xref: /linux/net/mptcp/protocol.c (revision 38fe0e0156c037c060f81fe4e36549fae760322d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 	u8  has_rxtstamp:1;
43 };
44 
45 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
46 
47 enum {
48 	MPTCP_CMSG_TS = BIT(0),
49 };
50 
51 static struct percpu_counter mptcp_sockets_allocated;
52 
53 static void __mptcp_destroy_sock(struct sock *sk);
54 static void __mptcp_check_send_data_fin(struct sock *sk);
55 
56 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
57 static struct net_device mptcp_napi_dev;
58 
59 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
60  * completed yet or has failed, return the subflow socket.
61  * Otherwise return NULL.
62  */
63 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
64 {
65 	if (!msk->subflow || READ_ONCE(msk->can_ack))
66 		return NULL;
67 
68 	return msk->subflow;
69 }
70 
71 /* Returns end sequence number of the receiver's advertised window */
72 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
73 {
74 	return READ_ONCE(msk->wnd_end);
75 }
76 
77 static bool mptcp_is_tcpsk(struct sock *sk)
78 {
79 	struct socket *sock = sk->sk_socket;
80 
81 	if (unlikely(sk->sk_prot == &tcp_prot)) {
82 		/* we are being invoked after mptcp_accept() has
83 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
84 		 * not an mptcp one.
85 		 *
86 		 * Hand the socket over to tcp so all further socket ops
87 		 * bypass mptcp.
88 		 */
89 		sock->ops = &inet_stream_ops;
90 		return true;
91 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
92 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
93 		sock->ops = &inet6_stream_ops;
94 		return true;
95 #endif
96 	}
97 
98 	return false;
99 }
100 
101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->first = ssock->sk;
113 	msk->subflow = ssock;
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	mptcp_sock_graft(msk->first, sk->sk_socket);
119 
120 	return 0;
121 }
122 
123 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
124 {
125 	sk_drops_add(sk, skb);
126 	__kfree_skb(skb);
127 }
128 
129 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
130 			       struct sk_buff *from)
131 {
132 	bool fragstolen;
133 	int delta;
134 
135 	if (MPTCP_SKB_CB(from)->offset ||
136 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
137 		return false;
138 
139 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
140 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
141 		 to->len, MPTCP_SKB_CB(from)->end_seq);
142 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
143 	kfree_skb_partial(from, fragstolen);
144 	atomic_add(delta, &sk->sk_rmem_alloc);
145 	sk_mem_charge(sk, delta);
146 	return true;
147 }
148 
149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
150 				   struct sk_buff *from)
151 {
152 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
153 		return false;
154 
155 	return mptcp_try_coalesce((struct sock *)msk, to, from);
156 }
157 
158 /* "inspired" by tcp_data_queue_ofo(), main differences:
159  * - use mptcp seqs
160  * - don't cope with sacks
161  */
162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
163 {
164 	struct sock *sk = (struct sock *)msk;
165 	struct rb_node **p, *parent;
166 	u64 seq, end_seq, max_seq;
167 	struct sk_buff *skb1;
168 
169 	seq = MPTCP_SKB_CB(skb)->map_seq;
170 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
171 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
172 
173 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
174 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
175 	if (after64(end_seq, max_seq)) {
176 		/* out of window */
177 		mptcp_drop(sk, skb);
178 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
179 			 (unsigned long long)end_seq - (unsigned long)max_seq,
180 			 (unsigned long long)msk->rcv_wnd_sent);
181 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
182 		return;
183 	}
184 
185 	p = &msk->out_of_order_queue.rb_node;
186 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
187 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
188 		rb_link_node(&skb->rbnode, NULL, p);
189 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
190 		msk->ooo_last_skb = skb;
191 		goto end;
192 	}
193 
194 	/* with 2 subflows, adding at end of ooo queue is quite likely
195 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
196 	 */
197 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
198 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
199 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
200 		return;
201 	}
202 
203 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
204 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
205 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
206 		parent = &msk->ooo_last_skb->rbnode;
207 		p = &parent->rb_right;
208 		goto insert;
209 	}
210 
211 	/* Find place to insert this segment. Handle overlaps on the way. */
212 	parent = NULL;
213 	while (*p) {
214 		parent = *p;
215 		skb1 = rb_to_skb(parent);
216 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
217 			p = &parent->rb_left;
218 			continue;
219 		}
220 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
221 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
222 				/* All the bits are present. Drop. */
223 				mptcp_drop(sk, skb);
224 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
225 				return;
226 			}
227 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
228 				/* partial overlap:
229 				 *     |     skb      |
230 				 *  |     skb1    |
231 				 * continue traversing
232 				 */
233 			} else {
234 				/* skb's seq == skb1's seq and skb covers skb1.
235 				 * Replace skb1 with skb.
236 				 */
237 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
238 						&msk->out_of_order_queue);
239 				mptcp_drop(sk, skb1);
240 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
241 				goto merge_right;
242 			}
243 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
244 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
245 			return;
246 		}
247 		p = &parent->rb_right;
248 	}
249 
250 insert:
251 	/* Insert segment into RB tree. */
252 	rb_link_node(&skb->rbnode, parent, p);
253 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 
255 merge_right:
256 	/* Remove other segments covered by skb. */
257 	while ((skb1 = skb_rb_next(skb)) != NULL) {
258 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
259 			break;
260 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
261 		mptcp_drop(sk, skb1);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
263 	}
264 	/* If there is no skb after us, we are the last_skb ! */
265 	if (!skb1)
266 		msk->ooo_last_skb = skb;
267 
268 end:
269 	skb_condense(skb);
270 	skb_set_owner_r(skb, sk);
271 }
272 
273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
274 			     struct sk_buff *skb, unsigned int offset,
275 			     size_t copy_len)
276 {
277 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
278 	struct sock *sk = (struct sock *)msk;
279 	struct sk_buff *tail;
280 	bool has_rxtstamp;
281 
282 	__skb_unlink(skb, &ssk->sk_receive_queue);
283 
284 	skb_ext_reset(skb);
285 	skb_orphan(skb);
286 
287 	/* try to fetch required memory from subflow */
288 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
289 		int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
290 
291 		if (ssk->sk_forward_alloc < amount)
292 			goto drop;
293 
294 		ssk->sk_forward_alloc -= amount;
295 		sk->sk_forward_alloc += amount;
296 	}
297 
298 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
299 
300 	/* the skb map_seq accounts for the skb offset:
301 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
302 	 * value
303 	 */
304 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
305 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
306 	MPTCP_SKB_CB(skb)->offset = offset;
307 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
308 
309 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
310 		/* in sequence */
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
333 static void mptcp_stop_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
354 static bool mptcp_pending_data_fin_ack(struct sock *sk)
355 {
356 	struct mptcp_sock *msk = mptcp_sk(sk);
357 
358 	return !__mptcp_check_fallback(msk) &&
359 	       ((1 << sk->sk_state) &
360 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
361 	       msk->write_seq == READ_ONCE(msk->snd_una);
362 }
363 
364 static void mptcp_check_data_fin_ack(struct sock *sk)
365 {
366 	struct mptcp_sock *msk = mptcp_sk(sk);
367 
368 	/* Look for an acknowledged DATA_FIN */
369 	if (mptcp_pending_data_fin_ack(sk)) {
370 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
371 
372 		switch (sk->sk_state) {
373 		case TCP_FIN_WAIT1:
374 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
375 			break;
376 		case TCP_CLOSING:
377 		case TCP_LAST_ACK:
378 			inet_sk_state_store(sk, TCP_CLOSE);
379 			break;
380 		}
381 
382 		mptcp_close_wake_up(sk);
383 	}
384 }
385 
386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
387 {
388 	struct mptcp_sock *msk = mptcp_sk(sk);
389 
390 	if (READ_ONCE(msk->rcv_data_fin) &&
391 	    ((1 << sk->sk_state) &
392 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
393 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
394 
395 		if (msk->ack_seq == rcv_data_fin_seq) {
396 			if (seq)
397 				*seq = rcv_data_fin_seq;
398 
399 			return true;
400 		}
401 	}
402 
403 	return false;
404 }
405 
406 static void mptcp_set_datafin_timeout(const struct sock *sk)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 
410 	mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX,
411 				       TCP_RTO_MIN << icsk->icsk_retransmits);
412 }
413 
414 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
415 {
416 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
417 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
418 
419 	if (tout <= 0)
420 		tout = mptcp_sk(sk)->timer_ival;
421 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
422 }
423 
424 static bool tcp_can_send_ack(const struct sock *ssk)
425 {
426 	return !((1 << inet_sk_state_load(ssk)) &
427 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
428 }
429 
430 static void mptcp_send_ack(struct mptcp_sock *msk)
431 {
432 	struct mptcp_subflow_context *subflow;
433 
434 	mptcp_for_each_subflow(msk, subflow) {
435 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
436 		bool slow;
437 
438 		slow = lock_sock_fast(ssk);
439 		if (tcp_can_send_ack(ssk))
440 			tcp_send_ack(ssk);
441 		unlock_sock_fast(ssk, slow);
442 	}
443 }
444 
445 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
446 {
447 	bool slow;
448 
449 	slow = lock_sock_fast(ssk);
450 	if (tcp_can_send_ack(ssk))
451 		tcp_cleanup_rbuf(ssk, 1);
452 	unlock_sock_fast(ssk, slow);
453 }
454 
455 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
456 {
457 	const struct inet_connection_sock *icsk = inet_csk(ssk);
458 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
459 	const struct tcp_sock *tp = tcp_sk(ssk);
460 
461 	return (ack_pending & ICSK_ACK_SCHED) &&
462 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
463 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
464 		 (rx_empty && ack_pending &
465 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
466 }
467 
468 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
469 {
470 	int old_space = READ_ONCE(msk->old_wspace);
471 	struct mptcp_subflow_context *subflow;
472 	struct sock *sk = (struct sock *)msk;
473 	int space =  __mptcp_space(sk);
474 	bool cleanup, rx_empty;
475 
476 	cleanup = (space > 0) && (space >= (old_space << 1));
477 	rx_empty = !atomic_read(&sk->sk_rmem_alloc);
478 
479 	mptcp_for_each_subflow(msk, subflow) {
480 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
481 
482 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
483 			mptcp_subflow_cleanup_rbuf(ssk);
484 	}
485 }
486 
487 static bool mptcp_check_data_fin(struct sock *sk)
488 {
489 	struct mptcp_sock *msk = mptcp_sk(sk);
490 	u64 rcv_data_fin_seq;
491 	bool ret = false;
492 
493 	if (__mptcp_check_fallback(msk))
494 		return ret;
495 
496 	/* Need to ack a DATA_FIN received from a peer while this side
497 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
498 	 * msk->rcv_data_fin was set when parsing the incoming options
499 	 * at the subflow level and the msk lock was not held, so this
500 	 * is the first opportunity to act on the DATA_FIN and change
501 	 * the msk state.
502 	 *
503 	 * If we are caught up to the sequence number of the incoming
504 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
505 	 * not caught up, do nothing and let the recv code send DATA_ACK
506 	 * when catching up.
