1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 kfree_skb_partial(from, fragstolen); 154 atomic_add(delta, &sk->sk_rmem_alloc); 155 mptcp_rmem_charge(sk, delta); 156 return true; 157 } 158 159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 160 struct sk_buff *from) 161 { 162 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 163 return false; 164 165 return mptcp_try_coalesce((struct sock *)msk, to, from); 166 } 167 168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 169 { 170 amount >>= SK_MEM_QUANTUM_SHIFT; 171 mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 172 __sk_mem_reduce_allocated(sk, amount); 173 } 174 175 static void mptcp_rmem_uncharge(struct sock *sk, int size) 176 { 177 struct mptcp_sock *msk = mptcp_sk(sk); 178 int reclaimable; 179 180 msk->rmem_fwd_alloc += size; 181 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 182 183 /* see sk_mem_uncharge() for the rationale behind the following schema */ 184 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 185 __mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK); 186 } 187 188 static void mptcp_rfree(struct sk_buff *skb) 189 { 190 unsigned int len = skb->truesize; 191 struct sock *sk = skb->sk; 192 193 atomic_sub(len, &sk->sk_rmem_alloc); 194 mptcp_rmem_uncharge(sk, len); 195 } 196 197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 198 { 199 skb_orphan(skb); 200 skb->sk = sk; 201 skb->destructor = mptcp_rfree; 202 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 203 mptcp_rmem_charge(sk, skb->truesize); 204 } 205 206 /* "inspired" by tcp_data_queue_ofo(), main differences: 207 * - use mptcp seqs 208 * - don't cope with sacks 209 */ 210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 211 { 212 struct sock *sk = (struct sock *)msk; 213 struct rb_node **p, *parent; 214 u64 seq, end_seq, max_seq; 215 struct sk_buff *skb1; 216 217 seq = MPTCP_SKB_CB(skb)->map_seq; 218 end_seq = MPTCP_SKB_CB(skb)->end_seq; 219 max_seq = READ_ONCE(msk->rcv_wnd_sent); 220 221 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 222 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 223 if (after64(end_seq, max_seq)) { 224 /* out of window */ 225 mptcp_drop(sk, skb); 226 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 227 (unsigned long long)end_seq - (unsigned long)max_seq, 228 (unsigned long long)msk->rcv_wnd_sent); 229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 230 return; 231 } 232 233 p = &msk->out_of_order_queue.rb_node; 234 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 235 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 236 rb_link_node(&skb->rbnode, NULL, p); 237 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 238 msk->ooo_last_skb = skb; 239 goto end; 240 } 241 242 /* with 2 subflows, adding at end of ooo queue is quite likely 243 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 244 */ 245 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 248 return; 249 } 250 251 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 252 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 parent = &msk->ooo_last_skb->rbnode; 255 p = &parent->rb_right; 256 goto insert; 257 } 258 259 /* Find place to insert this segment. Handle overlaps on the way. */ 260 parent = NULL; 261 while (*p) { 262 parent = *p; 263 skb1 = rb_to_skb(parent); 264 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 265 p = &parent->rb_left; 266 continue; 267 } 268 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 /* All the bits are present. Drop. */ 271 mptcp_drop(sk, skb); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 273 return; 274 } 275 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 276 /* partial overlap: 277 * | skb | 278 * | skb1 | 279 * continue traversing 280 */ 281 } else { 282 /* skb's seq == skb1's seq and skb covers skb1. 283 * Replace skb1 with skb. 284 */ 285 rb_replace_node(&skb1->rbnode, &skb->rbnode, 286 &msk->out_of_order_queue); 287 mptcp_drop(sk, skb1); 288 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 289 goto merge_right; 290 } 291 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 292 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 293 return; 294 } 295 p = &parent->rb_right; 296 } 297 298 insert: 299 /* Insert segment into RB tree. */ 300 rb_link_node(&skb->rbnode, parent, p); 301 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 302 303 merge_right: 304 /* Remove other segments covered by skb. */ 305 while ((skb1 = skb_rb_next(skb)) != NULL) { 306 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 307 break; 308 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 309 mptcp_drop(sk, skb1); 310 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 311 } 312 /* If there is no skb after us, we are the last_skb ! */ 313 if (!skb1) 314 msk->ooo_last_skb = skb; 315 316 end: 317 skb_condense(skb); 318 mptcp_set_owner_r(skb, sk); 319 } 320 321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 322 { 323 struct mptcp_sock *msk = mptcp_sk(sk); 324 int amt, amount; 325 326 if (size < msk->rmem_fwd_alloc) 327 return true; 328 329 amt = sk_mem_pages(size); 330 amount = amt << SK_MEM_QUANTUM_SHIFT; 331 msk->rmem_fwd_alloc += amount; 332 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) { 333 if (ssk->sk_forward_alloc < amount) { 334 msk->rmem_fwd_alloc -= amount; 335 return false; 336 } 337 338 ssk->sk_forward_alloc -= amount; 339 } 340 return true; 341 } 342 343 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 344 struct sk_buff *skb, unsigned int offset, 345 size_t copy_len) 346 { 347 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 348 struct sock *sk = (struct sock *)msk; 349 struct sk_buff *tail; 350 bool has_rxtstamp; 351 352 __skb_unlink(skb, &ssk->sk_receive_queue); 353 354 skb_ext_reset(skb); 355 skb_orphan(skb); 356 357 /* try to fetch required memory from subflow */ 358 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 359 goto drop; 360 361 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 362 363 /* the skb map_seq accounts for the skb offset: 364 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 365 * value 366 */ 367 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 368 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 369 MPTCP_SKB_CB(skb)->offset = offset; 370 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 371 372 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 373 /* in sequence */ 374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 375 tail = skb_peek_tail(&sk->sk_receive_queue); 376 if (tail && mptcp_try_coalesce(sk, tail, skb)) 377 return true; 378 379 mptcp_set_owner_r(skb, sk); 380 __skb_queue_tail(&sk->sk_receive_queue, skb); 381 return true; 382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 383 mptcp_data_queue_ofo(msk, skb); 384 return false; 385 } 386 387 /* old data, keep it simple and drop the whole pkt, sender 388 * will retransmit as needed, if needed. 389 */ 390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 391 drop: 392 mptcp_drop(sk, skb); 393 return false; 394 } 395 396 static void mptcp_stop_timer(struct sock *sk) 397 { 398 struct inet_connection_sock *icsk = inet_csk(sk); 399 400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 401 mptcp_sk(sk)->timer_ival = 0; 402 } 403 404 static void mptcp_close_wake_up(struct sock *sk) 405 { 406 if (sock_flag(sk, SOCK_DEAD)) 407 return; 408 409 sk->sk_state_change(sk); 410 if (sk->sk_shutdown == SHUTDOWN_MASK || 411 sk->sk_state == TCP_CLOSE) 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 413 else 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 415 } 416 417 static bool mptcp_pending_data_fin_ack(struct sock *sk) 418 { 419 struct mptcp_sock *msk = mptcp_sk(sk); 420 421 return !__mptcp_check_fallback(msk) && 422 ((1 << sk->sk_state) & 423 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 424 msk->write_seq == READ_ONCE(msk->snd_una); 425 } 426 427 static void mptcp_check_data_fin_ack(struct sock *sk) 428 { 429 struct mptcp_sock *msk = mptcp_sk(sk); 430 431 /* Look for an acknowledged DATA_FIN */ 432 if (mptcp_pending_data_fin_ack(sk)) { 433 WRITE_ONCE(msk->snd_data_fin_enable, 0); 434 435 switch (sk->sk_state) { 436 case TCP_FIN_WAIT1: 437 inet_sk_state_store(sk, TCP_FIN_WAIT2); 438 break; 439 case TCP_CLOSING: 440 case TCP_LAST_ACK: 441 inet_sk_state_store(sk, TCP_CLOSE); 442 break; 443 } 444 445 mptcp_close_wake_up(sk); 446 } 447 } 448 449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 450 { 451 struct mptcp_sock *msk = mptcp_sk(sk); 452 453 if (READ_ONCE(msk->rcv_data_fin) && 454 ((1 << sk->sk_state) & 455 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 456 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 457 458 if (msk->ack_seq == rcv_data_fin_seq) { 459 if (seq) 460 *seq = rcv_data_fin_seq; 461 462 return true; 463 } 464 } 465 466 return false; 467 } 468 469 static void mptcp_set_datafin_timeout(const struct sock *sk) 470 { 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 u32 retransmits; 473 474 retransmits = min_t(u32, icsk->icsk_retransmits, 475 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 476 477 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 478 } 479 480 static void __mptcp_set_timeout(struct sock *sk, long tout) 481 { 482 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 483 } 484 485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 486 { 487 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 488 489 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 490 inet_csk(ssk)->icsk_timeout - jiffies : 0; 491 } 492 493 static void mptcp_set_timeout(struct sock *sk) 494 { 495 struct mptcp_subflow_context *subflow; 496 long tout = 0; 497 498 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 499 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 500 __mptcp_set_timeout(sk, tout); 501 } 502 503 static bool tcp_can_send_ack(const struct sock *ssk) 504 { 505 return !((1 << inet_sk_state_load(ssk)) & 506 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 507 } 508 509 void mptcp_subflow_send_ack(struct sock *ssk) 510 { 511 bool slow; 512 513 slow = lock_sock_fast(ssk); 514 if (tcp_can_send_ack(ssk)) 515 tcp_send_ack(ssk); 516 unlock_sock_fast(ssk, slow); 517 } 518 519 static void mptcp_send_ack(struct mptcp_sock *msk) 520 { 521 struct mptcp_subflow_context *subflow; 522 523 mptcp_for_each_subflow(msk, subflow) 524 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 525 } 526 527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 528 { 529 bool slow; 530 531 slow = lock_sock_fast(ssk); 532 if (tcp_can_send_ack(ssk)) 533 tcp_cleanup_rbuf(ssk, 1); 534 unlock_sock_fast(ssk, slow); 535 } 536 537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 538 { 539 const struct inet_connection_sock *icsk = inet_csk(ssk); 540 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 541 const struct tcp_sock *tp = tcp_sk(ssk); 542 543 return (ack_pending & ICSK_ACK_SCHED) && 544 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 545 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 546 (rx_empty && ack_pending & 547 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 548 } 549 550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 551 { 552 int old_space = READ_ONCE(msk->old_wspace); 553 struct mptcp_subflow_context *subflow; 554 struct sock *sk = (struct sock *)msk; 555 int space = __mptcp_space(sk); 556 bool cleanup, rx_empty; 557 558 cleanup = (space > 0) && (space >= (old_space << 1)); 559 rx_empty = !__mptcp_rmem(sk); 560 561 mptcp_for_each_subflow(msk, subflow) { 562 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 563 564 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 565 mptcp_subflow_cleanup_rbuf(ssk); 566 } 567 } 568 569 static bool mptcp_check_data_fin(struct sock *sk) 570 { 571 struct mptcp_sock *msk = mptcp_sk(sk); 572 u64 rcv_data_fin_seq; 573 bool ret = false; 574 575 if (__mptcp_check_fallback(msk)) 576 return ret; 577 578 /* Need to ack a DATA_FIN received from a peer while this side 579 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 580 * msk->rcv_data_fin was set when parsing the incoming options 581 * at the subflow level and the msk lock was not held, so this 582 * is the first opportunity to act on the DATA_FIN and change 583 * the msk state. 