xref: /linux/net/mptcp/protocol.c (revision 1bc80d673087e5704adbb3ee8e4b785c14899cce)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
65 	if (sk->sk_prot == &tcpv6_prot)
66 		return &inet6_stream_ops;
67 #endif
68 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69 	return &inet_stream_ops;
70 }
71 
72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73 {
74 	struct net *net = sock_net((struct sock *)msk);
75 
76 	if (__mptcp_check_fallback(msk))
77 		return true;
78 
79 	spin_lock_bh(&msk->fallback_lock);
80 	if (!msk->allow_infinite_fallback) {
81 		spin_unlock_bh(&msk->fallback_lock);
82 		return false;
83 	}
84 
85 	msk->allow_subflows = false;
86 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87 	__MPTCP_INC_STATS(net, fb_mib);
88 	spin_unlock_bh(&msk->fallback_lock);
89 	return true;
90 }
91 
92 static int __mptcp_socket_create(struct mptcp_sock *msk)
93 {
94 	struct mptcp_subflow_context *subflow;
95 	struct sock *sk = (struct sock *)msk;
96 	struct socket *ssock;
97 	int err;
98 
99 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100 	if (err)
101 		return err;
102 
103 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104 	WRITE_ONCE(msk->first, ssock->sk);
105 	subflow = mptcp_subflow_ctx(ssock->sk);
106 	list_add(&subflow->node, &msk->conn_list);
107 	sock_hold(ssock->sk);
108 	subflow->request_mptcp = 1;
109 	subflow->subflow_id = msk->subflow_id++;
110 
111 	/* This is the first subflow, always with id 0 */
112 	WRITE_ONCE(subflow->local_id, 0);
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 	iput(SOCK_INODE(ssock));
115 
116 	return 0;
117 }
118 
119 /* If the MPC handshake is not started, returns the first subflow,
120  * eventually allocating it.
121  */
122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123 {
124 	struct sock *sk = (struct sock *)msk;
125 	int ret;
126 
127 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128 		return ERR_PTR(-EINVAL);
129 
130 	if (!msk->first) {
131 		ret = __mptcp_socket_create(msk);
132 		if (ret)
133 			return ERR_PTR(ret);
134 	}
135 
136 	return msk->first;
137 }
138 
139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140 {
141 	sk_drops_skbadd(sk, skb);
142 	__kfree_skb(skb);
143 }
144 
145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 				 struct sk_buff *from, bool *fragstolen,
147 				 int *delta)
148 {
149 	int limit = READ_ONCE(sk->sk_rcvbuf);
150 
151 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152 	    MPTCP_SKB_CB(from)->offset ||
153 	    ((to->len + from->len) > (limit >> 3)) ||
154 	    !skb_try_coalesce(to, from, fragstolen, delta))
155 		return false;
156 
157 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159 		 to->len, MPTCP_SKB_CB(from)->end_seq);
160 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161 	return true;
162 }
163 
164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
165 			       struct sk_buff *from)
166 {
167 	bool fragstolen;
168 	int delta;
169 
170 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
171 		return false;
172 
173 	/* note the fwd memory can reach a negative value after accounting
174 	 * for the delta, but the later skb free will restore a non
175 	 * negative one
176 	 */
177 	atomic_add(delta, &sk->sk_rmem_alloc);
178 	sk_mem_charge(sk, delta);
179 	kfree_skb_partial(from, fragstolen);
180 
181 	return true;
182 }
183 
184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
185 				   struct sk_buff *from)
186 {
187 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
188 		return false;
189 
190 	return mptcp_try_coalesce((struct sock *)msk, to, from);
191 }
192 
193 /* "inspired" by tcp_rcvbuf_grow(), main difference:
194  * - mptcp does not maintain a msk-level window clamp
195  * - returns true when  the receive buffer is actually updated
196  */
197 static bool mptcp_rcvbuf_grow(struct sock *sk)
198 {
199 	struct mptcp_sock *msk = mptcp_sk(sk);
200 	const struct net *net = sock_net(sk);
201 	int rcvwin, rcvbuf, cap;
202 
203 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
204 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
205 		return false;
206 
207 	rcvwin = msk->rcvq_space.space << 1;
208 
209 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
210 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
211 
212 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
213 
214 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
215 	if (rcvbuf > sk->sk_rcvbuf) {
216 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
217 		return true;
218 	}
219 	return false;
220 }
221 
222 /* "inspired" by tcp_data_queue_ofo(), main differences:
223  * - use mptcp seqs
224  * - don't cope with sacks
225  */
226 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
227 {
228 	struct sock *sk = (struct sock *)msk;
229 	struct rb_node **p, *parent;
230 	u64 seq, end_seq, max_seq;
231 	struct sk_buff *skb1;
232 
233 	seq = MPTCP_SKB_CB(skb)->map_seq;
234 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
235 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
236 
237 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
238 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
239 	if (after64(end_seq, max_seq)) {
240 		/* out of window */
241 		mptcp_drop(sk, skb);
242 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
243 			 (unsigned long long)end_seq - (unsigned long)max_seq,
244 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
245 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
246 		return;
247 	}
248 
249 	p = &msk->out_of_order_queue.rb_node;
250 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
251 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
252 		rb_link_node(&skb->rbnode, NULL, p);
253 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
254 		msk->ooo_last_skb = skb;
255 		goto end;
256 	}
257 
258 	/* with 2 subflows, adding at end of ooo queue is quite likely
259 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
260 	 */
261 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
263 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
264 		return;
265 	}
266 
267 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
268 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
269 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
270 		parent = &msk->ooo_last_skb->rbnode;
271 		p = &parent->rb_right;
272 		goto insert;
273 	}
274 
275 	/* Find place to insert this segment. Handle overlaps on the way. */
276 	parent = NULL;
277 	while (*p) {
278 		parent = *p;
279 		skb1 = rb_to_skb(parent);
280 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
281 			p = &parent->rb_left;
282 			continue;
283 		}
284 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
285 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
286 				/* All the bits are present. Drop. */
287 				mptcp_drop(sk, skb);
288 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 				return;
290 			}
291 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
292 				/* partial overlap:
293 				 *     |     skb      |
294 				 *  |     skb1    |
295 				 * continue traversing
296 				 */
297 			} else {
298 				/* skb's seq == skb1's seq and skb covers skb1.
299 				 * Replace skb1 with skb.
300 				 */
301 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
302 						&msk->out_of_order_queue);
303 				mptcp_drop(sk, skb1);
304 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
305 				goto merge_right;
306 			}
307 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
308 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
309 			return;
310 		}
311 		p = &parent->rb_right;
312 	}
313 
314 insert:
315 	/* Insert segment into RB tree. */
316 	rb_link_node(&skb->rbnode, parent, p);
317 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
318 
319 merge_right:
320 	/* Remove other segments covered by skb. */
321 	while ((skb1 = skb_rb_next(skb)) != NULL) {
322 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
323 			break;
324 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
325 		mptcp_drop(sk, skb1);
326 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
327 	}
328 	/* If there is no skb after us, we are the last_skb ! */
329 	if (!skb1)
330 		msk->ooo_last_skb = skb;
331 
332 end:
333 	skb_condense(skb);
334 	skb_set_owner_r(skb, sk);
335 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
336 	if (sk->sk_socket)
337 		mptcp_rcvbuf_grow(sk);
338 }
339 
340 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
341 			   int copy_len)
342 {
343 	const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
344 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
345 
346 	/* the skb map_seq accounts for the skb offset:
347 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
348 	 * value
349 	 */
350 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
351 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
352 	MPTCP_SKB_CB(skb)->offset = offset;
353 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
354 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
355 
356 	__skb_unlink(skb, &ssk->sk_receive_queue);
357 
358 	skb_ext_reset(skb);
359 	skb_dst_drop(skb);
360 }
361 
362 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
363 {
364 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
365 	struct mptcp_sock *msk = mptcp_sk(sk);
366 	struct sk_buff *tail;
367 
368 	/* try to fetch required memory from subflow */
369 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
370 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
371 		goto drop;
372 	}
373 
374 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
375 		/* in sequence */
376 		msk->bytes_received += copy_len;
377 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
378 		tail = skb_peek_tail(&sk->sk_receive_queue);
379 		if (tail && mptcp_try_coalesce(sk, tail, skb))
380 			return true;
381 
382 		skb_set_owner_r(skb, sk);
383 		__skb_queue_tail(&sk->sk_receive_queue, skb);
384 		return true;
385 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
386 		mptcp_data_queue_ofo(msk, skb);
387 		return false;
388 	}
389 
390 	/* old data, keep it simple and drop the whole pkt, sender
391 	 * will retransmit as needed, if needed.
392 	 */
393 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
394 drop:
395 	mptcp_drop(sk, skb);
396 	return false;
397 }
398 
399 static void mptcp_stop_rtx_timer(struct sock *sk)
400 {
401 	struct inet_connection_sock *icsk = inet_csk(sk);
402 
403 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
404 	mptcp_sk(sk)->timer_ival = 0;
405 }
406 
407 static void mptcp_close_wake_up(struct sock *sk)
408 {
409 	if (sock_flag(sk, SOCK_DEAD))
410 		return;
411 
412 	sk->sk_state_change(sk);
413 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
414 	    sk->sk_state == TCP_CLOSE)
415 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
416 	else
417 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
418 }
419 
420 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
421 {
422 	struct mptcp_subflow_context *subflow;
423 
424 	mptcp_for_each_subflow(msk, subflow) {
425 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
426 		bool slow;
427 
428 		slow = lock_sock_fast(ssk);
429 		tcp_shutdown(ssk, SEND_SHUTDOWN);
430 		unlock_sock_fast(ssk, slow);
431 	}
432 }
433 
434 /* called under the msk socket lock */
435 static bool mptcp_pending_data_fin_ack(struct sock *sk)
436 {
437 	struct mptcp_sock *msk = mptcp_sk(sk);
438 
439 	return ((1 << sk->sk_state) &
440 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
441 	       msk->write_seq == READ_ONCE(msk->snd_una);
442 }
443 
444 static void mptcp_check_data_fin_ack(struct sock *sk)
445 {
446 	struct mptcp_sock *msk = mptcp_sk(sk);
447 
448 	/* Look for an acknowledged DATA_FIN */
449 	if (mptcp_pending_data_fin_ack(sk)) {
450 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
451 
452 		switch (sk->sk_state) {
453 		case TCP_FIN_WAIT1:
454 			mptcp_set_state(sk, TCP_FIN_WAIT2);
455 			break;
456 		case TCP_CLOSING:
457 		case TCP_LAST_ACK:
458 			mptcp_shutdown_subflows(msk);
459 			mptcp_set_state(sk, TCP_CLOSE);
460 			break;
461 		}
462 
463 		mptcp_close_wake_up(sk);
464 	}
465 }
466 
467 /* can be called with no lock acquired */
468 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
469 {
470 	struct mptcp_sock *msk = mptcp_sk(sk);
471 
472 	if (READ_ONCE(msk->rcv_data_fin) &&
473 	    ((1 << inet_sk_state_load(sk)) &
474 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
475 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
476 
477 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
478 			if (seq)
479 				*seq = rcv_data_fin_seq;
480 
481 			return true;
482 		}
483 	}
484 
485 	return false;
486 }
487 
488 static void mptcp_set_datafin_timeout(struct sock *sk)
489 {
490 	struct inet_connection_sock *icsk = inet_csk(sk);
491 	u32 retransmits;
492 
493 	retransmits = min_t(u32, icsk->icsk_retransmits,
494 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
495 
496 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
497 }
498 
499 static void __mptcp_set_timeout(struct sock *sk, long tout)
500 {
501 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
502 }
503 
504 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
505 {
506 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
507 
508 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
509 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
510 }
511 
512 static void mptcp_set_timeout(struct sock *sk)
513 {
514 	struct mptcp_subflow_context *subflow;
515 	long tout = 0;
516 
517 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
518 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
519 	__mptcp_set_timeout(sk, tout);
520 }
521 
522 static inline bool tcp_can_send_ack(const struct sock *ssk)
523 {
524 	return !((1 << inet_sk_state_load(ssk)) &
525 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
526 }
527 
528 void __mptcp_subflow_send_ack(struct sock *ssk)
529 {
530 	if (tcp_can_send_ack(ssk))
531 		tcp_send_ack(ssk);
532 }
533 
534 static void mptcp_subflow_send_ack(struct sock *ssk)
535 {
536 	bool slow;
537 
538 	slow = lock_sock_fast(ssk);
539 	__mptcp_subflow_send_ack(ssk);
540 	unlock_sock_fast(ssk, slow);
541 }
542 
543 static void mptcp_send_ack(struct mptcp_sock *msk)
544 {
545 	struct mptcp_subflow_context *subflow;
546 
547 	mptcp_for_each_subflow(msk, subflow)
548 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
549 }
550 
551 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
552 {
553 	bool slow;
554 
555 	slow = lock_sock_fast(ssk);
556 	if (tcp_can_send_ack(ssk))
557 		tcp_cleanup_rbuf(ssk, copied);
558 	unlock_sock_fast(ssk, slow);
559 }
560 
561 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
562 {
563 	const struct inet_connection_sock *icsk = inet_csk(ssk);
564 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
565 	const struct tcp_sock *tp = tcp_sk(ssk);
566 
567 	return (ack_pending & ICSK_ACK_SCHED) &&
568 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
569 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
570 		 (rx_empty && ack_pending &
571 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
572 }
573 
574 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
575 {
576 	int old_space = READ_ONCE(msk->old_wspace);
577 	struct mptcp_subflow_context *subflow;
578 	struct sock *sk = (struct sock *)msk;
579 	int space =  __mptcp_space(sk);
580 	bool cleanup, rx_empty;
581 
582 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
583 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
584 
585 	mptcp_for_each_subflow(msk, subflow) {
586 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
587 
588 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
589 			mptcp_subflow_cleanup_rbuf(ssk, copied);
590 	}
591 }
592 
593 static void mptcp_check_data_fin(struct sock *sk)
594 {
595 	struct mptcp_sock *msk = mptcp_sk(sk);
596 	u64 rcv_data_fin_seq;
597 
598 	/* Need to ack a DATA_FIN received from a peer while this side
599 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
600 	 * msk->rcv_data_fin was set when parsing the incoming options
601 	 * at the subflow level and the msk lock was not held, so this
602 	 * is the first opportunity to act on the DATA_FIN and change
603 	 * the msk state.
604 	 *
605 	 * If we are caught up to the sequence number of the incoming
606 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
607 	 * not caught up, do nothing and let the recv code send DATA_ACK
608 	 * when catching up.
609 	 */
610 
611 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
612 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
613 		WRITE_ONCE(msk->rcv_data_fin, 0);
614 
615 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
616 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
617 
618 		switch (sk->sk_state) {
619 		case TCP_ESTABLISHED:
620 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
621 			break;
622 		case TCP_FIN_WAIT1:
623 			mptcp_set_state(sk, TCP_CLOSING);
624 			break;
625 		case TCP_FIN_WAIT2:
626 			mptcp_shutdown_subflows(msk);
627 			mptcp_set_state(sk, TCP_CLOSE);
628 			break;
629 		default:
630 			/* Other states not expected */
631 			WARN_ON_ONCE(1);
632 			break;
633 		}
634 
635 		if (!__mptcp_check_fallback(msk))
636 			mptcp_send_ack(msk);
637 		mptcp_close_wake_up(sk);
638 	}
639 }
640 
641 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
642 {
643 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
644 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
645 		mptcp_subflow_reset(ssk);
646 	}
647 }
648 
649 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
650 					   struct sock *ssk)
651 {
652 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
653 	struct sock *sk = (struct sock *)msk;
654 	bool more_data_avail;
655 	struct tcp_sock *tp;
656 	bool ret = false;
657 
658 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
659 	tp = tcp_sk(ssk);
660 	do {
661 		u32 map_remaining, offset;
662 		u32 seq = tp->copied_seq;
663 		struct sk_buff *skb;
664 		bool fin;
665 
666 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
667 			break;
668 
669 		/* try to move as much data as available */
670 		map_remaining = subflow->map_data_len -
671 				mptcp_subflow_get_map_offset(subflow);
672 
673 		skb = skb_peek(&ssk->sk_receive_queue);
674 		if (unlikely(!skb))
675 			break;
676 
677 		if (__mptcp_check_fallback(msk)) {
678 			/* Under fallback skbs have no MPTCP extension and TCP could
679 			 * collapse them between the dummy map creation and the
680 			 * current dequeue. Be sure to adjust the map size.
