1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 unsigned short family = READ_ONCE(sk->sk_family); 65 66 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 67 if (family == AF_INET6) 68 return &inet6_stream_ops; 69 #endif 70 WARN_ON_ONCE(family != AF_INET); 71 return &inet_stream_ops; 72 } 73 74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 75 { 76 struct net *net = sock_net((struct sock *)msk); 77 78 if (__mptcp_check_fallback(msk)) 79 return true; 80 81 /* The caller possibly is not holding the msk socket lock, but 82 * in the fallback case only the current subflow is touching 83 * the OoO queue. 84 */ 85 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 86 return false; 87 88 spin_lock_bh(&msk->fallback_lock); 89 if (!msk->allow_infinite_fallback) { 90 spin_unlock_bh(&msk->fallback_lock); 91 return false; 92 } 93 94 msk->allow_subflows = false; 95 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 96 __MPTCP_INC_STATS(net, fb_mib); 97 spin_unlock_bh(&msk->fallback_lock); 98 return true; 99 } 100 101 static int __mptcp_socket_create(struct mptcp_sock *msk) 102 { 103 struct mptcp_subflow_context *subflow; 104 struct sock *sk = (struct sock *)msk; 105 struct socket *ssock; 106 int err; 107 108 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 109 if (err) 110 return err; 111 112 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 113 WRITE_ONCE(msk->first, ssock->sk); 114 subflow = mptcp_subflow_ctx(ssock->sk); 115 list_add(&subflow->node, &msk->conn_list); 116 sock_hold(ssock->sk); 117 subflow->request_mptcp = 1; 118 subflow->subflow_id = msk->subflow_id++; 119 120 /* This is the first subflow, always with id 0 */ 121 WRITE_ONCE(subflow->local_id, 0); 122 mptcp_sock_graft(msk->first, sk->sk_socket); 123 iput(SOCK_INODE(ssock)); 124 125 return 0; 126 } 127 128 /* If the MPC handshake is not started, returns the first subflow, 129 * eventually allocating it. 130 */ 131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 132 { 133 struct sock *sk = (struct sock *)msk; 134 int ret; 135 136 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 137 return ERR_PTR(-EINVAL); 138 139 if (!msk->first) { 140 ret = __mptcp_socket_create(msk); 141 if (ret) 142 return ERR_PTR(ret); 143 } 144 145 return msk->first; 146 } 147 148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 149 { 150 sk_drops_skbadd(sk, skb); 151 __kfree_skb(skb); 152 } 153 154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 155 struct sk_buff *from, bool *fragstolen, 156 int *delta) 157 { 158 int limit = READ_ONCE(sk->sk_rcvbuf); 159 160 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 161 MPTCP_SKB_CB(from)->offset || 162 ((to->len + from->len) > (limit >> 3)) || 163 !skb_try_coalesce(to, from, fragstolen, delta)) 164 return false; 165 166 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 167 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 168 to->len, MPTCP_SKB_CB(from)->end_seq); 169 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 170 return true; 171 } 172 173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 174 struct sk_buff *from) 175 { 176 bool fragstolen; 177 int delta; 178 179 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 180 return false; 181 182 /* note the fwd memory can reach a negative value after accounting 183 * for the delta, but the later skb free will restore a non 184 * negative one 185 */ 186 atomic_add(delta, &sk->sk_rmem_alloc); 187 sk_mem_charge(sk, delta); 188 kfree_skb_partial(from, fragstolen); 189 190 return true; 191 } 192 193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 194 struct sk_buff *from) 195 { 196 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 197 return false; 198 199 return mptcp_try_coalesce((struct sock *)msk, to, from); 200 } 201 202 /* "inspired" by tcp_rcvbuf_grow(), main difference: 203 * - mptcp does not maintain a msk-level window clamp 204 * - returns true when the receive buffer is actually updated 205 */ 206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 207 { 208 struct mptcp_sock *msk = mptcp_sk(sk); 209 const struct net *net = sock_net(sk); 210 u32 rcvwin, rcvbuf, cap, oldval; 211 u64 grow; 212 213 oldval = msk->rcvq_space.space; 214 msk->rcvq_space.space = newval; 215 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 216 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 217 return false; 218 219 /* DRS is always one RTT late. */ 220 rcvwin = newval << 1; 221 222 /* slow start: allow the sender to double its rate. */ 223 grow = (u64)rcvwin * (newval - oldval); 224 do_div(grow, oldval); 225 rcvwin += grow << 1; 226 227 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 228 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 229 230 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 231 232 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 233 if (rcvbuf > sk->sk_rcvbuf) { 234 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 235 return true; 236 } 237 return false; 238 } 239 240 /* "inspired" by tcp_data_queue_ofo(), main differences: 241 * - use mptcp seqs 242 * - don't cope with sacks 243 */ 244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 245 { 246 struct sock *sk = (struct sock *)msk; 247 struct rb_node **p, *parent; 248 u64 seq, end_seq, max_seq; 249 struct sk_buff *skb1; 250 251 seq = MPTCP_SKB_CB(skb)->map_seq; 252 end_seq = MPTCP_SKB_CB(skb)->end_seq; 253 max_seq = atomic64_read(&msk->rcv_wnd_sent); 254 255 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 256 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 257 if (after64(end_seq, max_seq)) { 258 /* out of window */ 259 mptcp_drop(sk, skb); 260 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 261 (unsigned long long)end_seq - (unsigned long)max_seq, 262 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 264 return; 265 } 266 267 p = &msk->out_of_order_queue.rb_node; 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 269 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 270 rb_link_node(&skb->rbnode, NULL, p); 271 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 272 msk->ooo_last_skb = skb; 273 goto end; 274 } 275 276 /* with 2 subflows, adding at end of ooo queue is quite likely 277 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 278 */ 279 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 280 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 281 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 282 return; 283 } 284 285 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 286 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 288 parent = &msk->ooo_last_skb->rbnode; 289 p = &parent->rb_right; 290 goto insert; 291 } 292 293 /* Find place to insert this segment. Handle overlaps on the way. */ 294 parent = NULL; 295 while (*p) { 296 parent = *p; 297 skb1 = rb_to_skb(parent); 298 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 299 p = &parent->rb_left; 300 continue; 301 } 302 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 303 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 304 /* All the bits are present. Drop. */ 305 mptcp_drop(sk, skb); 306 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 307 return; 308 } 309 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 310 /* partial overlap: 311 * | skb | 312 * | skb1 | 313 * continue traversing 314 */ 315 } else { 316 /* skb's seq == skb1's seq and skb covers skb1. 317 * Replace skb1 with skb. 318 */ 319 rb_replace_node(&skb1->rbnode, &skb->rbnode, 320 &msk->out_of_order_queue); 321 mptcp_drop(sk, skb1); 322 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 323 goto merge_right; 324 } 325 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 326 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 327 return; 328 } 329 p = &parent->rb_right; 330 } 331 332 insert: 333 /* Insert segment into RB tree. */ 334 rb_link_node(&skb->rbnode, parent, p); 335 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 336 337 merge_right: 338 /* Remove other segments covered by skb. */ 339 while ((skb1 = skb_rb_next(skb)) != NULL) { 340 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 341 break; 342 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 343 mptcp_drop(sk, skb1); 344 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 345 } 346 /* If there is no skb after us, we are the last_skb ! */ 347 if (!skb1) 348 msk->ooo_last_skb = skb; 349 350 end: 351 skb_condense(skb); 352 skb_set_owner_r(skb, sk); 353 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 354 if (sk->sk_socket) 355 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 356 } 357 358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 359 int copy_len) 360 { 361 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 362 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 363 364 /* the skb map_seq accounts for the skb offset: 365 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 366 * value 367 */ 368 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 369 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 370 MPTCP_SKB_CB(skb)->offset = offset; 371 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 372 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 373 374 __skb_unlink(skb, &ssk->sk_receive_queue); 375 376 skb_ext_reset(skb); 377 skb_dst_drop(skb); 378 } 379 380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 381 { 382 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 383 struct mptcp_sock *msk = mptcp_sk(sk); 384 struct sk_buff *tail; 385 386 mptcp_borrow_fwdmem(sk, skb); 387 388 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 389 /* in sequence */ 390 msk->bytes_received += copy_len; 391 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 392 tail = skb_peek_tail(&sk->sk_receive_queue); 393 if (tail && mptcp_try_coalesce(sk, tail, skb)) 394 return true; 395 396 skb_set_owner_r(skb, sk); 397 __skb_queue_tail(&sk->sk_receive_queue, skb); 398 return true; 399 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 400 mptcp_data_queue_ofo(msk, skb); 401 return false; 402 } 403 404 /* old data, keep it simple and drop the whole pkt, sender 405 * will retransmit as needed, if needed. 406 */ 407 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 408 mptcp_drop(sk, skb); 409 return false; 410 } 411 412 static void mptcp_stop_rtx_timer(struct sock *sk) 413 { 414 sk_stop_timer(sk, &sk->mptcp_retransmit_timer); 415 mptcp_sk(sk)->timer_ival = 0; 416 } 417 418 static void mptcp_close_wake_up(struct sock *sk) 419 { 420 if (sock_flag(sk, SOCK_DEAD)) 421 return; 422 423 sk->sk_state_change(sk); 424 if (sk->sk_shutdown == SHUTDOWN_MASK || 425 sk->sk_state == TCP_CLOSE) 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 427 else 428 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 429 } 430 431 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 432 { 433 struct mptcp_subflow_context *subflow; 434 435 mptcp_for_each_subflow(msk, subflow) { 436 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 437 bool slow; 438 439 slow = lock_sock_fast(ssk); 440 tcp_shutdown(ssk, SEND_SHUTDOWN); 441 unlock_sock_fast(ssk, slow); 442 } 443 } 444 445 /* called under the msk socket lock */ 446 static bool mptcp_pending_data_fin_ack(struct sock *sk) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 return ((1 << sk->sk_state) & 451 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 452 msk->write_seq == READ_ONCE(msk->snd_una); 453 } 454 455 static void mptcp_check_data_fin_ack(struct sock *sk) 456 { 457 struct mptcp_sock *msk = mptcp_sk(sk); 458 459 /* Look for an acknowledged DATA_FIN */ 460 if (mptcp_pending_data_fin_ack(sk)) { 461 WRITE_ONCE(msk->snd_data_fin_enable, 0); 462 463 switch (sk->sk_state) { 464 case TCP_FIN_WAIT1: 465 mptcp_set_state(sk, TCP_FIN_WAIT2); 466 break; 467 case TCP_CLOSING: 468 case TCP_LAST_ACK: 469 mptcp_shutdown_subflows(msk); 470 mptcp_set_state(sk, TCP_CLOSE); 471 break; 472 } 473 474 mptcp_close_wake_up(sk); 475 } 476 } 477 478 /* can be called with no lock acquired */ 479 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 480 { 481 struct mptcp_sock *msk = mptcp_sk(sk); 482 483 if (READ_ONCE(msk->rcv_data_fin) && 484 ((1 << inet_sk_state_load(sk)) & 485 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 486 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 487 488 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 489 if (seq) 490 *seq = rcv_data_fin_seq; 491 492 return true; 493 } 494 } 495 496 return false; 497 } 498 499 static void mptcp_set_datafin_timeout(struct sock *sk) 500 { 501 struct inet_connection_sock *icsk = inet_csk(sk); 502 u32 retransmits; 503 504 retransmits = min_t(u32, icsk->icsk_retransmits, 505 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 506 507 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 508 } 509 510 static void __mptcp_set_timeout(struct sock *sk, long tout) 511 { 512 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 513 } 514 515 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 516 { 517 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 518 519 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 520 tcp_timeout_expires(ssk) - jiffies : 0; 521 } 522 523 static void mptcp_set_timeout(struct sock *sk) 524 { 525 struct mptcp_subflow_context *subflow; 526 long tout = 0; 527 528 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 529 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 530 __mptcp_set_timeout(sk, tout); 531 } 532 533 static inline bool tcp_can_send_ack(const struct sock *ssk) 534 { 535 return !((1 << inet_sk_state_load(ssk)) & 536 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 537 } 538 539 void __mptcp_subflow_send_ack(struct sock *ssk) 540 { 541 if (tcp_can_send_ack(ssk)) 542 tcp_send_ack(ssk); 543 } 544 545 static void mptcp_subflow_send_ack(struct sock *ssk) 546 { 547 bool slow; 548 549 slow = lock_sock_fast(ssk); 550 __mptcp_subflow_send_ack(ssk); 551 unlock_sock_fast(ssk, slow); 552 } 553 554 static void mptcp_send_ack(struct mptcp_sock *msk) 555 { 556 struct mptcp_subflow_context *subflow; 557 558 mptcp_for_each_subflow(msk, subflow) 559 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 560 } 561 562 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 563 { 564 bool slow; 565 566 slow = lock_sock_fast(ssk); 567 if (tcp_can_send_ack(ssk)) 568 tcp_cleanup_rbuf(ssk, copied); 569 unlock_sock_fast(ssk, slow); 570 } 571 572 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 573 { 574 const struct inet_connection_sock *icsk = inet_csk(ssk); 575 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 576 const struct tcp_sock *tp = tcp_sk(ssk); 577 578 return (ack_pending & ICSK_ACK_SCHED) && 579 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 580 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 581 (rx_empty && ack_pending & 582 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 583 } 584 585 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 586 { 587 int old_space = READ_ONCE(msk->old_wspace); 588 struct mptcp_subflow_context *subflow; 589 struct sock *sk = (struct sock *)msk; 590 int space = __mptcp_space(sk); 591 bool cleanup, rx_empty; 592 593 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 594 rx_empty = !sk_rmem_alloc_get(sk) && copied; 595 596 mptcp_for_each_subflow(msk, subflow) { 597 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 598 599 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 600 mptcp_subflow_cleanup_rbuf(ssk, copied); 601 } 602 } 603 604 static void mptcp_check_data_fin(struct sock *sk) 605 { 606 struct mptcp_sock *msk = mptcp_sk(sk); 607 u64 rcv_data_fin_seq; 608 609 /* Need to ack a DATA_FIN received from a peer while this side 610 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 611 * msk->rcv_data_fin was set when parsing the incoming options 612 * at the subflow level and the msk lock was not held, so this 613 * is the first opportunity to act on the DATA_FIN and change 614 * the msk state. 