507 	 */
508 
509 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
510 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
511 		WRITE_ONCE(msk->rcv_data_fin, 0);
512 
513 		sk->sk_shutdown |= RCV_SHUTDOWN;
514 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
515 		set_bit(MPTCP_DATA_READY, &msk->flags);
516 
517 		switch (sk->sk_state) {
518 		case TCP_ESTABLISHED:
519 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
520 			break;
521 		case TCP_FIN_WAIT1:
522 			inet_sk_state_store(sk, TCP_CLOSING);
523 			break;
524 		case TCP_FIN_WAIT2:
525 			inet_sk_state_store(sk, TCP_CLOSE);
526 			break;
527 		default:
528 			/* Other states not expected */
529 			WARN_ON_ONCE(1);
530 			break;
531 		}
532 
533 		ret = true;
534 		mptcp_set_timeout(sk, NULL);
535 		mptcp_send_ack(msk);
536 		mptcp_close_wake_up(sk);
537 	}
538 	return ret;
539 }
540 
541 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
542 					   struct sock *ssk,
543 					   unsigned int *bytes)
544 {
545 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
546 	struct sock *sk = (struct sock *)msk;
547 	unsigned int moved = 0;
548 	bool more_data_avail;
549 	struct tcp_sock *tp;
550 	bool done = false;
551 	int sk_rbuf;
552 
553 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
554 
555 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
556 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
557 
558 		if (unlikely(ssk_rbuf > sk_rbuf)) {
559 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
560 			sk_rbuf = ssk_rbuf;
561 		}
562 	}
563 
564 	pr_debug("msk=%p ssk=%p", msk, ssk);
565 	tp = tcp_sk(ssk);
566 	do {
567 		u32 map_remaining, offset;
568 		u32 seq = tp->copied_seq;
569 		struct sk_buff *skb;
570 		bool fin;
571 
572 		/* try to move as much data as available */
573 		map_remaining = subflow->map_data_len -
574 				mptcp_subflow_get_map_offset(subflow);
575 
576 		skb = skb_peek(&ssk->sk_receive_queue);
577 		if (!skb) {
578 			/* if no data is found, a racing workqueue/recvmsg
579 			 * already processed the new data, stop here or we
580 			 * can enter an infinite loop
581 			 */
582 			if (!moved)
583 				done = true;
584 			break;
585 		}
586 
587 		if (__mptcp_check_fallback(msk)) {
588 			/* if we are running under the workqueue, TCP could have
589 			 * collapsed skbs between dummy map creation and now
590 			 * be sure to adjust the size
591 			 */
592 			map_remaining = skb->len;
593 			subflow->map_data_len = skb->len;
594 		}
595 
596 		offset = seq - TCP_SKB_CB(skb)->seq;
597 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
598 		if (fin) {
599 			done = true;
600 			seq++;
601 		}
602 
603 		if (offset < skb->len) {
604 			size_t len = skb->len - offset;
605 
606 			if (tp->urg_data)
607 				done = true;
608 
609 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
610 				moved += len;
611 			seq += len;
612 
613 			if (WARN_ON_ONCE(map_remaining < len))
614 				break;
615 		} else {
616 			WARN_ON_ONCE(!fin);
617 			sk_eat_skb(ssk, skb);
618 			done = true;
619 		}
620 
621 		WRITE_ONCE(tp->copied_seq, seq);
622 		more_data_avail = mptcp_subflow_data_available(ssk);
623 
624 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
625 			done = true;
626 			break;
627 		}
628 	} while (more_data_avail);
629 
630 	*bytes += moved;
631 	return done;
632 }
633 
634 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
635 {
636 	struct sock *sk = (struct sock *)msk;
637 	struct sk_buff *skb, *tail;
638 	bool moved = false;
639 	struct rb_node *p;
640 	u64 end_seq;
641 
642 	p = rb_first(&msk->out_of_order_queue);
643 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
644 	while (p) {
645 		skb = rb_to_skb(p);
646 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
647 			break;
648 
649 		p = rb_next(p);
650 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
651 
652 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
653 				      msk->ack_seq))) {
654 			mptcp_drop(sk, skb);
655 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
656 			continue;
657 		}
658 
659 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
660 		tail = skb_peek_tail(&sk->sk_receive_queue);
661 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
662 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
663 
664 			/* skip overlapping data, if any */
665 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
666 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
667 				 delta);
668 			MPTCP_SKB_CB(skb)->offset += delta;
669 			__skb_queue_tail(&sk->sk_receive_queue, skb);
670 		}
671 		msk->ack_seq = end_seq;
672 		moved = true;
673 	}
674 	return moved;
675 }
676 
677 /* In most cases we will be able to lock the mptcp socket.  If its already
678  * owned, we need to defer to the work queue to avoid ABBA deadlock.
679  */
680 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
681 {
682 	struct sock *sk = (struct sock *)msk;
683 	unsigned int moved = 0;
684 
685 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
686 	__mptcp_ofo_queue(msk);
687 	if (unlikely(ssk->sk_err)) {
688 		if (!sock_owned_by_user(sk))
689 			__mptcp_error_report(sk);
690 		else
691 			set_bit(MPTCP_ERROR_REPORT,  &msk->flags);
692 	}
693 
694 	/* If the moves have caught up with the DATA_FIN sequence number
695 	 * it's time to ack the DATA_FIN and change socket state, but
696 	 * this is not a good place to change state. Let the workqueue
697 	 * do it.
698 	 */
699 	if (mptcp_pending_data_fin(sk, NULL))
700 		mptcp_schedule_work(sk);
701 	return moved > 0;
702 }
703 
704 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
705 {
706 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
707 	struct mptcp_sock *msk = mptcp_sk(sk);
708 	int sk_rbuf, ssk_rbuf;
709 
710 	/* The peer can send data while we are shutting down this
711 	 * subflow at msk destruction time, but we must avoid enqueuing
712 	 * more data to the msk receive queue
713 	 */
714 	if (unlikely(subflow->disposable))
715 		return;
716 
717 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
718 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
719 	if (unlikely(ssk_rbuf > sk_rbuf))
720 		sk_rbuf = ssk_rbuf;
721 
722 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
723 	if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf)
724 		return;
725 
726 	/* Wake-up the reader only for in-sequence data */
727 	mptcp_data_lock(sk);
728 	if (move_skbs_to_msk(msk, ssk)) {
729 		set_bit(MPTCP_DATA_READY, &msk->flags);
730 		sk->sk_data_ready(sk);
731 	}
732 	mptcp_data_unlock(sk);
733 }
734 
735 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
736 {
737 	struct mptcp_subflow_context *subflow;
738 	bool ret = false;
739 
740 	if (likely(list_empty(&msk->join_list)))
741 		return false;
742 
743 	spin_lock_bh(&msk->join_list_lock);
744 	list_for_each_entry(subflow, &msk->join_list, node) {
745 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
746 
747 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
748 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
749 			ret = true;
750 	}
751 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
752 	spin_unlock_bh(&msk->join_list_lock);
753 
754 	return ret;
755 }
756 
757 void __mptcp_flush_join_list(struct mptcp_sock *msk)
758 {
759 	if (likely(!mptcp_do_flush_join_list(msk)))
760 		return;
761 
762 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
763 		mptcp_schedule_work((struct sock *)msk);
764 }
765 
766 static void mptcp_flush_join_list(struct mptcp_sock *msk)
767 {
768 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
769 
770 	might_sleep();
771 
772 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
773 		return;
774 
775 	mptcp_sockopt_sync_all(msk);
776 }
777 
778 static bool mptcp_timer_pending(struct sock *sk)
779 {
780 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
781 }
782 
783 static void mptcp_reset_timer(struct sock *sk)
784 {
785 	struct inet_connection_sock *icsk = inet_csk(sk);
786 	unsigned long tout;
787 
788 	/* prevent rescheduling on close */
789 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
790 		return;
791 
792 	/* should never be called with mptcp level timer cleared */
793 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
794 	if (WARN_ON_ONCE(!tout))
795 		tout = TCP_RTO_MIN;
796 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
797 }
798 
799 bool mptcp_schedule_work(struct sock *sk)
800 {
801 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
802 	    schedule_work(&mptcp_sk(sk)->work)) {
803 		/* each subflow already holds a reference to the sk, and the
804 		 * workqueue is invoked by a subflow, so sk can't go away here.
805 		 */
806 		sock_hold(sk);
807 		return true;
808 	}
809 	return false;
810 }
811 
812 void mptcp_subflow_eof(struct sock *sk)
813 {
814 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
815 		mptcp_schedule_work(sk);
816 }
817 
818 static void mptcp_check_for_eof(struct mptcp_sock *msk)
819 {
820 	struct mptcp_subflow_context *subflow;
821 	struct sock *sk = (struct sock *)msk;
822 	int receivers = 0;
823 
824 	mptcp_for_each_subflow(msk, subflow)
825 		receivers += !subflow->rx_eof;
826 	if (receivers)
827 		return;
828 
829 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
830 		/* hopefully temporary hack: propagate shutdown status
831 		 * to msk, when all subflows agree on it
832 		 */
833 		sk->sk_shutdown |= RCV_SHUTDOWN;
834 
835 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
836 		set_bit(MPTCP_DATA_READY, &msk->flags);
837 		sk->sk_data_ready(sk);
838 	}
839 
840 	switch (sk->sk_state) {
841 	case TCP_ESTABLISHED:
842 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
843 		break;
844 	case TCP_FIN_WAIT1:
845 		inet_sk_state_store(sk, TCP_CLOSING);
846 		break;
847 	case TCP_FIN_WAIT2:
848 		inet_sk_state_store(sk, TCP_CLOSE);
849 		break;
850 	default:
851 		return;
852 	}
853 	mptcp_close_wake_up(sk);
854 }
855 
856 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
857 {
858 	struct mptcp_subflow_context *subflow;
859 	struct sock *sk = (struct sock *)msk;
860 
861 	sock_owned_by_me(sk);
862 
863 	mptcp_for_each_subflow(msk, subflow) {
864 		if (READ_ONCE(subflow->data_avail))
865 			return mptcp_subflow_tcp_sock(subflow);
866 	}
867 
868 	return NULL;
869 }
870 
871 static bool mptcp_skb_can_collapse_to(u64 write_seq,
872 				      const struct sk_buff *skb,
873 				      const struct mptcp_ext *mpext)
874 {
875 	if (!tcp_skb_can_collapse_to(skb))
876 		return false;
877 
878 	/* can collapse only if MPTCP level sequence is in order and this
879 	 * mapping has not been xmitted yet
880 	 */
881 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
882 	       !mpext->frozen;
883 }
884 
885 /* we can append data to the given data frag if:
886  * - there is space available in the backing page_frag
887  * - the data frag tail matches the current page_frag free offset
888  * - the data frag end sequence number matches the current write seq
889  */
890 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
891 				       const struct page_frag *pfrag,
892 				       const struct mptcp_data_frag *df)
893 {
894 	return df && pfrag->page == df->page &&
895 		pfrag->size - pfrag->offset > 0 &&
896 		pfrag->offset == (df->offset + df->data_len) &&
897 		df->data_seq + df->data_len == msk->write_seq;
898 }
899 
900 static int mptcp_wmem_with_overhead(int size)
901 {
902 	return size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
