_for_each_subflow(msk, subflow) {
1067 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1068 
1069 		if (first)
1070 			tcp_enter_memory_pressure(ssk);
1071 		sk_stream_moderate_sndbuf(ssk);
1072 
1073 		first = false;
1074 	}
1075 	__mptcp_sync_sndbuf(sk);
1076 }
1077 
1078 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1079  * data
1080  */
1081 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1082 {
1083 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1084 					pfrag, sk->sk_allocation)))
1085 		return true;
1086 
1087 	mptcp_enter_memory_pressure(sk);
1088 	return false;
1089 }
1090 
1091 static struct mptcp_data_frag *
1092 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1093 		      int orig_offset)
1094 {
1095 	int offset = ALIGN(orig_offset, sizeof(long));
1096 	struct mptcp_data_frag *dfrag;
1097 
1098 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1099 	dfrag->data_len = 0;
1100 	dfrag->data_seq = msk->write_seq;
1101 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1102 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1103 	dfrag->already_sent = 0;
1104 	dfrag->page = pfrag->page;
1105 
1106 	return dfrag;
1107 }
1108 
1109 struct mptcp_sendmsg_info {
1110 	int mss_now;
1111 	int size_goal;
1112 	u16 limit;
1113 	u16 sent;
1114 	unsigned int flags;
1115 	bool data_lock_held;
1116 };
1117 
1118 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1119 				    u64 data_seq, int avail_size)
1120 {
1121 	u64 window_end = mptcp_wnd_end(msk);
1122 	u64 mptcp_snd_wnd;
1123 
1124 	if (__mptcp_check_fallback(msk))
1125 		return avail_size;
1126 
1127 	mptcp_snd_wnd = window_end - data_seq;
1128 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1129 
1130 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1131 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1132 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1133 	}
1134 
1135 	return avail_size;
1136 }
1137 
1138 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1139 {
1140 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1141 
1142 	if (!mpext)
1143 		return false;
1144 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1145 	return true;
1146 }
1147 
1148 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1149 {
1150 	struct sk_buff *skb;
1151 
1152 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1153 	if (likely(skb)) {
1154 		if (likely(__mptcp_add_ext(skb, gfp))) {
1155 			skb_reserve(skb, MAX_TCP_HEADER);
1156 			skb->ip_summed = CHECKSUM_PARTIAL;
1157 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1158 			return skb;
1159 		}
1160 		__kfree_skb(skb);
1161 	} else {
1162 		mptcp_enter_memory_pressure(sk);
1163 	}
1164 	return NULL;
1165 }
1166 
1167 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1168 {
1169 	struct sk_buff *skb;
1170 
1171 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1172 	if (!skb)
1173 		return NULL;
1174 
1175 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1176 		tcp_skb_entail(ssk, skb);
1177 		return skb;
1178 	}
1179 	tcp_skb_tsorted_anchor_cleanup(skb);
1180 	kfree_skb(skb);
1181 	return NULL;
1182 }
1183 
1184 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1185 {
1186 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1187 
1188 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1189 }
1190 
1191 /* note: this always recompute the csum on the whole skb, even
1192  * if we just appended a single frag. More status info needed
1193  */
1194 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1195 {
1196 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1197 	__wsum csum = ~csum_unfold(mpext->csum);
1198 	int offset = skb->len - added;
1199 
1200 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1201 }
1202 
1203 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1204 				      struct sock *ssk,
1205 				      struct mptcp_ext *mpext)
1206 {
1207 	if (!mpext)
1208 		return;
1209 
1210 	mpext->infinite_map = 1;
1211 	mpext->data_len = 0;
1212 
1213 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1214 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1215 	pr_fallback(msk);
1216 	mptcp_do_fallback(ssk);
1217 }
1218 
1219 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1220 
1221 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1222 			      struct mptcp_data_frag *dfrag,
1223 			      struct mptcp_sendmsg_info *info)
1224 {
1225 	u64 data_seq = dfrag->data_seq + info->sent;
1226 	int offset = dfrag->offset + info->sent;
1227 	struct mptcp_sock *msk = mptcp_sk(sk);
1228 	bool zero_window_probe = false;
1229 	struct mptcp_ext *mpext = NULL;
1230 	bool can_coalesce = false;
1231 	bool reuse_skb = true;
1232 	struct sk_buff *skb;
1233 	size_t copy;
1234 	int i;
1235 
1236 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1237 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1238 
1239 	if (WARN_ON_ONCE(info->sent > info->limit ||
1240 			 info->limit > dfrag->data_len))
1241 		return 0;
1242 
1243 	if (unlikely(!__tcp_can_send(ssk)))
1244 		return -EAGAIN;
1245 
1246 	/* compute send limit */
1247 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1248 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1249 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1250 	copy = info->size_goal;
1251 
1252 	skb = tcp_write_queue_tail(ssk);
1253 	if (skb && copy > skb->len) {
1254 		/* Limit the write to the size available in the
1255 		 * current skb, if any, so that we create at most a new skb.
1256 		 * Explicitly tells TCP internals to avoid collapsing on later
1257 		 * queue management operation, to avoid breaking the ext <->
1258 		 * SSN association set here
1259 		 */
1260 		mpext = mptcp_get_ext(skb);
1261 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1262 			TCP_SKB_CB(skb)->eor = 1;
1263 			tcp_mark_push(tcp_sk(ssk), skb);
1264 			goto alloc_skb;
1265 		}
1266 
1267 		i = skb_shinfo(skb)->nr_frags;
1268 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1269 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1270 			tcp_mark_push(tcp_sk(ssk), skb);
1271 			goto alloc_skb;
1272 		}
1273 
1274 		copy -= skb->len;
1275 	} else {
1276 alloc_skb:
1277 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1278 		if (!skb)
1279 			return -ENOMEM;
1280 
1281 		i = skb_shinfo(skb)->nr_frags;
1282 		reuse_skb = false;
1283 		mpext = mptcp_get_ext(skb);
1284 	}
1285 
1286 	/* Zero window and all data acked? Probe. */
1287 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1288 	if (copy == 0) {
1289 		u64 snd_una = READ_ONCE(msk->snd_una);
1290 
1291 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1292 			tcp_remove_empty_skb(ssk);
1293 			return 0;
1294 		}
1295 
1296 		zero_window_probe = true;
1297 		data_seq = snd_una - 1;
1298 		copy = 1;
1299 	}
1300 
1301 	copy = min_t(size_t, copy, info->limit - info->sent);
1302 	if (!sk_wmem_schedule(ssk, copy)) {
1303 		tcp_remove_empty_skb(ssk);
1304 		return -ENOMEM;
1305 	}
1306 
1307 	if (can_coalesce) {
1308 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1309 	} else {
1310 		get_page(dfrag->page);
1311 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1312 	}
1313 
1314 	skb->len += copy;
1315 	skb->data_len += copy;
1316 	skb->truesize += copy;
1317 	sk_wmem_queued_add(ssk, copy);
1318 	sk_mem_charge(ssk, copy);
1319 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1320 	TCP_SKB_CB(skb)->end_seq += copy;
1321 	tcp_skb_pcount_set(skb, 0);
1322 
1323 	/* on skb reuse we just need to update the DSS len */
1324 	if (reuse_skb) {
1325 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1326 		mpext->data_len += copy;
1327 		goto out;
1328 	}
1329 
1330 	memset(mpext, 0, sizeof(*mpext));
1331 	mpext->data_seq = data_seq;
1332 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1333 	mpext->data_len = copy;
1334 	mpext->use_map = 1;
1335 	mpext->dsn64 = 1;
1336 
1337 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1338 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1339 		 mpext->dsn64);
1340 
1341 	if (zero_window_probe) {
1342 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1343 		mpext->frozen = 1;
1344 		if (READ_ONCE(msk->csum_enabled))
1345 			mptcp_update_data_checksum(skb, copy);
1346 		tcp_push_pending_frames(ssk);
1347 		return 0;
1348 	}
1349 out:
1350 	if (READ_ONCE(msk->csum_enabled))
1351 		mptcp_update_data_checksum(skb, copy);
1352 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1353 		mptcp_update_infinite_map(msk, ssk, mpext);
1354 	trace_mptcp_sendmsg_frag(mpext);
1355 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1356 	return copy;
1357 }
1358 
1359 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1360 					 sizeof(struct tcphdr) - \
1361 					 MAX_TCP_OPTION_SPACE - \
1362 					 sizeof(struct ipv6hdr) - \
1363 					 sizeof(struct frag_hdr))
1364 
1365 struct subflow_send_info {
1366 	struct sock *ssk;
1367 	u64 linger_time;
1368 };
1369 
1370 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1371 {
1372 	if (!subflow->stale)
1373 		return;
1374 
1375 	subflow->stale = 0;
1376 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1377 }
1378 
1379 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1380 {
1381 	if (unlikely(subflow->stale)) {
1382 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1383 
1384 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1385 			return false;
1386 
1387 		mptcp_subflow_set_active(subflow);
1388 	}
1389 	return __mptcp_subflow_active(subflow);
1390 }
1391 
1392 #define SSK_MODE_ACTIVE	0
1393 #define SSK_MODE_BACKUP	1
1394 #define SSK_MODE_MAX	2
1395 
1396 /* implement the mptcp packet scheduler;
1397  * returns the subflow that will transmit the next DSS
1398  * additionally updates the rtx timeout
1399  */
1400 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1401 {
1402 	struct subflow_send_info send_info[SSK_MODE_MAX];
1403 	struct mptcp_subflow_context *subflow;
1404 	struct sock *sk = (struct sock *)msk;
1405 	u32 pace, burst, wmem;
1406 	int i, nr_active = 0;
1407 	struct sock *ssk;
1408 	u64 linger_time;
1409 	long tout = 0;
1410 
1411 	/* pick the subflow with the lower wmem/wspace ratio */
1412 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1413 		send_info[i].ssk = NULL;
1414 		send_info[i].linger_time = -1;
1415 	}
1416 
1417 	mptcp_for_each_subflow(msk, subflow) {
1418 		trace_mptcp_subflow_get_send(subflow);
1419 		ssk =  mptcp_subflow_tcp_sock(subflow);
1420 		if (!mptcp_subflow_active(subflow))
1421 			continue;
1422 
1423 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1424 		nr_active += !subflow->backup;
1425 		pace = subflow->avg_pacing_rate;
1426 		if (unlikely(!pace)) {
1427 			/* init pacing rate from socket */
1428 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1429 			pace = subflow->avg_pacing_rate;
1430 			if (!pace)
1431 				continue;
1432 		}
1433 
1434 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1435 		if (linger_time < send_info[subflow->backup].linger_time) {
1436 			send_info[subflow->backup].ssk = ssk;
1437 			send_info[subflow->backup].linger_time = linger_time;
1438 		}
1439 	}
1440 	__mptcp_set_timeout(sk, tout);
1441 
1442 	/* pick the best backup if no other subflow is active */
1443 	if (!nr_active)
1444 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1445 
1446 	/* According to the blest algorithm, to avoid HoL blocking for the
1447 	 * faster flow, we need to:
1448 	 * - estimate the faster flow linger time
1449 	 * - use the above to estimate the amount of byte transferred
1450 	 *   by the faster flow
1451 	 * - check that the amount of queued data is greter than the above,
1452 	 *   otherwise do not use the picked, slower, subflow
1453 	 * We select the subflow with the shorter estimated time to flush
1454 	 * the queued mem, which basically ensure the above. We just need
1455 	 * to check that subflow has a non empty cwin.