584 * 585 * If we are caught up to the sequence number of the incoming 586 * DATA_FIN, send the DATA_ACK now and do state transition. If 587 * not caught up, do nothing and let the recv code send DATA_ACK 588 * when catching up. 589 */ 590 591 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 592 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 593 WRITE_ONCE(msk->rcv_data_fin, 0); 594 595 sk->sk_shutdown |= RCV_SHUTDOWN; 596 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 597 598 switch (sk->sk_state) { 599 case TCP_ESTABLISHED: 600 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 601 break; 602 case TCP_FIN_WAIT1: 603 inet_sk_state_store(sk, TCP_CLOSING); 604 break; 605 case TCP_FIN_WAIT2: 606 inet_sk_state_store(sk, TCP_CLOSE); 607 break; 608 default: 609 /* Other states not expected */ 610 WARN_ON_ONCE(1); 611 break; 612 } 613 614 ret = true; 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* if no data is found, a racing workqueue/recvmsg 659 * already processed the new data, stop here or we 660 * can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* if we are running under the workqueue, TCP could have 669 * collapsed skbs between dummy map creation and now 670 * be sure to adjust the size 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->ack_seq = end_seq; 753 moved = true; 754 } 755 return moved; 756 } 757 758 /* In most cases we will be able to lock the mptcp socket. If its already 759 * owned, we need to defer to the work queue to avoid ABBA deadlock. 760 */ 761 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 762 { 763 struct sock *sk = (struct sock *)msk; 764 unsigned int moved = 0; 765 766 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 767 __mptcp_ofo_queue(msk); 768 if (unlikely(ssk->sk_err)) { 769 if (!sock_owned_by_user(sk)) 770 __mptcp_error_report(sk); 771 else 772 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 773 } 774 775 /* If the moves have caught up with the DATA_FIN sequence number 776 * it's time to ack the DATA_FIN and change socket state, but 777 * this is not a good place to change state. Let the workqueue 778 * do it. 779 */ 780 if (mptcp_pending_data_fin(sk, NULL)) 781 mptcp_schedule_work(sk); 782 return moved > 0; 783 } 784 785 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 786 { 787 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 788 struct mptcp_sock *msk = mptcp_sk(sk); 789 int sk_rbuf, ssk_rbuf; 790 791 /* The peer can send data while we are shutting down this 792 * subflow at msk destruction time, but we must avoid enqueuing 793 * more data to the msk receive queue 794 */ 795 if (unlikely(subflow->disposable)) 796 return; 797 798 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 799 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 800 if (unlikely(ssk_rbuf > sk_rbuf)) 801 sk_rbuf = ssk_rbuf; 802 803 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 804 if (__mptcp_rmem(sk) > sk_rbuf) { 805 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 806 return; 807 } 808 809 /* Wake-up the reader only for in-sequence data */ 810 mptcp_data_lock(sk); 811 if (move_skbs_to_msk(msk, ssk)) 812 sk->sk_data_ready(sk); 813 814 mptcp_data_unlock(sk); 815 } 816 817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 818 { 819 struct sock *sk = (struct sock *)msk; 820 821 if (sk->sk_state != TCP_ESTABLISHED) 822 return false; 823 824 /* attach to msk socket only after we are sure we will deal with it 825 * at close time 826 */ 827 if (sk->sk_socket && !ssk->sk_socket) 828 mptcp_sock_graft(ssk, sk->sk_socket); 829 830 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 831 mptcp_sockopt_sync_locked(msk, ssk); 832 return true; 833 } 834 835 static void __mptcp_flush_join_list(struct sock *sk) 836 { 837 struct mptcp_subflow_context *tmp, *subflow; 838 struct mptcp_sock *msk = mptcp_sk(sk); 839 840 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 841 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 842 bool slow = lock_sock_fast(ssk); 843 844 list_move_tail(&subflow->node, &msk->conn_list); 845 if (!__mptcp_finish_join(msk, ssk)) 846 mptcp_subflow_reset(ssk); 847 unlock_sock_fast(ssk, slow); 848 } 849 } 850 851 static bool mptcp_timer_pending(struct sock *sk) 852 { 853 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 854 } 855 856 static void mptcp_reset_timer(struct sock *sk) 857 { 858 struct inet_connection_sock *icsk = inet_csk(sk); 859 unsigned long tout; 860 861 /* prevent rescheduling on close */ 862 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 863 return; 864 865 tout = mptcp_sk(sk)->timer_ival; 866 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 867 } 868 869 bool mptcp_schedule_work(struct sock *sk) 870 { 871 if (inet_sk_state_load(sk) != TCP_CLOSE && 872 schedule_work(&mptcp_sk(sk)->work)) { 873 /* each subflow already holds a reference to the sk, and the 874 * workqueue is invoked by a subflow, so sk can't go away here. 875 */ 876 sock_hold(sk); 877 return true; 878 } 879 return false; 880 } 881 882 void mptcp_subflow_eof(struct sock *sk) 883 { 884 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 885 mptcp_schedule_work(sk); 886 } 887 888 static void mptcp_check_for_eof(struct mptcp_sock *msk) 889 { 890 struct mptcp_subflow_context *subflow; 891 struct sock *sk = (struct sock *)msk; 892 int receivers = 0; 893 894 mptcp_for_each_subflow(msk, subflow) 895 receivers += !subflow->rx_eof; 896 if (receivers) 897 return; 898 899 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 900 /* hopefully temporary hack: propagate shutdown status 901 * to msk, when all subflows agree on it 902 */ 903 sk->sk_shutdown |= RCV_SHUTDOWN; 904 905 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 906 sk->sk_data_ready(sk); 907 } 908 909 switch (sk->sk_state) { 910 case TCP_ESTABLISHED: 911 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 912 break; 913 case TCP_FIN_WAIT1: 914 inet_sk_state_store(sk, TCP_CLOSING); 915 break; 916 case TCP_FIN_WAIT2: 917 inet_sk_state_store(sk, TCP_CLOSE); 918 break; 919 default: 920 return; 921 } 922 mptcp_close_wake_up(sk); 923 } 924 925 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 926 { 927 struct mptcp_subflow_context *subflow; 928 struct sock *sk = (struct sock *)msk; 929 930 sock_owned_by_me(sk); 931 932 mptcp_for_each_subflow(msk, subflow) { 933 if (READ_ONCE(subflow->data_avail)) 934 return mptcp_subflow_tcp_sock(subflow); 935 } 936 937 return NULL; 938 } 939 940 static bool mptcp_skb_can_collapse_to(u64 write_seq, 941 const struct sk_buff *skb, 942 const struct mptcp_ext *mpext) 943 { 944 if (!tcp_skb_can_collapse_to(skb)) 945 return false; 946 947 /* can collapse only if MPTCP level sequence is in order and this 948 * mapping has not been xmitted yet 949 */ 950 return mpext && mpext->data_seq + mpext->data_len == write_seq && 951 !mpext->frozen; 952 } 953 954 /* we can append data to the given data frag if: 955 * - there is space available in the backing page_frag 956 * - the data frag tail matches the current page_frag free offset 957 * - the data frag end sequence number matches the current write seq 958 */ 959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 960 const struct page_frag *pfrag, 961 const struct mptcp_data_frag *df) 962 { 963 return df && pfrag->page == df->page && 964 pfrag->size - pfrag->offset > 0 && 965 pfrag->offset == (df->offset + df->data_len) && 966 df->data_seq + df->data_len == msk->write_seq; 967 } 968 969 static void __mptcp_mem_reclaim_partial(struct sock *sk) 970 { 971 int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 972 973 lockdep_assert_held_once(&sk->sk_lock.slock); 974 975 if (reclaimable > SK_MEM_QUANTUM) 976 __mptcp_rmem_reclaim(sk, reclaimable - 1); 977 978 sk_mem_reclaim_partial(sk); 979 } 980 981 static void mptcp_mem_reclaim_partial(struct sock *sk) 982 { 983 mptcp_data_lock(sk); 984 __mptcp_mem_reclaim_partial(sk); 985 mptcp_data_unlock(sk); 986 } 987 988 static void dfrag_uncharge(struct sock *sk, int len) 989 { 990 sk_mem_uncharge(sk, len); 991 sk_wmem_queued_add(sk, -len); 992 } 993 994 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 995 { 996 int len = dfrag->data_len + dfrag->overhead; 997 998 list_del(&dfrag->list); 999 dfrag_uncharge(sk, len); 1000 put_page(dfrag->page); 1001 } 1002 1003 static void __mptcp_clean_una(struct sock *sk) 1004 { 1005 struct mptcp_sock *msk = mptcp_sk(sk); 1006 struct mptcp_data_frag *dtmp, *dfrag; 1007 bool cleaned = false; 1008 u64 snd_una; 1009 1010 /* on fallback we just need to ignore snd_una, as this is really 1011 * plain TCP 1012 */ 1013 if (__mptcp_check_fallback(msk)) 1014 msk->snd_una = READ_ONCE(msk->snd_nxt); 1015 1016 snd_una = msk->snd_una; 1017 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1018 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1019 break; 1020 1021 if (unlikely(dfrag == msk->first_pending)) { 1022 /* in recovery mode can see ack after the current snd head */ 1023 if (WARN_ON_ONCE(!msk->recovery)) 1024 break; 1025 1026 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1027 } 1028 1029 dfrag_clear(sk, dfrag); 1030 cleaned = true; 1031 } 1032 1033 dfrag = mptcp_rtx_head(sk); 1034 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1035 u64 delta = snd_una - dfrag->data_seq; 1036 1037 /* prevent wrap around in recovery mode */ 1038 if (unlikely(delta > dfrag->already_sent)) { 1039 if (WARN_ON_ONCE(!msk->recovery)) 1040 goto out; 1041 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1042 goto out; 1043 dfrag->already_sent += delta - dfrag->already_sent; 1044 } 1045 1046 dfrag->data_seq += delta; 1047 dfrag->offset += delta; 1048 dfrag->data_len -= delta; 1049 dfrag->already_sent -= delta; 1050 1051 dfrag_uncharge(sk, delta); 1052 cleaned = true; 1053 } 1054 1055 /* all retransmitted data acked, recovery completed */ 1056 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1057 msk->recovery = false; 1058 1059 out: 1060 if (cleaned && tcp_under_memory_pressure(sk)) 1061 __mptcp_mem_reclaim_partial(sk); 1062 1063 if (snd_una == READ_ONCE(msk->snd_nxt) && 1064 snd_una == READ_ONCE(msk->write_seq)) { 1065 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1066 mptcp_stop_timer(sk); 1067 } else { 1068 mptcp_reset_timer(sk); 1069 } 1070 } 1071 1072 static void __mptcp_clean_una_wakeup(struct sock *sk) 1073 { 1074 lockdep_assert_held_once(&sk->sk_lock.slock); 1075 1076 __mptcp_clean_una(sk); 1077 mptcp_write_space(sk); 1078 } 1079 1080 static void mptcp_clean_una_wakeup(struct sock *sk) 1081 { 1082 mptcp_data_lock(sk); 1083 __mptcp_clean_una_wakeup(sk); 1084 mptcp_data_unlock(sk); 1085 } 1086 1087 static void mptcp_enter_memory_pressure(struct sock *sk) 1088 { 1089 struct mptcp_subflow_context *subflow; 1090 struct mptcp_sock *msk = mptcp_sk(sk); 1091 bool first = true; 1092 1093 sk_stream_moderate_sndbuf(sk); 1094 mptcp_for_each_subflow(msk, subflow) { 1095 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1096 1097 if (first) 1098 tcp_enter_memory_pressure(ssk); 1099 sk_stream_moderate_sndbuf(ssk); 1100 first = false; 1101 } 1102 } 1103 1104 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1105 * data 1106 */ 1107 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1108 { 1109 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1110 pfrag, sk->sk_allocation))) 1111 return true; 1112 1113 mptcp_enter_memory_pressure(sk); 1114 return false; 1115 } 1116 1117 static struct mptcp_data_frag * 1118 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1119 int orig_offset) 1120 { 1121 int offset = ALIGN(orig_offset, sizeof(long)); 1122 struct mptcp_data_frag *dfrag; 1123 1124 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1125 dfrag->data_len = 0; 1126 dfrag->data_seq = msk->write_seq; 1127 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1128 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1129 dfrag->already_sent = 0; 1130 dfrag->page = pfrag->page; 1131 1132 return dfrag; 1133 } 1134 1135 struct mptcp_sendmsg_info { 1136 int mss_now; 1137 int size_goal; 1138 u16 limit; 1139 u16 sent; 1140 unsigned int flags; 1141 bool data_lock_held; 1142 }; 1143 1144 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1145 int avail_size) 1146 { 1147 u64 window_end = mptcp_wnd_end(msk); 1148 1149 if (__mptcp_check_fallback(msk)) 1150 return avail_size; 1151 1152 if (!before64(data_seq + avail_size, window_end)) { 1153 u64 allowed_size = window_end - data_seq; 1154 1155 return min_t(unsigned int, allowed_size, avail_size); 1156 } 1157 1158 return avail_size; 1159 } 1160 1161 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1162 { 1163 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1164 1165 if (!mpext) 1166 return false; 1167 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1168 return true; 1169 } 1170 1171 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1172 { 1173 struct sk_buff *skb; 1174 1175 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1176 if (likely(skb)) { 1177 if (likely(__mptcp_add_ext(skb, gfp))) { 1178 skb_reserve(skb, MAX_TCP_HEADER); 1179 skb->ip_summed = CHECKSUM_PARTIAL; 1180 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1181 return skb; 1182 } 1183 __kfree_skb(skb); 1184 } else { 1185 mptcp_enter_memory_pressure(sk); 1186 } 1187 return NULL; 1188 } 1189 1190 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1191 { 1192 struct sk_buff *skb; 1193 1194 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1195 if (!skb) 1196 return NULL; 1197 1198 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1199 tcp_skb_entail(ssk, skb); 1200 return skb; 1201 } 1202 tcp_skb_tsorted_anchor_cleanup(skb); 1203 kfree_skb(skb); 1204 return NULL; 1205 } 1206 1207 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1208 { 1209 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1210 1211 if (unlikely(tcp_under_memory_pressure(sk))) { 1212 if (data_lock_held) 1213 __mptcp_mem_reclaim_partial(sk); 1214 else 1215 mptcp_mem_reclaim_partial(sk); 1216 } 1217 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1218 } 1219 1220 /* note: this always recompute the csum on the whole skb, even 1221 * if we just appended a single frag. More status info needed 1222 */ 1223 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1224 { 1225 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1226 __wsum csum = ~csum_unfold(mpext->csum); 1227 int offset = skb->len - added; 1228 1229 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1230 } 1231 1232 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1233 struct mptcp_data_frag *dfrag, 1234 struct mptcp_sendmsg_info *info) 1235 { 1236 u64 data_seq = dfrag->data_seq + info->sent; 1237 int offset = dfrag->offset + info->sent; 1238 struct mptcp_sock *msk = mptcp_sk(sk); 1239 bool zero_window_probe = false; 1240 struct mptcp_ext *mpext = NULL; 1241 bool can_coalesce = false; 1242 bool reuse_skb = true; 1243 struct sk_buff *skb; 1244 size_t copy; 1245 int i; 1246 1247 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1248 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1249 1250 if (WARN_ON_ONCE(info->sent > info->limit || 1251 info->limit > dfrag->data_len)) 1252 return 0; 1253 1254 /* compute send limit */ 1255 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1256 copy = info->size_goal; 1257 1258 skb = tcp_write_queue_tail(ssk); 1259 if (skb && copy > skb->len) { 1260 /* Limit the write to the size available in the 1261 * current skb, if any, so that we create at most a new skb. 1262 * Explicitly tells TCP internals to avoid collapsing on later 1263 * queue management operation, to avoid breaking the ext <-> 1264 * SSN association set here 1265 */ 1266 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1267 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1268 TCP_SKB_CB(skb)->eor = 1; 1269 goto alloc_skb; 1270 } 1271 1272 i = skb_shinfo(skb)->nr_frags; 1273 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1274 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1275 tcp_mark_push(tcp_sk(ssk), skb); 1276 goto alloc_skb; 1277 } 1278 1279 copy -= skb->len; 1280 } else { 1281 alloc_skb: 1282 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1283 if (!skb) 1284 return -ENOMEM; 1285 1286 i = skb_shinfo(skb)->nr_frags; 1287 reuse_skb = false; 1288 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1289 } 1290 1291 /* Zero window and all data acked? Probe. */ 1292 copy = mptcp_check_allowed_size(msk, data_seq, copy); 1293 if (copy == 0) { 1294 u64 snd_una = READ_ONCE(msk->snd_una); 1295 1296 if (snd_una != msk->snd_nxt) { 1297 tcp_remove_empty_skb(ssk); 1298 return 0; 1299 } 1300 1301 zero_window_probe = true; 1302 data_seq = snd_una - 1; 1303 copy = 1; 1304 1305 /* all mptcp-level data is acked, no skbs should be present into the 1306 * ssk write queue 1307 */ 1308 WARN_ON_ONCE(reuse_skb); 1309 } 1310 1311 copy = min_t(size_t, copy, info->limit - info->sent); 1312 if (!sk_wmem_schedule(ssk, copy)) { 1313 tcp_remove_empty_skb(ssk); 1314 return -ENOMEM; 1315 } 1316 1317 if (can_coalesce) { 1318 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1319 } else { 1320 get_page(dfrag->page); 1321 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1322 } 1323 1324 skb->len += copy; 1325 skb->data_len += copy; 1326 skb->truesize += copy; 1327 sk_wmem_queued_add(ssk, copy); 1328 sk_mem_charge(ssk, copy); 1329 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1330 TCP_SKB_CB(skb)->end_seq += copy; 1331 tcp_skb_pcount_set(skb, 0); 1332 1333 /* on skb reuse we just need to update the DSS len */ 1334 if (reuse_skb) { 1335 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1336 mpext->data_len += copy; 1337 WARN_ON_ONCE(zero_window_probe); 1338 goto out; 1339 } 1340 1341 memset(mpext, 0, sizeof(*mpext)); 1342 mpext->data_seq = data_seq; 1343 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1344 mpext->data_len = copy; 1345 mpext->use_map = 1; 1346 mpext->dsn64 = 1; 1347 1348 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1349 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1350 mpext->dsn64); 1351 1352 if (zero_window_probe) { 1353 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1354 mpext->frozen = 1; 1355 if (READ_ONCE(msk->csum_enabled)) 1356 mptcp_update_data_checksum(skb, copy); 1357 tcp_push_pending_frames(ssk); 1358 return 0; 1359 } 1360 out: 1361 if (READ_ONCE(msk->csum_enabled)) 1362 mptcp_update_data_checksum(skb, copy); 1363 trace_mptcp_sendmsg_frag(mpext); 1364 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1365 return copy; 1366 } 1367 1368 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1369 sizeof(struct tcphdr) - \ 1370 MAX_TCP_OPTION_SPACE - \ 1371 sizeof(struct ipv6hdr) - \ 1372 sizeof(struct frag_hdr)) 1373 1374 struct subflow_send_info { 1375 struct sock *ssk; 1376 u64 linger_time; 1377 }; 1378 1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1380 { 1381 if (!subflow->stale) 1382 return; 1383 1384 subflow->stale = 0; 1385 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1386 } 1387 1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1389 { 1390 if (unlikely(subflow->stale)) { 1391 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1392 1393 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1394 return false; 1395 1396 mptcp_subflow_set_active(subflow); 1397 } 1398 return __mptcp_subflow_active(subflow); 1399 } 1400 1401 #define SSK_MODE_ACTIVE 0 1402 #define SSK_MODE_BACKUP 1 1403 #define SSK_MODE_MAX 2 1404 1405 /* implement the mptcp packet scheduler; 1406 * returns the subflow that will transmit the next DSS 1407 * additionally updates the rtx timeout 1408 */ 1409 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1410 { 1411 struct subflow_send_info send_info[SSK_MODE_MAX]; 1412 struct mptcp_subflow_context *subflow; 1413 struct sock *sk = (struct sock *)msk; 1414 u32 pace, burst, wmem; 1415 int i, nr_active = 0; 1416 struct sock *ssk; 1417 u64 linger_time; 1418 long tout = 0; 1419 1420 sock_owned_by_me(sk); 1421 1422 if (__mptcp_check_fallback(msk)) { 1423 if (!msk->first) 1424 return NULL; 1425 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1426 } 1427 1428 /* re-use last subflow, if the burst allow that */ 1429 if (msk->last_snd && msk->snd_burst > 0 && 1430 sk_stream_memory_free(msk->last_snd) && 1431 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1432 mptcp_set_timeout(sk); 1433 return msk->last_snd; 1434 } 1435 1436 /* pick the subflow with the lower wmem/wspace ratio */ 1437 for (i = 0; i < SSK_MODE_MAX; ++i) { 1438 send_info[i].ssk = NULL; 1439 send_info[i].linger_time = -1; 1440 } 1441 1442 mptcp_for_each_subflow(msk, subflow) { 1443 trace_mptcp_subflow_get_send(subflow); 1444 ssk = mptcp_subflow_tcp_sock(subflow); 1445 if (!mptcp_subflow_active(subflow)) 1446 continue; 1447 1448 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1449 nr_active += !subflow->backup; 1450 pace = subflow->avg_pacing_rate; 1451 if (unlikely(!pace)) { 1452 /* init pacing rate from socket */ 1453 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1454 pace = subflow->avg_pacing_rate; 1455 if (!pace) 1456 continue; 1457 } 1458 1459 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1460 if (linger_time < send_info[subflow->backup].linger_time) { 1461 send_info[subflow->backup].ssk = ssk; 1462 send_info[subflow->backup].linger_time = linger_time; 1463 } 1464 } 1465 __mptcp_set_timeout(sk, tout); 1466 1467 /* pick the best backup if no other subflow is active */ 1468 if (!nr_active) 1469 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1470 1471 /* According to the blest algorithm, to avoid HoL blocking for the 1472 * faster flow, we need to: 1473 * - estimate the faster flow linger time 1474 * - use the above to estimate the amount of byte transferred 1475 * by the faster flow 1476 * - check that the amount of queued data is greter than the above, 1477 * otherwise do not use the picked, slower, subflow 1478 * We select the subflow with the shorter estimated time to flush 1479 * the queued mem, which basically ensure the above. We just need 1480 * to check that subflow has a non empty cwin. 1481 */ 1482 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1483 if (!ssk || !sk_stream_memory_free(ssk) || !tcp_sk(ssk)->snd_wnd) 1484 return NULL; 1485 1486 burst = min_t(int, MPTCP_SEND_BURST_SIZE, tcp_sk(ssk)->snd_wnd); 1487 wmem = READ_ONCE(ssk->sk_wmem_queued); 1488 subflow = mptcp_subflow_ctx(ssk); 1489 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1490 READ_ONCE(ssk->sk_pacing_rate) * burst, 1491 burst + wmem); 1492 msk->last_snd = ssk; 1493 msk->snd_burst = burst; 1494 return ssk; 1495 } 1496 1497 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1498 { 1499 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1500 release_sock(ssk); 1501 } 1502 1503 static void mptcp_update_post_push(struct mptcp_sock *msk, 1504 struct mptcp_data_frag *dfrag, 1505 u32 sent) 1506 { 1507 u64 snd_nxt_new = dfrag->data_seq; 1508 1509 dfrag->already_sent += sent; 1510 1511 msk->snd_burst -= sent; 1512 1513 snd_nxt_new += dfrag->already_sent; 1514 1515 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1516 * is recovering after a failover. In that event, this re-sends 1517 * old segments. 1518 * 1519 * Thus compute snd_nxt_new candidate based on 1520 * the dfrag->data_seq that was sent and the data 1521 * that has been handed to the subflow for transmission 1522 * and skip update in case it was old dfrag. 