903 }
904 
905 static void __mptcp_wmem_reserve(struct sock *sk, int size)
906 {
907 	int amount = mptcp_wmem_with_overhead(size);
908 	struct mptcp_sock *msk = mptcp_sk(sk);
909 
910 	WARN_ON_ONCE(msk->wmem_reserved);
911 	if (WARN_ON_ONCE(amount < 0))
912 		amount = 0;
913 
914 	if (amount <= sk->sk_forward_alloc)
915 		goto reserve;
916 
917 	/* under memory pressure try to reserve at most a single page
918 	 * otherwise try to reserve the full estimate and fallback
919 	 * to a single page before entering the error path
920 	 */
921 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
922 	    !sk_wmem_schedule(sk, amount)) {
923 		if (amount <= PAGE_SIZE)
924 			goto nomem;
925 
926 		amount = PAGE_SIZE;
927 		if (!sk_wmem_schedule(sk, amount))
928 			goto nomem;
929 	}
930 
931 reserve:
932 	msk->wmem_reserved = amount;
933 	sk->sk_forward_alloc -= amount;
934 	return;
935 
936 nomem:
937 	/* we will wait for memory on next allocation */
938 	msk->wmem_reserved = -1;
939 }
940 
941 static void __mptcp_update_wmem(struct sock *sk)
942 {
943 	struct mptcp_sock *msk = mptcp_sk(sk);
944 
945 #ifdef CONFIG_LOCKDEP
946 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
947 #endif
948 
949 	if (!msk->wmem_reserved)
950 		return;
951 
952 	if (msk->wmem_reserved < 0)
953 		msk->wmem_reserved = 0;
954 	if (msk->wmem_reserved > 0) {
955 		sk->sk_forward_alloc += msk->wmem_reserved;
956 		msk->wmem_reserved = 0;
957 	}
958 }
959 
960 static bool mptcp_wmem_alloc(struct sock *sk, int size)
961 {
962 	struct mptcp_sock *msk = mptcp_sk(sk);
963 
964 	/* check for pre-existing error condition */
965 	if (msk->wmem_reserved < 0)
966 		return false;
967 
968 	if (msk->wmem_reserved >= size)
969 		goto account;
970 
971 	mptcp_data_lock(sk);
972 	if (!sk_wmem_schedule(sk, size)) {
973 		mptcp_data_unlock(sk);
974 		return false;
975 	}
976 
977 	sk->sk_forward_alloc -= size;
978 	msk->wmem_reserved += size;
979 	mptcp_data_unlock(sk);
980 
981 account:
982 	msk->wmem_reserved -= size;
983 	return true;
984 }
985 
986 static void mptcp_wmem_uncharge(struct sock *sk, int size)
987 {
988 	struct mptcp_sock *msk = mptcp_sk(sk);
989 
990 	if (msk->wmem_reserved < 0)
991 		msk->wmem_reserved = 0;
992 	msk->wmem_reserved += size;
993 }
994 
995 static void mptcp_mem_reclaim_partial(struct sock *sk)
996 {
997 	struct mptcp_sock *msk = mptcp_sk(sk);
998 
999 	/* if we are experiencing a transint allocation error,
1000 	 * the forward allocation memory has been already
1001 	 * released
1002 	 */
1003 	if (msk->wmem_reserved < 0)
1004 		return;
1005 
1006 	mptcp_data_lock(sk);
1007 	sk->sk_forward_alloc += msk->wmem_reserved;
1008 	sk_mem_reclaim_partial(sk);
1009 	msk->wmem_reserved = sk->sk_forward_alloc;
1010 	sk->sk_forward_alloc = 0;
1011 	mptcp_data_unlock(sk);
1012 }
1013 
1014 static void dfrag_uncharge(struct sock *sk, int len)
1015 {
1016 	sk_mem_uncharge(sk, len);
1017 	sk_wmem_queued_add(sk, -len);
1018 }
1019 
1020 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1021 {
1022 	int len = dfrag->data_len + dfrag->overhead;
1023 
1024 	list_del(&dfrag->list);
1025 	dfrag_uncharge(sk, len);
1026 	put_page(dfrag->page);
1027 }
1028 
1029 static void __mptcp_clean_una(struct sock *sk)
1030 {
1031 	struct mptcp_sock *msk = mptcp_sk(sk);
1032 	struct mptcp_data_frag *dtmp, *dfrag;
1033 	bool cleaned = false;
1034 	u64 snd_una;
1035 
1036 	/* on fallback we just need to ignore snd_una, as this is really
1037 	 * plain TCP
1038 	 */
1039 	if (__mptcp_check_fallback(msk))
1040 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1041 
1042 	snd_una = msk->snd_una;
1043 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1044 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1045 			break;
1046 
1047 		if (WARN_ON_ONCE(dfrag == msk->first_pending))
1048 			break;
1049 		dfrag_clear(sk, dfrag);
1050 		cleaned = true;
1051 	}
1052 
1053 	dfrag = mptcp_rtx_head(sk);
1054 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1055 		u64 delta = snd_una - dfrag->data_seq;
1056 
1057 		if (WARN_ON_ONCE(delta > dfrag->already_sent))
1058 			goto out;
1059 
1060 		dfrag->data_seq += delta;
1061 		dfrag->offset += delta;
1062 		dfrag->data_len -= delta;
1063 		dfrag->already_sent -= delta;
1064 
1065 		dfrag_uncharge(sk, delta);
1066 		cleaned = true;
1067 	}
1068 
1069 out:
1070 	if (cleaned) {
1071 		if (tcp_under_memory_pressure(sk)) {
1072 			__mptcp_update_wmem(sk);
1073 			sk_mem_reclaim_partial(sk);
1074 		}
1075 	}
1076 
1077 	if (snd_una == READ_ONCE(msk->snd_nxt)) {
1078 		if (msk->timer_ival && !mptcp_data_fin_enabled(msk))
1079 			mptcp_stop_timer(sk);
1080 	} else {
1081 		mptcp_reset_timer(sk);
1082 	}
1083 }
1084 
1085 static void __mptcp_clean_una_wakeup(struct sock *sk)
1086 {
1087 #ifdef CONFIG_LOCKDEP
1088 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
1089 #endif
1090 	__mptcp_clean_una(sk);
1091 	mptcp_write_space(sk);
1092 }
1093 
1094 static void mptcp_clean_una_wakeup(struct sock *sk)
1095 {
1096 	mptcp_data_lock(sk);
1097 	__mptcp_clean_una_wakeup(sk);
1098 	mptcp_data_unlock(sk);
1099 }
1100 
1101 static void mptcp_enter_memory_pressure(struct sock *sk)
1102 {
1103 	struct mptcp_subflow_context *subflow;
1104 	struct mptcp_sock *msk = mptcp_sk(sk);
1105 	bool first = true;
1106 
1107 	sk_stream_moderate_sndbuf(sk);
1108 	mptcp_for_each_subflow(msk, subflow) {
1109 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1110 
1111 		if (first)
1112 			tcp_enter_memory_pressure(ssk);
1113 		sk_stream_moderate_sndbuf(ssk);
1114 		first = false;
1115 	}
1116 }
1117 
1118 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1119  * data
1120  */
1121 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1122 {
1123 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1124 					pfrag, sk->sk_allocation)))
1125 		return true;
1126 
1127 	mptcp_enter_memory_pressure(sk);
1128 	return false;
1129 }
1130 
1131 static struct mptcp_data_frag *
1132 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1133 		      int orig_offset)
1134 {
1135 	int offset = ALIGN(orig_offset, sizeof(long));
1136 	struct mptcp_data_frag *dfrag;
1137 
1138 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1139 	dfrag->data_len = 0;
1140 	dfrag->data_seq = msk->write_seq;
1141 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1142 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1143 	dfrag->already_sent = 0;
1144 	dfrag->page = pfrag->page;
1145 
1146 	return dfrag;
1147 }
1148 
1149 struct mptcp_sendmsg_info {
1150 	int mss_now;
1151 	int size_goal;
1152 	u16 limit;
1153 	u16 sent;
1154 	unsigned int flags;
1155 };
1156 
1157 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1158 				    int avail_size)
1159 {
1160 	u64 window_end = mptcp_wnd_end(msk);
1161 
1162 	if (__mptcp_check_fallback(msk))
1163 		return avail_size;
1164 
1165 	if (!before64(data_seq + avail_size, window_end)) {
1166 		u64 allowed_size = window_end - data_seq;
1167 
1168 		return min_t(unsigned int, allowed_size, avail_size);
1169 	}
1170 
1171 	return avail_size;
1172 }
1173 
1174 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1175 {
1176 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1177 
1178 	if (!mpext)
1179 		return false;
1180 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1181 	return true;
1182 }
1183 
1184 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1185 {
1186 	struct sk_buff *skb;
1187 
1188 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1189 	if (likely(skb)) {
1190 		if (likely(__mptcp_add_ext(skb, gfp))) {
1191 			skb_reserve(skb, MAX_TCP_HEADER);
1192 			skb->reserved_tailroom = skb->end - skb->tail;
1193 			return skb;
1194 		}
1195 		__kfree_skb(skb);
1196 	} else {
1197 		mptcp_enter_memory_pressure(sk);
1198 	}
1199 	return NULL;
1200 }
1201 
1202 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1203 {
1204 	struct sk_buff *skb;
1205 
1206 	if (ssk->sk_tx_skb_cache) {
1207 		skb = ssk->sk_tx_skb_cache;
1208 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1209 			     !__mptcp_add_ext(skb, gfp)))
1210 			return false;
1211 		return true;
1212 	}
1213 
1214 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1215 	if (!skb)
1216 		return false;
1217 
1218 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1219 		ssk->sk_tx_skb_cache = skb;
1220 		return true;
1221 	}
1222 	kfree_skb(skb);
1223 	return false;
1224 }
1225 
1226 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1227 {
1228 	return !ssk->sk_tx_skb_cache &&
1229 	       tcp_under_memory_pressure(sk);
1230 }
1231 
1232 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1233 {
1234 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1235 		mptcp_mem_reclaim_partial(sk);
1236 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1237 }
1238 
1239 /* note: this always recompute the csum on the whole skb, even
1240  * if we just appended a single frag. More status info needed
1241  */
1242 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1243 {
1244 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1245 	__wsum csum = ~csum_unfold(mpext->csum);
1246 	int offset = skb->len - added;
1247 
1248 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1249 }
1250 
1251 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1252 			      struct mptcp_data_frag *dfrag,
1253 			      struct mptcp_sendmsg_info *info)
1254 {
1255 	u64 data_seq = dfrag->data_seq + info->sent;
1256 	struct mptcp_sock *msk = mptcp_sk(sk);
1257 	bool zero_window_probe = false;
1258 	struct mptcp_ext *mpext = NULL;
1259 	struct sk_buff *skb, *tail;
1260 	bool can_collapse = false;
1261 	int size_bias = 0;
1262 	int avail_size;
1263 	size_t ret = 0;
1264 
1265 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1266 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1267 
1268 	/* compute send limit */
1269 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1270 	avail_size = info->size_goal;
1271 	skb = tcp_write_queue_tail(ssk);
1272 	if (skb) {
1273 		/* Limit the write to the size available in the
1274 		 * current skb, if any, so that we create at most a new skb.
1275 		 * Explicitly tells TCP internals to avoid collapsing on later
1276 		 * queue management operation, to avoid breaking the ext <->
1277 		 * SSN association set here
1278 		 */
1279 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1280 		can_collapse = (info->size_goal - skb->len > 0) &&
1281 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1282 		if (!can_collapse) {
1283 			TCP_SKB_CB(skb)->eor = 1;
1284 		} else {
1285 			size_bias = skb->len;
1286 			avail_size = info->size_goal - skb->len;
1287 		}
1288 	}
1289 
1290 	/* Zero window and all data acked? Probe. */
1291 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1292 	if (avail_size == 0) {
1293 		u64 snd_una = READ_ONCE(msk->snd_una);
1294 
1295 		if (skb || snd_una != msk->snd_nxt)
1296 			return 0;
1297 		zero_window_probe = true;
1298 		data_seq = snd_una - 1;
1299 		avail_size = 1;
1300 	}
1301 
1302 	if (WARN_ON_ONCE(info->sent > info->limit ||
1303 			 info->limit > dfrag->data_len))
1304 		return 0;
1305 
1306 	ret = info->limit - info->sent;
1307 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1308 			      dfrag->page, dfrag->offset + info->sent, &ret);
1309 	if (!tail) {
1310 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1311 		return -ENOMEM;
1312 	}
1313 
1314 	/* if the tail skb is still the cached one, collapsing really happened.