615 * 616 * If we are caught up to the sequence number of the incoming 617 * DATA_FIN, send the DATA_ACK now and do state transition. If 618 * not caught up, do nothing and let the recv code send DATA_ACK 619 * when catching up. 620 */ 621 622 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 623 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 624 WRITE_ONCE(msk->rcv_data_fin, 0); 625 626 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 627 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 628 629 switch (sk->sk_state) { 630 case TCP_ESTABLISHED: 631 mptcp_set_state(sk, TCP_CLOSE_WAIT); 632 break; 633 case TCP_FIN_WAIT1: 634 mptcp_set_state(sk, TCP_CLOSING); 635 break; 636 case TCP_FIN_WAIT2: 637 mptcp_shutdown_subflows(msk); 638 mptcp_set_state(sk, TCP_CLOSE); 639 break; 640 default: 641 /* Other states not expected */ 642 WARN_ON_ONCE(1); 643 break; 644 } 645 646 if (!__mptcp_check_fallback(msk)) 647 mptcp_send_ack(msk); 648 mptcp_close_wake_up(sk); 649 } 650 } 651 652 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 653 { 654 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 655 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 656 mptcp_subflow_reset(ssk); 657 } 658 } 659 660 static void __mptcp_add_backlog(struct sock *sk, 661 struct mptcp_subflow_context *subflow, 662 struct sk_buff *skb) 663 { 664 struct mptcp_sock *msk = mptcp_sk(sk); 665 struct sk_buff *tail = NULL; 666 struct sock *ssk = skb->sk; 667 bool fragstolen; 668 int delta; 669 670 if (unlikely(sk->sk_state == TCP_CLOSE)) { 671 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 672 return; 673 } 674 675 /* Try to coalesce with the last skb in our backlog */ 676 if (!list_empty(&msk->backlog_list)) 677 tail = list_last_entry(&msk->backlog_list, struct sk_buff, list); 678 679 if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq && 680 ssk == tail->sk && 681 __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) { 682 skb->truesize -= delta; 683 kfree_skb_partial(skb, fragstolen); 684 __mptcp_subflow_lend_fwdmem(subflow, delta); 685 goto account; 686 } 687 688 list_add_tail(&skb->list, &msk->backlog_list); 689 mptcp_subflow_lend_fwdmem(subflow, skb); 690 delta = skb->truesize; 691 692 account: 693 WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta); 694 695 /* Possibly not accept()ed yet, keep track of memory not CG 696 * accounted, mptcp_graft_subflows() will handle it. 697 */ 698 if (!mem_cgroup_from_sk(ssk)) 699 msk->backlog_unaccounted += delta; 700 } 701 702 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 703 struct sock *ssk, bool own_msk) 704 { 705 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 706 struct sock *sk = (struct sock *)msk; 707 bool more_data_avail; 708 struct tcp_sock *tp; 709 bool ret = false; 710 711 pr_debug("msk=%p ssk=%p\n", msk, ssk); 712 tp = tcp_sk(ssk); 713 do { 714 u32 map_remaining, offset; 715 u32 seq = tp->copied_seq; 716 struct sk_buff *skb; 717 bool fin; 718 719 /* try to move as much data as available */ 720 map_remaining = subflow->map_data_len - 721 mptcp_subflow_get_map_offset(subflow); 722 723 skb = skb_peek(&ssk->sk_receive_queue); 724 if (unlikely(!skb)) 725 break; 726 727 if (__mptcp_check_fallback(msk)) { 728 /* Under fallback skbs have no MPTCP extension and TCP could 729 * collapse them between the dummy map creation and the 730 * current dequeue. Be sure to adjust the map size. 731 */ 732 map_remaining = skb->len; 733 subflow->map_data_len = skb->len; 734 } 735 736 offset = seq - TCP_SKB_CB(skb)->seq; 737 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 738 if (fin) 739 seq++; 740 741 if (offset < skb->len) { 742 size_t len = skb->len - offset; 743 744 mptcp_init_skb(ssk, skb, offset, len); 745 746 if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) { 747 mptcp_subflow_lend_fwdmem(subflow, skb); 748 ret |= __mptcp_move_skb(sk, skb); 749 } else { 750 __mptcp_add_backlog(sk, subflow, skb); 751 } 752 seq += len; 753 754 if (unlikely(map_remaining < len)) { 755 DEBUG_NET_WARN_ON_ONCE(1); 756 mptcp_dss_corruption(msk, ssk); 757 } 758 } else { 759 if (unlikely(!fin)) { 760 DEBUG_NET_WARN_ON_ONCE(1); 761 mptcp_dss_corruption(msk, ssk); 762 } 763 764 sk_eat_skb(ssk, skb); 765 } 766 767 WRITE_ONCE(tp->copied_seq, seq); 768 more_data_avail = mptcp_subflow_data_available(ssk); 769 770 } while (more_data_avail); 771 772 if (ret) 773 msk->last_data_recv = tcp_jiffies32; 774 return ret; 775 } 776 777 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 778 { 779 struct sock *sk = (struct sock *)msk; 780 struct sk_buff *skb, *tail; 781 bool moved = false; 782 struct rb_node *p; 783 u64 end_seq; 784 785 p = rb_first(&msk->out_of_order_queue); 786 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 787 while (p) { 788 skb = rb_to_skb(p); 789 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 790 break; 791 792 p = rb_next(p); 793 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 794 795 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 796 msk->ack_seq))) { 797 mptcp_drop(sk, skb); 798 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 799 continue; 800 } 801 802 end_seq = MPTCP_SKB_CB(skb)->end_seq; 803 tail = skb_peek_tail(&sk->sk_receive_queue); 804 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 805 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 806 807 /* skip overlapping data, if any */ 808 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 809 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 810 delta); 811 MPTCP_SKB_CB(skb)->offset += delta; 812 MPTCP_SKB_CB(skb)->map_seq += delta; 813 __skb_queue_tail(&sk->sk_receive_queue, skb); 814 } 815 msk->bytes_received += end_seq - msk->ack_seq; 816 WRITE_ONCE(msk->ack_seq, end_seq); 817 moved = true; 818 } 819 return moved; 820 } 821 822 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 823 { 824 int err = sock_error(ssk); 825 int ssk_state; 826 827 if (!err) 828 return false; 829 830 /* only propagate errors on fallen-back sockets or 831 * on MPC connect 832 */ 833 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 834 return false; 835 836 /* We need to propagate only transition to CLOSE state. 837 * Orphaned socket will see such state change via 838 * subflow_sched_work_if_closed() and that path will properly 839 * destroy the msk as needed. 840 */ 841 ssk_state = inet_sk_state_load(ssk); 842 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 843 mptcp_set_state(sk, ssk_state); 844 WRITE_ONCE(sk->sk_err, -err); 845 846 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 847 smp_wmb(); 848 sk_error_report(sk); 849 return true; 850 } 851 852 void __mptcp_error_report(struct sock *sk) 853 { 854 struct mptcp_subflow_context *subflow; 855 struct mptcp_sock *msk = mptcp_sk(sk); 856 857 mptcp_for_each_subflow(msk, subflow) 858 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 859 break; 860 } 861 862 /* In most cases we will be able to lock the mptcp socket. If its already 863 * owned, we need to defer to the work queue to avoid ABBA deadlock. 864 */ 865 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 866 { 867 struct sock *sk = (struct sock *)msk; 868 bool moved; 869 870 moved = __mptcp_move_skbs_from_subflow(msk, ssk, true); 871 __mptcp_ofo_queue(msk); 872 if (unlikely(ssk->sk_err)) 873 __mptcp_subflow_error_report(sk, ssk); 874 875 /* If the moves have caught up with the DATA_FIN sequence number 876 * it's time to ack the DATA_FIN and change socket state, but 877 * this is not a good place to change state. Let the workqueue 878 * do it. 879 */ 880 if (mptcp_pending_data_fin(sk, NULL)) 881 mptcp_schedule_work(sk); 882 return moved; 883 } 884 885 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 886 { 887 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 888 struct mptcp_sock *msk = mptcp_sk(sk); 889 890 /* The peer can send data while we are shutting down this 891 * subflow at subflow destruction time, but we must avoid enqueuing 892 * more data to the msk receive queue 893 */ 894 if (unlikely(subflow->closing)) 895 return; 896 897 mptcp_data_lock(sk); 898 if (!sock_owned_by_user(sk)) { 899 /* Wake-up the reader only for in-sequence data */ 900 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 901 sk->sk_data_ready(sk); 902 } else { 903 __mptcp_move_skbs_from_subflow(msk, ssk, false); 904 } 905 mptcp_data_unlock(sk); 906 } 907 908 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 909 { 910 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 911 msk->allow_infinite_fallback = false; 912 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 913 } 914 915 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 916 { 917 struct sock *sk = (struct sock *)msk; 918 919 if (sk->sk_state != TCP_ESTABLISHED) 920 return false; 921 922 spin_lock_bh(&msk->fallback_lock); 923 if (!msk->allow_subflows) { 924 spin_unlock_bh(&msk->fallback_lock); 925 return false; 926 } 927 mptcp_subflow_joined(msk, ssk); 928 spin_unlock_bh(&msk->fallback_lock); 929 930 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 931 mptcp_sockopt_sync_locked(msk, ssk); 932 mptcp_stop_tout_timer(sk); 933 __mptcp_propagate_sndbuf(sk, ssk); 934 return true; 935 } 936 937 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 938 { 939 struct mptcp_subflow_context *tmp, *subflow; 940 struct mptcp_sock *msk = mptcp_sk(sk); 941 942 list_for_each_entry_safe(subflow, tmp, join_list, node) { 943 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 944 bool slow = lock_sock_fast(ssk); 945 946 list_move_tail(&subflow->node, &msk->conn_list); 947 if (!__mptcp_finish_join(msk, ssk)) 948 mptcp_subflow_reset(ssk); 949 unlock_sock_fast(ssk, slow); 950 } 951 } 952 953 static bool mptcp_rtx_timer_pending(struct sock *sk) 954 { 955 return timer_pending(&sk->mptcp_retransmit_timer); 956 } 957 958 static void mptcp_reset_rtx_timer(struct sock *sk) 959 { 960 unsigned long tout; 961 962 /* prevent rescheduling on close */ 963 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 964 return; 965 966 tout = mptcp_sk(sk)->timer_ival; 967 sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout); 968 } 969 970 bool mptcp_schedule_work(struct sock *sk) 971 { 972 if (inet_sk_state_load(sk) == TCP_CLOSE) 973 return false; 974 975 /* Get a reference on this socket, mptcp_worker() will release it. 976 * As mptcp_worker() might complete before us, we can not avoid 977 * a sock_hold()/sock_put() if schedule_work() returns false. 978 */ 979 sock_hold(sk); 980 981 if (schedule_work(&mptcp_sk(sk)->work)) 982 return true; 983 984 sock_put(sk); 985 return false; 986 } 987 988 static bool mptcp_skb_can_collapse_to(u64 write_seq, 989 const struct sk_buff *skb, 990 const struct mptcp_ext *mpext) 991 { 992 if (!tcp_skb_can_collapse_to(skb)) 993 return false; 994 995 /* can collapse only if MPTCP level sequence is in order and this 996 * mapping has not been xmitted yet 997 */ 998 return mpext && mpext->data_seq + mpext->data_len == write_seq && 999 !mpext->frozen; 1000 } 1001 1002 /* we can append data to the given data frag if: 1003 * - there is space available in the backing page_frag 1004 * - the data frag tail matches the current page_frag free offset 1005 * - the data frag end sequence number matches the current write seq 1006 */ 1007 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 1008 const struct page_frag *pfrag, 1009 const struct mptcp_data_frag *df) 1010 { 1011 return df && pfrag->page == df->page && 1012 pfrag->size - pfrag->offset > 0 && 1013 pfrag->offset == (df->offset + df->data_len) && 1014 df->data_seq + df->data_len == msk->write_seq; 1015 } 1016 1017 static void dfrag_uncharge(struct sock *sk, int len) 1018 { 1019 sk_mem_uncharge(sk, len); 1020 sk_wmem_queued_add(sk, -len); 1021 } 1022 1023 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1024 { 1025 int len = dfrag->data_len + dfrag->overhead; 1026 1027 list_del(&dfrag->list); 1028 dfrag_uncharge(sk, len); 1029 put_page(dfrag->page); 1030 } 1031 1032 /* called under both the msk socket lock and the data lock */ 1033 static void __mptcp_clean_una(struct sock *sk) 1034 { 1035 struct mptcp_sock *msk = mptcp_sk(sk); 1036 struct mptcp_data_frag *dtmp, *dfrag; 1037 u64 snd_una; 1038 1039 snd_una = msk->snd_una; 1040 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1041 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1042 break; 1043 1044 if (unlikely(dfrag == msk->first_pending)) { 1045 /* in recovery mode can see ack after the current snd head */ 1046 if (WARN_ON_ONCE(!msk->recovery)) 1047 break; 1048 1049 msk->first_pending = mptcp_send_next(sk); 1050 } 1051 1052 dfrag_clear(sk, dfrag); 1053 } 1054 1055 dfrag = mptcp_rtx_head(sk); 1056 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1057 u64 delta = snd_una - dfrag->data_seq; 1058 1059 /* prevent wrap around in recovery mode */ 1060 if (unlikely(delta > dfrag->already_sent)) { 1061 if (WARN_ON_ONCE(!msk->recovery)) 1062 goto out; 1063 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1064 goto out; 1065 dfrag->already_sent += delta - dfrag->already_sent; 1066 } 1067 1068 dfrag->data_seq += delta; 1069 dfrag->offset += delta; 1070 dfrag->data_len -= delta; 1071 dfrag->already_sent -= delta; 1072 1073 dfrag_uncharge(sk, delta); 1074 } 1075 1076 /* all retransmitted data acked, recovery completed */ 1077 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1078 msk->recovery = false; 1079 1080 out: 1081 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1082 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1083 mptcp_stop_rtx_timer(sk); 1084 } else { 1085 mptcp_reset_rtx_timer(sk); 1086 } 1087 1088 if (mptcp_pending_data_fin_ack(sk)) 1089 mptcp_schedule_work(sk); 1090 } 1091 1092 static void __mptcp_clean_una_wakeup(struct sock *sk) 1093 { 1094 lockdep_assert_held_once(&sk->sk_lock.slock); 1095 1096 __mptcp_clean_una(sk); 1097 mptcp_write_space(sk); 1098 } 1099 1100 static void mptcp_clean_una_wakeup(struct sock *sk) 1101 { 1102 mptcp_data_lock(sk); 1103 __mptcp_clean_una_wakeup(sk); 1104 mptcp_data_unlock(sk); 1105 } 1106 1107 static void mptcp_enter_memory_pressure(struct sock *sk) 1108 { 1109 struct mptcp_subflow_context *subflow; 1110 struct mptcp_sock *msk = mptcp_sk(sk); 1111 bool first = true; 1112 1113 mptcp_for_each_subflow(msk, subflow) { 1114 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1115 1116 if (first && !ssk->sk_bypass_prot_mem) { 1117 tcp_enter_memory_pressure(ssk); 1118 first = false; 1119 } 1120 1121 sk_stream_moderate_sndbuf(ssk); 1122 } 1123 __mptcp_sync_sndbuf(sk); 1124 } 1125 1126 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1127 * data 1128 */ 1129 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1130 { 1131 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1132 pfrag, sk->sk_allocation))) 1133 return true; 1134 1135 mptcp_enter_memory_pressure(sk); 1136 return false; 1137 } 1138 1139 static struct mptcp_data_frag * 1140 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1141 int orig_offset) 1142 { 1143 int offset = ALIGN(orig_offset, sizeof(long)); 1144 struct mptcp_data_frag *dfrag; 1145 1146 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1147 dfrag->data_len = 0; 1148 dfrag->data_seq = msk->write_seq; 1149 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1150 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1151 dfrag->already_sent = 0; 1152 dfrag->page = pfrag->page; 1153 1154 return dfrag; 1155 } 1156 1157 struct mptcp_sendmsg_info { 1158 int mss_now; 1159 int size_goal; 1160 