1523 */ 1524 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1525 msk->snd_nxt = snd_nxt_new; 1526 } 1527 1528 void mptcp_check_and_set_pending(struct sock *sk) 1529 { 1530 if (mptcp_send_head(sk)) 1531 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1532 } 1533 1534 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1535 { 1536 struct sock *prev_ssk = NULL, *ssk = NULL; 1537 struct mptcp_sock *msk = mptcp_sk(sk); 1538 struct mptcp_sendmsg_info info = { 1539 .flags = flags, 1540 }; 1541 struct mptcp_data_frag *dfrag; 1542 int len, copied = 0; 1543 1544 while ((dfrag = mptcp_send_head(sk))) { 1545 info.sent = dfrag->already_sent; 1546 info.limit = dfrag->data_len; 1547 len = dfrag->data_len - dfrag->already_sent; 1548 while (len > 0) { 1549 int ret = 0; 1550 1551 prev_ssk = ssk; 1552 ssk = mptcp_subflow_get_send(msk); 1553 1554 /* First check. If the ssk has changed since 1555 * the last round, release prev_ssk 1556 */ 1557 if (ssk != prev_ssk && prev_ssk) 1558 mptcp_push_release(prev_ssk, &info); 1559 if (!ssk) 1560 goto out; 1561 1562 /* Need to lock the new subflow only if different 1563 * from the previous one, otherwise we are still 1564 * helding the relevant lock 1565 */ 1566 if (ssk != prev_ssk) 1567 lock_sock(ssk); 1568 1569 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1570 if (ret <= 0) { 1571 mptcp_push_release(ssk, &info); 1572 goto out; 1573 } 1574 1575 info.sent += ret; 1576 copied += ret; 1577 len -= ret; 1578 1579 mptcp_update_post_push(msk, dfrag, ret); 1580 } 1581 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1582 } 1583 1584 /* at this point we held the socket lock for the last subflow we used */ 1585 if (ssk) 1586 mptcp_push_release(ssk, &info); 1587 1588 out: 1589 /* ensure the rtx timer is running */ 1590 if (!mptcp_timer_pending(sk)) 1591 mptcp_reset_timer(sk); 1592 if (copied) 1593 __mptcp_check_send_data_fin(sk); 1594 } 1595 1596 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1597 { 1598 struct mptcp_sock *msk = mptcp_sk(sk); 1599 struct mptcp_sendmsg_info info = { 1600 .data_lock_held = true, 1601 }; 1602 struct mptcp_data_frag *dfrag; 1603 struct sock *xmit_ssk; 1604 int len, copied = 0; 1605 bool first = true; 1606 1607 info.flags = 0; 1608 while ((dfrag = mptcp_send_head(sk))) { 1609 info.sent = dfrag->already_sent; 1610 info.limit = dfrag->data_len; 1611 len = dfrag->data_len - dfrag->already_sent; 1612 while (len > 0) { 1613 int ret = 0; 1614 1615 /* the caller already invoked the packet scheduler, 1616 * check for a different subflow usage only after 1617 * spooling the first chunk of data 1618 */ 1619 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1620 if (!xmit_ssk) 1621 goto out; 1622 if (xmit_ssk != ssk) { 1623 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1624 MPTCP_DELEGATE_SEND); 1625 goto out; 1626 } 1627 1628 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1629 if (ret <= 0) 1630 goto out; 1631 1632 info.sent += ret; 1633 copied += ret; 1634 len -= ret; 1635 first = false; 1636 1637 mptcp_update_post_push(msk, dfrag, ret); 1638 } 1639 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1640 } 1641 1642 out: 1643 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1644 * not going to flush it via release_sock() 1645 */ 1646 if (copied) { 1647 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1648 info.size_goal); 1649 if (!mptcp_timer_pending(sk)) 1650 mptcp_reset_timer(sk); 1651 1652 if (msk->snd_data_fin_enable && 1653 msk->snd_nxt + 1 == msk->write_seq) 1654 mptcp_schedule_work(sk); 1655 } 1656 } 1657 1658 static void mptcp_set_nospace(struct sock *sk) 1659 { 1660 /* enable autotune */ 1661 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1662 1663 /* will be cleared on avail space */ 1664 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1665 } 1666 1667 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1668 { 1669 struct mptcp_sock *msk = mptcp_sk(sk); 1670 struct page_frag *pfrag; 1671 size_t copied = 0; 1672 int ret = 0; 1673 long timeo; 1674 1675 /* we don't support FASTOPEN yet */ 1676 if (msg->msg_flags & MSG_FASTOPEN) 1677 return -EOPNOTSUPP; 1678 1679 /* silently ignore everything else */ 1680 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1681 1682 lock_sock(sk); 1683 1684 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1685 1686 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1687 ret = sk_stream_wait_connect(sk, &timeo); 1688 if (ret) 1689 goto out; 1690 } 1691 1692 pfrag = sk_page_frag(sk); 1693 1694 while (msg_data_left(msg)) { 1695 int total_ts, frag_truesize = 0; 1696 struct mptcp_data_frag *dfrag; 1697 bool dfrag_collapsed; 1698 size_t psize, offset; 1699 1700 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1701 ret = -EPIPE; 1702 goto out; 1703 } 1704 1705 /* reuse tail pfrag, if possible, or carve a new one from the 1706 * page allocator 1707 */ 1708 dfrag = mptcp_pending_tail(sk); 1709 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1710 if (!dfrag_collapsed) { 1711 if (!sk_stream_memory_free(sk)) 1712 goto wait_for_memory; 1713 1714 if (!mptcp_page_frag_refill(sk, pfrag)) 1715 goto wait_for_memory; 1716 1717 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1718 frag_truesize = dfrag->overhead; 1719 } 1720 1721 /* we do not bound vs wspace, to allow a single packet. 1722 * memory accounting will prevent execessive memory usage 1723 * anyway 1724 */ 1725 offset = dfrag->offset + dfrag->data_len; 1726 psize = pfrag->size - offset; 1727 psize = min_t(size_t, psize, msg_data_left(msg)); 1728 total_ts = psize + frag_truesize; 1729 1730 if (!sk_wmem_schedule(sk, total_ts)) 1731 goto wait_for_memory; 1732 1733 if (copy_page_from_iter(dfrag->page, offset, psize, 1734 &msg->msg_iter) != psize) { 1735 ret = -EFAULT; 1736 goto out; 1737 } 1738 1739 /* data successfully copied into the write queue */ 1740 sk->sk_forward_alloc -= total_ts; 1741 copied += psize; 1742 dfrag->data_len += psize; 1743 frag_truesize += psize; 1744 pfrag->offset += frag_truesize; 1745 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1746 1747 /* charge data on mptcp pending queue to the msk socket 1748 * Note: we charge such data both to sk and ssk 1749 */ 1750 sk_wmem_queued_add(sk, frag_truesize); 1751 if (!dfrag_collapsed) { 1752 get_page(dfrag->page); 1753 list_add_tail(&dfrag->list, &msk->rtx_queue); 1754 if (!msk->first_pending) 1755 WRITE_ONCE(msk->first_pending, dfrag); 1756 } 1757 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1758 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1759 !dfrag_collapsed); 1760 1761 continue; 1762 1763 wait_for_memory: 1764 mptcp_set_nospace(sk); 1765 __mptcp_push_pending(sk, msg->msg_flags); 1766 ret = sk_stream_wait_memory(sk, &timeo); 1767 if (ret) 1768 goto out; 1769 } 1770 1771 if (copied) 1772 __mptcp_push_pending(sk, msg->msg_flags); 1773 1774 out: 1775 release_sock(sk); 1776 return copied ? : ret; 1777 } 1778 1779 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1780 struct msghdr *msg, 1781 size_t len, int flags, 1782 struct scm_timestamping_internal *tss, 1783 int *cmsg_flags) 1784 { 1785 struct sk_buff *skb, *tmp; 1786 int copied = 0; 1787 1788 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1789 u32 offset = MPTCP_SKB_CB(skb)->offset; 1790 u32 data_len = skb->len - offset; 1791 u32 count = min_t(size_t, len - copied, data_len); 1792 int err; 1793 1794 if (!(flags & MSG_TRUNC)) { 1795 err = skb_copy_datagram_msg(skb, offset, msg, count); 1796 if (unlikely(err < 0)) { 1797 if (!copied) 1798 return err; 1799 break; 1800 } 1801 } 1802 1803 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1804 tcp_update_recv_tstamps(skb, tss); 1805 *cmsg_flags |= MPTCP_CMSG_TS; 1806 } 1807 1808 copied += count; 1809 1810 if (count < data_len) { 1811 if (!(flags & MSG_PEEK)) { 1812 MPTCP_SKB_CB(skb)->offset += count; 1813 MPTCP_SKB_CB(skb)->map_seq += count; 1814 } 1815 break; 1816 } 1817 1818 if (!(flags & MSG_PEEK)) { 1819 /* we will bulk release the skb memory later */ 1820 skb->destructor = NULL; 1821 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1822 __skb_unlink(skb, &msk->receive_queue); 1823 __kfree_skb(skb); 1824 } 1825 1826 if (copied >= len) 1827 break; 1828 } 1829 1830 return copied; 1831 } 1832 1833 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1834 * 1835 * Only difference: Use highest rtt estimate of the subflows in use. 1836 */ 1837 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1838 { 1839 struct mptcp_subflow_context *subflow; 1840 struct sock *sk = (struct sock *)msk; 1841 u32 time, advmss = 1; 1842 u64 rtt_us, mstamp; 1843 1844 sock_owned_by_me(sk); 1845 1846 if (copied <= 0) 1847 return; 1848 1849 msk->rcvq_space.copied += copied; 1850 1851 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1852 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1853 1854 rtt_us = msk->rcvq_space.rtt_us; 1855 if (rtt_us && time < (rtt_us >> 3)) 1856 return; 1857 1858 rtt_us = 0; 1859 mptcp_for_each_subflow(msk, subflow) { 1860 const struct tcp_sock *tp; 1861 u64 sf_rtt_us; 1862 u32 sf_advmss; 1863 1864 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1865 1866 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1867 sf_advmss = READ_ONCE(tp->advmss); 1868 1869 rtt_us = max(sf_rtt_us, rtt_us); 1870 advmss = max(sf_advmss, advmss); 1871 } 1872 1873 msk->rcvq_space.rtt_us = rtt_us; 1874 if (time < (rtt_us >> 3) || rtt_us == 0) 1875 return; 1876 1877 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1878 goto new_measure; 1879 1880 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1881 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1882 int rcvmem, rcvbuf; 1883 u64 rcvwin, grow; 1884 1885 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1886 1887 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1888 1889 do_div(grow, msk->rcvq_space.space); 1890 rcvwin += (grow << 1); 1891 1892 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1893 while (tcp_win_from_space(sk, rcvmem) < advmss) 1894 rcvmem += 128; 1895 1896 do_div(rcvwin, advmss); 1897 rcvbuf = min_t(u64, rcvwin * rcvmem, 1898 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1899 1900 if (rcvbuf > sk->sk_rcvbuf) { 1901 u32 window_clamp; 1902 1903 window_clamp = tcp_win_from_space(sk, rcvbuf); 1904 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1905 1906 /* Make subflows follow along. If we do not do this, we 1907 * get drops at subflow level if skbs can't be moved to 1908 * the mptcp rx queue fast enough (announced rcv_win can 1909 * exceed ssk->sk_rcvbuf). 1910 */ 1911 mptcp_for_each_subflow(msk, subflow) { 1912 struct sock *ssk; 1913 bool slow; 1914 1915 ssk = mptcp_subflow_tcp_sock(subflow); 1916 slow = lock_sock_fast(ssk); 1917 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1918 tcp_sk(ssk)->window_clamp = window_clamp; 1919 tcp_cleanup_rbuf(ssk, 1); 1920 unlock_sock_fast(ssk, slow); 1921 } 1922 } 1923 } 1924 1925 msk->rcvq_space.space = msk->rcvq_space.copied; 1926 new_measure: 1927 msk->rcvq_space.copied = 0; 1928 msk->rcvq_space.time = mstamp; 1929 } 1930 1931 static void __mptcp_update_rmem(struct sock *sk) 1932 { 1933 struct mptcp_sock *msk = mptcp_sk(sk); 1934 1935 if (!msk->rmem_released) 1936 return; 1937 1938 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1939 mptcp_rmem_uncharge(sk, msk->rmem_released); 1940 WRITE_ONCE(msk->rmem_released, 0); 1941 } 1942 1943 static void __mptcp_splice_receive_queue(struct sock *sk) 1944 { 1945 struct mptcp_sock *msk = mptcp_sk(sk); 1946 1947 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1948 } 1949 1950 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1951 { 1952 struct sock *sk = (struct sock *)msk; 1953 unsigned int moved = 0; 1954 bool ret, done; 1955 1956 do { 1957 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1958 bool slowpath; 1959 1960 /* we can have data pending in the subflows only if the msk 1961 * receive buffer was full at subflow_data_ready() time, 1962 * that is an unlikely slow path. 1963 */ 1964 if (likely(!ssk)) 1965 break; 1966 1967 slowpath = lock_sock_fast(ssk); 1968 mptcp_data_lock(sk); 1969 __mptcp_update_rmem(sk); 1970 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1971 mptcp_data_unlock(sk); 1972 1973 if (unlikely(ssk->sk_err)) 1974 __mptcp_error_report(sk); 1975 unlock_sock_fast(ssk, slowpath); 1976 } while (!done); 1977 1978 /* acquire the data lock only if some input data is pending */ 1979 ret = moved > 0; 1980 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1981 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1982 mptcp_data_lock(sk); 1983 __mptcp_update_rmem(sk); 1984 ret |= __mptcp_ofo_queue(msk); 1985 __mptcp_splice_receive_queue(sk); 1986 mptcp_data_unlock(sk); 1987 } 1988 if (ret) 1989 mptcp_check_data_fin((struct sock *)msk); 1990 return !skb_queue_empty(&msk->receive_queue); 1991 } 1992 1993 static unsigned int mptcp_inq_hint(const struct sock *sk) 1994 { 1995 const struct mptcp_sock *msk = mptcp_sk(sk); 1996 const struct sk_buff *skb; 1997 1998 skb = skb_peek(&msk->receive_queue); 1999 if (skb) { 2000 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2001 2002 if (hint_val >= INT_MAX) 2003 return INT_MAX; 2004 2005 return (unsigned int)hint_val; 2006 } 2007 2008 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2009 return 1; 2010 2011 return 0; 2012 } 2013 2014 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2015 int nonblock, int flags, int *addr_len) 2016 { 2017 struct mptcp_sock *msk = mptcp_sk(sk); 2018 struct scm_timestamping_internal tss; 2019 int copied = 0, cmsg_flags = 0; 2020 int target; 2021 long timeo; 2022 2023 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2024 if (unlikely(flags & MSG_ERRQUEUE)) 2025 return inet_recv_error(sk, msg, len, addr_len); 2026 2027 lock_sock(sk); 2028 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2029 copied = -ENOTCONN; 2030 goto out_err; 2031 } 2032 2033 timeo = sock_rcvtimeo(sk, nonblock); 2034 2035 len = min_t(size_t, len, INT_MAX); 