1315 	 */
1316 	if (skb == tail) {
1317 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1318 		mpext->data_len += ret;
1319 		WARN_ON_ONCE(!can_collapse);
1320 		WARN_ON_ONCE(zero_window_probe);
1321 		goto out;
1322 	}
1323 
1324 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1325 	if (WARN_ON_ONCE(!mpext)) {
1326 		/* should never reach here, stream corrupted */
1327 		return -EINVAL;
1328 	}
1329 
1330 	memset(mpext, 0, sizeof(*mpext));
1331 	mpext->data_seq = data_seq;
1332 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1333 	mpext->data_len = ret;
1334 	mpext->use_map = 1;
1335 	mpext->dsn64 = 1;
1336 
1337 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1338 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1339 		 mpext->dsn64);
1340 
1341 	if (zero_window_probe) {
1342 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1343 		mpext->frozen = 1;
1344 		if (READ_ONCE(msk->csum_enabled))
1345 			mptcp_update_data_checksum(tail, ret);
1346 		tcp_push_pending_frames(ssk);
1347 		return 0;
1348 	}
1349 out:
1350 	if (READ_ONCE(msk->csum_enabled))
1351 		mptcp_update_data_checksum(tail, ret);
1352 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1353 	return ret;
1354 }
1355 
1356 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1357 					 sizeof(struct tcphdr) - \
1358 					 MAX_TCP_OPTION_SPACE - \
1359 					 sizeof(struct ipv6hdr) - \
1360 					 sizeof(struct frag_hdr))
1361 
1362 struct subflow_send_info {
1363 	struct sock *ssk;
1364 	u64 ratio;
1365 };
1366 
1367 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1368 {
1369 	struct subflow_send_info send_info[2];
1370 	struct mptcp_subflow_context *subflow;
1371 	int i, nr_active = 0;
1372 	struct sock *ssk;
1373 	u64 ratio;
1374 	u32 pace;
1375 
1376 	sock_owned_by_me((struct sock *)msk);
1377 
1378 	if (__mptcp_check_fallback(msk)) {
1379 		if (!msk->first)
1380 			return NULL;
1381 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1382 	}
1383 
1384 	/* re-use last subflow, if the burst allow that */
1385 	if (msk->last_snd && msk->snd_burst > 0 &&
1386 	    sk_stream_memory_free(msk->last_snd) &&
1387 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd)))
1388 		return msk->last_snd;
1389 
1390 	/* pick the subflow with the lower wmem/wspace ratio */
1391 	for (i = 0; i < 2; ++i) {
1392 		send_info[i].ssk = NULL;
1393 		send_info[i].ratio = -1;
1394 	}
1395 	mptcp_for_each_subflow(msk, subflow) {
1396 		trace_mptcp_subflow_get_send(subflow);
1397 		ssk =  mptcp_subflow_tcp_sock(subflow);
1398 		if (!mptcp_subflow_active(subflow))
1399 			continue;
1400 
1401 		nr_active += !subflow->backup;
1402 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1403 			continue;
1404 
1405 		pace = READ_ONCE(ssk->sk_pacing_rate);
1406 		if (!pace)
1407 			continue;
1408 
1409 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1410 				pace);
1411 		if (ratio < send_info[subflow->backup].ratio) {
1412 			send_info[subflow->backup].ssk = ssk;
1413 			send_info[subflow->backup].ratio = ratio;
1414 		}
1415 	}
1416 
1417 	/* pick the best backup if no other subflow is active */
1418 	if (!nr_active)
1419 		send_info[0].ssk = send_info[1].ssk;
1420 
1421 	if (send_info[0].ssk) {
1422 		msk->last_snd = send_info[0].ssk;
1423 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1424 				       tcp_sk(msk->last_snd)->snd_wnd);
1425 		return msk->last_snd;
1426 	}
1427 
1428 	return NULL;
1429 }
1430 
1431 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1432 			       struct mptcp_sendmsg_info *info)
1433 {
1434 	mptcp_set_timeout(sk, ssk);
1435 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1436 	release_sock(ssk);
1437 }
1438 
1439 static void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1440 {
1441 	struct sock *prev_ssk = NULL, *ssk = NULL;
1442 	struct mptcp_sock *msk = mptcp_sk(sk);
1443 	struct mptcp_sendmsg_info info = {
1444 				.flags = flags,
1445 	};
1446 	struct mptcp_data_frag *dfrag;
1447 	int len, copied = 0;
1448 
1449 	while ((dfrag = mptcp_send_head(sk))) {
1450 		info.sent = dfrag->already_sent;
1451 		info.limit = dfrag->data_len;
1452 		len = dfrag->data_len - dfrag->already_sent;
1453 		while (len > 0) {
1454 			int ret = 0;
1455 
1456 			prev_ssk = ssk;
1457 			mptcp_flush_join_list(msk);
1458 			ssk = mptcp_subflow_get_send(msk);
1459 
1460 			/* try to keep the subflow socket lock across
1461 			 * consecutive xmit on the same socket
1462 			 */
1463 			if (ssk != prev_ssk && prev_ssk)
1464 				mptcp_push_release(sk, prev_ssk, &info);
1465 			if (!ssk)
1466 				goto out;
1467 
1468 			if (ssk != prev_ssk || !prev_ssk)
1469 				lock_sock(ssk);
1470 
1471 			/* keep it simple and always provide a new skb for the
1472 			 * subflow, even if we will not use it when collapsing
1473 			 * on the pending one
1474 			 */
1475 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1476 				mptcp_push_release(sk, ssk, &info);
1477 				goto out;
1478 			}
1479 
1480 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1481 			if (ret <= 0) {
1482 				mptcp_push_release(sk, ssk, &info);
1483 				goto out;
1484 			}
1485 
1486 			info.sent += ret;
1487 			dfrag->already_sent += ret;
1488 			msk->snd_nxt += ret;
1489 			msk->snd_burst -= ret;
1490 			msk->tx_pending_data -= ret;
1491 			copied += ret;
1492 			len -= ret;
1493 		}
1494 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1495 	}
1496 
1497 	/* at this point we held the socket lock for the last subflow we used */
1498 	if (ssk)
1499 		mptcp_push_release(sk, ssk, &info);
1500 
1501 out:
1502 	if (copied) {
1503 		/* start the timer, if it's not pending */
1504 		if (!mptcp_timer_pending(sk))
1505 			mptcp_reset_timer(sk);
1506 		__mptcp_check_send_data_fin(sk);
1507 	}
1508 }
1509 
1510 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1511 {
1512 	struct mptcp_sock *msk = mptcp_sk(sk);
1513 	struct mptcp_sendmsg_info info;
1514 	struct mptcp_data_frag *dfrag;
1515 	struct sock *xmit_ssk;
1516 	int len, copied = 0;
1517 	bool first = true;
1518 
1519 	info.flags = 0;
1520 	while ((dfrag = mptcp_send_head(sk))) {
1521 		info.sent = dfrag->already_sent;
1522 		info.limit = dfrag->data_len;
1523 		len = dfrag->data_len - dfrag->already_sent;
1524 		while (len > 0) {
1525 			int ret = 0;
1526 
1527 			/* the caller already invoked the packet scheduler,
1528 			 * check for a different subflow usage only after
1529 			 * spooling the first chunk of data
1530 			 */
1531 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1532 			if (!xmit_ssk)
1533 				goto out;
1534 			if (xmit_ssk != ssk) {
1535 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1536 				goto out;
1537 			}
1538 
1539 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1540 				__mptcp_update_wmem(sk);
1541 				sk_mem_reclaim_partial(sk);
1542 			}
1543 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1544 				goto out;
1545 
1546 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1547 			if (ret <= 0)
1548 				goto out;
1549 
1550 			info.sent += ret;
1551 			dfrag->already_sent += ret;
1552 			msk->snd_nxt += ret;
1553 			msk->snd_burst -= ret;
1554 			msk->tx_pending_data -= ret;
1555 			copied += ret;
1556 			len -= ret;
1557 			first = false;
1558 		}
1559 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1560 	}
1561 
1562 out:
1563 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1564 	 * not going to flush it via release_sock()
1565 	 */
1566 	__mptcp_update_wmem(sk);
1567 	if (copied) {
1568 		mptcp_set_timeout(sk, ssk);
1569 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1570 			 info.size_goal);
1571 		if (!mptcp_timer_pending(sk))
1572 			mptcp_reset_timer(sk);
1573 
1574 		if (msk->snd_data_fin_enable &&
1575 		    msk->snd_nxt + 1 == msk->write_seq)
1576 			mptcp_schedule_work(sk);
1577 	}
1578 }
1579 
1580 static void mptcp_set_nospace(struct sock *sk)
1581 {
1582 	/* enable autotune */
1583 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1584 
1585 	/* will be cleared on avail space */
1586 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1587 }
1588 
1589 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1590 {
1591 	struct mptcp_sock *msk = mptcp_sk(sk);
1592 	struct page_frag *pfrag;
1593 	size_t copied = 0;
1594 	int ret = 0;
1595 	long timeo;
1596 
1597 	/* we don't support FASTOPEN yet */
1598 	if (msg->msg_flags & MSG_FASTOPEN)
1599 		return -EOPNOTSUPP;
1600 
1601 	/* silently ignore everything else */
1602 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1603 
1604 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1605 
1606 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1607 
1608 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1609 		ret = sk_stream_wait_connect(sk, &timeo);
1610 		if (ret)
1611 			goto out;
1612 	}
1613 
1614 	pfrag = sk_page_frag(sk);
1615 
1616 	while (msg_data_left(msg)) {
1617 		int total_ts, frag_truesize = 0;
1618 		struct mptcp_data_frag *dfrag;
1619 		bool dfrag_collapsed;
1620 		size_t psize, offset;
1621 
1622 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1623 			ret = -EPIPE;
1624 			goto out;
1625 		}
1626 
1627 		/* reuse tail pfrag, if possible, or carve a new one from the
1628 		 * page allocator
1629 		 */
1630 		dfrag = mptcp_pending_tail(sk);
1631 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1632 		if (!dfrag_collapsed) {
1633 			if (!sk_stream_memory_free(sk))
1634 				goto wait_for_memory;
1635 
1636 			if (!mptcp_page_frag_refill(sk, pfrag))
1637 				goto wait_for_memory;
1638 
1639 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1640 			frag_truesize = dfrag->overhead;
1641 		}
1642 
1643 		/* we do not bound vs wspace, to allow a single packet.
1644 		 * memory accounting will prevent execessive memory usage
1645 		 * anyway
1646 		 */
1647 		offset = dfrag->offset + dfrag->data_len;
1648 		psize = pfrag->size - offset;
1649 		psize = min_t(size_t, psize, msg_data_left(msg));
1650 		total_ts = psize + frag_truesize;
1651 
1652 		if (!mptcp_wmem_alloc(sk, total_ts))
1653 			goto wait_for_memory;
1654 
1655 		if (copy_page_from_iter(dfrag->page, offset, psize,
1656 					&msg->msg_iter) != psize) {
1657 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1658 			ret = -EFAULT;
1659 			goto out;
1660 		}
1661 
1662 		/* data successfully copied into the write queue */
1663 		copied += psize;
1664 		dfrag->data_len += psize;
1665 		frag_truesize += psize;
1666 		pfrag->offset += frag_truesize;
1667 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1668 		msk->tx_pending_data += psize;
1669 
1670 		/* charge data on mptcp pending queue to the msk socket
1671 		 * Note: we charge such data both to sk and ssk
1672 		 */
1673 		sk_wmem_queued_add(sk, frag_truesize);
1674 		if (!dfrag_collapsed) {
1675 			get_page(dfrag->page);
1676 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1677 			if (!msk->first_pending)
1678 				WRITE_ONCE(msk->first_pending, dfrag);
1679 		}
1680 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1681 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1682 			 !dfrag_collapsed);
1683 
1684 		continue;
1685 
1686 wait_for_memory:
1687 		mptcp_set_nospace(sk);
1688 		__mptcp_push_pending(sk, msg->msg_flags);
1689 		ret = sk_stream_wait_memory(sk, &timeo);
1690 		if (ret)
1691 			goto out;
1692 	}
1693 
1694 	if (copied)
1695 		__mptcp_push_pending(sk, msg->msg_flags);
1696 
1697 out:
1698 	release_sock(sk);
1699 	return copied ? : ret;
1700 }
1701 
1702 static void mptcp_wait_data(struct sock *sk, long *timeo)
1703 {
1704 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1705 	struct mptcp_sock *msk = mptcp_sk(sk);
1706 
1707 	add_wait_queue(sk_sleep(sk), &wait);
1708 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1709 
1710 	sk_wait_event(sk, timeo,
1711 		      test_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1712 
1713 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1714 	remove_wait_queue(sk_sleep(sk), &wait);
1715 }
1716 
1717 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1718 				struct msghdr *msg,
1719 				size_t len, int flags,
1720 				struct scm_timestamping_internal *tss,
1721 				int *cmsg_flags)
1722 {
1723 	struct sk_buff *skb, *tmp;
1724 	int copied = 0;
1725 
1726 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1727 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1728 		u32 data_len = skb->len - offset;
1729 		u32 count = min_t(size_t, len - copied, data_len);
1730 		int err;
1731 
1732 		if (!(flags & MSG_TRUNC)) {
1733 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1734 			if (unlikely(err < 0)) {
1735 				if (!copied)
1736 					return err;
1737 				break;
1738 			}
1739 		}
1740 
1741 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1742 			tcp_update_recv_tstamps(skb, tss);
1743 			*cmsg_flags |= MPTCP_CMSG_TS;
1744 		}
1745 
1746 		copied += count;
1747 
1748 		if (count < data_len) {
1749 			if (!(flags & MSG_PEEK))
1750 				MPTCP_SKB_CB(skb)->offset += count;
1751 			break;
1752 		}
1753 
1754 		if (!(flags & MSG_PEEK)) {
1755 			/* we will bulk release the skb memory later */
1756 			skb->destructor = NULL;
1757 			msk->rmem_released += skb->truesize;
1758 			__skb_unlink(skb, &msk->receive_queue);
1759 			__kfree_skb(skb);
1760 		}
1761 
1762 		if (copied >= len)
1763 			break;
1764 	}
1765 
1766 	return copied;
1767 }
1768 
1769 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1770  *
1771  * Only difference: Use highest rtt estimate of the subflows in use.
1772  */
1773 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1774 {
1775 	struct mptcp_subflow_context *subflow;
1776 	struct sock *sk = (struct sock *)msk;
1777 	u32 time, advmss = 1;
1778 	u64 rtt_us, mstamp;
1779 
1780 	sock_owned_by_me(sk);
1781 
1782 	if (copied <= 0)
1783 		return;
1784 
1785 	msk->rcvq_space.copied += copied;
1786 
1787 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1788 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1789 
1790 	rtt_us = msk->rcvq_space.rtt_us;
1791 	if (rtt_us && time < (rtt_us >> 3))
1792 		return;
1793 
1794 	rtt_us = 0;
1795 	mptcp_for_each_subflow(msk, subflow) {
1796 		const struct tcp_sock *tp;
1797 		u64 sf_rtt_us;
1798 		u32 sf_advmss;
1799 
1800 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1801 
1802 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1803 		sf_advmss = READ_ONCE(tp->advmss);
1804 
1805 		rtt_us = max(sf_rtt_us, rtt_us);
1806 		advmss = max(sf_advmss, advmss);
1807 	}
1808 
1809 	msk->rcvq_space.rtt_us = rtt_us;
1810 	if (time < (rtt_us >> 3) || rtt_us == 0)
1811 		return;
1812 
1813 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1814 		goto new_measure;
1815 
1816 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1817 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1818 		int rcvmem, rcvbuf;
1819 		u64 rcvwin, grow;
1820 
1821 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1822 
1823 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1824 
1825 		do_div(grow, msk->rcvq_space.space);
1826 		rcvwin += (grow << 1);
1827 
1828 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1829 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1830 			rcvmem += 128;
1831 
1832 		do_div(rcvwin, advmss);
1833 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1834 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1835 
1836 		if (rcvbuf > sk->sk_rcvbuf) {
1837 			u32 window_clamp;
1838 
1839 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1840 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1841 
1842 			/* Make subflows follow along.  If we do not do this, we
1843 			 * get drops at subflow level if skbs can't be moved to
1844 			 * the mptcp rx queue fast enough (announced rcv_win can
1845 			 * exceed ssk->sk_rcvbuf).