1456 	 */
1457 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1458 	if (!ssk || !sk_stream_memory_free(ssk))
1459 		return NULL;
1460 
1461 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1462 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1463 	if (!burst)
1464 		return ssk;
1465 
1466 	subflow = mptcp_subflow_ctx(ssk);
1467 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1468 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1469 					   burst + wmem);
1470 	msk->snd_burst = burst;
1471 	return ssk;
1472 }
1473 
1474 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1475 {
1476 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1477 	release_sock(ssk);
1478 }
1479 
1480 static void mptcp_update_post_push(struct mptcp_sock *msk,
1481 				   struct mptcp_data_frag *dfrag,
1482 				   u32 sent)
1483 {
1484 	u64 snd_nxt_new = dfrag->data_seq;
1485 
1486 	dfrag->already_sent += sent;
1487 
1488 	msk->snd_burst -= sent;
1489 
1490 	snd_nxt_new += dfrag->already_sent;
1491 
1492 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1493 	 * is recovering after a failover. In that event, this re-sends
1494 	 * old segments.
1495 	 *
1496 	 * Thus compute snd_nxt_new candidate based on
1497 	 * the dfrag->data_seq that was sent and the data
1498 	 * that has been handed to the subflow for transmission
1499 	 * and skip update in case it was old dfrag.
1500 	 */
1501 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1502 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1503 		msk->snd_nxt = snd_nxt_new;
1504 	}
1505 }
1506 
1507 void mptcp_check_and_set_pending(struct sock *sk)
1508 {
1509 	if (mptcp_send_head(sk)) {
1510 		mptcp_data_lock(sk);
1511 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1512 		mptcp_data_unlock(sk);
1513 	}
1514 }
1515 
1516 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1517 				  struct mptcp_sendmsg_info *info)
1518 {
1519 	struct mptcp_sock *msk = mptcp_sk(sk);
1520 	struct mptcp_data_frag *dfrag;
1521 	int len, copied = 0, err = 0;
1522 
1523 	while ((dfrag = mptcp_send_head(sk))) {
1524 		info->sent = dfrag->already_sent;
1525 		info->limit = dfrag->data_len;
1526 		len = dfrag->data_len - dfrag->already_sent;
1527 		while (len > 0) {
1528 			int ret = 0;
1529 
1530 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1531 			if (ret <= 0) {
1532 				err = copied ? : ret;
1533 				goto out;
1534 			}
1535 
1536 			info->sent += ret;
1537 			copied += ret;
1538 			len -= ret;
1539 
1540 			mptcp_update_post_push(msk, dfrag, ret);
1541 		}
1542 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1543 
1544 		if (msk->snd_burst <= 0 ||
1545 		    !sk_stream_memory_free(ssk) ||
1546 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1547 			err = copied;
1548 			goto out;
1549 		}
1550 		mptcp_set_timeout(sk);
1551 	}
1552 	err = copied;
1553 
1554 out:
1555 	return err;
1556 }
1557 
1558 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1559 {
1560 	struct sock *prev_ssk = NULL, *ssk = NULL;
1561 	struct mptcp_sock *msk = mptcp_sk(sk);
1562 	struct mptcp_sendmsg_info info = {
1563 				.flags = flags,
1564 	};
1565 	bool do_check_data_fin = false;
1566 	int push_count = 1;
1567 
1568 	while (mptcp_send_head(sk) && (push_count > 0)) {
1569 		struct mptcp_subflow_context *subflow;
1570 		int ret = 0;
1571 
1572 		if (mptcp_sched_get_send(msk))
1573 			break;
1574 
1575 		push_count = 0;
1576 
1577 		mptcp_for_each_subflow(msk, subflow) {
1578 			if (READ_ONCE(subflow->scheduled)) {
1579 				mptcp_subflow_set_scheduled(subflow, false);
1580 
1581 				prev_ssk = ssk;
1582 				ssk = mptcp_subflow_tcp_sock(subflow);
1583 				if (ssk != prev_ssk) {
1584 					/* First check. If the ssk has changed since
1585 					 * the last round, release prev_ssk
1586 					 */
1587 					if (prev_ssk)
1588 						mptcp_push_release(prev_ssk, &info);
1589 
1590 					/* Need to lock the new subflow only if different
1591 					 * from the previous one, otherwise we are still
1592 					 * helding the relevant lock
1593 					 */
1594 					lock_sock(ssk);
1595 				}
1596 
1597 				push_count++;
1598 
1599 				ret = __subflow_push_pending(sk, ssk, &info);
1600 				if (ret <= 0) {
1601 					if (ret != -EAGAIN ||
1602 					    (1 << ssk->sk_state) &
1603 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1604 						push_count--;
1605 					continue;
1606 				}
1607 				do_check_data_fin = true;
1608 			}
1609 		}
1610 	}
1611 
1612 	/* at this point we held the socket lock for the last subflow we used */
1613 	if (ssk)
1614 		mptcp_push_release(ssk, &info);
1615 
1616 	/* ensure the rtx timer is running */
1617 	if (!mptcp_rtx_timer_pending(sk))
1618 		mptcp_reset_rtx_timer(sk);
1619 	if (do_check_data_fin)
1620 		mptcp_check_send_data_fin(sk);
1621 }
1622 
1623 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1624 {
1625 	struct mptcp_sock *msk = mptcp_sk(sk);
1626 	struct mptcp_sendmsg_info info = {
1627 		.data_lock_held = true,
1628 	};
1629 	bool keep_pushing = true;
1630 	struct sock *xmit_ssk;
1631 	int copied = 0;
1632 
1633 	info.flags = 0;
1634 	while (mptcp_send_head(sk) && keep_pushing) {
1635 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1636 		int ret = 0;
1637 
1638 		/* check for a different subflow usage only after
1639 		 * spooling the first chunk of data
1640 		 */
1641 		if (first) {
1642 			mptcp_subflow_set_scheduled(subflow, false);
1643 			ret = __subflow_push_pending(sk, ssk, &info);
1644 			first = false;
1645 			if (ret <= 0)
1646 				break;
1647 			copied += ret;
1648 			continue;
1649 		}
1650 
1651 		if (mptcp_sched_get_send(msk))
1652 			goto out;
1653 
1654 		if (READ_ONCE(subflow->scheduled)) {
1655 			mptcp_subflow_set_scheduled(subflow, false);
1656 			ret = __subflow_push_pending(sk, ssk, &info);
1657 			if (ret <= 0)
1658 				keep_pushing = false;
1659 			copied += ret;
1660 		}
1661 
1662 		mptcp_for_each_subflow(msk, subflow) {
1663 			if (READ_ONCE(subflow->scheduled)) {
1664 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1665 				if (xmit_ssk != ssk) {
1666 					mptcp_subflow_delegate(subflow,
1667 							       MPTCP_DELEGATE_SEND);
1668 					keep_pushing = false;
1669 				}
1670 			}
1671 		}
1672 	}
1673 
1674 out:
1675 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1676 	 * not going to flush it via release_sock()
1677 	 */
1678 	if (copied) {
1679 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1680 			 info.size_goal);
1681 		if (!mptcp_rtx_timer_pending(sk))
1682 			mptcp_reset_rtx_timer(sk);
1683 
1684 		if (msk->snd_data_fin_enable &&
1685 		    msk->snd_nxt + 1 == msk->write_seq)
1686 			mptcp_schedule_work(sk);
1687 	}
1688 }
1689 
1690 static void mptcp_set_nospace(struct sock *sk)
1691 {
1692 	/* enable autotune */
1693 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1694 
1695 	/* will be cleared on avail space */
1696 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1697 }
1698 
1699 static int mptcp_disconnect(struct sock *sk, int flags);
1700 
1701 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1702 				  size_t len, int *copied_syn)
1703 {
1704 	unsigned int saved_flags = msg->msg_flags;
1705 	struct mptcp_sock *msk = mptcp_sk(sk);
1706 	struct sock *ssk;
1707 	int ret;
1708 
1709 	/* on flags based fastopen the mptcp is supposed to create the
1710 	 * first subflow right now. Otherwise we are in the defer_connect
1711 	 * path, and the first subflow must be already present.
1712 	 * Since the defer_connect flag is cleared after the first succsful
1713 	 * fastopen attempt, no need to check for additional subflow status.
1714 	 */
1715 	if (msg->msg_flags & MSG_FASTOPEN) {
1716 		ssk = __mptcp_nmpc_sk(msk);
1717 		if (IS_ERR(ssk))
1718 			return PTR_ERR(ssk);
1719 	}
1720 	if (!msk->first)
1721 		return -EINVAL;
1722 
1723 	ssk = msk->first;
1724 
1725 	lock_sock(ssk);
1726 	msg->msg_flags |= MSG_DONTWAIT;
1727 	msk->fastopening = 1;
1728 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1729 	msk->fastopening = 0;
1730 	msg->msg_flags = saved_flags;
1731 	release_sock(ssk);
1732 
1733 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1734 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1735 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1736 					    msg->msg_namelen, msg->msg_flags, 1);
1737 
1738 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1739 		 * case of any error, except timeout or signal
1740 		 */
1741 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1742 			*copied_syn = 0;
1743 	} else if (ret && ret != -EINPROGRESS) {
1744 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1745 		 * __inet_stream_connect() can fail, due to looking check,
1746 		 * see mptcp_disconnect().
1747 		 * Attempt it again outside the problematic scope.
1748 		 */
1749 		if (!mptcp_disconnect(sk, 0))
1750 			sk->sk_socket->state = SS_UNCONNECTED;
1751 	}
1752 	inet_clear_bit(DEFER_CONNECT, sk);
1753 
1754 	return ret;
1755 }
1756 
1757 static int do_copy_data_nocache(struct sock *sk, int copy,
1758 				struct iov_iter *from, char *to)
1759 {
1760 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1761 		if (!copy_from_iter_full_nocache(to, copy, from))
1762 			return -EFAULT;
1763 	} else if (!copy_from_iter_full(to, copy, from)) {
1764 		return -EFAULT;
1765 	}
1766 	return 0;
1767 }
1768 
1769 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1770 {
1771 	struct mptcp_sock *msk = mptcp_sk(sk);
1772 	struct page_frag *pfrag;
1773 	size_t copied = 0;
1774 	int ret = 0;
1775 	long timeo;
1776 
1777 	/* silently ignore everything else */
1778 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1779 
1780 	lock_sock(sk);
1781 
1782 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1783 		     msg->msg_flags & MSG_FASTOPEN)) {
1784 		int copied_syn = 0;
1785 
1786 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1787 		copied += copied_syn;
1788 		if (ret == -EINPROGRESS && copied_syn > 0)
1789 			goto out;
1790 		else if (ret)
1791 			goto do_error;
1792 	}
1793 
1794 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1795 
1796 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1797 		ret = sk_stream_wait_connect(sk, &timeo);
1798 		if (ret)
1799 			goto do_error;
1800 	}
1801 
1802 	ret = -EPIPE;
1803 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1804 		goto do_error;
1805 
1806 	pfrag = sk_page_frag(sk);
1807 
1808 	while (msg_data_left(msg)) {
1809 		int total_ts, frag_truesize = 0;
1810 		struct mptcp_data_frag *dfrag;
1811 		bool dfrag_collapsed;
1812 		size_t psize, offset;
1813 
1814 		/* reuse tail pfrag, if possible, or carve a new one from the
1815 		 * page allocator
1816 		 */
1817 		dfrag = mptcp_pending_tail(sk);
1818 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1819 		if (!dfrag_collapsed) {
1820 			if (!sk_stream_memory_free(sk))
1821 				goto wait_for_memory;
1822 
1823 			if (!mptcp_page_frag_refill(sk, pfrag))
1824 				goto wait_for_memory;
1825 
1826 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1827 			frag_truesize = dfrag->overhead;
1828 		}
1829 
1830 		/* we do not bound vs wspace, to allow a single packet.