681 			 */
682 			map_remaining = skb->len;
683 			subflow->map_data_len = skb->len;
684 		}
685 
686 		offset = seq - TCP_SKB_CB(skb)->seq;
687 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
688 		if (fin)
689 			seq++;
690 
691 		if (offset < skb->len) {
692 			size_t len = skb->len - offset;
693 
694 			mptcp_init_skb(ssk, skb, offset, len);
695 			skb_orphan(skb);
696 			ret = __mptcp_move_skb(sk, skb) || ret;
697 			seq += len;
698 
699 			if (unlikely(map_remaining < len)) {
700 				DEBUG_NET_WARN_ON_ONCE(1);
701 				mptcp_dss_corruption(msk, ssk);
702 			}
703 		} else {
704 			if (unlikely(!fin)) {
705 				DEBUG_NET_WARN_ON_ONCE(1);
706 				mptcp_dss_corruption(msk, ssk);
707 			}
708 
709 			sk_eat_skb(ssk, skb);
710 		}
711 
712 		WRITE_ONCE(tp->copied_seq, seq);
713 		more_data_avail = mptcp_subflow_data_available(ssk);
714 
715 	} while (more_data_avail);
716 
717 	if (ret)
718 		msk->last_data_recv = tcp_jiffies32;
719 	return ret;
720 }
721 
722 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
723 {
724 	struct sock *sk = (struct sock *)msk;
725 	struct sk_buff *skb, *tail;
726 	bool moved = false;
727 	struct rb_node *p;
728 	u64 end_seq;
729 
730 	p = rb_first(&msk->out_of_order_queue);
731 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
732 	while (p) {
733 		skb = rb_to_skb(p);
734 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
735 			break;
736 
737 		p = rb_next(p);
738 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
739 
740 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
741 				      msk->ack_seq))) {
742 			mptcp_drop(sk, skb);
743 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
744 			continue;
745 		}
746 
747 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
748 		tail = skb_peek_tail(&sk->sk_receive_queue);
749 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
750 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
751 
752 			/* skip overlapping data, if any */
753 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
754 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
755 				 delta);
756 			MPTCP_SKB_CB(skb)->offset += delta;
757 			MPTCP_SKB_CB(skb)->map_seq += delta;
758 			__skb_queue_tail(&sk->sk_receive_queue, skb);
759 		}
760 		msk->bytes_received += end_seq - msk->ack_seq;
761 		WRITE_ONCE(msk->ack_seq, end_seq);
762 		moved = true;
763 	}
764 	return moved;
765 }
766 
767 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
768 {
769 	int err = sock_error(ssk);
770 	int ssk_state;
771 
772 	if (!err)
773 		return false;
774 
775 	/* only propagate errors on fallen-back sockets or
776 	 * on MPC connect
777 	 */
778 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
779 		return false;
780 
781 	/* We need to propagate only transition to CLOSE state.
782 	 * Orphaned socket will see such state change via
783 	 * subflow_sched_work_if_closed() and that path will properly
784 	 * destroy the msk as needed.
785 	 */
786 	ssk_state = inet_sk_state_load(ssk);
787 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
788 		mptcp_set_state(sk, ssk_state);
789 	WRITE_ONCE(sk->sk_err, -err);
790 
791 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
792 	smp_wmb();
793 	sk_error_report(sk);
794 	return true;
795 }
796 
797 void __mptcp_error_report(struct sock *sk)
798 {
799 	struct mptcp_subflow_context *subflow;
800 	struct mptcp_sock *msk = mptcp_sk(sk);
801 
802 	mptcp_for_each_subflow(msk, subflow)
803 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
804 			break;
805 }
806 
807 /* In most cases we will be able to lock the mptcp socket.  If its already
808  * owned, we need to defer to the work queue to avoid ABBA deadlock.
809  */
810 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
811 {
812 	struct sock *sk = (struct sock *)msk;
813 	bool moved;
814 
815 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
816 	__mptcp_ofo_queue(msk);
817 	if (unlikely(ssk->sk_err))
818 		__mptcp_subflow_error_report(sk, ssk);
819 
820 	/* If the moves have caught up with the DATA_FIN sequence number
821 	 * it's time to ack the DATA_FIN and change socket state, but
822 	 * this is not a good place to change state. Let the workqueue
823 	 * do it.
824 	 */
825 	if (mptcp_pending_data_fin(sk, NULL))
826 		mptcp_schedule_work(sk);
827 	return moved;
828 }
829 
830 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
831 {
832 	struct mptcp_sock *msk = mptcp_sk(sk);
833 
834 	/* Wake-up the reader only for in-sequence data */
835 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
836 		sk->sk_data_ready(sk);
837 }
838 
839 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
840 {
841 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
842 
843 	/* The peer can send data while we are shutting down this
844 	 * subflow at msk destruction time, but we must avoid enqueuing
845 	 * more data to the msk receive queue
846 	 */
847 	if (unlikely(subflow->disposable))
848 		return;
849 
850 	mptcp_data_lock(sk);
851 	if (!sock_owned_by_user(sk))
852 		__mptcp_data_ready(sk, ssk);
853 	else
854 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
855 	mptcp_data_unlock(sk);
856 }
857 
858 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
859 {
860 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
861 	msk->allow_infinite_fallback = false;
862 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
863 }
864 
865 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
866 {
867 	struct sock *sk = (struct sock *)msk;
868 
869 	if (sk->sk_state != TCP_ESTABLISHED)
870 		return false;
871 
872 	spin_lock_bh(&msk->fallback_lock);
873 	if (!msk->allow_subflows) {
874 		spin_unlock_bh(&msk->fallback_lock);
875 		return false;
876 	}
877 	mptcp_subflow_joined(msk, ssk);
878 	spin_unlock_bh(&msk->fallback_lock);
879 
880 	/* attach to msk socket only after we are sure we will deal with it
881 	 * at close time
882 	 */
883 	if (sk->sk_socket && !ssk->sk_socket)
884 		mptcp_sock_graft(ssk, sk->sk_socket);
885 
886 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
887 	mptcp_sockopt_sync_locked(msk, ssk);
888 	mptcp_stop_tout_timer(sk);
889 	__mptcp_propagate_sndbuf(sk, ssk);
890 	return true;
891 }
892 
893 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
894 {
895 	struct mptcp_subflow_context *tmp, *subflow;
896 	struct mptcp_sock *msk = mptcp_sk(sk);
897 
898 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
899 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
900 		bool slow = lock_sock_fast(ssk);
901 
902 		list_move_tail(&subflow->node, &msk->conn_list);
903 		if (!__mptcp_finish_join(msk, ssk))
904 			mptcp_subflow_reset(ssk);
905 		unlock_sock_fast(ssk, slow);
906 	}
907 }
908 
909 static bool mptcp_rtx_timer_pending(struct sock *sk)
910 {
911 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
912 }
913 
914 static void mptcp_reset_rtx_timer(struct sock *sk)
915 {
916 	struct inet_connection_sock *icsk = inet_csk(sk);
917 	unsigned long tout;
918 
919 	/* prevent rescheduling on close */
920 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
921 		return;
922 
923 	tout = mptcp_sk(sk)->timer_ival;
924 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
925 }
926 
927 bool mptcp_schedule_work(struct sock *sk)
928 {
929 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
930 	    schedule_work(&mptcp_sk(sk)->work)) {
931 		/* each subflow already holds a reference to the sk, and the
932 		 * workqueue is invoked by a subflow, so sk can't go away here.
933 		 */
934 		sock_hold(sk);
935 		return true;
936 	}
937 	return false;
938 }
939 
940 static bool mptcp_skb_can_collapse_to(u64 write_seq,
941 				      const struct sk_buff *skb,
942 				      const struct mptcp_ext *mpext)
943 {
944 	if (!tcp_skb_can_collapse_to(skb))
945 		return false;
946 
947 	/* can collapse only if MPTCP level sequence is in order and this
948 	 * mapping has not been xmitted yet
949 	 */
950 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
951 	       !mpext->frozen;
952 }
953 
954 /* we can append data to the given data frag if:
955  * - there is space available in the backing page_frag
956  * - the data frag tail matches the current page_frag free offset
957  * - the data frag end sequence number matches the current write seq
958  */
959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
960 				       const struct page_frag *pfrag,
961 				       const struct mptcp_data_frag *df)
962 {
963 	return df && pfrag->page == df->page &&
964 		pfrag->size - pfrag->offset > 0 &&
965 		pfrag->offset == (df->offset + df->data_len) &&
966 		df->data_seq + df->data_len == msk->write_seq;
967 }
968 
969 static void dfrag_uncharge(struct sock *sk, int len)
970 {
971 	sk_mem_uncharge(sk, len);
972 	sk_wmem_queued_add(sk, -len);
973 }
974 
975 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
976 {
977 	int len = dfrag->data_len + dfrag->overhead;
978 
979 	list_del(&dfrag->list);
980 	dfrag_uncharge(sk, len);
981 	put_page(dfrag->page);
982 }
983 
984 /* called under both the msk socket lock and the data lock */
985 static void __mptcp_clean_una(struct sock *sk)
986 {
987 	struct mptcp_sock *msk = mptcp_sk(sk);
988 	struct mptcp_data_frag *dtmp, *dfrag;
989 	u64 snd_una;
990 
991 	snd_una = msk->snd_una;
992 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
993 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
994 			break;
995 
996 		if (unlikely(dfrag == msk->first_pending)) {
997 			/* in recovery mode can see ack after the current snd head */
998 			if (WARN_ON_ONCE(!msk->recovery))
999 				break;
1000 
1001 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1002 		}
1003 
1004 		dfrag_clear(sk, dfrag);
1005 	}
1006 
1007 	dfrag = mptcp_rtx_head(sk);
1008 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1009 		u64 delta = snd_una - dfrag->data_seq;
1010 
1011 		/* prevent wrap around in recovery mode */
1012 		if (unlikely(delta > dfrag->already_sent)) {
1013 			if (WARN_ON_ONCE(!msk->recovery))
1014 				goto out;
1015 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1016 				goto out;
1017 			dfrag->already_sent += delta - dfrag->already_sent;
1018 		}
1019 
1020 		dfrag->data_seq += delta;
1021 		dfrag->offset += delta;
1022 		dfrag->data_len -= delta;
1023 		dfrag->already_sent -= delta;
1024 
1025 		dfrag_uncharge(sk, delta);
1026 	}
1027 
1028 	/* all retransmitted data acked, recovery completed */
1029 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1030 		msk->recovery = false;
1031 
1032 out:
1033 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1034 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1035 			mptcp_stop_rtx_timer(sk);
1036 	} else {
1037 		mptcp_reset_rtx_timer(sk);
1038 	}
1039 
1040 	if (mptcp_pending_data_fin_ack(sk))
1041 		mptcp_schedule_work(sk);
1042 }
1043 
1044 static void __mptcp_clean_una_wakeup(struct sock *sk)
1045 {
1046 	lockdep_assert_held_once(&sk->sk_lock.slock);
1047 
1048 	__mptcp_clean_una(sk);
1049 	mptcp_write_space(sk);
1050 }
1051 
1052 static void mptcp_clean_una_wakeup(struct sock *sk)
1053 {
1054 	mptcp_data_lock(sk);
1055 	__mptcp_clean_una_wakeup(sk);
1056 	mptcp_data_unlock(sk);
1057 }
1058 
1059 static void mptcp_enter_memory_pressure(struct sock *sk)
1060 {
1061 	struct mptcp_subflow_context *subflow;
1062 	struct mptcp_sock *msk = mptcp_sk(sk);
1063 	bool first = true;
1064 
1065 	mptcp_for_each_subflow(msk, subflow) {
1066 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1067 
1068 		if (first && !ssk->sk_bypass_prot_mem) {
1069 			tcp_enter_memory_pressure(ssk);
1070 			first = false;
1071 		}
1072 
1073 		sk_stream_moderate_sndbuf(ssk);
1074 	}
1075 	__mptcp_sync_sndbuf(sk);
1076 }
1077 
1078 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1079  * data
1080  */
1081 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1082 {
1083 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1084 					pfrag, sk->sk_allocation)))
1085 		return true;
1086 
1087 	mptcp_enter_memory_pressure(sk);
1088 	return false;
1089 }
1090 
1091 static struct mptcp_data_frag *
1092 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1093 		      int orig_offset)
1094 {
1095 	int offset = ALIGN(orig_offset, sizeof(long));
1096 	struct mptcp_data_frag *dfrag;
1097 
1098 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1099 	dfrag->data_len = 0;
1100 	dfrag->data_seq = msk->write_seq;
1101 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1102 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1103 	dfrag->already_sent = 0;
1104 	dfrag->page = pfrag->page;
1105 
1106 	return dfrag;
1107 }
1108 
1109 struct mptcp_sendmsg_info {
1110 	int mss_now;
1111 	int size_goal;
1112 	u16 limit;
1113 	u16 sent;
1114 	unsigned int flags;
1115 	bool data_lock_held;
1116 };
1117 
1118 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1119 				    u64 data_seq, int avail_size)
1120 {
1121 	u64 window_end = mptcp_wnd_end(msk);
1122 	u64 mptcp_snd_wnd;
1123 
1124 	if (__mptcp_check_fallback(msk))
1125 		return avail_size;
1126 
1127 	mptcp_snd_wnd = window_end - data_seq;
1128 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1129 
1130 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1131 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1132 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1133 	}
1134 
1135 	return avail_size;
1136 }
1137 
1138 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1139 {
1140 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1141 
1142 	if (!mpext)
1143 		return false;
1144 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1145 	return true;
1146 }
1147 
1148 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1149 {
1150 	struct sk_buff *skb;
1151 
1152 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1153 	if (likely(skb)) {
1154 		if (likely(__mptcp_add_ext(skb, gfp))) {
1155 			skb_reserve(skb, MAX_TCP_HEADER);
1156 			skb->ip_summed = CHECKSUM_PARTIAL;
1157 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1158 			return skb;
1159 		}
1160 		__kfree_skb(skb);
1161 	} else {
1162 		mptcp_enter_memory_pressure(sk);
1163 	}
1164 	return NULL;
1165 }
1166 
1167 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1168 {
1169 	struct sk_buff *skb;
1170 
1171 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1172 	if (!skb)
1173 		return NULL;
1174 
1175 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1176 		tcp_skb_entail(ssk, skb);
1177 		return skb;
1178 	}
1179 	tcp_skb_tsorted_anchor_cleanup(skb);
1180 	kfree_skb(skb);
1181 	return NULL;
1182 }
1183 
1184 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1185 {
1186 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1187 
1188 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1189 }
1190 
1191 /* note: this always recompute the csum on the whole skb, even
1192  * if we just appended a single frag. More status info needed
1193  */
1194 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1195 {
1196 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1197 	__wsum csum = ~csum_unfold(mpext->csum);
1198 	int offset = skb->len - added;
1199 
1200 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1201 }
1202 
1203 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1204 				      struct sock *ssk,
1205 				      struct mptcp_ext *mpext)
1206 {
1207 	if (!mpext)
1208 		return;
1209 
1210 	mpext->infinite_map = 1;
1211 	mpext->data_len = 0;
1212 
1213 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1214 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1215 		mptcp_subflow_reset(ssk);
1216 		return;
1217 	}
1218 
1219 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1220 }
1221 
1222 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1223 
1224 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1225 			      struct mptcp_data_frag *dfrag,
1226 			      struct mptcp_sendmsg_info *info)
1227 {
1228 	u64 data_seq = dfrag->data_seq + info->sent;
1229 	int offset = dfrag->offset + info->sent;
1230 	struct mptcp_sock *msk = mptcp_sk(sk);
1231 	bool zero_window_probe = false;
1232 	struct mptcp_ext *mpext = NULL;
1233 	bool can_coalesce = false;
1234 	bool reuse_skb = true;
1235 	struct sk_buff *skb;
1236 	size_t copy;
1237 	int i;
1238 
1239 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1240 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1241 
1242 	if (WARN_ON_ONCE(info->sent > info->limit ||
1243 			 info->limit > dfrag->data_len))
1244 		return 0;
1245 
1246 	if (unlikely(!__tcp_can_send(ssk)))
1247 		return -EAGAIN;
1248 
1249 	/* compute send limit */
1250 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1251 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1252 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1253 	copy = info->size_goal;
1254 
1255 	skb = tcp_write_queue_tail(ssk);
1256 	if (skb && copy > skb->len) {
1257 		/* Limit the write to the size available in the
1258 		 * current skb, if any, so that we create at most a new skb.