u16 limit; 1161 u16 sent; 1162 unsigned int flags; 1163 bool data_lock_held; 1164 }; 1165 1166 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1167 u64 data_seq, int avail_size) 1168 { 1169 u64 window_end = mptcp_wnd_end(msk); 1170 u64 mptcp_snd_wnd; 1171 1172 if (__mptcp_check_fallback(msk)) 1173 return avail_size; 1174 1175 mptcp_snd_wnd = window_end - data_seq; 1176 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1177 1178 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1179 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1180 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1181 } 1182 1183 return avail_size; 1184 } 1185 1186 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1187 { 1188 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1189 1190 if (!mpext) 1191 return false; 1192 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1193 return true; 1194 } 1195 1196 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1197 { 1198 struct sk_buff *skb; 1199 1200 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1201 if (likely(skb)) { 1202 if (likely(__mptcp_add_ext(skb, gfp))) { 1203 skb_reserve(skb, MAX_TCP_HEADER); 1204 skb->ip_summed = CHECKSUM_PARTIAL; 1205 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1206 return skb; 1207 } 1208 __kfree_skb(skb); 1209 } else { 1210 mptcp_enter_memory_pressure(sk); 1211 } 1212 return NULL; 1213 } 1214 1215 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1216 { 1217 struct sk_buff *skb; 1218 1219 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1220 if (!skb) 1221 return NULL; 1222 1223 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1224 tcp_skb_entail(ssk, skb); 1225 return skb; 1226 } 1227 tcp_skb_tsorted_anchor_cleanup(skb); 1228 kfree_skb(skb); 1229 return NULL; 1230 } 1231 1232 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1233 { 1234 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1235 1236 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1237 } 1238 1239 /* note: this always recompute the csum on the whole skb, even 1240 * if we just appended a single frag. More status info needed 1241 */ 1242 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1243 { 1244 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1245 __wsum csum = ~csum_unfold(mpext->csum); 1246 int offset = skb->len - added; 1247 1248 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1249 } 1250 1251 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1252 struct sock *ssk, 1253 struct mptcp_ext *mpext) 1254 { 1255 if (!mpext) 1256 return; 1257 1258 mpext->infinite_map = 1; 1259 mpext->data_len = 0; 1260 1261 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1262 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1263 mptcp_subflow_reset(ssk); 1264 return; 1265 } 1266 1267 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1268 } 1269 1270 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1271 1272 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1273 struct mptcp_data_frag *dfrag, 1274 struct mptcp_sendmsg_info *info) 1275 { 1276 u64 data_seq = dfrag->data_seq + info->sent; 1277 int offset = dfrag->offset + info->sent; 1278 struct mptcp_sock *msk = mptcp_sk(sk); 1279 bool zero_window_probe = false; 1280 struct mptcp_ext *mpext = NULL; 1281 bool can_coalesce = false; 1282 bool reuse_skb = true; 1283 struct sk_buff *skb; 1284 size_t copy; 1285 int i; 1286 1287 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1288 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1289 1290 if (WARN_ON_ONCE(info->sent > info->limit || 1291 info->limit > dfrag->data_len)) 1292 return 0; 1293 1294 if (unlikely(!__tcp_can_send(ssk))) 1295 return -EAGAIN; 1296 1297 /* compute send limit */ 1298 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1299 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1300 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1301 copy = info->size_goal; 1302 1303 skb = tcp_write_queue_tail(ssk); 1304 if (skb && copy > skb->len) { 1305 /* Limit the write to the size available in the 1306 * current skb, if any, so that we create at most a new skb. 1307 * Explicitly tells TCP internals to avoid collapsing on later 1308 * queue management operation, to avoid breaking the ext <-> 1309 * SSN association set here 1310 */ 1311 mpext = mptcp_get_ext(skb); 1312 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1313 TCP_SKB_CB(skb)->eor = 1; 1314 tcp_mark_push(tcp_sk(ssk), skb); 1315 goto alloc_skb; 1316 } 1317 1318 i = skb_shinfo(skb)->nr_frags; 1319 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1320 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1321 tcp_mark_push(tcp_sk(ssk), skb); 1322 goto alloc_skb; 1323 } 1324 1325 copy -= skb->len; 1326 } else { 1327 alloc_skb: 1328 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1329 if (!skb) 1330 return -ENOMEM; 1331 1332 i = skb_shinfo(skb)->nr_frags; 1333 reuse_skb = false; 1334 mpext = mptcp_get_ext(skb); 1335 } 1336 1337 /* Zero window and all data acked? Probe. */ 1338 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1339 if (copy == 0) { 1340 u64 snd_una = READ_ONCE(msk->snd_una); 1341 1342 /* No need for zero probe if there are any data pending 1343 * either at the msk or ssk level; skb is the current write 1344 * queue tail and can be empty at this point. 1345 */ 1346 if (snd_una != msk->snd_nxt || skb->len || 1347 skb != tcp_send_head(ssk)) { 1348 tcp_remove_empty_skb(ssk); 1349 return 0; 1350 } 1351 1352 zero_window_probe = true; 1353 data_seq = snd_una - 1; 1354 copy = 1; 1355 } 1356 1357 copy = min_t(size_t, copy, info->limit - info->sent); 1358 if (!sk_wmem_schedule(ssk, copy)) { 1359 tcp_remove_empty_skb(ssk); 1360 return -ENOMEM; 1361 } 1362 1363 if (can_coalesce) { 1364 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1365 } else { 1366 get_page(dfrag->page); 1367 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1368 } 1369 1370 skb->len += copy; 1371 skb->data_len += copy; 1372 skb->truesize += copy; 1373 sk_wmem_queued_add(ssk, copy); 1374 sk_mem_charge(ssk, copy); 1375 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1376 TCP_SKB_CB(skb)->end_seq += copy; 1377 tcp_skb_pcount_set(skb, 0); 1378 1379 /* on skb reuse we just need to update the DSS len */ 1380 if (reuse_skb) { 1381 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1382 mpext->data_len += copy; 1383 goto out; 1384 } 1385 1386 memset(mpext, 0, sizeof(*mpext)); 1387 mpext->data_seq = data_seq; 1388 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1389 mpext->data_len = copy; 1390 mpext->use_map = 1; 1391 mpext->dsn64 = 1; 1392 1393 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1394 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1395 mpext->dsn64); 1396 1397 if (zero_window_probe) { 1398 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1399 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1400 mpext->frozen = 1; 1401 if (READ_ONCE(msk->csum_enabled)) 1402 mptcp_update_data_checksum(skb, copy); 1403 tcp_push_pending_frames(ssk); 1404 return 0; 1405 } 1406 out: 1407 if (READ_ONCE(msk->csum_enabled)) 1408 mptcp_update_data_checksum(skb, copy); 1409 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1410 mptcp_update_infinite_map(msk, ssk, mpext); 1411 trace_mptcp_sendmsg_frag(mpext); 1412 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1413 return copy; 1414 } 1415 1416 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1417 sizeof(struct tcphdr) - \ 1418 MAX_TCP_OPTION_SPACE - \ 1419 sizeof(struct ipv6hdr) - \ 1420 sizeof(struct frag_hdr)) 1421 1422 struct subflow_send_info { 1423 struct sock *ssk; 1424 u64 linger_time; 1425 }; 1426 1427 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1428 { 1429 if (!subflow->stale) 1430 return; 1431 1432 subflow->stale = 0; 1433 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1434 } 1435 1436 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1437 { 1438 if (unlikely(subflow->stale)) { 1439 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1440 1441 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1442 return false; 1443 1444 mptcp_subflow_set_active(subflow); 1445 } 1446 return __mptcp_subflow_active(subflow); 1447 } 1448 1449 #define SSK_MODE_ACTIVE 0 1450 #define SSK_MODE_BACKUP 1 1451 #define SSK_MODE_MAX 2 1452 1453 /* implement the mptcp packet scheduler; 1454 * returns the subflow that will transmit the next DSS 1455 * additionally updates the rtx timeout 1456 */ 1457 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1458 { 1459 struct subflow_send_info send_info[SSK_MODE_MAX]; 1460 struct mptcp_subflow_context *subflow; 1461 struct sock *sk = (struct sock *)msk; 1462 u32 pace, burst, wmem; 1463 int i, nr_active = 0; 1464 struct sock *ssk; 1465 u64 linger_time; 1466 long tout = 0; 1467 1468 /* pick the subflow with the lower wmem/wspace ratio */ 1469 for (i = 0; i < SSK_MODE_MAX; ++i) { 1470 send_info[i].ssk = NULL; 1471 send_info[i].linger_time = -1; 1472 } 1473 1474 mptcp_for_each_subflow(msk, subflow) { 1475 bool backup = subflow->backup || subflow->request_bkup; 1476 1477 trace_mptcp_subflow_get_send(subflow); 1478 ssk = mptcp_subflow_tcp_sock(subflow); 1479 if (!mptcp_subflow_active(subflow)) 1480 continue; 1481 1482 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1483 nr_active += !backup; 1484 pace = subflow->avg_pacing_rate; 1485 if (unlikely(!pace)) { 1486 /* init pacing rate from socket */ 1487 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1488 pace = subflow->avg_pacing_rate; 1489 if (!pace) 1490 continue; 1491 } 1492 1493 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1494 if (linger_time < send_info[backup].linger_time) { 1495 send_info[backup].ssk = ssk; 1496 send_info[backup].linger_time = linger_time; 1497 } 1498 } 1499 __mptcp_set_timeout(sk, tout); 1500 1501 /* pick the best backup if no other subflow is active */ 1502 if (!nr_active) 1503 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1504 1505 /* According to the blest algorithm, to avoid HoL blocking for the 1506 * faster flow, we need to: 1507 * - estimate the faster flow linger time 1508 * - use the above to estimate the amount of byte transferred 1509 * by the faster flow 1510 * - check that the amount of queued data is greater than the above, 1511 * otherwise do not use the picked, slower, subflow 1512 * We select the subflow with the shorter estimated time to flush 1513 * the queued mem, which basically ensure the above. We just need 1514 * to check that subflow has a non empty cwin. 1515 */ 1516 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1517 if (!ssk || !sk_stream_memory_free(ssk)) 1518 return NULL; 1519 1520 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1521 wmem = READ_ONCE(ssk->sk_wmem_queued); 1522 if (!burst) 1523 return ssk; 1524 1525 subflow = mptcp_subflow_ctx(ssk); 1526 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1527 READ_ONCE(ssk->sk_pacing_rate) * burst, 1528 burst + wmem); 1529 msk->snd_burst = burst; 1530 return ssk; 1531 } 1532 1533 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1534 { 1535 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1536 release_sock(ssk); 1537 } 1538 1539 static void mptcp_update_post_push(struct mptcp_sock *msk, 1540 struct mptcp_data_frag *dfrag, 1541 u32 sent) 1542 { 1543 u64 snd_nxt_new = dfrag->data_seq; 1544 1545 dfrag->already_sent += sent; 1546 1547 msk->snd_burst -= sent; 1548 1549 snd_nxt_new += dfrag->already_sent; 1550 1551 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1552 * is recovering after a failover. In that event, this re-sends 1553 * old segments. 1554 * 1555 * Thus compute snd_nxt_new candidate based on 1556 * the dfrag->data_seq that was sent and the data 1557 * that has been handed to the subflow for transmission 1558 * and skip update in case it was old dfrag. 1559 */ 1560 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1561 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1562 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1563 } 1564 } 1565 1566 void mptcp_check_and_set_pending(struct sock *sk) 1567 { 1568 if (mptcp_send_head(sk)) { 1569 mptcp_data_lock(sk); 1570 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1571 mptcp_data_unlock(sk); 1572 } 1573 } 1574 1575 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1576 struct mptcp_sendmsg_info *info) 1577 { 1578 struct mptcp_sock *msk = mptcp_sk(sk); 1579 struct mptcp_data_frag *dfrag; 1580 int len, copied = 0, err = 0; 1581 1582 while ((dfrag = mptcp_send_head(sk))) { 1583 info->sent = dfrag->already_sent; 1584 info->limit = dfrag->data_len; 1585 len = dfrag->data_len - dfrag->already_sent; 1586 while (len > 0) { 1587 int ret = 0; 1588 1589 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1590 if (ret <= 0) { 1591 err = copied ? : ret; 1592 goto out; 1593 } 1594 1595 info->sent += ret; 1596 copied += ret; 1597 len -= ret; 1598 1599 mptcp_update_post_push(msk, dfrag, ret); 1600 } 1601 msk->first_pending = mptcp_send_next(sk); 1602 1603 if (msk->snd_burst <= 0 || 1604 !sk_stream_memory_free(ssk) || 1605 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1606 err = copied; 1607 goto out; 1608 } 1609 mptcp_set_timeout(sk); 1610 } 1611 err = copied; 1612 1613 out: 1614 if (err > 0) 1615 msk->last_data_sent = tcp_jiffies32; 1616 return err; 1617 } 1618 1619 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1620 { 1621 struct sock *prev_ssk = NULL, *ssk = NULL; 1622 struct mptcp_sock *msk = mptcp_sk(sk); 1623 struct mptcp_sendmsg_info info = { 1624 .flags = flags, 1625 }; 1626 bool do_check_data_fin = false; 1627 int push_count = 1; 1628 1629 while (mptcp_send_head(sk) && (push_count > 0)) { 1630 struct mptcp_subflow_context *subflow; 1631 int ret = 0; 1632 1633 if (mptcp_sched_get_send(msk)) 1634 break; 1635 1636 push_count = 0; 1637 1638 mptcp_for_each_subflow(msk, subflow) { 1639 if (READ_ONCE(subflow->scheduled)) { 1640 mptcp_subflow_set_scheduled(subflow, false); 1641 1642 prev_ssk = ssk; 1643 ssk = mptcp_subflow_tcp_sock(subflow); 1644 if (ssk != prev_ssk) { 1645 /* First check. If the ssk has changed since 1646 * the last round, release prev_ssk 1647 */ 1648 if (prev_ssk) 1649 mptcp_push_release(prev_ssk, &info); 1650 1651 /* Need to lock the new subflow only if different 1652 * from the previous one, otherwise we are still 1653 * helding the relevant lock 1654 */ 1655 lock_sock(ssk); 1656 } 1657 1658 push_count++; 1659 1660 ret = __subflow_push_pending(sk, ssk, &info); 1661 if (ret <= 0) { 1662 if (ret != -EAGAIN || 1663 (1 << ssk->sk_state) & 1664 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1665 push_count--; 1666 continue; 1667 } 1668 do_check_data_fin = true; 1669 } 1670 } 1671 } 1672 1673 /* at this point we held the socket lock for the last subflow we used */ 1674 if (ssk) 1675 mptcp_push_release(ssk, &info); 1676 1677 /* ensure the rtx timer is running */ 1678 if (!mptcp_rtx_timer_pending(sk)) 1679 mptcp_reset_rtx_timer(sk); 1680 if (do_check_data_fin) 1681 mptcp_check_send_data_fin(sk); 1682 } 1683 1684 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1685 { 1686 struct mptcp_sock *msk = mptcp_sk(sk); 1687 struct mptcp_sendmsg_info info = { 1688 .data_lock_held = true, 1689 }; 1690 bool keep_pushing = true; 1691 struct sock *xmit_ssk; 1692 int copied = 0; 1693 1694 info.flags = 0; 1695 while (mptcp_send_head(sk) && keep_pushing) { 1696 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1697 int ret = 0; 1698 1699 /* check for a different subflow usage only after 1700 * spooling the first chunk of data 1701 */ 1702 if (first) { 1703 mptcp_subflow_set_scheduled(subflow, false); 1704 ret = __subflow_push_pending(sk, ssk, &info); 1705 first = false; 1706 if (ret <= 0) 1707 break; 1708 copied += ret; 1709 continue; 1710 } 1711 1712 if (mptcp_sched_get_send(msk)) 1713 goto out; 1714 1715 if (READ_ONCE(subflow->scheduled)) { 1716 mptcp_subflow_set_scheduled(subflow, false); 1717 ret = __subflow_push_pending(sk, ssk, &info); 1718 if (ret <= 0) 1719 keep_pushing = false; 1720 copied += ret; 1721 } 1722 1723 mptcp_for_each_subflow(msk, subflow) { 1724 if (READ_ONCE(subflow->scheduled)) { 1725 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1726 if (xmit_ssk != ssk) { 1727 mptcp_subflow_delegate(subflow, 1728 MPTCP_DELEGATE_SEND); 1729 keep_pushing = false; 1730 } 1731 } 1732 } 1733 } 1734 1735 out: 1736 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1737 * not going to flush it via release_sock() 1738 */ 1739 if (copied) { 1740 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1741 info.size_goal); 1742 if (!mptcp_rtx_timer_pending(sk)) 1743 mptcp_reset_rtx_timer(sk); 1744 1745 if (msk->snd_data_fin_enable && 1746 msk->snd_nxt + 1 == msk->write_seq) 1747 mptcp_schedule_work(sk); 1748 } 1749 } 1750 1751 static int mptcp_disconnect(struct sock *sk, int flags); 1752 1753 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1754 size_t len, int *copied_syn) 1755 { 1756 unsigned int saved_flags = msg->msg_flags; 1757 struct mptcp_sock *msk = mptcp_sk(sk); 1758 struct sock *ssk; 1759 int ret; 1760 1761 /* on flags based fastopen the mptcp is supposed to create the 1762 * first subflow right now. Otherwise we are in the defer_connect 1763 * path, and the first subflow must be already present. 