2036 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2037 2038 if (unlikely(msk->recvmsg_inq)) 2039 cmsg_flags = MPTCP_CMSG_INQ; 2040 2041 while (copied < len) { 2042 int bytes_read; 2043 2044 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2045 if (unlikely(bytes_read < 0)) { 2046 if (!copied) 2047 copied = bytes_read; 2048 goto out_err; 2049 } 2050 2051 copied += bytes_read; 2052 2053 /* be sure to advertise window change */ 2054 mptcp_cleanup_rbuf(msk); 2055 2056 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2057 continue; 2058 2059 /* only the master socket status is relevant here. The exit 2060 * conditions mirror closely tcp_recvmsg() 2061 */ 2062 if (copied >= target) 2063 break; 2064 2065 if (copied) { 2066 if (sk->sk_err || 2067 sk->sk_state == TCP_CLOSE || 2068 (sk->sk_shutdown & RCV_SHUTDOWN) || 2069 !timeo || 2070 signal_pending(current)) 2071 break; 2072 } else { 2073 if (sk->sk_err) { 2074 copied = sock_error(sk); 2075 break; 2076 } 2077 2078 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2079 mptcp_check_for_eof(msk); 2080 2081 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2082 /* race breaker: the shutdown could be after the 2083 * previous receive queue check 2084 */ 2085 if (__mptcp_move_skbs(msk)) 2086 continue; 2087 break; 2088 } 2089 2090 if (sk->sk_state == TCP_CLOSE) { 2091 copied = -ENOTCONN; 2092 break; 2093 } 2094 2095 if (!timeo) { 2096 copied = -EAGAIN; 2097 break; 2098 } 2099 2100 if (signal_pending(current)) { 2101 copied = sock_intr_errno(timeo); 2102 break; 2103 } 2104 } 2105 2106 pr_debug("block timeout %ld", timeo); 2107 sk_wait_data(sk, &timeo, NULL); 2108 } 2109 2110 out_err: 2111 if (cmsg_flags && copied >= 0) { 2112 if (cmsg_flags & MPTCP_CMSG_TS) 2113 tcp_recv_timestamp(msg, sk, &tss); 2114 2115 if (cmsg_flags & MPTCP_CMSG_INQ) { 2116 unsigned int inq = mptcp_inq_hint(sk); 2117 2118 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2119 } 2120 } 2121 2122 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2123 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2124 skb_queue_empty(&msk->receive_queue), copied); 2125 if (!(flags & MSG_PEEK)) 2126 mptcp_rcv_space_adjust(msk, copied); 2127 2128 release_sock(sk); 2129 return copied; 2130 } 2131 2132 static void mptcp_retransmit_timer(struct timer_list *t) 2133 { 2134 struct inet_connection_sock *icsk = from_timer(icsk, t, 2135 icsk_retransmit_timer); 2136 struct sock *sk = &icsk->icsk_inet.sk; 2137 struct mptcp_sock *msk = mptcp_sk(sk); 2138 2139 bh_lock_sock(sk); 2140 if (!sock_owned_by_user(sk)) { 2141 /* we need a process context to retransmit */ 2142 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2143 mptcp_schedule_work(sk); 2144 } else { 2145 /* delegate our work to tcp_release_cb() */ 2146 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2147 } 2148 bh_unlock_sock(sk); 2149 sock_put(sk); 2150 } 2151 2152 static void mptcp_timeout_timer(struct timer_list *t) 2153 { 2154 struct sock *sk = from_timer(sk, t, sk_timer); 2155 2156 mptcp_schedule_work(sk); 2157 sock_put(sk); 2158 } 2159 2160 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2161 * level. 2162 * 2163 * A backup subflow is returned only if that is the only kind available. 2164 */ 2165 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2166 { 2167 struct sock *backup = NULL, *pick = NULL; 2168 struct mptcp_subflow_context *subflow; 2169 int min_stale_count = INT_MAX; 2170 2171 sock_owned_by_me((const struct sock *)msk); 2172 2173 if (__mptcp_check_fallback(msk)) 2174 return NULL; 2175 2176 mptcp_for_each_subflow(msk, subflow) { 2177 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2178 2179 if (!__mptcp_subflow_active(subflow)) 2180 continue; 2181 2182 /* still data outstanding at TCP level? skip this */ 2183 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2184 mptcp_pm_subflow_chk_stale(msk, ssk); 2185 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2186 continue; 2187 } 2188 2189 if (subflow->backup) { 2190 if (!backup) 2191 backup = ssk; 2192 continue; 2193 } 2194 2195 if (!pick) 2196 pick = ssk; 2197 } 2198 2199 if (pick) 2200 return pick; 2201 2202 /* use backup only if there are no progresses anywhere */ 2203 return min_stale_count > 1 ? backup : NULL; 2204 } 2205 2206 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2207 { 2208 if (msk->subflow) { 2209 iput(SOCK_INODE(msk->subflow)); 2210 msk->subflow = NULL; 2211 } 2212 } 2213 2214 bool __mptcp_retransmit_pending_data(struct sock *sk) 2215 { 2216 struct mptcp_data_frag *cur, *rtx_head; 2217 struct mptcp_sock *msk = mptcp_sk(sk); 2218 2219 if (__mptcp_check_fallback(mptcp_sk(sk))) 2220 return false; 2221 2222 if (tcp_rtx_and_write_queues_empty(sk)) 2223 return false; 2224 2225 /* the closing socket has some data untransmitted and/or unacked: 2226 * some data in the mptcp rtx queue has not really xmitted yet. 2227 * keep it simple and re-inject the whole mptcp level rtx queue 2228 */ 2229 mptcp_data_lock(sk); 2230 __mptcp_clean_una_wakeup(sk); 2231 rtx_head = mptcp_rtx_head(sk); 2232 if (!rtx_head) { 2233 mptcp_data_unlock(sk); 2234 return false; 2235 } 2236 2237 msk->recovery_snd_nxt = msk->snd_nxt; 2238 msk->recovery = true; 2239 mptcp_data_unlock(sk); 2240 2241 msk->first_pending = rtx_head; 2242 msk->snd_burst = 0; 2243 2244 /* be sure to clear the "sent status" on all re-injected fragments */ 2245 list_for_each_entry(cur, &msk->rtx_queue, list) { 2246 if (!cur->already_sent) 2247 break; 2248 cur->already_sent = 0; 2249 } 2250 2251 return true; 2252 } 2253 2254 /* flags for __mptcp_close_ssk() */ 2255 #define MPTCP_CF_PUSH BIT(1) 2256 #define MPTCP_CF_FASTCLOSE BIT(2) 2257 2258 /* subflow sockets can be either outgoing (connect) or incoming 2259 * (accept). 2260 * 2261 * Outgoing subflows use in-kernel sockets. 2262 * Incoming subflows do not have their own 'struct socket' allocated, 2263 * so we need to use tcp_close() after detaching them from the mptcp 2264 * parent socket. 2265 */ 2266 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2267 struct mptcp_subflow_context *subflow, 2268 unsigned int flags) 2269 { 2270 struct mptcp_sock *msk = mptcp_sk(sk); 2271 bool need_push, dispose_it; 2272 2273 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2274 if (dispose_it) 2275 list_del(&subflow->node); 2276 2277 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2278 2279 if (flags & MPTCP_CF_FASTCLOSE) 2280 subflow->send_fastclose = 1; 2281 2282 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2283 if (!dispose_it) { 2284 tcp_disconnect(ssk, 0); 2285 msk->subflow->state = SS_UNCONNECTED; 2286 mptcp_subflow_ctx_reset(subflow); 2287 release_sock(ssk); 2288 2289 goto out; 2290 } 2291 2292 /* if we are invoked by the msk cleanup code, the subflow is 2293 * already orphaned 2294 */ 2295 if (ssk->sk_socket) 2296 sock_orphan(ssk); 2297 2298 subflow->disposable = 1; 2299 2300 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2301 * the ssk has been already destroyed, we just need to release the 2302 * reference owned by msk; 2303 */ 2304 if (!inet_csk(ssk)->icsk_ulp_ops) { 2305 kfree_rcu(subflow, rcu); 2306 } else { 2307 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2308 __tcp_close(ssk, 0); 2309 2310 /* close acquired an extra ref */ 2311 __sock_put(ssk); 2312 } 2313 release_sock(ssk); 2314 2315 sock_put(ssk); 2316 2317 if (ssk == msk->first) 2318 msk->first = NULL; 2319 2320 out: 2321 if (ssk == msk->last_snd) 2322 msk->last_snd = NULL; 2323 2324 if (need_push) 2325 __mptcp_push_pending(sk, 0); 2326 } 2327 2328 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2329 struct mptcp_subflow_context *subflow) 2330 { 2331 if (sk->sk_state == TCP_ESTABLISHED) 2332 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2333 2334 /* subflow aborted before reaching the fully_established status 2335 * attempt the creation of the next subflow 2336 */ 2337 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2338 2339 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2340 } 2341 2342 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2343 { 2344 return 0; 2345 } 2346 2347 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2348 { 2349 struct mptcp_subflow_context *subflow, *tmp; 2350 2351 might_sleep(); 2352 2353 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2354 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2355 2356 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2357 continue; 2358 2359 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2360 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2361 continue; 2362 2363 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2364 } 2365 } 2366 2367 static bool mptcp_check_close_timeout(const struct sock *sk) 2368 { 2369 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2370 struct mptcp_subflow_context *subflow; 2371 2372 if (delta >= TCP_TIMEWAIT_LEN) 2373 return true; 2374 2375 /* if all subflows are in closed status don't bother with additional 2376 * timeout 2377 */ 2378 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2379 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2380 TCP_CLOSE) 2381 return false; 2382 } 2383 return true; 2384 } 2385 2386 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2387 { 2388 struct mptcp_subflow_context *subflow, *tmp; 2389 struct sock *sk = &msk->sk.icsk_inet.sk; 2390 2391 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2392 return; 2393 2394 mptcp_token_destroy(msk); 2395 2396 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2397 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2398 bool slow; 2399 2400 slow = lock_sock_fast(tcp_sk); 2401 if (tcp_sk->sk_state != TCP_CLOSE) { 2402 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2403 tcp_set_state(tcp_sk, TCP_CLOSE); 2404 } 2405 unlock_sock_fast(tcp_sk, slow); 2406 } 2407 2408 inet_sk_state_store(sk, TCP_CLOSE); 2409 sk->sk_shutdown = SHUTDOWN_MASK; 2410 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2411 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2412 2413 mptcp_close_wake_up(sk); 2414 } 2415 2416 static void __mptcp_retrans(struct sock *sk) 2417 { 2418 struct mptcp_sock *msk = mptcp_sk(sk); 2419 struct mptcp_sendmsg_info info = {}; 2420 struct mptcp_data_frag *dfrag; 2421 size_t copied = 0; 2422 struct sock *ssk; 2423 int ret; 2424 2425 mptcp_clean_una_wakeup(sk); 2426 2427 /* first check ssk: need to kick "stale" logic */ 2428 ssk = mptcp_subflow_get_retrans(msk); 2429 dfrag = mptcp_rtx_head(sk); 2430 if (!dfrag) { 2431 if (mptcp_data_fin_enabled(msk)) { 2432 struct inet_connection_sock *icsk = inet_csk(sk); 2433 2434 icsk->icsk_retransmits++; 2435 mptcp_set_datafin_timeout(sk); 2436 mptcp_send_ack(msk); 2437 2438 goto reset_timer; 2439 } 2440 2441 if (!mptcp_send_head(sk)) 2442 return; 2443 2444 goto reset_timer; 2445 } 2446 2447 if (!ssk) 2448 goto reset_timer; 2449 2450 lock_sock(ssk); 2451 2452 /* limit retransmission to the bytes already sent on some subflows */ 2453 info.sent = 0; 2454 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2455 while (info.sent < info.limit) { 2456 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2457 if (ret <= 0) 2458 break; 2459 2460 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2461 copied += ret; 2462 info.sent += ret; 2463 } 2464 if (copied) { 2465 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2466 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2467 info.size_goal); 2468 } 2469 2470 release_sock(ssk); 2471 2472 reset_timer: 2473 mptcp_check_and_set_pending(sk); 2474 2475 if (!mptcp_timer_pending(sk)) 2476 mptcp_reset_timer(sk); 2477 } 2478 2479 static void mptcp_worker(struct work_struct *work) 2480 { 2481 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2482 struct sock *sk = &msk->sk.icsk_inet.sk; 2483 int state; 2484 2485 lock_sock(sk); 2486 state = sk->sk_state; 2487 if (unlikely(state == TCP_CLOSE)) 2488 goto unlock; 2489 2490 mptcp_check_data_fin_ack(sk); 2491 2492 mptcp_check_fastclose(msk); 2493 2494 mptcp_pm_nl_work(msk); 2495 2496 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2497 mptcp_check_for_eof(msk); 2498 2499 __mptcp_check_send_data_fin(sk); 2500 mptcp_check_data_fin(sk); 2501 2502 /* There is no point in keeping around an orphaned sk timedout or 2503 * closed, but we need the msk around to reply to incoming DATA_FIN, 2504 * even if it is orphaned and in FIN_WAIT2 state 2505 */ 2506 if (sock_flag(sk, SOCK_DEAD) && 