1259 		 * Explicitly tells TCP internals to avoid collapsing on later
1260 		 * queue management operation, to avoid breaking the ext <->
1261 		 * SSN association set here
1262 		 */
1263 		mpext = mptcp_get_ext(skb);
1264 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1265 			TCP_SKB_CB(skb)->eor = 1;
1266 			tcp_mark_push(tcp_sk(ssk), skb);
1267 			goto alloc_skb;
1268 		}
1269 
1270 		i = skb_shinfo(skb)->nr_frags;
1271 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1272 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1273 			tcp_mark_push(tcp_sk(ssk), skb);
1274 			goto alloc_skb;
1275 		}
1276 
1277 		copy -= skb->len;
1278 	} else {
1279 alloc_skb:
1280 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1281 		if (!skb)
1282 			return -ENOMEM;
1283 
1284 		i = skb_shinfo(skb)->nr_frags;
1285 		reuse_skb = false;
1286 		mpext = mptcp_get_ext(skb);
1287 	}
1288 
1289 	/* Zero window and all data acked? Probe. */
1290 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1291 	if (copy == 0) {
1292 		u64 snd_una = READ_ONCE(msk->snd_una);
1293 
1294 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1295 			tcp_remove_empty_skb(ssk);
1296 			return 0;
1297 		}
1298 
1299 		zero_window_probe = true;
1300 		data_seq = snd_una - 1;
1301 		copy = 1;
1302 	}
1303 
1304 	copy = min_t(size_t, copy, info->limit - info->sent);
1305 	if (!sk_wmem_schedule(ssk, copy)) {
1306 		tcp_remove_empty_skb(ssk);
1307 		return -ENOMEM;
1308 	}
1309 
1310 	if (can_coalesce) {
1311 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1312 	} else {
1313 		get_page(dfrag->page);
1314 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1315 	}
1316 
1317 	skb->len += copy;
1318 	skb->data_len += copy;
1319 	skb->truesize += copy;
1320 	sk_wmem_queued_add(ssk, copy);
1321 	sk_mem_charge(ssk, copy);
1322 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1323 	TCP_SKB_CB(skb)->end_seq += copy;
1324 	tcp_skb_pcount_set(skb, 0);
1325 
1326 	/* on skb reuse we just need to update the DSS len */
1327 	if (reuse_skb) {
1328 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1329 		mpext->data_len += copy;
1330 		goto out;
1331 	}
1332 
1333 	memset(mpext, 0, sizeof(*mpext));
1334 	mpext->data_seq = data_seq;
1335 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1336 	mpext->data_len = copy;
1337 	mpext->use_map = 1;
1338 	mpext->dsn64 = 1;
1339 
1340 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1341 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1342 		 mpext->dsn64);
1343 
1344 	if (zero_window_probe) {
1345 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1346 		mpext->frozen = 1;
1347 		if (READ_ONCE(msk->csum_enabled))
1348 			mptcp_update_data_checksum(skb, copy);
1349 		tcp_push_pending_frames(ssk);
1350 		return 0;
1351 	}
1352 out:
1353 	if (READ_ONCE(msk->csum_enabled))
1354 		mptcp_update_data_checksum(skb, copy);
1355 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1356 		mptcp_update_infinite_map(msk, ssk, mpext);
1357 	trace_mptcp_sendmsg_frag(mpext);
1358 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1359 	return copy;
1360 }
1361 
1362 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1363 					 sizeof(struct tcphdr) - \
1364 					 MAX_TCP_OPTION_SPACE - \
1365 					 sizeof(struct ipv6hdr) - \
1366 					 sizeof(struct frag_hdr))
1367 
1368 struct subflow_send_info {
1369 	struct sock *ssk;
1370 	u64 linger_time;
1371 };
1372 
1373 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1374 {
1375 	if (!subflow->stale)
1376 		return;
1377 
1378 	subflow->stale = 0;
1379 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1380 }
1381 
1382 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1383 {
1384 	if (unlikely(subflow->stale)) {
1385 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1386 
1387 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1388 			return false;
1389 
1390 		mptcp_subflow_set_active(subflow);
1391 	}
1392 	return __mptcp_subflow_active(subflow);
1393 }
1394 
1395 #define SSK_MODE_ACTIVE	0
1396 #define SSK_MODE_BACKUP	1
1397 #define SSK_MODE_MAX	2
1398 
1399 /* implement the mptcp packet scheduler;
1400  * returns the subflow that will transmit the next DSS
1401  * additionally updates the rtx timeout
1402  */
1403 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1404 {
1405 	struct subflow_send_info send_info[SSK_MODE_MAX];
1406 	struct mptcp_subflow_context *subflow;
1407 	struct sock *sk = (struct sock *)msk;
1408 	u32 pace, burst, wmem;
1409 	int i, nr_active = 0;
1410 	struct sock *ssk;
1411 	u64 linger_time;
1412 	long tout = 0;
1413 
1414 	/* pick the subflow with the lower wmem/wspace ratio */
1415 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1416 		send_info[i].ssk = NULL;
1417 		send_info[i].linger_time = -1;
1418 	}
1419 
1420 	mptcp_for_each_subflow(msk, subflow) {
1421 		bool backup = subflow->backup || subflow->request_bkup;
1422 
1423 		trace_mptcp_subflow_get_send(subflow);
1424 		ssk =  mptcp_subflow_tcp_sock(subflow);
1425 		if (!mptcp_subflow_active(subflow))
1426 			continue;
1427 
1428 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1429 		nr_active += !backup;
1430 		pace = subflow->avg_pacing_rate;
1431 		if (unlikely(!pace)) {
1432 			/* init pacing rate from socket */
1433 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1434 			pace = subflow->avg_pacing_rate;
1435 			if (!pace)
1436 				continue;
1437 		}
1438 
1439 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1440 		if (linger_time < send_info[backup].linger_time) {
1441 			send_info[backup].ssk = ssk;
1442 			send_info[backup].linger_time = linger_time;
1443 		}
1444 	}
1445 	__mptcp_set_timeout(sk, tout);
1446 
1447 	/* pick the best backup if no other subflow is active */
1448 	if (!nr_active)
1449 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1450 
1451 	/* According to the blest algorithm, to avoid HoL blocking for the
1452 	 * faster flow, we need to:
1453 	 * - estimate the faster flow linger time
1454 	 * - use the above to estimate the amount of byte transferred
1455 	 *   by the faster flow
1456 	 * - check that the amount of queued data is greater than the above,
1457 	 *   otherwise do not use the picked, slower, subflow
1458 	 * We select the subflow with the shorter estimated time to flush
1459 	 * the queued mem, which basically ensure the above. We just need
1460 	 * to check that subflow has a non empty cwin.
1461 	 */
1462 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1463 	if (!ssk || !sk_stream_memory_free(ssk))
1464 		return NULL;
1465 
1466 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1467 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1468 	if (!burst)
1469 		return ssk;
1470 
1471 	subflow = mptcp_subflow_ctx(ssk);
1472 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1473 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1474 					   burst + wmem);
1475 	msk->snd_burst = burst;
1476 	return ssk;
1477 }
1478 
1479 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1480 {
1481 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1482 	release_sock(ssk);
1483 }
1484 
1485 static void mptcp_update_post_push(struct mptcp_sock *msk,
1486 				   struct mptcp_data_frag *dfrag,
1487 				   u32 sent)
1488 {
1489 	u64 snd_nxt_new = dfrag->data_seq;
1490 
1491 	dfrag->already_sent += sent;
1492 
1493 	msk->snd_burst -= sent;
1494 
1495 	snd_nxt_new += dfrag->already_sent;
1496 
1497 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1498 	 * is recovering after a failover. In that event, this re-sends
1499 	 * old segments.
1500 	 *
1501 	 * Thus compute snd_nxt_new candidate based on
1502 	 * the dfrag->data_seq that was sent and the data
1503 	 * that has been handed to the subflow for transmission
1504 	 * and skip update in case it was old dfrag.
1505 	 */
1506 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1507 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1508 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1509 	}
1510 }
1511 
1512 void mptcp_check_and_set_pending(struct sock *sk)
1513 {
1514 	if (mptcp_send_head(sk)) {
1515 		mptcp_data_lock(sk);
1516 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1517 		mptcp_data_unlock(sk);
1518 	}
1519 }
1520 
1521 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1522 				  struct mptcp_sendmsg_info *info)
1523 {
1524 	struct mptcp_sock *msk = mptcp_sk(sk);
1525 	struct mptcp_data_frag *dfrag;
1526 	int len, copied = 0, err = 0;
1527 
1528 	while ((dfrag = mptcp_send_head(sk))) {
1529 		info->sent = dfrag->already_sent;
1530 		info->limit = dfrag->data_len;
1531 		len = dfrag->data_len - dfrag->already_sent;
1532 		while (len > 0) {
1533 			int ret = 0;
1534 
1535 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1536 			if (ret <= 0) {
1537 				err = copied ? : ret;
1538 				goto out;
1539 			}
1540 
1541 			info->sent += ret;
1542 			copied += ret;
1543 			len -= ret;
1544 
1545 			mptcp_update_post_push(msk, dfrag, ret);
1546 		}
1547 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1548 
1549 		if (msk->snd_burst <= 0 ||
1550 		    !sk_stream_memory_free(ssk) ||
1551 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1552 			err = copied;
1553 			goto out;
1554 		}
1555 		mptcp_set_timeout(sk);
1556 	}
1557 	err = copied;
1558 
1559 out:
1560 	if (err > 0)
1561 		msk->last_data_sent = tcp_jiffies32;
1562 	return err;
1563 }
1564 
1565 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1566 {
1567 	struct sock *prev_ssk = NULL, *ssk = NULL;
1568 	struct mptcp_sock *msk = mptcp_sk(sk);
1569 	struct mptcp_sendmsg_info info = {
1570 				.flags = flags,
1571 	};
1572 	bool do_check_data_fin = false;
1573 	int push_count = 1;
1574 
1575 	while (mptcp_send_head(sk) && (push_count > 0)) {
1576 		struct mptcp_subflow_context *subflow;
1577 		int ret = 0;
1578 
1579 		if (mptcp_sched_get_send(msk))
1580 			break;
1581 
1582 		push_count = 0;
1583 
1584 		mptcp_for_each_subflow(msk, subflow) {
1585 			if (READ_ONCE(subflow->scheduled)) {
1586 				mptcp_subflow_set_scheduled(subflow, false);
1587 
1588 				prev_ssk = ssk;
1589 				ssk = mptcp_subflow_tcp_sock(subflow);
1590 				if (ssk != prev_ssk) {
1591 					/* First check. If the ssk has changed since
1592 					 * the last round, release prev_ssk
1593 					 */
1594 					if (prev_ssk)
1595 						mptcp_push_release(prev_ssk, &info);
1596 
1597 					/* Need to lock the new subflow only if different
1598 					 * from the previous one, otherwise we are still
1599 					 * helding the relevant lock
1600 					 */
1601 					lock_sock(ssk);
1602 				}
1603 
1604 				push_count++;
1605 
1606 				ret = __subflow_push_pending(sk, ssk, &info);
1607 				if (ret <= 0) {
1608 					if (ret != -EAGAIN ||
1609 					    (1 << ssk->sk_state) &
1610 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1611 						push_count--;
1612 					continue;
1613 				}
1614 				do_check_data_fin = true;
1615 			}
1616 		}
1617 	}
1618 
1619 	/* at this point we held the socket lock for the last subflow we used */
1620 	if (ssk)
1621 		mptcp_push_release(ssk, &info);
1622 
1623 	/* ensure the rtx timer is running */
1624 	if (!mptcp_rtx_timer_pending(sk))
1625 		mptcp_reset_rtx_timer(sk);
1626 	if (do_check_data_fin)
1627 		mptcp_check_send_data_fin(sk);
1628 }
1629 
1630 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1631 {
1632 	struct mptcp_sock *msk = mptcp_sk(sk);
1633 	struct mptcp_sendmsg_info info = {
1634 		.data_lock_held = true,
1635 	};
1636 	bool keep_pushing = true;
1637 	struct sock *xmit_ssk;
1638 	int copied = 0;
1639 
1640 	info.flags = 0;
1641 	while (mptcp_send_head(sk) && keep_pushing) {
1642 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1643 		int ret = 0;
1644 
1645 		/* check for a different subflow usage only after
1646 		 * spooling the first chunk of data
1647 		 */
1648 		if (first) {
1649 			mptcp_subflow_set_scheduled(subflow, false);
1650 			ret = __subflow_push_pending(sk, ssk, &info);
1651 			first = false;
1652 			if (ret <= 0)
1653 				break;
1654 			copied += ret;
1655 			continue;
1656 		}
1657 
1658 		if (mptcp_sched_get_send(msk))
1659 			goto out;
1660 
1661 		if (READ_ONCE(subflow->scheduled)) {
1662 			mptcp_subflow_set_scheduled(subflow, false);
1663 			ret = __subflow_push_pending(sk, ssk, &info);
1664 			if (ret <= 0)
1665 				keep_pushing = false;
1666 			copied += ret;
1667 		}
1668 
1669 		mptcp_for_each_subflow(msk, subflow) {
1670 			if (READ_ONCE(subflow->scheduled)) {
1671 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1672 				if (xmit_ssk != ssk) {
1673 					mptcp_subflow_delegate(subflow,
1674 							       MPTCP_DELEGATE_SEND);
1675 					keep_pushing = false;
1676 				}
1677 			}
1678 		}
1679 	}
1680 
1681 out:
1682 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1683 	 * not going to flush it via release_sock()
1684 	 */
1685 	if (copied) {
1686 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1687 			 info.size_goal);
1688 		if (!mptcp_rtx_timer_pending(sk))
1689 			mptcp_reset_rtx_timer(sk);
1690 
1691 		if (msk->snd_data_fin_enable &&
1692 		    msk->snd_nxt + 1 == msk->write_seq)
1693 			mptcp_schedule_work(sk);
1694 	}
1695 }
1696 
1697 static int mptcp_disconnect(struct sock *sk, int flags);
1698 
1699 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1700 				  size_t len, int *copied_syn)
1701 {
1702 	unsigned int saved_flags = msg->msg_flags;
1703 	struct mptcp_sock *msk = mptcp_sk(sk);
1704 	struct sock *ssk;
1705 	int ret;
1706 
1707 	/* on flags based fastopen the mptcp is supposed to create the
1708 	 * first subflow right now. Otherwise we are in the defer_connect
1709 	 * path, and the first subflow must be already present.