1764 * Since the defer_connect flag is cleared after the first succsful 1765 * fastopen attempt, no need to check for additional subflow status. 1766 */ 1767 if (msg->msg_flags & MSG_FASTOPEN) { 1768 ssk = __mptcp_nmpc_sk(msk); 1769 if (IS_ERR(ssk)) 1770 return PTR_ERR(ssk); 1771 } 1772 if (!msk->first) 1773 return -EINVAL; 1774 1775 ssk = msk->first; 1776 1777 lock_sock(ssk); 1778 msg->msg_flags |= MSG_DONTWAIT; 1779 msk->fastopening = 1; 1780 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1781 msk->fastopening = 0; 1782 msg->msg_flags = saved_flags; 1783 release_sock(ssk); 1784 1785 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1786 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1787 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1788 msg->msg_namelen, msg->msg_flags, 1); 1789 1790 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1791 * case of any error, except timeout or signal 1792 */ 1793 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1794 *copied_syn = 0; 1795 } else if (ret && ret != -EINPROGRESS) { 1796 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1797 * __inet_stream_connect() can fail, due to looking check, 1798 * see mptcp_disconnect(). 1799 * Attempt it again outside the problematic scope. 1800 */ 1801 if (!mptcp_disconnect(sk, 0)) { 1802 sk->sk_disconnects++; 1803 sk->sk_socket->state = SS_UNCONNECTED; 1804 } 1805 } 1806 inet_clear_bit(DEFER_CONNECT, sk); 1807 1808 return ret; 1809 } 1810 1811 static int do_copy_data_nocache(struct sock *sk, int copy, 1812 struct iov_iter *from, char *to) 1813 { 1814 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1815 if (!copy_from_iter_full_nocache(to, copy, from)) 1816 return -EFAULT; 1817 } else if (!copy_from_iter_full(to, copy, from)) { 1818 return -EFAULT; 1819 } 1820 return 0; 1821 } 1822 1823 /* open-code sk_stream_memory_free() plus sent limit computation to 1824 * avoid indirect calls in fast-path. 1825 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1826 * annotations. 1827 */ 1828 static u32 mptcp_send_limit(const struct sock *sk) 1829 { 1830 const struct mptcp_sock *msk = mptcp_sk(sk); 1831 u32 limit, not_sent; 1832 1833 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1834 return 0; 1835 1836 limit = mptcp_notsent_lowat(sk); 1837 if (limit == UINT_MAX) 1838 return UINT_MAX; 1839 1840 not_sent = msk->write_seq - msk->snd_nxt; 1841 if (not_sent >= limit) 1842 return 0; 1843 1844 return limit - not_sent; 1845 } 1846 1847 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1848 { 1849 struct mptcp_subflow_context *subflow; 1850 1851 if (!rfs_is_needed()) 1852 return; 1853 1854 mptcp_for_each_subflow(msk, subflow) { 1855 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1856 1857 sock_rps_record_flow(ssk); 1858 } 1859 } 1860 1861 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1862 { 1863 struct mptcp_sock *msk = mptcp_sk(sk); 1864 struct page_frag *pfrag; 1865 size_t copied = 0; 1866 int ret = 0; 1867 long timeo; 1868 1869 /* silently ignore everything else */ 1870 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1871 1872 lock_sock(sk); 1873 1874 mptcp_rps_record_subflows(msk); 1875 1876 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1877 msg->msg_flags & MSG_FASTOPEN)) { 1878 int copied_syn = 0; 1879 1880 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1881 copied += copied_syn; 1882 if (ret == -EINPROGRESS && copied_syn > 0) 1883 goto out; 1884 else if (ret) 1885 goto do_error; 1886 } 1887 1888 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1889 1890 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1891 ret = sk_stream_wait_connect(sk, &timeo); 1892 if (ret) 1893 goto do_error; 1894 } 1895 1896 ret = -EPIPE; 1897 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1898 goto do_error; 1899 1900 pfrag = sk_page_frag(sk); 1901 1902 while (msg_data_left(msg)) { 1903 int total_ts, frag_truesize = 0; 1904 struct mptcp_data_frag *dfrag; 1905 bool dfrag_collapsed; 1906 size_t psize, offset; 1907 u32 copy_limit; 1908 1909 /* ensure fitting the notsent_lowat() constraint */ 1910 copy_limit = mptcp_send_limit(sk); 1911 if (!copy_limit) 1912 goto wait_for_memory; 1913 1914 /* reuse tail pfrag, if possible, or carve a new one from the 1915 * page allocator 1916 */ 1917 dfrag = mptcp_pending_tail(sk); 1918 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1919 if (!dfrag_collapsed) { 1920 if (!mptcp_page_frag_refill(sk, pfrag)) 1921 goto wait_for_memory; 1922 1923 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1924 frag_truesize = dfrag->overhead; 1925 } 1926 1927 /* we do not bound vs wspace, to allow a single packet. 1928 * memory accounting will prevent execessive memory usage 1929 * anyway 1930 */ 1931 offset = dfrag->offset + dfrag->data_len; 1932 psize = pfrag->size - offset; 1933 psize = min_t(size_t, psize, msg_data_left(msg)); 1934 psize = min_t(size_t, psize, copy_limit); 1935 total_ts = psize + frag_truesize; 1936 1937 if (!sk_wmem_schedule(sk, total_ts)) 1938 goto wait_for_memory; 1939 1940 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1941 page_address(dfrag->page) + offset); 1942 if (ret) 1943 goto do_error; 1944 1945 /* data successfully copied into the write queue */ 1946 sk_forward_alloc_add(sk, -total_ts); 1947 copied += psize; 1948 dfrag->data_len += psize; 1949 frag_truesize += psize; 1950 pfrag->offset += frag_truesize; 1951 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1952 1953 /* charge data on mptcp pending queue to the msk socket 1954 * Note: we charge such data both to sk and ssk 1955 */ 1956 sk_wmem_queued_add(sk, frag_truesize); 1957 if (!dfrag_collapsed) { 1958 get_page(dfrag->page); 1959 list_add_tail(&dfrag->list, &msk->rtx_queue); 1960 if (!msk->first_pending) 1961 msk->first_pending = dfrag; 1962 } 1963 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1964 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1965 !dfrag_collapsed); 1966 1967 continue; 1968 1969 wait_for_memory: 1970 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1971 __mptcp_push_pending(sk, msg->msg_flags); 1972 ret = sk_stream_wait_memory(sk, &timeo); 1973 if (ret) 1974 goto do_error; 1975 } 1976 1977 if (copied) 1978 __mptcp_push_pending(sk, msg->msg_flags); 1979 1980 out: 1981 release_sock(sk); 1982 return copied; 1983 1984 do_error: 1985 if (copied) 1986 goto out; 1987 1988 copied = sk_stream_error(sk, msg->msg_flags, ret); 1989 goto out; 1990 } 1991 1992 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1993 1994 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1995 size_t len, int flags, int copied_total, 1996 struct scm_timestamping_internal *tss, 1997 int *cmsg_flags) 1998 { 1999 struct mptcp_sock *msk = mptcp_sk(sk); 2000 struct sk_buff *skb, *tmp; 2001 int total_data_len = 0; 2002 int copied = 0; 2003 2004 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 2005 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 2006 u32 data_len = skb->len - offset; 2007 u32 count; 2008 int err; 2009 2010 if (flags & MSG_PEEK) { 2011 /* skip already peeked skbs */ 2012 if (total_data_len + data_len <= copied_total) { 2013 total_data_len += data_len; 2014 continue; 2015 } 2016 2017 /* skip the already peeked data in the current skb */ 2018 delta = copied_total - total_data_len; 2019 offset += delta; 2020 data_len -= delta; 2021 } 2022 2023 count = min_t(size_t, len - copied, data_len); 2024 if (!(flags & MSG_TRUNC)) { 2025 err = skb_copy_datagram_msg(skb, offset, msg, count); 2026 if (unlikely(err < 0)) { 2027 if (!copied) 2028 return err; 2029 break; 2030 } 2031 } 2032 2033 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 2034 tcp_update_recv_tstamps(skb, tss); 2035 *cmsg_flags |= MPTCP_CMSG_TS; 2036 } 2037 2038 copied += count; 2039 2040 if (!(flags & MSG_PEEK)) { 2041 msk->bytes_consumed += count; 2042 if (count < data_len) { 2043 MPTCP_SKB_CB(skb)->offset += count; 2044 MPTCP_SKB_CB(skb)->map_seq += count; 2045 break; 2046 } 2047 2048 /* avoid the indirect call, we know the destructor is sock_rfree */ 2049 skb->destructor = NULL; 2050 skb->sk = NULL; 2051 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2052 sk_mem_uncharge(sk, skb->truesize); 2053 __skb_unlink(skb, &sk->sk_receive_queue); 2054 skb_attempt_defer_free(skb); 2055 } 2056 2057 if (copied >= len) 2058 break; 2059 } 2060 2061 mptcp_rcv_space_adjust(msk, copied); 2062 return copied; 2063 } 2064 2065 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2066 * 2067 * Only difference: Use highest rtt estimate of the subflows in use. 2068 */ 2069 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2070 { 2071 struct mptcp_subflow_context *subflow; 2072 struct sock *sk = (struct sock *)msk; 2073 u8 scaling_ratio = U8_MAX; 2074 u32 time, advmss = 1; 2075 u64 rtt_us, mstamp; 2076 2077 msk_owned_by_me(msk); 2078 2079 if (copied <= 0) 2080 return; 2081 2082 if (!msk->rcvspace_init) 2083 mptcp_rcv_space_init(msk, msk->first); 2084 2085 msk->rcvq_space.copied += copied; 2086 2087 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2088 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2089 2090 rtt_us = msk->rcvq_space.rtt_us; 2091 if (rtt_us && time < (rtt_us >> 3)) 2092 return; 2093 2094 rtt_us = 0; 2095 mptcp_for_each_subflow(msk, subflow) { 2096 const struct tcp_sock *tp; 2097 u64 sf_rtt_us; 2098 u32 sf_advmss; 2099 2100 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2101 2102 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2103 sf_advmss = READ_ONCE(tp->advmss); 2104 2105 rtt_us = max(sf_rtt_us, rtt_us); 2106 advmss = max(sf_advmss, advmss); 2107 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2108 } 2109 2110 msk->rcvq_space.rtt_us = rtt_us; 2111 msk->scaling_ratio = scaling_ratio; 2112 if (time < (rtt_us >> 3) || rtt_us == 0) 2113 return; 2114 2115 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2116 goto new_measure; 2117 2118 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2119 /* Make subflows follow along. If we do not do this, we 2120 * get drops at subflow level if skbs can't be moved to 2121 * the mptcp rx queue fast enough (announced rcv_win can 2122 * exceed ssk->sk_rcvbuf). 2123 */ 2124 mptcp_for_each_subflow(msk, subflow) { 2125 struct sock *ssk; 2126 bool slow; 2127 2128 ssk = mptcp_subflow_tcp_sock(subflow); 2129 slow = lock_sock_fast(ssk); 2130 /* subflows can be added before tcp_init_transfer() */ 2131 if (tcp_sk(ssk)->rcvq_space.space) 2132 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2133 unlock_sock_fast(ssk, slow); 2134 } 2135 } 2136 2137 new_measure: 2138 msk->rcvq_space.copied = 0; 2139 msk->rcvq_space.time = mstamp; 2140 } 2141 2142 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta) 2143 { 2144 struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list); 2145 struct mptcp_sock *msk = mptcp_sk(sk); 2146 bool moved = false; 2147 2148 *delta = 0; 2149 while (1) { 2150 /* If the msk recvbuf is full stop, don't drop */ 2151 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2152 break; 2153 2154 prefetch(skb->next); 2155 list_del(&skb->list); 2156 *delta += skb->truesize; 2157 2158 moved |= __mptcp_move_skb(sk, skb); 2159 if (list_empty(skbs)) 2160 break; 2161 2162 skb = list_first_entry(skbs, struct sk_buff, list); 2163 } 2164 2165 __mptcp_ofo_queue(msk); 2166 if (moved) 2167 mptcp_check_data_fin((struct sock *)msk); 2168 return moved; 2169 } 2170 2171 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs) 2172 { 2173 struct mptcp_sock *msk = mptcp_sk(sk); 2174 2175 /* After CG initialization, subflows should never add skb before 2176 * gaining the CG themself. 2177 */ 2178 DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket && 2179 mem_cgroup_from_sk(sk)); 2180 2181 /* Don't spool the backlog if the rcvbuf is full. */ 2182 if (list_empty(&msk->backlog_list) || 2183 sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2184 return false; 2185 2186 INIT_LIST_HEAD(skbs); 2187 list_splice_init(&msk->backlog_list, skbs); 2188 return true; 2189 } 2190 2191 static void mptcp_backlog_spooled(struct sock *sk, u32 moved, 2192 struct list_head *skbs) 2193 { 2194 struct mptcp_sock *msk = mptcp_sk(sk); 2195 2196 WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved); 2197 list_splice(skbs, &msk->backlog_list); 2198 } 2199 2200 static bool mptcp_move_skbs(struct sock *sk) 2201 { 2202 struct list_head skbs; 2203 bool enqueued = false; 2204 u32 moved; 2205 2206 mptcp_data_lock(sk); 2207 while (mptcp_can_spool_backlog(sk, &skbs)) { 2208 mptcp_data_unlock(sk); 2209 enqueued |= __mptcp_move_skbs(sk, &skbs, &moved); 2210 2211 mptcp_data_lock(sk); 2212 mptcp_backlog_spooled(sk, moved, &skbs); 2213 } 2214 mptcp_data_unlock(sk); 2215 return enqueued; 2216 } 2217 2218 static unsigned int mptcp_inq_hint(const struct sock *sk) 2219 { 2220 const struct mptcp_sock *msk = mptcp_sk(sk); 2221 const struct sk_buff *skb; 2222 2223 skb = skb_peek(&sk->sk_receive_queue); 2224 if (skb) { 2225 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2226 2227 if (hint_val >= INT_MAX) 2228 return INT_MAX; 2229 2230 return (unsigned int)hint_val; 2231 } 2232 2233 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2234 return 1; 2235 2236 return 0; 2237 } 2238 2239 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2240 int flags, int *addr_len) 2241 { 2242 struct mptcp_sock *msk = mptcp_sk(sk); 2243 struct scm_timestamping_internal tss; 2244 int copied = 0, cmsg_flags = 0; 2245 int target; 2246 long timeo; 2247 2248 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2249 if (unlikely(flags & MSG_ERRQUEUE)) 2250 return inet_recv_error(sk, msg, len, addr_len); 2251 2252 lock_sock(sk); 2253 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2254 copied = -ENOTCONN; 2255 goto out_err; 2256 } 2257 2258 mptcp_rps_record_subflows(msk); 2259 2260 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2261 2262 len = min_t(size_t, len, INT_MAX); 2263 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2264 2265 if (unlikely(msk->recvmsg_inq)) 2266 cmsg_flags = MPTCP_CMSG_INQ; 2267 2268 while (copied < len) { 2269 int err, bytes_read; 2270 2271 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2272 copied, &tss, &cmsg_flags); 2273 if (unlikely(bytes_read < 0)) { 2274 if (!copied) 2275 copied = bytes_read; 2276 goto out_err; 2277 } 2278 2279 copied += bytes_read; 2280 2281 if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk)) 2282 continue; 2283 2284 /* only the MPTCP socket status is relevant here. The exit 2285 * conditions mirror closely tcp_recvmsg() 2286 */ 2287 if (copied >= target) 2288 break; 2289 2290 if (copied) { 2291 if (sk->sk_err || 2292 sk->sk_state == TCP_CLOSE || 2293 (sk->sk_shutdown & RCV_SHUTDOWN) || 2294 !timeo || 2295 signal_pending(current)) 2296 break; 2297 } else { 2298 if (sk->sk_err) { 2299 copied = sock_error(sk); 2300 break; 2301 } 2302 2303 if (sk->sk_shutdown & RCV_SHUTDOWN) 2304 break; 2305 2306 if (sk->sk_state == TCP_CLOSE) { 2307 copied = -ENOTCONN; 2308 break; 2309 } 2310 2311 if (!timeo) { 2312 copied = -EAGAIN; 2313 break; 2314 } 2315 2316 if (signal_pending(current)) { 2317 copied = sock_intr_errno(timeo); 2318 break; 2319 } 2320 } 2321 2322 pr_debug("block timeout %ld\n", timeo); 2323 mptcp_cleanup_rbuf(msk, copied); 2324 err = sk_wait_data(sk, &timeo, NULL); 2325 if (err < 0) { 2326 err = copied ? : err; 2327 goto out_err; 2328 } 2329 } 2330 2331 mptcp_cleanup_rbuf(msk, copied); 2332 2333 out_err: 2334 if (cmsg_flags && copied >= 0) { 2335 if (cmsg_flags & MPTCP_CMSG_TS) 2336 tcp_recv_timestamp(msg, sk, &tss); 2337 2338 if (cmsg_flags & MPTCP_CMSG_INQ) { 2339 unsigned int inq = mptcp_inq_hint(sk); 2340 2341 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2342 } 2343 } 2344 2345 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2346 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2347 2348 release_sock(sk); 2349 return copied; 2350 } 2351 2352 static void mptcp_retransmit_timer(struct timer_list *t) 2353 { 2354 struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer); 2355 struct mptcp_sock *msk = mptcp_sk(sk); 2356 2357 bh_lock_sock(sk); 2358 if (!sock_owned_by_user(sk)) { 2359 /* we need a process context to retransmit */ 2360 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2361 mptcp_schedule_work(sk); 2362 } else { 2363 /* delegate our work to tcp_release_cb() */ 2364 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2365 } 2366 bh_unlock_sock(sk); 2367 sock_put(sk); 2368 } 2369 2370 static void mptcp_tout_timer(struct timer_list *t) 2371 { 2372 struct inet_connection_sock *icsk = 2373 timer_container_of(icsk, t, mptcp_tout_timer); 2374 struct sock *sk = &icsk->icsk_inet.sk; 2375 2376 mptcp_schedule_work(sk); 2377 sock_put(sk); 2378 } 2379 2380 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2381 * level. 2382 * 2383 * A backup subflow is returned only if that is the only kind available. 2384 */ 2385 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2386 { 2387 struct sock *backup = NULL, *pick = NULL; 2388 struct mptcp_subflow_context *subflow; 2389 int min_stale_count = INT_MAX; 2390 2391 mptcp_for_each_subflow(msk, subflow) { 2392 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2393 2394 if (!__mptcp_subflow_active(subflow)) 2395 continue; 2396 2397 /* still data outstanding at TCP level? skip this */ 2398 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2399 mptcp_pm_subflow_chk_stale(msk, ssk); 2400 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2401 continue; 2402 } 2403 2404 if (subflow->backup || subflow->request_bkup) { 2405 if (!backup) 2406 backup = ssk; 2407 continue; 2408 } 2409 2410 if (!pick) 2411 pick = ssk; 2412 } 2413 2414 if (pick) 2415 return pick; 2416 2417 /* use backup only if there are no progresses anywhere */ 2418 return min_stale_count > 1 ? backup : NULL; 2419 } 2420 2421 bool __mptcp_retransmit_pending_data(struct sock *sk) 2422 { 2423 struct mptcp_data_frag *cur, *rtx_head; 2424 struct mptcp_sock *msk = mptcp_sk(sk); 2425 2426 if (__mptcp_check_fallback(msk)) 2427 return false; 2428 2429 /* the closing socket has some data untransmitted and/or unacked: 2430 * some data in the mptcp rtx queue has not really xmitted yet. 2431 * keep it simple and re-inject the whole mptcp level rtx queue 2432 */ 2433 mptcp_data_lock(sk); 2434 __mptcp_clean_una_wakeup(sk); 2435 rtx_head = mptcp_rtx_head(sk); 2436 if (!rtx_head) { 2437 mptcp_data_unlock(sk); 2438 return false; 2439 } 2440 2441 msk->recovery_snd_nxt = msk->snd_nxt; 2442 msk->recovery = true; 2443 mptcp_data_unlock(sk); 2444 2445 msk->first_pending = rtx_head; 2446 msk->snd_burst = 0; 2447 2448 /* be sure to clear the "sent status" on all re-injected fragments */ 2449 list_for_each_entry(cur, &msk->rtx_queue, list) { 2450 if (!cur->already_sent) 2451 break; 2452 cur->already_sent = 0; 2453 } 2454 2455 return true; 2456 } 2457 2458 /* flags for __mptcp_close_ssk() */ 2459 #define MPTCP_CF_PUSH BIT(1) 2460 2461 /* be sure to send a reset only if the caller asked for it, also 2462 * clean completely the subflow status when the subflow reaches 2463 * TCP_CLOSE state 2464 */ 2465 static void __mptcp_subflow_disconnect(struct sock *ssk, 2466 struct mptcp_subflow_context *subflow, 2467 unsigned int flags) 2468 { 2469 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2470 subflow->send_fastclose) { 2471 /* The MPTCP code never wait on the subflow sockets, TCP-level 2472 * disconnect should never fail 2473 */ 2474 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2475 mptcp_subflow_ctx_reset(subflow); 2476 } else { 2477 tcp_shutdown(ssk, SEND_SHUTDOWN); 2478 } 2479 } 2480 2481 /* subflow sockets can be either outgoing (connect) or incoming 2482 * (accept). 2483 * 2484 * Outgoing subflows use in-kernel sockets. 2485 * Incoming subflows do not have their own 'struct socket' allocated, 2486 * so we need to use tcp_close() after detaching them from the mptcp 2487 * parent socket. 2488 */ 2489 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2490 struct mptcp_subflow_context *subflow, 2491 unsigned int flags) 2492 { 2493 struct mptcp_sock *msk = mptcp_sk(sk); 2494 bool dispose_it, need_push = false; 2495 int fwd_remaining; 2496 2497 /* Do not pass RX data to the msk, even if the subflow socket is not 2498 * going to be freed (i.e. even for the first subflow on graceful 2499 * subflow close. 2500 */ 2501 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2502 subflow->closing = 1; 2503 2504 /* Borrow the fwd allocated page left-over; fwd memory for the subflow 2505 * could be negative at this point, but will be reach zero soon - when 2506 * the data allocated using such fragment will be freed. 2507 */ 2508 if (subflow->lent_mem_frag) { 2509 fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag; 2510 sk_forward_alloc_add(sk, fwd_remaining); 2511 sk_forward_alloc_add(ssk, -fwd_remaining); 2512 subflow->lent_mem_frag = 0; 2513 } 2514 2515 /* If the first subflow moved to a close state before accept, e.g. due 2516 * to an incoming reset or listener shutdown, the subflow socket is 2517 * already deleted by inet_child_forget() and the mptcp socket can't 2518 * survive too. 2519 */ 2520 if (msk->in_accept_queue && msk->first == ssk && 2521 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2522 /* ensure later check in mptcp_worker() will dispose the msk */ 2523 sock_set_flag(sk, SOCK_DEAD); 2524 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2525 mptcp_subflow_drop_ctx(ssk); 2526 goto out_release; 2527 } 2528 2529 dispose_it = msk->free_first || ssk != msk->first; 2530 if (dispose_it) 2531 list_del(&subflow->node); 2532 2533 if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE) 2534 tcp_set_state(ssk, TCP_CLOSE); 2535 2536 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2537 if (!dispose_it) { 2538 __mptcp_subflow_disconnect(ssk, subflow, flags); 2539 release_sock(ssk); 2540 2541 goto out; 2542 } 2543 2544 subflow->disposable = 1; 2545 2546 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2547 * the ssk has been already destroyed, we just need to release the 2548 * reference owned by msk; 2549 */ 2550 if (!inet_csk(ssk)->icsk_ulp_ops) { 2551 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2552 kfree_rcu(subflow, rcu); 2553 } else { 2554 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2555 __tcp_close(ssk, 0); 2556 2557 /* close acquired an extra ref */ 2558 __sock_put(ssk); 2559 } 2560 2561 out_release: 2562 __mptcp_subflow_error_report(sk, ssk); 2563 release_sock(ssk); 2564 2565 sock_put(ssk); 2566 2567 if (ssk == msk->first) 2568 WRITE_ONCE(msk->first, NULL); 2569 2570 out: 2571 __mptcp_sync_sndbuf(sk); 2572 if (need_push) 2573 __mptcp_push_pending(sk, 0); 2574 2575 /* Catch every 'all subflows closed' scenario, including peers silently 2576 * closing them, e.g. due to timeout. 2577 * For established sockets, allow an additional timeout before closing, 2578 * as the protocol can still create more subflows. 2579 */ 2580 if (list_is_singular(&msk->conn_list) && msk->first && 2581 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2582 if (sk->sk_state != TCP_ESTABLISHED || 2583 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2584 mptcp_set_state(sk, TCP_CLOSE); 2585 mptcp_close_wake_up(sk); 2586 } else { 2587 mptcp_start_tout_timer(sk); 2588 } 2589 } 2590 } 2591 2592 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2593 struct mptcp_subflow_context *subflow) 2594 { 2595 struct mptcp_sock *msk = mptcp_sk(sk); 2596 struct sk_buff *skb; 2597 2598 /* The first subflow can already be closed and still in the list */ 2599 if (subflow->close_event_done) 2600 return; 2601 2602 subflow->close_event_done = true; 2603 2604 if (sk->sk_state == TCP_ESTABLISHED) 2605 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2606 2607 /* Remove any reference from the backlog to this ssk; backlog skbs consume 2608 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc 2609 */ 2610 list_for_each_entry(skb, &msk->backlog_list, list) { 2611 if (skb->sk != ssk) 2612 continue; 2613 2614 atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc); 2615 skb->sk = NULL; 2616 } 2617 2618 /* subflow aborted before reaching the fully_established status 2619 * attempt the creation of the next subflow 2620 */ 2621 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2622 2623 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2624 } 2625 2626 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2627 { 2628 return 0; 2629 } 2630 2631 static void __mptcp_close_subflow(struct sock *sk) 2632 { 2633 struct mptcp_subflow_context *subflow, *tmp; 2634 struct mptcp_sock *msk = mptcp_sk(sk); 2635 2636 might_sleep(); 2637 2638 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2639 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2640 int ssk_state = inet_sk_state_load(ssk); 2641 2642 if (ssk_state != TCP_CLOSE && 2643 (ssk_state != TCP_CLOSE_WAIT || 2644 inet_sk_state_load(sk) != TCP_ESTABLISHED || 2645 __mptcp_check_fallback(msk))) 2646 continue; 2647 2648 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2649 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2650 continue; 2651 2652 mptcp_close_ssk(sk, ssk, subflow); 2653 } 2654 2655 } 2656 2657 static bool mptcp_close_tout_expired(const struct sock *sk) 2658 { 2659 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2660 sk->sk_state == TCP_CLOSE) 2661 return false; 2662 2663 return time_after32(tcp_jiffies32, 2664 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2665 } 2666 2667 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2668 { 2669 struct mptcp_subflow_context *subflow, *tmp; 2670 struct sock *sk = (struct sock *)msk; 2671 2672 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2673 return; 2674 2675 mptcp_token_destroy(msk); 2676 2677 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2678 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2679 bool slow; 2680 2681 slow = lock_sock_fast(tcp_sk); 2682 if (tcp_sk->sk_state != TCP_CLOSE) { 2683 mptcp_send_active_reset_reason(tcp_sk); 2684 tcp_set_state(tcp_sk, TCP_CLOSE); 2685 } 2686 unlock_sock_fast(tcp_sk, slow); 2687 } 2688 2689 /* Mirror the tcp_reset() error propagation */ 2690 switch (sk->sk_state) { 2691 case TCP_SYN_SENT: 2692 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2693 break; 2694 case TCP_CLOSE_WAIT: 2695 WRITE_ONCE(sk->sk_err, EPIPE); 2696 break; 2697 case TCP_CLOSE: 2698 return; 2699 default: 2700 WRITE_ONCE(sk->sk_err, ECONNRESET); 2701 } 2702 2703 mptcp_set_state(sk, TCP_CLOSE); 2704 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2705 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2706 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2707 2708 /* the calling mptcp_worker will properly destroy the socket */ 2709 if (sock_flag(sk, SOCK_DEAD)) 2710 return; 2711 2712 sk->sk_state_change(sk); 2713 sk_error_report(sk); 2714 } 2715 2716 static void __mptcp_retrans(struct sock *sk) 2717 { 2718 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2719 struct mptcp_sock *msk = mptcp_sk(sk); 2720 struct mptcp_subflow_context *subflow; 2721 struct mptcp_data_frag *dfrag; 2722 struct sock *ssk; 2723 int ret, err; 2724 u16 len = 0; 2725 2726 mptcp_clean_una_wakeup(sk); 2727 2728 /* first check ssk: need to kick "stale" logic */ 2729 err = mptcp_sched_get_retrans(msk); 2730 dfrag = mptcp_rtx_head(sk); 2731 if (!dfrag) { 2732 if (mptcp_data_fin_enabled(msk)) { 2733 struct inet_connection_sock *icsk = inet_csk(sk); 2734 2735 WRITE_ONCE(icsk->icsk_retransmits, 2736 icsk->icsk_retransmits + 1); 2737 mptcp_set_datafin_timeout(sk); 2738 mptcp_send_ack(msk); 2739 2740 goto reset_timer; 2741 } 2742 2743 if (!mptcp_send_head(sk)) 2744 return; 2745 2746 goto reset_timer; 2747 } 2748 2749 if (err) 2750 goto reset_timer; 2751 2752 mptcp_for_each_subflow(msk, subflow) { 2753 if (READ_ONCE(subflow->scheduled)) { 2754 u16 copied = 0; 2755 2756 mptcp_subflow_set_scheduled(subflow, false); 2757 2758 ssk = mptcp_subflow_tcp_sock(subflow); 2759 2760 lock_sock(ssk); 2761 2762 /* limit retransmission to the bytes already sent on some subflows */ 2763 info.sent = 0; 2764 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2765 dfrag->already_sent; 2766 2767 /* 2768 * make the whole retrans decision, xmit, disallow 2769 * fallback atomic 2770 */ 2771 spin_lock_bh(&msk->fallback_lock); 2772 if (__mptcp_check_fallback(msk)) { 2773 spin_unlock_bh(&msk->fallback_lock); 2774 release_sock(ssk); 2775 return; 2776 } 2777 2778 while (info.sent < info.limit) { 2779 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2780 if (ret <= 0) 2781 break; 2782 2783 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2784 copied += ret; 2785 info.sent += ret; 2786 } 2787 if (copied) { 2788 len = max(copied, len); 2789 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2790 info.size_goal); 2791 msk->allow_infinite_fallback = false; 2792 } 2793 spin_unlock_bh(&msk->fallback_lock); 2794 2795 release_sock(ssk); 2796 } 2797 } 2798 2799 msk->bytes_retrans += len; 2800 dfrag->already_sent = max(dfrag->already_sent, len); 2801 2802 reset_timer: 2803 mptcp_check_and_set_pending(sk); 2804 2805 if (!mptcp_rtx_timer_pending(sk)) 2806 mptcp_reset_rtx_timer(sk); 2807 } 2808 2809 /* schedule the timeout timer for the relevant event: either close timeout 2810 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2811 */ 2812 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2813 { 2814 struct sock *sk = (struct sock *)msk; 2815 unsigned long timeout, close_timeout; 2816 2817 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2818 return; 2819 2820 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2821 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2822 2823 /* the close timeout takes precedence on the fail one, and here at least one of 2824 * them is active 2825 */ 2826 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2827 2828 sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout); 2829 } 2830 2831 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2832 { 2833 struct sock *ssk = msk->first; 2834 bool slow; 2835 2836 if (!ssk) 2837 return; 2838 2839 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2840 2841 slow = lock_sock_fast(ssk); 2842 mptcp_subflow_reset(ssk); 2843 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2844 unlock_sock_fast(ssk, slow); 2845 } 2846 2847 static void mptcp_backlog_purge(struct sock *sk) 2848 { 2849 struct mptcp_sock *msk = mptcp_sk(sk); 2850 struct sk_buff *tmp, *skb; 2851 LIST_HEAD(backlog); 2852 2853 mptcp_data_lock(sk); 2854 list_splice_init(&msk->backlog_list, &backlog); 2855 msk->backlog_len = 0; 2856 mptcp_data_unlock(sk); 2857 2858 list_for_each_entry_safe(skb, tmp, &backlog, list) { 2859 mptcp_borrow_fwdmem(sk, skb); 2860 kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE); 2861 } 2862 sk_mem_reclaim(sk); 2863 } 2864 2865 static void mptcp_do_fastclose(struct sock *sk) 2866 { 2867 struct mptcp_subflow_context *subflow, *tmp; 2868 struct mptcp_sock *msk = mptcp_sk(sk); 2869 2870 mptcp_set_state(sk, TCP_CLOSE); 2871 mptcp_backlog_purge(sk); 2872 2873 /* Explicitly send the fastclose reset as need */ 2874 if (__mptcp_check_fallback(msk)) 2875 return; 2876 2877 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2878 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2879 2880 lock_sock(ssk); 2881 2882 /* Some subflow socket states don't allow/need a reset.