xref: /linux/net/mptcp/protocol.c (revision 385ef48f468696d6d172eb367656a3466fa0408d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	subflow->local_id_valid = 1;
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 	}
111 
112 	return msk->first;
113 }
114 
115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
116 {
117 	sk_drops_add(sk, skb);
118 	__kfree_skb(skb);
119 }
120 
121 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
122 {
123 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
124 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
125 }
126 
127 static void mptcp_rmem_charge(struct sock *sk, int size)
128 {
129 	mptcp_rmem_fwd_alloc_add(sk, -size);
130 }
131 
132 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
133 			       struct sk_buff *from)
134 {
135 	bool fragstolen;
136 	int delta;
137 
138 	if (MPTCP_SKB_CB(from)->offset ||
139 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
140 		return false;
141 
142 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
143 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
144 		 to->len, MPTCP_SKB_CB(from)->end_seq);
145 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
146 
147 	/* note the fwd memory can reach a negative value after accounting
148 	 * for the delta, but the later skb free will restore a non
149 	 * negative one
150 	 */
151 	atomic_add(delta, &sk->sk_rmem_alloc);
152 	mptcp_rmem_charge(sk, delta);
153 	kfree_skb_partial(from, fragstolen);
154 
155 	return true;
156 }
157 
158 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
159 				   struct sk_buff *from)
160 {
161 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
162 		return false;
163 
164 	return mptcp_try_coalesce((struct sock *)msk, to, from);
165 }
166 
167 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
168 {
169 	amount >>= PAGE_SHIFT;
170 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
171 	__sk_mem_reduce_allocated(sk, amount);
172 }
173 
174 static void mptcp_rmem_uncharge(struct sock *sk, int size)
175 {
176 	struct mptcp_sock *msk = mptcp_sk(sk);
177 	int reclaimable;
178 
179 	mptcp_rmem_fwd_alloc_add(sk, size);
180 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
181 
182 	/* see sk_mem_uncharge() for the rationale behind the following schema */
183 	if (unlikely(reclaimable >= PAGE_SIZE))
184 		__mptcp_rmem_reclaim(sk, reclaimable);
185 }
186 
187 static void mptcp_rfree(struct sk_buff *skb)
188 {
189 	unsigned int len = skb->truesize;
190 	struct sock *sk = skb->sk;
191 
192 	atomic_sub(len, &sk->sk_rmem_alloc);
193 	mptcp_rmem_uncharge(sk, len);
194 }
195 
196 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
197 {
198 	skb_orphan(skb);
199 	skb->sk = sk;
200 	skb->destructor = mptcp_rfree;
201 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
202 	mptcp_rmem_charge(sk, skb->truesize);
203 }
204 
205 /* "inspired" by tcp_data_queue_ofo(), main differences:
206  * - use mptcp seqs
207  * - don't cope with sacks
208  */
209 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
210 {
211 	struct sock *sk = (struct sock *)msk;
212 	struct rb_node **p, *parent;
213 	u64 seq, end_seq, max_seq;
214 	struct sk_buff *skb1;
215 
216 	seq = MPTCP_SKB_CB(skb)->map_seq;
217 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
218 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
219 
220 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
221 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
222 	if (after64(end_seq, max_seq)) {
223 		/* out of window */
224 		mptcp_drop(sk, skb);
225 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
226 			 (unsigned long long)end_seq - (unsigned long)max_seq,
227 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
228 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
229 		return;
230 	}
231 
232 	p = &msk->out_of_order_queue.rb_node;
233 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
234 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
235 		rb_link_node(&skb->rbnode, NULL, p);
236 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
237 		msk->ooo_last_skb = skb;
238 		goto end;
239 	}
240 
241 	/* with 2 subflows, adding at end of ooo queue is quite likely
242 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
243 	 */
244 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
247 		return;
248 	}
249 
250 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
251 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
252 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
253 		parent = &msk->ooo_last_skb->rbnode;
254 		p = &parent->rb_right;
255 		goto insert;
256 	}
257 
258 	/* Find place to insert this segment. Handle overlaps on the way. */
259 	parent = NULL;
260 	while (*p) {
261 		parent = *p;
262 		skb1 = rb_to_skb(parent);
263 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
264 			p = &parent->rb_left;
265 			continue;
266 		}
267 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
268 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 				/* All the bits are present. Drop. */
270 				mptcp_drop(sk, skb);
271 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
272 				return;
273 			}
274 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
275 				/* partial overlap:
276 				 *     |     skb      |
277 				 *  |     skb1    |
278 				 * continue traversing
279 				 */
280 			} else {
281 				/* skb's seq == skb1's seq and skb covers skb1.
282 				 * Replace skb1 with skb.
283 				 */
284 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
285 						&msk->out_of_order_queue);
286 				mptcp_drop(sk, skb1);
287 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 				goto merge_right;
289 			}
290 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
291 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
292 			return;
293 		}
294 		p = &parent->rb_right;
295 	}
296 
297 insert:
298 	/* Insert segment into RB tree. */
299 	rb_link_node(&skb->rbnode, parent, p);
300 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
301 
302 merge_right:
303 	/* Remove other segments covered by skb. */
304 	while ((skb1 = skb_rb_next(skb)) != NULL) {
305 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
306 			break;
307 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
308 		mptcp_drop(sk, skb1);
309 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
310 	}
311 	/* If there is no skb after us, we are the last_skb ! */
312 	if (!skb1)
313 		msk->ooo_last_skb = skb;
314 
315 end:
316 	skb_condense(skb);
317 	mptcp_set_owner_r(skb, sk);
318 }
319 
320 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
321 {
322 	struct mptcp_sock *msk = mptcp_sk(sk);
323 	int amt, amount;
324 
325 	if (size <= msk->rmem_fwd_alloc)
326 		return true;
327 
328 	size -= msk->rmem_fwd_alloc;
329 	amt = sk_mem_pages(size);
330 	amount = amt << PAGE_SHIFT;
331 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
332 		return false;
333 
334 	mptcp_rmem_fwd_alloc_add(sk, amount);
335 	return true;
336 }
337 
338 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
339 			     struct sk_buff *skb, unsigned int offset,
340 			     size_t copy_len)
341 {
342 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
343 	struct sock *sk = (struct sock *)msk;
344 	struct sk_buff *tail;
345 	bool has_rxtstamp;
346 
347 	__skb_unlink(skb, &ssk->sk_receive_queue);
348 
349 	skb_ext_reset(skb);
350 	skb_orphan(skb);
351 
352 	/* try to fetch required memory from subflow */
353 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
354 		goto drop;
355 
356 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
357 
358 	/* the skb map_seq accounts for the skb offset:
359 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
360 	 * value
361 	 */
362 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
363 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
364 	MPTCP_SKB_CB(skb)->offset = offset;
365 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
366 
367 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
368 		/* in sequence */
369 		msk->bytes_received += copy_len;
370 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
371 		tail = skb_peek_tail(&sk->sk_receive_queue);
372 		if (tail && mptcp_try_coalesce(sk, tail, skb))
373 			return true;
374 
375 		mptcp_set_owner_r(skb, sk);
376 		__skb_queue_tail(&sk->sk_receive_queue, skb);
377 		return true;
378 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
379 		mptcp_data_queue_ofo(msk, skb);
380 		return false;
381 	}
382 
383 	/* old data, keep it simple and drop the whole pkt, sender
384 	 * will retransmit as needed, if needed.
385 	 */
386 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
387 drop:
388 	mptcp_drop(sk, skb);
389 	return false;
390 }
391 
392 static void mptcp_stop_rtx_timer(struct sock *sk)
393 {
394 	struct inet_connection_sock *icsk = inet_csk(sk);
395 
396 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
397 	mptcp_sk(sk)->timer_ival = 0;
398 }
399 
400 static void mptcp_close_wake_up(struct sock *sk)
401 {
402 	if (sock_flag(sk, SOCK_DEAD))
403 		return;
404 
405 	sk->sk_state_change(sk);
406 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
407 	    sk->sk_state == TCP_CLOSE)
408 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
409 	else
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
411 }
412 
413 /* called under the msk socket lock */
414 static bool mptcp_pending_data_fin_ack(struct sock *sk)
415 {
416 	struct mptcp_sock *msk = mptcp_sk(sk);
417 
418 	return ((1 << sk->sk_state) &
419 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
420 	       msk->write_seq == READ_ONCE(msk->snd_una);
421 }
422 
423 static void mptcp_check_data_fin_ack(struct sock *sk)
424 {
425 	struct mptcp_sock *msk = mptcp_sk(sk);
426 
427 	/* Look for an acknowledged DATA_FIN */
428 	if (mptcp_pending_data_fin_ack(sk)) {
429 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
430 
431 		switch (sk->sk_state) {
432 		case TCP_FIN_WAIT1:
433 			mptcp_set_state(sk, TCP_FIN_WAIT2);
434 			break;
435 		case TCP_CLOSING:
436 		case TCP_LAST_ACK:
437 			mptcp_set_state(sk, TCP_CLOSE);
438 			break;
439 		}
440 
441 		mptcp_close_wake_up(sk);
442 	}
443 }
444 
445 /* can be called with no lock acquired */
446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
447 {
448 	struct mptcp_sock *msk = mptcp_sk(sk);
449 
450 	if (READ_ONCE(msk->rcv_data_fin) &&
451 	    ((1 << inet_sk_state_load(sk)) &
452 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
453 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
454 
455 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
456 			if (seq)
457 				*seq = rcv_data_fin_seq;
458 
459 			return true;
460 		}
461 	}
462 
463 	return false;
464 }
465 
466 static void mptcp_set_datafin_timeout(struct sock *sk)
467 {
468 	struct inet_connection_sock *icsk = inet_csk(sk);
469 	u32 retransmits;
470 
471 	retransmits = min_t(u32, icsk->icsk_retransmits,
472 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
473 
474 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
475 }
476 
477 static void __mptcp_set_timeout(struct sock *sk, long tout)
478 {
479 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
480 }
481 
482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
483 {
484 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
485 
486 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
487 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
488 }
489 
490 static void mptcp_set_timeout(struct sock *sk)
491 {
492 	struct mptcp_subflow_context *subflow;
493 	long tout = 0;
494 
495 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
496 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
497 	__mptcp_set_timeout(sk, tout);
498 }
499 
500 static inline bool tcp_can_send_ack(const struct sock *ssk)
501 {
502 	return !((1 << inet_sk_state_load(ssk)) &
503 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
504 }
505 
506 void __mptcp_subflow_send_ack(struct sock *ssk)
507 {
508 	if (tcp_can_send_ack(ssk))
509 		tcp_send_ack(ssk);
510 }
511 
512 static void mptcp_subflow_send_ack(struct sock *ssk)
513 {
514 	bool slow;
515 
516 	slow = lock_sock_fast(ssk);
517 	__mptcp_subflow_send_ack(ssk);
518 	unlock_sock_fast(ssk, slow);
519 }
520 
521 static void mptcp_send_ack(struct mptcp_sock *msk)
522 {
523 	struct mptcp_subflow_context *subflow;
524 
525 	mptcp_for_each_subflow(msk, subflow)
526 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
527 }
528 
529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
530 {
531 	bool slow;
532 
533 	slow = lock_sock_fast(ssk);
534 	if (tcp_can_send_ack(ssk))
535 		tcp_cleanup_rbuf(ssk, 1);
536 	unlock_sock_fast(ssk, slow);
537 }
538 
539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
540 {
541 	const struct inet_connection_sock *icsk = inet_csk(ssk);
542 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
543 	const struct tcp_sock *tp = tcp_sk(ssk);
544 
545 	return (ack_pending & ICSK_ACK_SCHED) &&
546 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
547 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
548 		 (rx_empty && ack_pending &
549 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
550 }
551 
552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
553 {
554 	int old_space = READ_ONCE(msk->old_wspace);
555 	struct mptcp_subflow_context *subflow;
556 	struct sock *sk = (struct sock *)msk;
557 	int space =  __mptcp_space(sk);
558 	bool cleanup, rx_empty;
559 
560 	cleanup = (space > 0) && (space >= (old_space << 1));
561 	rx_empty = !__mptcp_rmem(sk);
562 
563 	mptcp_for_each_subflow(msk, subflow) {
564 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
565 
566 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
567 			mptcp_subflow_cleanup_rbuf(ssk);
568 	}
569 }
570 
571 static bool mptcp_check_data_fin(struct sock *sk)
572 {
573 	struct mptcp_sock *msk = mptcp_sk(sk);
574 	u64 rcv_data_fin_seq;
575 	bool ret = false;
576 
577 	/* Need to ack a DATA_FIN received from a peer while this side
578 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
579 	 * msk->rcv_data_fin was set when parsing the incoming options
580 	 * at the subflow level and the msk lock was not held, so this
581 	 * is the first opportunity to act on the DATA_FIN and change
582 	 * the msk state.
583 	 *
584 	 * If we are caught up to the sequence number of the incoming
585 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
586 	 * not caught up, do nothing and let the recv code send DATA_ACK
587 	 * when catching up.
588 	 */
589 
590 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
591 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
592 		WRITE_ONCE(msk->rcv_data_fin, 0);
593 
594 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
595 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
596 
597 		switch (sk->sk_state) {
598 		case TCP_ESTABLISHED:
599 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
600 			break;
601 		case TCP_FIN_WAIT1:
602 			mptcp_set_state(sk, TCP_CLOSING);
603 			break;
604 		case TCP_FIN_WAIT2:
605 			mptcp_set_state(sk, TCP_CLOSE);
606 			break;
607 		default:
608 			/* Other states not expected */
609 			WARN_ON_ONCE(1);
610 			break;
611 		}
612 
613 		ret = true;
614 		if (!__mptcp_check_fallback(msk))
615 			mptcp_send_ack(msk);
616 		mptcp_close_wake_up(sk);
617 	}
618 	return ret;
619 }
620 
621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
622 					   struct sock *ssk,
623 					   unsigned int *bytes)
624 {
625 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
626 	struct sock *sk = (struct sock *)msk;
627 	unsigned int moved = 0;
628 	bool more_data_avail;
629 	struct tcp_sock *tp;
630 	bool done = false;
631 	int sk_rbuf;
632 
633 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
634 
635 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
636 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
637 
638 		if (unlikely(ssk_rbuf > sk_rbuf)) {
639 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
640 			sk_rbuf = ssk_rbuf;
641 		}
642 	}
643 
644 	pr_debug("msk=%p ssk=%p", msk, ssk);
645 	tp = tcp_sk(ssk);
646 	do {
647 		u32 map_remaining, offset;
648 		u32 seq = tp->copied_seq;
649 		struct sk_buff *skb;
650 		bool fin;
651 
652 		/* try to move as much data as available */
653 		map_remaining = subflow->map_data_len -
654 				mptcp_subflow_get_map_offset(subflow);
655 
656 		skb = skb_peek(&ssk->sk_receive_queue);
657 		if (!skb) {
658 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
659 			 * a different CPU can have already processed the pending
660 			 * data, stop here or we can enter an infinite loop
661 			 */
662 			if (!moved)
663 				done = true;
664 			break;
665 		}
666 
667 		if (__mptcp_check_fallback(msk)) {
668 			/* Under fallback skbs have no MPTCP extension and TCP could
669 			 * collapse them between the dummy map creation and the
670 			 * current dequeue. Be sure to adjust the map size.