1710 	 * Since the defer_connect flag is cleared after the first succsful
1711 	 * fastopen attempt, no need to check for additional subflow status.
1712 	 */
1713 	if (msg->msg_flags & MSG_FASTOPEN) {
1714 		ssk = __mptcp_nmpc_sk(msk);
1715 		if (IS_ERR(ssk))
1716 			return PTR_ERR(ssk);
1717 	}
1718 	if (!msk->first)
1719 		return -EINVAL;
1720 
1721 	ssk = msk->first;
1722 
1723 	lock_sock(ssk);
1724 	msg->msg_flags |= MSG_DONTWAIT;
1725 	msk->fastopening = 1;
1726 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1727 	msk->fastopening = 0;
1728 	msg->msg_flags = saved_flags;
1729 	release_sock(ssk);
1730 
1731 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1732 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1733 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1734 					    msg->msg_namelen, msg->msg_flags, 1);
1735 
1736 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1737 		 * case of any error, except timeout or signal
1738 		 */
1739 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1740 			*copied_syn = 0;
1741 	} else if (ret && ret != -EINPROGRESS) {
1742 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1743 		 * __inet_stream_connect() can fail, due to looking check,
1744 		 * see mptcp_disconnect().
1745 		 * Attempt it again outside the problematic scope.
1746 		 */
1747 		if (!mptcp_disconnect(sk, 0)) {
1748 			sk->sk_disconnects++;
1749 			sk->sk_socket->state = SS_UNCONNECTED;
1750 		}
1751 	}
1752 	inet_clear_bit(DEFER_CONNECT, sk);
1753 
1754 	return ret;
1755 }
1756 
1757 static int do_copy_data_nocache(struct sock *sk, int copy,
1758 				struct iov_iter *from, char *to)
1759 {
1760 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1761 		if (!copy_from_iter_full_nocache(to, copy, from))
1762 			return -EFAULT;
1763 	} else if (!copy_from_iter_full(to, copy, from)) {
1764 		return -EFAULT;
1765 	}
1766 	return 0;
1767 }
1768 
1769 /* open-code sk_stream_memory_free() plus sent limit computation to
1770  * avoid indirect calls in fast-path.
1771  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1772  * annotations.
1773  */
1774 static u32 mptcp_send_limit(const struct sock *sk)
1775 {
1776 	const struct mptcp_sock *msk = mptcp_sk(sk);
1777 	u32 limit, not_sent;
1778 
1779 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1780 		return 0;
1781 
1782 	limit = mptcp_notsent_lowat(sk);
1783 	if (limit == UINT_MAX)
1784 		return UINT_MAX;
1785 
1786 	not_sent = msk->write_seq - msk->snd_nxt;
1787 	if (not_sent >= limit)
1788 		return 0;
1789 
1790 	return limit - not_sent;
1791 }
1792 
1793 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1794 {
1795 	struct mptcp_subflow_context *subflow;
1796 
1797 	if (!rfs_is_needed())
1798 		return;
1799 
1800 	mptcp_for_each_subflow(msk, subflow) {
1801 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1802 
1803 		sock_rps_record_flow(ssk);
1804 	}
1805 }
1806 
1807 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1808 {
1809 	struct mptcp_sock *msk = mptcp_sk(sk);
1810 	struct page_frag *pfrag;
1811 	size_t copied = 0;
1812 	int ret = 0;
1813 	long timeo;
1814 
1815 	/* silently ignore everything else */
1816 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1817 
1818 	lock_sock(sk);
1819 
1820 	mptcp_rps_record_subflows(msk);
1821 
1822 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1823 		     msg->msg_flags & MSG_FASTOPEN)) {
1824 		int copied_syn = 0;
1825 
1826 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1827 		copied += copied_syn;
1828 		if (ret == -EINPROGRESS && copied_syn > 0)
1829 			goto out;
1830 		else if (ret)
1831 			goto do_error;
1832 	}
1833 
1834 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1835 
1836 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1837 		ret = sk_stream_wait_connect(sk, &timeo);
1838 		if (ret)
1839 			goto do_error;
1840 	}
1841 
1842 	ret = -EPIPE;
1843 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1844 		goto do_error;
1845 
1846 	pfrag = sk_page_frag(sk);
1847 
1848 	while (msg_data_left(msg)) {
1849 		int total_ts, frag_truesize = 0;
1850 		struct mptcp_data_frag *dfrag;
1851 		bool dfrag_collapsed;
1852 		size_t psize, offset;
1853 		u32 copy_limit;
1854 
1855 		/* ensure fitting the notsent_lowat() constraint */
1856 		copy_limit = mptcp_send_limit(sk);
1857 		if (!copy_limit)
1858 			goto wait_for_memory;
1859 
1860 		/* reuse tail pfrag, if possible, or carve a new one from the
1861 		 * page allocator
1862 		 */
1863 		dfrag = mptcp_pending_tail(sk);
1864 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1865 		if (!dfrag_collapsed) {
1866 			if (!mptcp_page_frag_refill(sk, pfrag))
1867 				goto wait_for_memory;
1868 
1869 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1870 			frag_truesize = dfrag->overhead;
1871 		}
1872 
1873 		/* we do not bound vs wspace, to allow a single packet.
1874 		 * memory accounting will prevent execessive memory usage
1875 		 * anyway
1876 		 */
1877 		offset = dfrag->offset + dfrag->data_len;
1878 		psize = pfrag->size - offset;
1879 		psize = min_t(size_t, psize, msg_data_left(msg));
1880 		psize = min_t(size_t, psize, copy_limit);
1881 		total_ts = psize + frag_truesize;
1882 
1883 		if (!sk_wmem_schedule(sk, total_ts))
1884 			goto wait_for_memory;
1885 
1886 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1887 					   page_address(dfrag->page) + offset);
1888 		if (ret)
1889 			goto do_error;
1890 
1891 		/* data successfully copied into the write queue */
1892 		sk_forward_alloc_add(sk, -total_ts);
1893 		copied += psize;
1894 		dfrag->data_len += psize;
1895 		frag_truesize += psize;
1896 		pfrag->offset += frag_truesize;
1897 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1898 
1899 		/* charge data on mptcp pending queue to the msk socket
1900 		 * Note: we charge such data both to sk and ssk
1901 		 */
1902 		sk_wmem_queued_add(sk, frag_truesize);
1903 		if (!dfrag_collapsed) {
1904 			get_page(dfrag->page);
1905 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1906 			if (!msk->first_pending)
1907 				WRITE_ONCE(msk->first_pending, dfrag);
1908 		}
1909 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1910 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1911 			 !dfrag_collapsed);
1912 
1913 		continue;
1914 
1915 wait_for_memory:
1916 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1917 		__mptcp_push_pending(sk, msg->msg_flags);
1918 		ret = sk_stream_wait_memory(sk, &timeo);
1919 		if (ret)
1920 			goto do_error;
1921 	}
1922 
1923 	if (copied)
1924 		__mptcp_push_pending(sk, msg->msg_flags);
1925 
1926 out:
1927 	release_sock(sk);
1928 	return copied;
1929 
1930 do_error:
1931 	if (copied)
1932 		goto out;
1933 
1934 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1935 	goto out;
1936 }
1937 
1938 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1939 
1940 static int __mptcp_recvmsg_mskq(struct sock *sk,
1941 				struct msghdr *msg,
1942 				size_t len, int flags,
1943 				struct scm_timestamping_internal *tss,
1944 				int *cmsg_flags)
1945 {
1946 	struct mptcp_sock *msk = mptcp_sk(sk);
1947 	struct sk_buff *skb, *tmp;
1948 	int copied = 0;
1949 
1950 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1951 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1952 		u32 data_len = skb->len - offset;
1953 		u32 count = min_t(size_t, len - copied, data_len);
1954 		int err;
1955 
1956 		if (!(flags & MSG_TRUNC)) {
1957 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1958 			if (unlikely(err < 0)) {
1959 				if (!copied)
1960 					return err;
1961 				break;
1962 			}
1963 		}
1964 
1965 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1966 			tcp_update_recv_tstamps(skb, tss);
1967 			*cmsg_flags |= MPTCP_CMSG_TS;
1968 		}
1969 
1970 		copied += count;
1971 
1972 		if (count < data_len) {
1973 			if (!(flags & MSG_PEEK)) {
1974 				MPTCP_SKB_CB(skb)->offset += count;
1975 				MPTCP_SKB_CB(skb)->map_seq += count;
1976 				msk->bytes_consumed += count;
1977 			}
1978 			break;
1979 		}
1980 
1981 		if (!(flags & MSG_PEEK)) {
1982 			/* avoid the indirect call, we know the destructor is sock_rfree */
1983 			skb->destructor = NULL;
1984 			skb->sk = NULL;
1985 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1986 			sk_mem_uncharge(sk, skb->truesize);
1987 			__skb_unlink(skb, &sk->sk_receive_queue);
1988 			skb_attempt_defer_free(skb);
1989 			msk->bytes_consumed += count;
1990 		}
1991 
1992 		if (copied >= len)
1993 			break;
1994 	}
1995 
1996 	mptcp_rcv_space_adjust(msk, copied);
1997 	return copied;
1998 }
1999 
2000 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2001  *
2002  * Only difference: Use highest rtt estimate of the subflows in use.
2003  */
2004 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2005 {
2006 	struct mptcp_subflow_context *subflow;
2007 	struct sock *sk = (struct sock *)msk;
2008 	u8 scaling_ratio = U8_MAX;
2009 	u32 time, advmss = 1;
2010 	u64 rtt_us, mstamp;
2011 
2012 	msk_owned_by_me(msk);
2013 
2014 	if (copied <= 0)
2015 		return;
2016 
2017 	if (!msk->rcvspace_init)
2018 		mptcp_rcv_space_init(msk, msk->first);
2019 
2020 	msk->rcvq_space.copied += copied;
2021 
2022 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2023 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2024 
2025 	rtt_us = msk->rcvq_space.rtt_us;
2026 	if (rtt_us && time < (rtt_us >> 3))
2027 		return;
2028 
2029 	rtt_us = 0;
2030 	mptcp_for_each_subflow(msk, subflow) {
2031 		const struct tcp_sock *tp;
2032 		u64 sf_rtt_us;
2033 		u32 sf_advmss;
2034 
2035 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2036 
2037 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2038 		sf_advmss = READ_ONCE(tp->advmss);
2039 
2040 		rtt_us = max(sf_rtt_us, rtt_us);
2041 		advmss = max(sf_advmss, advmss);
2042 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2043 	}
2044 
2045 	msk->rcvq_space.rtt_us = rtt_us;
2046 	msk->scaling_ratio = scaling_ratio;
2047 	if (time < (rtt_us >> 3) || rtt_us == 0)
2048 		return;
2049 
2050 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2051 		goto new_measure;
2052 
2053 	msk->rcvq_space.space = msk->rcvq_space.copied;
2054 	if (mptcp_rcvbuf_grow(sk)) {
2055 
2056 		/* Make subflows follow along.  If we do not do this, we
2057 		 * get drops at subflow level if skbs can't be moved to
2058 		 * the mptcp rx queue fast enough (announced rcv_win can
2059 		 * exceed ssk->sk_rcvbuf).
2060 		 */
2061 		mptcp_for_each_subflow(msk, subflow) {
2062 			struct sock *ssk;
2063 			bool slow;
2064 
2065 			ssk = mptcp_subflow_tcp_sock(subflow);
2066 			slow = lock_sock_fast(ssk);
2067 			tcp_sk(ssk)->rcvq_space.space = msk->rcvq_space.copied;
2068 			tcp_rcvbuf_grow(ssk);
2069 			unlock_sock_fast(ssk, slow);
2070 		}
2071 	}
2072 
2073 new_measure:
2074 	msk->rcvq_space.copied = 0;
2075 	msk->rcvq_space.time = mstamp;
2076 }
2077 
2078 static struct mptcp_subflow_context *
2079 __mptcp_first_ready_from(struct mptcp_sock *msk,
2080 			 struct mptcp_subflow_context *subflow)
2081 {
2082 	struct mptcp_subflow_context *start_subflow = subflow;
2083 
2084 	while (!READ_ONCE(subflow->data_avail)) {
2085 		subflow = mptcp_next_subflow(msk, subflow);
2086 		if (subflow == start_subflow)
2087 			return NULL;
2088 	}
2089 	return subflow;
2090 }
2091 
2092 static bool __mptcp_move_skbs(struct sock *sk)
2093 {
2094 	struct mptcp_subflow_context *subflow;
2095 	struct mptcp_sock *msk = mptcp_sk(sk);
2096 	bool ret = false;
2097 
2098 	if (list_empty(&msk->conn_list))
2099 		return false;
2100 
2101 	subflow = list_first_entry(&msk->conn_list,
2102 				   struct mptcp_subflow_context, node);
2103 	for (;;) {
2104 		struct sock *ssk;
2105 		bool slowpath;
2106 
2107 		/*
2108 		 * As an optimization avoid traversing the subflows list
2109 		 * and ev. acquiring the subflow socket lock before baling out
2110 		 */
2111 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2112 			break;
2113 
2114 		subflow = __mptcp_first_ready_from(msk, subflow);
2115 		if (!subflow)
2116 			break;
2117 
2118 		ssk = mptcp_subflow_tcp_sock(subflow);
2119 		slowpath = lock_sock_fast(ssk);
2120 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2121 		if (unlikely(ssk->sk_err))
2122 			__mptcp_error_report(sk);
2123 		unlock_sock_fast(ssk, slowpath);
2124 
2125 		subflow = mptcp_next_subflow(msk, subflow);
2126 	}
2127 
2128 	__mptcp_ofo_queue(msk);
2129 	if (ret)
2130 		mptcp_check_data_fin((struct sock *)msk);
2131 	return ret;
2132 }
2133 
2134 static unsigned int mptcp_inq_hint(const struct sock *sk)
2135 {
2136 	const struct mptcp_sock *msk = mptcp_sk(sk);
2137 	const struct sk_buff *skb;
2138 
2139 	skb = skb_peek(&sk->sk_receive_queue);
2140 	if (skb) {
2141 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2142 
2143 		if (hint_val >= INT_MAX)
2144 			return INT_MAX;
2145 
2146 		return (unsigned int)hint_val;
2147 	}
2148 
2149 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2150 		return 1;
2151 
2152 	return 0;
2153 }
2154 
2155 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2156 			 int flags, int *addr_len)
2157 {
2158 	struct mptcp_sock *msk = mptcp_sk(sk);
2159 	struct scm_timestamping_internal tss;
2160 	int copied = 0, cmsg_flags = 0;
2161 	int target;
2162 	long timeo;
2163 
2164 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2165 	if (unlikely(flags & MSG_ERRQUEUE))
2166 		return inet_recv_error(sk, msg, len, addr_len);
2167 
2168 	lock_sock(sk);
2169 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2170 		copied = -ENOTCONN;
2171 		goto out_err;
2172 	}
2173 
2174 	mptcp_rps_record_subflows(msk);
2175 
2176 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2177 
2178 	len = min_t(size_t, len, INT_MAX);
2179 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2180 
2181 	if (unlikely(msk->recvmsg_inq))
2182 		cmsg_flags = MPTCP_CMSG_INQ;
2183 
2184 	while (copied < len) {
2185 		int err, bytes_read;
2186 
2187 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2188 		if (unlikely(bytes_read < 0)) {
2189 			if (!copied)
2190 				copied = bytes_read;
2191 			goto out_err;
2192 		}
2193 
2194 		copied += bytes_read;
2195 
2196 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2197 			continue;
2198 
2199 		/* only the MPTCP socket status is relevant here. The exit
2200 		 * conditions mirror closely tcp_recvmsg()
2201 		 */
2202 		if (copied >= target)
2203 			break;
2204 
2205 		if (copied) {
2206 			if (sk->sk_err ||
2207 			    sk->sk_state == TCP_CLOSE ||
2208 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2209 			    !timeo ||
2210 			    signal_pending(current))
2211 				break;
2212 		} else {
2213 			if (sk->sk_err) {
2214 				copied = sock_error(sk);
2215 				break;
2216 			}
2217 
2218 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2219 				break;
2220 
2221 			if (sk->sk_state == TCP_CLOSE) {
2222 				copied = -ENOTCONN;
2223 				break;
2224 			}
2225 
2226 			if (!timeo) {
2227 				copied = -EAGAIN;
2228 				break;
2229 			}
2230 
2231 			if (signal_pending(current)) {
2232 				copied = sock_intr_errno(timeo);
2233 				break;
2234 			}
2235 		}
2236 
2237 		pr_debug("block timeout %ld\n", timeo);
2238 		mptcp_cleanup_rbuf(msk, copied);
2239 		err = sk_wait_data(sk, &timeo, NULL);
2240 		if (err < 0) {
2241 			err = copied ? : err;
2242 			goto out_err;
2243 		}
2244 	}
2245 
2246 	mptcp_cleanup_rbuf(msk, copied);
2247 
2248 out_err:
2249 	if (cmsg_flags && copied >= 0) {
2250 		if (cmsg_flags & MPTCP_CMSG_TS)
2251 			tcp_recv_timestamp(msg, sk, &tss);
2252 
2253 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2254 			unsigned int inq = mptcp_inq_hint(sk);
2255 
2256 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2257 		}
2258 	}
2259 
2260 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2261 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2262 
2263 	release_sock(sk);
2264 	return copied;
2265 }
2266 
2267 static void mptcp_retransmit_timer(struct timer_list *t)
2268 {
2269 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2270 							       icsk_retransmit_timer);
2271 	struct sock *sk = &icsk->icsk_inet.sk;
2272 	struct mptcp_sock *msk = mptcp_sk(sk);
2273 
2274 	bh_lock_sock(sk);
2275 	if (!sock_owned_by_user(sk)) {
2276 		/* we need a process context to retransmit */
2277 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2278 			mptcp_schedule_work(sk);
2279 	} else {
2280 		/* delegate our work to tcp_release_cb() */
2281 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2282 	}
2283 	bh_unlock_sock(sk);
2284 	sock_put(sk);
2285 }
2286 
2287 static void mptcp_tout_timer(struct timer_list *t)
2288 {
2289 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2290 
2291 	mptcp_schedule_work(sk);
2292 	sock_put(sk);
2293 }
2294 
2295 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2296  * level.