1846 			 */
1847 			mptcp_for_each_subflow(msk, subflow) {
1848 				struct sock *ssk;
1849 				bool slow;
1850 
1851 				ssk = mptcp_subflow_tcp_sock(subflow);
1852 				slow = lock_sock_fast(ssk);
1853 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1854 				tcp_sk(ssk)->window_clamp = window_clamp;
1855 				tcp_cleanup_rbuf(ssk, 1);
1856 				unlock_sock_fast(ssk, slow);
1857 			}
1858 		}
1859 	}
1860 
1861 	msk->rcvq_space.space = msk->rcvq_space.copied;
1862 new_measure:
1863 	msk->rcvq_space.copied = 0;
1864 	msk->rcvq_space.time = mstamp;
1865 }
1866 
1867 static void __mptcp_update_rmem(struct sock *sk)
1868 {
1869 	struct mptcp_sock *msk = mptcp_sk(sk);
1870 
1871 	if (!msk->rmem_released)
1872 		return;
1873 
1874 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1875 	sk_mem_uncharge(sk, msk->rmem_released);
1876 	msk->rmem_released = 0;
1877 }
1878 
1879 static void __mptcp_splice_receive_queue(struct sock *sk)
1880 {
1881 	struct mptcp_sock *msk = mptcp_sk(sk);
1882 
1883 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1884 }
1885 
1886 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1887 {
1888 	struct sock *sk = (struct sock *)msk;
1889 	unsigned int moved = 0;
1890 	bool ret, done;
1891 
1892 	mptcp_flush_join_list(msk);
1893 	do {
1894 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1895 		bool slowpath;
1896 
1897 		/* we can have data pending in the subflows only if the msk
1898 		 * receive buffer was full at subflow_data_ready() time,
1899 		 * that is an unlikely slow path.
1900 		 */
1901 		if (likely(!ssk))
1902 			break;
1903 
1904 		slowpath = lock_sock_fast(ssk);
1905 		mptcp_data_lock(sk);
1906 		__mptcp_update_rmem(sk);
1907 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1908 		mptcp_data_unlock(sk);
1909 
1910 		if (unlikely(ssk->sk_err))
1911 			__mptcp_error_report(sk);
1912 		unlock_sock_fast(ssk, slowpath);
1913 	} while (!done);
1914 
1915 	/* acquire the data lock only if some input data is pending */
1916 	ret = moved > 0;
1917 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1918 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1919 		mptcp_data_lock(sk);
1920 		__mptcp_update_rmem(sk);
1921 		ret |= __mptcp_ofo_queue(msk);
1922 		__mptcp_splice_receive_queue(sk);
1923 		mptcp_data_unlock(sk);
1924 	}
1925 	if (ret)
1926 		mptcp_check_data_fin((struct sock *)msk);
1927 	return !skb_queue_empty(&msk->receive_queue);
1928 }
1929 
1930 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1931 			 int nonblock, int flags, int *addr_len)
1932 {
1933 	struct mptcp_sock *msk = mptcp_sk(sk);
1934 	struct scm_timestamping_internal tss;
1935 	int copied = 0, cmsg_flags = 0;
1936 	int target;
1937 	long timeo;
1938 
1939 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
1940 	if (unlikely(flags & MSG_ERRQUEUE))
1941 		return inet_recv_error(sk, msg, len, addr_len);
1942 
1943 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1944 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1945 		copied = -ENOTCONN;
1946 		goto out_err;
1947 	}
1948 
1949 	timeo = sock_rcvtimeo(sk, nonblock);
1950 
1951 	len = min_t(size_t, len, INT_MAX);
1952 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1953 
1954 	while (copied < len) {
1955 		int bytes_read;
1956 
1957 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
1958 		if (unlikely(bytes_read < 0)) {
1959 			if (!copied)
1960 				copied = bytes_read;
1961 			goto out_err;
1962 		}
1963 
1964 		copied += bytes_read;
1965 
1966 		/* be sure to advertise window change */
1967 		mptcp_cleanup_rbuf(msk);
1968 
1969 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
1970 			continue;
1971 
1972 		/* only the master socket status is relevant here. The exit
1973 		 * conditions mirror closely tcp_recvmsg()
1974 		 */
1975 		if (copied >= target)
1976 			break;
1977 
1978 		if (copied) {
1979 			if (sk->sk_err ||
1980 			    sk->sk_state == TCP_CLOSE ||
1981 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1982 			    !timeo ||
1983 			    signal_pending(current))
1984 				break;
1985 		} else {
1986 			if (sk->sk_err) {
1987 				copied = sock_error(sk);
1988 				break;
1989 			}
1990 
1991 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
1992 				mptcp_check_for_eof(msk);
1993 
1994 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
1995 				/* race breaker: the shutdown could be after the
1996 				 * previous receive queue check
1997 				 */
1998 				if (__mptcp_move_skbs(msk))
1999 					continue;
2000 				break;
2001 			}
2002 
2003 			if (sk->sk_state == TCP_CLOSE) {
2004 				copied = -ENOTCONN;
2005 				break;
2006 			}
2007 
2008 			if (!timeo) {
2009 				copied = -EAGAIN;
2010 				break;
2011 			}
2012 
2013 			if (signal_pending(current)) {
2014 				copied = sock_intr_errno(timeo);
2015 				break;
2016 			}
2017 		}
2018 
2019 		pr_debug("block timeout %ld", timeo);
2020 		mptcp_wait_data(sk, &timeo);
2021 	}
2022 
2023 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2024 	    skb_queue_empty(&msk->receive_queue)) {
2025 		/* entire backlog drained, clear DATA_READY. */
2026 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2027 
2028 		/* .. race-breaker: ssk might have gotten new data
2029 		 * after last __mptcp_move_skbs() returned false.
2030 		 */
2031 		if (unlikely(__mptcp_move_skbs(msk)))
2032 			set_bit(MPTCP_DATA_READY, &msk->flags);
2033 	}
2034 
2035 out_err:
2036 	if (cmsg_flags && copied >= 0) {
2037 		if (cmsg_flags & MPTCP_CMSG_TS)
2038 			tcp_recv_timestamp(msg, sk, &tss);
2039 	}
2040 
2041 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2042 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2043 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2044 	if (!(flags & MSG_PEEK))
2045 		mptcp_rcv_space_adjust(msk, copied);
2046 
2047 	release_sock(sk);
2048 	return copied;
2049 }
2050 
2051 static void mptcp_retransmit_timer(struct timer_list *t)
2052 {
2053 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2054 						       icsk_retransmit_timer);
2055 	struct sock *sk = &icsk->icsk_inet.sk;
2056 	struct mptcp_sock *msk = mptcp_sk(sk);
2057 
2058 	bh_lock_sock(sk);
2059 	if (!sock_owned_by_user(sk)) {
2060 		/* we need a process context to retransmit */
2061 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2062 			mptcp_schedule_work(sk);
2063 	} else {
2064 		/* delegate our work to tcp_release_cb() */
2065 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2066 	}
2067 	bh_unlock_sock(sk);
2068 	sock_put(sk);
2069 }
2070 
2071 static void mptcp_timeout_timer(struct timer_list *t)
2072 {
2073 	struct sock *sk = from_timer(sk, t, sk_timer);
2074 
2075 	mptcp_schedule_work(sk);
2076 	sock_put(sk);
2077 }
2078 
2079 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2080  * level.
2081  *
2082  * A backup subflow is returned only if that is the only kind available.
2083  */
2084 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
2085 {
2086 	struct mptcp_subflow_context *subflow;
2087 	struct sock *backup = NULL;
2088 
2089 	sock_owned_by_me((const struct sock *)msk);
2090 
2091 	if (__mptcp_check_fallback(msk))
2092 		return NULL;
2093 
2094 	mptcp_for_each_subflow(msk, subflow) {
2095 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2096 
2097 		if (!mptcp_subflow_active(subflow))
2098 			continue;
2099 
2100 		/* still data outstanding at TCP level?  Don't retransmit. */
2101 		if (!tcp_write_queue_empty(ssk)) {
2102 			if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
2103 				continue;
2104 			return NULL;
2105 		}
2106 
2107 		if (subflow->backup) {
2108 			if (!backup)
2109 				backup = ssk;
2110 			continue;
2111 		}
2112 
2113 		return ssk;
2114 	}
2115 
2116 	return backup;
2117 }
2118 
2119 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2120 {
2121 	if (msk->subflow) {
2122 		iput(SOCK_INODE(msk->subflow));
2123 		msk->subflow = NULL;
2124 	}
2125 }
2126 
2127 /* subflow sockets can be either outgoing (connect) or incoming
2128  * (accept).
2129  *
2130  * Outgoing subflows use in-kernel sockets.
2131  * Incoming subflows do not have their own 'struct socket' allocated,
2132  * so we need to use tcp_close() after detaching them from the mptcp
2133  * parent socket.