671 			 */
672 			map_remaining = skb->len;
673 			subflow->map_data_len = skb->len;
674 		}
675 
676 		offset = seq - TCP_SKB_CB(skb)->seq;
677 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
678 		if (fin) {
679 			done = true;
680 			seq++;
681 		}
682 
683 		if (offset < skb->len) {
684 			size_t len = skb->len - offset;
685 
686 			if (tp->urg_data)
687 				done = true;
688 
689 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
690 				moved += len;
691 			seq += len;
692 
693 			if (WARN_ON_ONCE(map_remaining < len))
694 				break;
695 		} else {
696 			WARN_ON_ONCE(!fin);
697 			sk_eat_skb(ssk, skb);
698 			done = true;
699 		}
700 
701 		WRITE_ONCE(tp->copied_seq, seq);
702 		more_data_avail = mptcp_subflow_data_available(ssk);
703 
704 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
705 			done = true;
706 			break;
707 		}
708 	} while (more_data_avail);
709 
710 	*bytes += moved;
711 	return done;
712 }
713 
714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
715 {
716 	struct sock *sk = (struct sock *)msk;
717 	struct sk_buff *skb, *tail;
718 	bool moved = false;
719 	struct rb_node *p;
720 	u64 end_seq;
721 
722 	p = rb_first(&msk->out_of_order_queue);
723 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
724 	while (p) {
725 		skb = rb_to_skb(p);
726 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
727 			break;
728 
729 		p = rb_next(p);
730 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
731 
732 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
733 				      msk->ack_seq))) {
734 			mptcp_drop(sk, skb);
735 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
736 			continue;
737 		}
738 
739 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
740 		tail = skb_peek_tail(&sk->sk_receive_queue);
741 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
742 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
743 
744 			/* skip overlapping data, if any */
745 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
746 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
747 				 delta);
748 			MPTCP_SKB_CB(skb)->offset += delta;
749 			MPTCP_SKB_CB(skb)->map_seq += delta;
750 			__skb_queue_tail(&sk->sk_receive_queue, skb);
751 		}
752 		msk->bytes_received += end_seq - msk->ack_seq;
753 		WRITE_ONCE(msk->ack_seq, end_seq);
754 		moved = true;
755 	}
756 	return moved;
757 }
758 
759 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
760 {
761 	int err = sock_error(ssk);
762 	int ssk_state;
763 
764 	if (!err)
765 		return false;
766 
767 	/* only propagate errors on fallen-back sockets or
768 	 * on MPC connect
769 	 */
770 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
771 		return false;
772 
773 	/* We need to propagate only transition to CLOSE state.
774 	 * Orphaned socket will see such state change via
775 	 * subflow_sched_work_if_closed() and that path will properly
776 	 * destroy the msk as needed.
777 	 */
778 	ssk_state = inet_sk_state_load(ssk);
779 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
780 		mptcp_set_state(sk, ssk_state);
781 	WRITE_ONCE(sk->sk_err, -err);
782 
783 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
784 	smp_wmb();
785 	sk_error_report(sk);
786 	return true;
787 }
788 
789 void __mptcp_error_report(struct sock *sk)
790 {
791 	struct mptcp_subflow_context *subflow;
792 	struct mptcp_sock *msk = mptcp_sk(sk);
793 
794 	mptcp_for_each_subflow(msk, subflow)
795 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
796 			break;
797 }
798 
799 /* In most cases we will be able to lock the mptcp socket.  If its already
800  * owned, we need to defer to the work queue to avoid ABBA deadlock.
801  */
802 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
803 {
804 	struct sock *sk = (struct sock *)msk;
805 	unsigned int moved = 0;
806 
807 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
808 	__mptcp_ofo_queue(msk);
809 	if (unlikely(ssk->sk_err)) {
810 		if (!sock_owned_by_user(sk))
811 			__mptcp_error_report(sk);
812 		else
813 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
814 	}
815 
816 	/* If the moves have caught up with the DATA_FIN sequence number
817 	 * it's time to ack the DATA_FIN and change socket state, but
818 	 * this is not a good place to change state. Let the workqueue
819 	 * do it.
820 	 */
821 	if (mptcp_pending_data_fin(sk, NULL))
822 		mptcp_schedule_work(sk);
823 	return moved > 0;
824 }
825 
826 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
827 {
828 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
829 	struct mptcp_sock *msk = mptcp_sk(sk);
830 	int sk_rbuf, ssk_rbuf;
831 
832 	/* The peer can send data while we are shutting down this
833 	 * subflow at msk destruction time, but we must avoid enqueuing
834 	 * more data to the msk receive queue
835 	 */
836 	if (unlikely(subflow->disposable))
837 		return;
838 
839 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
840 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
841 	if (unlikely(ssk_rbuf > sk_rbuf))
842 		sk_rbuf = ssk_rbuf;
843 
844 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
845 	if (__mptcp_rmem(sk) > sk_rbuf) {
846 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
847 		return;
848 	}
849 
850 	/* Wake-up the reader only for in-sequence data */
851 	mptcp_data_lock(sk);
852 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
853 		sk->sk_data_ready(sk);
854 	mptcp_data_unlock(sk);
855 }
856 
857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
858 {
859 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
860 	WRITE_ONCE(msk->allow_infinite_fallback, false);
861 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
862 }
863 
864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
865 {
866 	struct sock *sk = (struct sock *)msk;
867 
868 	if (sk->sk_state != TCP_ESTABLISHED)
869 		return false;
870 
871 	/* attach to msk socket only after we are sure we will deal with it
872 	 * at close time
873 	 */
874 	if (sk->sk_socket && !ssk->sk_socket)
875 		mptcp_sock_graft(ssk, sk->sk_socket);
876 
877 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
878 	mptcp_sockopt_sync_locked(msk, ssk);
879 	mptcp_subflow_joined(msk, ssk);
880 	mptcp_stop_tout_timer(sk);
881 	__mptcp_propagate_sndbuf(sk, ssk);
882 	return true;
883 }
884 
885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
886 {
887 	struct mptcp_subflow_context *tmp, *subflow;
888 	struct mptcp_sock *msk = mptcp_sk(sk);
889 
890 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
891 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
892 		bool slow = lock_sock_fast(ssk);
893 
894 		list_move_tail(&subflow->node, &msk->conn_list);
895 		if (!__mptcp_finish_join(msk, ssk))
896 			mptcp_subflow_reset(ssk);
897 		unlock_sock_fast(ssk, slow);
898 	}
899 }
900 
901 static bool mptcp_rtx_timer_pending(struct sock *sk)
902 {
903 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
904 }
905 
906 static void mptcp_reset_rtx_timer(struct sock *sk)
907 {
908 	struct inet_connection_sock *icsk = inet_csk(sk);
909 	unsigned long tout;
910 
911 	/* prevent rescheduling on close */
912 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
913 		return;
914 
915 	tout = mptcp_sk(sk)->timer_ival;
916 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
917 }
918 
919 bool mptcp_schedule_work(struct sock *sk)
920 {
921 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
922 	    schedule_work(&mptcp_sk(sk)->work)) {
923 		/* each subflow already holds a reference to the sk, and the
924 		 * workqueue is invoked by a subflow, so sk can't go away here.
925 		 */
926 		sock_hold(sk);
927 		return true;
928 	}
929 	return false;
930 }
931 
932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
933 {
934 	struct mptcp_subflow_context *subflow;
935 
936 	msk_owned_by_me(msk);
937 
938 	mptcp_for_each_subflow(msk, subflow) {
939 		if (READ_ONCE(subflow->data_avail))
940 			return mptcp_subflow_tcp_sock(subflow);
941 	}
942 
943 	return NULL;
944 }
945 
946 static bool mptcp_skb_can_collapse_to(u64 write_seq,
947 				      const struct sk_buff *skb,
948 				      const struct mptcp_ext *mpext)
949 {
950 	if (!tcp_skb_can_collapse_to(skb))
951 		return false;
952 
953 	/* can collapse only if MPTCP level sequence is in order and this
954 	 * mapping has not been xmitted yet
955 	 */
956 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
957 	       !mpext->frozen;
958 }
959 
960 /* we can append data to the given data frag if:
961  * - there is space available in the backing page_frag
962  * - the data frag tail matches the current page_frag free offset
963  * - the data frag end sequence number matches the current write seq
964  */
965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
966 				       const struct page_frag *pfrag,
967 				       const struct mptcp_data_frag *df)
968 {
969 	return df && pfrag->page == df->page &&
970 		pfrag->size - pfrag->offset > 0 &&
971 		pfrag->offset == (df->offset + df->data_len) &&
972 		df->data_seq + df->data_len == msk->write_seq;
973 }
974 
975 static void dfrag_uncharge(struct sock *sk, int len)
976 {
977 	sk_mem_uncharge(sk, len);
978 	sk_wmem_queued_add(sk, -len);
979 }
980 
981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
982 {
983 	int len = dfrag->data_len + dfrag->overhead;
984 
985 	list_del(&dfrag->list);
986 	dfrag_uncharge(sk, len);
987 	put_page(dfrag->page);
988 }
989 
990 /* called under both the msk socket lock and the data lock */
991 static void __mptcp_clean_una(struct sock *sk)
992 {
993 	struct mptcp_sock *msk = mptcp_sk(sk);
994 	struct mptcp_data_frag *dtmp, *dfrag;
995 	u64 snd_una;
996 
997 	snd_una = msk->snd_una;
998 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
999 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1000 			break;
1001 
1002 		if (unlikely(dfrag == msk->first_pending)) {
1003 			/* in recovery mode can see ack after the current snd head */
1004 			if (WARN_ON_ONCE(!msk->recovery))
1005 				break;
1006 
1007 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1008 		}
1009 
1010 		dfrag_clear(sk, dfrag);
1011 	}
1012 
1013 	dfrag = mptcp_rtx_head(sk);
1014 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1015 		u64 delta = snd_una - dfrag->data_seq;
1016 
1017 		/* prevent wrap around in recovery mode */
1018 		if (unlikely(delta > dfrag->already_sent)) {
1019 			if (WARN_ON_ONCE(!msk->recovery))
1020 				goto out;
1021 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1022 				goto out;
1023 			dfrag->already_sent += delta - dfrag->already_sent;
1024 		}
1025 
1026 		dfrag->data_seq += delta;
1027 		dfrag->offset += delta;
1028 		dfrag->data_len -= delta;
1029 		dfrag->already_sent -= delta;
1030 
1031 		dfrag_uncharge(sk, delta);
1032 	}
1033 
1034 	/* all retransmitted data acked, recovery completed */
1035 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1036 		msk->recovery = false;
1037 
1038 out:
1039 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1040 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1041 			mptcp_stop_rtx_timer(sk);
1042 	} else {
1043 		mptcp_reset_rtx_timer(sk);
1044 	}
1045 
1046 	if (mptcp_pending_data_fin_ack(sk))
1047 		mptcp_schedule_work(sk);
1048 }
1049 
1050 static void __mptcp_clean_una_wakeup(struct sock *sk)
1051 {
1052 	lockdep_assert_held_once(&sk->sk_lock.slock);
1053 
1054 	__mptcp_clean_una(sk);
1055 	mptcp_write_space(sk);
1056 }
1057 
1058 static void mptcp_clean_una_wakeup(struct sock *sk)
1059 {
1060 	mptcp_data_lock(sk);
1061 	__mptcp_clean_una_wakeup(sk);
1062 	mptcp_data_unlock(sk);
1063 }
1064 
1065 static void mptcp_enter_memory_pressure(struct sock *sk)
1066 {
1067 	struct mptcp_subflow_context *subflow;
1068 	struct mptcp_sock *msk = mptcp_sk(sk);
1069 	bool first = true;
1070 
1071 	mptcp_for_each_subflow(msk, subflow) {
1072 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1073 
1074 		if (first)
1075 			tcp_enter_memory_pressure(ssk);
1076 		sk_stream_moderate_sndbuf(ssk);
1077 
1078 		first = false;
1079 	}
1080 	__mptcp_sync_sndbuf(sk);
1081 }
1082 
1083 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1084  * data
1085  */
1086 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1087 {
1088 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1089 					pfrag, sk->sk_allocation)))
1090 		return true;
1091 
1092 	mptcp_enter_memory_pressure(sk);
1093 	return false;
1094 }
1095 
1096 static struct mptcp_data_frag *
1097 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1098 		      int orig_offset)
1099 {
1100 	int offset = ALIGN(orig_offset, sizeof(long));
1101 	struct mptcp_data_frag *dfrag;
1102 
1103 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1104 	dfrag->data_len = 0;
1105 	dfrag->data_seq = msk->write_seq;
1106 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1107 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1108 	dfrag->already_sent = 0;
1109 	dfrag->page = pfrag->page;
1110 
1111 	return dfrag;
1112 }
1113 
1114 struct mptcp_sendmsg_info {
1115 	int mss_now;
1116 	int size_goal;
1117 	u16 limit;
1118 	u16 sent;
1119 	unsigned int flags;
1120 	bool data_lock_held;
1121 };
1122 
1123 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1124 				    u64 data_seq, int avail_size)
1125 {
1126 	u64 window_end = mptcp_wnd_end(msk);
1127 	u64 mptcp_snd_wnd;
1128 
1129 	if (__mptcp_check_fallback(msk))
1130 		return avail_size;
1131 
1132 	mptcp_snd_wnd = window_end - data_seq;
1133 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1134 
1135 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1136 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1137 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1138 	}
1139 
1140 	return avail_size;
1141 }
1142 
1143 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1144 {
1145 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1146 
1147 	if (!mpext)
1148 		return false;
1149 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1150 	return true;
1151 }
1152 
1153 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1154 {
1155 	struct sk_buff *skb;
1156 
1157 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1158 	if (likely(skb)) {
1159 		if (likely(__mptcp_add_ext(skb, gfp))) {
1160 			skb_reserve(skb, MAX_TCP_HEADER);
1161 			skb->ip_summed = CHECKSUM_PARTIAL;
1162 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1163 			return skb;
1164 		}
1165 		__kfree_skb(skb);
1166 	} else {
1167 		mptcp_enter_memory_pressure(sk);
1168 	}
1169 	return NULL;
1170 }
1171 
1172 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1173 {
1174 	struct sk_buff *skb;
1175 
1176 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1177 	if (!skb)
1178 		return NULL;
1179 
1180 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1181 		tcp_skb_entail(ssk, skb);
1182 		return skb;
1183 	}
1184 	tcp_skb_tsorted_anchor_cleanup(skb);
1185 	kfree_skb(skb);
1186 	return NULL;
1187 }
1188 
1189 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1190 {
1191 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1192 
1193 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1194 }
1195 
1196 /* note: this always recompute the csum on the whole skb, even
1197  * if we just appended a single frag. More status info needed
1198  */
1199 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1200 {
1201 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1202 	__wsum csum = ~csum_unfold(mpext->csum);
1203 	int offset = skb->len - added;
1204 
1205 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1206 }
1207 
1208 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1209 				      struct sock *ssk,
1210 				      struct mptcp_ext *mpext)
1211 {
1212 	if (!mpext)
1213 		return;
1214 
1215 	mpext->infinite_map = 1;
1216 	mpext->data_len = 0;
1217 
1218 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1219 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1220 	pr_fallback(msk);
1221 	mptcp_do_fallback(ssk);
1222 }
1223 
1224 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1225 
1226 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1227 			      struct mptcp_data_frag *dfrag,
1228 			      struct mptcp_sendmsg_info *info)
1229 {
1230 	u64 data_seq = dfrag->data_seq + info->sent;
1231 	int offset = dfrag->offset + info->sent;
1232 	struct mptcp_sock *msk = mptcp_sk(sk);
1233 	bool zero_window_probe = false;
1234 	struct mptcp_ext *mpext = NULL;
1235 	bool can_coalesce = false;
1236 	bool reuse_skb = true;
1237 	struct sk_buff *skb;
1238 	size_t copy;
1239 	int i;
1240 
1241 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1242 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1243 
1244 	if (WARN_ON_ONCE(info->sent > info->limit ||
1245 			 info->limit > dfrag->data_len))
1246 		return 0;
1247 
1248 	if (unlikely(!__tcp_can_send(ssk)))
1249 		return -EAGAIN;
1250 
1251 	/* compute send limit */
1252 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1253 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1254 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1255 	copy = info->size_goal;
1256 
1257 	skb = tcp_write_queue_tail(ssk);
1258 	if (skb && copy > skb->len) {
1259 		/* Limit the write to the size available in the
1260 		 * current skb, if any, so that we create at most a new skb.