2297  *
2298  * A backup subflow is returned only if that is the only kind available.
2299  */
2300 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2301 {
2302 	struct sock *backup = NULL, *pick = NULL;
2303 	struct mptcp_subflow_context *subflow;
2304 	int min_stale_count = INT_MAX;
2305 
2306 	mptcp_for_each_subflow(msk, subflow) {
2307 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2308 
2309 		if (!__mptcp_subflow_active(subflow))
2310 			continue;
2311 
2312 		/* still data outstanding at TCP level? skip this */
2313 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2314 			mptcp_pm_subflow_chk_stale(msk, ssk);
2315 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2316 			continue;
2317 		}
2318 
2319 		if (subflow->backup || subflow->request_bkup) {
2320 			if (!backup)
2321 				backup = ssk;
2322 			continue;
2323 		}
2324 
2325 		if (!pick)
2326 			pick = ssk;
2327 	}
2328 
2329 	if (pick)
2330 		return pick;
2331 
2332 	/* use backup only if there are no progresses anywhere */
2333 	return min_stale_count > 1 ? backup : NULL;
2334 }
2335 
2336 bool __mptcp_retransmit_pending_data(struct sock *sk)
2337 {
2338 	struct mptcp_data_frag *cur, *rtx_head;
2339 	struct mptcp_sock *msk = mptcp_sk(sk);
2340 
2341 	if (__mptcp_check_fallback(msk))
2342 		return false;
2343 
2344 	/* the closing socket has some data untransmitted and/or unacked:
2345 	 * some data in the mptcp rtx queue has not really xmitted yet.
2346 	 * keep it simple and re-inject the whole mptcp level rtx queue
2347 	 */
2348 	mptcp_data_lock(sk);
2349 	__mptcp_clean_una_wakeup(sk);
2350 	rtx_head = mptcp_rtx_head(sk);
2351 	if (!rtx_head) {
2352 		mptcp_data_unlock(sk);
2353 		return false;
2354 	}
2355 
2356 	msk->recovery_snd_nxt = msk->snd_nxt;
2357 	msk->recovery = true;
2358 	mptcp_data_unlock(sk);
2359 
2360 	msk->first_pending = rtx_head;
2361 	msk->snd_burst = 0;
2362 
2363 	/* be sure to clear the "sent status" on all re-injected fragments */
2364 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2365 		if (!cur->already_sent)
2366 			break;
2367 		cur->already_sent = 0;
2368 	}
2369 
2370 	return true;
2371 }
2372 
2373 /* flags for __mptcp_close_ssk() */
2374 #define MPTCP_CF_PUSH		BIT(1)
2375 #define MPTCP_CF_FASTCLOSE	BIT(2)
2376 
2377 /* be sure to send a reset only if the caller asked for it, also
2378  * clean completely the subflow status when the subflow reaches
2379  * TCP_CLOSE state
2380  */
2381 static void __mptcp_subflow_disconnect(struct sock *ssk,
2382 				       struct mptcp_subflow_context *subflow,
2383 				       unsigned int flags)
2384 {
2385 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2386 	    (flags & MPTCP_CF_FASTCLOSE)) {
2387 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2388 		 * disconnect should never fail
2389 		 */
2390 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2391 		mptcp_subflow_ctx_reset(subflow);
2392 	} else {
2393 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2394 	}
2395 }
2396 
2397 /* subflow sockets can be either outgoing (connect) or incoming
2398  * (accept).
2399  *
2400  * Outgoing subflows use in-kernel sockets.
2401  * Incoming subflows do not have their own 'struct socket' allocated,
2402  * so we need to use tcp_close() after detaching them from the mptcp
2403  * parent socket.
2404  */
2405 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2406 			      struct mptcp_subflow_context *subflow,
2407 			      unsigned int flags)
2408 {
2409 	struct mptcp_sock *msk = mptcp_sk(sk);
2410 	bool dispose_it, need_push = false;
2411 
2412 	/* If the first subflow moved to a close state before accept, e.g. due
2413 	 * to an incoming reset or listener shutdown, the subflow socket is
2414 	 * already deleted by inet_child_forget() and the mptcp socket can't
2415 	 * survive too.
2416 	 */
2417 	if (msk->in_accept_queue && msk->first == ssk &&
2418 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2419 		/* ensure later check in mptcp_worker() will dispose the msk */
2420 		sock_set_flag(sk, SOCK_DEAD);
2421 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2422 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2423 		mptcp_subflow_drop_ctx(ssk);
2424 		goto out_release;
2425 	}
2426 
2427 	dispose_it = msk->free_first || ssk != msk->first;
2428 	if (dispose_it)
2429 		list_del(&subflow->node);
2430 
2431 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2432 
2433 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2434 		/* be sure to force the tcp_close path
2435 		 * to generate the egress reset
2436 		 */
2437 		ssk->sk_lingertime = 0;
2438 		sock_set_flag(ssk, SOCK_LINGER);
2439 		subflow->send_fastclose = 1;
2440 	}
2441 
2442 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2443 	if (!dispose_it) {
2444 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2445 		release_sock(ssk);
2446 
2447 		goto out;
2448 	}
2449 
2450 	subflow->disposable = 1;
2451 
2452 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2453 	 * the ssk has been already destroyed, we just need to release the
2454 	 * reference owned by msk;
2455 	 */
2456 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2457 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2458 		kfree_rcu(subflow, rcu);
2459 	} else {
2460 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2461 		__tcp_close(ssk, 0);
2462 
2463 		/* close acquired an extra ref */
2464 		__sock_put(ssk);
2465 	}
2466 
2467 out_release:
2468 	__mptcp_subflow_error_report(sk, ssk);
2469 	release_sock(ssk);
2470 
2471 	sock_put(ssk);
2472 
2473 	if (ssk == msk->first)
2474 		WRITE_ONCE(msk->first, NULL);
2475 
2476 out:
2477 	__mptcp_sync_sndbuf(sk);
2478 	if (need_push)
2479 		__mptcp_push_pending(sk, 0);
2480 
2481 	/* Catch every 'all subflows closed' scenario, including peers silently
2482 	 * closing them, e.g. due to timeout.
2483 	 * For established sockets, allow an additional timeout before closing,
2484 	 * as the protocol can still create more subflows.
2485 	 */
2486 	if (list_is_singular(&msk->conn_list) && msk->first &&
2487 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2488 		if (sk->sk_state != TCP_ESTABLISHED ||
2489 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2490 			mptcp_set_state(sk, TCP_CLOSE);
2491 			mptcp_close_wake_up(sk);
2492 		} else {
2493 			mptcp_start_tout_timer(sk);
2494 		}
2495 	}
2496 }
2497 
2498 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2499 		     struct mptcp_subflow_context *subflow)
2500 {
2501 	/* The first subflow can already be closed and still in the list */
2502 	if (subflow->close_event_done)
2503 		return;
2504 
2505 	subflow->close_event_done = true;
2506 
2507 	if (sk->sk_state == TCP_ESTABLISHED)
2508 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2509 
2510 	/* subflow aborted before reaching the fully_established status
2511 	 * attempt the creation of the next subflow
2512 	 */
2513 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2514 
2515 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2516 }
2517 
2518 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2519 {
2520 	return 0;
2521 }
2522 
2523 static void __mptcp_close_subflow(struct sock *sk)
2524 {
2525 	struct mptcp_subflow_context *subflow, *tmp;
2526 	struct mptcp_sock *msk = mptcp_sk(sk);
2527 
2528 	might_sleep();
2529 
2530 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2531 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2532 		int ssk_state = inet_sk_state_load(ssk);
2533 
2534 		if (ssk_state != TCP_CLOSE &&
2535 		    (ssk_state != TCP_CLOSE_WAIT ||
2536 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2537 			continue;
2538 
2539 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2540 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2541 			continue;
2542 
2543 		mptcp_close_ssk(sk, ssk, subflow);
2544 	}
2545 
2546 }
2547 
2548 static bool mptcp_close_tout_expired(const struct sock *sk)
2549 {
2550 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2551 	    sk->sk_state == TCP_CLOSE)
2552 		return false;
2553 
2554 	return time_after32(tcp_jiffies32,
2555 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2556 }
2557 
2558 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2559 {
2560 	struct mptcp_subflow_context *subflow, *tmp;
2561 	struct sock *sk = (struct sock *)msk;
2562 
2563 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2564 		return;
2565 
2566 	mptcp_token_destroy(msk);
2567 
2568 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2569 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2570 		bool slow;
2571 
2572 		slow = lock_sock_fast(tcp_sk);
2573 		if (tcp_sk->sk_state != TCP_CLOSE) {
2574 			mptcp_send_active_reset_reason(tcp_sk);
2575 			tcp_set_state(tcp_sk, TCP_CLOSE);
2576 		}
2577 		unlock_sock_fast(tcp_sk, slow);
2578 	}
2579 
2580 	/* Mirror the tcp_reset() error propagation */
2581 	switch (sk->sk_state) {
2582 	case TCP_SYN_SENT:
2583 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2584 		break;
2585 	case TCP_CLOSE_WAIT:
2586 		WRITE_ONCE(sk->sk_err, EPIPE);
2587 		break;
2588 	case TCP_CLOSE:
2589 		return;
2590 	default:
2591 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2592 	}
2593 
2594 	mptcp_set_state(sk, TCP_CLOSE);
2595 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2596 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2597 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2598 
2599 	/* the calling mptcp_worker will properly destroy the socket */
2600 	if (sock_flag(sk, SOCK_DEAD))
2601 		return;
2602 
2603 	sk->sk_state_change(sk);
2604 	sk_error_report(sk);
2605 }
2606 
2607 static void __mptcp_retrans(struct sock *sk)
2608 {
2609 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2610 	struct mptcp_sock *msk = mptcp_sk(sk);
2611 	struct mptcp_subflow_context *subflow;
2612 	struct mptcp_data_frag *dfrag;
2613 	struct sock *ssk;
2614 	int ret, err;
2615 	u16 len = 0;
2616 
2617 	mptcp_clean_una_wakeup(sk);
2618 
2619 	/* first check ssk: need to kick "stale" logic */
2620 	err = mptcp_sched_get_retrans(msk);
2621 	dfrag = mptcp_rtx_head(sk);
2622 	if (!dfrag) {
2623 		if (mptcp_data_fin_enabled(msk)) {
2624 			struct inet_connection_sock *icsk = inet_csk(sk);
2625 
2626 			WRITE_ONCE(icsk->icsk_retransmits,
2627 				   icsk->icsk_retransmits + 1);
2628 			mptcp_set_datafin_timeout(sk);
2629 			mptcp_send_ack(msk);
2630 
2631 			goto reset_timer;
2632 		}
2633 
2634 		if (!mptcp_send_head(sk))
2635 			return;
2636 
2637 		goto reset_timer;
2638 	}
2639 
2640 	if (err)
2641 		goto reset_timer;
2642 
2643 	mptcp_for_each_subflow(msk, subflow) {
2644 		if (READ_ONCE(subflow->scheduled)) {
2645 			u16 copied = 0;
2646 
2647 			mptcp_subflow_set_scheduled(subflow, false);
2648 
2649 			ssk = mptcp_subflow_tcp_sock(subflow);
2650 
2651 			lock_sock(ssk);
2652 
2653 			/* limit retransmission to the bytes already sent on some subflows */
2654 			info.sent = 0;
2655 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2656 								    dfrag->already_sent;
2657 
2658 			/*
2659 			 * make the whole retrans decision, xmit, disallow
2660 			 * fallback atomic
2661 			 */
2662 			spin_lock_bh(&msk->fallback_lock);
2663 			if (__mptcp_check_fallback(msk)) {
2664 				spin_unlock_bh(&msk->fallback_lock);
2665 				release_sock(ssk);
2666 				return;
2667 			}
2668 
2669 			while (info.sent < info.limit) {
2670 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2671 				if (ret <= 0)
2672 					break;
2673 
2674 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2675 				copied += ret;
2676 				info.sent += ret;
2677 			}
2678 			if (copied) {
2679 				len = max(copied, len);
2680 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2681 					 info.size_goal);
2682 				msk->allow_infinite_fallback = false;
2683 			}
2684 			spin_unlock_bh(&msk->fallback_lock);
2685 
2686 			release_sock(ssk);
2687 		}
2688 	}
2689 
2690 	msk->bytes_retrans += len;
2691 	dfrag->already_sent = max(dfrag->already_sent, len);
2692 
2693 reset_timer:
2694 	mptcp_check_and_set_pending(sk);
2695 
2696 	if (!mptcp_rtx_timer_pending(sk))
2697 		mptcp_reset_rtx_timer(sk);
2698 }
2699 
2700 /* schedule the timeout timer for the relevant event: either close timeout
2701  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2702  */
2703 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2704 {
2705 	struct sock *sk = (struct sock *)msk;
2706 	unsigned long timeout, close_timeout;
2707 
2708 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2709 		return;
2710 
2711 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2712 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2713 
2714 	/* the close timeout takes precedence on the fail one, and here at least one of
2715 	 * them is active
2716 	 */
2717 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2718 
2719 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2720 }
2721 
2722 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2723 {
2724 	struct sock *ssk = msk->first;
2725 	bool slow;
2726 
2727 	if (!ssk)
2728 		return;
2729 
2730 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2731 
2732 	slow = lock_sock_fast(ssk);
2733 	mptcp_subflow_reset(ssk);
2734 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2735 	unlock_sock_fast(ssk, slow);
2736 }
2737 