1831 		 * memory accounting will prevent execessive memory usage
1832 		 * anyway
1833 		 */
1834 		offset = dfrag->offset + dfrag->data_len;
1835 		psize = pfrag->size - offset;
1836 		psize = min_t(size_t, psize, msg_data_left(msg));
1837 		total_ts = psize + frag_truesize;
1838 
1839 		if (!sk_wmem_schedule(sk, total_ts))
1840 			goto wait_for_memory;
1841 
1842 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1843 					   page_address(dfrag->page) + offset);
1844 		if (ret)
1845 			goto do_error;
1846 
1847 		/* data successfully copied into the write queue */
1848 		sk_forward_alloc_add(sk, -total_ts);
1849 		copied += psize;
1850 		dfrag->data_len += psize;
1851 		frag_truesize += psize;
1852 		pfrag->offset += frag_truesize;
1853 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1854 
1855 		/* charge data on mptcp pending queue to the msk socket
1856 		 * Note: we charge such data both to sk and ssk
1857 		 */
1858 		sk_wmem_queued_add(sk, frag_truesize);
1859 		if (!dfrag_collapsed) {
1860 			get_page(dfrag->page);
1861 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1862 			if (!msk->first_pending)
1863 				WRITE_ONCE(msk->first_pending, dfrag);
1864 		}
1865 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1866 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1867 			 !dfrag_collapsed);
1868 
1869 		continue;
1870 
1871 wait_for_memory:
1872 		mptcp_set_nospace(sk);
1873 		__mptcp_push_pending(sk, msg->msg_flags);
1874 		ret = sk_stream_wait_memory(sk, &timeo);
1875 		if (ret)
1876 			goto do_error;
1877 	}
1878 
1879 	if (copied)
1880 		__mptcp_push_pending(sk, msg->msg_flags);
1881 
1882 out:
1883 	release_sock(sk);
1884 	return copied;
1885 
1886 do_error:
1887 	if (copied)
1888 		goto out;
1889 
1890 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1891 	goto out;
1892 }
1893 
1894 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1895 				struct msghdr *msg,
1896 				size_t len, int flags,
1897 				struct scm_timestamping_internal *tss,
1898 				int *cmsg_flags)
1899 {
1900 	struct sk_buff *skb, *tmp;
1901 	int copied = 0;
1902 
1903 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1904 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1905 		u32 data_len = skb->len - offset;
1906 		u32 count = min_t(size_t, len - copied, data_len);
1907 		int err;
1908 
1909 		if (!(flags & MSG_TRUNC)) {
1910 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1911 			if (unlikely(err < 0)) {
1912 				if (!copied)
1913 					return err;
1914 				break;
1915 			}
1916 		}
1917 
1918 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1919 			tcp_update_recv_tstamps(skb, tss);
1920 			*cmsg_flags |= MPTCP_CMSG_TS;
1921 		}
1922 
1923 		copied += count;
1924 
1925 		if (count < data_len) {
1926 			if (!(flags & MSG_PEEK)) {
1927 				MPTCP_SKB_CB(skb)->offset += count;
1928 				MPTCP_SKB_CB(skb)->map_seq += count;
1929 				msk->bytes_consumed += count;
1930 			}
1931 			break;
1932 		}
1933 
1934 		if (!(flags & MSG_PEEK)) {
1935 			/* we will bulk release the skb memory later */
1936 			skb->destructor = NULL;
1937 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1938 			__skb_unlink(skb, &msk->receive_queue);
1939 			__kfree_skb(skb);
1940 			msk->bytes_consumed += count;
1941 		}
1942 
1943 		if (copied >= len)
1944 			break;
1945 	}
1946 
1947 	return copied;
1948 }
1949 
1950 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1951  *
1952  * Only difference: Use highest rtt estimate of the subflows in use.
1953  */
1954 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1955 {
1956 	struct mptcp_subflow_context *subflow;
1957 	struct sock *sk = (struct sock *)msk;
1958 	u8 scaling_ratio = U8_MAX;
1959 	u32 time, advmss = 1;
1960 	u64 rtt_us, mstamp;
1961 
1962 	msk_owned_by_me(msk);
1963 
1964 	if (copied <= 0)
1965 		return;
1966 
1967 	if (!msk->rcvspace_init)
1968 		mptcp_rcv_space_init(msk, msk->first);
1969 
1970 	msk->rcvq_space.copied += copied;
1971 
1972 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1973 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1974 
1975 	rtt_us = msk->rcvq_space.rtt_us;
1976 	if (rtt_us && time < (rtt_us >> 3))
1977 		return;
1978 
1979 	rtt_us = 0;
1980 	mptcp_for_each_subflow(msk, subflow) {
1981 		const struct tcp_sock *tp;
1982 		u64 sf_rtt_us;
1983 		u32 sf_advmss;
1984 
1985 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1986 
1987 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1988 		sf_advmss = READ_ONCE(tp->advmss);
1989 
1990 		rtt_us = max(sf_rtt_us, rtt_us);
1991 		advmss = max(sf_advmss, advmss);
1992 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1993 	}
1994 
1995 	msk->rcvq_space.rtt_us = rtt_us;
1996 	msk->scaling_ratio = scaling_ratio;
1997 	if (time < (rtt_us >> 3) || rtt_us == 0)
1998 		return;
1999 
2000 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2001 		goto new_measure;
2002 
2003 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2004 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2005 		u64 rcvwin, grow;
2006 		int rcvbuf;
2007 
2008 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2009 
2010 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2011 
2012 		do_div(grow, msk->rcvq_space.space);
2013 		rcvwin += (grow << 1);
2014 
2015 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2016 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2017 
2018 		if (rcvbuf > sk->sk_rcvbuf) {
2019 			u32 window_clamp;
2020 
2021 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2022 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2023 
2024 			/* Make subflows follow along.  If we do not do this, we
2025 			 * get drops at subflow level if skbs can't be moved to
2026 			 * the mptcp rx queue fast enough (announced rcv_win can
2027 			 * exceed ssk->sk_rcvbuf).
2028 			 */
2029 			mptcp_for_each_subflow(msk, subflow) {
2030 				struct sock *ssk;
2031 				bool slow;
2032 
2033 				ssk = mptcp_subflow_tcp_sock(subflow);
2034 				slow = lock_sock_fast(ssk);
2035 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2036 				tcp_sk(ssk)->window_clamp = window_clamp;
2037 				tcp_cleanup_rbuf(ssk, 1);
2038 				unlock_sock_fast(ssk, slow);
2039 			}
2040 		}
2041 	}
2042 
2043 	msk->rcvq_space.space = msk->rcvq_space.copied;
2044 new_measure:
2045 	msk->rcvq_space.copied = 0;
2046 	msk->rcvq_space.time = mstamp;
2047 }
2048 
2049 static void __mptcp_update_rmem(struct sock *sk)
2050 {
2051 	struct mptcp_sock *msk = mptcp_sk(sk);
2052 
2053 	if (!msk->rmem_released)
2054 		return;
2055 
2056 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2057 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2058 	WRITE_ONCE(msk->rmem_released, 0);
2059 }
2060 
2061 static void __mptcp_splice_receive_queue(struct sock *sk)
2062 {
2063 	struct mptcp_sock *msk = mptcp_sk(sk);
2064 
2065 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2066 }
2067 
2068 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2069 {
2070 	struct sock *sk = (struct sock *)msk;
2071 	unsigned int moved = 0;
2072 	bool ret, done;
2073 
2074 	do {
2075 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2076 		bool slowpath;
2077 
2078 		/* we can have data pending in the subflows only if the msk
2079 		 * receive buffer was full at subflow_data_ready() time,
2080 		 * that is an unlikely slow path.
2081 		 */
2082 		if (likely(!ssk))
2083 			break;
2084 
2085 		slowpath = lock_sock_fast(ssk);
2086 		mptcp_data_lock(sk);
2087 		__mptcp_update_rmem(sk);
2088 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2089 		mptcp_data_unlock(sk);
2090 
2091 		if (unlikely(ssk->sk_err))
2092 			__mptcp_error_report(sk);
2093 		unlock_sock_fast(ssk, slowpath);
2094 	} while (!done);
2095 
2096 	/* acquire the data lock only if some input data is pending */
2097 	ret = moved > 0;
2098 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2099 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2100 		mptcp_data_lock(sk);
2101 		__mptcp_update_rmem(sk);
2102 		ret |= __mptcp_ofo_queue(msk);
2103 		__mptcp_splice_receive_queue(sk);
2104 		mptcp_data_unlock(sk);
2105 	}
2106 	if (ret)
2107 		mptcp_check_data_fin((struct sock *)msk);
2108 	return !skb_queue_empty(&msk->receive_queue);
2109 }
2110 
2111 static unsigned int mptcp_inq_hint(const struct sock *sk)
2112 {
2113 	const struct mptcp_sock *msk = mptcp_sk(sk);
2114 	const struct sk_buff *skb;
2115 
2116 	skb = skb_peek(&msk->receive_queue);
2117 	if (skb) {
2118 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2119 
2120 		if (hint_val >= INT_MAX)
2121 			return INT_MAX;
2122 
2123 		return (unsigned int)hint_val;
2124 	}
2125 
2126 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2127 		return 1;
2128 
2129 	return 0;
2130 }
2131 
2132 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2133 			 int flags, int *addr_len)
2134 {
2135 	struct mptcp_sock *msk = mptcp_sk(sk);
2136 	struct scm_timestamping_internal tss;
2137 	int copied = 0, cmsg_flags = 0;
2138 	int target;
2139 	long timeo;
2140 
2141 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2142 	if (unlikely(flags & MSG_ERRQUEUE))
2143 		return inet_recv_error(sk, msg, len, addr_len);
2144 
2145 	lock_sock(sk);
2146 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2147 		copied = -ENOTCONN;
2148 		goto out_err;
2149 	}
2150 
2151 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2152 
2153 	len = min_t(size_t, len, INT_MAX);
2154 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2155 
2156 	if (unlikely(msk->recvmsg_inq))
2157 		cmsg_flags = MPTCP_CMSG_INQ;
2158 
2159 	while (copied < len) {
2160 		int bytes_read;
2161 
2162 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2163 		if (unlikely(bytes_read < 0)) {
2164 			if (!copied)
2165 				copied = bytes_read;
2166 			goto out_err;
2167 		}
2168 
2169 		copied += bytes_read;
2170 
2171 		/* be sure to advertise window change */
2172 		mptcp_cleanup_rbuf(msk);
2173 
2174 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2175 			continue;
2176 
2177 		/* only the master socket status is relevant here. The exit
2178 		 * conditions mirror closely tcp_recvmsg()
2179 		 */
2180 		if (copied >= target)
2181 			break;
2182 
2183 		if (copied) {
2184 			if (sk->sk_err ||
2185 			    sk->sk_state == TCP_CLOSE ||
2186 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2187 			    !timeo ||
2188 			    signal_pending(current))
2189 				break;
2190 		} else {
2191 			if (sk->sk_err) {
2192 				copied = sock_error(sk);
2193 				break;
2194 			}
2195 
2196 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2197 				/* race breaker: the shutdown could be after the
2198 				 * previous receive queue check
2199 				 */
2200 				if (__mptcp_move_skbs(msk))
2201 					continue;
2202 				break;
2203 			}
2204 
2205 			if (sk->sk_state == TCP_CLOSE) {
2206 				copied = -ENOTCONN;
2207 				break;
2208 			}
2209 
2210 			if (!timeo) {
2211 				copied = -EAGAIN;
2212 				break;
2213 			}
2214 
2215 			if (signal_pending(current)) {
2216 				copied = sock_intr_errno(timeo);
2217 				break;
2218 			}
2219 		}
2220 
2221 		pr_debug("block timeout %ld", timeo);
2222 		sk_wait_data(sk, &timeo, NULL);
2223 	}
2224 
2225 out_err:
2226 	if (cmsg_flags && copied >= 0) {
2227 		if (cmsg_flags & MPTCP_CMSG_TS)
2228 			tcp_recv_timestamp(msg, sk, &tss);
2229 
2230 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2231 			unsigned int inq = mptcp_inq_hint(sk);
2232 
2233 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2234 		}
2235 	}
2236 
2237 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2238 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2239 		 skb_queue_empty(&msk->receive_queue), copied);
2240 	if (!(flags & MSG_PEEK))
2241 		mptcp_rcv_space_adjust(msk, copied);
2242 
2243 	release_sock(sk);
2244 	return copied;
2245 }
2246 
2247 static void mptcp_retransmit_timer(struct timer_list *t)
2248 {
2249 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2250 						       icsk_retransmit_timer);
2251 	struct sock *sk = &icsk->icsk_inet.sk;
2252 	struct mptcp_sock *msk = mptcp_sk(sk);
2253 
2254 	bh_lock_sock(sk);
2255 	if (!sock_owned_by_user(sk)) {
2256 		/* we need a process context to retransmit */
2257 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2258 			mptcp_schedule_work(sk);
2259 	} else {
2260 		/* delegate our work to tcp_release_cb() */
2261 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2262 	}
2263 	bh_unlock_sock(sk);
2264 	sock_put(sk);
2265 }
2266 
2267 static void mptcp_tout_timer(struct timer_list *t)
2268 {
2269 	struct sock *sk = from_timer(sk, t, sk_timer);
2270 
2271 	mptcp_schedule_work(sk);
2272 	sock_put(sk);
2273 }
2274 
2275 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2276  * level.