*/ 2883 if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 2884 goto unlock; 2885 2886 subflow->send_fastclose = 1; 2887 tcp_send_active_reset(ssk, ssk->sk_allocation, 2888 SK_RST_REASON_TCP_ABORT_ON_CLOSE); 2889 unlock: 2890 release_sock(ssk); 2891 } 2892 } 2893 2894 static void mptcp_worker(struct work_struct *work) 2895 { 2896 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2897 struct sock *sk = (struct sock *)msk; 2898 unsigned long fail_tout; 2899 int state; 2900 2901 lock_sock(sk); 2902 state = sk->sk_state; 2903 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2904 goto unlock; 2905 2906 mptcp_check_fastclose(msk); 2907 2908 mptcp_pm_worker(msk); 2909 2910 mptcp_check_send_data_fin(sk); 2911 mptcp_check_data_fin_ack(sk); 2912 mptcp_check_data_fin(sk); 2913 2914 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2915 __mptcp_close_subflow(sk); 2916 2917 if (mptcp_close_tout_expired(sk)) { 2918 struct mptcp_subflow_context *subflow, *tmp; 2919 2920 mptcp_do_fastclose(sk); 2921 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2922 __mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0); 2923 mptcp_close_wake_up(sk); 2924 } 2925 2926 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2927 __mptcp_destroy_sock(sk); 2928 goto unlock; 2929 } 2930 2931 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2932 __mptcp_retrans(sk); 2933 2934 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2935 if (fail_tout && time_after(jiffies, fail_tout)) 2936 mptcp_mp_fail_no_response(msk); 2937 2938 unlock: 2939 release_sock(sk); 2940 sock_put(sk); 2941 } 2942 2943 static void __mptcp_init_sock(struct sock *sk) 2944 { 2945 struct mptcp_sock *msk = mptcp_sk(sk); 2946 2947 INIT_LIST_HEAD(&msk->conn_list); 2948 INIT_LIST_HEAD(&msk->join_list); 2949 INIT_LIST_HEAD(&msk->rtx_queue); 2950 INIT_LIST_HEAD(&msk->backlog_list); 2951 INIT_WORK(&msk->work, mptcp_worker); 2952 msk->out_of_order_queue = RB_ROOT; 2953 msk->first_pending = NULL; 2954 msk->timer_ival = TCP_RTO_MIN; 2955 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2956 msk->backlog_len = 0; 2957 2958 WRITE_ONCE(msk->first, NULL); 2959 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2960 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2961 msk->allow_infinite_fallback = true; 2962 msk->allow_subflows = true; 2963 msk->recovery = false; 2964 msk->subflow_id = 1; 2965 msk->last_data_sent = tcp_jiffies32; 2966 msk->last_data_recv = tcp_jiffies32; 2967 msk->last_ack_recv = tcp_jiffies32; 2968 2969 mptcp_pm_data_init(msk); 2970 spin_lock_init(&msk->fallback_lock); 2971 2972 /* re-use the csk retrans timer for MPTCP-level retrans */ 2973 timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0); 2974 timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0); 2975 } 2976 2977 static void mptcp_ca_reset(struct sock *sk) 2978 { 2979 struct inet_connection_sock *icsk = inet_csk(sk); 2980 2981 tcp_assign_congestion_control(sk); 2982 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2983 sizeof(mptcp_sk(sk)->ca_name)); 2984 2985 /* no need to keep a reference to the ops, the name will suffice */ 2986 tcp_cleanup_congestion_control(sk); 2987 icsk->icsk_ca_ops = NULL; 2988 } 2989 2990 static int mptcp_init_sock(struct sock *sk) 2991 { 2992 struct net *net = sock_net(sk); 2993 int ret; 2994 2995 __mptcp_init_sock(sk); 2996 2997 if (!mptcp_is_enabled(net)) 2998 return -ENOPROTOOPT; 2999 3000 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 3001 return -ENOMEM; 3002 3003 rcu_read_lock(); 3004 ret = mptcp_init_sched(mptcp_sk(sk), 3005 mptcp_sched_find(mptcp_get_scheduler(net))); 3006 rcu_read_unlock(); 3007 if (ret) 3008 return ret; 3009 3010 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 3011 3012 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 3013 * propagate the correct value 3014 */ 3015 mptcp_ca_reset(sk); 3016 3017 sk_sockets_allocated_inc(sk); 3018 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 3019 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 3020 3021 return 0; 3022 } 3023 3024 static void __mptcp_clear_xmit(struct sock *sk) 3025 { 3026 struct mptcp_sock *msk = mptcp_sk(sk); 3027 struct mptcp_data_frag *dtmp, *dfrag; 3028 3029 msk->first_pending = NULL; 3030 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 3031 dfrag_clear(sk, dfrag); 3032 } 3033 3034 void mptcp_cancel_work(struct sock *sk) 3035 { 3036 struct mptcp_sock *msk = mptcp_sk(sk); 3037 3038 if (cancel_work_sync(&msk->work)) 3039 __sock_put(sk); 3040 } 3041 3042 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 3043 { 3044 lock_sock(ssk); 3045 3046 switch (ssk->sk_state) { 3047 case TCP_LISTEN: 3048 if (!(how & RCV_SHUTDOWN)) 3049 break; 3050 fallthrough; 3051 case TCP_SYN_SENT: 3052 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 3053 break; 3054 default: 3055 if (__mptcp_check_fallback(mptcp_sk(sk))) { 3056 pr_debug("Fallback\n"); 3057 ssk->sk_shutdown |= how; 3058 tcp_shutdown(ssk, how); 3059 3060 /* simulate the data_fin ack reception to let the state 3061 * machine move forward 3062 */ 3063 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 3064 mptcp_schedule_work(sk); 3065 } else { 3066 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 3067 tcp_send_ack(ssk); 3068 if (!mptcp_rtx_timer_pending(sk)) 3069 mptcp_reset_rtx_timer(sk); 3070 } 3071 break; 3072 } 3073 3074 release_sock(ssk); 3075 } 3076 3077 void mptcp_set_state(struct sock *sk, int state) 3078 { 3079 int oldstate = sk->sk_state; 3080 3081 switch (state) { 3082 case TCP_ESTABLISHED: 3083 if (oldstate != TCP_ESTABLISHED) 3084 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3085 break; 3086 case TCP_CLOSE_WAIT: 3087 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 3088 * MPTCP "accepted" sockets will be created later on. So no 3089 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 3090 */ 3091 break; 3092 default: 3093 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 3094 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 3095 } 3096 3097 inet_sk_state_store(sk, state); 3098 } 3099 3100 static const unsigned char new_state[16] = { 3101 /* current state: new state: action: */ 3102 [0 /* (Invalid) */] = TCP_CLOSE, 3103 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3104 [TCP_SYN_SENT] = TCP_CLOSE, 3105 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 3106 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 3107 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 3108 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 3109 [TCP_CLOSE] = TCP_CLOSE, 3110 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 3111 [TCP_LAST_ACK] = TCP_LAST_ACK, 3112 [TCP_LISTEN] = TCP_CLOSE, 3113 [TCP_CLOSING] = TCP_CLOSING, 3114 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 3115 }; 3116 3117 static int mptcp_close_state(struct sock *sk) 3118 { 3119 int next = (int)new_state[sk->sk_state]; 3120 int ns = next & TCP_STATE_MASK; 3121 3122 mptcp_set_state(sk, ns); 3123 3124 return next & TCP_ACTION_FIN; 3125 } 3126 3127 static void mptcp_check_send_data_fin(struct sock *sk) 3128 { 3129 struct mptcp_subflow_context *subflow; 3130 struct mptcp_sock *msk = mptcp_sk(sk); 3131 3132 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3133 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3134 msk->snd_nxt, msk->write_seq); 3135 3136 /* we still need to enqueue subflows or not really shutting down, 3137 * skip this 3138 */ 3139 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3140 mptcp_send_head(sk)) 3141 return; 3142 3143 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3144 3145 mptcp_for_each_subflow(msk, subflow) { 3146 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3147 3148 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3149 } 3150 } 3151 3152 static void __mptcp_wr_shutdown(struct sock *sk) 3153 { 3154 struct mptcp_sock *msk = mptcp_sk(sk); 3155 3156 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3157 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3158 !!mptcp_send_head(sk)); 3159 3160 /* will be ignored by fallback sockets */ 3161 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3162 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3163 3164 mptcp_check_send_data_fin(sk); 3165 } 3166 3167 static void __mptcp_destroy_sock(struct sock *sk) 3168 { 3169 struct mptcp_sock *msk = mptcp_sk(sk); 3170 3171 pr_debug("msk=%p\n", msk); 3172 3173 might_sleep(); 3174 3175 mptcp_stop_rtx_timer(sk); 3176 sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer); 3177 msk->pm.status = 0; 3178 mptcp_release_sched(msk); 3179 3180 sk->sk_prot->destroy(sk); 3181 3182 sk_stream_kill_queues(sk); 3183 xfrm_sk_free_policy(sk); 3184 3185 sock_put(sk); 3186 } 3187 3188 void __mptcp_unaccepted_force_close(struct sock *sk) 3189 { 3190 sock_set_flag(sk, SOCK_DEAD); 3191 mptcp_do_fastclose(sk); 3192 __mptcp_destroy_sock(sk); 3193 } 3194 3195 static __poll_t mptcp_check_readable(struct sock *sk) 3196 { 3197 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3198 } 3199 3200 static void mptcp_check_listen_stop(struct sock *sk) 3201 { 3202 struct sock *ssk; 3203 3204 if (inet_sk_state_load(sk) != TCP_LISTEN) 3205 return; 3206 3207 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3208 ssk = mptcp_sk(sk)->first; 3209 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3210 return; 3211 3212 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3213 tcp_set_state(ssk, TCP_CLOSE); 3214 mptcp_subflow_queue_clean(sk, ssk); 3215 inet_csk_listen_stop(ssk); 3216 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3217 release_sock(ssk); 3218 } 3219 3220 bool __mptcp_close(struct sock *sk, long timeout) 3221 { 3222 struct mptcp_subflow_context *subflow; 3223 struct mptcp_sock *msk = mptcp_sk(sk); 3224 bool do_cancel_work = false; 3225 int subflows_alive = 0; 3226 3227 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3228 3229 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3230 mptcp_check_listen_stop(sk); 3231 mptcp_set_state(sk, TCP_CLOSE); 3232 goto cleanup; 3233 } 3234 3235 if (mptcp_data_avail(msk) || timeout < 0) { 3236 /* If the msk has read data, or the caller explicitly ask it, 3237 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3238 */ 3239 mptcp_do_fastclose(sk); 3240 timeout = 0; 3241 } else if (mptcp_close_state(sk)) { 3242 __mptcp_wr_shutdown(sk); 3243 } 3244 3245 sk_stream_wait_close(sk, timeout); 3246 3247 cleanup: 3248 /* orphan all the subflows */ 3249 mptcp_for_each_subflow(msk, subflow) { 3250 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3251 bool slow = lock_sock_fast_nested(ssk); 3252 3253 subflows_alive += ssk->sk_state != TCP_CLOSE; 3254 3255 /* since the close timeout takes precedence on the fail one, 3256 * cancel the latter 3257 */ 3258 if (ssk == msk->first) 3259 subflow->fail_tout = 0; 3260 3261 /* detach from the parent socket, but allow data_ready to 3262 * push incoming data into the mptcp stack, to properly ack it 3263 */ 3264 ssk->sk_socket = NULL; 3265 ssk->sk_wq = NULL; 3266 unlock_sock_fast(ssk, slow); 3267 } 3268 sock_orphan(sk); 3269 3270 /* all the subflows are closed, only timeout can change the msk 3271 * state, let's not keep resources busy for no reasons 3272 */ 3273 if (subflows_alive == 0) 3274 mptcp_set_state(sk, TCP_CLOSE); 3275 3276 sock_hold(sk); 3277 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3278 mptcp_pm_connection_closed(msk); 3279 3280 if (sk->sk_state == TCP_CLOSE) { 3281 __mptcp_destroy_sock(sk); 3282 do_cancel_work = true; 3283 } else { 3284 mptcp_start_tout_timer(sk); 3285 } 3286 3287 return do_cancel_work; 3288 } 3289 3290 static void mptcp_close(struct sock *sk, long timeout) 3291 { 3292 bool do_cancel_work; 3293 3294 lock_sock(sk); 3295 3296 do_cancel_work = __mptcp_close(sk, timeout); 3297 release_sock(sk); 3298 if (do_cancel_work) 3299 mptcp_cancel_work(sk); 3300 3301 sock_put(sk); 3302 } 3303 3304 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3305 { 3306 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3307 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3308 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3309 3310 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3311 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3312 3313 if (msk6 && ssk6) { 3314 msk6->saddr = ssk6->saddr; 3315 msk6->flow_label = ssk6->flow_label; 3316 } 3317 #endif 3318 3319 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3320 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3321 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3322 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3323 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3324 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3325 } 3326 3327 static void mptcp_destroy_common(struct mptcp_sock *msk) 3328 { 3329 struct mptcp_subflow_context *subflow, *tmp; 3330 struct sock *sk = (struct sock *)msk; 3331 3332 __mptcp_clear_xmit(sk); 3333 mptcp_backlog_purge(sk); 3334 3335 /* join list will be eventually flushed (with rst) at sock lock release time */ 3336 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3337 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0); 3338 3339 __skb_queue_purge(&sk->sk_receive_queue); 3340 skb_rbtree_purge(&msk->out_of_order_queue); 3341 3342 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3343 * inet_sock_destruct() will dispose it 3344 */ 3345 mptcp_token_destroy(msk); 3346 mptcp_pm_destroy(msk); 3347 } 3348 3349 static int mptcp_disconnect(struct sock *sk, int flags) 3350 { 3351 struct mptcp_sock *msk = mptcp_sk(sk); 3352 3353 /* We are on the fastopen error path. We can't call straight into the 3354 * subflows cleanup code due to lock nesting (we are already under 3355 * msk->firstsocket lock). 