2738 static void mptcp_do_fastclose(struct sock *sk)
2739 {
2740 	struct mptcp_subflow_context *subflow, *tmp;
2741 	struct mptcp_sock *msk = mptcp_sk(sk);
2742 
2743 	mptcp_set_state(sk, TCP_CLOSE);
2744 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2745 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2746 				  subflow, MPTCP_CF_FASTCLOSE);
2747 }
2748 
2749 static void mptcp_worker(struct work_struct *work)
2750 {
2751 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2752 	struct sock *sk = (struct sock *)msk;
2753 	unsigned long fail_tout;
2754 	int state;
2755 
2756 	lock_sock(sk);
2757 	state = sk->sk_state;
2758 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2759 		goto unlock;
2760 
2761 	mptcp_check_fastclose(msk);
2762 
2763 	mptcp_pm_worker(msk);
2764 
2765 	mptcp_check_send_data_fin(sk);
2766 	mptcp_check_data_fin_ack(sk);
2767 	mptcp_check_data_fin(sk);
2768 
2769 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2770 		__mptcp_close_subflow(sk);
2771 
2772 	if (mptcp_close_tout_expired(sk)) {
2773 		mptcp_do_fastclose(sk);
2774 		mptcp_close_wake_up(sk);
2775 	}
2776 
2777 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2778 		__mptcp_destroy_sock(sk);
2779 		goto unlock;
2780 	}
2781 
2782 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2783 		__mptcp_retrans(sk);
2784 
2785 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2786 	if (fail_tout && time_after(jiffies, fail_tout))
2787 		mptcp_mp_fail_no_response(msk);
2788 
2789 unlock:
2790 	release_sock(sk);
2791 	sock_put(sk);
2792 }
2793 
2794 static void __mptcp_init_sock(struct sock *sk)
2795 {
2796 	struct mptcp_sock *msk = mptcp_sk(sk);
2797 
2798 	INIT_LIST_HEAD(&msk->conn_list);
2799 	INIT_LIST_HEAD(&msk->join_list);
2800 	INIT_LIST_HEAD(&msk->rtx_queue);
2801 	INIT_WORK(&msk->work, mptcp_worker);
2802 	msk->out_of_order_queue = RB_ROOT;
2803 	msk->first_pending = NULL;
2804 	msk->timer_ival = TCP_RTO_MIN;
2805 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2806 
2807 	WRITE_ONCE(msk->first, NULL);
2808 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2809 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2810 	msk->allow_infinite_fallback = true;
2811 	msk->allow_subflows = true;
2812 	msk->recovery = false;
2813 	msk->subflow_id = 1;
2814 	msk->last_data_sent = tcp_jiffies32;
2815 	msk->last_data_recv = tcp_jiffies32;
2816 	msk->last_ack_recv = tcp_jiffies32;
2817 
2818 	mptcp_pm_data_init(msk);
2819 	spin_lock_init(&msk->fallback_lock);
2820 
2821 	/* re-use the csk retrans timer for MPTCP-level retrans */
2822 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2823 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2824 }
2825 
2826 static void mptcp_ca_reset(struct sock *sk)
2827 {
2828 	struct inet_connection_sock *icsk = inet_csk(sk);
2829 
2830 	tcp_assign_congestion_control(sk);
2831 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2832 		sizeof(mptcp_sk(sk)->ca_name));
2833 
2834 	/* no need to keep a reference to the ops, the name will suffice */
2835 	tcp_cleanup_congestion_control(sk);
2836 	icsk->icsk_ca_ops = NULL;
2837 }
2838 
2839 static int mptcp_init_sock(struct sock *sk)
2840 {
2841 	struct net *net = sock_net(sk);
2842 	int ret;
2843 
2844 	__mptcp_init_sock(sk);
2845 
2846 	if (!mptcp_is_enabled(net))
2847 		return -ENOPROTOOPT;
2848 
2849 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2850 		return -ENOMEM;
2851 
2852 	rcu_read_lock();
2853 	ret = mptcp_init_sched(mptcp_sk(sk),
2854 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2855 	rcu_read_unlock();
2856 	if (ret)
2857 		return ret;
2858 
2859 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2860 
2861 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2862 	 * propagate the correct value
2863 	 */
2864 	mptcp_ca_reset(sk);
2865 
2866 	sk_sockets_allocated_inc(sk);
2867 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2868 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2869 
2870 	return 0;
2871 }
2872 
2873 static void __mptcp_clear_xmit(struct sock *sk)
2874 {
2875 	struct mptcp_sock *msk = mptcp_sk(sk);
2876 	struct mptcp_data_frag *dtmp, *dfrag;
2877 
2878 	WRITE_ONCE(msk->first_pending, NULL);
2879 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2880 		dfrag_clear(sk, dfrag);
2881 }
2882 
2883 void mptcp_cancel_work(struct sock *sk)
2884 {
2885 	struct mptcp_sock *msk = mptcp_sk(sk);
2886 
2887 	if (cancel_work_sync(&msk->work))
2888 		__sock_put(sk);
2889 }
2890 
2891 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2892 {
2893 	lock_sock(ssk);
2894 
2895 	switch (ssk->sk_state) {
2896 	case TCP_LISTEN:
2897 		if (!(how & RCV_SHUTDOWN))
2898 			break;
2899 		fallthrough;
2900 	case TCP_SYN_SENT:
2901 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2902 		break;
2903 	default:
2904 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2905 			pr_debug("Fallback\n");
2906 			ssk->sk_shutdown |= how;
2907 			tcp_shutdown(ssk, how);
2908 
2909 			/* simulate the data_fin ack reception to let the state
2910 			 * machine move forward
2911 			 */
2912 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2913 			mptcp_schedule_work(sk);
2914 		} else {
2915 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2916 			tcp_send_ack(ssk);
2917 			if (!mptcp_rtx_timer_pending(sk))
2918 				mptcp_reset_rtx_timer(sk);
2919 		}
2920 		break;
2921 	}
2922 
2923 	release_sock(ssk);
2924 }
2925 
2926 void mptcp_set_state(struct sock *sk, int state)
2927 {
2928 	int oldstate = sk->sk_state;
2929 
2930 	switch (state) {
2931 	case TCP_ESTABLISHED:
2932 		if (oldstate != TCP_ESTABLISHED)
2933 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2934 		break;
2935 	case TCP_CLOSE_WAIT:
2936 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2937 		 * MPTCP "accepted" sockets will be created later on. So no
2938 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2939 		 */
2940 		break;
2941 	default:
2942 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2943 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2944 	}
2945 
2946 	inet_sk_state_store(sk, state);
2947 }
2948 
2949 static const unsigned char new_state[16] = {
2950 	/* current state:     new state:      action:	*/
2951 	[0 /* (Invalid) */] = TCP_CLOSE,
2952 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2953 	[TCP_SYN_SENT]      = TCP_CLOSE,
2954 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2955 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2956 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2957 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2958 	[TCP_CLOSE]         = TCP_CLOSE,
2959 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2960 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2961 	[TCP_LISTEN]        = TCP_CLOSE,
2962 	[TCP_CLOSING]       = TCP_CLOSING,
2963 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2964 };
2965 
2966 static int mptcp_close_state(struct sock *sk)
2967 {
2968 	int next = (int)new_state[sk->sk_state];
2969 	int ns = next & TCP_STATE_MASK;
2970 
2971 	mptcp_set_state(sk, ns);
2972 
2973 	return next & TCP_ACTION_FIN;
2974 }
2975 
2976 static void mptcp_check_send_data_fin(struct sock *sk)
2977 {
2978 	struct mptcp_subflow_context *subflow;
2979 	struct mptcp_sock *msk = mptcp_sk(sk);
2980 
2981 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2982 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2983 		 msk->snd_nxt, msk->write_seq);
2984 
2985 	/* we still need to enqueue subflows or not really shutting down,
2986 	 * skip this
2987 	 */
2988 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2989 	    mptcp_send_head(sk))
2990 		return;
2991 
2992 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2993 
2994 	mptcp_for_each_subflow(msk, subflow) {
2995 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2996 
2997 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2998 	}
2999 }
3000 
3001 static void __mptcp_wr_shutdown(struct sock *sk)
3002 {
3003 	struct mptcp_sock *msk = mptcp_sk(sk);
3004 
3005 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3006 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3007 		 !!mptcp_send_head(sk));
3008 
3009 	/* will be ignored by fallback sockets */
3010 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3011 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3012 
3013 	mptcp_check_send_data_fin(sk);
3014 }
3015 
3016 static void __mptcp_destroy_sock(struct sock *sk)
3017 {
3018 	struct mptcp_sock *msk = mptcp_sk(sk);
3019 
3020 	pr_debug("msk=%p\n", msk);
3021 
3022 	might_sleep();
3023 
3024 	mptcp_stop_rtx_timer(sk);
3025 	sk_stop_timer(sk, &sk->sk_timer);
3026 	msk->pm.status = 0;
3027 	mptcp_release_sched(msk);
3028 
3029 	sk->sk_prot->destroy(sk);
3030 
3031 	sk_stream_kill_queues(sk);
3032 	xfrm_sk_free_policy(sk);
3033 
3034 	sock_put(sk);
3035 }
3036 
3037 void __mptcp_unaccepted_force_close(struct sock *sk)
3038 {
3039 	sock_set_flag(sk, SOCK_DEAD);
3040 	mptcp_do_fastclose(sk);
3041 	__mptcp_destroy_sock(sk);
3042 }
3043 
3044 static __poll_t mptcp_check_readable(struct sock *sk)
3045 {
3046 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3047 }
3048 
3049 static void mptcp_check_listen_stop(struct sock *sk)
3050 {
3051 	struct sock *ssk;
3052 
3053 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3054 		return;
3055 
3056 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3057 	ssk = mptcp_sk(sk)->first;
3058 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3059 		return;
3060 
3061 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3062 	tcp_set_state(ssk, TCP_CLOSE);
3063 	mptcp_subflow_queue_clean(sk, ssk);
3064 	inet_csk_listen_stop(ssk);
3065 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3066 	release_sock(ssk);
3067 }
3068 
3069 bool __mptcp_close(struct sock *sk, long timeout)
3070 {
3071 	struct mptcp_subflow_context *subflow;
3072 	struct mptcp_sock *msk = mptcp_sk(sk);
3073 	bool do_cancel_work = false;
3074 	int subflows_alive = 0;
3075 
3076 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3077 
3078 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3079 		mptcp_check_listen_stop(sk);
3080 		mptcp_set_state(sk, TCP_CLOSE);
3081 		goto cleanup;
3082 	}
3083 
3084 	if (mptcp_data_avail(msk) || timeout < 0) {
3085 		/* If the msk has read data, or the caller explicitly ask it,
3086 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3087 		 */
3088 		mptcp_do_fastclose(sk);
3089 		timeout = 0;
3090 	} else if (mptcp_close_state(sk)) {
3091 		__mptcp_wr_shutdown(sk);
3092 	}
3093 
3094 	sk_stream_wait_close(sk, timeout);
3095 
3096 cleanup:
3097 	/* orphan all the subflows */
3098 	mptcp_for_each_subflow(msk, subflow) {
3099 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3100 		bool slow = lock_sock_fast_nested(ssk);
3101 
3102 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3103 
3104 		/* since the close timeout takes precedence on the fail one,
3105 		 * cancel the latter
3106 		 */
3107 		if (ssk == msk->first)
3108 			subflow->fail_tout = 0;
3109 
3110 		/* detach from the parent socket, but allow data_ready to
3111 		 * push incoming data into the mptcp stack, to properly ack it
3112 		 */
3113 		ssk->sk_socket = NULL;
3114 		ssk->sk_wq = NULL;
3115 		unlock_sock_fast(ssk, slow);
3116 	}
3117 	sock_orphan(sk);
3118 
3119 	/* all the subflows are closed, only timeout can change the msk
3120 	 * state, let's not keep resources busy for no reasons
3121 	 */
3122 	if (subflows_alive == 0)
3123 		mptcp_set_state(sk, TCP_CLOSE);
3124 
3125 	sock_hold(sk);
3126 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3127 	mptcp_pm_connection_closed(msk);
3128 
3129 	if (sk->sk_state == TCP_CLOSE) {
3130 		__mptcp_destroy_sock(sk);
3131 		do_cancel_work = true;
3132 	} else {
3133 		mptcp_start_tout_timer(sk);
3134 	}
3135 
3136 	return do_cancel_work;
3137 }
3138 
3139 static void mptcp_close(struct sock *sk, long timeout)
3140 {
3141 	bool do_cancel_work;
3142 
3143 	lock_sock(sk);
3144 
3145 	do_cancel_work = __mptcp_close(sk, timeout);
3146 	release_sock(sk);
3147 	if (do_cancel_work)
3148 		mptcp_cancel_work(sk);
3149 
3150 	sock_put(sk);
3151 }
3152 
3153 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3154 {
3155 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3156 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3157 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3158 
3159 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3160 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3161 
3162 	if (msk6 && ssk6) {
3163 		msk6->saddr = ssk6->saddr;
3164 		msk6->flow_label = ssk6->flow_label;
3165 	}
3166 #endif
3167 
3168 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3169 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3170 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3171 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3172 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3173 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3174 }
3175 
3176 static int mptcp_disconnect(struct sock *sk, int flags)
3177 {
3178 	struct mptcp_sock *msk = mptcp_sk(sk);
3179 
3180 	/* We are on the fastopen error path. We can't call straight into the
3181 	 * subflows cleanup code due to lock nesting (we are already under
3182 	 * msk->firstsocket lock).