1261 		 * Explicitly tells TCP internals to avoid collapsing on later
1262 		 * queue management operation, to avoid breaking the ext <->
1263 		 * SSN association set here
1264 		 */
1265 		mpext = mptcp_get_ext(skb);
1266 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1267 			TCP_SKB_CB(skb)->eor = 1;
1268 			goto alloc_skb;
1269 		}
1270 
1271 		i = skb_shinfo(skb)->nr_frags;
1272 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1273 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1274 			tcp_mark_push(tcp_sk(ssk), skb);
1275 			goto alloc_skb;
1276 		}
1277 
1278 		copy -= skb->len;
1279 	} else {
1280 alloc_skb:
1281 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1282 		if (!skb)
1283 			return -ENOMEM;
1284 
1285 		i = skb_shinfo(skb)->nr_frags;
1286 		reuse_skb = false;
1287 		mpext = mptcp_get_ext(skb);
1288 	}
1289 
1290 	/* Zero window and all data acked? Probe. */
1291 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1292 	if (copy == 0) {
1293 		u64 snd_una = READ_ONCE(msk->snd_una);
1294 
1295 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1296 			tcp_remove_empty_skb(ssk);
1297 			return 0;
1298 		}
1299 
1300 		zero_window_probe = true;
1301 		data_seq = snd_una - 1;
1302 		copy = 1;
1303 	}
1304 
1305 	copy = min_t(size_t, copy, info->limit - info->sent);
1306 	if (!sk_wmem_schedule(ssk, copy)) {
1307 		tcp_remove_empty_skb(ssk);
1308 		return -ENOMEM;
1309 	}
1310 
1311 	if (can_coalesce) {
1312 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1313 	} else {
1314 		get_page(dfrag->page);
1315 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1316 	}
1317 
1318 	skb->len += copy;
1319 	skb->data_len += copy;
1320 	skb->truesize += copy;
1321 	sk_wmem_queued_add(ssk, copy);
1322 	sk_mem_charge(ssk, copy);
1323 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1324 	TCP_SKB_CB(skb)->end_seq += copy;
1325 	tcp_skb_pcount_set(skb, 0);
1326 
1327 	/* on skb reuse we just need to update the DSS len */
1328 	if (reuse_skb) {
1329 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1330 		mpext->data_len += copy;
1331 		goto out;
1332 	}
1333 
1334 	memset(mpext, 0, sizeof(*mpext));
1335 	mpext->data_seq = data_seq;
1336 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1337 	mpext->data_len = copy;
1338 	mpext->use_map = 1;
1339 	mpext->dsn64 = 1;
1340 
1341 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1342 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1343 		 mpext->dsn64);
1344 
1345 	if (zero_window_probe) {
1346 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1347 		mpext->frozen = 1;
1348 		if (READ_ONCE(msk->csum_enabled))
1349 			mptcp_update_data_checksum(skb, copy);
1350 		tcp_push_pending_frames(ssk);
1351 		return 0;
1352 	}
1353 out:
1354 	if (READ_ONCE(msk->csum_enabled))
1355 		mptcp_update_data_checksum(skb, copy);
1356 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1357 		mptcp_update_infinite_map(msk, ssk, mpext);
1358 	trace_mptcp_sendmsg_frag(mpext);
1359 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1360 	return copy;
1361 }
1362 
1363 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1364 					 sizeof(struct tcphdr) - \
1365 					 MAX_TCP_OPTION_SPACE - \
1366 					 sizeof(struct ipv6hdr) - \
1367 					 sizeof(struct frag_hdr))
1368 
1369 struct subflow_send_info {
1370 	struct sock *ssk;
1371 	u64 linger_time;
1372 };
1373 
1374 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1375 {
1376 	if (!subflow->stale)
1377 		return;
1378 
1379 	subflow->stale = 0;
1380 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1381 }
1382 
1383 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1384 {
1385 	if (unlikely(subflow->stale)) {
1386 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1387 
1388 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1389 			return false;
1390 
1391 		mptcp_subflow_set_active(subflow);
1392 	}
1393 	return __mptcp_subflow_active(subflow);
1394 }
1395 
1396 #define SSK_MODE_ACTIVE	0
1397 #define SSK_MODE_BACKUP	1
1398 #define SSK_MODE_MAX	2
1399 
1400 /* implement the mptcp packet scheduler;
1401  * returns the subflow that will transmit the next DSS
1402  * additionally updates the rtx timeout
1403  */
1404 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1405 {
1406 	struct subflow_send_info send_info[SSK_MODE_MAX];
1407 	struct mptcp_subflow_context *subflow;
1408 	struct sock *sk = (struct sock *)msk;
1409 	u32 pace, burst, wmem;
1410 	int i, nr_active = 0;
1411 	struct sock *ssk;
1412 	u64 linger_time;
1413 	long tout = 0;
1414 
1415 	/* pick the subflow with the lower wmem/wspace ratio */
1416 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1417 		send_info[i].ssk = NULL;
1418 		send_info[i].linger_time = -1;
1419 	}
1420 
1421 	mptcp_for_each_subflow(msk, subflow) {
1422 		trace_mptcp_subflow_get_send(subflow);
1423 		ssk =  mptcp_subflow_tcp_sock(subflow);
1424 		if (!mptcp_subflow_active(subflow))
1425 			continue;
1426 
1427 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1428 		nr_active += !subflow->backup;
1429 		pace = subflow->avg_pacing_rate;
1430 		if (unlikely(!pace)) {
1431 			/* init pacing rate from socket */
1432 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1433 			pace = subflow->avg_pacing_rate;
1434 			if (!pace)
1435 				continue;
1436 		}
1437 
1438 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1439 		if (linger_time < send_info[subflow->backup].linger_time) {
1440 			send_info[subflow->backup].ssk = ssk;
1441 			send_info[subflow->backup].linger_time = linger_time;
1442 		}
1443 	}
1444 	__mptcp_set_timeout(sk, tout);
1445 
1446 	/* pick the best backup if no other subflow is active */
1447 	if (!nr_active)
1448 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1449 
1450 	/* According to the blest algorithm, to avoid HoL blocking for the
1451 	 * faster flow, we need to:
1452 	 * - estimate the faster flow linger time
1453 	 * - use the above to estimate the amount of byte transferred
1454 	 *   by the faster flow
1455 	 * - check that the amount of queued data is greter than the above,
1456 	 *   otherwise do not use the picked, slower, subflow
1457 	 * We select the subflow with the shorter estimated time to flush
1458 	 * the queued mem, which basically ensure the above. We just need
1459 	 * to check that subflow has a non empty cwin.
1460 	 */
1461 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1462 	if (!ssk || !sk_stream_memory_free(ssk))
1463 		return NULL;
1464 
1465 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1466 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1467 	if (!burst)
1468 		return ssk;
1469 
1470 	subflow = mptcp_subflow_ctx(ssk);
1471 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1472 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1473 					   burst + wmem);
1474 	msk->snd_burst = burst;
1475 	return ssk;
1476 }
1477 
1478 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1479 {
1480 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1481 	release_sock(ssk);
1482 }
1483 
1484 static void mptcp_update_post_push(struct mptcp_sock *msk,
1485 				   struct mptcp_data_frag *dfrag,
1486 				   u32 sent)
1487 {
1488 	u64 snd_nxt_new = dfrag->data_seq;
1489 
1490 	dfrag->already_sent += sent;
1491 
1492 	msk->snd_burst -= sent;
1493 
1494 	snd_nxt_new += dfrag->already_sent;
1495 
1496 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1497 	 * is recovering after a failover. In that event, this re-sends
1498 	 * old segments.
1499 	 *
1500 	 * Thus compute snd_nxt_new candidate based on
1501 	 * the dfrag->data_seq that was sent and the data
1502 	 * that has been handed to the subflow for transmission
1503 	 * and skip update in case it was old dfrag.
1504 	 */
1505 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1506 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1507 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1508 	}
1509 }
1510 
1511 void mptcp_check_and_set_pending(struct sock *sk)
1512 {
1513 	if (mptcp_send_head(sk))
1514 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1515 }
1516 
1517 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1518 				  struct mptcp_sendmsg_info *info)
1519 {
1520 	struct mptcp_sock *msk = mptcp_sk(sk);
1521 	struct mptcp_data_frag *dfrag;
1522 	int len, copied = 0, err = 0;
1523 
1524 	while ((dfrag = mptcp_send_head(sk))) {
1525 		info->sent = dfrag->already_sent;
1526 		info->limit = dfrag->data_len;
1527 		len = dfrag->data_len - dfrag->already_sent;
1528 		while (len > 0) {
1529 			int ret = 0;
1530 
1531 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1532 			if (ret <= 0) {
1533 				err = copied ? : ret;
1534 				goto out;
1535 			}
1536 
1537 			info->sent += ret;
1538 			copied += ret;
1539 			len -= ret;
1540 
1541 			mptcp_update_post_push(msk, dfrag, ret);
1542 		}
1543 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1544 
1545 		if (msk->snd_burst <= 0 ||
1546 		    !sk_stream_memory_free(ssk) ||
1547 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1548 			err = copied;
1549 			goto out;
1550 		}
1551 		mptcp_set_timeout(sk);
1552 	}
1553 	err = copied;
1554 
1555 out:
1556 	return err;
1557 }
1558 
1559 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1560 {
1561 	struct sock *prev_ssk = NULL, *ssk = NULL;
1562 	struct mptcp_sock *msk = mptcp_sk(sk);
1563 	struct mptcp_sendmsg_info info = {
1564 				.flags = flags,
1565 	};
1566 	bool do_check_data_fin = false;
1567 	int push_count = 1;
1568 
1569 	while (mptcp_send_head(sk) && (push_count > 0)) {
1570 		struct mptcp_subflow_context *subflow;
1571 		int ret = 0;
1572 
1573 		if (mptcp_sched_get_send(msk))
1574 			break;
1575 
1576 		push_count = 0;
1577 
1578 		mptcp_for_each_subflow(msk, subflow) {
1579 			if (READ_ONCE(subflow->scheduled)) {
1580 				mptcp_subflow_set_scheduled(subflow, false);
1581 
1582 				prev_ssk = ssk;
1583 				ssk = mptcp_subflow_tcp_sock(subflow);
1584 				if (ssk != prev_ssk) {
1585 					/* First check. If the ssk has changed since
1586 					 * the last round, release prev_ssk
1587 					 */
1588 					if (prev_ssk)
1589 						mptcp_push_release(prev_ssk, &info);
1590 
1591 					/* Need to lock the new subflow only if different
1592 					 * from the previous one, otherwise we are still
1593 					 * helding the relevant lock
1594 					 */
1595 					lock_sock(ssk);
1596 				}
1597 
1598 				push_count++;
1599 
1600 				ret = __subflow_push_pending(sk, ssk, &info);
1601 				if (ret <= 0) {
1602 					if (ret != -EAGAIN ||
1603 					    (1 << ssk->sk_state) &
1604 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1605 						push_count--;
1606 					continue;
1607 				}
1608 				do_check_data_fin = true;
1609 			}
1610 		}
1611 	}
1612 
1613 	/* at this point we held the socket lock for the last subflow we used */
1614 	if (ssk)
1615 		mptcp_push_release(ssk, &info);
1616 
1617 	/* ensure the rtx timer is running */
1618 	if (!mptcp_rtx_timer_pending(sk))
1619 		mptcp_reset_rtx_timer(sk);
1620 	if (do_check_data_fin)
1621 		mptcp_check_send_data_fin(sk);
1622 }
1623 
1624 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1625 {
1626 	struct mptcp_sock *msk = mptcp_sk(sk);
1627 	struct mptcp_sendmsg_info info = {
1628 		.data_lock_held = true,
1629 	};
1630 	bool keep_pushing = true;
1631 	struct sock *xmit_ssk;
1632 	int copied = 0;
1633 
1634 	info.flags = 0;
1635 	while (mptcp_send_head(sk) && keep_pushing) {
1636 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1637 		int ret = 0;
1638 
1639 		/* check for a different subflow usage only after
1640 		 * spooling the first chunk of data
1641 		 */
1642 		if (first) {
1643 			mptcp_subflow_set_scheduled(subflow, false);
1644 			ret = __subflow_push_pending(sk, ssk, &info);
1645 			first = false;
1646 			if (ret <= 0)
1647 				break;
1648 			copied += ret;
1649 			continue;
1650 		}
1651 
1652 		if (mptcp_sched_get_send(msk))
1653 			goto out;
1654 
1655 		if (READ_ONCE(subflow->scheduled)) {
1656 			mptcp_subflow_set_scheduled(subflow, false);
1657 			ret = __subflow_push_pending(sk, ssk, &info);
1658 			if (ret <= 0)
1659 				keep_pushing = false;
1660 			copied += ret;
1661 		}
1662 
1663 		mptcp_for_each_subflow(msk, subflow) {
1664 			if (READ_ONCE(subflow->scheduled)) {
1665 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1666 				if (xmit_ssk != ssk) {
1667 					mptcp_subflow_delegate(subflow,
1668 							       MPTCP_DELEGATE_SEND);
1669 					keep_pushing = false;
1670 				}
1671 			}
1672 		}
1673 	}
1674 
1675 out:
1676 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1677 	 * not going to flush it via release_sock()
1678 	 */
1679 	if (copied) {
1680 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1681 			 info.size_goal);
1682 		if (!mptcp_rtx_timer_pending(sk))
1683 			mptcp_reset_rtx_timer(sk);
1684 
1685 		if (msk->snd_data_fin_enable &&
1686 		    msk->snd_nxt + 1 == msk->write_seq)
1687 			mptcp_schedule_work(sk);
1688 	}
1689 }
1690 
1691 static void mptcp_set_nospace(struct sock *sk)
1692 {
1693 	/* enable autotune */
1694 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1695 
1696 	/* will be cleared on avail space */
1697 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1698 }
1699 
1700 static int mptcp_disconnect(struct sock *sk, int flags);
1701 
1702 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1703 				  size_t len, int *copied_syn)
1704 {
1705 	unsigned int saved_flags = msg->msg_flags;
1706 	struct mptcp_sock *msk = mptcp_sk(sk);
1707 	struct sock *ssk;
1708 	int ret;
1709 
1710 	/* on flags based fastopen the mptcp is supposed to create the
1711 	 * first subflow right now. Otherwise we are in the defer_connect
1712 	 * path, and the first subflow must be already present.