2134  */
2135 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2136 			      struct mptcp_subflow_context *subflow)
2137 {
2138 	struct mptcp_sock *msk = mptcp_sk(sk);
2139 
2140 	list_del(&subflow->node);
2141 
2142 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2143 
2144 	/* if we are invoked by the msk cleanup code, the subflow is
2145 	 * already orphaned
2146 	 */
2147 	if (ssk->sk_socket)
2148 		sock_orphan(ssk);
2149 
2150 	subflow->disposable = 1;
2151 
2152 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2153 	 * the ssk has been already destroyed, we just need to release the
2154 	 * reference owned by msk;
2155 	 */
2156 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2157 		kfree_rcu(subflow, rcu);
2158 	} else {
2159 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2160 		__tcp_close(ssk, 0);
2161 
2162 		/* close acquired an extra ref */
2163 		__sock_put(ssk);
2164 	}
2165 	release_sock(ssk);
2166 
2167 	sock_put(ssk);
2168 
2169 	if (ssk == msk->last_snd)
2170 		msk->last_snd = NULL;
2171 
2172 	if (ssk == msk->first)
2173 		msk->first = NULL;
2174 
2175 	if (msk->subflow && ssk == msk->subflow->sk)
2176 		mptcp_dispose_initial_subflow(msk);
2177 }
2178 
2179 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2180 		     struct mptcp_subflow_context *subflow)
2181 {
2182 	if (sk->sk_state == TCP_ESTABLISHED)
2183 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2184 	__mptcp_close_ssk(sk, ssk, subflow);
2185 }
2186 
2187 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2188 {
2189 	return 0;
2190 }
2191 
2192 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2193 {
2194 	struct mptcp_subflow_context *subflow, *tmp;
2195 
2196 	might_sleep();
2197 
2198 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2199 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2200 
2201 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2202 			continue;
2203 
2204 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2205 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2206 			continue;
2207 
2208 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2209 	}
2210 }
2211 
2212 static bool mptcp_check_close_timeout(const struct sock *sk)
2213 {
2214 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2215 	struct mptcp_subflow_context *subflow;
2216 
2217 	if (delta >= TCP_TIMEWAIT_LEN)
2218 		return true;
2219 
2220 	/* if all subflows are in closed status don't bother with additional
2221 	 * timeout
2222 	 */
2223 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2224 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2225 		    TCP_CLOSE)
2226 			return false;
2227 	}
2228 	return true;
2229 }
2230 
2231 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2232 {
2233 	struct mptcp_subflow_context *subflow, *tmp;
2234 	struct sock *sk = &msk->sk.icsk_inet.sk;
2235 
2236 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2237 		return;
2238 
2239 	mptcp_token_destroy(msk);
2240 
2241 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2242 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2243 		bool slow;
2244 
2245 		slow = lock_sock_fast(tcp_sk);
2246 		if (tcp_sk->sk_state != TCP_CLOSE) {
2247 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2248 			tcp_set_state(tcp_sk, TCP_CLOSE);
2249 		}
2250 		unlock_sock_fast(tcp_sk, slow);
2251 	}
2252 
2253 	inet_sk_state_store(sk, TCP_CLOSE);
2254 	sk->sk_shutdown = SHUTDOWN_MASK;
2255 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2256 	set_bit(MPTCP_DATA_READY, &msk->flags);
2257 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2258 
2259 	mptcp_close_wake_up(sk);
2260 }
2261 
2262 static void __mptcp_retrans(struct sock *sk)
2263 {
2264 	struct mptcp_sock *msk = mptcp_sk(sk);
2265 	struct mptcp_sendmsg_info info = {};
2266 	struct mptcp_data_frag *dfrag;
2267 	size_t copied = 0;
2268 	struct sock *ssk;
2269 	int ret;
2270 
2271 	mptcp_clean_una_wakeup(sk);
2272 	dfrag = mptcp_rtx_head(sk);
2273 	if (!dfrag) {
2274 		if (mptcp_data_fin_enabled(msk)) {
2275 			struct inet_connection_sock *icsk = inet_csk(sk);
2276 
2277 			icsk->icsk_retransmits++;
2278 			mptcp_set_datafin_timeout(sk);
2279 			mptcp_send_ack(msk);
2280 
2281 			goto reset_timer;
2282 		}
2283 
2284 		return;
2285 	}
2286 
2287 	ssk = mptcp_subflow_get_retrans(msk);
2288 	if (!ssk)
2289 		goto reset_timer;
2290 
2291 	lock_sock(ssk);
2292 
2293 	/* limit retransmission to the bytes already sent on some subflows */
2294 	info.sent = 0;
2295 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2296 	while (info.sent < info.limit) {
2297 		if (!mptcp_alloc_tx_skb(sk, ssk))
2298 			break;
2299 
2300 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2301 		if (ret <= 0)
2302 			break;
2303 
2304 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2305 		copied += ret;
2306 		info.sent += ret;
2307 	}
2308 	if (copied) {
2309 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2310 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2311 			 info.size_goal);
2312 	}
2313 
2314 	mptcp_set_timeout(sk, ssk);
2315 	release_sock(ssk);
2316 
2317 reset_timer:
2318 	if (!mptcp_timer_pending(sk))
2319 		mptcp_reset_timer(sk);
2320 }
2321 
2322 static void mptcp_worker(struct work_struct *work)
2323 {
2324 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2325 	struct sock *sk = &msk->sk.icsk_inet.sk;
2326 	int state;
2327 
2328 	lock_sock(sk);
2329 	state = sk->sk_state;
2330 	if (unlikely(state == TCP_CLOSE))
2331 		goto unlock;
2332 
2333 	mptcp_check_data_fin_ack(sk);
2334 	mptcp_flush_join_list(msk);
2335 
2336 	mptcp_check_fastclose(msk);
2337 
2338 	if (msk->pm.status)
2339 		mptcp_pm_nl_work(msk);
2340 
2341 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2342 		mptcp_check_for_eof(msk);
2343 
2344 	__mptcp_check_send_data_fin(sk);
2345 	mptcp_check_data_fin(sk);
2346 
2347 	/* There is no point in keeping around an orphaned sk timedout or
2348 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2349 	 * even if it is orphaned and in FIN_WAIT2 state
2350 	 */
2351 	if (sock_flag(sk, SOCK_DEAD) &&
2352 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2353 		inet_sk_state_store(sk, TCP_CLOSE);
2354 		__mptcp_destroy_sock(sk);
2355 		goto unlock;
2356 	}
2357 
2358 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2359 		__mptcp_close_subflow(msk);
2360 
2361 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2362 		__mptcp_retrans(sk);
2363 
2364 unlock:
2365 	release_sock(sk);
2366 	sock_put(sk);
2367 }
2368 
2369 static int __mptcp_init_sock(struct sock *sk)
2370 {
2371 	struct mptcp_sock *msk = mptcp_sk(sk);
2372 
2373 	spin_lock_init(&msk->join_list_lock);
2374 
2375 	INIT_LIST_HEAD(&msk->conn_list);
2376 	INIT_LIST_HEAD(&msk->join_list);
2377 	INIT_LIST_HEAD(&msk->rtx_queue);
2378 	INIT_WORK(&msk->work, mptcp_worker);
2379 	__skb_queue_head_init(&msk->receive_queue);
2380 	msk->out_of_order_queue = RB_ROOT;
2381 	msk->first_pending = NULL;
2382 	msk->wmem_reserved = 0;
2383 	msk->rmem_released = 0;
2384 	msk->tx_pending_data = 0;
2385 
2386 	msk->first = NULL;
2387 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2388 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2389 
2390 	mptcp_pm_data_init(msk);
2391 
2392 	/* re-use the csk retrans timer for MPTCP-level retrans */
2393 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2394 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2395 
2396 	return 0;
2397 }
2398 
2399 static int mptcp_init_sock(struct sock *sk)
2400 {
2401 	struct inet_connection_sock *icsk = inet_csk(sk);
2402 	struct net *net = sock_net(sk);
2403 	int ret;
2404 
2405 	ret = __mptcp_init_sock(sk);
2406 	if (ret)
2407 		return ret;
2408 
2409 	if (!mptcp_is_enabled(net))
2410 		return -ENOPROTOOPT;
2411 
2412 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2413 		return -ENOMEM;
2414 
2415 	ret = __mptcp_socket_create(mptcp_sk(sk));
2416 	if (ret)
2417 		return ret;
2418 
2419 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2420 	 * propagate the correct value
2421 	 */
2422 	tcp_assign_congestion_control(sk);
2423 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2424 
2425 	/* no need to keep a reference to the ops, the name will suffice */
2426 	tcp_cleanup_congestion_control(sk);
2427 	icsk->icsk_ca_ops = NULL;
2428 
2429 	sk_sockets_allocated_inc(sk);
2430 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2431 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2432 
2433 	return 0;
2434 }
2435 
2436 static void __mptcp_clear_xmit(struct sock *sk)
2437 {
2438 	struct mptcp_sock *msk = mptcp_sk(sk);
2439 	struct mptcp_data_frag *dtmp, *dfrag;
2440 
2441 	WRITE_ONCE(msk->first_pending, NULL);
2442 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2443 		dfrag_clear(sk, dfrag);
2444 }
2445 
2446 static void mptcp_cancel_work(struct sock *sk)
2447 {
2448 	struct mptcp_sock *msk = mptcp_sk(sk);
2449 
2450 	if (cancel_work_sync(&msk->work))
2451 		__sock_put(sk);
2452 }
2453 
2454 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2455 {
2456 	lock_sock(ssk);
2457 
2458 	switch (ssk->sk_state) {
2459 	case TCP_LISTEN:
2460 		if (!(how & RCV_SHUTDOWN))
2461 			break;
2462 		fallthrough;
2463 	case TCP_SYN_SENT:
2464 		tcp_disconnect(ssk, O_NONBLOCK);
2465 		break;
2466 	default:
2467 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2468 			pr_debug("Fallback");
2469 			ssk->sk_shutdown |= how;
2470 			tcp_shutdown(ssk, how);
2471 		} else {
2472 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2473 			mptcp_set_timeout(sk, ssk);
2474 			tcp_send_ack(ssk);
2475 			if (!mptcp_timer_pending(sk))
2476 				mptcp_reset_timer(sk);
2477 		}
2478 		break;
2479 	}
2480 
2481 	release_sock(ssk);
2482 }
2483 
2484 static const unsigned char new_state[16] = {
2485 	/* current state:     new state:      action:	*/
2486 	[0 /* (Invalid) */] = TCP_CLOSE,
2487 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2488 	[TCP_SYN_SENT]      = TCP_CLOSE,
2489 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2490 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2491 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2492 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2493 	[TCP_CLOSE]         = TCP_CLOSE,
2494 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2495 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2496 	[TCP_LISTEN]        = TCP_CLOSE,
2497 	[TCP_CLOSING]       = TCP_CLOSING,
2498 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2499 };
2500 
2501 static int mptcp_close_state(struct sock *sk)
2502 {
2503 	int next = (int)new_state[sk->sk_state];
2504 	int ns = next & TCP_STATE_MASK;
2505 
2506 	inet_sk_state_store(sk, ns);
2507 
2508 	return next & TCP_ACTION_FIN;
2509 }
2510 
2511 static void __mptcp_check_send_data_fin(struct sock *sk)
2512 {
2513 	struct mptcp_subflow_context *subflow;
2514 	struct mptcp_sock *msk = mptcp_sk(sk);
2515 
2516 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2517 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2518 		 msk->snd_nxt, msk->write_seq);
2519 
2520 	/* we still need to enqueue subflows or not really shutting down,
2521 	 * skip this
2522 	 */
2523 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2524 	    mptcp_send_head(sk))
2525 		return;
2526 
2527 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2528 
2529 	/* fallback socket will not get data_fin/ack, can move to the next
2530 	 * state now
2531 	 */
2532 	if (__mptcp_check_fallback(msk)) {
2533 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2534 			inet_sk_state_store(sk, TCP_CLOSE);
2535 			mptcp_close_wake_up(sk);
2536 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2537 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2538 		}
2539 	}
2540 
2541 	mptcp_flush_join_list(msk);
2542 	mptcp_for_each_subflow(msk, subflow) {
2543 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2544 
2545 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2546 	}
2547 }
2548 
2549 static void __mptcp_wr_shutdown(struct sock *sk)
2550 {
2551 	struct mptcp_sock *msk = mptcp_sk(sk);
2552 
2553 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2554 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2555 		 !!mptcp_send_head(sk));
2556 
2557 	/* will be ignored by fallback sockets */
2558 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2559 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2560 
2561 	__mptcp_check_send_data_fin(sk);
2562 }
2563 
2564 static void __mptcp_destroy_sock(struct sock *sk)
2565 {
2566 	struct mptcp_subflow_context *subflow, *tmp;
2567 	struct mptcp_sock *msk = mptcp_sk(sk);
2568 	LIST_HEAD(conn_list);
2569 
2570 	pr_debug("msk=%p", msk);
2571 
2572 	might_sleep();
2573 
2574 	/* be sure to always acquire the join list lock, to sync vs
2575 	 * mptcp_finish_join().