2507 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2508 inet_sk_state_store(sk, TCP_CLOSE); 2509 __mptcp_destroy_sock(sk); 2510 goto unlock; 2511 } 2512 2513 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2514 __mptcp_close_subflow(msk); 2515 2516 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2517 __mptcp_retrans(sk); 2518 2519 unlock: 2520 release_sock(sk); 2521 sock_put(sk); 2522 } 2523 2524 static int __mptcp_init_sock(struct sock *sk) 2525 { 2526 struct mptcp_sock *msk = mptcp_sk(sk); 2527 2528 INIT_LIST_HEAD(&msk->conn_list); 2529 INIT_LIST_HEAD(&msk->join_list); 2530 INIT_LIST_HEAD(&msk->rtx_queue); 2531 INIT_WORK(&msk->work, mptcp_worker); 2532 __skb_queue_head_init(&msk->receive_queue); 2533 msk->out_of_order_queue = RB_ROOT; 2534 msk->first_pending = NULL; 2535 msk->rmem_fwd_alloc = 0; 2536 WRITE_ONCE(msk->rmem_released, 0); 2537 msk->timer_ival = TCP_RTO_MIN; 2538 2539 msk->first = NULL; 2540 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2541 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2542 msk->recovery = false; 2543 2544 mptcp_pm_data_init(msk); 2545 2546 /* re-use the csk retrans timer for MPTCP-level retrans */ 2547 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2548 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2549 2550 return 0; 2551 } 2552 2553 static void mptcp_ca_reset(struct sock *sk) 2554 { 2555 struct inet_connection_sock *icsk = inet_csk(sk); 2556 2557 tcp_assign_congestion_control(sk); 2558 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2559 2560 /* no need to keep a reference to the ops, the name will suffice */ 2561 tcp_cleanup_congestion_control(sk); 2562 icsk->icsk_ca_ops = NULL; 2563 } 2564 2565 static int mptcp_init_sock(struct sock *sk) 2566 { 2567 struct net *net = sock_net(sk); 2568 int ret; 2569 2570 ret = __mptcp_init_sock(sk); 2571 if (ret) 2572 return ret; 2573 2574 if (!mptcp_is_enabled(net)) 2575 return -ENOPROTOOPT; 2576 2577 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2578 return -ENOMEM; 2579 2580 ret = __mptcp_socket_create(mptcp_sk(sk)); 2581 if (ret) 2582 return ret; 2583 2584 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2585 * propagate the correct value 2586 */ 2587 mptcp_ca_reset(sk); 2588 2589 sk_sockets_allocated_inc(sk); 2590 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2591 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2592 2593 return 0; 2594 } 2595 2596 static void __mptcp_clear_xmit(struct sock *sk) 2597 { 2598 struct mptcp_sock *msk = mptcp_sk(sk); 2599 struct mptcp_data_frag *dtmp, *dfrag; 2600 2601 WRITE_ONCE(msk->first_pending, NULL); 2602 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2603 dfrag_clear(sk, dfrag); 2604 } 2605 2606 static void mptcp_cancel_work(struct sock *sk) 2607 { 2608 struct mptcp_sock *msk = mptcp_sk(sk); 2609 2610 if (cancel_work_sync(&msk->work)) 2611 __sock_put(sk); 2612 } 2613 2614 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2615 { 2616 lock_sock(ssk); 2617 2618 switch (ssk->sk_state) { 2619 case TCP_LISTEN: 2620 if (!(how & RCV_SHUTDOWN)) 2621 break; 2622 fallthrough; 2623 case TCP_SYN_SENT: 2624 tcp_disconnect(ssk, O_NONBLOCK); 2625 break; 2626 default: 2627 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2628 pr_debug("Fallback"); 2629 ssk->sk_shutdown |= how; 2630 tcp_shutdown(ssk, how); 2631 } else { 2632 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2633 tcp_send_ack(ssk); 2634 if (!mptcp_timer_pending(sk)) 2635 mptcp_reset_timer(sk); 2636 } 2637 break; 2638 } 2639 2640 release_sock(ssk); 2641 } 2642 2643 static const unsigned char new_state[16] = { 2644 /* current state: new state: action: */ 2645 [0 /* (Invalid) */] = TCP_CLOSE, 2646 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2647 [TCP_SYN_SENT] = TCP_CLOSE, 2648 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2649 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2650 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2651 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2652 [TCP_CLOSE] = TCP_CLOSE, 2653 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2654 [TCP_LAST_ACK] = TCP_LAST_ACK, 2655 [TCP_LISTEN] = TCP_CLOSE, 2656 [TCP_CLOSING] = TCP_CLOSING, 2657 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2658 }; 2659 2660 static int mptcp_close_state(struct sock *sk) 2661 { 2662 int next = (int)new_state[sk->sk_state]; 2663 int ns = next & TCP_STATE_MASK; 2664 2665 inet_sk_state_store(sk, ns); 2666 2667 return next & TCP_ACTION_FIN; 2668 } 2669 2670 static void __mptcp_check_send_data_fin(struct sock *sk) 2671 { 2672 struct mptcp_subflow_context *subflow; 2673 struct mptcp_sock *msk = mptcp_sk(sk); 2674 2675 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2676 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2677 msk->snd_nxt, msk->write_seq); 2678 2679 /* we still need to enqueue subflows or not really shutting down, 2680 * skip this 2681 */ 2682 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2683 mptcp_send_head(sk)) 2684 return; 2685 2686 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2687 2688 /* fallback socket will not get data_fin/ack, can move to the next 2689 * state now 2690 */ 2691 if (__mptcp_check_fallback(msk)) { 2692 WRITE_ONCE(msk->snd_una, msk->write_seq); 2693 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2694 inet_sk_state_store(sk, TCP_CLOSE); 2695 mptcp_close_wake_up(sk); 2696 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2697 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2698 } 2699 } 2700 2701 mptcp_for_each_subflow(msk, subflow) { 2702 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2703 2704 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2705 } 2706 } 2707 2708 static void __mptcp_wr_shutdown(struct sock *sk) 2709 { 2710 struct mptcp_sock *msk = mptcp_sk(sk); 2711 2712 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2713 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2714 !!mptcp_send_head(sk)); 2715 2716 /* will be ignored by fallback sockets */ 2717 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2718 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2719 2720 __mptcp_check_send_data_fin(sk); 2721 } 2722 2723 static void __mptcp_destroy_sock(struct sock *sk) 2724 { 2725 struct mptcp_subflow_context *subflow, *tmp; 2726 struct mptcp_sock *msk = mptcp_sk(sk); 2727 LIST_HEAD(conn_list); 2728 2729 pr_debug("msk=%p", msk); 2730 2731 might_sleep(); 2732 2733 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2734 list_splice_init(&msk->conn_list, &conn_list); 2735 2736 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2737 sk_stop_timer(sk, &sk->sk_timer); 2738 msk->pm.status = 0; 2739 2740 /* clears msk->subflow, allowing the following loop to close 2741 * even the initial subflow 2742 */ 2743 mptcp_dispose_initial_subflow(msk); 2744 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2745 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2746 __mptcp_close_ssk(sk, ssk, subflow, 0); 2747 } 2748 2749 sk->sk_prot->destroy(sk); 2750 2751 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2752 WARN_ON_ONCE(msk->rmem_released); 2753 sk_stream_kill_queues(sk); 2754 xfrm_sk_free_policy(sk); 2755 2756 sk_refcnt_debug_release(sk); 2757 sock_put(sk); 2758 } 2759 2760 static void mptcp_close(struct sock *sk, long timeout) 2761 { 2762 struct mptcp_subflow_context *subflow; 2763 bool do_cancel_work = false; 2764 2765 lock_sock(sk); 2766 sk->sk_shutdown = SHUTDOWN_MASK; 2767 2768 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2769 inet_sk_state_store(sk, TCP_CLOSE); 2770 goto cleanup; 2771 } 2772 2773 if (mptcp_close_state(sk)) 2774 __mptcp_wr_shutdown(sk); 2775 2776 sk_stream_wait_close(sk, timeout); 2777 2778 cleanup: 2779 /* orphan all the subflows */ 2780 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2781 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2782 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2783 bool slow = lock_sock_fast_nested(ssk); 2784 2785 sock_orphan(ssk); 2786 unlock_sock_fast(ssk, slow); 2787 } 2788 sock_orphan(sk); 2789 2790 sock_hold(sk); 2791 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2792 if (mptcp_sk(sk)->token) 2793 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2794 2795 if (sk->sk_state == TCP_CLOSE) { 2796 __mptcp_destroy_sock(sk); 2797 do_cancel_work = true; 2798 } else { 2799 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2800 } 2801 release_sock(sk); 2802 if (do_cancel_work) 2803 mptcp_cancel_work(sk); 2804 2805 sock_put(sk); 2806 } 2807 2808 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2809 { 2810 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2811 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2812 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2813 2814 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2815 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2816 2817 if (msk6 && ssk6) { 2818 msk6->saddr = ssk6->saddr; 2819 msk6->flow_label = ssk6->flow_label; 2820 } 2821 #endif 2822 2823 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2824 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2825 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2826 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2827 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2828 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2829 } 2830 2831 static int mptcp_disconnect(struct sock *sk, int flags) 2832 { 2833 struct mptcp_subflow_context *subflow; 2834 struct mptcp_sock *msk = mptcp_sk(sk); 2835 2836 inet_sk_state_store(sk, TCP_CLOSE); 2837 2838 mptcp_for_each_subflow(msk, subflow) { 2839 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2840 2841 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2842 } 2843 2844 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2845 sk_stop_timer(sk, &sk->sk_timer); 2846 2847 if (mptcp_sk(sk)->token) 2848 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2849 2850 mptcp_destroy_common(msk); 2851 msk->last_snd = NULL; 2852 WRITE_ONCE(msk->flags, 0); 2853 msk->cb_flags = 0; 2854 msk->push_pending = 0; 2855 msk->recovery = false; 2856 msk->can_ack = false; 2857 msk->fully_established = false; 2858 msk->rcv_data_fin = false; 2859 msk->snd_data_fin_enable = false; 2860 msk->rcv_fastclose = false; 2861 msk->use_64bit_ack = false; 2862 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2863 mptcp_pm_data_reset(msk); 2864 mptcp_ca_reset(sk); 2865 2866 sk->sk_shutdown = 0; 2867 sk_error_report(sk); 2868 return 0; 2869 } 2870 2871 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2872 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2873 { 2874 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2875 2876 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2877 } 2878 #endif 2879 2880 struct sock *mptcp_sk_clone(const struct sock *sk, 2881 const struct mptcp_options_received *mp_opt, 2882 struct request_sock *req) 2883 { 2884 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2885 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2886 struct mptcp_sock *msk; 2887 u64 ack_seq; 2888 2889 if (!nsk) 2890 return NULL; 2891 2892 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2893 if (nsk->sk_family == AF_INET6) 2894 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2895 #endif 2896 2897 __mptcp_init_sock(nsk); 2898 2899 msk = mptcp_sk(nsk); 2900 msk->local_key = subflow_req->local_key; 2901 msk->token = subflow_req->token; 2902 msk->subflow = NULL; 2903 WRITE_ONCE(msk->fully_established, false); 2904 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2905 WRITE_ONCE(msk->csum_enabled, true); 2906 2907 msk->write_seq = subflow_req->idsn + 1; 2908 msk->snd_nxt = msk->write_seq; 2909 msk->snd_una = msk->write_seq; 2910 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2911 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2912 2913 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2914 msk->can_ack = true; 2915 msk->remote_key = mp_opt->sndr_key; 2916 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2917 ack_seq++; 2918 WRITE_ONCE(msk->ack_seq, ack_seq); 2919 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2920 } 2921 2922 sock_reset_flag(nsk, SOCK_RCU_FREE); 2923 /* will be fully established after successful MPC subflow creation */ 2924 inet_sk_state_store(nsk, TCP_SYN_RECV); 2925 2926 security_inet_csk_clone(nsk, req); 