2277  *
2278  * A backup subflow is returned only if that is the only kind available.
2279  */
2280 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2281 {
2282 	struct sock *backup = NULL, *pick = NULL;
2283 	struct mptcp_subflow_context *subflow;
2284 	int min_stale_count = INT_MAX;
2285 
2286 	mptcp_for_each_subflow(msk, subflow) {
2287 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2288 
2289 		if (!__mptcp_subflow_active(subflow))
2290 			continue;
2291 
2292 		/* still data outstanding at TCP level? skip this */
2293 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2294 			mptcp_pm_subflow_chk_stale(msk, ssk);
2295 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2296 			continue;
2297 		}
2298 
2299 		if (subflow->backup) {
2300 			if (!backup)
2301 				backup = ssk;
2302 			continue;
2303 		}
2304 
2305 		if (!pick)
2306 			pick = ssk;
2307 	}
2308 
2309 	if (pick)
2310 		return pick;
2311 
2312 	/* use backup only if there are no progresses anywhere */
2313 	return min_stale_count > 1 ? backup : NULL;
2314 }
2315 
2316 bool __mptcp_retransmit_pending_data(struct sock *sk)
2317 {
2318 	struct mptcp_data_frag *cur, *rtx_head;
2319 	struct mptcp_sock *msk = mptcp_sk(sk);
2320 
2321 	if (__mptcp_check_fallback(msk))
2322 		return false;
2323 
2324 	/* the closing socket has some data untransmitted and/or unacked:
2325 	 * some data in the mptcp rtx queue has not really xmitted yet.
2326 	 * keep it simple and re-inject the whole mptcp level rtx queue
2327 	 */
2328 	mptcp_data_lock(sk);
2329 	__mptcp_clean_una_wakeup(sk);
2330 	rtx_head = mptcp_rtx_head(sk);
2331 	if (!rtx_head) {
2332 		mptcp_data_unlock(sk);
2333 		return false;
2334 	}
2335 
2336 	msk->recovery_snd_nxt = msk->snd_nxt;
2337 	msk->recovery = true;
2338 	mptcp_data_unlock(sk);
2339 
2340 	msk->first_pending = rtx_head;
2341 	msk->snd_burst = 0;
2342 
2343 	/* be sure to clear the "sent status" on all re-injected fragments */
2344 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2345 		if (!cur->already_sent)
2346 			break;
2347 		cur->already_sent = 0;
2348 	}
2349 
2350 	return true;
2351 }
2352 
2353 /* flags for __mptcp_close_ssk() */
2354 #define MPTCP_CF_PUSH		BIT(1)
2355 #define MPTCP_CF_FASTCLOSE	BIT(2)
2356 
2357 /* be sure to send a reset only if the caller asked for it, also
2358  * clean completely the subflow status when the subflow reaches
2359  * TCP_CLOSE state
2360  */
2361 static void __mptcp_subflow_disconnect(struct sock *ssk,
2362 				       struct mptcp_subflow_context *subflow,
2363 				       unsigned int flags)
2364 {
2365 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2366 	    (flags & MPTCP_CF_FASTCLOSE)) {
2367 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2368 		 * disconnect should never fail
2369 		 */
2370 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2371 		mptcp_subflow_ctx_reset(subflow);
2372 	} else {
2373 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2374 	}
2375 }
2376 
2377 /* subflow sockets can be either outgoing (connect) or incoming
2378  * (accept).
2379  *
2380  * Outgoing subflows use in-kernel sockets.
2381  * Incoming subflows do not have their own 'struct socket' allocated,
2382  * so we need to use tcp_close() after detaching them from the mptcp
2383  * parent socket.
2384  */
2385 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2386 			      struct mptcp_subflow_context *subflow,
2387 			      unsigned int flags)
2388 {
2389 	struct mptcp_sock *msk = mptcp_sk(sk);
2390 	bool dispose_it, need_push = false;
2391 
2392 	/* If the first subflow moved to a close state before accept, e.g. due
2393 	 * to an incoming reset or listener shutdown, the subflow socket is
2394 	 * already deleted by inet_child_forget() and the mptcp socket can't
2395 	 * survive too.
2396 	 */
2397 	if (msk->in_accept_queue && msk->first == ssk &&
2398 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2399 		/* ensure later check in mptcp_worker() will dispose the msk */
2400 		sock_set_flag(sk, SOCK_DEAD);
2401 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2402 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2403 		mptcp_subflow_drop_ctx(ssk);
2404 		goto out_release;
2405 	}
2406 
2407 	dispose_it = msk->free_first || ssk != msk->first;
2408 	if (dispose_it)
2409 		list_del(&subflow->node);
2410 
2411 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2412 
2413 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2414 		/* be sure to force the tcp_close path
2415 		 * to generate the egress reset
2416 		 */
2417 		ssk->sk_lingertime = 0;
2418 		sock_set_flag(ssk, SOCK_LINGER);
2419 		subflow->send_fastclose = 1;
2420 	}
2421 
2422 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2423 	if (!dispose_it) {
2424 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2425 		release_sock(ssk);
2426 
2427 		goto out;
2428 	}
2429 
2430 	subflow->disposable = 1;
2431 
2432 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2433 	 * the ssk has been already destroyed, we just need to release the
2434 	 * reference owned by msk;
2435 	 */
2436 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2437 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2438 		kfree_rcu(subflow, rcu);
2439 	} else {
2440 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2441 		__tcp_close(ssk, 0);
2442 
2443 		/* close acquired an extra ref */
2444 		__sock_put(ssk);
2445 	}
2446 
2447 out_release:
2448 	__mptcp_subflow_error_report(sk, ssk);
2449 	release_sock(ssk);
2450 
2451 	sock_put(ssk);
2452 
2453 	if (ssk == msk->first)
2454 		WRITE_ONCE(msk->first, NULL);
2455 
2456 out:
2457 	__mptcp_sync_sndbuf(sk);
2458 	if (need_push)
2459 		__mptcp_push_pending(sk, 0);
2460 
2461 	/* Catch every 'all subflows closed' scenario, including peers silently
2462 	 * closing them, e.g. due to timeout.
2463 	 * For established sockets, allow an additional timeout before closing,
2464 	 * as the protocol can still create more subflows.
2465 	 */
2466 	if (list_is_singular(&msk->conn_list) && msk->first &&
2467 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2468 		if (sk->sk_state != TCP_ESTABLISHED ||
2469 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2470 			mptcp_set_state(sk, TCP_CLOSE);
2471 			mptcp_close_wake_up(sk);
2472 		} else {
2473 			mptcp_start_tout_timer(sk);
2474 		}
2475 	}
2476 }
2477 
2478 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2479 		     struct mptcp_subflow_context *subflow)
2480 {
2481 	if (sk->sk_state == TCP_ESTABLISHED)
2482 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2483 
2484 	/* subflow aborted before reaching the fully_established status
2485 	 * attempt the creation of the next subflow
2486 	 */
2487 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2488 
2489 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2490 }
2491 
2492 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2493 {
2494 	return 0;
2495 }
2496 
2497 static void __mptcp_close_subflow(struct sock *sk)
2498 {
2499 	struct mptcp_subflow_context *subflow, *tmp;
2500 	struct mptcp_sock *msk = mptcp_sk(sk);
2501 
2502 	might_sleep();
2503 
2504 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2505 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2506 
2507 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2508 			continue;
2509 
2510 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2511 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2512 			continue;
2513 
2514 		mptcp_close_ssk(sk, ssk, subflow);
2515 	}
2516 
2517 }
2518 
2519 static bool mptcp_close_tout_expired(const struct sock *sk)
2520 {
2521 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2522 	    sk->sk_state == TCP_CLOSE)
2523 		return false;
2524 
2525 	return time_after32(tcp_jiffies32,
2526 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2527 }
2528 
2529 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2530 {
2531 	struct mptcp_subflow_context *subflow, *tmp;
2532 	struct sock *sk = (struct sock *)msk;
2533 
2534 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2535 		return;
2536 
2537 	mptcp_token_destroy(msk);
2538 
2539 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2540 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2541 		bool slow;
2542 
2543 		slow = lock_sock_fast(tcp_sk);
2544 		if (tcp_sk->sk_state != TCP_CLOSE) {
2545 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2546 			tcp_set_state(tcp_sk, TCP_CLOSE);
2547 		}
2548 		unlock_sock_fast(tcp_sk, slow);
2549 	}
2550 
2551 	/* Mirror the tcp_reset() error propagation */
2552 	switch (sk->sk_state) {
2553 	case TCP_SYN_SENT:
2554 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2555 		break;
2556 	case TCP_CLOSE_WAIT:
2557 		WRITE_ONCE(sk->sk_err, EPIPE);
2558 		break;
2559 	case TCP_CLOSE:
2560 		return;
2561 	default:
2562 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2563 	}
2564 
2565 	mptcp_set_state(sk, TCP_CLOSE);
2566 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2567 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2568 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2569 
2570 	/* the calling mptcp_worker will properly destroy the socket */
2571 	if (sock_flag(sk, SOCK_DEAD))
2572 		return;
2573 
2574 	sk->sk_state_change(sk);
2575 	sk_error_report(sk);
2576 }
2577 
2578 static void __mptcp_retrans(struct sock *sk)
2579 {
2580 	struct mptcp_sock *msk = mptcp_sk(sk);
2581 	struct mptcp_subflow_context *subflow;
2582 	struct mptcp_sendmsg_info info = {};
2583 	struct mptcp_data_frag *dfrag;
2584 	struct sock *ssk;
2585 	int ret, err;
2586 	u16 len = 0;
2587 
2588 	mptcp_clean_una_wakeup(sk);
2589 
2590 	/* first check ssk: need to kick "stale" logic */
2591 	err = mptcp_sched_get_retrans(msk);
2592 	dfrag = mptcp_rtx_head(sk);
2593 	if (!dfrag) {
2594 		if (mptcp_data_fin_enabled(msk)) {
2595 			struct inet_connection_sock *icsk = inet_csk(sk);
2596 
2597 			icsk->icsk_retransmits++;
2598 			mptcp_set_datafin_timeout(sk);
2599 			mptcp_send_ack(msk);
2600 
2601 			goto reset_timer;
2602 		}
2603 
2604 		if (!mptcp_send_head(sk))
2605 			return;
2606 
2607 		goto reset_timer;
2608 	}
2609 
2610 	if (err)
2611 		goto reset_timer;
2612 
2613 	mptcp_for_each_subflow(msk, subflow) {
2614 		if (READ_ONCE(subflow->scheduled)) {
2615 			u16 copied = 0;
2616 
2617 			mptcp_subflow_set_scheduled(subflow, false);
2618 
2619 			ssk = mptcp_subflow_tcp_sock(subflow);
2620 
2621 			lock_sock(ssk);
2622 
2623 			/* limit retransmission to the bytes already sent on some subflows */
2624 			info.sent = 0;
2625 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2626 								    dfrag->already_sent;
2627 			while (info.sent < info.limit) {
2628 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2629 				if (ret <= 0)
2630 					break;
2631 
2632 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2633 				copied += ret;
2634 				info.sent += ret;
2635 			}
2636 			if (copied) {
2637 				len = max(copied, len);
2638 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2639 					 info.size_goal);
2640 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2641 			}
2642 
2643 			release_sock(ssk);
2644 		}
2645 	}
2646 
2647 	msk->bytes_retrans += len;
2648 	dfrag->already_sent = max(dfrag->already_sent, len);
2649 
2650 reset_timer:
2651 	mptcp_check_and_set_pending(sk);
2652 
2653 	if (!mptcp_rtx_timer_pending(sk))
2654 		mptcp_reset_rtx_timer(sk);
2655 }
2656 
2657 /* schedule the timeout timer for the relevant event: either close timeout
2658  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2659  */
2660 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2661 {
2662 	struct sock *sk = (struct sock *)msk;
2663 	unsigned long timeout, close_timeout;
2664 
2665 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2666 		return;
2667 
2668 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2669 			mptcp_close_timeout(sk);
2670 
2671 	/* the close timeout takes precedence on the fail one, and here at least one of
2672 	 * them is active
2673 	 */
2674 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2675 
2676 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2677 }
2678 
2679 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2680 {
2681 	struct sock *ssk = msk->first;
2682 	bool slow;
2683 
2684 	if (!ssk)
2685 		return;
2686 
2687 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2688 
2689 	slow = lock_sock_fast(ssk);
2690 	mptcp_subflow_reset(ssk);
2691 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2692 	unlock_sock_fast(ssk, slow);
2693 }
2694 
2695 static void mptcp_do_fastclose(struct sock *sk)
2696 {
2697 	struct mptcp_subflow_context *subflow, *tmp;
2698 	struct mptcp_sock *msk = mptcp_sk(sk);
2699 
2700 	mptcp_set_state(sk, TCP_CLOSE);