1713 	 * Since the defer_connect flag is cleared after the first succsful
1714 	 * fastopen attempt, no need to check for additional subflow status.
1715 	 */
1716 	if (msg->msg_flags & MSG_FASTOPEN) {
1717 		ssk = __mptcp_nmpc_sk(msk);
1718 		if (IS_ERR(ssk))
1719 			return PTR_ERR(ssk);
1720 	}
1721 	if (!msk->first)
1722 		return -EINVAL;
1723 
1724 	ssk = msk->first;
1725 
1726 	lock_sock(ssk);
1727 	msg->msg_flags |= MSG_DONTWAIT;
1728 	msk->fastopening = 1;
1729 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1730 	msk->fastopening = 0;
1731 	msg->msg_flags = saved_flags;
1732 	release_sock(ssk);
1733 
1734 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1735 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1736 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1737 					    msg->msg_namelen, msg->msg_flags, 1);
1738 
1739 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1740 		 * case of any error, except timeout or signal
1741 		 */
1742 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1743 			*copied_syn = 0;
1744 	} else if (ret && ret != -EINPROGRESS) {
1745 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1746 		 * __inet_stream_connect() can fail, due to looking check,
1747 		 * see mptcp_disconnect().
1748 		 * Attempt it again outside the problematic scope.
1749 		 */
1750 		if (!mptcp_disconnect(sk, 0))
1751 			sk->sk_socket->state = SS_UNCONNECTED;
1752 	}
1753 	inet_clear_bit(DEFER_CONNECT, sk);
1754 
1755 	return ret;
1756 }
1757 
1758 static int do_copy_data_nocache(struct sock *sk, int copy,
1759 				struct iov_iter *from, char *to)
1760 {
1761 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1762 		if (!copy_from_iter_full_nocache(to, copy, from))
1763 			return -EFAULT;
1764 	} else if (!copy_from_iter_full(to, copy, from)) {
1765 		return -EFAULT;
1766 	}
1767 	return 0;
1768 }
1769 
1770 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1771 {
1772 	struct mptcp_sock *msk = mptcp_sk(sk);
1773 	struct page_frag *pfrag;
1774 	size_t copied = 0;
1775 	int ret = 0;
1776 	long timeo;
1777 
1778 	/* silently ignore everything else */
1779 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1780 
1781 	lock_sock(sk);
1782 
1783 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1784 		     msg->msg_flags & MSG_FASTOPEN)) {
1785 		int copied_syn = 0;
1786 
1787 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1788 		copied += copied_syn;
1789 		if (ret == -EINPROGRESS && copied_syn > 0)
1790 			goto out;
1791 		else if (ret)
1792 			goto do_error;
1793 	}
1794 
1795 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1796 
1797 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1798 		ret = sk_stream_wait_connect(sk, &timeo);
1799 		if (ret)
1800 			goto do_error;
1801 	}
1802 
1803 	ret = -EPIPE;
1804 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1805 		goto do_error;
1806 
1807 	pfrag = sk_page_frag(sk);
1808 
1809 	while (msg_data_left(msg)) {
1810 		int total_ts, frag_truesize = 0;
1811 		struct mptcp_data_frag *dfrag;
1812 		bool dfrag_collapsed;
1813 		size_t psize, offset;
1814 
1815 		/* reuse tail pfrag, if possible, or carve a new one from the
1816 		 * page allocator
1817 		 */
1818 		dfrag = mptcp_pending_tail(sk);
1819 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1820 		if (!dfrag_collapsed) {
1821 			if (!sk_stream_memory_free(sk))
1822 				goto wait_for_memory;
1823 
1824 			if (!mptcp_page_frag_refill(sk, pfrag))
1825 				goto wait_for_memory;
1826 
1827 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1828 			frag_truesize = dfrag->overhead;
1829 		}
1830 
1831 		/* we do not bound vs wspace, to allow a single packet.
1832 		 * memory accounting will prevent execessive memory usage
1833 		 * anyway
1834 		 */
1835 		offset = dfrag->offset + dfrag->data_len;
1836 		psize = pfrag->size - offset;
1837 		psize = min_t(size_t, psize, msg_data_left(msg));
1838 		total_ts = psize + frag_truesize;
1839 
1840 		if (!sk_wmem_schedule(sk, total_ts))
1841 			goto wait_for_memory;
1842 
1843 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1844 					   page_address(dfrag->page) + offset);
1845 		if (ret)
1846 			goto do_error;
1847 
1848 		/* data successfully copied into the write queue */
1849 		sk_forward_alloc_add(sk, -total_ts);
1850 		copied += psize;
1851 		dfrag->data_len += psize;
1852 		frag_truesize += psize;
1853 		pfrag->offset += frag_truesize;
1854 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1855 
1856 		/* charge data on mptcp pending queue to the msk socket
1857 		 * Note: we charge such data both to sk and ssk
1858 		 */
1859 		sk_wmem_queued_add(sk, frag_truesize);
1860 		if (!dfrag_collapsed) {
1861 			get_page(dfrag->page);
1862 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1863 			if (!msk->first_pending)
1864 				WRITE_ONCE(msk->first_pending, dfrag);
1865 		}
1866 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1867 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1868 			 !dfrag_collapsed);
1869 
1870 		continue;
1871 
1872 wait_for_memory:
1873 		mptcp_set_nospace(sk);
1874 		__mptcp_push_pending(sk, msg->msg_flags);
1875 		ret = sk_stream_wait_memory(sk, &timeo);
1876 		if (ret)
1877 			goto do_error;
1878 	}
1879 
1880 	if (copied)
1881 		__mptcp_push_pending(sk, msg->msg_flags);
1882 
1883 out:
1884 	release_sock(sk);
1885 	return copied;
1886 
1887 do_error:
1888 	if (copied)
1889 		goto out;
1890 
1891 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1892 	goto out;
1893 }
1894 
1895 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1896 				struct msghdr *msg,
1897 				size_t len, int flags,
1898 				struct scm_timestamping_internal *tss,
1899 				int *cmsg_flags)
1900 {
1901 	struct sk_buff *skb, *tmp;
1902 	int copied = 0;
1903 
1904 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1905 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1906 		u32 data_len = skb->len - offset;
1907 		u32 count = min_t(size_t, len - copied, data_len);
1908 		int err;
1909 
1910 		if (!(flags & MSG_TRUNC)) {
1911 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1912 			if (unlikely(err < 0)) {
1913 				if (!copied)
1914 					return err;
1915 				break;
1916 			}
1917 		}
1918 
1919 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1920 			tcp_update_recv_tstamps(skb, tss);
1921 			*cmsg_flags |= MPTCP_CMSG_TS;
1922 		}
1923 
1924 		copied += count;
1925 
1926 		if (count < data_len) {
1927 			if (!(flags & MSG_PEEK)) {
1928 				MPTCP_SKB_CB(skb)->offset += count;
1929 				MPTCP_SKB_CB(skb)->map_seq += count;
1930 				msk->bytes_consumed += count;
1931 			}
1932 			break;
1933 		}
1934 
1935 		if (!(flags & MSG_PEEK)) {
1936 			/* we will bulk release the skb memory later */
1937 			skb->destructor = NULL;
1938 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1939 			__skb_unlink(skb, &msk->receive_queue);
1940 			__kfree_skb(skb);
1941 			msk->bytes_consumed += count;
1942 		}
1943 
1944 		if (copied >= len)
1945 			break;
1946 	}
1947 
1948 	return copied;
1949 }
1950 
1951 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1952  *
1953  * Only difference: Use highest rtt estimate of the subflows in use.
1954  */
1955 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1956 {
1957 	struct mptcp_subflow_context *subflow;
1958 	struct sock *sk = (struct sock *)msk;
1959 	u8 scaling_ratio = U8_MAX;
1960 	u32 time, advmss = 1;
1961 	u64 rtt_us, mstamp;
1962 
1963 	msk_owned_by_me(msk);
1964 
1965 	if (copied <= 0)
1966 		return;
1967 
1968 	msk->rcvq_space.copied += copied;
1969 
1970 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1971 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1972 
1973 	rtt_us = msk->rcvq_space.rtt_us;
1974 	if (rtt_us && time < (rtt_us >> 3))
1975 		return;
1976 
1977 	rtt_us = 0;
1978 	mptcp_for_each_subflow(msk, subflow) {
1979 		const struct tcp_sock *tp;
1980 		u64 sf_rtt_us;
1981 		u32 sf_advmss;
1982 
1983 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1984 
1985 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1986 		sf_advmss = READ_ONCE(tp->advmss);
1987 
1988 		rtt_us = max(sf_rtt_us, rtt_us);
1989 		advmss = max(sf_advmss, advmss);
1990 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1991 	}
1992 
1993 	msk->rcvq_space.rtt_us = rtt_us;
1994 	msk->scaling_ratio = scaling_ratio;
1995 	if (time < (rtt_us >> 3) || rtt_us == 0)
1996 		return;
1997 
1998 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1999 		goto new_measure;
2000 
2001 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2002 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2003 		u64 rcvwin, grow;
2004 		int rcvbuf;
2005 
2006 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2007 
2008 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2009 
2010 		do_div(grow, msk->rcvq_space.space);
2011 		rcvwin += (grow << 1);
2012 
2013 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2014 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2015 
2016 		if (rcvbuf > sk->sk_rcvbuf) {
2017 			u32 window_clamp;
2018 
2019 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2020 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2021 
2022 			/* Make subflows follow along.  If we do not do this, we
2023 			 * get drops at subflow level if skbs can't be moved to
2024 			 * the mptcp rx queue fast enough (announced rcv_win can
2025 			 * exceed ssk->sk_rcvbuf).
2026 			 */
2027 			mptcp_for_each_subflow(msk, subflow) {
2028 				struct sock *ssk;
2029 				bool slow;
2030 
2031 				ssk = mptcp_subflow_tcp_sock(subflow);
2032 				slow = lock_sock_fast(ssk);
2033 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2034 				tcp_sk(ssk)->window_clamp = window_clamp;
2035 				tcp_cleanup_rbuf(ssk, 1);
2036 				unlock_sock_fast(ssk, slow);
2037 			}
2038 		}
2039 	}
2040 
2041 	msk->rcvq_space.space = msk->rcvq_space.copied;
2042 new_measure:
2043 	msk->rcvq_space.copied = 0;
2044 	msk->rcvq_space.time = mstamp;
2045 }
2046 
2047 static void __mptcp_update_rmem(struct sock *sk)
2048 {
2049 	struct mptcp_sock *msk = mptcp_sk(sk);
2050 
2051 	if (!msk->rmem_released)
2052 		return;
2053 
2054 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2055 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2056 	WRITE_ONCE(msk->rmem_released, 0);
2057 }
2058 
2059 static void __mptcp_splice_receive_queue(struct sock *sk)
2060 {
2061 	struct mptcp_sock *msk = mptcp_sk(sk);
2062 
2063 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2064 }
2065 
2066 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2067 {
2068 	struct sock *sk = (struct sock *)msk;
2069 	unsigned int moved = 0;
2070 	bool ret, done;
2071 
2072 	do {
2073 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2074 		bool slowpath;
2075 
2076 		/* we can have data pending in the subflows only if the msk
2077 		 * receive buffer was full at subflow_data_ready() time,
2078 		 * that is an unlikely slow path.