3356 */ 3357 if (msk->fastopening) 3358 return -EBUSY; 3359 3360 mptcp_check_listen_stop(sk); 3361 mptcp_set_state(sk, TCP_CLOSE); 3362 3363 mptcp_stop_rtx_timer(sk); 3364 mptcp_stop_tout_timer(sk); 3365 3366 mptcp_pm_connection_closed(msk); 3367 3368 /* msk->subflow is still intact, the following will not free the first 3369 * subflow 3370 */ 3371 mptcp_do_fastclose(sk); 3372 mptcp_destroy_common(msk); 3373 3374 /* The first subflow is already in TCP_CLOSE status, the following 3375 * can't overlap with a fallback anymore 3376 */ 3377 spin_lock_bh(&msk->fallback_lock); 3378 msk->allow_subflows = true; 3379 msk->allow_infinite_fallback = true; 3380 WRITE_ONCE(msk->flags, 0); 3381 spin_unlock_bh(&msk->fallback_lock); 3382 3383 msk->cb_flags = 0; 3384 msk->recovery = false; 3385 WRITE_ONCE(msk->can_ack, false); 3386 WRITE_ONCE(msk->fully_established, false); 3387 WRITE_ONCE(msk->rcv_data_fin, false); 3388 WRITE_ONCE(msk->snd_data_fin_enable, false); 3389 WRITE_ONCE(msk->rcv_fastclose, false); 3390 WRITE_ONCE(msk->use_64bit_ack, false); 3391 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3392 mptcp_pm_data_reset(msk); 3393 mptcp_ca_reset(sk); 3394 msk->bytes_consumed = 0; 3395 msk->bytes_acked = 0; 3396 msk->bytes_received = 0; 3397 msk->bytes_sent = 0; 3398 msk->bytes_retrans = 0; 3399 msk->rcvspace_init = 0; 3400 3401 /* for fallback's sake */ 3402 WRITE_ONCE(msk->ack_seq, 0); 3403 3404 WRITE_ONCE(sk->sk_shutdown, 0); 3405 sk_error_report(sk); 3406 return 0; 3407 } 3408 3409 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3410 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3411 { 3412 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3413 3414 return &msk6->np; 3415 } 3416 3417 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3418 { 3419 const struct ipv6_pinfo *np = inet6_sk(sk); 3420 struct ipv6_txoptions *opt; 3421 struct ipv6_pinfo *newnp; 3422 3423 newnp = inet6_sk(newsk); 3424 3425 rcu_read_lock(); 3426 opt = rcu_dereference(np->opt); 3427 if (opt) { 3428 opt = ipv6_dup_options(newsk, opt); 3429 if (!opt) 3430 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3431 } 3432 RCU_INIT_POINTER(newnp->opt, opt); 3433 rcu_read_unlock(); 3434 } 3435 #endif 3436 3437 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3438 { 3439 struct ip_options_rcu *inet_opt, *newopt = NULL; 3440 const struct inet_sock *inet = inet_sk(sk); 3441 struct inet_sock *newinet; 3442 3443 newinet = inet_sk(newsk); 3444 3445 rcu_read_lock(); 3446 inet_opt = rcu_dereference(inet->inet_opt); 3447 if (inet_opt) { 3448 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3449 inet_opt->opt.optlen, GFP_ATOMIC); 3450 if (!newopt) 3451 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3452 } 3453 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3454 rcu_read_unlock(); 3455 } 3456 3457 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3458 const struct mptcp_options_received *mp_opt, 3459 struct sock *ssk, 3460 struct request_sock *req) 3461 { 3462 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3463 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3464 struct mptcp_subflow_context *subflow; 3465 struct mptcp_sock *msk; 3466 3467 if (!nsk) 3468 return NULL; 3469 3470 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3471 if (nsk->sk_family == AF_INET6) 3472 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3473 #endif 3474 3475 __mptcp_init_sock(nsk); 3476 3477 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3478 if (nsk->sk_family == AF_INET6) 3479 mptcp_copy_ip6_options(nsk, sk); 3480 else 3481 #endif 3482 mptcp_copy_ip_options(nsk, sk); 3483 3484 msk = mptcp_sk(nsk); 3485 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3486 WRITE_ONCE(msk->token, subflow_req->token); 3487 msk->in_accept_queue = 1; 3488 WRITE_ONCE(msk->fully_established, false); 3489 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3490 WRITE_ONCE(msk->csum_enabled, true); 3491 3492 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3493 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3494 WRITE_ONCE(msk->snd_una, msk->write_seq); 3495 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3496 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3497 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3498 3499 /* passive msk is created after the first/MPC subflow */ 3500 msk->subflow_id = 2; 3501 3502 sock_reset_flag(nsk, SOCK_RCU_FREE); 3503 security_inet_csk_clone(nsk, req); 3504 3505 /* this can't race with mptcp_close(), as the msk is 3506 * not yet exposted to user-space 3507 */ 3508 mptcp_set_state(nsk, TCP_ESTABLISHED); 3509 3510 /* The msk maintain a ref to each subflow in the connections list */ 3511 WRITE_ONCE(msk->first, ssk); 3512 subflow = mptcp_subflow_ctx(ssk); 3513 list_add(&subflow->node, &msk->conn_list); 3514 sock_hold(ssk); 3515 3516 /* new mpc subflow takes ownership of the newly 3517 * created mptcp socket 3518 */ 3519 mptcp_token_accept(subflow_req, msk); 3520 3521 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3522 * uses the correct data 3523 */ 3524 mptcp_copy_inaddrs(nsk, ssk); 3525 __mptcp_propagate_sndbuf(nsk, ssk); 3526 3527 mptcp_rcv_space_init(msk, ssk); 3528 3529 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3530 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3531 bh_unlock_sock(nsk); 3532 3533 /* note: the newly allocated socket refcount is 2 now */ 3534 return nsk; 3535 } 3536 3537 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3538 { 3539 const struct tcp_sock *tp = tcp_sk(ssk); 3540 3541 msk->rcvspace_init = 1; 3542 msk->rcvq_space.copied = 0; 3543 msk->rcvq_space.rtt_us = 0; 3544 3545 msk->rcvq_space.time = tp->tcp_mstamp; 3546 3547 /* initial rcv_space offering made to peer */ 3548 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3549 TCP_INIT_CWND * tp->advmss); 3550 if (msk->rcvq_space.space == 0) 3551 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3552 } 3553 3554 static void mptcp_destroy(struct sock *sk) 3555 { 3556 struct mptcp_sock *msk = mptcp_sk(sk); 3557 3558 /* allow the following to close even the initial subflow */ 3559 msk->free_first = 1; 3560 mptcp_destroy_common(msk); 3561 sk_sockets_allocated_dec(sk); 3562 } 3563 3564 void __mptcp_data_acked(struct sock *sk) 3565 { 3566 if (!sock_owned_by_user(sk)) 3567 __mptcp_clean_una(sk); 3568 else 3569 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3570 } 3571 3572 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3573 { 3574 if (!sock_owned_by_user(sk)) 3575 __mptcp_subflow_push_pending(sk, ssk, false); 3576 else 3577 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3578 } 3579 3580 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3581 BIT(MPTCP_RETRANSMIT) | \ 3582 BIT(MPTCP_FLUSH_JOIN_LIST)) 3583 3584 /* processes deferred events and flush wmem */ 3585 static void mptcp_release_cb(struct sock *sk) 3586 __must_hold(&sk->sk_lock.slock) 3587 { 3588 struct mptcp_sock *msk = mptcp_sk(sk); 3589 3590 for (;;) { 3591 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3592 struct list_head join_list, skbs; 3593 bool spool_bl; 3594 u32 moved; 3595 3596 spool_bl = mptcp_can_spool_backlog(sk, &skbs); 3597 if (!flags && !spool_bl) 3598 break; 3599 3600 INIT_LIST_HEAD(&join_list); 3601 list_splice_init(&msk->join_list, &join_list); 3602 3603 /* the following actions acquire the subflow socket lock 3604 * 3605 * 1) can't be invoked in atomic scope 3606 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3607 * datapath acquires the msk socket spinlock while helding 3608 * the subflow socket lock 3609 */ 3610 msk->cb_flags &= ~flags; 3611 spin_unlock_bh(&sk->sk_lock.slock); 3612 3613 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3614 __mptcp_flush_join_list(sk, &join_list); 3615 if (flags & BIT(MPTCP_PUSH_PENDING)) 3616 __mptcp_push_pending(sk, 0); 3617 if (flags & BIT(MPTCP_RETRANSMIT)) 3618 __mptcp_retrans(sk); 3619 if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) { 3620 /* notify ack seq update */ 3621 mptcp_cleanup_rbuf(msk, 0); 3622 sk->sk_data_ready(sk); 3623 } 3624 3625 cond_resched(); 3626 spin_lock_bh(&sk->sk_lock.slock); 3627 if (spool_bl) 3628 mptcp_backlog_spooled(sk, moved, &skbs); 3629 } 3630 3631 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3632 __mptcp_clean_una_wakeup(sk); 3633 if (unlikely(msk->cb_flags)) { 3634 /* be sure to sync the msk state before taking actions 3635 * depending on sk_state (MPTCP_ERROR_REPORT) 3636 * On sk release avoid actions depending on the first subflow 3637 */ 3638 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3639 __mptcp_sync_state(sk, msk->pending_state); 3640 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3641 __mptcp_error_report(sk); 3642 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3643 __mptcp_sync_sndbuf(sk); 3644 } 3645 } 3646 3647 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3648 * TCP can't schedule delack timer before the subflow is fully established. 3649 * MPTCP uses the delack timer to do 3rd ack retransmissions 3650 */ 3651 static void schedule_3rdack_retransmission(struct sock *ssk) 3652 { 3653 struct inet_connection_sock *icsk = inet_csk(ssk); 3654 struct tcp_sock *tp = tcp_sk(ssk); 3655 unsigned long timeout; 3656 3657 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3658 return; 3659 3660 /* reschedule with a timeout above RTT, as we must look only for drop */ 3661 if (tp->srtt_us) 3662 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3663 else 3664 timeout = TCP_TIMEOUT_INIT; 3665 timeout += jiffies; 3666 3667 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3668 smp_store_release(&icsk->icsk_ack.pending, 3669 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3670 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3671 } 3672 3673 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3674 { 3675 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3676 struct sock *sk = subflow->conn; 3677 3678 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3679 mptcp_data_lock(sk); 3680 if (!sock_owned_by_user(sk)) 3681 __mptcp_subflow_push_pending(sk, ssk, true); 3682 else 3683 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3684 mptcp_data_unlock(sk); 3685 } 3686 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3687 mptcp_data_lock(sk); 3688 if (!sock_owned_by_user(sk)) 3689 __mptcp_sync_sndbuf(sk); 3690 else 3691 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3692 mptcp_data_unlock(sk); 3693 } 3694 if (status & BIT(MPTCP_DELEGATE_ACK)) 3695 schedule_3rdack_retransmission(ssk); 3696 } 3697 3698 static int mptcp_hash(struct sock *sk) 3699 { 3700 /* should never be called, 3701 * we hash the TCP subflows not the MPTCP socket 3702 */ 3703 WARN_ON_ONCE(1); 3704 return 0; 3705 } 3706 3707 static void mptcp_unhash(struct sock *sk) 3708 { 3709 /* called from sk_common_release(), but nothing to do here */ 3710 } 3711 3712 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3713 { 3714 struct mptcp_sock *msk = mptcp_sk(sk); 3715 3716 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3717 if (WARN_ON_ONCE(!msk->first)) 3718 return -EINVAL; 3719 3720 return inet_csk_get_port(msk->first, snum); 3721 } 3722 3723 void mptcp_finish_connect(struct sock *ssk) 3724 { 3725 struct mptcp_subflow_context *subflow; 3726 struct mptcp_sock *msk; 3727 struct sock *sk; 3728 3729 subflow = mptcp_subflow_ctx(ssk); 3730 sk = subflow->conn; 3731 msk = mptcp_sk(sk); 3732 3733 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3734 3735 subflow->map_seq = subflow->iasn; 3736 subflow->map_subflow_seq = 1; 3737 3738 /* the socket is not connected yet, no msk/subflow ops can access/race 3739 * accessing the field below 3740 */ 3741 WRITE_ONCE(msk->local_key, subflow->local_key); 3742 3743 mptcp_pm_new_connection(msk, ssk, 0); 3744 } 3745 3746 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3747 { 3748 write_lock_bh(&sk->sk_callback_lock); 3749 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3750 sk_set_socket(sk, parent); 3751 write_unlock_bh(&sk->sk_callback_lock); 3752 } 3753 3754 /* Can be called without holding the msk socket lock; use the callback lock 3755 * to avoid {READ_,WRITE_}ONCE annotations on sk_socket. 3756 */ 3757 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk) 3758 { 3759 struct socket *sock; 3760 3761 write_lock_bh(&sk->sk_callback_lock); 3762 sock = sk->sk_socket; 3763 write_unlock_bh(&sk->sk_callback_lock); 3764 if (sock) { 3765 mptcp_sock_graft(ssk, sock); 3766 __mptcp_inherit_cgrp_data(sk, ssk); 3767 __mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC); 3768 } 3769 } 3770 3771 bool mptcp_finish_join(struct sock *ssk) 3772 { 3773 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3774 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3775 struct sock *parent = (void *)msk; 3776 bool ret = true; 3777 3778 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3779 3780 /* mptcp socket already closing? */ 3781 if (!mptcp_is_fully_established(parent)) { 3782 subflow->reset_reason = MPTCP_RST_EMPTCP; 3783 return false; 3784 } 3785 3786 /* Active subflow, already present inside the conn_list; is grafted 3787 * either by __mptcp_subflow_connect() or accept. 3788 */ 3789 if (!list_empty(&subflow->node)) { 3790 spin_lock_bh(&msk->fallback_lock); 3791 if (!msk->allow_subflows) { 3792 spin_unlock_bh(&msk->fallback_lock); 3793 return false; 3794 } 3795 mptcp_subflow_joined(msk, ssk); 3796 spin_unlock_bh(&msk->fallback_lock); 3797 mptcp_propagate_sndbuf(parent, ssk); 3798 return true; 3799 } 3800 3801 if (!mptcp_pm_allow_new_subflow(msk)) { 3802 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3803 goto err_prohibited; 3804 } 3805 3806 /* If we can't acquire msk socket lock here, let the release callback 3807 * handle it 3808 */ 3809 mptcp_data_lock(parent); 3810 if (!sock_owned_by_user(parent)) { 3811 ret = __mptcp_finish_join(msk, ssk); 3812 if (ret) { 3813 sock_hold(ssk); 3814 list_add_tail(&subflow->node, &msk->conn_list); 3815 mptcp_sock_check_graft(parent, ssk); 3816 } 3817 } else { 3818 sock_hold(ssk); 3819 list_add_tail(&subflow->node, &msk->join_list); 3820 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3821 3822 /* In case of later failures, __mptcp_flush_join_list() will 3823 * properly orphan the ssk via mptcp_close_ssk(). 3824 */ 3825 mptcp_sock_check_graft(parent, ssk); 3826 } 3827 mptcp_data_unlock(parent); 3828 3829 if (!ret) { 3830 err_prohibited: 3831 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3832 return false; 3833 } 3834 3835 return true; 3836 } 3837 3838 static void mptcp_shutdown(struct sock *sk, int how) 3839 { 3840 pr_debug("sk=%p, how=%d\n", sk, how); 3841 3842 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3843 __mptcp_wr_shutdown(sk); 3844 } 3845 3846 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3847 { 3848 const struct sock *sk = (void *)msk; 3849 u64 delta; 3850 3851 if (sk->sk_state == TCP_LISTEN) 3852 return -EINVAL; 3853 3854 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3855 return 0; 3856 3857 delta = msk->write_seq - v; 3858 if (__mptcp_check_fallback(msk) && msk->first) { 3859 struct tcp_sock *tp = tcp_sk(msk->first); 3860 3861 /* the first subflow is disconnected after close - see 3862 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3863 * so ignore that status, too. 3864 */ 3865 if (!((1 << msk->first->sk_state) & 3866 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3867 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3868 } 3869 if (delta > INT_MAX) 3870 delta = INT_MAX; 3871 3872 return (int)delta; 3873 } 3874 3875 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3876 { 3877 struct mptcp_sock *msk = mptcp_sk(sk); 3878 bool slow; 3879 3880 switch (cmd) { 3881 case SIOCINQ: 3882 if (sk->sk_state == TCP_LISTEN) 3883 return -EINVAL; 3884 3885 lock_sock(sk); 3886 if (mptcp_move_skbs(sk)) 3887 mptcp_cleanup_rbuf(msk, 0); 3888 *karg = mptcp_inq_hint(sk); 3889 release_sock(sk); 3890 break; 3891 case SIOCOUTQ: 3892 slow = lock_sock_fast(sk); 3893 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3894 unlock_sock_fast(sk, slow); 3895 break; 3896 case SIOCOUTQNSD: 3897 slow = lock_sock_fast(sk); 3898 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3899 unlock_sock_fast(sk, slow); 3900 break; 3901 default: 3902 return -ENOIOCTLCMD; 3903 } 3904 3905 return 0; 3906 } 3907 3908 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr, 3909 int addr_len) 3910 { 3911 struct mptcp_subflow_context *subflow; 3912 struct mptcp_sock *msk = mptcp_sk(sk); 3913 int err = -EINVAL; 3914 struct sock *ssk; 3915 3916 ssk = __mptcp_nmpc_sk(msk); 3917 if (IS_ERR(ssk)) 3918 return PTR_ERR(ssk); 3919 3920 mptcp_set_state(sk, TCP_SYN_SENT); 3921 subflow = mptcp_subflow_ctx(ssk); 3922 #ifdef CONFIG_TCP_MD5SIG 3923 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3924 * TCP option space. 