2701 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2702 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2703 				  subflow, MPTCP_CF_FASTCLOSE);
2704 }
2705 
2706 static void mptcp_worker(struct work_struct *work)
2707 {
2708 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2709 	struct sock *sk = (struct sock *)msk;
2710 	unsigned long fail_tout;
2711 	int state;
2712 
2713 	lock_sock(sk);
2714 	state = sk->sk_state;
2715 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2716 		goto unlock;
2717 
2718 	mptcp_check_fastclose(msk);
2719 
2720 	mptcp_pm_nl_work(msk);
2721 
2722 	mptcp_check_send_data_fin(sk);
2723 	mptcp_check_data_fin_ack(sk);
2724 	mptcp_check_data_fin(sk);
2725 
2726 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2727 		__mptcp_close_subflow(sk);
2728 
2729 	if (mptcp_close_tout_expired(sk)) {
2730 		mptcp_do_fastclose(sk);
2731 		mptcp_close_wake_up(sk);
2732 	}
2733 
2734 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2735 		__mptcp_destroy_sock(sk);
2736 		goto unlock;
2737 	}
2738 
2739 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2740 		__mptcp_retrans(sk);
2741 
2742 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2743 	if (fail_tout && time_after(jiffies, fail_tout))
2744 		mptcp_mp_fail_no_response(msk);
2745 
2746 unlock:
2747 	release_sock(sk);
2748 	sock_put(sk);
2749 }
2750 
2751 static void __mptcp_init_sock(struct sock *sk)
2752 {
2753 	struct mptcp_sock *msk = mptcp_sk(sk);
2754 
2755 	INIT_LIST_HEAD(&msk->conn_list);
2756 	INIT_LIST_HEAD(&msk->join_list);
2757 	INIT_LIST_HEAD(&msk->rtx_queue);
2758 	INIT_WORK(&msk->work, mptcp_worker);
2759 	__skb_queue_head_init(&msk->receive_queue);
2760 	msk->out_of_order_queue = RB_ROOT;
2761 	msk->first_pending = NULL;
2762 	msk->rmem_fwd_alloc = 0;
2763 	WRITE_ONCE(msk->rmem_released, 0);
2764 	msk->timer_ival = TCP_RTO_MIN;
2765 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2766 
2767 	WRITE_ONCE(msk->first, NULL);
2768 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2769 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2770 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2771 	msk->recovery = false;
2772 	msk->subflow_id = 1;
2773 
2774 	mptcp_pm_data_init(msk);
2775 
2776 	/* re-use the csk retrans timer for MPTCP-level retrans */
2777 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2778 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2779 }
2780 
2781 static void mptcp_ca_reset(struct sock *sk)
2782 {
2783 	struct inet_connection_sock *icsk = inet_csk(sk);
2784 
2785 	tcp_assign_congestion_control(sk);
2786 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2787 
2788 	/* no need to keep a reference to the ops, the name will suffice */
2789 	tcp_cleanup_congestion_control(sk);
2790 	icsk->icsk_ca_ops = NULL;
2791 }
2792 
2793 static int mptcp_init_sock(struct sock *sk)
2794 {
2795 	struct net *net = sock_net(sk);
2796 	int ret;
2797 
2798 	__mptcp_init_sock(sk);
2799 
2800 	if (!mptcp_is_enabled(net))
2801 		return -ENOPROTOOPT;
2802 
2803 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2804 		return -ENOMEM;
2805 
2806 	ret = mptcp_init_sched(mptcp_sk(sk),
2807 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2808 	if (ret)
2809 		return ret;
2810 
2811 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2812 
2813 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2814 	 * propagate the correct value
2815 	 */
2816 	mptcp_ca_reset(sk);
2817 
2818 	sk_sockets_allocated_inc(sk);
2819 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2820 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2821 
2822 	return 0;
2823 }
2824 
2825 static void __mptcp_clear_xmit(struct sock *sk)
2826 {
2827 	struct mptcp_sock *msk = mptcp_sk(sk);
2828 	struct mptcp_data_frag *dtmp, *dfrag;
2829 
2830 	WRITE_ONCE(msk->first_pending, NULL);
2831 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2832 		dfrag_clear(sk, dfrag);
2833 }
2834 
2835 void mptcp_cancel_work(struct sock *sk)
2836 {
2837 	struct mptcp_sock *msk = mptcp_sk(sk);
2838 
2839 	if (cancel_work_sync(&msk->work))
2840 		__sock_put(sk);
2841 }
2842 
2843 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2844 {
2845 	lock_sock(ssk);
2846 
2847 	switch (ssk->sk_state) {
2848 	case TCP_LISTEN:
2849 		if (!(how & RCV_SHUTDOWN))
2850 			break;
2851 		fallthrough;
2852 	case TCP_SYN_SENT:
2853 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2854 		break;
2855 	default:
2856 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2857 			pr_debug("Fallback");
2858 			ssk->sk_shutdown |= how;
2859 			tcp_shutdown(ssk, how);
2860 
2861 			/* simulate the data_fin ack reception to let the state
2862 			 * machine move forward
2863 			 */
2864 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2865 			mptcp_schedule_work(sk);
2866 		} else {
2867 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2868 			tcp_send_ack(ssk);
2869 			if (!mptcp_rtx_timer_pending(sk))
2870 				mptcp_reset_rtx_timer(sk);
2871 		}
2872 		break;
2873 	}
2874 
2875 	release_sock(ssk);
2876 }
2877 
2878 void mptcp_set_state(struct sock *sk, int state)
2879 {
2880 	int oldstate = sk->sk_state;
2881 
2882 	switch (state) {
2883 	case TCP_ESTABLISHED:
2884 		if (oldstate != TCP_ESTABLISHED)
2885 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2886 		break;
2887 
2888 	default:
2889 		if (oldstate == TCP_ESTABLISHED)
2890 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2891 	}
2892 
2893 	inet_sk_state_store(sk, state);
2894 }
2895 
2896 static const unsigned char new_state[16] = {
2897 	/* current state:     new state:      action:	*/
2898 	[0 /* (Invalid) */] = TCP_CLOSE,
2899 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2900 	[TCP_SYN_SENT]      = TCP_CLOSE,
2901 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2902 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2903 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2904 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2905 	[TCP_CLOSE]         = TCP_CLOSE,
2906 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2907 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2908 	[TCP_LISTEN]        = TCP_CLOSE,
2909 	[TCP_CLOSING]       = TCP_CLOSING,
2910 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2911 };
2912 
2913 static int mptcp_close_state(struct sock *sk)
2914 {
2915 	int next = (int)new_state[sk->sk_state];
2916 	int ns = next & TCP_STATE_MASK;
2917 
2918 	mptcp_set_state(sk, ns);
2919 
2920 	return next & TCP_ACTION_FIN;
2921 }
2922 
2923 static void mptcp_check_send_data_fin(struct sock *sk)
2924 {
2925 	struct mptcp_subflow_context *subflow;
2926 	struct mptcp_sock *msk = mptcp_sk(sk);
2927 
2928 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2929 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2930 		 msk->snd_nxt, msk->write_seq);
2931 
2932 	/* we still need to enqueue subflows or not really shutting down,
2933 	 * skip this
2934 	 */
2935 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2936 	    mptcp_send_head(sk))
2937 		return;
2938 
2939 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2940 
2941 	mptcp_for_each_subflow(msk, subflow) {
2942 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2943 
2944 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2945 	}
2946 }
2947 
2948 static void __mptcp_wr_shutdown(struct sock *sk)
2949 {
2950 	struct mptcp_sock *msk = mptcp_sk(sk);
2951 
2952 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2953 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2954 		 !!mptcp_send_head(sk));
2955 
2956 	/* will be ignored by fallback sockets */
2957 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2958 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2959 
2960 	mptcp_check_send_data_fin(sk);
2961 }
2962 
2963 static void __mptcp_destroy_sock(struct sock *sk)
2964 {
2965 	struct mptcp_sock *msk = mptcp_sk(sk);
2966 
2967 	pr_debug("msk=%p", msk);
2968 
2969 	might_sleep();
2970 
2971 	mptcp_stop_rtx_timer(sk);
2972 	sk_stop_timer(sk, &sk->sk_timer);
2973 	msk->pm.status = 0;
2974 	mptcp_release_sched(msk);
2975 
2976 	sk->sk_prot->destroy(sk);
2977 
2978 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2979 	WARN_ON_ONCE(msk->rmem_released);
2980 	sk_stream_kill_queues(sk);
2981 	xfrm_sk_free_policy(sk);
2982 
2983 	sock_put(sk);
2984 }
2985 
2986 void __mptcp_unaccepted_force_close(struct sock *sk)
2987 {
2988 	sock_set_flag(sk, SOCK_DEAD);
2989 	mptcp_do_fastclose(sk);
2990 	__mptcp_destroy_sock(sk);
2991 }
2992 
2993 static __poll_t mptcp_check_readable(struct sock *sk)
2994 {
2995 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2996 }
2997 
2998 static void mptcp_check_listen_stop(struct sock *sk)
2999 {
3000 	struct sock *ssk;
3001 
3002 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3003 		return;
3004 
3005 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3006 	ssk = mptcp_sk(sk)->first;
3007 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3008 		return;
3009 
3010 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3011 	tcp_set_state(ssk, TCP_CLOSE);
3012 	mptcp_subflow_queue_clean(sk, ssk);
3013 	inet_csk_listen_stop(ssk);
3014 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3015 	release_sock(ssk);
3016 }
3017 
3018 bool __mptcp_close(struct sock *sk, long timeout)
3019 {
3020 	struct mptcp_subflow_context *subflow;
3021 	struct mptcp_sock *msk = mptcp_sk(sk);
3022 	bool do_cancel_work = false;
3023 	int subflows_alive = 0;
3024 
3025 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3026 
3027 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3028 		mptcp_check_listen_stop(sk);
3029 		mptcp_set_state(sk, TCP_CLOSE);
3030 		goto cleanup;
3031 	}
3032 
3033 	if (mptcp_data_avail(msk) || timeout < 0) {
3034 		/* If the msk has read data, or the caller explicitly ask it,
3035 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3036 		 */
3037 		mptcp_do_fastclose(sk);
3038 		timeout = 0;
3039 	} else if (mptcp_close_state(sk)) {
3040 		__mptcp_wr_shutdown(sk);
3041 	}
3042 
3043 	sk_stream_wait_close(sk, timeout);
3044 
3045 cleanup:
3046 	/* orphan all the subflows */
3047 	mptcp_for_each_subflow(msk, subflow) {
3048 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3049 		bool slow = lock_sock_fast_nested(ssk);
3050 
3051 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3052 
3053 		/* since the close timeout takes precedence on the fail one,
3054 		 * cancel the latter
3055 		 */
3056 		if (ssk == msk->first)
3057 			subflow->fail_tout = 0;
3058 
3059 		/* detach from the parent socket, but allow data_ready to
3060 		 * push incoming data into the mptcp stack, to properly ack it
3061 		 */
3062 		ssk->sk_socket = NULL;
3063 		ssk->sk_wq = NULL;
3064 		unlock_sock_fast(ssk, slow);
3065 	}
3066 	sock_orphan(sk);
3067 
3068 	/* all the subflows are closed, only timeout can change the msk
3069 	 * state, let's not keep resources busy for no reasons
3070 	 */
3071 	if (subflows_alive == 0)
3072 		mptcp_set_state(sk, TCP_CLOSE);
3073 
3074 	sock_hold(sk);
3075 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3076 	if (msk->token)
3077 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3078 
3079 	if (sk->sk_state == TCP_CLOSE) {
3080 		__mptcp_destroy_sock(sk);
3081 		do_cancel_work = true;
3082 	} else {
3083 		mptcp_start_tout_timer(sk);
3084 	}
3085 
3086 	return do_cancel_work;
3087 }
3088 
3089 static void mptcp_close(struct sock *sk, long timeout)
3090 {
3091 	bool do_cancel_work;
3092 
3093 	lock_sock(sk);
3094 
3095 	do_cancel_work = __mptcp_close(sk, timeout);
3096 	release_sock(sk);
3097 	if (do_cancel_work)
3098 		mptcp_cancel_work(sk);
3099 
3100 	sock_put(sk);
3101 }
3102 
3103 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3104 {
3105 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3106 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3107 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3108 
3109 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3110 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3111 
3112 	if (msk6 && ssk6) {
3113 		msk6->saddr = ssk6->saddr;
3114 		msk6->flow_label = ssk6->flow_label;
3115 	}
3116 #endif
3117 
3118 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3119 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3120 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3121 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3122 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3123 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3124 }
3125 
3126 static int mptcp_disconnect(struct sock *sk, int flags)
3127 {
3128 	struct mptcp_sock *msk = mptcp_sk(sk);
3129 
3130 	/* We are on the fastopen error path. We can't call straight into the
3131 	 * subflows cleanup code due to lock nesting (we are already under
3132 	 * msk->firstsocket lock).