2079 		 */
2080 		if (likely(!ssk))
2081 			break;
2082 
2083 		slowpath = lock_sock_fast(ssk);
2084 		mptcp_data_lock(sk);
2085 		__mptcp_update_rmem(sk);
2086 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2087 		mptcp_data_unlock(sk);
2088 
2089 		if (unlikely(ssk->sk_err))
2090 			__mptcp_error_report(sk);
2091 		unlock_sock_fast(ssk, slowpath);
2092 	} while (!done);
2093 
2094 	/* acquire the data lock only if some input data is pending */
2095 	ret = moved > 0;
2096 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2097 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2098 		mptcp_data_lock(sk);
2099 		__mptcp_update_rmem(sk);
2100 		ret |= __mptcp_ofo_queue(msk);
2101 		__mptcp_splice_receive_queue(sk);
2102 		mptcp_data_unlock(sk);
2103 	}
2104 	if (ret)
2105 		mptcp_check_data_fin((struct sock *)msk);
2106 	return !skb_queue_empty(&msk->receive_queue);
2107 }
2108 
2109 static unsigned int mptcp_inq_hint(const struct sock *sk)
2110 {
2111 	const struct mptcp_sock *msk = mptcp_sk(sk);
2112 	const struct sk_buff *skb;
2113 
2114 	skb = skb_peek(&msk->receive_queue);
2115 	if (skb) {
2116 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2117 
2118 		if (hint_val >= INT_MAX)
2119 			return INT_MAX;
2120 
2121 		return (unsigned int)hint_val;
2122 	}
2123 
2124 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2125 		return 1;
2126 
2127 	return 0;
2128 }
2129 
2130 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2131 			 int flags, int *addr_len)
2132 {
2133 	struct mptcp_sock *msk = mptcp_sk(sk);
2134 	struct scm_timestamping_internal tss;
2135 	int copied = 0, cmsg_flags = 0;
2136 	int target;
2137 	long timeo;
2138 
2139 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2140 	if (unlikely(flags & MSG_ERRQUEUE))
2141 		return inet_recv_error(sk, msg, len, addr_len);
2142 
2143 	lock_sock(sk);
2144 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2145 		copied = -ENOTCONN;
2146 		goto out_err;
2147 	}
2148 
2149 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2150 
2151 	len = min_t(size_t, len, INT_MAX);
2152 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2153 
2154 	if (unlikely(msk->recvmsg_inq))
2155 		cmsg_flags = MPTCP_CMSG_INQ;
2156 
2157 	while (copied < len) {
2158 		int bytes_read;
2159 
2160 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2161 		if (unlikely(bytes_read < 0)) {
2162 			if (!copied)
2163 				copied = bytes_read;
2164 			goto out_err;
2165 		}
2166 
2167 		copied += bytes_read;
2168 
2169 		/* be sure to advertise window change */
2170 		mptcp_cleanup_rbuf(msk);
2171 
2172 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2173 			continue;
2174 
2175 		/* only the master socket status is relevant here. The exit
2176 		 * conditions mirror closely tcp_recvmsg()
2177 		 */
2178 		if (copied >= target)
2179 			break;
2180 
2181 		if (copied) {
2182 			if (sk->sk_err ||
2183 			    sk->sk_state == TCP_CLOSE ||
2184 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2185 			    !timeo ||
2186 			    signal_pending(current))
2187 				break;
2188 		} else {
2189 			if (sk->sk_err) {
2190 				copied = sock_error(sk);
2191 				break;
2192 			}
2193 
2194 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2195 				/* race breaker: the shutdown could be after the
2196 				 * previous receive queue check
2197 				 */
2198 				if (__mptcp_move_skbs(msk))
2199 					continue;
2200 				break;
2201 			}
2202 
2203 			if (sk->sk_state == TCP_CLOSE) {
2204 				copied = -ENOTCONN;
2205 				break;
2206 			}
2207 
2208 			if (!timeo) {
2209 				copied = -EAGAIN;
2210 				break;
2211 			}
2212 
2213 			if (signal_pending(current)) {
2214 				copied = sock_intr_errno(timeo);
2215 				break;
2216 			}
2217 		}
2218 
2219 		pr_debug("block timeout %ld", timeo);
2220 		sk_wait_data(sk, &timeo, NULL);
2221 	}
2222 
2223 out_err:
2224 	if (cmsg_flags && copied >= 0) {
2225 		if (cmsg_flags & MPTCP_CMSG_TS)
2226 			tcp_recv_timestamp(msg, sk, &tss);
2227 
2228 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2229 			unsigned int inq = mptcp_inq_hint(sk);
2230 
2231 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2232 		}
2233 	}
2234 
2235 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2236 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2237 		 skb_queue_empty(&msk->receive_queue), copied);
2238 	if (!(flags & MSG_PEEK))
2239 		mptcp_rcv_space_adjust(msk, copied);
2240 
2241 	release_sock(sk);
2242 	return copied;
2243 }
2244 
2245 static void mptcp_retransmit_timer(struct timer_list *t)
2246 {
2247 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2248 						       icsk_retransmit_timer);
2249 	struct sock *sk = &icsk->icsk_inet.sk;
2250 	struct mptcp_sock *msk = mptcp_sk(sk);
2251 
2252 	bh_lock_sock(sk);
2253 	if (!sock_owned_by_user(sk)) {
2254 		/* we need a process context to retransmit */
2255 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2256 			mptcp_schedule_work(sk);
2257 	} else {
2258 		/* delegate our work to tcp_release_cb() */
2259 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2260 	}
2261 	bh_unlock_sock(sk);
2262 	sock_put(sk);
2263 }
2264 
2265 static void mptcp_tout_timer(struct timer_list *t)
2266 {
2267 	struct sock *sk = from_timer(sk, t, sk_timer);
2268 
2269 	mptcp_schedule_work(sk);
2270 	sock_put(sk);
2271 }
2272 
2273 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2274  * level.
2275  *
2276  * A backup subflow is returned only if that is the only kind available.
2277  */
2278 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2279 {
2280 	struct sock *backup = NULL, *pick = NULL;
2281 	struct mptcp_subflow_context *subflow;
2282 	int min_stale_count = INT_MAX;
2283 
2284 	mptcp_for_each_subflow(msk, subflow) {
2285 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2286 
2287 		if (!__mptcp_subflow_active(subflow))
2288 			continue;
2289 
2290 		/* still data outstanding at TCP level? skip this */
2291 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2292 			mptcp_pm_subflow_chk_stale(msk, ssk);
2293 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2294 			continue;
2295 		}
2296 
2297 		if (subflow->backup) {
2298 			if (!backup)
2299 				backup = ssk;
2300 			continue;
2301 		}
2302 
2303 		if (!pick)
2304 			pick = ssk;
2305 	}
2306 
2307 	if (pick)
2308 		return pick;
2309 
2310 	/* use backup only if there are no progresses anywhere */
2311 	return min_stale_count > 1 ? backup : NULL;
2312 }
2313 
2314 bool __mptcp_retransmit_pending_data(struct sock *sk)
2315 {
2316 	struct mptcp_data_frag *cur, *rtx_head;
2317 	struct mptcp_sock *msk = mptcp_sk(sk);
2318 
2319 	if (__mptcp_check_fallback(msk))
2320 		return false;
2321 
2322 	/* the closing socket has some data untransmitted and/or unacked:
2323 	 * some data in the mptcp rtx queue has not really xmitted yet.
2324 	 * keep it simple and re-inject the whole mptcp level rtx queue
2325 	 */
2326 	mptcp_data_lock(sk);
2327 	__mptcp_clean_una_wakeup(sk);
2328 	rtx_head = mptcp_rtx_head(sk);
2329 	if (!rtx_head) {
2330 		mptcp_data_unlock(sk);
2331 		return false;
2332 	}
2333 
2334 	msk->recovery_snd_nxt = msk->snd_nxt;
2335 	msk->recovery = true;
2336 	mptcp_data_unlock(sk);
2337 
2338 	msk->first_pending = rtx_head;
2339 	msk->snd_burst = 0;
2340 
2341 	/* be sure to clear the "sent status" on all re-injected fragments */
2342 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2343 		if (!cur->already_sent)
2344 			break;
2345 		cur->already_sent = 0;
2346 	}
2347 
2348 	return true;
2349 }
2350 
2351 /* flags for __mptcp_close_ssk() */
2352 #define MPTCP_CF_PUSH		BIT(1)
2353 #define MPTCP_CF_FASTCLOSE	BIT(2)
2354 
2355 /* be sure to send a reset only if the caller asked for it, also
2356  * clean completely the subflow status when the subflow reaches
2357  * TCP_CLOSE state
2358  */
2359 static void __mptcp_subflow_disconnect(struct sock *ssk,
2360 				       struct mptcp_subflow_context *subflow,
2361 				       unsigned int flags)
2362 {
2363 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2364 	    (flags & MPTCP_CF_FASTCLOSE)) {
2365 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2366 		 * disconnect should never fail
2367 		 */
2368 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2369 		mptcp_subflow_ctx_reset(subflow);
2370 	} else {
2371 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2372 	}
2373 }
2374 
2375 /* subflow sockets can be either outgoing (connect) or incoming
2376  * (accept).
2377  *
2378  * Outgoing subflows use in-kernel sockets.
2379  * Incoming subflows do not have their own 'struct socket' allocated,
2380  * so we need to use tcp_close() after detaching them from the mptcp
2381  * parent socket.
2382  */
2383 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2384 			      struct mptcp_subflow_context *subflow,
2385 			      unsigned int flags)
2386 {
2387 	struct mptcp_sock *msk = mptcp_sk(sk);
2388 	bool dispose_it, need_push = false;
2389 
2390 	/* If the first subflow moved to a close state before accept, e.g. due
2391 	 * to an incoming reset or listener shutdown, the subflow socket is
2392 	 * already deleted by inet_child_forget() and the mptcp socket can't
2393 	 * survive too.
2394 	 */
2395 	if (msk->in_accept_queue && msk->first == ssk &&
2396 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2397 		/* ensure later check in mptcp_worker() will dispose the msk */
2398 		sock_set_flag(sk, SOCK_DEAD);
2399 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2400 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2401 		mptcp_subflow_drop_ctx(ssk);
2402 		goto out_release;
2403 	}
2404 
2405 	dispose_it = msk->free_first || ssk != msk->first;
2406 	if (dispose_it)
2407 		list_del(&subflow->node);
2408 
2409 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2410 
2411 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2412 		/* be sure to force the tcp_close path
2413 		 * to generate the egress reset
2414 		 */
2415 		ssk->sk_lingertime = 0;
2416 		sock_set_flag(ssk, SOCK_LINGER);
2417 		subflow->send_fastclose = 1;
2418 	}
2419 
2420 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2421 	if (!dispose_it) {
2422 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2423 		release_sock(ssk);
2424 
2425 		goto out;
2426 	}
2427 
2428 	subflow->disposable = 1;
2429 
2430 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2431 	 * the ssk has been already destroyed, we just need to release the
2432 	 * reference owned by msk;
2433 	 */
2434 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2435 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2436 		kfree_rcu(subflow, rcu);
2437 	} else {
2438 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2439 		__tcp_close(ssk, 0);
2440 
2441 		/* close acquired an extra ref */
2442 		__sock_put(ssk);
2443 	}
2444 
2445 out_release:
2446 	__mptcp_subflow_error_report(sk, ssk);
2447 	release_sock(ssk);
2448 
2449 	sock_put(ssk);
2450 
2451 	if (ssk == msk->first)
2452 		WRITE_ONCE(msk->first, NULL);
2453 
2454 out:
2455 	__mptcp_sync_sndbuf(sk);
2456 	if (need_push)
2457 		__mptcp_push_pending(sk, 0);
2458 
2459 	/* Catch every 'all subflows closed' scenario, including peers silently
2460 	 * closing them, e.g. due to timeout.
2461 	 * For established sockets, allow an additional timeout before closing,
2462 	 * as the protocol can still create more subflows.
2463 	 */
2464 	if (list_is_singular(&msk->conn_list) && msk->first &&
2465 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2466 		if (sk->sk_state != TCP_ESTABLISHED ||
2467 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2468 			mptcp_set_state(sk, TCP_CLOSE);
2469 			mptcp_close_wake_up(sk);
2470 		} else {
2471 			mptcp_start_tout_timer(sk);
2472 		}
2473 	}
2474 }
2475 
2476 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2477 		     struct mptcp_subflow_context *subflow)
2478 {
2479 	if (sk->sk_state == TCP_ESTABLISHED)
2480 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2481 
2482 	/* subflow aborted before reaching the fully_established status
2483 	 * attempt the creation of the next subflow
2484 	 */
2485 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2486 
2487 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2488 }
2489 
2490 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2491 {
2492 	return 0;
2493 }
2494 
2495 static void __mptcp_close_subflow(struct sock *sk)
2496 {
2497 	struct mptcp_subflow_context *subflow, *tmp;
2498 	struct mptcp_sock *msk = mptcp_sk(sk);
2499 
2500 	might_sleep();
2501 
2502 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2503 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2504 
2505 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2506 			continue;
2507 
2508 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2509 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2510 			continue;
2511 
2512 		mptcp_close_ssk(sk, ssk, subflow);
2513 	}
2514 
2515 }
2516 
2517 static bool mptcp_close_tout_expired(const struct sock *sk)
2518 {
2519 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2520 	    sk->sk_state == TCP_CLOSE)
2521 		return false;
2522 
2523 	return time_after32(tcp_jiffies32,
2524 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2525 }
2526 
2527 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2528 {
2529 	struct mptcp_subflow_context *subflow, *tmp;
2530 	struct sock *sk = (struct sock *)msk;
2531 
2532 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2533 		return;
2534 
2535 	mptcp_token_destroy(msk);
2536 
2537 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2538 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2539 		bool slow;
2540 
2541 		slow = lock_sock_fast(tcp_sk);
2542 		if (tcp_sk->sk_state != TCP_CLOSE) {
2543 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2544 			tcp_set_state(tcp_sk, TCP_CLOSE);
2545 		}
2546 		unlock_sock_fast(tcp_sk, slow);
2547 	}
2548 
2549 	/* Mirror the tcp_reset() error propagation */
2550 	switch (sk->sk_state) {
2551 	case TCP_SYN_SENT:
2552 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2553 		break;
2554 	case TCP_CLOSE_WAIT:
2555 		WRITE_ONCE(sk->sk_err, EPIPE);
2556 		break;
2557 	case TCP_CLOSE:
2558 		return;
2559 	default:
2560 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2561 	}
2562 
2563 	mptcp_set_state(sk, TCP_CLOSE);
2564 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2565 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2566 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2567 
2568 	/* the calling mptcp_worker will properly destroy the socket */
2569 	if (sock_flag(sk, SOCK_DEAD))
2570 		return;
2571 
2572 	sk->sk_state_change(sk);
2573 	sk_error_report(sk);
2574 }
2575 
2576 static void __mptcp_retrans(struct sock *sk)
2577 {
2578 	struct mptcp_sock *msk = mptcp_sk(sk);
2579 	struct mptcp_subflow_context *subflow;
2580 	struct mptcp_sendmsg_info info = {};
2581 	struct mptcp_data_frag *dfrag;
2582 	struct sock *ssk;
2583 	int ret, err;
2584 	u16 len = 0;
2585 
2586 	mptcp_clean_una_wakeup(sk);
2587 
2588 	/* first check ssk: need to kick "stale" logic */
2589 	err = mptcp_sched_get_retrans(msk);
2590 	dfrag = mptcp_rtx_head(sk);
2591 	if (!dfrag) {
2592 		if (mptcp_data_fin_enabled(msk)) {
2593 			struct inet_connection_sock *icsk = inet_csk(sk);
2594 
2595 			icsk->icsk_retransmits++;
2596 			mptcp_set_datafin_timeout(sk);
2597 			mptcp_send_ack(msk);
2598 
2599 			goto reset_timer;
2600 		}
2601 
2602 		if (!mptcp_send_head(sk))
2603 			return;
2604 
2605 		goto reset_timer;