3925 */ 3926 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3927 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3928 #endif 3929 if (subflow->request_mptcp) { 3930 if (mptcp_active_should_disable(sk)) 3931 mptcp_early_fallback(msk, subflow, 3932 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3933 else if (mptcp_token_new_connect(ssk) < 0) 3934 mptcp_early_fallback(msk, subflow, 3935 MPTCP_MIB_TOKENFALLBACKINIT); 3936 } 3937 3938 WRITE_ONCE(msk->write_seq, subflow->idsn); 3939 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3940 WRITE_ONCE(msk->snd_una, subflow->idsn); 3941 if (likely(!__mptcp_check_fallback(msk))) 3942 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3943 3944 /* if reaching here via the fastopen/sendmsg path, the caller already 3945 * acquired the subflow socket lock, too. 3946 */ 3947 if (!msk->fastopening) 3948 lock_sock(ssk); 3949 3950 /* the following mirrors closely a very small chunk of code from 3951 * __inet_stream_connect() 3952 */ 3953 if (ssk->sk_state != TCP_CLOSE) 3954 goto out; 3955 3956 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3957 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3958 if (err) 3959 goto out; 3960 } 3961 3962 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3963 if (err < 0) 3964 goto out; 3965 3966 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3967 3968 out: 3969 if (!msk->fastopening) 3970 release_sock(ssk); 3971 3972 /* on successful connect, the msk state will be moved to established by 3973 * subflow_finish_connect() 3974 */ 3975 if (unlikely(err)) { 3976 /* avoid leaving a dangling token in an unconnected socket */ 3977 mptcp_token_destroy(msk); 3978 mptcp_set_state(sk, TCP_CLOSE); 3979 return err; 3980 } 3981 3982 mptcp_copy_inaddrs(sk, ssk); 3983 return 0; 3984 } 3985 3986 static struct proto mptcp_prot = { 3987 .name = "MPTCP", 3988 .owner = THIS_MODULE, 3989 .init = mptcp_init_sock, 3990 .connect = mptcp_connect, 3991 .disconnect = mptcp_disconnect, 3992 .close = mptcp_close, 3993 .setsockopt = mptcp_setsockopt, 3994 .getsockopt = mptcp_getsockopt, 3995 .shutdown = mptcp_shutdown, 3996 .destroy = mptcp_destroy, 3997 .sendmsg = mptcp_sendmsg, 3998 .ioctl = mptcp_ioctl, 3999 .recvmsg = mptcp_recvmsg, 4000 .release_cb = mptcp_release_cb, 4001 .hash = mptcp_hash, 4002 .unhash = mptcp_unhash, 4003 .get_port = mptcp_get_port, 4004 .stream_memory_free = mptcp_stream_memory_free, 4005 .sockets_allocated = &mptcp_sockets_allocated, 4006 4007 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 4008 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 4009 4010 .memory_pressure = &tcp_memory_pressure, 4011 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 4012 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 4013 .sysctl_mem = sysctl_tcp_mem, 4014 .obj_size = sizeof(struct mptcp_sock), 4015 .slab_flags = SLAB_TYPESAFE_BY_RCU, 4016 .no_autobind = true, 4017 }; 4018 4019 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len) 4020 { 4021 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4022 struct sock *ssk, *sk = sock->sk; 4023 int err = -EINVAL; 4024 4025 lock_sock(sk); 4026 ssk = __mptcp_nmpc_sk(msk); 4027 if (IS_ERR(ssk)) { 4028 err = PTR_ERR(ssk); 4029 goto unlock; 4030 } 4031 4032 if (sk->sk_family == AF_INET) 4033 err = inet_bind_sk(ssk, uaddr, addr_len); 4034 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4035 else if (sk->sk_family == AF_INET6) 4036 err = inet6_bind_sk(ssk, uaddr, addr_len); 4037 #endif 4038 if (!err) 4039 mptcp_copy_inaddrs(sk, ssk); 4040 4041 unlock: 4042 release_sock(sk); 4043 return err; 4044 } 4045 4046 static int mptcp_listen(struct socket *sock, int backlog) 4047 { 4048 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4049 struct sock *sk = sock->sk; 4050 struct sock *ssk; 4051 int err; 4052 4053 pr_debug("msk=%p\n", msk); 4054 4055 lock_sock(sk); 4056 4057 err = -EINVAL; 4058 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 4059 goto unlock; 4060 4061 ssk = __mptcp_nmpc_sk(msk); 4062 if (IS_ERR(ssk)) { 4063 err = PTR_ERR(ssk); 4064 goto unlock; 4065 } 4066 4067 mptcp_set_state(sk, TCP_LISTEN); 4068 sock_set_flag(sk, SOCK_RCU_FREE); 4069 4070 lock_sock(ssk); 4071 err = __inet_listen_sk(ssk, backlog); 4072 release_sock(ssk); 4073 mptcp_set_state(sk, inet_sk_state_load(ssk)); 4074 4075 if (!err) { 4076 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 4077 mptcp_copy_inaddrs(sk, ssk); 4078 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 4079 } 4080 4081 unlock: 4082 release_sock(sk); 4083 return err; 4084 } 4085 4086 static void mptcp_graft_subflows(struct sock *sk) 4087 { 4088 struct mptcp_subflow_context *subflow; 4089 struct mptcp_sock *msk = mptcp_sk(sk); 4090 4091 if (mem_cgroup_sockets_enabled) { 4092 LIST_HEAD(join_list); 4093 4094 /* Subflows joining after __inet_accept() will get the 4095 * mem CG properly initialized at mptcp_finish_join() time, 4096 * but subflows pending in join_list need explicit 4097 * initialization before flushing `backlog_unaccounted` 4098 * or MPTCP can later unexpectedly observe unaccounted memory. 4099 */ 4100 mptcp_data_lock(sk); 4101 list_splice_init(&msk->join_list, &join_list); 4102 mptcp_data_unlock(sk); 4103 4104 __mptcp_flush_join_list(sk, &join_list); 4105 } 4106 4107 mptcp_for_each_subflow(msk, subflow) { 4108 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4109 4110 lock_sock(ssk); 4111 4112 /* Set ssk->sk_socket of accept()ed flows to mptcp socket. 4113 * This is needed so NOSPACE flag can be set from tcp stack. 4114 */ 4115 if (!ssk->sk_socket) 4116 mptcp_sock_graft(ssk, sk->sk_socket); 4117 4118 if (!mem_cgroup_sk_enabled(sk)) 4119 goto unlock; 4120 4121 __mptcp_inherit_cgrp_data(sk, ssk); 4122 __mptcp_inherit_memcg(sk, ssk, GFP_KERNEL); 4123 4124 unlock: 4125 release_sock(ssk); 4126 } 4127 4128 if (mem_cgroup_sk_enabled(sk)) { 4129 gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL; 4130 int amt; 4131 4132 /* Account the backlog memory; prior accept() is aware of 4133 * fwd and rmem only. 4134 */ 4135 mptcp_data_lock(sk); 4136 amt = sk_mem_pages(sk->sk_forward_alloc + 4137 msk->backlog_unaccounted + 4138 atomic_read(&sk->sk_rmem_alloc)) - 4139 sk_mem_pages(sk->sk_forward_alloc + 4140 atomic_read(&sk->sk_rmem_alloc)); 4141 msk->backlog_unaccounted = 0; 4142 mptcp_data_unlock(sk); 4143 4144 if (amt) 4145 mem_cgroup_sk_charge(sk, amt, gfp); 4146 } 4147 } 4148 4149 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 4150 struct proto_accept_arg *arg) 4151 { 4152 struct mptcp_sock *msk = mptcp_sk(sock->sk); 4153 struct sock *ssk, *newsk; 4154 4155 pr_debug("msk=%p\n", msk); 4156 4157 /* Buggy applications can call accept on socket states other then LISTEN 4158 * but no need to allocate the first subflow just to error out. 4159 */ 4160 ssk = READ_ONCE(msk->first); 4161 if (!ssk) 4162 return -EINVAL; 4163 4164 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 4165 newsk = inet_csk_accept(ssk, arg); 4166 if (!newsk) 4167 return arg->err; 4168 4169 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 4170 if (sk_is_mptcp(newsk)) { 4171 struct mptcp_subflow_context *subflow; 4172 struct sock *new_mptcp_sock; 4173 4174 subflow = mptcp_subflow_ctx(newsk); 4175 new_mptcp_sock = subflow->conn; 4176 4177 /* is_mptcp should be false if subflow->conn is missing, see 4178 * subflow_syn_recv_sock() 4179 */ 4180 if (WARN_ON_ONCE(!new_mptcp_sock)) { 4181 tcp_sk(newsk)->is_mptcp = 0; 4182 goto tcpfallback; 4183 } 4184 4185 newsk = new_mptcp_sock; 4186 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 4187 4188 newsk->sk_kern_sock = arg->kern; 4189 lock_sock(newsk); 4190 __inet_accept(sock, newsock, newsk); 4191 4192 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 4193 msk = mptcp_sk(newsk); 4194 msk->in_accept_queue = 0; 4195 4196 mptcp_graft_subflows(newsk); 4197 mptcp_rps_record_subflows(msk); 4198 4199 /* Do late cleanup for the first subflow as necessary. Also 4200 * deal with bad peers not doing a complete shutdown. 4201 */ 4202 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 4203 if (unlikely(list_is_singular(&msk->conn_list))) 4204 mptcp_set_state(newsk, TCP_CLOSE); 4205 mptcp_close_ssk(newsk, msk->first, 4206 mptcp_subflow_ctx(msk->first)); 4207 } 4208 } else { 4209 tcpfallback: 4210 newsk->sk_kern_sock = arg->kern; 4211 lock_sock(newsk); 4212 __inet_accept(sock, newsock, newsk); 4213 /* we are being invoked after accepting a non-mp-capable 4214 * flow: sk is a tcp_sk, not an mptcp one. 4215 * 4216 * Hand the socket over to tcp so all further socket ops 4217 * bypass mptcp. 4218 */ 4219 WRITE_ONCE(newsock->sk->sk_socket->ops, 4220 mptcp_fallback_tcp_ops(newsock->sk)); 4221 } 4222 release_sock(newsk); 4223 4224 return 0; 4225 } 4226 4227 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4228 { 4229 struct sock *sk = (struct sock *)msk; 4230 4231 if (__mptcp_stream_is_writeable(sk, 1)) 4232 return EPOLLOUT | EPOLLWRNORM; 4233 4234 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4235 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4236 if (__mptcp_stream_is_writeable(sk, 1)) 4237 return EPOLLOUT | EPOLLWRNORM; 4238 4239 return 0; 4240 } 4241 4242 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4243 struct poll_table_struct *wait) 4244 { 4245 struct sock *sk = sock->sk; 4246 struct mptcp_sock *msk; 4247 __poll_t mask = 0; 4248 u8 shutdown; 4249 int state; 4250 4251 msk = mptcp_sk(sk); 4252 sock_poll_wait(file, sock, wait); 4253 4254 state = inet_sk_state_load(sk); 4255 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4256 if (state == TCP_LISTEN) { 4257 struct sock *ssk = READ_ONCE(msk->first); 4258 4259 if (WARN_ON_ONCE(!ssk)) 4260 return 0; 4261 4262 return inet_csk_listen_poll(ssk); 4263 } 4264 4265 shutdown = READ_ONCE(sk->sk_shutdown); 4266 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4267 mask |= EPOLLHUP; 4268 if (shutdown & RCV_SHUTDOWN) 4269 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4270 4271 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4272 mask |= mptcp_check_readable(sk); 4273 if (shutdown & SEND_SHUTDOWN) 4274 mask |= EPOLLOUT | EPOLLWRNORM; 4275 else 4276 mask |= mptcp_check_writeable(msk); 4277 } else if (state == TCP_SYN_SENT && 4278 inet_test_bit(DEFER_CONNECT, sk)) { 4279 /* cf tcp_poll() note about TFO */ 4280 mask |= EPOLLOUT | EPOLLWRNORM; 4281 } 4282 4283 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4284 smp_rmb(); 4285 if (READ_ONCE(sk->sk_err)) 4286 mask |= EPOLLERR; 4287 4288 return mask; 4289 } 4290 4291 static const struct proto_ops mptcp_stream_ops = { 4292 .family = PF_INET, 4293 .owner = THIS_MODULE, 4294 .release = inet_release, 4295 .bind = mptcp_bind, 4296 .connect = inet_stream_connect, 4297 .socketpair = sock_no_socketpair, 4298 .accept = mptcp_stream_accept, 4299 .getname = inet_getname, 4300 .poll = mptcp_poll, 4301 .ioctl = inet_ioctl, 4302 .gettstamp = sock_gettstamp, 4303 .listen = mptcp_listen, 4304 .shutdown = inet_shutdown, 4305 .setsockopt = sock_common_setsockopt, 4306 .getsockopt = sock_common_getsockopt, 4307 .sendmsg = inet_sendmsg, 4308 .recvmsg = inet_recvmsg, 4309 .mmap = sock_no_mmap, 4310 .set_rcvlowat = mptcp_set_rcvlowat, 4311 }; 4312 4313 static struct inet_protosw mptcp_protosw = { 4314 .type = SOCK_STREAM, 4315 .protocol = IPPROTO_MPTCP, 4316 .prot = &mptcp_prot, 4317 .ops = &mptcp_stream_ops, 4318 .flags = INET_PROTOSW_ICSK, 4319 }; 4320 4321 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4322 { 4323 struct mptcp_delegated_action *delegated; 4324 struct mptcp_subflow_context *subflow; 4325 int work_done = 0; 4326 4327 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4328 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4329 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4330 4331 bh_lock_sock_nested(ssk); 4332 if (!sock_owned_by_user(ssk)) { 4333 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4334 } else { 4335 /* tcp_release_cb_override already processed 4336 * the action or will do at next release_sock(). 4337 * In both case must dequeue the subflow here - on the same 4338 * CPU that scheduled it. 4339 */ 4340 smp_wmb(); 4341 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4342 } 4343 bh_unlock_sock(ssk); 4344 sock_put(ssk); 4345 4346 if (++work_done == budget) 4347 return budget; 4348 } 4349 4350 /* always provide a 0 'work_done' argument, so that napi_complete_done 4351 * will not try accessing the NULL napi->dev ptr 4352 */ 4353 napi_complete_done(napi, 0); 4354 return work_done; 4355 } 4356 4357 void __init mptcp_proto_init(void) 4358 { 4359 struct mptcp_delegated_action *delegated; 4360 int cpu; 4361 4362 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4363 4364 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4365 panic("Failed to allocate MPTCP pcpu counter\n"); 4366 4367 mptcp_napi_dev = alloc_netdev_dummy(0); 4368 if (!mptcp_napi_dev) 4369 panic("Failed to allocate MPTCP dummy netdev\n"); 4370 for_each_possible_cpu(cpu) { 4371 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4372 INIT_LIST_HEAD(&delegated->head); 4373 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4374 mptcp_napi_poll); 4375 napi_enable(&delegated->napi); 4376 } 4377 4378 mptcp_subflow_init(); 4379 mptcp_pm_init(); 4380 mptcp_sched_init(); 4381 mptcp_token_init(); 4382 4383 if (proto_register(&mptcp_prot, 1) != 0) 4384 panic("Failed to register MPTCP proto.\n"); 4385 4386 inet_register_protosw(&mptcp_protosw); 4387 4388 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4389 } 4390 4391 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4392 static const struct proto_ops mptcp_v6_stream_ops = { 4393 .family = PF_INET6, 4394 .owner = THIS_MODULE, 4395 .release = inet6_release, 4396 .bind = mptcp_bind, 4397 .connect = inet_stream_connect, 4398 .socketpair = sock_no_socketpair, 4399 .accept = mptcp_stream_accept, 4400 .getname = inet6_getname, 4401 .poll = mptcp_poll, 4402 .ioctl = inet6_ioctl, 4403 .gettstamp = sock_gettstamp, 4404 .listen = mptcp_listen, 4405 .shutdown = inet_shutdown, 4406 .setsockopt = sock_common_setsockopt, 4407 .getsockopt = sock_common_getsockopt, 4408 .sendmsg = inet6_sendmsg, 4409 .recvmsg = inet6_recvmsg, 4410 .mmap = sock_no_mmap, 4411 #ifdef CONFIG_COMPAT 4412 .compat_ioctl = inet6_compat_ioctl, 4413 #endif 4414 .set_rcvlowat = mptcp_set_rcvlowat, 4415 }; 4416 4417 static struct proto mptcp_v6_prot; 4418 4419 static struct inet_protosw mptcp_v6_protosw = { 4420 .type = SOCK_STREAM, 4421 .protocol = IPPROTO_MPTCP, 4422 .prot = &mptcp_v6_prot, 4423 .ops = &mptcp_v6_stream_ops, 4424 .flags = INET_PROTOSW_ICSK, 4425 }; 4426 4427 int __init mptcp_proto_v6_init(void) 4428 { 4429 int err; 4430 4431 mptcp_v6_prot = mptcp_prot; 4432 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4433 mptcp_v6_prot.slab = NULL; 4434 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4435 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4436 4437 err = proto_register(&mptcp_v6_prot, 1); 4438 if (err) 4439 return err; 4440 4441 err = inet6_register_protosw(&mptcp_v6_protosw); 4442 if (err) 4443 proto_unregister(&mptcp_v6_prot); 4444 4445 return err; 4446 } 4447 #endif 4448