3133 	 */
3134 	if (msk->fastopening)
3135 		return -EBUSY;
3136 
3137 	mptcp_check_listen_stop(sk);
3138 	mptcp_set_state(sk, TCP_CLOSE);
3139 
3140 	mptcp_stop_rtx_timer(sk);
3141 	mptcp_stop_tout_timer(sk);
3142 
3143 	if (msk->token)
3144 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3145 
3146 	/* msk->subflow is still intact, the following will not free the first
3147 	 * subflow
3148 	 */
3149 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3150 	WRITE_ONCE(msk->flags, 0);
3151 	msk->cb_flags = 0;
3152 	msk->recovery = false;
3153 	msk->can_ack = false;
3154 	msk->fully_established = false;
3155 	msk->rcv_data_fin = false;
3156 	msk->snd_data_fin_enable = false;
3157 	msk->rcv_fastclose = false;
3158 	msk->use_64bit_ack = false;
3159 	msk->bytes_consumed = 0;
3160 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3161 	mptcp_pm_data_reset(msk);
3162 	mptcp_ca_reset(sk);
3163 	msk->bytes_acked = 0;
3164 	msk->bytes_received = 0;
3165 	msk->bytes_sent = 0;
3166 	msk->bytes_retrans = 0;
3167 	msk->rcvspace_init = 0;
3168 
3169 	WRITE_ONCE(sk->sk_shutdown, 0);
3170 	sk_error_report(sk);
3171 	return 0;
3172 }
3173 
3174 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3175 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3176 {
3177 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3178 
3179 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3180 }
3181 
3182 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3183 {
3184 	const struct ipv6_pinfo *np = inet6_sk(sk);
3185 	struct ipv6_txoptions *opt;
3186 	struct ipv6_pinfo *newnp;
3187 
3188 	newnp = inet6_sk(newsk);
3189 
3190 	rcu_read_lock();
3191 	opt = rcu_dereference(np->opt);
3192 	if (opt) {
3193 		opt = ipv6_dup_options(newsk, opt);
3194 		if (!opt)
3195 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3196 	}
3197 	RCU_INIT_POINTER(newnp->opt, opt);
3198 	rcu_read_unlock();
3199 }
3200 #endif
3201 
3202 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3203 {
3204 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3205 	const struct inet_sock *inet = inet_sk(sk);
3206 	struct inet_sock *newinet;
3207 
3208 	newinet = inet_sk(newsk);
3209 
3210 	rcu_read_lock();
3211 	inet_opt = rcu_dereference(inet->inet_opt);
3212 	if (inet_opt) {
3213 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3214 				      inet_opt->opt.optlen, GFP_ATOMIC);
3215 		if (newopt)
3216 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3217 			       inet_opt->opt.optlen);
3218 		else
3219 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3220 	}
3221 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3222 	rcu_read_unlock();
3223 }
3224 
3225 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3226 				 const struct mptcp_options_received *mp_opt,
3227 				 struct sock *ssk,
3228 				 struct request_sock *req)
3229 {
3230 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3231 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3232 	struct mptcp_subflow_context *subflow;
3233 	struct mptcp_sock *msk;
3234 
3235 	if (!nsk)
3236 		return NULL;
3237 
3238 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3239 	if (nsk->sk_family == AF_INET6)
3240 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3241 #endif
3242 
3243 	__mptcp_init_sock(nsk);
3244 
3245 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3246 	if (nsk->sk_family == AF_INET6)
3247 		mptcp_copy_ip6_options(nsk, sk);
3248 	else
3249 #endif
3250 		mptcp_copy_ip_options(nsk, sk);
3251 
3252 	msk = mptcp_sk(nsk);
3253 	msk->local_key = subflow_req->local_key;
3254 	msk->token = subflow_req->token;
3255 	msk->in_accept_queue = 1;
3256 	WRITE_ONCE(msk->fully_established, false);
3257 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3258 		WRITE_ONCE(msk->csum_enabled, true);
3259 
3260 	msk->write_seq = subflow_req->idsn + 1;
3261 	msk->snd_nxt = msk->write_seq;
3262 	msk->snd_una = msk->write_seq;
3263 	msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3264 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3265 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3266 
3267 	/* passive msk is created after the first/MPC subflow */
3268 	msk->subflow_id = 2;
3269 
3270 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3271 	security_inet_csk_clone(nsk, req);
3272 
3273 	/* this can't race with mptcp_close(), as the msk is
3274 	 * not yet exposted to user-space
3275 	 */
3276 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3277 
3278 	/* The msk maintain a ref to each subflow in the connections list */
3279 	WRITE_ONCE(msk->first, ssk);
3280 	subflow = mptcp_subflow_ctx(ssk);
3281 	list_add(&subflow->node, &msk->conn_list);
3282 	sock_hold(ssk);
3283 
3284 	/* new mpc subflow takes ownership of the newly
3285 	 * created mptcp socket
3286 	 */
3287 	mptcp_token_accept(subflow_req, msk);
3288 
3289 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3290 	 * uses the correct data
3291 	 */
3292 	mptcp_copy_inaddrs(nsk, ssk);
3293 	__mptcp_propagate_sndbuf(nsk, ssk);
3294 
3295 	mptcp_rcv_space_init(msk, ssk);
3296 
3297 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3298 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3299 	bh_unlock_sock(nsk);
3300 
3301 	/* note: the newly allocated socket refcount is 2 now */
3302 	return nsk;
3303 }
3304 
3305 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3306 {
3307 	const struct tcp_sock *tp = tcp_sk(ssk);
3308 
3309 	msk->rcvspace_init = 1;
3310 	msk->rcvq_space.copied = 0;
3311 	msk->rcvq_space.rtt_us = 0;
3312 
3313 	msk->rcvq_space.time = tp->tcp_mstamp;
3314 
3315 	/* initial rcv_space offering made to peer */
3316 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3317 				      TCP_INIT_CWND * tp->advmss);
3318 	if (msk->rcvq_space.space == 0)
3319 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3320 }
3321 
3322 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3323 {
3324 	struct mptcp_subflow_context *subflow, *tmp;
3325 	struct sock *sk = (struct sock *)msk;
3326 
3327 	__mptcp_clear_xmit(sk);
3328 
3329 	/* join list will be eventually flushed (with rst) at sock lock release time */
3330 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3331 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3332 
3333 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3334 	mptcp_data_lock(sk);
3335 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3336 	__skb_queue_purge(&sk->sk_receive_queue);
3337 	skb_rbtree_purge(&msk->out_of_order_queue);
3338 	mptcp_data_unlock(sk);
3339 
3340 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3341 	 * inet_sock_destruct() will dispose it
3342 	 */
3343 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3344 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3345 	mptcp_token_destroy(msk);
3346 	mptcp_pm_free_anno_list(msk);
3347 	mptcp_free_local_addr_list(msk);
3348 }
3349 
3350 static void mptcp_destroy(struct sock *sk)
3351 {
3352 	struct mptcp_sock *msk = mptcp_sk(sk);
3353 
3354 	/* allow the following to close even the initial subflow */
3355 	msk->free_first = 1;
3356 	mptcp_destroy_common(msk, 0);
3357 	sk_sockets_allocated_dec(sk);
3358 }
3359 
3360 void __mptcp_data_acked(struct sock *sk)
3361 {
3362 	if (!sock_owned_by_user(sk))
3363 		__mptcp_clean_una(sk);
3364 	else
3365 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3366 
3367 	if (mptcp_pending_data_fin_ack(sk))
3368 		mptcp_schedule_work(sk);
3369 }
3370 
3371 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3372 {
3373 	if (!mptcp_send_head(sk))
3374 		return;
3375 
3376 	if (!sock_owned_by_user(sk))
3377 		__mptcp_subflow_push_pending(sk, ssk, false);
3378 	else
3379 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3380 }
3381 
3382 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3383 				      BIT(MPTCP_RETRANSMIT) | \
3384 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3385 
3386 /* processes deferred events and flush wmem */
3387 static void mptcp_release_cb(struct sock *sk)
3388 	__must_hold(&sk->sk_lock.slock)
3389 {
3390 	struct mptcp_sock *msk = mptcp_sk(sk);
3391 
3392 	for (;;) {
3393 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3394 		struct list_head join_list;
3395 
3396 		if (!flags)
3397 			break;
3398 
3399 		INIT_LIST_HEAD(&join_list);
3400 		list_splice_init(&msk->join_list, &join_list);
3401 
3402 		/* the following actions acquire the subflow socket lock
3403 		 *
3404 		 * 1) can't be invoked in atomic scope
3405 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3406 		 *    datapath acquires the msk socket spinlock while helding
3407 		 *    the subflow socket lock
3408 		 */
3409 		msk->cb_flags &= ~flags;
3410 		spin_unlock_bh(&sk->sk_lock.slock);
3411 
3412 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3413 			__mptcp_flush_join_list(sk, &join_list);
3414 		if (flags & BIT(MPTCP_PUSH_PENDING))
3415 			__mptcp_push_pending(sk, 0);
3416 		if (flags & BIT(MPTCP_RETRANSMIT))
3417 			__mptcp_retrans(sk);
3418 
3419 		cond_resched();
3420 		spin_lock_bh(&sk->sk_lock.slock);
3421 	}
3422 
3423 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3424 		__mptcp_clean_una_wakeup(sk);
3425 	if (unlikely(msk->cb_flags)) {
3426 		/* be sure to sync the msk state before taking actions
3427 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3428 		 * On sk release avoid actions depending on the first subflow
3429 		 */
3430 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3431 			__mptcp_sync_state(sk, msk->pending_state);
3432 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3433 			__mptcp_error_report(sk);
3434 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3435 			__mptcp_sync_sndbuf(sk);
3436 	}
3437 
3438 	__mptcp_update_rmem(sk);
3439 }
3440 
3441 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3442  * TCP can't schedule delack timer before the subflow is fully established.