2606 	}
2607 
2608 	if (err)
2609 		goto reset_timer;
2610 
2611 	mptcp_for_each_subflow(msk, subflow) {
2612 		if (READ_ONCE(subflow->scheduled)) {
2613 			u16 copied = 0;
2614 
2615 			mptcp_subflow_set_scheduled(subflow, false);
2616 
2617 			ssk = mptcp_subflow_tcp_sock(subflow);
2618 
2619 			lock_sock(ssk);
2620 
2621 			/* limit retransmission to the bytes already sent on some subflows */
2622 			info.sent = 0;
2623 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2624 								    dfrag->already_sent;
2625 			while (info.sent < info.limit) {
2626 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2627 				if (ret <= 0)
2628 					break;
2629 
2630 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2631 				copied += ret;
2632 				info.sent += ret;
2633 			}
2634 			if (copied) {
2635 				len = max(copied, len);
2636 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2637 					 info.size_goal);
2638 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2639 			}
2640 
2641 			release_sock(ssk);
2642 		}
2643 	}
2644 
2645 	msk->bytes_retrans += len;
2646 	dfrag->already_sent = max(dfrag->already_sent, len);
2647 
2648 reset_timer:
2649 	mptcp_check_and_set_pending(sk);
2650 
2651 	if (!mptcp_rtx_timer_pending(sk))
2652 		mptcp_reset_rtx_timer(sk);
2653 }
2654 
2655 /* schedule the timeout timer for the relevant event: either close timeout
2656  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2657  */
2658 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2659 {
2660 	struct sock *sk = (struct sock *)msk;
2661 	unsigned long timeout, close_timeout;
2662 
2663 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2664 		return;
2665 
2666 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2667 			mptcp_close_timeout(sk);
2668 
2669 	/* the close timeout takes precedence on the fail one, and here at least one of
2670 	 * them is active
2671 	 */
2672 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2673 
2674 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2675 }
2676 
2677 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2678 {
2679 	struct sock *ssk = msk->first;
2680 	bool slow;
2681 
2682 	if (!ssk)
2683 		return;
2684 
2685 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2686 
2687 	slow = lock_sock_fast(ssk);
2688 	mptcp_subflow_reset(ssk);
2689 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2690 	unlock_sock_fast(ssk, slow);
2691 }
2692 
2693 static void mptcp_do_fastclose(struct sock *sk)
2694 {
2695 	struct mptcp_subflow_context *subflow, *tmp;
2696 	struct mptcp_sock *msk = mptcp_sk(sk);
2697 
2698 	mptcp_set_state(sk, TCP_CLOSE);
2699 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2700 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2701 				  subflow, MPTCP_CF_FASTCLOSE);
2702 }
2703 
2704 static void mptcp_worker(struct work_struct *work)
2705 {
2706 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2707 	struct sock *sk = (struct sock *)msk;
2708 	unsigned long fail_tout;
2709 	int state;
2710 
2711 	lock_sock(sk);
2712 	state = sk->sk_state;
2713 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2714 		goto unlock;
2715 
2716 	mptcp_check_fastclose(msk);
2717 
2718 	mptcp_pm_nl_work(msk);
2719 
2720 	mptcp_check_send_data_fin(sk);
2721 	mptcp_check_data_fin_ack(sk);
2722 	mptcp_check_data_fin(sk);
2723 
2724 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2725 		__mptcp_close_subflow(sk);
2726 
2727 	if (mptcp_close_tout_expired(sk)) {
2728 		mptcp_do_fastclose(sk);
2729 		mptcp_close_wake_up(sk);
2730 	}
2731 
2732 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2733 		__mptcp_destroy_sock(sk);
2734 		goto unlock;
2735 	}
2736 
2737 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2738 		__mptcp_retrans(sk);
2739 
2740 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2741 	if (fail_tout && time_after(jiffies, fail_tout))
2742 		mptcp_mp_fail_no_response(msk);
2743 
2744 unlock:
2745 	release_sock(sk);
2746 	sock_put(sk);
2747 }
2748 
2749 static void __mptcp_init_sock(struct sock *sk)
2750 {
2751 	struct mptcp_sock *msk = mptcp_sk(sk);
2752 
2753 	INIT_LIST_HEAD(&msk->conn_list);
2754 	INIT_LIST_HEAD(&msk->join_list);
2755 	INIT_LIST_HEAD(&msk->rtx_queue);
2756 	INIT_WORK(&msk->work, mptcp_worker);
2757 	__skb_queue_head_init(&msk->receive_queue);
2758 	msk->out_of_order_queue = RB_ROOT;
2759 	msk->first_pending = NULL;
2760 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
2761 	WRITE_ONCE(msk->rmem_released, 0);
2762 	msk->timer_ival = TCP_RTO_MIN;
2763 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2764 
2765 	WRITE_ONCE(msk->first, NULL);
2766 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2767 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2768 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2769 	msk->recovery = false;
2770 	msk->subflow_id = 1;
2771 
2772 	mptcp_pm_data_init(msk);
2773 
2774 	/* re-use the csk retrans timer for MPTCP-level retrans */
2775 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2776 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2777 }
2778 
2779 static void mptcp_ca_reset(struct sock *sk)
2780 {
2781 	struct inet_connection_sock *icsk = inet_csk(sk);
2782 
2783 	tcp_assign_congestion_control(sk);
2784 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2785 
2786 	/* no need to keep a reference to the ops, the name will suffice */
2787 	tcp_cleanup_congestion_control(sk);
2788 	icsk->icsk_ca_ops = NULL;
2789 }
2790 
2791 static int mptcp_init_sock(struct sock *sk)
2792 {
2793 	struct net *net = sock_net(sk);
2794 	int ret;
2795 
2796 	__mptcp_init_sock(sk);
2797 
2798 	if (!mptcp_is_enabled(net))
2799 		return -ENOPROTOOPT;
2800 
2801 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2802 		return -ENOMEM;
2803 
2804 	ret = mptcp_init_sched(mptcp_sk(sk),
2805 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2806 	if (ret)
2807 		return ret;
2808 
2809 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2810 
2811 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2812 	 * propagate the correct value
2813 	 */
2814 	mptcp_ca_reset(sk);
2815 
2816 	sk_sockets_allocated_inc(sk);
2817 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2818 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2819 
2820 	return 0;
2821 }
2822 
2823 static void __mptcp_clear_xmit(struct sock *sk)
2824 {
2825 	struct mptcp_sock *msk = mptcp_sk(sk);
2826 	struct mptcp_data_frag *dtmp, *dfrag;
2827 
2828 	WRITE_ONCE(msk->first_pending, NULL);
2829 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2830 		dfrag_clear(sk, dfrag);
2831 }
2832 
2833 void mptcp_cancel_work(struct sock *sk)
2834 {
2835 	struct mptcp_sock *msk = mptcp_sk(sk);
2836 
2837 	if (cancel_work_sync(&msk->work))
2838 		__sock_put(sk);
2839 }
2840 
2841 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2842 {
2843 	lock_sock(ssk);
2844 
2845 	switch (ssk->sk_state) {
2846 	case TCP_LISTEN:
2847 		if (!(how & RCV_SHUTDOWN))
2848 			break;
2849 		fallthrough;
2850 	case TCP_SYN_SENT:
2851 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2852 		break;
2853 	default:
2854 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2855 			pr_debug("Fallback");
2856 			ssk->sk_shutdown |= how;
2857 			tcp_shutdown(ssk, how);
2858 
2859 			/* simulate the data_fin ack reception to let the state
2860 			 * machine move forward
2861 			 */
2862 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2863 			mptcp_schedule_work(sk);
2864 		} else {
2865 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2866 			tcp_send_ack(ssk);
2867 			if (!mptcp_rtx_timer_pending(sk))
2868 				mptcp_reset_rtx_timer(sk);
2869 		}
2870 		break;
2871 	}
2872 
2873 	release_sock(ssk);
2874 }
2875 
2876 void mptcp_set_state(struct sock *sk, int state)
2877 {
2878 	int oldstate = sk->sk_state;
2879 
2880 	switch (state) {
2881 	case TCP_ESTABLISHED:
2882 		if (oldstate != TCP_ESTABLISHED)
2883 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2884 		break;
2885 
2886 	default:
2887 		if (oldstate == TCP_ESTABLISHED)
2888 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2889 	}
2890 
2891 	inet_sk_state_store(sk, state);
2892 }
2893 
2894 static const unsigned char new_state[16] = {
2895 	/* current state:     new state:      action:	*/
2896 	[0 /* (Invalid) */] = TCP_CLOSE,
2897 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2898 	[TCP_SYN_SENT]      = TCP_CLOSE,
2899 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2900 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2901 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2902 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2903 	[TCP_CLOSE]         = TCP_CLOSE,
2904 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2905 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2906 	[TCP_LISTEN]        = TCP_CLOSE,
2907 	[TCP_CLOSING]       = TCP_CLOSING,
2908 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2909 };
2910 
2911 static int mptcp_close_state(struct sock *sk)
2912 {
2913 	int next = (int)new_state[sk->sk_state];
2914 	int ns = next & TCP_STATE_MASK;
2915 
2916 	mptcp_set_state(sk, ns);
2917 
2918 	return next & TCP_ACTION_FIN;
2919 }
2920 
2921 static void mptcp_check_send_data_fin(struct sock *sk)
2922 {
2923 	struct mptcp_subflow_context *subflow;
2924 	struct mptcp_sock *msk = mptcp_sk(sk);
2925 
2926 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2927 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2928 		 msk->snd_nxt, msk->write_seq);
2929 
2930 	/* we still need to enqueue subflows or not really shutting down,
2931 	 * skip this
2932 	 */
2933 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2934 	    mptcp_send_head(sk))
2935 		return;
2936 
2937 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2938 
2939 	mptcp_for_each_subflow(msk, subflow) {
2940 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2941 
2942 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2943 	}
2944 }
2945 
2946 static void __mptcp_wr_shutdown(struct sock *sk)
2947 {
2948 	struct mptcp_sock *msk = mptcp_sk(sk);
2949 
2950 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2951 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2952 		 !!mptcp_send_head(sk));
2953 
2954 	/* will be ignored by fallback sockets */
2955 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2956 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2957 
2958 	mptcp_check_send_data_fin(sk);
2959 }
2960 
2961 static void __mptcp_destroy_sock(struct sock *sk)
2962 {
2963 	struct mptcp_sock *msk = mptcp_sk(sk);
2964 
2965 	pr_debug("msk=%p", msk);
2966 
2967 	might_sleep();
2968 
2969 	mptcp_stop_rtx_timer(sk);
2970 	sk_stop_timer(sk, &sk->sk_timer);
2971 	msk->pm.status = 0;
2972 	mptcp_release_sched(msk);
2973 
2974 	sk->sk_prot->destroy(sk);
2975 
2976 	WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
2977 	WARN_ON_ONCE(msk->rmem_released);
2978 	sk_stream_kill_queues(sk);
2979 	xfrm_sk_free_policy(sk);
2980 
2981 	sock_put(sk);
2982 }
2983 
2984 void __mptcp_unaccepted_force_close(struct sock *sk)
2985 {
2986 	sock_set_flag(sk, SOCK_DEAD);
2987 	mptcp_do_fastclose(sk);
2988 	__mptcp_destroy_sock(sk);
2989 }
2990 
2991 static __poll_t mptcp_check_readable(struct sock *sk)
2992 {
2993 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2994 }
2995 
2996 static void mptcp_check_listen_stop(struct sock *sk)
2997 {
2998 	struct sock *ssk;
2999 
3000 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3001 		return;
3002 
3003 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3004 	ssk = mptcp_sk(sk)->first;
3005 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3006 		return;
3007 
3008 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3009 	tcp_set_state(ssk, TCP_CLOSE);
3010 	mptcp_subflow_queue_clean(sk, ssk);
3011 	inet_csk_listen_stop(ssk);
3012 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3013 	release_sock(ssk);
3014 }
3015 
3016 bool __mptcp_close(struct sock *sk, long timeout)
3017 {
3018 	struct mptcp_subflow_context *subflow;
3019 	struct mptcp_sock *msk = mptcp_sk(sk);
3020 	bool do_cancel_work = false;
3021 	int subflows_alive = 0;
3022 
3023 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3024 
3025 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3026 		mptcp_check_listen_stop(sk);
3027 		mptcp_set_state(sk, TCP_CLOSE);
3028 		goto cleanup;
3029 	}
3030 
3031 	if (mptcp_data_avail(msk) || timeout < 0) {
3032 		/* If the msk has read data, or the caller explicitly ask it,
3033 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3034 		 */
3035 		mptcp_do_fastclose(sk);
3036 		timeout = 0;
3037 	} else if (mptcp_close_state(sk)) {
3038 		__mptcp_wr_shutdown(sk);
3039 	}
3040 
3041 	sk_stream_wait_close(sk, timeout);
3042 
3043 cleanup:
3044 	/* orphan all the subflows */
3045 	mptcp_for_each_subflow(msk, subflow) {
3046 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3047 		bool slow = lock_sock_fast_nested(ssk);
3048 
3049 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3050 
3051 		/* since the close timeout takes precedence on the fail one,
3052 		 * cancel the latter
3053 		 */
3054 		if (ssk == msk->first)
3055 			subflow->fail_tout = 0;
3056 
3057 		/* detach from the parent socket, but allow data_ready to
3058 		 * push incoming data into the mptcp stack, to properly ack it
3059 		 */
3060 		ssk->sk_socket = NULL;
3061 		ssk->sk_wq = NULL;
3062 		unlock_sock_fast(ssk, slow);
3063 	}
3064 	sock_orphan(sk);
3065 
3066 	/* all the subflows are closed, only timeout can change the msk
3067 	 * state, let's not keep resources busy for no reasons
3068 	 */
3069 	if (subflows_alive == 0)
3070 		mptcp_set_state(sk, TCP_CLOSE);
3071 
3072 	sock_hold(sk);
3073 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3074 	if (msk->token)
3075 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3076 
3077 	if (sk->sk_state == TCP_CLOSE) {
3078 		__mptcp_destroy_sock(sk);
3079 		do_cancel_work = true;
3080 	} else {
3081 		mptcp_start_tout_timer(sk);
3082 	}
3083 
3084 	return do_cancel_work;
3085 }
3086 
3087 static void mptcp_close(struct sock *sk, long timeout)
3088 {
3089 	bool do_cancel_work;
3090 
3091 	lock_sock(sk);
3092 
3093 	do_cancel_work = __mptcp_close(sk, timeout);
3094 	release_sock(sk);
3095 	if (do_cancel_work)
3096 		mptcp_cancel_work(sk);
3097 
3098 	sock_put(sk);
3099 }
3100 
3101 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3102 {
3103 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3104 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3105 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3106 
3107 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3108 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3109 
3110 	if (msk6 && ssk6) {
3111 		msk6->saddr = ssk6->saddr;
3112 		msk6->flow_label = ssk6->flow_label;
3113 	}
3114 #endif
3115 
3116 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3117 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3118 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3119 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3120 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3121 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3122 }
3123 
3124 static int mptcp_disconnect(struct sock *sk, int flags)
3125 {
3126 	struct mptcp_sock *msk = mptcp_sk(sk);
3127 
3128 	/* We are on the fastopen error path. We can't call straight into the
3129 	 * subflows cleanup code due to lock nesting (we are already under
3130 	 * msk->firstsocket lock).