3183 	 */
3184 	if (msk->fastopening)
3185 		return -EBUSY;
3186 
3187 	mptcp_check_listen_stop(sk);
3188 	mptcp_set_state(sk, TCP_CLOSE);
3189 
3190 	mptcp_stop_rtx_timer(sk);
3191 	mptcp_stop_tout_timer(sk);
3192 
3193 	mptcp_pm_connection_closed(msk);
3194 
3195 	/* msk->subflow is still intact, the following will not free the first
3196 	 * subflow
3197 	 */
3198 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3199 
3200 	/* The first subflow is already in TCP_CLOSE status, the following
3201 	 * can't overlap with a fallback anymore
3202 	 */
3203 	spin_lock_bh(&msk->fallback_lock);
3204 	msk->allow_subflows = true;
3205 	msk->allow_infinite_fallback = true;
3206 	WRITE_ONCE(msk->flags, 0);
3207 	spin_unlock_bh(&msk->fallback_lock);
3208 
3209 	msk->cb_flags = 0;
3210 	msk->recovery = false;
3211 	WRITE_ONCE(msk->can_ack, false);
3212 	WRITE_ONCE(msk->fully_established, false);
3213 	WRITE_ONCE(msk->rcv_data_fin, false);
3214 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3215 	WRITE_ONCE(msk->rcv_fastclose, false);
3216 	WRITE_ONCE(msk->use_64bit_ack, false);
3217 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3218 	mptcp_pm_data_reset(msk);
3219 	mptcp_ca_reset(sk);
3220 	msk->bytes_consumed = 0;
3221 	msk->bytes_acked = 0;
3222 	msk->bytes_received = 0;
3223 	msk->bytes_sent = 0;
3224 	msk->bytes_retrans = 0;
3225 	msk->rcvspace_init = 0;
3226 
3227 	WRITE_ONCE(sk->sk_shutdown, 0);
3228 	sk_error_report(sk);
3229 	return 0;
3230 }
3231 
3232 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3233 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3234 {
3235 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3236 
3237 	return &msk6->np;
3238 }
3239 
3240 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3241 {
3242 	const struct ipv6_pinfo *np = inet6_sk(sk);
3243 	struct ipv6_txoptions *opt;
3244 	struct ipv6_pinfo *newnp;
3245 
3246 	newnp = inet6_sk(newsk);
3247 
3248 	rcu_read_lock();
3249 	opt = rcu_dereference(np->opt);
3250 	if (opt) {
3251 		opt = ipv6_dup_options(newsk, opt);
3252 		if (!opt)
3253 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3254 	}
3255 	RCU_INIT_POINTER(newnp->opt, opt);
3256 	rcu_read_unlock();
3257 }
3258 #endif
3259 
3260 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3261 {
3262 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3263 	const struct inet_sock *inet = inet_sk(sk);
3264 	struct inet_sock *newinet;
3265 
3266 	newinet = inet_sk(newsk);
3267 
3268 	rcu_read_lock();
3269 	inet_opt = rcu_dereference(inet->inet_opt);
3270 	if (inet_opt) {
3271 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3272 				      inet_opt->opt.optlen, GFP_ATOMIC);
3273 		if (!newopt)
3274 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3275 	}
3276 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3277 	rcu_read_unlock();
3278 }
3279 
3280 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3281 				 const struct mptcp_options_received *mp_opt,
3282 				 struct sock *ssk,
3283 				 struct request_sock *req)
3284 {
3285 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3286 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3287 	struct mptcp_subflow_context *subflow;
3288 	struct mptcp_sock *msk;
3289 
3290 	if (!nsk)
3291 		return NULL;
3292 
3293 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3294 	if (nsk->sk_family == AF_INET6)
3295 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3296 #endif
3297 
3298 	__mptcp_init_sock(nsk);
3299 
3300 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3301 	if (nsk->sk_family == AF_INET6)
3302 		mptcp_copy_ip6_options(nsk, sk);
3303 	else
3304 #endif
3305 		mptcp_copy_ip_options(nsk, sk);
3306 
3307 	msk = mptcp_sk(nsk);
3308 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3309 	WRITE_ONCE(msk->token, subflow_req->token);
3310 	msk->in_accept_queue = 1;
3311 	WRITE_ONCE(msk->fully_established, false);
3312 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3313 		WRITE_ONCE(msk->csum_enabled, true);
3314 
3315 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3316 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3317 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3318 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3319 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3320 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3321 
3322 	/* passive msk is created after the first/MPC subflow */
3323 	msk->subflow_id = 2;
3324 
3325 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3326 	security_inet_csk_clone(nsk, req);
3327 
3328 	/* this can't race with mptcp_close(), as the msk is
3329 	 * not yet exposted to user-space
3330 	 */
3331 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3332 
3333 	/* The msk maintain a ref to each subflow in the connections list */
3334 	WRITE_ONCE(msk->first, ssk);
3335 	subflow = mptcp_subflow_ctx(ssk);
3336 	list_add(&subflow->node, &msk->conn_list);
3337 	sock_hold(ssk);
3338 
3339 	/* new mpc subflow takes ownership of the newly
3340 	 * created mptcp socket
3341 	 */
3342 	mptcp_token_accept(subflow_req, msk);
3343 
3344 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3345 	 * uses the correct data
3346 	 */
3347 	mptcp_copy_inaddrs(nsk, ssk);
3348 	__mptcp_propagate_sndbuf(nsk, ssk);
3349 
3350 	mptcp_rcv_space_init(msk, ssk);
3351 
3352 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3353 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3354 	bh_unlock_sock(nsk);
3355 
3356 	/* note: the newly allocated socket refcount is 2 now */
3357 	return nsk;
3358 }
3359 
3360 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3361 {
3362 	const struct tcp_sock *tp = tcp_sk(ssk);
3363 
3364 	msk->rcvspace_init = 1;
3365 	msk->rcvq_space.copied = 0;
3366 	msk->rcvq_space.rtt_us = 0;
3367 
3368 	msk->rcvq_space.time = tp->tcp_mstamp;
3369 
3370 	/* initial rcv_space offering made to peer */
3371 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3372 				      TCP_INIT_CWND * tp->advmss);
3373 	if (msk->rcvq_space.space == 0)
3374 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3375 }
3376 
3377 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3378 {
3379 	struct mptcp_subflow_context *subflow, *tmp;
3380 	struct sock *sk = (struct sock *)msk;
3381 
3382 	__mptcp_clear_xmit(sk);
3383 
3384 	/* join list will be eventually flushed (with rst) at sock lock release time */
3385 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3386 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3387 
3388 	__skb_queue_purge(&sk->sk_receive_queue);
3389 	skb_rbtree_purge(&msk->out_of_order_queue);
3390 
3391 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3392 	 * inet_sock_destruct() will dispose it
3393 	 */
3394 	mptcp_token_destroy(msk);
3395 	mptcp_pm_destroy(msk);
3396 }
3397 
3398 static void mptcp_destroy(struct sock *sk)
3399 {
3400 	struct mptcp_sock *msk = mptcp_sk(sk);
3401 
3402 	/* allow the following to close even the initial subflow */
3403 	msk->free_first = 1;
3404 	mptcp_destroy_common(msk, 0);
3405 	sk_sockets_allocated_dec(sk);
3406 }
3407 
3408 void __mptcp_data_acked(struct sock *sk)
3409 {
3410 	if (!sock_owned_by_user(sk))
3411 		__mptcp_clean_una(sk);
3412 	else
3413 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3414 }
3415 
3416 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3417 {
3418 	if (!mptcp_send_head(sk))
3419 		return;
3420 
3421 	if (!sock_owned_by_user(sk))
3422 		__mptcp_subflow_push_pending(sk, ssk, false);
3423 	else
3424 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3425 }
3426 
3427 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3428 				      BIT(MPTCP_RETRANSMIT) | \
3429 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3430 				      BIT(MPTCP_DEQUEUE))
3431 
3432 /* processes deferred events and flush wmem */
3433 static void mptcp_release_cb(struct sock *sk)
3434 	__must_hold(&sk->sk_lock.slock)
3435 {
3436 	struct mptcp_sock *msk = mptcp_sk(sk);
3437 
3438 	for (;;) {
3439 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3440 		struct list_head join_list;
3441 
3442 		if (!flags)
3443 			break;
3444 
3445 		INIT_LIST_HEAD(&join_list);
3446 		list_splice_init(&msk->join_list, &join_list);
3447 
3448 		/* the following actions acquire the subflow socket lock
3449 		 *
3450 		 * 1) can't be invoked in atomic scope
3451 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3452 		 *    datapath acquires the msk socket spinlock while helding
3453 		 *    the subflow socket lock
3454 		 */
3455 		msk->cb_flags &= ~flags;
3456 		spin_unlock_bh(&sk->sk_lock.slock);
3457 
3458 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3459 			__mptcp_flush_join_list(sk, &join_list);
3460 		if (flags & BIT(MPTCP_PUSH_PENDING))
3461 			__mptcp_push_pending(sk, 0);
3462 		if (flags & BIT(MPTCP_RETRANSMIT))
3463 			__mptcp_retrans(sk);
3464 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3465 			/* notify ack seq update */
3466 			mptcp_cleanup_rbuf(msk, 0);
3467 			sk->sk_data_ready(sk);
3468 		}
3469 
3470 		cond_resched();
3471 		spin_lock_bh(&sk->sk_lock.slock);
3472 	}
3473 
3474 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3475 		__mptcp_clean_una_wakeup(sk);
3476 	if (unlikely(msk->cb_flags)) {
3477 		/* be sure to sync the msk state before taking actions
3478 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3479 		 * On sk release avoid actions depending on the first subflow
3480 		 */
3481 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3482 			__mptcp_sync_state(sk, msk->pending_state);
3483 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3484 			__mptcp_error_report(sk);
3485 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3486 			__mptcp_sync_sndbuf(sk);
3487 	}
3488 }
3489 
3490 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3491  * TCP can't schedule delack timer before the subflow is fully established.
3492  * MPTCP uses the delack timer to do 3rd ack retransmissions
3493  */
3494 static void schedule_3rdack_retransmission(struct sock *ssk)
3495 {
3496 	struct inet_connection_sock *icsk = inet_csk(ssk);
3497 	struct tcp_sock *tp = tcp_sk(ssk);
3498 	unsigned long timeout;
3499 
3500 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3501 		return;
3502 
3503 	/* reschedule with a timeout above RTT, as we must look only for drop */
3504 	if (tp->srtt_us)
3505 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3506 	else
3507 		timeout = TCP_TIMEOUT_INIT;
3508 	timeout += jiffies;
3509 
3510 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3511 	smp_store_release(&icsk->icsk_ack.pending,
3512 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3513 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3514 }
3515 
3516 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3517 {
3518 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3519 	struct sock *sk = subflow->conn;
3520 
3521 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3522 		mptcp_data_lock(sk);
3523 		if (!sock_owned_by_user(sk))
3524 			__mptcp_subflow_push_pending(sk, ssk, true);
3525 		else
3526 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3527 		mptcp_data_unlock(sk);
3528 	}
3529 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3530 		mptcp_data_lock(sk);
3531 		if (!sock_owned_by_user(sk))
3532 			__mptcp_sync_sndbuf(sk);
3533 		else
3534 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3535 		mptcp_data_unlock(sk);
3536 	}
3537 	if (status & BIT(MPTCP_DELEGATE_ACK))
3538 		schedule_3rdack_retransmission(ssk);
3539 }
3540 
3541 static int mptcp_hash(struct sock *sk)
3542 {
3543 	/* should never be called,
3544 	 * we hash the TCP subflows not the MPTCP socket
3545 	 */
3546 	WARN_ON_ONCE(1);
3547 	return 0;
3548 }
3549 
3550 static void mptcp_unhash(struct sock *sk)
3551 {
3552 	/* called from sk_common_release(), but nothing to do here */
3553 }
3554 
3555 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3556 {
3557 	struct mptcp_sock *msk = mptcp_sk(sk);
3558 
3559 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3560 	if (WARN_ON_ONCE(!msk->first))
3561 		return -EINVAL;
3562 
3563 	return inet_csk_get_port(msk->first, snum);
3564 }
3565 
3566 void mptcp_finish_connect(struct sock *ssk)
3567 {
3568 	struct mptcp_subflow_context *subflow;
3569 	struct mptcp_sock *msk;
3570 	struct sock *sk;
3571 
3572 	subflow = mptcp_subflow_ctx(ssk);
3573 	sk = subflow->conn;
3574 	msk = mptcp_sk(sk);
3575 
3576 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3577 
3578 	subflow->map_seq = subflow->iasn;
3579 	subflow->map_subflow_seq = 1;
3580 
3581 	/* the socket is not connected yet, no msk/subflow ops can access/race
3582 	 * accessing the field below
3583 	 */
3584 	WRITE_ONCE(msk->local_key, subflow->local_key);
3585 
3586 	mptcp_pm_new_connection(msk, ssk, 0);
3587 }
3588 
3589 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3590 {
3591 	write_lock_bh(&sk->sk_callback_lock);
3592 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3593 	sk_set_socket(sk, parent);
3594 	write_unlock_bh(&sk->sk_callback_lock);
3595 }
3596 
3597 bool mptcp_finish_join(struct sock *ssk)
3598 {
3599 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3600 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3601 	struct sock *parent = (void *)msk;
3602 	bool ret = true;
3603 
3604 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3605 
3606 	/* mptcp socket already closing? */
3607 	if (!mptcp_is_fully_established(parent)) {
3608 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3609 		return false;
3610 	}
3611 
3612 	/* active subflow, already present inside the conn_list */
3613 	if (!list_empty(&subflow->node)) {
3614 		spin_lock_bh(&msk->fallback_lock);
3615 		if (!msk->allow_subflows) {
3616 			spin_unlock_bh(&msk->fallback_lock);
3617 			return false;
3618 		}
3619 		mptcp_subflow_joined(msk, ssk);
3620 		spin_unlock_bh(&msk->fallback_lock);
3621 		mptcp_propagate_sndbuf(parent, ssk);
3622 		return true;
3623 	}
3624 
3625 	if (!mptcp_pm_allow_new_subflow(msk)) {
3626 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3627 		goto err_prohibited;
3628 	}
3629 
3630 	/* If we can't acquire msk socket lock here, let the release callback
3631 	 * handle it
3632 	 */
3633 	mptcp_data_lock(parent);
3634 	if (!sock_owned_by_user(parent)) {
3635 		ret = __mptcp_finish_join(msk, ssk);
3636 		if (ret) {
3637 			sock_hold(ssk);
3638 			list_add_tail(&subflow->node, &msk->conn_list);
3639 		}
3640 	} else {
3641 		sock_hold(ssk);
3642 		list_add_tail(&subflow->node, &msk->join_list);
3643 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3644 	}
3645 	mptcp_data_unlock(parent);
3646 
3647 	if (!ret) {
3648 err_prohibited:
3649 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3650 		return false;
3651 	}
3652 
3653 	return true;
3654 }
3655 
3656 static void mptcp_shutdown(struct sock *sk, int how)
3657 {
3658 	pr_debug("sk=%p, how=%d\n", sk, how);
3659 
3660 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3661 		__mptcp_wr_shutdown(sk);
3662 }
3663 
3664 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3665 {
3666 	const struct sock *sk = (void *)msk;
3667 	u64 delta;
3668 
3669 	if (sk->sk_state == TCP_LISTEN)
3670 		return -EINVAL;
3671 
3672 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3673 		return 0;
3674 
3675 	delta = msk->write_seq - v;
3676 	if (__mptcp_check_fallback(msk) && msk->first) {
3677 		struct tcp_sock *tp = tcp_sk(msk->first);
3678 
3679 		/* the first subflow is disconnected after close - see
3680 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3681 		 * so ignore that status, too.
3682 		 */
3683 		if (!((1 << msk->first->sk_state) &
3684 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3685 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3686 	}
3687 	if (delta > INT_MAX)
3688 		delta = INT_MAX;
3689 
3690 	return (int)delta;
3691 }
3692 
3693 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3694 {
3695 	struct mptcp_sock *msk = mptcp_sk(sk);
3696 	bool slow;
3697 
3698 	switch (cmd) {
3699 	case SIOCINQ:
3700 		if (sk->sk_state == TCP_LISTEN)
3701 			return -EINVAL;
3702 
3703 		lock_sock(sk);
3704 		if (__mptcp_move_skbs(sk))
3705 			mptcp_cleanup_rbuf(msk, 0);
3706 		*karg = mptcp_inq_hint(sk);
3707 		release_sock(sk);
3708 		break;
3709 	case SIOCOUTQ:
3710 		slow = lock_sock_fast(sk);
3711 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3712 		unlock_sock_fast(sk, slow);
3713 		break;
3714 	case SIOCOUTQNSD:
3715 		slow = lock_sock_fast(sk);
3716 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3717 		unlock_sock_fast(sk, slow);
3718 		break;
3719 	default:
3720 		return -ENOIOCTLCMD;
3721 	}
3722 
3723 	return 0;
3724 }
3725 
3726 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3727 {
3728 	struct mptcp_subflow_context *subflow;
3729 	struct mptcp_sock *msk = mptcp_sk(sk);
3730 	int err = -EINVAL;
3731 	struct sock *ssk;
3732 
3733 	ssk = __mptcp_nmpc_sk(msk);
3734 	if (IS_ERR(ssk))
3735 		return PTR_ERR(ssk);
3736 
3737 	mptcp_set_state(sk, TCP_SYN_SENT);
3738 	subflow = mptcp_subflow_ctx(ssk);
3739 #ifdef CONFIG_TCP_MD5SIG
3740 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3741 	 * TCP option space.