3443  * MPTCP uses the delack timer to do 3rd ack retransmissions
3444  */
3445 static void schedule_3rdack_retransmission(struct sock *ssk)
3446 {
3447 	struct inet_connection_sock *icsk = inet_csk(ssk);
3448 	struct tcp_sock *tp = tcp_sk(ssk);
3449 	unsigned long timeout;
3450 
3451 	if (mptcp_subflow_ctx(ssk)->fully_established)
3452 		return;
3453 
3454 	/* reschedule with a timeout above RTT, as we must look only for drop */
3455 	if (tp->srtt_us)
3456 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3457 	else
3458 		timeout = TCP_TIMEOUT_INIT;
3459 	timeout += jiffies;
3460 
3461 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3462 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3463 	icsk->icsk_ack.timeout = timeout;
3464 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3465 }
3466 
3467 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3468 {
3469 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3470 	struct sock *sk = subflow->conn;
3471 
3472 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3473 		mptcp_data_lock(sk);
3474 		if (!sock_owned_by_user(sk))
3475 			__mptcp_subflow_push_pending(sk, ssk, true);
3476 		else
3477 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3478 		mptcp_data_unlock(sk);
3479 	}
3480 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3481 		mptcp_data_lock(sk);
3482 		if (!sock_owned_by_user(sk))
3483 			__mptcp_sync_sndbuf(sk);
3484 		else
3485 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3486 		mptcp_data_unlock(sk);
3487 	}
3488 	if (status & BIT(MPTCP_DELEGATE_ACK))
3489 		schedule_3rdack_retransmission(ssk);
3490 }
3491 
3492 static int mptcp_hash(struct sock *sk)
3493 {
3494 	/* should never be called,
3495 	 * we hash the TCP subflows not the master socket
3496 	 */
3497 	WARN_ON_ONCE(1);
3498 	return 0;
3499 }
3500 
3501 static void mptcp_unhash(struct sock *sk)
3502 {
3503 	/* called from sk_common_release(), but nothing to do here */
3504 }
3505 
3506 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3507 {
3508 	struct mptcp_sock *msk = mptcp_sk(sk);
3509 
3510 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3511 	if (WARN_ON_ONCE(!msk->first))
3512 		return -EINVAL;
3513 
3514 	return inet_csk_get_port(msk->first, snum);
3515 }
3516 
3517 void mptcp_finish_connect(struct sock *ssk)
3518 {
3519 	struct mptcp_subflow_context *subflow;
3520 	struct mptcp_sock *msk;
3521 	struct sock *sk;
3522 
3523 	subflow = mptcp_subflow_ctx(ssk);
3524 	sk = subflow->conn;
3525 	msk = mptcp_sk(sk);
3526 
3527 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3528 
3529 	subflow->map_seq = subflow->iasn;
3530 	subflow->map_subflow_seq = 1;
3531 
3532 	/* the socket is not connected yet, no msk/subflow ops can access/race
3533 	 * accessing the field below
3534 	 */
3535 	WRITE_ONCE(msk->local_key, subflow->local_key);
3536 
3537 	mptcp_pm_new_connection(msk, ssk, 0);
3538 }
3539 
3540 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3541 {
3542 	write_lock_bh(&sk->sk_callback_lock);
3543 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3544 	sk_set_socket(sk, parent);
3545 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3546 	write_unlock_bh(&sk->sk_callback_lock);
3547 }
3548 
3549 bool mptcp_finish_join(struct sock *ssk)
3550 {
3551 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3552 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3553 	struct sock *parent = (void *)msk;
3554 	bool ret = true;
3555 
3556 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3557 
3558 	/* mptcp socket already closing? */
3559 	if (!mptcp_is_fully_established(parent)) {
3560 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3561 		return false;
3562 	}
3563 
3564 	/* active subflow, already present inside the conn_list */
3565 	if (!list_empty(&subflow->node)) {
3566 		mptcp_subflow_joined(msk, ssk);
3567 		mptcp_propagate_sndbuf(parent, ssk);
3568 		return true;
3569 	}
3570 
3571 	if (!mptcp_pm_allow_new_subflow(msk))
3572 		goto err_prohibited;
3573 
3574 	/* If we can't acquire msk socket lock here, let the release callback
3575 	 * handle it
3576 	 */
3577 	mptcp_data_lock(parent);
3578 	if (!sock_owned_by_user(parent)) {
3579 		ret = __mptcp_finish_join(msk, ssk);
3580 		if (ret) {
3581 			sock_hold(ssk);
3582 			list_add_tail(&subflow->node, &msk->conn_list);
3583 		}
3584 	} else {
3585 		sock_hold(ssk);
3586 		list_add_tail(&subflow->node, &msk->join_list);
3587 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3588 	}
3589 	mptcp_data_unlock(parent);
3590 
3591 	if (!ret) {
3592 err_prohibited:
3593 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3594 		return false;
3595 	}
3596 
3597 	return true;
3598 }
3599 
3600 static void mptcp_shutdown(struct sock *sk, int how)
3601 {
3602 	pr_debug("sk=%p, how=%d", sk, how);
3603 
3604 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3605 		__mptcp_wr_shutdown(sk);
3606 }
3607 
3608 static int mptcp_forward_alloc_get(const struct sock *sk)
3609 {
3610 	return READ_ONCE(sk->sk_forward_alloc) +
3611 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3612 }
3613 
3614 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3615 {
3616 	const struct sock *sk = (void *)msk;
3617 	u64 delta;
3618 
3619 	if (sk->sk_state == TCP_LISTEN)
3620 		return -EINVAL;
3621 
3622 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3623 		return 0;
3624 
3625 	delta = msk->write_seq - v;
3626 	if (__mptcp_check_fallback(msk) && msk->first) {
3627 		struct tcp_sock *tp = tcp_sk(msk->first);
3628 
3629 		/* the first subflow is disconnected after close - see
3630 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3631 		 * so ignore that status, too.
3632 		 */
3633 		if (!((1 << msk->first->sk_state) &
3634 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3635 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3636 	}
3637 	if (delta > INT_MAX)
3638 		delta = INT_MAX;
3639 
3640 	return (int)delta;
3641 }
3642 
3643 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3644 {
3645 	struct mptcp_sock *msk = mptcp_sk(sk);
3646 	bool slow;
3647 
3648 	switch (cmd) {
3649 	case SIOCINQ:
3650 		if (sk->sk_state == TCP_LISTEN)
3651 			return -EINVAL;
3652 
3653 		lock_sock(sk);
3654 		__mptcp_move_skbs(msk);
3655 		*karg = mptcp_inq_hint(sk);
3656 		release_sock(sk);
3657 		break;
3658 	case SIOCOUTQ:
3659 		slow = lock_sock_fast(sk);
3660 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3661 		unlock_sock_fast(sk, slow);
3662 		break;
3663 	case SIOCOUTQNSD:
3664 		slow = lock_sock_fast(sk);
3665 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3666 		unlock_sock_fast(sk, slow);
3667 		break;
3668 	default:
3669 		return -ENOIOCTLCMD;
3670 	}
3671 
3672 	return 0;
3673 }
3674 
3675 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3676 					 struct mptcp_subflow_context *subflow)
3677 {
3678 	subflow->request_mptcp = 0;
3679 	__mptcp_do_fallback(msk);
3680 }
3681 
3682 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3683 {
3684 	struct mptcp_subflow_context *subflow;
3685 	struct mptcp_sock *msk = mptcp_sk(sk);
3686 	int err = -EINVAL;
3687 	struct sock *ssk;
3688 
3689 	ssk = __mptcp_nmpc_sk(msk);
3690 	if (IS_ERR(ssk))
3691 		return PTR_ERR(ssk);
3692 
3693 	mptcp_set_state(sk, TCP_SYN_SENT);
3694 	subflow = mptcp_subflow_ctx(ssk);
3695 #ifdef CONFIG_TCP_MD5SIG
3696 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3697 	 * TCP option space.
3698 	 */
3699 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3700 		mptcp_subflow_early_fallback(msk, subflow);
3701 #endif
3702 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3703 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3704 		mptcp_subflow_early_fallback(msk, subflow);
3705 	}
3706 	if (likely(!__mptcp_check_fallback(msk)))
3707 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3708 
3709 	/* if reaching here via the fastopen/sendmsg path, the caller already
3710 	 * acquired the subflow socket lock, too.
3711 	 */
3712 	if (!msk->fastopening)
3713 		lock_sock(ssk);
3714 
3715 	/* the following mirrors closely a very small chunk of code from
3716 	 * __inet_stream_connect()
3717 	 */
3718 	if (ssk->sk_state != TCP_CLOSE)
3719 		goto out;
3720 
3721 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3722 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3723 		if (err)
3724 			goto out;
3725 	}
3726 
3727 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3728 	if (err < 0)
3729 		goto out;
3730 
3731 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3732 
3733 out:
3734 	if (!msk->fastopening)
3735 		release_sock(ssk);
3736 
3737 	/* on successful connect, the msk state will be moved to established by
3738 	 * subflow_finish_connect()
3739 	 */
3740 	if (unlikely(err)) {
3741 		/* avoid leaving a dangling token in an unconnected socket */
3742 		mptcp_token_destroy(msk);
3743 		mptcp_set_state(sk, TCP_CLOSE);
3744 		return err;
3745 	}
3746 
3747 	mptcp_copy_inaddrs(sk, ssk);
3748 	return 0;
3749 }
3750 
3751 static struct proto mptcp_prot = {
3752 	.name		= "MPTCP",
3753 	.owner		= THIS_MODULE,
3754 	.init		= mptcp_init_sock,
3755 	.connect	= mptcp_connect,
3756 	.disconnect	= mptcp_disconnect,
3757 	.close		= mptcp_close,
3758 	.setsockopt	= mptcp_setsockopt,
3759 	.getsockopt	= mptcp_getsockopt,
3760 	.shutdown	= mptcp_shutdown,
3761 	.destroy	= mptcp_destroy,
3762 	.sendmsg	= mptcp_sendmsg,
3763 	.ioctl		= mptcp_ioctl,
3764 	.recvmsg	= mptcp_recvmsg,
3765 	.release_cb	= mptcp_release_cb,
3766 	.hash		= mptcp_hash,
3767 	.unhash		= mptcp_unhash,
3768 	.get_port	= mptcp_get_port,
3769 	.forward_alloc_get	= mptcp_forward_alloc_get,
3770 	.sockets_allocated	= &mptcp_sockets_allocated,
3771 
3772 	.memory_allocated	= &tcp_memory_allocated,
3773 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3774 
3775 	.memory_pressure	= &tcp_memory_pressure,
3776 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3777 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3778 	.sysctl_mem	= sysctl_tcp_mem,
3779 	.obj_size	= sizeof(struct mptcp_sock),
3780 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3781 	.no_autobind	= true,
3782 };
3783 
3784 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3785 {
3786 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3787 	struct sock *ssk, *sk = sock->sk;
3788 	int err = -EINVAL;
3789 
3790 	lock_sock(sk);
3791 	ssk = __mptcp_nmpc_sk(msk);
3792 	if (IS_ERR(ssk)) {
3793 		err = PTR_ERR(ssk);
3794 		goto unlock;
3795 	}
3796 
3797 	if (sk->sk_family == AF_INET)
3798 		err = inet_bind_sk(ssk, uaddr, addr_len);
3799 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3800 	else if (sk->sk_family == AF_INET6)
3801 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3802 #endif
3803 	if (!err)
3804 		mptcp_copy_inaddrs(sk, ssk);
3805 
3806 unlock:
3807 	release_sock(sk);
3808 	return err;
3809 }
3810 
3811 static int mptcp_listen(struct socket *sock, int backlog)
3812 {
3813 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3814 	struct sock *sk = sock->sk;
3815 	struct sock *ssk;
3816 	int err;
3817 
3818 	pr_debug("msk=%p", msk);
3819 
3820 	lock_sock(sk);
3821 
3822 	err = -EINVAL;
3823 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3824 		goto unlock;
3825 
3826 	ssk = __mptcp_nmpc_sk(msk);
3827 	if (IS_ERR(ssk)) {
3828 		err = PTR_ERR(ssk);
3829 		goto unlock;
3830 	}
3831 
3832 	mptcp_set_state(sk, TCP_LISTEN);
3833 	sock_set_flag(sk, SOCK_RCU_FREE);
3834 
3835 	lock_sock(ssk);
3836 	err = __inet_listen_sk(ssk, backlog);
3837 	release_sock(ssk);
3838 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3839 
3840 	if (!err) {
3841 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3842 		mptcp_copy_inaddrs(sk, ssk);
3843 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3844 	}
3845 
3846 unlock:
3847 	release_sock(sk);
3848 	return err;
3849 }
3850 
3851 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3852 			       int flags, bool kern)
3853 {
3854 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3855 	struct sock *ssk, *newsk;
3856 	int err;
3857 
3858 	pr_debug("msk=%p", msk);
3859 
3860 	/* Buggy applications can call accept on socket states other then LISTEN
3861 	 * but no need to allocate the first subflow just to error out.