3131 	 */
3132 	if (msk->fastopening)
3133 		return -EBUSY;
3134 
3135 	mptcp_check_listen_stop(sk);
3136 	mptcp_set_state(sk, TCP_CLOSE);
3137 
3138 	mptcp_stop_rtx_timer(sk);
3139 	mptcp_stop_tout_timer(sk);
3140 
3141 	if (msk->token)
3142 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3143 
3144 	/* msk->subflow is still intact, the following will not free the first
3145 	 * subflow
3146 	 */
3147 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3148 	WRITE_ONCE(msk->flags, 0);
3149 	msk->cb_flags = 0;
3150 	msk->push_pending = 0;
3151 	msk->recovery = false;
3152 	WRITE_ONCE(msk->can_ack, false);
3153 	WRITE_ONCE(msk->fully_established, false);
3154 	WRITE_ONCE(msk->rcv_data_fin, false);
3155 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3156 	WRITE_ONCE(msk->rcv_fastclose, false);
3157 	WRITE_ONCE(msk->use_64bit_ack, false);
3158 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3159 	mptcp_pm_data_reset(msk);
3160 	mptcp_ca_reset(sk);
3161 	msk->bytes_consumed = 0;
3162 	msk->bytes_acked = 0;
3163 	msk->bytes_received = 0;
3164 	msk->bytes_sent = 0;
3165 	msk->bytes_retrans = 0;
3166 
3167 	WRITE_ONCE(sk->sk_shutdown, 0);
3168 	sk_error_report(sk);
3169 	return 0;
3170 }
3171 
3172 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3173 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3174 {
3175 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3176 
3177 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3178 }
3179 #endif
3180 
3181 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3182 				 const struct mptcp_options_received *mp_opt,
3183 				 struct sock *ssk,
3184 				 struct request_sock *req)
3185 {
3186 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3187 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3188 	struct mptcp_sock *msk;
3189 
3190 	if (!nsk)
3191 		return NULL;
3192 
3193 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3194 	if (nsk->sk_family == AF_INET6)
3195 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3196 #endif
3197 
3198 	__mptcp_init_sock(nsk);
3199 
3200 	msk = mptcp_sk(nsk);
3201 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3202 	WRITE_ONCE(msk->token, subflow_req->token);
3203 	msk->in_accept_queue = 1;
3204 	WRITE_ONCE(msk->fully_established, false);
3205 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3206 		WRITE_ONCE(msk->csum_enabled, true);
3207 
3208 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3209 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3210 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3211 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + req->rsk_rcv_wnd);
3212 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3213 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3214 
3215 	/* passive msk is created after the first/MPC subflow */
3216 	msk->subflow_id = 2;
3217 
3218 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3219 	security_inet_csk_clone(nsk, req);
3220 
3221 	/* this can't race with mptcp_close(), as the msk is
3222 	 * not yet exposted to user-space
3223 	 */
3224 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3225 
3226 	/* The msk maintain a ref to each subflow in the connections list */
3227 	WRITE_ONCE(msk->first, ssk);
3228 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3229 	sock_hold(ssk);
3230 
3231 	/* new mpc subflow takes ownership of the newly
3232 	 * created mptcp socket
3233 	 */
3234 	mptcp_token_accept(subflow_req, msk);
3235 
3236 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3237 	 * uses the correct data
3238 	 */
3239 	mptcp_copy_inaddrs(nsk, ssk);
3240 	__mptcp_propagate_sndbuf(nsk, ssk);
3241 
3242 	mptcp_rcv_space_init(msk, ssk);
3243 	bh_unlock_sock(nsk);
3244 
3245 	/* note: the newly allocated socket refcount is 2 now */
3246 	return nsk;
3247 }
3248 
3249 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3250 {
3251 	const struct tcp_sock *tp = tcp_sk(ssk);
3252 
3253 	msk->rcvq_space.copied = 0;
3254 	msk->rcvq_space.rtt_us = 0;
3255 
3256 	msk->rcvq_space.time = tp->tcp_mstamp;
3257 
3258 	/* initial rcv_space offering made to peer */
3259 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3260 				      TCP_INIT_CWND * tp->advmss);
3261 	if (msk->rcvq_space.space == 0)
3262 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3263 
3264 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3265 }
3266 
3267 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3268 {
3269 	struct mptcp_subflow_context *subflow, *tmp;
3270 	struct sock *sk = (struct sock *)msk;
3271 
3272 	__mptcp_clear_xmit(sk);
3273 
3274 	/* join list will be eventually flushed (with rst) at sock lock release time */
3275 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3276 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3277 
3278 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3279 	mptcp_data_lock(sk);
3280 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3281 	__skb_queue_purge(&sk->sk_receive_queue);
3282 	skb_rbtree_purge(&msk->out_of_order_queue);
3283 	mptcp_data_unlock(sk);
3284 
3285 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3286 	 * inet_sock_destruct() will dispose it
3287 	 */
3288 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3289 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3290 	mptcp_token_destroy(msk);
3291 	mptcp_pm_free_anno_list(msk);
3292 	mptcp_free_local_addr_list(msk);
3293 }
3294 
3295 static void mptcp_destroy(struct sock *sk)
3296 {
3297 	struct mptcp_sock *msk = mptcp_sk(sk);
3298 
3299 	/* allow the following to close even the initial subflow */
3300 	msk->free_first = 1;
3301 	mptcp_destroy_common(msk, 0);
3302 	sk_sockets_allocated_dec(sk);
3303 }
3304 
3305 void __mptcp_data_acked(struct sock *sk)
3306 {
3307 	if (!sock_owned_by_user(sk))
3308 		__mptcp_clean_una(sk);
3309 	else
3310 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3311 }
3312 
3313 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3314 {
3315 	if (!mptcp_send_head(sk))
3316 		return;
3317 
3318 	if (!sock_owned_by_user(sk))
3319 		__mptcp_subflow_push_pending(sk, ssk, false);
3320 	else
3321 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3322 }
3323 
3324 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3325 				      BIT(MPTCP_RETRANSMIT) | \
3326 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3327 
3328 /* processes deferred events and flush wmem */
3329 static void mptcp_release_cb(struct sock *sk)
3330 	__must_hold(&sk->sk_lock.slock)
3331 {
3332 	struct mptcp_sock *msk = mptcp_sk(sk);
3333 
3334 	for (;;) {
3335 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3336 				      msk->push_pending;
3337 		struct list_head join_list;
3338 
3339 		if (!flags)
3340 			break;
3341 
3342 		INIT_LIST_HEAD(&join_list);
3343 		list_splice_init(&msk->join_list, &join_list);
3344 
3345 		/* the following actions acquire the subflow socket lock
3346 		 *
3347 		 * 1) can't be invoked in atomic scope
3348 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3349 		 *    datapath acquires the msk socket spinlock while helding
3350 		 *    the subflow socket lock
3351 		 */
3352 		msk->push_pending = 0;
3353 		msk->cb_flags &= ~flags;
3354 		spin_unlock_bh(&sk->sk_lock.slock);
3355 
3356 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3357 			__mptcp_flush_join_list(sk, &join_list);
3358 		if (flags & BIT(MPTCP_PUSH_PENDING))
3359 			__mptcp_push_pending(sk, 0);
3360 		if (flags & BIT(MPTCP_RETRANSMIT))
3361 			__mptcp_retrans(sk);
3362 
3363 		cond_resched();
3364 		spin_lock_bh(&sk->sk_lock.slock);
3365 	}
3366 
3367 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3368 		__mptcp_clean_una_wakeup(sk);
3369 	if (unlikely(msk->cb_flags)) {
3370 		/* be sure to sync the msk state before taking actions
3371 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3372 		 * On sk release avoid actions depending on the first subflow
3373 		 */
3374 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3375 			__mptcp_sync_state(sk, msk->pending_state);
3376 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3377 			__mptcp_error_report(sk);
3378 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3379 			__mptcp_sync_sndbuf(sk);
3380 	}
3381 
3382 	__mptcp_update_rmem(sk);
3383 }
3384 
3385 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3386  * TCP can't schedule delack timer before the subflow is fully established.
3387  * MPTCP uses the delack timer to do 3rd ack retransmissions
3388  */
3389 static void schedule_3rdack_retransmission(struct sock *ssk)
3390 {
3391 	struct inet_connection_sock *icsk = inet_csk(ssk);
3392 	struct tcp_sock *tp = tcp_sk(ssk);
3393 	unsigned long timeout;
3394 
3395 	if (mptcp_subflow_ctx(ssk)->fully_established)
3396 		return;
3397 
3398 	/* reschedule with a timeout above RTT, as we must look only for drop */
3399 	if (tp->srtt_us)
3400 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3401 	else
3402 		timeout = TCP_TIMEOUT_INIT;
3403 	timeout += jiffies;
3404 
3405 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3406 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3407 	icsk->icsk_ack.timeout = timeout;
3408 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3409 }
3410 
3411 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3412 {
3413 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3414 	struct sock *sk = subflow->conn;
3415 
3416 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3417 		mptcp_data_lock(sk);
3418 		if (!sock_owned_by_user(sk))
3419 			__mptcp_subflow_push_pending(sk, ssk, true);
3420 		else
3421 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3422 		mptcp_data_unlock(sk);
3423 	}
3424 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3425 		mptcp_data_lock(sk);
3426 		if (!sock_owned_by_user(sk))
3427 			__mptcp_sync_sndbuf(sk);
3428 		else
3429 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3430 		mptcp_data_unlock(sk);
3431 	}
3432 	if (status & BIT(MPTCP_DELEGATE_ACK))
3433 		schedule_3rdack_retransmission(ssk);
3434 }
3435 
3436 static int mptcp_hash(struct sock *sk)
3437 {
3438 	/* should never be called,
3439 	 * we hash the TCP subflows not the master socket
3440 	 */
3441 	WARN_ON_ONCE(1);
3442 	return 0;
3443 }
3444 
3445 static void mptcp_unhash(struct sock *sk)
3446 {
3447 	/* called from sk_common_release(), but nothing to do here */
3448 }
3449 
3450 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3451 {
3452 	struct mptcp_sock *msk = mptcp_sk(sk);
3453 
3454 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3455 	if (WARN_ON_ONCE(!msk->first))
3456 		return -EINVAL;
3457 
3458 	return inet_csk_get_port(msk->first, snum);
3459 }
3460 
3461 void mptcp_finish_connect(struct sock *ssk)
3462 {
3463 	struct mptcp_subflow_context *subflow;
3464 	struct mptcp_sock *msk;
3465 	struct sock *sk;
3466 
3467 	subflow = mptcp_subflow_ctx(ssk);
3468 	sk = subflow->conn;
3469 	msk = mptcp_sk(sk);
3470 
3471 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3472 
3473 	subflow->map_seq = subflow->iasn;
3474 	subflow->map_subflow_seq = 1;
3475 
3476 	/* the socket is not connected yet, no msk/subflow ops can access/race
3477 	 * accessing the field below
3478 	 */
3479 	WRITE_ONCE(msk->local_key, subflow->local_key);
3480 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3481 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3482 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3483 
3484 	mptcp_pm_new_connection(msk, ssk, 0);
3485 
3486 	mptcp_rcv_space_init(msk, ssk);
3487 }
3488 
3489 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3490 {
3491 	write_lock_bh(&sk->sk_callback_lock);
3492 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3493 	sk_set_socket(sk, parent);
3494 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3495 	write_unlock_bh(&sk->sk_callback_lock);
3496 }
3497 
3498 bool mptcp_finish_join(struct sock *ssk)
3499 {
3500 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3501 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3502 	struct sock *parent = (void *)msk;
3503 	bool ret = true;
3504 
3505 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3506 
3507 	/* mptcp socket already closing? */
3508 	if (!mptcp_is_fully_established(parent)) {
3509 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3510 		return false;
3511 	}
3512 
3513 	/* active subflow, already present inside the conn_list */
3514 	if (!list_empty(&subflow->node)) {
3515 		mptcp_subflow_joined(msk, ssk);
3516 		mptcp_propagate_sndbuf(parent, ssk);
3517 		return true;
3518 	}
3519 
3520 	if (!mptcp_pm_allow_new_subflow(msk))
3521 		goto err_prohibited;
3522 
3523 	/* If we can't acquire msk socket lock here, let the release callback
3524 	 * handle it
3525 	 */
3526 	mptcp_data_lock(parent);
3527 	if (!sock_owned_by_user(parent)) {
3528 		ret = __mptcp_finish_join(msk, ssk);
3529 		if (ret) {
3530 			sock_hold(ssk);
3531 			list_add_tail(&subflow->node, &msk->conn_list);
3532 		}
3533 	} else {
3534 		sock_hold(ssk);
3535 		list_add_tail(&subflow->node, &msk->join_list);
3536 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3537 	}
3538 	mptcp_data_unlock(parent);
3539 
3540 	if (!ret) {
3541 err_prohibited:
3542 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3543 		return false;
3544 	}
3545 
3546 	return true;
3547 }
3548 
3549 static void mptcp_shutdown(struct sock *sk, int how)
3550 {
3551 	pr_debug("sk=%p, how=%d", sk, how);
3552 
3553 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3554 		__mptcp_wr_shutdown(sk);
3555 }
3556 
3557 static int mptcp_forward_alloc_get(const struct sock *sk)
3558 {
3559 	return READ_ONCE(sk->sk_forward_alloc) +
3560 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3561 }
3562 
3563 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3564 {
3565 	const struct sock *sk = (void *)msk;
3566 	u64 delta;
3567 
3568 	if (sk->sk_state == TCP_LISTEN)
3569 		return -EINVAL;
3570 
3571 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3572 		return 0;
3573 
3574 	delta = msk->write_seq - v;
3575 	if (__mptcp_check_fallback(msk) && msk->first) {
3576 		struct tcp_sock *tp = tcp_sk(msk->first);
3577 
3578 		/* the first subflow is disconnected after close - see
3579 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3580 		 * so ignore that status, too.
3581 		 */
3582 		if (!((1 << msk->first->sk_state) &
3583 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3584 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3585 	}
3586 	if (delta > INT_MAX)
3587 		delta = INT_MAX;
3588 
3589 	return (int)delta;
3590 }
3591 
3592 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3593 {
3594 	struct mptcp_sock *msk = mptcp_sk(sk);
3595 	bool slow;
3596 
3597 	switch (cmd) {
3598 	case SIOCINQ:
3599 		if (sk->sk_state == TCP_LISTEN)
3600 			return -EINVAL;
3601 
3602 		lock_sock(sk);
3603 		__mptcp_move_skbs(msk);
3604 		*karg = mptcp_inq_hint(sk);
3605 		release_sock(sk);
3606 		break;
3607 	case SIOCOUTQ:
3608 		slow = lock_sock_fast(sk);
3609 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3610 		unlock_sock_fast(sk, slow);
3611 		break;
3612 	case SIOCOUTQNSD:
3613 		slow = lock_sock_fast(sk);
3614 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3615 		unlock_sock_fast(sk, slow);
3616 		break;
3617 	default:
3618 		return -ENOIOCTLCMD;
3619 	}
3620 
3621 	return 0;
3622 }
3623 
3624 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3625 					 struct mptcp_subflow_context *subflow)
3626 {
3627 	subflow->request_mptcp = 0;
3628 	__mptcp_do_fallback(msk);
3629 }
3630 
3631 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3632 {
3633 	struct mptcp_subflow_context *subflow;
3634 	struct mptcp_sock *msk = mptcp_sk(sk);
3635 	int err = -EINVAL;
3636 	struct sock *ssk;
3637 
3638 	ssk = __mptcp_nmpc_sk(msk);
3639 	if (IS_ERR(ssk))
3640 		return PTR_ERR(ssk);
3641 
3642 	mptcp_set_state(sk, TCP_SYN_SENT);
3643 	subflow = mptcp_subflow_ctx(ssk);
3644 #ifdef CONFIG_TCP_MD5SIG
3645 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3646 	 * TCP option space.
3647 	 */
3648 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3649 		mptcp_subflow_early_fallback(msk, subflow);
3650 #endif
3651 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3652 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3653 		mptcp_subflow_early_fallback(msk, subflow);
3654 	}
3655 	if (likely(!__mptcp_check_fallback(msk)))
3656 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3657 
3658 	/* if reaching here via the fastopen/sendmsg path, the caller already
3659 	 * acquired the subflow socket lock, too.