2927 bh_unlock_sock(nsk); 2928 2929 /* keep a single reference */ 2930 __sock_put(nsk); 2931 return nsk; 2932 } 2933 2934 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2935 { 2936 const struct tcp_sock *tp = tcp_sk(ssk); 2937 2938 msk->rcvq_space.copied = 0; 2939 msk->rcvq_space.rtt_us = 0; 2940 2941 msk->rcvq_space.time = tp->tcp_mstamp; 2942 2943 /* initial rcv_space offering made to peer */ 2944 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2945 TCP_INIT_CWND * tp->advmss); 2946 if (msk->rcvq_space.space == 0) 2947 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2948 2949 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2950 } 2951 2952 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2953 bool kern) 2954 { 2955 struct mptcp_sock *msk = mptcp_sk(sk); 2956 struct socket *listener; 2957 struct sock *newsk; 2958 2959 listener = __mptcp_nmpc_socket(msk); 2960 if (WARN_ON_ONCE(!listener)) { 2961 *err = -EINVAL; 2962 return NULL; 2963 } 2964 2965 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2966 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2967 if (!newsk) 2968 return NULL; 2969 2970 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2971 if (sk_is_mptcp(newsk)) { 2972 struct mptcp_subflow_context *subflow; 2973 struct sock *new_mptcp_sock; 2974 2975 subflow = mptcp_subflow_ctx(newsk); 2976 new_mptcp_sock = subflow->conn; 2977 2978 /* is_mptcp should be false if subflow->conn is missing, see 2979 * subflow_syn_recv_sock() 2980 */ 2981 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2982 tcp_sk(newsk)->is_mptcp = 0; 2983 goto out; 2984 } 2985 2986 /* acquire the 2nd reference for the owning socket */ 2987 sock_hold(new_mptcp_sock); 2988 newsk = new_mptcp_sock; 2989 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2990 } else { 2991 MPTCP_INC_STATS(sock_net(sk), 2992 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2993 } 2994 2995 out: 2996 newsk->sk_kern_sock = kern; 2997 return newsk; 2998 } 2999 3000 void mptcp_destroy_common(struct mptcp_sock *msk) 3001 { 3002 struct sock *sk = (struct sock *)msk; 3003 3004 __mptcp_clear_xmit(sk); 3005 3006 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3007 mptcp_data_lock(sk); 3008 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3009 __skb_queue_purge(&sk->sk_receive_queue); 3010 skb_rbtree_purge(&msk->out_of_order_queue); 3011 mptcp_data_unlock(sk); 3012 3013 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3014 * inet_sock_destruct() will dispose it 3015 */ 3016 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3017 msk->rmem_fwd_alloc = 0; 3018 mptcp_token_destroy(msk); 3019 mptcp_pm_free_anno_list(msk); 3020 } 3021 3022 static void mptcp_destroy(struct sock *sk) 3023 { 3024 struct mptcp_sock *msk = mptcp_sk(sk); 3025 3026 mptcp_destroy_common(msk); 3027 sk_sockets_allocated_dec(sk); 3028 } 3029 3030 void __mptcp_data_acked(struct sock *sk) 3031 { 3032 if (!sock_owned_by_user(sk)) 3033 __mptcp_clean_una(sk); 3034 else 3035 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3036 3037 if (mptcp_pending_data_fin_ack(sk)) 3038 mptcp_schedule_work(sk); 3039 } 3040 3041 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3042 { 3043 if (!mptcp_send_head(sk)) 3044 return; 3045 3046 if (!sock_owned_by_user(sk)) { 3047 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3048 3049 if (xmit_ssk == ssk) 3050 __mptcp_subflow_push_pending(sk, ssk); 3051 else if (xmit_ssk) 3052 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3053 } else { 3054 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3055 } 3056 } 3057 3058 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3059 BIT(MPTCP_RETRANSMIT) | \ 3060 BIT(MPTCP_FLUSH_JOIN_LIST)) 3061 3062 /* processes deferred events and flush wmem */ 3063 static void mptcp_release_cb(struct sock *sk) 3064 __must_hold(&sk->sk_lock.slock) 3065 { 3066 struct mptcp_sock *msk = mptcp_sk(sk); 3067 3068 for (;;) { 3069 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3070 msk->push_pending; 3071 if (!flags) 3072 break; 3073 3074 /* the following actions acquire the subflow socket lock 3075 * 3076 * 1) can't be invoked in atomic scope 3077 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3078 * datapath acquires the msk socket spinlock while helding 3079 * the subflow socket lock 3080 */ 3081 msk->push_pending = 0; 3082 msk->cb_flags &= ~flags; 3083 spin_unlock_bh(&sk->sk_lock.slock); 3084 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3085 __mptcp_flush_join_list(sk); 3086 if (flags & BIT(MPTCP_PUSH_PENDING)) 3087 __mptcp_push_pending(sk, 0); 3088 if (flags & BIT(MPTCP_RETRANSMIT)) 3089 __mptcp_retrans(sk); 3090 3091 cond_resched(); 3092 spin_lock_bh(&sk->sk_lock.slock); 3093 } 3094 3095 /* be sure to set the current sk state before tacking actions 3096 * depending on sk_state 3097 */ 3098 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3099 __mptcp_set_connected(sk); 3100 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3101 __mptcp_clean_una_wakeup(sk); 3102 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3103 __mptcp_error_report(sk); 3104 3105 __mptcp_update_rmem(sk); 3106 } 3107 3108 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3109 * TCP can't schedule delack timer before the subflow is fully established. 3110 * MPTCP uses the delack timer to do 3rd ack retransmissions 3111 */ 3112 static void schedule_3rdack_retransmission(struct sock *ssk) 3113 { 3114 struct inet_connection_sock *icsk = inet_csk(ssk); 3115 struct tcp_sock *tp = tcp_sk(ssk); 3116 unsigned long timeout; 3117 3118 if (mptcp_subflow_ctx(ssk)->fully_established) 3119 return; 3120 3121 /* reschedule with a timeout above RTT, as we must look only for drop */ 3122 if (tp->srtt_us) 3123 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3124 else 3125 timeout = TCP_TIMEOUT_INIT; 3126 timeout += jiffies; 3127 3128 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3129 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3130 icsk->icsk_ack.timeout = timeout; 3131 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3132 } 3133 3134 void mptcp_subflow_process_delegated(struct sock *ssk) 3135 { 3136 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3137 struct sock *sk = subflow->conn; 3138 3139 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3140 mptcp_data_lock(sk); 3141 if (!sock_owned_by_user(sk)) 3142 __mptcp_subflow_push_pending(sk, ssk); 3143 else 3144 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3145 mptcp_data_unlock(sk); 3146 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3147 } 3148 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3149 schedule_3rdack_retransmission(ssk); 3150 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3151 } 3152 } 3153 3154 static int mptcp_hash(struct sock *sk) 3155 { 3156 /* should never be called, 3157 * we hash the TCP subflows not the master socket 3158 */ 3159 WARN_ON_ONCE(1); 3160 return 0; 3161 } 3162 3163 static void mptcp_unhash(struct sock *sk) 3164 { 3165 /* called from sk_common_release(), but nothing to do here */ 3166 } 3167 3168 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3169 { 3170 struct mptcp_sock *msk = mptcp_sk(sk); 3171 struct socket *ssock; 3172 3173 ssock = __mptcp_nmpc_socket(msk); 3174 pr_debug("msk=%p, subflow=%p", msk, ssock); 3175 if (WARN_ON_ONCE(!ssock)) 3176 return -EINVAL; 3177 3178 return inet_csk_get_port(ssock->sk, snum); 3179 } 3180 3181 void mptcp_finish_connect(struct sock *ssk) 3182 { 3183 struct mptcp_subflow_context *subflow; 3184 struct mptcp_sock *msk; 3185 struct sock *sk; 3186 u64 ack_seq; 3187 3188 subflow = mptcp_subflow_ctx(ssk); 3189 sk = subflow->conn; 3190 msk = mptcp_sk(sk); 3191 3192 pr_debug("msk=%p, token=%u", sk, subflow->token); 3193 3194 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3195 ack_seq++; 3196 subflow->map_seq = ack_seq; 3197 subflow->map_subflow_seq = 1; 3198 3199 /* the socket is not connected yet, no msk/subflow ops can access/race 3200 * accessing the field below 3201 */ 3202 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3203 WRITE_ONCE(msk->local_key, subflow->local_key); 3204 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3205 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3206 WRITE_ONCE(msk->ack_seq, ack_seq); 3207 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3208 WRITE_ONCE(msk->can_ack, 1); 3209 WRITE_ONCE(msk->snd_una, msk->write_seq); 3210 3211 mptcp_pm_new_connection(msk, ssk, 0); 3212 3213 mptcp_rcv_space_init(msk, ssk); 3214 } 3215 3216 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3217 { 3218 write_lock_bh(&sk->sk_callback_lock); 3219 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3220 sk_set_socket(sk, parent); 3221 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3222 write_unlock_bh(&sk->sk_callback_lock); 3223 } 3224 3225 bool mptcp_finish_join(struct sock *ssk) 3226 { 3227 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3228 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3229 struct sock *parent = (void *)msk; 3230 bool ret = true; 3231 3232 pr_debug("msk=%p, subflow=%p", msk, subflow); 3233 3234 /* mptcp socket already closing? */ 3235 if (!mptcp_is_fully_established(parent)) { 3236 subflow->reset_reason = MPTCP_RST_EMPTCP; 3237 return false; 3238 } 3239 3240 if (!msk->pm.server_side) 3241 goto out; 3242 3243 if (!mptcp_pm_allow_new_subflow(msk)) 3244 goto err_prohibited; 3245 3246 if (WARN_ON_ONCE(!list_empty(&subflow->node))) 3247 goto err_prohibited; 3248 3249 /* active connections are already on conn_list. 3250 * If we can't acquire msk socket lock here, let the release callback 3251 * handle it 3252 */ 3253 mptcp_data_lock(parent); 3254 if (!sock_owned_by_user(parent)) { 3255 ret = __mptcp_finish_join(msk, ssk); 3256 if (ret) { 3257 sock_hold(ssk); 3258 list_add_tail(&subflow->node, &msk->conn_list); 3259 } 3260 } else { 3261 sock_hold(ssk); 3262 list_add_tail(&subflow->node, &msk->join_list); 3263 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3264 } 3265 mptcp_data_unlock(parent); 3266 3267 if (!ret) { 3268 err_prohibited: 3269 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3270 return false; 3271 } 3272 3273 subflow->map_seq = READ_ONCE(msk->ack_seq); 3274 3275 out: 3276 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3277 return true; 3278 } 3279 3280 static void mptcp_shutdown(struct sock *sk, int how) 3281 { 3282 pr_debug("sk=%p, how=%d", sk, how); 3283 3284 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3285 __mptcp_wr_shutdown(sk); 3286 } 3287 3288 static int mptcp_forward_alloc_get(const struct sock *sk) 3289 { 3290 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3291 } 3292 3293 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3294 { 3295 const struct sock *sk = (void *)msk; 3296 u64 delta; 3297 3298 if (sk->sk_state == TCP_LISTEN) 3299 return -EINVAL; 3300 3301 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3302 return 0; 3303 3304 delta = msk->write_seq - v; 3305 if (__mptcp_check_fallback(msk) && msk->first) { 3306 struct tcp_sock *tp = tcp_sk(msk->first); 3307 3308 /* the first subflow is disconnected after close - see 3309 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3310 * so ignore that status, too. 3311 */ 3312 if (!