3742 	 */
3743 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3744 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3745 #endif
3746 	if (subflow->request_mptcp) {
3747 		if (mptcp_active_should_disable(sk))
3748 			mptcp_early_fallback(msk, subflow,
3749 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3750 		else if (mptcp_token_new_connect(ssk) < 0)
3751 			mptcp_early_fallback(msk, subflow,
3752 					     MPTCP_MIB_TOKENFALLBACKINIT);
3753 	}
3754 
3755 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3756 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3757 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3758 	if (likely(!__mptcp_check_fallback(msk)))
3759 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3760 
3761 	/* if reaching here via the fastopen/sendmsg path, the caller already
3762 	 * acquired the subflow socket lock, too.
3763 	 */
3764 	if (!msk->fastopening)
3765 		lock_sock(ssk);
3766 
3767 	/* the following mirrors closely a very small chunk of code from
3768 	 * __inet_stream_connect()
3769 	 */
3770 	if (ssk->sk_state != TCP_CLOSE)
3771 		goto out;
3772 
3773 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3774 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3775 		if (err)
3776 			goto out;
3777 	}
3778 
3779 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3780 	if (err < 0)
3781 		goto out;
3782 
3783 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3784 
3785 out:
3786 	if (!msk->fastopening)
3787 		release_sock(ssk);
3788 
3789 	/* on successful connect, the msk state will be moved to established by
3790 	 * subflow_finish_connect()
3791 	 */
3792 	if (unlikely(err)) {
3793 		/* avoid leaving a dangling token in an unconnected socket */
3794 		mptcp_token_destroy(msk);
3795 		mptcp_set_state(sk, TCP_CLOSE);
3796 		return err;
3797 	}
3798 
3799 	mptcp_copy_inaddrs(sk, ssk);
3800 	return 0;
3801 }
3802 
3803 static struct proto mptcp_prot = {
3804 	.name		= "MPTCP",
3805 	.owner		= THIS_MODULE,
3806 	.init		= mptcp_init_sock,
3807 	.connect	= mptcp_connect,
3808 	.disconnect	= mptcp_disconnect,
3809 	.close		= mptcp_close,
3810 	.setsockopt	= mptcp_setsockopt,
3811 	.getsockopt	= mptcp_getsockopt,
3812 	.shutdown	= mptcp_shutdown,
3813 	.destroy	= mptcp_destroy,
3814 	.sendmsg	= mptcp_sendmsg,
3815 	.ioctl		= mptcp_ioctl,
3816 	.recvmsg	= mptcp_recvmsg,
3817 	.release_cb	= mptcp_release_cb,
3818 	.hash		= mptcp_hash,
3819 	.unhash		= mptcp_unhash,
3820 	.get_port	= mptcp_get_port,
3821 	.stream_memory_free	= mptcp_stream_memory_free,
3822 	.sockets_allocated	= &mptcp_sockets_allocated,
3823 
3824 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3825 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3826 
3827 	.memory_pressure	= &tcp_memory_pressure,
3828 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3829 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3830 	.sysctl_mem	= sysctl_tcp_mem,
3831 	.obj_size	= sizeof(struct mptcp_sock),
3832 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3833 	.no_autobind	= true,
3834 };
3835 
3836 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3837 {
3838 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3839 	struct sock *ssk, *sk = sock->sk;
3840 	int err = -EINVAL;
3841 
3842 	lock_sock(sk);
3843 	ssk = __mptcp_nmpc_sk(msk);
3844 	if (IS_ERR(ssk)) {
3845 		err = PTR_ERR(ssk);
3846 		goto unlock;
3847 	}
3848 
3849 	if (sk->sk_family == AF_INET)
3850 		err = inet_bind_sk(ssk, uaddr, addr_len);
3851 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3852 	else if (sk->sk_family == AF_INET6)
3853 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3854 #endif
3855 	if (!err)
3856 		mptcp_copy_inaddrs(sk, ssk);
3857 
3858 unlock:
3859 	release_sock(sk);
3860 	return err;
3861 }
3862 
3863 static int mptcp_listen(struct socket *sock, int backlog)
3864 {
3865 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3866 	struct sock *sk = sock->sk;
3867 	struct sock *ssk;
3868 	int err;
3869 
3870 	pr_debug("msk=%p\n", msk);
3871 
3872 	lock_sock(sk);
3873 
3874 	err = -EINVAL;
3875 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3876 		goto unlock;
3877 
3878 	ssk = __mptcp_nmpc_sk(msk);
3879 	if (IS_ERR(ssk)) {
3880 		err = PTR_ERR(ssk);
3881 		goto unlock;
3882 	}
3883 
3884 	mptcp_set_state(sk, TCP_LISTEN);
3885 	sock_set_flag(sk, SOCK_RCU_FREE);
3886 
3887 	lock_sock(ssk);
3888 	err = __inet_listen_sk(ssk, backlog);
3889 	release_sock(ssk);
3890 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3891 
3892 	if (!err) {
3893 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3894 		mptcp_copy_inaddrs(sk, ssk);
3895 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3896 	}
3897 
3898 unlock:
3899 	release_sock(sk);
3900 	return err;
3901 }
3902 
3903 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3904 			       struct proto_accept_arg *arg)
3905 {
3906 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3907 	struct sock *ssk, *newsk;
3908 
3909 	pr_debug("msk=%p\n", msk);
3910 
3911 	/* Buggy applications can call accept on socket states other then LISTEN
3912 	 * but no need to allocate the first subflow just to error out.
3913 	 */
3914 	ssk = READ_ONCE(msk->first);
3915 	if (!ssk)
3916 		return -EINVAL;
3917 
3918 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3919 	newsk = inet_csk_accept(ssk, arg);
3920 	if (!newsk)
3921 		return arg->err;
3922 
3923 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3924 	if (sk_is_mptcp(newsk)) {
3925 		struct mptcp_subflow_context *subflow;
3926 		struct sock *new_mptcp_sock;
3927 
3928 		subflow = mptcp_subflow_ctx(newsk);
3929 		new_mptcp_sock = subflow->conn;
3930 
3931 		/* is_mptcp should be false if subflow->conn is missing, see
3932 		 * subflow_syn_recv_sock()
3933 		 */
3934 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3935 			tcp_sk(newsk)->is_mptcp = 0;
3936 			goto tcpfallback;
3937 		}
3938 
3939 		newsk = new_mptcp_sock;
3940 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3941 
3942 		newsk->sk_kern_sock = arg->kern;
3943 		lock_sock(newsk);
3944 		__inet_accept(sock, newsock, newsk);
3945 
3946 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3947 		msk = mptcp_sk(newsk);
3948 		msk->in_accept_queue = 0;
3949 
3950 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3951 		 * This is needed so NOSPACE flag can be set from tcp stack.
3952 		 */
3953 		mptcp_for_each_subflow(msk, subflow) {
3954 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3955 
3956 			if (!ssk->sk_socket)
3957 				mptcp_sock_graft(ssk, newsock);
3958 		}
3959 
3960 		mptcp_rps_record_subflows(msk);
3961 
3962 		/* Do late cleanup for the first subflow as necessary. Also
3963 		 * deal with bad peers not doing a complete shutdown.
3964 		 */
3965 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3966 			__mptcp_close_ssk(newsk, msk->first,
3967 					  mptcp_subflow_ctx(msk->first), 0);
3968 			if (unlikely(list_is_singular(&msk->conn_list)))
3969 				mptcp_set_state(newsk, TCP_CLOSE);
3970 		}
3971 	} else {
3972 tcpfallback:
3973 		newsk->sk_kern_sock = arg->kern;
3974 		lock_sock(newsk);
3975 		__inet_accept(sock, newsock, newsk);
3976 		/* we are being invoked after accepting a non-mp-capable
3977 		 * flow: sk is a tcp_sk, not an mptcp one.
3978 		 *
3979 		 * Hand the socket over to tcp so all further socket ops
3980 		 * bypass mptcp.
3981 		 */
3982 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3983 			   mptcp_fallback_tcp_ops(newsock->sk));
3984 	}
3985 	release_sock(newsk);
3986 
3987 	return 0;
3988 }
3989 
3990 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3991 {
3992 	struct sock *sk = (struct sock *)msk;
3993 
3994 	if (__mptcp_stream_is_writeable(sk, 1))
3995 		return EPOLLOUT | EPOLLWRNORM;
3996 
3997 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3998 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3999 	if (__mptcp_stream_is_writeable(sk, 1))
4000 		return EPOLLOUT | EPOLLWRNORM;
4001 
4002 	return 0;
4003 }
4004 
4005 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4006 			   struct poll_table_struct *wait)
4007 {
4008 	struct sock *sk = sock->sk;
4009 	struct mptcp_sock *msk;
4010 	__poll_t mask = 0;
4011 	u8 shutdown;
4012 	int state;
4013 
4014 	msk = mptcp_sk(sk);
4015 	sock_poll_wait(file, sock, wait);
4016 
4017 	state = inet_sk_state_load(sk);
4018 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4019 	if (state == TCP_LISTEN) {
4020 		struct sock *ssk = READ_ONCE(msk->first);
4021 
4022 		if (WARN_ON_ONCE(!ssk))
4023 			return 0;
4024 
4025 		return inet_csk_listen_poll(ssk);
4026 	}
4027 
4028 	shutdown = READ_ONCE(sk->sk_shutdown);
4029 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4030 		mask |= EPOLLHUP;
4031 	if (shutdown & RCV_SHUTDOWN)
4032 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4033 
4034 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4035 		mask |= mptcp_check_readable(sk);
4036 		if (shutdown & SEND_SHUTDOWN)
4037 			mask |= EPOLLOUT | EPOLLWRNORM;
4038 		else
4039 			mask |= mptcp_check_writeable(msk);
4040 	} else if (state == TCP_SYN_SENT &&
4041 		   inet_test_bit(DEFER_CONNECT, sk)) {
4042 		/* cf tcp_poll() note about TFO */
4043 		mask |= EPOLLOUT | EPOLLWRNORM;
4044 	}
4045 
4046 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4047 	smp_rmb();
4048 	if (READ_ONCE(sk->sk_err))
4049 		mask |= EPOLLERR;
4050 
4051 	return mask;
4052 }
4053 
4054 static const struct proto_ops mptcp_stream_ops = {
4055 	.family		   = PF_INET,
4056 	.owner		   = THIS_MODULE,
4057 	.release	   = inet_release,
4058 	.bind		   = mptcp_bind,
4059 	.connect	   = inet_stream_connect,
4060 	.socketpair	   = sock_no_socketpair,
4061 	.accept		   = mptcp_stream_accept,
4062 	.getname	   = inet_getname,
4063 	.poll		   = mptcp_poll,
4064 	.ioctl		   = inet_ioctl,
4065 	.gettstamp	   = sock_gettstamp,
4066 	.listen		   = mptcp_listen,
4067 	.shutdown	   = inet_shutdown,
4068 	.setsockopt	   = sock_common_setsockopt,
4069 	.getsockopt	   = sock_common_getsockopt,
4070 	.sendmsg	   = inet_sendmsg,
4071 	.recvmsg	   = inet_recvmsg,
4072 	.mmap		   = sock_no_mmap,
4073 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4074 };
4075 
4076 static struct inet_protosw mptcp_protosw = {
4077 	.type		= SOCK_STREAM,
4078 	.protocol	= IPPROTO_MPTCP,
4079 	.prot		= &mptcp_prot,
4080 	.ops		= &mptcp_stream_ops,
4081 	.flags		= INET_PROTOSW_ICSK,
4082 };
4083 
4084 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4085 {
4086 	struct mptcp_delegated_action *delegated;
4087 	struct mptcp_subflow_context *subflow;
4088 	int work_done = 0;
4089 
4090 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4091 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4092 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4093 
4094 		bh_lock_sock_nested(ssk);
4095 		if (!sock_owned_by_user(ssk)) {
4096 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4097 		} else {
4098 			/* tcp_release_cb_override already processed
4099 			 * the action or will do at next release_sock().
4100 			 * In both case must dequeue the subflow here - on the same
4101 			 * CPU that scheduled it.
4102 			 */
4103 			smp_wmb();
4104 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4105 		}
4106 		bh_unlock_sock(ssk);
4107 		sock_put(ssk);
4108 
4109 		if (++work_done == budget)
4110 			return budget;
4111 	}
4112 
4113 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4114 	 * will not try accessing the NULL napi->dev ptr
4115 	 */
4116 	napi_complete_done(napi, 0);
4117 	return work_done;
4118 }
4119 
4120 void __init mptcp_proto_init(void)
4121 {
4122 	struct mptcp_delegated_action *delegated;
4123 	int cpu;
4124 
4125 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4126 
4127 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4128 		panic("Failed to allocate MPTCP pcpu counter\n");
4129 
4130 	mptcp_napi_dev = alloc_netdev_dummy(0);
4131 	if (!mptcp_napi_dev)
4132 		panic("Failed to allocate MPTCP dummy netdev\n");
4133 	for_each_possible_cpu(cpu) {
4134 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4135 		INIT_LIST_HEAD(&delegated->head);
4136 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4137 				  mptcp_napi_poll);
4138 		napi_enable(&delegated->napi);
4139 	}
4140 
4141 	mptcp_subflow_init();
4142 	mptcp_pm_init();
4143 	mptcp_sched_init();
4144 	mptcp_token_init();
4145 
4146 	if (proto_register(&mptcp_prot, 1) != 0)
4147 		panic("Failed to register MPTCP proto.\n");
4148 
4149 	inet_register_protosw(&mptcp_protosw);
4150 
4151 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4152 }
4153 
4154 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4155 static const struct proto_ops mptcp_v6_stream_ops = {
4156 	.family		   = PF_INET6,
4157 	.owner		   = THIS_MODULE,
4158 	.release	   = inet6_release,
4159 	.bind		   = mptcp_bind,
4160 	.connect	   = inet_stream_connect,
4161 	.socketpair	   = sock_no_socketpair,
4162 	.accept		   = mptcp_stream_accept,
4163 	.getname	   = inet6_getname,
4164 	.poll		   = mptcp_poll,
4165 	.ioctl		   = inet6_ioctl,
4166 	.gettstamp	   = sock_gettstamp,
4167 	.listen		   = mptcp_listen,
4168 	.shutdown	   = inet_shutdown,
4169 	.setsockopt	   = sock_common_setsockopt,
4170 	.getsockopt	   = sock_common_getsockopt,
4171 	.sendmsg	   = inet6_sendmsg,
4172 	.recvmsg	   = inet6_recvmsg,
4173 	.mmap		   = sock_no_mmap,
4174 #ifdef CONFIG_COMPAT
4175 	.compat_ioctl	   = inet6_compat_ioctl,
4176 #endif
4177 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4178 };
4179 
4180 static struct proto mptcp_v6_prot;
4181 
4182 static struct inet_protosw mptcp_v6_protosw = {
4183 	.type		= SOCK_STREAM,
4184 	.protocol	= IPPROTO_MPTCP,
4185 	.prot		= &mptcp_v6_prot,
4186 	.ops		= &mptcp_v6_stream_ops,
4187 	.flags		= INET_PROTOSW_ICSK,
4188 };
4189 
4190 int __init mptcp_proto_v6_init(void)
4191 {
4192 	int err;
4193 
4194 	mptcp_v6_prot = mptcp_prot;
4195 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4196 	mptcp_v6_prot.slab = NULL;
4197 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4198 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4199 
4200 	err = proto_register(&mptcp_v6_prot, 1);
4201 	if (err)
4202 		return err;
4203 
4204 	err = inet6_register_protosw(&mptcp_v6_protosw);
4205 	if (err)
4206 		proto_unregister(&mptcp_v6_prot);
4207 
4208 	return err;
4209 }
4210 #endif
4211