2576 	 */
2577 	spin_lock_bh(&msk->join_list_lock);
2578 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2579 	spin_unlock_bh(&msk->join_list_lock);
2580 	list_splice_init(&msk->conn_list, &conn_list);
2581 
2582 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2583 	sk_stop_timer(sk, &sk->sk_timer);
2584 	msk->pm.status = 0;
2585 
2586 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2587 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2588 		__mptcp_close_ssk(sk, ssk, subflow);
2589 	}
2590 
2591 	sk->sk_prot->destroy(sk);
2592 
2593 	WARN_ON_ONCE(msk->wmem_reserved);
2594 	WARN_ON_ONCE(msk->rmem_released);
2595 	sk_stream_kill_queues(sk);
2596 	xfrm_sk_free_policy(sk);
2597 
2598 	sk_refcnt_debug_release(sk);
2599 	mptcp_dispose_initial_subflow(msk);
2600 	sock_put(sk);
2601 }
2602 
2603 static void mptcp_close(struct sock *sk, long timeout)
2604 {
2605 	struct mptcp_subflow_context *subflow;
2606 	bool do_cancel_work = false;
2607 
2608 	lock_sock(sk);
2609 	sk->sk_shutdown = SHUTDOWN_MASK;
2610 
2611 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2612 		inet_sk_state_store(sk, TCP_CLOSE);
2613 		goto cleanup;
2614 	}
2615 
2616 	if (mptcp_close_state(sk))
2617 		__mptcp_wr_shutdown(sk);
2618 
2619 	sk_stream_wait_close(sk, timeout);
2620 
2621 cleanup:
2622 	/* orphan all the subflows */
2623 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2624 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2625 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2626 		bool slow = lock_sock_fast(ssk);
2627 
2628 		sock_orphan(ssk);
2629 		unlock_sock_fast(ssk, slow);
2630 	}
2631 	sock_orphan(sk);
2632 
2633 	sock_hold(sk);
2634 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2635 	if (sk->sk_state == TCP_CLOSE) {
2636 		__mptcp_destroy_sock(sk);
2637 		do_cancel_work = true;
2638 	} else {
2639 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2640 	}
2641 	release_sock(sk);
2642 	if (do_cancel_work)
2643 		mptcp_cancel_work(sk);
2644 
2645 	if (mptcp_sk(sk)->token)
2646 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2647 
2648 	sock_put(sk);
2649 }
2650 
2651 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2652 {
2653 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2654 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2655 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2656 
2657 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2658 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2659 
2660 	if (msk6 && ssk6) {
2661 		msk6->saddr = ssk6->saddr;
2662 		msk6->flow_label = ssk6->flow_label;
2663 	}
2664 #endif
2665 
2666 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2667 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2668 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2669 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2670 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2671 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2672 }
2673 
2674 static int mptcp_disconnect(struct sock *sk, int flags)
2675 {
2676 	struct mptcp_subflow_context *subflow;
2677 	struct mptcp_sock *msk = mptcp_sk(sk);
2678 
2679 	mptcp_do_flush_join_list(msk);
2680 
2681 	mptcp_for_each_subflow(msk, subflow) {
2682 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2683 
2684 		lock_sock(ssk);
2685 		tcp_disconnect(ssk, flags);
2686 		release_sock(ssk);
2687 	}
2688 	return 0;
2689 }
2690 
2691 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2692 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2693 {
2694 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2695 
2696 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2697 }
2698 #endif
2699 
2700 struct sock *mptcp_sk_clone(const struct sock *sk,
2701 			    const struct mptcp_options_received *mp_opt,
2702 			    struct request_sock *req)
2703 {
2704 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2705 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2706 	struct mptcp_sock *msk;
2707 	u64 ack_seq;
2708 
2709 	if (!nsk)
2710 		return NULL;
2711 
2712 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2713 	if (nsk->sk_family == AF_INET6)
2714 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2715 #endif
2716 
2717 	__mptcp_init_sock(nsk);
2718 
2719 	msk = mptcp_sk(nsk);
2720 	msk->local_key = subflow_req->local_key;
2721 	msk->token = subflow_req->token;
2722 	msk->subflow = NULL;
2723 	WRITE_ONCE(msk->fully_established, false);
2724 	if (mp_opt->csum_reqd)
2725 		WRITE_ONCE(msk->csum_enabled, true);
2726 
2727 	msk->write_seq = subflow_req->idsn + 1;
2728 	msk->snd_nxt = msk->write_seq;
2729 	msk->snd_una = msk->write_seq;
2730 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2731 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2732 
2733 	if (mp_opt->mp_capable) {
2734 		msk->can_ack = true;
2735 		msk->remote_key = mp_opt->sndr_key;
2736 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2737 		ack_seq++;
2738 		WRITE_ONCE(msk->ack_seq, ack_seq);
2739 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2740 	}
2741 
2742 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2743 	/* will be fully established after successful MPC subflow creation */
2744 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2745 
2746 	security_inet_csk_clone(nsk, req);
2747 	bh_unlock_sock(nsk);
2748 
2749 	/* keep a single reference */
2750 	__sock_put(nsk);
2751 	return nsk;
2752 }
2753 
2754 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2755 {
2756 	const struct tcp_sock *tp = tcp_sk(ssk);
2757 
2758 	msk->rcvq_space.copied = 0;
2759 	msk->rcvq_space.rtt_us = 0;
2760 
2761 	msk->rcvq_space.time = tp->tcp_mstamp;
2762 
2763 	/* initial rcv_space offering made to peer */
2764 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2765 				      TCP_INIT_CWND * tp->advmss);
2766 	if (msk->rcvq_space.space == 0)
2767 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2768 
2769 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2770 }
2771 
2772 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2773 				 bool kern)
2774 {
2775 	struct mptcp_sock *msk = mptcp_sk(sk);
2776 	struct socket *listener;
2777 	struct sock *newsk;
2778 
2779 	listener = __mptcp_nmpc_socket(msk);
2780 	if (WARN_ON_ONCE(!listener)) {
2781 		*err = -EINVAL;
2782 		return NULL;
2783 	}
2784 
2785 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2786 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2787 	if (!newsk)
2788 		return NULL;
2789 
2790 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2791 	if (sk_is_mptcp(newsk)) {
2792 		struct mptcp_subflow_context *subflow;
2793 		struct sock *new_mptcp_sock;
2794 
2795 		subflow = mptcp_subflow_ctx(newsk);
2796 		new_mptcp_sock = subflow->conn;
2797 
2798 		/* is_mptcp should be false if subflow->conn is missing, see
2799 		 * subflow_syn_recv_sock()
2800 		 */
2801 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2802 			tcp_sk(newsk)->is_mptcp = 0;
2803 			return newsk;
2804 		}
2805 
2806 		/* acquire the 2nd reference for the owning socket */
2807 		sock_hold(new_mptcp_sock);
2808 		newsk = new_mptcp_sock;
2809 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2810 	} else {
2811 		MPTCP_INC_STATS(sock_net(sk),
2812 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2813 	}
2814 
2815 	return newsk;
2816 }
2817 
2818 void mptcp_destroy_common(struct mptcp_sock *msk)
2819 {
2820 	struct sock *sk = (struct sock *)msk;
2821 
2822 	__mptcp_clear_xmit(sk);
2823 
2824 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2825 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2826 
2827 	skb_rbtree_purge(&msk->out_of_order_queue);
2828 	mptcp_token_destroy(msk);
2829 	mptcp_pm_free_anno_list(msk);
2830 }
2831 
2832 static void mptcp_destroy(struct sock *sk)
2833 {
2834 	struct mptcp_sock *msk = mptcp_sk(sk);
2835 
2836 	mptcp_destroy_common(msk);
2837 	sk_sockets_allocated_dec(sk);
2838 }
2839 
2840 void __mptcp_data_acked(struct sock *sk)
2841 {
2842 	if (!sock_owned_by_user(sk))
2843 		__mptcp_clean_una(sk);
2844 	else
2845 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2846 
2847 	if (mptcp_pending_data_fin_ack(sk))
2848 		mptcp_schedule_work(sk);
2849 }
2850 
2851 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2852 {
2853 	if (!mptcp_send_head(sk))
2854 		return;
2855 
2856 	if (!sock_owned_by_user(sk)) {
2857 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2858 
2859 		if (xmit_ssk == ssk)
2860 			__mptcp_subflow_push_pending(sk, ssk);
2861 		else if (xmit_ssk)
2862 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2863 	} else {
2864 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2865 	}
2866 }
2867 
2868 /* processes deferred events and flush wmem */
2869 static void mptcp_release_cb(struct sock *sk)
2870 {
2871 	for (;;) {
2872 		unsigned long flags = 0;
2873 
2874 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2875 			flags |= BIT(MPTCP_PUSH_PENDING);
2876 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2877 			flags |= BIT(MPTCP_RETRANSMIT);
2878 		if (!flags)
2879 			break;
2880 
2881 		/* the following actions acquire the subflow socket lock
2882 		 *
2883 		 * 1) can't be invoked in atomic scope
2884 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
2885 		 *    datapath acquires the msk socket spinlock while helding
2886 		 *    the subflow socket lock
2887 		 */
2888 
2889 		spin_unlock_bh(&sk->sk_lock.slock);
2890 		if (flags & BIT(MPTCP_PUSH_PENDING))
2891 			__mptcp_push_pending(sk, 0);
2892 		if (flags & BIT(MPTCP_RETRANSMIT))
2893 			__mptcp_retrans(sk);
2894 
2895 		cond_resched();
2896 		spin_lock_bh(&sk->sk_lock.slock);
2897 	}
2898 
2899 	/* be sure to set the current sk state before tacking actions
2900 	 * depending on sk_state
2901 	 */
2902 	if (test_and_clear_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->flags))
2903 		__mptcp_set_connected(sk);
2904 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
2905 		__mptcp_clean_una_wakeup(sk);
2906 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
2907 		__mptcp_error_report(sk);
2908 
2909 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
2910 	 * later
2911 	 */
2912 	__mptcp_update_wmem(sk);
2913 	__mptcp_update_rmem(sk);
2914 }
2915 
2916 void mptcp_subflow_process_delegated(struct sock *ssk)
2917 {
2918 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
2919 	struct sock *sk = subflow->conn;
2920 
2921 	mptcp_data_lock(sk);
2922 	if (!sock_owned_by_user(sk))
2923 		__mptcp_subflow_push_pending(sk, ssk);
2924 	else
2925 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2926 	mptcp_data_unlock(sk);
2927 	mptcp_subflow_delegated_done(subflow);
2928 }
2929 
2930 static int mptcp_hash(struct sock *sk)
2931 {
2932 	/* should never be called,
2933 	 * we hash the TCP subflows not the master socket
2934 	 */
2935 	WARN_ON_ONCE(1);
2936 	return 0;
2937 }
2938 
2939 static void mptcp_unhash(struct sock *sk)
2940 {
2941 	/* called from sk_common_release(), but nothing to do here */
2942 }
2943 
2944 static int mptcp_get_port(struct sock *sk, unsigned short snum)
2945 {
2946 	struct mptcp_sock *msk = mptcp_sk(sk);
2947 	struct socket *ssock;
2948 
2949 	ssock = __mptcp_nmpc_socket(msk);
2950 	pr_debug("msk=%p, subflow=%p", msk, ssock);
2951 	if (WARN_ON_ONCE(!ssock))
2952 		return -EINVAL;
2953 
2954 	return inet_csk_get_port(ssock->sk, snum);
2955 }
2956 
2957 void mptcp_finish_connect(struct sock *ssk)
2958 {
2959 	struct mptcp_subflow_context *subflow;
2960 	struct mptcp_sock *msk;
2961 	struct sock *sk;
2962 	u64 ack_seq;
2963 
2964 	subflow = mptcp_subflow_ctx(ssk);
2965 	sk = subflow->conn;
2966 	msk = mptcp_sk(sk);
2967 
2968 	pr_debug("msk=%p, token=%u", sk, subflow->token);
2969 
2970 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
2971 	ack_seq++;
2972 	subflow->map_seq = ack_seq;
2973 	subflow->map_subflow_seq = 1;
2974 
2975 	/* the socket is not connected yet, no msk/subflow ops can access/race
2976 	 * accessing the field below
2977 	 */
2978 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
2979 	WRITE_ONCE(msk->local_key, subflow->local_key);
2980 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
2981 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2982 	WRITE_ONCE(msk->ack_seq, ack_seq);
2983 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2984 	WRITE_ONCE(msk->can_ack, 1);
2985 	WRITE_ONCE(msk->snd_una, msk->write_seq);
2986 
2987 	mptcp_pm_new_connection(msk, ssk, 0);
2988 
2989 	mptcp_rcv_space_init(msk, ssk);
2990 }
2991 
2992 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
2993 {
2994 	write_lock_bh(&sk->sk_callback_lock);
2995 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2996 	sk_set_socket(sk, parent);
2997 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2998 	write_unlock_bh(&sk->sk_callback_lock);
2999 }
3000 
3001 bool mptcp_finish_join(struct sock *ssk)
3002 {
3003 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3004 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3005 	struct sock *parent = (void *)msk;
3006 	struct socket *parent_sock;
3007 	bool ret;
3008 
3009 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3010 
3011 	/* mptcp socket already closing? */
3012 	if (!mptcp_is_fully_established(parent)) {
3013 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3014 		return false;
3015 	}
3016 
3017 	if (!msk->pm.server_side)
3018 		goto out;
3019 
3020 	if (!mptcp_pm_allow_new_subflow(msk)) {
3021 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3022 		return false;
3023 	}
3024 
3025 	/* active connections are already on conn_list, and we can't acquire
3026 	 * msk lock here.
3027 	 * use the join list lock as synchronization point and double-check
3028 	 * msk status to avoid racing with __mptcp_destroy_sock()
3029 	 */
3030 	spin_lock_bh(&msk->join_list_lock);
3031 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3032 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3033 		list_add_tail(&subflow->node, &msk->join_list);
3034 		sock_hold(ssk);
3035 	}
3036 	spin_unlock_bh(&msk->join_list_lock);
3037 	if (!ret) {
3038 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3039 		return false;
3040 	}
3041 
3042 	/* attach to msk socket only after we are sure he will deal with us
3043 	 * at close time
3044 	 */
3045 	parent_sock = READ_ONCE(parent->sk_socket);
3046 	if (parent_sock && !ssk->sk_socket)
3047 		mptcp_sock_graft(ssk, parent_sock);
3048 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3049 out:
3050 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3051 	return true;
3052 }
3053 
3054 static void mptcp_shutdown(struct sock *sk, int how)
3055 {
3056 	pr_debug("sk=%p, how=%d", sk, how);
3057 
3058 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3059 		__mptcp_wr_shutdown(sk);
3060 }
3061 
3062 static struct proto mptcp_prot = {
3063 	.name		= "MPTCP",
3064 	.owner		= THIS_MODULE,
3065 	.init		= mptcp_init_sock,
3066 	.disconnect	= mptcp_disconnect,
3067 	.close		= mptcp_close,
3068 	.accept		= mptcp_accept,
3069 	.setsockopt	= mptcp_setsockopt,
3070 	.getsockopt	= mptcp_getsockopt,
3071 	.shutdown	= mptcp_shutdown,
3072 	.destroy	= mptcp_destroy,
3073 	.sendmsg	= mptcp_sendmsg,
3074 	.recvmsg	= mptcp_recvmsg,
3075 	.release_cb	= mptcp_release_cb,
3076 	.hash		= mptcp_hash,
3077 	.unhash		= mptcp_unhash,
3078 	.get_port	= mptcp_get_port,
3079 	.sockets_allocated	= &mptcp_sockets_allocated,
3080 	.memory_allocated	= &tcp_memory_allocated,
3081 	.memory_pressure	= &tcp_memory_pressure,
3082 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3083 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3084 	.sysctl_mem	= sysctl_tcp_mem,
3085 	.obj_size	= sizeof(struct mptcp_sock),
3086 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3087 	.no_autobind	= true,
3088 };
3089 
3090 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3091 {
3092 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3093 	struct socket *ssock;
3094 	int err;
3095 
3096 	lock_sock(sock->sk);
3097 	ssock = __mptcp_nmpc_socket(msk);
3098 	if (!ssock) {
3099 		err = -EINVAL;
3100 		goto unlock;
3101 	}
3102 
3103 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3104 	if (!err)
3105 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3106 
3107 unlock:
3108 	release_sock(sock->sk);
3109 	return err;
3110 }
3111 
3112 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3113 					 struct mptcp_subflow_context *subflow)
3114 {
3115 	subflow->request_mptcp = 0;
3116 	__mptcp_do_fallback(msk);
3117 }
3118 
3119 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3120 				int addr_len, int flags)
3121 {
3122 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3123 	struct mptcp_subflow_context *subflow;
3124 	struct socket *ssock;
3125 	int err;
3126 
3127 	lock_sock(sock->sk);
3128 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3129 		/* pending connection or invalid state, let existing subflow
3130 		 * cope with that
3131 		 */
3132 		ssock = msk->subflow;
3133 		goto do_connect;
3134 	}
3135 
3136 	ssock = __mptcp_nmpc_socket(msk);
3137 	if (!ssock) {
3138 		err = -EINVAL;
3139 		goto unlock;
3140 	}
3141 
3142 	mptcp_token_destroy(msk);
3143 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3144 	subflow = mptcp_subflow_ctx(ssock->sk);
3145 #ifdef CONFIG_TCP_MD5SIG
3146 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3147 	 * TCP option space.