((1 << msk->first->sk_state) & 3313 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3314 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3315 } 3316 if (delta > INT_MAX) 3317 delta = INT_MAX; 3318 3319 return (int)delta; 3320 } 3321 3322 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3323 { 3324 struct mptcp_sock *msk = mptcp_sk(sk); 3325 bool slow; 3326 int answ; 3327 3328 switch (cmd) { 3329 case SIOCINQ: 3330 if (sk->sk_state == TCP_LISTEN) 3331 return -EINVAL; 3332 3333 lock_sock(sk); 3334 __mptcp_move_skbs(msk); 3335 answ = mptcp_inq_hint(sk); 3336 release_sock(sk); 3337 break; 3338 case SIOCOUTQ: 3339 slow = lock_sock_fast(sk); 3340 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3341 unlock_sock_fast(sk, slow); 3342 break; 3343 case SIOCOUTQNSD: 3344 slow = lock_sock_fast(sk); 3345 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3346 unlock_sock_fast(sk, slow); 3347 break; 3348 default: 3349 return -ENOIOCTLCMD; 3350 } 3351 3352 return put_user(answ, (int __user *)arg); 3353 } 3354 3355 static struct proto mptcp_prot = { 3356 .name = "MPTCP", 3357 .owner = THIS_MODULE, 3358 .init = mptcp_init_sock, 3359 .disconnect = mptcp_disconnect, 3360 .close = mptcp_close, 3361 .accept = mptcp_accept, 3362 .setsockopt = mptcp_setsockopt, 3363 .getsockopt = mptcp_getsockopt, 3364 .shutdown = mptcp_shutdown, 3365 .destroy = mptcp_destroy, 3366 .sendmsg = mptcp_sendmsg, 3367 .ioctl = mptcp_ioctl, 3368 .recvmsg = mptcp_recvmsg, 3369 .release_cb = mptcp_release_cb, 3370 .hash = mptcp_hash, 3371 .unhash = mptcp_unhash, 3372 .get_port = mptcp_get_port, 3373 .forward_alloc_get = mptcp_forward_alloc_get, 3374 .sockets_allocated = &mptcp_sockets_allocated, 3375 .memory_allocated = &tcp_memory_allocated, 3376 .memory_pressure = &tcp_memory_pressure, 3377 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3378 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3379 .sysctl_mem = sysctl_tcp_mem, 3380 .obj_size = sizeof(struct mptcp_sock), 3381 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3382 .no_autobind = true, 3383 }; 3384 3385 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3386 { 3387 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3388 struct socket *ssock; 3389 int err; 3390 3391 lock_sock(sock->sk); 3392 ssock = __mptcp_nmpc_socket(msk); 3393 if (!ssock) { 3394 err = -EINVAL; 3395 goto unlock; 3396 } 3397 3398 err = ssock->ops->bind(ssock, uaddr, addr_len); 3399 if (!err) 3400 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3401 3402 unlock: 3403 release_sock(sock->sk); 3404 return err; 3405 } 3406 3407 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3408 struct mptcp_subflow_context *subflow) 3409 { 3410 subflow->request_mptcp = 0; 3411 __mptcp_do_fallback(msk); 3412 } 3413 3414 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3415 int addr_len, int flags) 3416 { 3417 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3418 struct mptcp_subflow_context *subflow; 3419 struct socket *ssock; 3420 int err = -EINVAL; 3421 3422 lock_sock(sock->sk); 3423 if (uaddr) { 3424 if (addr_len < sizeof(uaddr->sa_family)) 3425 goto unlock; 3426 3427 if (uaddr->sa_family == AF_UNSPEC) { 3428 err = mptcp_disconnect(sock->sk, flags); 3429 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3430 goto unlock; 3431 } 3432 } 3433 3434 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3435 /* pending connection or invalid state, let existing subflow 3436 * cope with that 3437 */ 3438 ssock = msk->subflow; 3439 goto do_connect; 3440 } 3441 3442 ssock = __mptcp_nmpc_socket(msk); 3443 if (!ssock) 3444 goto unlock; 3445 3446 mptcp_token_destroy(msk); 3447 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3448 subflow = mptcp_subflow_ctx(ssock->sk); 3449 #ifdef CONFIG_TCP_MD5SIG 3450 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3451 * TCP option space. 3452 */ 3453 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3454 mptcp_subflow_early_fallback(msk, subflow); 3455 #endif 3456 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3457 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3458 mptcp_subflow_early_fallback(msk, subflow); 3459 } 3460 if (likely(!__mptcp_check_fallback(msk))) 3461 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3462 3463 do_connect: 3464 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3465 sock->state = ssock->state; 3466 3467 /* on successful connect, the msk state will be moved to established by 3468 * subflow_finish_connect() 3469 */ 3470 if (!err || err == -EINPROGRESS) 3471 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3472 else 3473 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3474 3475 unlock: 3476 release_sock(sock->sk); 3477 return err; 3478 } 3479 3480 static int mptcp_listen(struct socket *sock, int backlog) 3481 { 3482 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3483 struct socket *ssock; 3484 int err; 3485 3486 pr_debug("msk=%p", msk); 3487 3488 lock_sock(sock->sk); 3489 ssock = __mptcp_nmpc_socket(msk); 3490 if (!ssock) { 3491 err = -EINVAL; 3492 goto unlock; 3493 } 3494 3495 mptcp_token_destroy(msk); 3496 inet_sk_state_store(sock->sk, TCP_LISTEN); 3497 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3498 3499 err = ssock->ops->listen(ssock, backlog); 3500 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3501 if (!err) 3502 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3503 3504 unlock: 3505 release_sock(sock->sk); 3506 return err; 3507 } 3508 3509 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3510 int flags, bool kern) 3511 { 3512 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3513 struct socket *ssock; 3514 int err; 3515 3516 pr_debug("msk=%p", msk); 3517 3518 ssock = __mptcp_nmpc_socket(msk); 3519 if (!ssock) 3520 return -EINVAL; 3521 3522 err = ssock->ops->accept(sock, newsock, flags, kern); 3523 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3524 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3525 struct mptcp_subflow_context *subflow; 3526 struct sock *newsk = newsock->sk; 3527 3528 lock_sock(newsk); 3529 3530 /* PM/worker can now acquire the first subflow socket 3531 * lock without racing with listener queue cleanup, 3532 * we can notify it, if needed. 3533 * 3534 * Even if remote has reset the initial subflow by now 3535 * the refcnt is still at least one. 3536 */ 3537 subflow = mptcp_subflow_ctx(msk->first); 3538 list_add(&subflow->node, &msk->conn_list); 3539 sock_hold(msk->first); 3540 if (mptcp_is_fully_established(newsk)) 3541 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3542 3543 mptcp_copy_inaddrs(newsk, msk->first); 3544 mptcp_rcv_space_init(msk, msk->first); 3545 mptcp_propagate_sndbuf(newsk, msk->first); 3546 3547 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3548 * This is needed so NOSPACE flag can be set from tcp stack. 3549 */ 3550 mptcp_for_each_subflow(msk, subflow) { 3551 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3552 3553 if (!ssk->sk_socket) 3554 mptcp_sock_graft(ssk, newsock); 3555 } 3556 release_sock(newsk); 3557 } 3558 3559 return err; 3560 } 3561 3562 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3563 { 3564 /* Concurrent splices from sk_receive_queue into receive_queue will 3565 * always show at least one non-empty queue when checked in this order. 3566 */ 3567 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3568 skb_queue_empty_lockless(&msk->receive_queue)) 3569 return 0; 3570 3571 return EPOLLIN | EPOLLRDNORM; 3572 } 3573 3574 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3575 { 3576 struct sock *sk = (struct sock *)msk; 3577 3578 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3579 return EPOLLOUT | EPOLLWRNORM; 3580 3581 if (sk_stream_is_writeable(sk)) 3582 return EPOLLOUT | EPOLLWRNORM; 3583 3584 mptcp_set_nospace(sk); 3585 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3586 if (sk_stream_is_writeable(sk)) 3587 return EPOLLOUT | EPOLLWRNORM; 3588 3589 return 0; 3590 } 3591 3592 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3593 struct poll_table_struct *wait) 3594 { 3595 struct sock *sk = sock->sk; 3596 struct mptcp_sock *msk; 3597 __poll_t mask = 0; 3598 int state; 3599 3600 msk = mptcp_sk(sk); 3601 sock_poll_wait(file, sock, wait); 3602 3603 state = inet_sk_state_load(sk); 3604 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3605 if (state == TCP_LISTEN) { 3606 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3607 return 0; 3608 3609 return inet_csk_listen_poll(msk->subflow->sk); 3610 } 3611 3612 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3613 mask |= mptcp_check_readable(msk); 3614 mask |= mptcp_check_writeable(msk); 3615 } 3616 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3617 mask |= EPOLLHUP; 3618 if (sk->sk_shutdown & RCV_SHUTDOWN) 3619 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3620 3621 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3622 smp_rmb(); 3623 if (sk->sk_err) 3624 mask |= EPOLLERR; 3625 3626 return mask; 3627 } 3628 3629 static const struct proto_ops mptcp_stream_ops = { 3630 .family = PF_INET, 3631 .owner = THIS_MODULE, 3632 .release = inet_release, 3633 .bind = mptcp_bind, 3634 .connect = mptcp_stream_connect, 3635 .socketpair = sock_no_socketpair, 3636 .accept = mptcp_stream_accept, 3637 .getname = inet_getname, 3638 .poll = mptcp_poll, 3639 .ioctl = inet_ioctl, 3640 .gettstamp = sock_gettstamp, 3641 .listen = mptcp_listen, 3642 .shutdown = inet_shutdown, 3643 .setsockopt = sock_common_setsockopt, 3644 .getsockopt = sock_common_getsockopt, 3645 .sendmsg = inet_sendmsg, 3646 .recvmsg = inet_recvmsg, 3647 .mmap = sock_no_mmap, 3648 .sendpage = inet_sendpage, 3649 }; 3650 3651 static struct inet_protosw mptcp_protosw = { 3652 .type = SOCK_STREAM, 3653 .protocol = IPPROTO_MPTCP, 3654 .prot = &mptcp_prot, 3655 .ops = &mptcp_stream_ops, 3656 .flags = INET_PROTOSW_ICSK, 3657 }; 3658 3659 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3660 { 3661 struct mptcp_delegated_action *delegated; 3662 struct mptcp_subflow_context *subflow; 3663 int work_done = 0; 3664 3665 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3666 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3667 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3668 3669 bh_lock_sock_nested(ssk); 3670 if (!sock_owned_by_user(ssk) && 3671 mptcp_subflow_has_delegated_action(subflow)) 3672 mptcp_subflow_process_delegated(ssk); 3673 /* ... elsewhere tcp_release_cb_override already processed 3674 * the action or will do at next release_sock(). 3675 * In both case must dequeue the subflow here - on the same 3676 * CPU that scheduled it. 3677 */ 3678 bh_unlock_sock(ssk); 3679 sock_put(ssk); 3680 3681 if (++work_done == budget) 3682 return budget; 3683 } 3684 3685 /* always provide a 0 'work_done' argument, so that napi_complete_done 3686 * will not try accessing the NULL napi->dev ptr 3687 */ 3688 napi_complete_done(napi, 0); 3689 return work_done; 3690 } 3691 3692 void __init mptcp_proto_init(void) 3693 { 3694 struct mptcp_delegated_action *delegated; 3695 int cpu; 3696 3697 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3698 3699 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3700 panic("Failed to allocate MPTCP pcpu counter\n"); 3701 3702 init_dummy_netdev(&mptcp_napi_dev); 3703 for_each_possible_cpu(cpu) { 3704 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3705 INIT_LIST_HEAD(&delegated->head); 3706 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3707 NAPI_POLL_WEIGHT); 3708 napi_enable(&delegated->napi); 3709 } 3710 3711 mptcp_subflow_init(); 3712 mptcp_pm_init(); 3713 mptcp_token_init(); 3714 3715 if (proto_register(&mptcp_prot, 1) != 0) 3716 panic("Failed to register MPTCP proto.\n"); 3717 3718 inet_register_protosw(&mptcp_protosw); 3719 3720 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3721 } 3722 3723 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3724 static const struct proto_ops mptcp_v6_stream_ops = { 3725 .family = PF_INET6, 3726 .owner = THIS_MODULE, 3727 .release = inet6_release, 3728 .bind = mptcp_bind, 3729 .connect = mptcp_stream_connect, 3730 .socketpair = sock_no_socketpair, 3731 .accept = mptcp_stream_accept, 3732 .getname = inet6_getname, 3733 .poll = mptcp_poll, 3734 .ioctl = inet6_ioctl, 3735 .gettstamp = sock_gettstamp, 3736 .listen = mptcp_listen, 3737 .shutdown = inet_shutdown, 3738 .setsockopt = sock_common_setsockopt, 3739 .getsockopt = sock_common_getsockopt, 3740 .sendmsg = inet6_sendmsg, 3741 .recvmsg = inet6_recvmsg, 3742 .mmap = sock_no_mmap, 3743 .sendpage = inet_sendpage, 3744 #ifdef CONFIG_COMPAT 3745 .compat_ioctl = inet6_compat_ioctl, 3746 #endif 3747 }; 3748 3749 static struct proto mptcp_v6_prot; 3750 3751 static void mptcp_v6_destroy(struct sock *sk) 3752 { 3753 mptcp_destroy(sk); 3754 inet6_destroy_sock(sk); 3755 } 3756 3757 static struct inet_protosw mptcp_v6_protosw = { 3758 .type = SOCK_STREAM, 3759 .protocol = IPPROTO_MPTCP, 3760 .prot = &mptcp_v6_prot, 3761 .ops = &mptcp_v6_stream_ops, 3762 .flags = INET_PROTOSW_ICSK, 3763 }; 3764 3765 int __init mptcp_proto_v6_init(void) 3766 { 3767 int err; 3768 3769 mptcp_v6_prot = mptcp_prot; 3770 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3771 mptcp_v6_prot.slab = NULL; 3772 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3773 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3774 3775 err = proto_register(&mptcp_v6_prot, 1); 3776 if (err) 3777 return err; 3778 3779 err = inet6_register_protosw(&mptcp_v6_protosw); 3780 if (err) 3781 proto_unregister(&mptcp_v6_prot); 3782 3783 return err; 3784 } 3785 #endif 3786