3862 	 */
3863 	ssk = READ_ONCE(msk->first);
3864 	if (!ssk)
3865 		return -EINVAL;
3866 
3867 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3868 	newsk = inet_csk_accept(ssk, flags, &err, kern);
3869 	if (!newsk)
3870 		return err;
3871 
3872 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3873 	if (sk_is_mptcp(newsk)) {
3874 		struct mptcp_subflow_context *subflow;
3875 		struct sock *new_mptcp_sock;
3876 
3877 		subflow = mptcp_subflow_ctx(newsk);
3878 		new_mptcp_sock = subflow->conn;
3879 
3880 		/* is_mptcp should be false if subflow->conn is missing, see
3881 		 * subflow_syn_recv_sock()
3882 		 */
3883 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3884 			tcp_sk(newsk)->is_mptcp = 0;
3885 			goto tcpfallback;
3886 		}
3887 
3888 		newsk = new_mptcp_sock;
3889 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3890 
3891 		newsk->sk_kern_sock = kern;
3892 		lock_sock(newsk);
3893 		__inet_accept(sock, newsock, newsk);
3894 
3895 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3896 		msk = mptcp_sk(newsk);
3897 		msk->in_accept_queue = 0;
3898 
3899 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3900 		 * This is needed so NOSPACE flag can be set from tcp stack.
3901 		 */
3902 		mptcp_for_each_subflow(msk, subflow) {
3903 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3904 
3905 			if (!ssk->sk_socket)
3906 				mptcp_sock_graft(ssk, newsock);
3907 		}
3908 
3909 		/* Do late cleanup for the first subflow as necessary. Also
3910 		 * deal with bad peers not doing a complete shutdown.
3911 		 */
3912 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3913 			__mptcp_close_ssk(newsk, msk->first,
3914 					  mptcp_subflow_ctx(msk->first), 0);
3915 			if (unlikely(list_is_singular(&msk->conn_list)))
3916 				mptcp_set_state(newsk, TCP_CLOSE);
3917 		}
3918 	} else {
3919 		MPTCP_INC_STATS(sock_net(ssk),
3920 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3921 tcpfallback:
3922 		newsk->sk_kern_sock = kern;
3923 		lock_sock(newsk);
3924 		__inet_accept(sock, newsock, newsk);
3925 		/* we are being invoked after accepting a non-mp-capable
3926 		 * flow: sk is a tcp_sk, not an mptcp one.
3927 		 *
3928 		 * Hand the socket over to tcp so all further socket ops
3929 		 * bypass mptcp.
3930 		 */
3931 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3932 			   mptcp_fallback_tcp_ops(newsock->sk));
3933 	}
3934 	release_sock(newsk);
3935 
3936 	return 0;
3937 }
3938 
3939 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3940 {
3941 	struct sock *sk = (struct sock *)msk;
3942 
3943 	if (sk_stream_is_writeable(sk))
3944 		return EPOLLOUT | EPOLLWRNORM;
3945 
3946 	mptcp_set_nospace(sk);
3947 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3948 	if (sk_stream_is_writeable(sk))
3949 		return EPOLLOUT | EPOLLWRNORM;
3950 
3951 	return 0;
3952 }
3953 
3954 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3955 			   struct poll_table_struct *wait)
3956 {
3957 	struct sock *sk = sock->sk;
3958 	struct mptcp_sock *msk;
3959 	__poll_t mask = 0;
3960 	u8 shutdown;
3961 	int state;
3962 
3963 	msk = mptcp_sk(sk);
3964 	sock_poll_wait(file, sock, wait);
3965 
3966 	state = inet_sk_state_load(sk);
3967 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3968 	if (state == TCP_LISTEN) {
3969 		struct sock *ssk = READ_ONCE(msk->first);
3970 
3971 		if (WARN_ON_ONCE(!ssk))
3972 			return 0;
3973 
3974 		return inet_csk_listen_poll(ssk);
3975 	}
3976 
3977 	shutdown = READ_ONCE(sk->sk_shutdown);
3978 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3979 		mask |= EPOLLHUP;
3980 	if (shutdown & RCV_SHUTDOWN)
3981 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3982 
3983 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3984 		mask |= mptcp_check_readable(sk);
3985 		if (shutdown & SEND_SHUTDOWN)
3986 			mask |= EPOLLOUT | EPOLLWRNORM;
3987 		else
3988 			mask |= mptcp_check_writeable(msk);
3989 	} else if (state == TCP_SYN_SENT &&
3990 		   inet_test_bit(DEFER_CONNECT, sk)) {
3991 		/* cf tcp_poll() note about TFO */
3992 		mask |= EPOLLOUT | EPOLLWRNORM;
3993 	}
3994 
3995 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3996 	smp_rmb();
3997 	if (READ_ONCE(sk->sk_err))
3998 		mask |= EPOLLERR;
3999 
4000 	return mask;
4001 }
4002 
4003 static const struct proto_ops mptcp_stream_ops = {
4004 	.family		   = PF_INET,
4005 	.owner		   = THIS_MODULE,
4006 	.release	   = inet_release,
4007 	.bind		   = mptcp_bind,
4008 	.connect	   = inet_stream_connect,
4009 	.socketpair	   = sock_no_socketpair,
4010 	.accept		   = mptcp_stream_accept,
4011 	.getname	   = inet_getname,
4012 	.poll		   = mptcp_poll,
4013 	.ioctl		   = inet_ioctl,
4014 	.gettstamp	   = sock_gettstamp,
4015 	.listen		   = mptcp_listen,
4016 	.shutdown	   = inet_shutdown,
4017 	.setsockopt	   = sock_common_setsockopt,
4018 	.getsockopt	   = sock_common_getsockopt,
4019 	.sendmsg	   = inet_sendmsg,
4020 	.recvmsg	   = inet_recvmsg,
4021 	.mmap		   = sock_no_mmap,
4022 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4023 };
4024 
4025 static struct inet_protosw mptcp_protosw = {
4026 	.type		= SOCK_STREAM,
4027 	.protocol	= IPPROTO_MPTCP,
4028 	.prot		= &mptcp_prot,
4029 	.ops		= &mptcp_stream_ops,
4030 	.flags		= INET_PROTOSW_ICSK,
4031 };
4032 
4033 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4034 {
4035 	struct mptcp_delegated_action *delegated;
4036 	struct mptcp_subflow_context *subflow;
4037 	int work_done = 0;
4038 
4039 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4040 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4041 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4042 
4043 		bh_lock_sock_nested(ssk);
4044 		if (!sock_owned_by_user(ssk)) {
4045 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4046 		} else {
4047 			/* tcp_release_cb_override already processed
4048 			 * the action or will do at next release_sock().
4049 			 * In both case must dequeue the subflow here - on the same
4050 			 * CPU that scheduled it.
4051 			 */
4052 			smp_wmb();
4053 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4054 		}
4055 		bh_unlock_sock(ssk);
4056 		sock_put(ssk);
4057 
4058 		if (++work_done == budget)
4059 			return budget;
4060 	}
4061 
4062 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4063 	 * will not try accessing the NULL napi->dev ptr
4064 	 */
4065 	napi_complete_done(napi, 0);
4066 	return work_done;
4067 }
4068 
4069 void __init mptcp_proto_init(void)
4070 {
4071 	struct mptcp_delegated_action *delegated;
4072 	int cpu;
4073 
4074 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4075 
4076 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4077 		panic("Failed to allocate MPTCP pcpu counter\n");
4078 
4079 	init_dummy_netdev(&mptcp_napi_dev);
4080 	for_each_possible_cpu(cpu) {
4081 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4082 		INIT_LIST_HEAD(&delegated->head);
4083 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4084 				  mptcp_napi_poll);
4085 		napi_enable(&delegated->napi);
4086 	}
4087 
4088 	mptcp_subflow_init();
4089 	mptcp_pm_init();
4090 	mptcp_sched_init();
4091 	mptcp_token_init();
4092 
4093 	if (proto_register(&mptcp_prot, 1) != 0)
4094 		panic("Failed to register MPTCP proto.\n");
4095 
4096 	inet_register_protosw(&mptcp_protosw);
4097 
4098 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4099 }
4100 
4101 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4102 static const struct proto_ops mptcp_v6_stream_ops = {
4103 	.family		   = PF_INET6,
4104 	.owner		   = THIS_MODULE,
4105 	.release	   = inet6_release,
4106 	.bind		   = mptcp_bind,
4107 	.connect	   = inet_stream_connect,
4108 	.socketpair	   = sock_no_socketpair,
4109 	.accept		   = mptcp_stream_accept,
4110 	.getname	   = inet6_getname,
4111 	.poll		   = mptcp_poll,
4112 	.ioctl		   = inet6_ioctl,
4113 	.gettstamp	   = sock_gettstamp,
4114 	.listen		   = mptcp_listen,
4115 	.shutdown	   = inet_shutdown,
4116 	.setsockopt	   = sock_common_setsockopt,
4117 	.getsockopt	   = sock_common_getsockopt,
4118 	.sendmsg	   = inet6_sendmsg,
4119 	.recvmsg	   = inet6_recvmsg,
4120 	.mmap		   = sock_no_mmap,
4121 #ifdef CONFIG_COMPAT
4122 	.compat_ioctl	   = inet6_compat_ioctl,
4123 #endif
4124 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4125 };
4126 
4127 static struct proto mptcp_v6_prot;
4128 
4129 static struct inet_protosw mptcp_v6_protosw = {
4130 	.type		= SOCK_STREAM,
4131 	.protocol	= IPPROTO_MPTCP,
4132 	.prot		= &mptcp_v6_prot,
4133 	.ops		= &mptcp_v6_stream_ops,
4134 	.flags		= INET_PROTOSW_ICSK,
4135 };
4136 
4137 int __init mptcp_proto_v6_init(void)
4138 {
4139 	int err;
4140 
4141 	mptcp_v6_prot = mptcp_prot;
4142 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4143 	mptcp_v6_prot.slab = NULL;
4144 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4145 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4146 
4147 	err = proto_register(&mptcp_v6_prot, 1);
4148 	if (err)
4149 		return err;
4150 
4151 	err = inet6_register_protosw(&mptcp_v6_protosw);
4152 	if (err)
4153 		proto_unregister(&mptcp_v6_prot);
4154 
4155 	return err;
4156 }
4157 #endif
4158