3148 	 */
3149 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3150 		mptcp_subflow_early_fallback(msk, subflow);
3151 #endif
3152 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3153 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3154 		mptcp_subflow_early_fallback(msk, subflow);
3155 	}
3156 	if (likely(!__mptcp_check_fallback(msk)))
3157 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3158 
3159 do_connect:
3160 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3161 	sock->state = ssock->state;
3162 
3163 	/* on successful connect, the msk state will be moved to established by
3164 	 * subflow_finish_connect()
3165 	 */
3166 	if (!err || err == -EINPROGRESS)
3167 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3168 	else
3169 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3170 
3171 unlock:
3172 	release_sock(sock->sk);
3173 	return err;
3174 }
3175 
3176 static int mptcp_listen(struct socket *sock, int backlog)
3177 {
3178 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3179 	struct socket *ssock;
3180 	int err;
3181 
3182 	pr_debug("msk=%p", msk);
3183 
3184 	lock_sock(sock->sk);
3185 	ssock = __mptcp_nmpc_socket(msk);
3186 	if (!ssock) {
3187 		err = -EINVAL;
3188 		goto unlock;
3189 	}
3190 
3191 	mptcp_token_destroy(msk);
3192 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3193 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3194 
3195 	err = ssock->ops->listen(ssock, backlog);
3196 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3197 	if (!err)
3198 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3199 
3200 unlock:
3201 	release_sock(sock->sk);
3202 	return err;
3203 }
3204 
3205 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3206 			       int flags, bool kern)
3207 {
3208 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3209 	struct socket *ssock;
3210 	int err;
3211 
3212 	pr_debug("msk=%p", msk);
3213 
3214 	lock_sock(sock->sk);
3215 	if (sock->sk->sk_state != TCP_LISTEN)
3216 		goto unlock_fail;
3217 
3218 	ssock = __mptcp_nmpc_socket(msk);
3219 	if (!ssock)
3220 		goto unlock_fail;
3221 
3222 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3223 	sock_hold(ssock->sk);
3224 	release_sock(sock->sk);
3225 
3226 	err = ssock->ops->accept(sock, newsock, flags, kern);
3227 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3228 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3229 		struct mptcp_subflow_context *subflow;
3230 		struct sock *newsk = newsock->sk;
3231 
3232 		lock_sock(newsk);
3233 
3234 		/* PM/worker can now acquire the first subflow socket
3235 		 * lock without racing with listener queue cleanup,
3236 		 * we can notify it, if needed.
3237 		 *
3238 		 * Even if remote has reset the initial subflow by now
3239 		 * the refcnt is still at least one.
3240 		 */
3241 		subflow = mptcp_subflow_ctx(msk->first);
3242 		list_add(&subflow->node, &msk->conn_list);
3243 		sock_hold(msk->first);
3244 		if (mptcp_is_fully_established(newsk))
3245 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3246 
3247 		mptcp_copy_inaddrs(newsk, msk->first);
3248 		mptcp_rcv_space_init(msk, msk->first);
3249 		mptcp_propagate_sndbuf(newsk, msk->first);
3250 
3251 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3252 		 * This is needed so NOSPACE flag can be set from tcp stack.
3253 		 */
3254 		mptcp_flush_join_list(msk);
3255 		mptcp_for_each_subflow(msk, subflow) {
3256 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3257 
3258 			if (!ssk->sk_socket)
3259 				mptcp_sock_graft(ssk, newsock);
3260 		}
3261 		release_sock(newsk);
3262 	}
3263 
3264 	if (inet_csk_listen_poll(ssock->sk))
3265 		set_bit(MPTCP_DATA_READY, &msk->flags);
3266 	sock_put(ssock->sk);
3267 	return err;
3268 
3269 unlock_fail:
3270 	release_sock(sock->sk);
3271 	return -EINVAL;
3272 }
3273 
3274 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3275 {
3276 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3277 	       0;
3278 }
3279 
3280 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3281 {
3282 	struct sock *sk = (struct sock *)msk;
3283 
3284 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3285 		return EPOLLOUT | EPOLLWRNORM;
3286 
3287 	if (sk_stream_is_writeable(sk))
3288 		return EPOLLOUT | EPOLLWRNORM;
3289 
3290 	mptcp_set_nospace(sk);
3291 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3292 	if (sk_stream_is_writeable(sk))
3293 		return EPOLLOUT | EPOLLWRNORM;
3294 
3295 	return 0;
3296 }
3297 
3298 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3299 			   struct poll_table_struct *wait)
3300 {
3301 	struct sock *sk = sock->sk;
3302 	struct mptcp_sock *msk;
3303 	__poll_t mask = 0;
3304 	int state;
3305 
3306 	msk = mptcp_sk(sk);
3307 	sock_poll_wait(file, sock, wait);
3308 
3309 	state = inet_sk_state_load(sk);
3310 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3311 	if (state == TCP_LISTEN)
3312 		return mptcp_check_readable(msk);
3313 
3314 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3315 		mask |= mptcp_check_readable(msk);
3316 		mask |= mptcp_check_writeable(msk);
3317 	}
3318 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3319 		mask |= EPOLLHUP;
3320 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3321 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3322 
3323 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3324 	smp_rmb();
3325 	if (sk->sk_err)
3326 		mask |= EPOLLERR;
3327 
3328 	return mask;
3329 }
3330 
3331 static const struct proto_ops mptcp_stream_ops = {
3332 	.family		   = PF_INET,
3333 	.owner		   = THIS_MODULE,
3334 	.release	   = inet_release,
3335 	.bind		   = mptcp_bind,
3336 	.connect	   = mptcp_stream_connect,
3337 	.socketpair	   = sock_no_socketpair,
3338 	.accept		   = mptcp_stream_accept,
3339 	.getname	   = inet_getname,
3340 	.poll		   = mptcp_poll,
3341 	.ioctl		   = inet_ioctl,
3342 	.gettstamp	   = sock_gettstamp,
3343 	.listen		   = mptcp_listen,
3344 	.shutdown	   = inet_shutdown,
3345 	.setsockopt	   = sock_common_setsockopt,
3346 	.getsockopt	   = sock_common_getsockopt,
3347 	.sendmsg	   = inet_sendmsg,
3348 	.recvmsg	   = inet_recvmsg,
3349 	.mmap		   = sock_no_mmap,
3350 	.sendpage	   = inet_sendpage,
3351 };
3352 
3353 static struct inet_protosw mptcp_protosw = {
3354 	.type		= SOCK_STREAM,
3355 	.protocol	= IPPROTO_MPTCP,
3356 	.prot		= &mptcp_prot,
3357 	.ops		= &mptcp_stream_ops,
3358 	.flags		= INET_PROTOSW_ICSK,
3359 };
3360 
3361 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3362 {
3363 	struct mptcp_delegated_action *delegated;
3364 	struct mptcp_subflow_context *subflow;
3365 	int work_done = 0;
3366 
3367 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3368 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3369 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3370 
3371 		bh_lock_sock_nested(ssk);
3372 		if (!sock_owned_by_user(ssk) &&
3373 		    mptcp_subflow_has_delegated_action(subflow))
3374 			mptcp_subflow_process_delegated(ssk);
3375 		/* ... elsewhere tcp_release_cb_override already processed
3376 		 * the action or will do at next release_sock().
3377 		 * In both case must dequeue the subflow here - on the same
3378 		 * CPU that scheduled it.
3379 		 */
3380 		bh_unlock_sock(ssk);
3381 		sock_put(ssk);
3382 
3383 		if (++work_done == budget)
3384 			return budget;
3385 	}
3386 
3387 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3388 	 * will not try accessing the NULL napi->dev ptr
3389 	 */
3390 	napi_complete_done(napi, 0);
3391 	return work_done;
3392 }
3393 
3394 void __init mptcp_proto_init(void)
3395 {
3396 	struct mptcp_delegated_action *delegated;
3397 	int cpu;
3398 
3399 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3400 
3401 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3402 		panic("Failed to allocate MPTCP pcpu counter\n");
3403 
3404 	init_dummy_netdev(&mptcp_napi_dev);
3405 	for_each_possible_cpu(cpu) {
3406 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3407 		INIT_LIST_HEAD(&delegated->head);
3408 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3409 				  NAPI_POLL_WEIGHT);
3410 		napi_enable(&delegated->napi);
3411 	}
3412 
3413 	mptcp_subflow_init();
3414 	mptcp_pm_init();
3415 	mptcp_token_init();
3416 
3417 	if (proto_register(&mptcp_prot, 1) != 0)
3418 		panic("Failed to register MPTCP proto.\n");
3419 
3420 	inet_register_protosw(&mptcp_protosw);
3421 
3422 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3423 }
3424 
3425 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3426 static const struct proto_ops mptcp_v6_stream_ops = {
3427 	.family		   = PF_INET6,
3428 	.owner		   = THIS_MODULE,
3429 	.release	   = inet6_release,
3430 	.bind		   = mptcp_bind,
3431 	.connect	   = mptcp_stream_connect,
3432 	.socketpair	   = sock_no_socketpair,
3433 	.accept		   = mptcp_stream_accept,
3434 	.getname	   = inet6_getname,
3435 	.poll		   = mptcp_poll,
3436 	.ioctl		   = inet6_ioctl,
3437 	.gettstamp	   = sock_gettstamp,
3438 	.listen		   = mptcp_listen,
3439 	.shutdown	   = inet_shutdown,
3440 	.setsockopt	   = sock_common_setsockopt,
3441 	.getsockopt	   = sock_common_getsockopt,
3442 	.sendmsg	   = inet6_sendmsg,
3443 	.recvmsg	   = inet6_recvmsg,
3444 	.mmap		   = sock_no_mmap,
3445 	.sendpage	   = inet_sendpage,
3446 #ifdef CONFIG_COMPAT
3447 	.compat_ioctl	   = inet6_compat_ioctl,
3448 #endif
3449 };
3450 
3451 static struct proto mptcp_v6_prot;
3452 
3453 static void mptcp_v6_destroy(struct sock *sk)
3454 {
3455 	mptcp_destroy(sk);
3456 	inet6_destroy_sock(sk);
3457 }
3458 
3459 static struct inet_protosw mptcp_v6_protosw = {
3460 	.type		= SOCK_STREAM,
3461 	.protocol	= IPPROTO_MPTCP,
3462 	.prot		= &mptcp_v6_prot,
3463 	.ops		= &mptcp_v6_stream_ops,
3464 	.flags		= INET_PROTOSW_ICSK,
3465 };
3466 
3467 int __init mptcp_proto_v6_init(void)
3468 {
3469 	int err;
3470 
3471 	mptcp_v6_prot = mptcp_prot;
3472 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3473 	mptcp_v6_prot.slab = NULL;
3474 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3475 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3476 
3477 	err = proto_register(&mptcp_v6_prot, 1);
3478 	if (err)
3479 		return err;
3480 
3481 	err = inet6_register_protosw(&mptcp_v6_protosw);
3482 	if (err)
3483 		proto_unregister(&mptcp_v6_prot);
3484 
3485 	return err;
3486 }
3487 #endif
3488