3660 	 */
3661 	if (!msk->fastopening)
3662 		lock_sock(ssk);
3663 
3664 	/* the following mirrors closely a very small chunk of code from
3665 	 * __inet_stream_connect()
3666 	 */
3667 	if (ssk->sk_state != TCP_CLOSE)
3668 		goto out;
3669 
3670 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3671 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3672 		if (err)
3673 			goto out;
3674 	}
3675 
3676 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3677 	if (err < 0)
3678 		goto out;
3679 
3680 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3681 
3682 out:
3683 	if (!msk->fastopening)
3684 		release_sock(ssk);
3685 
3686 	/* on successful connect, the msk state will be moved to established by
3687 	 * subflow_finish_connect()
3688 	 */
3689 	if (unlikely(err)) {
3690 		/* avoid leaving a dangling token in an unconnected socket */
3691 		mptcp_token_destroy(msk);
3692 		mptcp_set_state(sk, TCP_CLOSE);
3693 		return err;
3694 	}
3695 
3696 	mptcp_copy_inaddrs(sk, ssk);
3697 	return 0;
3698 }
3699 
3700 static struct proto mptcp_prot = {
3701 	.name		= "MPTCP",
3702 	.owner		= THIS_MODULE,
3703 	.init		= mptcp_init_sock,
3704 	.connect	= mptcp_connect,
3705 	.disconnect	= mptcp_disconnect,
3706 	.close		= mptcp_close,
3707 	.setsockopt	= mptcp_setsockopt,
3708 	.getsockopt	= mptcp_getsockopt,
3709 	.shutdown	= mptcp_shutdown,
3710 	.destroy	= mptcp_destroy,
3711 	.sendmsg	= mptcp_sendmsg,
3712 	.ioctl		= mptcp_ioctl,
3713 	.recvmsg	= mptcp_recvmsg,
3714 	.release_cb	= mptcp_release_cb,
3715 	.hash		= mptcp_hash,
3716 	.unhash		= mptcp_unhash,
3717 	.get_port	= mptcp_get_port,
3718 	.forward_alloc_get	= mptcp_forward_alloc_get,
3719 	.sockets_allocated	= &mptcp_sockets_allocated,
3720 
3721 	.memory_allocated	= &tcp_memory_allocated,
3722 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3723 
3724 	.memory_pressure	= &tcp_memory_pressure,
3725 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3726 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3727 	.sysctl_mem	= sysctl_tcp_mem,
3728 	.obj_size	= sizeof(struct mptcp_sock),
3729 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3730 	.no_autobind	= true,
3731 };
3732 
3733 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3734 {
3735 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3736 	struct sock *ssk, *sk = sock->sk;
3737 	int err = -EINVAL;
3738 
3739 	lock_sock(sk);
3740 	ssk = __mptcp_nmpc_sk(msk);
3741 	if (IS_ERR(ssk)) {
3742 		err = PTR_ERR(ssk);
3743 		goto unlock;
3744 	}
3745 
3746 	if (sk->sk_family == AF_INET)
3747 		err = inet_bind_sk(ssk, uaddr, addr_len);
3748 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3749 	else if (sk->sk_family == AF_INET6)
3750 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3751 #endif
3752 	if (!err)
3753 		mptcp_copy_inaddrs(sk, ssk);
3754 
3755 unlock:
3756 	release_sock(sk);
3757 	return err;
3758 }
3759 
3760 static int mptcp_listen(struct socket *sock, int backlog)
3761 {
3762 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3763 	struct sock *sk = sock->sk;
3764 	struct sock *ssk;
3765 	int err;
3766 
3767 	pr_debug("msk=%p", msk);
3768 
3769 	lock_sock(sk);
3770 
3771 	err = -EINVAL;
3772 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3773 		goto unlock;
3774 
3775 	ssk = __mptcp_nmpc_sk(msk);
3776 	if (IS_ERR(ssk)) {
3777 		err = PTR_ERR(ssk);
3778 		goto unlock;
3779 	}
3780 
3781 	mptcp_set_state(sk, TCP_LISTEN);
3782 	sock_set_flag(sk, SOCK_RCU_FREE);
3783 
3784 	lock_sock(ssk);
3785 	err = __inet_listen_sk(ssk, backlog);
3786 	release_sock(ssk);
3787 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3788 
3789 	if (!err) {
3790 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3791 		mptcp_copy_inaddrs(sk, ssk);
3792 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3793 	}
3794 
3795 unlock:
3796 	release_sock(sk);
3797 	return err;
3798 }
3799 
3800 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3801 			       int flags, bool kern)
3802 {
3803 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3804 	struct sock *ssk, *newsk;
3805 	int err;
3806 
3807 	pr_debug("msk=%p", msk);
3808 
3809 	/* Buggy applications can call accept on socket states other then LISTEN
3810 	 * but no need to allocate the first subflow just to error out.
3811 	 */
3812 	ssk = READ_ONCE(msk->first);
3813 	if (!ssk)
3814 		return -EINVAL;
3815 
3816 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3817 	newsk = inet_csk_accept(ssk, flags, &err, kern);
3818 	if (!newsk)
3819 		return err;
3820 
3821 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3822 	if (sk_is_mptcp(newsk)) {
3823 		struct mptcp_subflow_context *subflow;
3824 		struct sock *new_mptcp_sock;
3825 
3826 		subflow = mptcp_subflow_ctx(newsk);
3827 		new_mptcp_sock = subflow->conn;
3828 
3829 		/* is_mptcp should be false if subflow->conn is missing, see
3830 		 * subflow_syn_recv_sock()
3831 		 */
3832 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3833 			tcp_sk(newsk)->is_mptcp = 0;
3834 			goto tcpfallback;
3835 		}
3836 
3837 		newsk = new_mptcp_sock;
3838 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3839 
3840 		newsk->sk_kern_sock = kern;
3841 		lock_sock(newsk);
3842 		__inet_accept(sock, newsock, newsk);
3843 
3844 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3845 		msk = mptcp_sk(newsk);
3846 		msk->in_accept_queue = 0;
3847 
3848 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3849 		 * This is needed so NOSPACE flag can be set from tcp stack.
3850 		 */
3851 		mptcp_for_each_subflow(msk, subflow) {
3852 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3853 
3854 			if (!ssk->sk_socket)
3855 				mptcp_sock_graft(ssk, newsock);
3856 		}
3857 
3858 		/* Do late cleanup for the first subflow as necessary. Also
3859 		 * deal with bad peers not doing a complete shutdown.
3860 		 */
3861 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3862 			__mptcp_close_ssk(newsk, msk->first,
3863 					  mptcp_subflow_ctx(msk->first), 0);
3864 			if (unlikely(list_is_singular(&msk->conn_list)))
3865 				mptcp_set_state(newsk, TCP_CLOSE);
3866 		}
3867 	} else {
3868 		MPTCP_INC_STATS(sock_net(ssk),
3869 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3870 tcpfallback:
3871 		newsk->sk_kern_sock = kern;
3872 		lock_sock(newsk);
3873 		__inet_accept(sock, newsock, newsk);
3874 		/* we are being invoked after accepting a non-mp-capable
3875 		 * flow: sk is a tcp_sk, not an mptcp one.
3876 		 *
3877 		 * Hand the socket over to tcp so all further socket ops
3878 		 * bypass mptcp.
3879 		 */
3880 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3881 			   mptcp_fallback_tcp_ops(newsock->sk));
3882 	}
3883 	release_sock(newsk);
3884 
3885 	return 0;
3886 }
3887 
3888 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3889 {
3890 	struct sock *sk = (struct sock *)msk;
3891 
3892 	if (sk_stream_is_writeable(sk))
3893 		return EPOLLOUT | EPOLLWRNORM;
3894 
3895 	mptcp_set_nospace(sk);
3896 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3897 	if (sk_stream_is_writeable(sk))
3898 		return EPOLLOUT | EPOLLWRNORM;
3899 
3900 	return 0;
3901 }
3902 
3903 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3904 			   struct poll_table_struct *wait)
3905 {
3906 	struct sock *sk = sock->sk;
3907 	struct mptcp_sock *msk;
3908 	__poll_t mask = 0;
3909 	u8 shutdown;
3910 	int state;
3911 
3912 	msk = mptcp_sk(sk);
3913 	sock_poll_wait(file, sock, wait);
3914 
3915 	state = inet_sk_state_load(sk);
3916 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3917 	if (state == TCP_LISTEN) {
3918 		struct sock *ssk = READ_ONCE(msk->first);
3919 
3920 		if (WARN_ON_ONCE(!ssk))
3921 			return 0;
3922 
3923 		return inet_csk_listen_poll(ssk);
3924 	}
3925 
3926 	shutdown = READ_ONCE(sk->sk_shutdown);
3927 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3928 		mask |= EPOLLHUP;
3929 	if (shutdown & RCV_SHUTDOWN)
3930 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3931 
3932 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3933 		mask |= mptcp_check_readable(sk);
3934 		if (shutdown & SEND_SHUTDOWN)
3935 			mask |= EPOLLOUT | EPOLLWRNORM;
3936 		else
3937 			mask |= mptcp_check_writeable(msk);
3938 	} else if (state == TCP_SYN_SENT &&
3939 		   inet_test_bit(DEFER_CONNECT, sk)) {
3940 		/* cf tcp_poll() note about TFO */
3941 		mask |= EPOLLOUT | EPOLLWRNORM;
3942 	}
3943 
3944 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3945 	smp_rmb();
3946 	if (READ_ONCE(sk->sk_err))
3947 		mask |= EPOLLERR;
3948 
3949 	return mask;
3950 }
3951 
3952 static const struct proto_ops mptcp_stream_ops = {
3953 	.family		   = PF_INET,
3954 	.owner		   = THIS_MODULE,
3955 	.release	   = inet_release,
3956 	.bind		   = mptcp_bind,
3957 	.connect	   = inet_stream_connect,
3958 	.socketpair	   = sock_no_socketpair,
3959 	.accept		   = mptcp_stream_accept,
3960 	.getname	   = inet_getname,
3961 	.poll		   = mptcp_poll,
3962 	.ioctl		   = inet_ioctl,
3963 	.gettstamp	   = sock_gettstamp,
3964 	.listen		   = mptcp_listen,
3965 	.shutdown	   = inet_shutdown,
3966 	.setsockopt	   = sock_common_setsockopt,
3967 	.getsockopt	   = sock_common_getsockopt,
3968 	.sendmsg	   = inet_sendmsg,
3969 	.recvmsg	   = inet_recvmsg,
3970 	.mmap		   = sock_no_mmap,
3971 	.set_rcvlowat	   = mptcp_set_rcvlowat,
3972 };
3973 
3974 static struct inet_protosw mptcp_protosw = {
3975 	.type		= SOCK_STREAM,
3976 	.protocol	= IPPROTO_MPTCP,
3977 	.prot		= &mptcp_prot,
3978 	.ops		= &mptcp_stream_ops,
3979 	.flags		= INET_PROTOSW_ICSK,
3980 };
3981 
3982 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3983 {
3984 	struct mptcp_delegated_action *delegated;
3985 	struct mptcp_subflow_context *subflow;
3986 	int work_done = 0;
3987 
3988 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3989 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3990 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3991 
3992 		bh_lock_sock_nested(ssk);
3993 		if (!sock_owned_by_user(ssk)) {
3994 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
3995 		} else {
3996 			/* tcp_release_cb_override already processed
3997 			 * the action or will do at next release_sock().
3998 			 * In both case must dequeue the subflow here - on the same
3999 			 * CPU that scheduled it.
4000 			 */
4001 			smp_wmb();
4002 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4003 		}
4004 		bh_unlock_sock(ssk);
4005 		sock_put(ssk);
4006 
4007 		if (++work_done == budget)
4008 			return budget;
4009 	}
4010 
4011 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4012 	 * will not try accessing the NULL napi->dev ptr
4013 	 */
4014 	napi_complete_done(napi, 0);
4015 	return work_done;
4016 }
4017 
4018 void __init mptcp_proto_init(void)
4019 {
4020 	struct mptcp_delegated_action *delegated;
4021 	int cpu;
4022 
4023 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4024 
4025 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4026 		panic("Failed to allocate MPTCP pcpu counter\n");
4027 
4028 	init_dummy_netdev(&mptcp_napi_dev);
4029 	for_each_possible_cpu(cpu) {
4030 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4031 		INIT_LIST_HEAD(&delegated->head);
4032 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4033 				  mptcp_napi_poll);
4034 		napi_enable(&delegated->napi);
4035 	}
4036 
4037 	mptcp_subflow_init();
4038 	mptcp_pm_init();
4039 	mptcp_sched_init();
4040 	mptcp_token_init();
4041 
4042 	if (proto_register(&mptcp_prot, 1) != 0)
4043 		panic("Failed to register MPTCP proto.\n");
4044 
4045 	inet_register_protosw(&mptcp_protosw);
4046 
4047 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4048 }
4049 
4050 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4051 static const struct proto_ops mptcp_v6_stream_ops = {
4052 	.family		   = PF_INET6,
4053 	.owner		   = THIS_MODULE,
4054 	.release	   = inet6_release,
4055 	.bind		   = mptcp_bind,
4056 	.connect	   = inet_stream_connect,
4057 	.socketpair	   = sock_no_socketpair,
4058 	.accept		   = mptcp_stream_accept,
4059 	.getname	   = inet6_getname,
4060 	.poll		   = mptcp_poll,
4061 	.ioctl		   = inet6_ioctl,
4062 	.gettstamp	   = sock_gettstamp,
4063 	.listen		   = mptcp_listen,
4064 	.shutdown	   = inet_shutdown,
4065 	.setsockopt	   = sock_common_setsockopt,
4066 	.getsockopt	   = sock_common_getsockopt,
4067 	.sendmsg	   = inet6_sendmsg,
4068 	.recvmsg	   = inet6_recvmsg,
4069 	.mmap		   = sock_no_mmap,
4070 #ifdef CONFIG_COMPAT
4071 	.compat_ioctl	   = inet6_compat_ioctl,
4072 #endif
4073 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4074 };
4075 
4076 static struct proto mptcp_v6_prot;
4077 
4078 static struct inet_protosw mptcp_v6_protosw = {
4079 	.type		= SOCK_STREAM,
4080 	.protocol	= IPPROTO_MPTCP,
4081 	.prot		= &mptcp_v6_prot,
4082 	.ops		= &mptcp_v6_stream_ops,
4083 	.flags		= INET_PROTOSW_ICSK,
4084 };
4085 
4086 int __init mptcp_proto_v6_init(void)
4087 {
4088 	int err;
4089 
4090 	mptcp_v6_prot = mptcp_prot;
4091 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4092 	mptcp_v6_prot.slab = NULL;
4093 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4094 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4095 
4096 	err = proto_register(&mptcp_v6_prot, 1);
4097 	if (err)
4098 		return err;
4099 
4100 	err = inet6_register_protosw(&mptcp_v6_protosw);
4101 	if (err)
4102 		proto_unregister(&mptcp_v6_prot);
4103 
4104 	return err;
4105 }
4106 #endif
4107