1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 65 if (sk->sk_prot == &tcpv6_prot) 66 return &inet6_stream_ops; 67 #endif 68 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 69 return &inet_stream_ops; 70 } 71 72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 73 { 74 struct net *net = sock_net((struct sock *)msk); 75 76 if (__mptcp_check_fallback(msk)) 77 return true; 78 79 spin_lock_bh(&msk->fallback_lock); 80 if (!msk->allow_infinite_fallback) { 81 spin_unlock_bh(&msk->fallback_lock); 82 return false; 83 } 84 85 msk->allow_subflows = false; 86 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 87 __MPTCP_INC_STATS(net, fb_mib); 88 spin_unlock_bh(&msk->fallback_lock); 89 return true; 90 } 91 92 static int __mptcp_socket_create(struct mptcp_sock *msk) 93 { 94 struct mptcp_subflow_context *subflow; 95 struct sock *sk = (struct sock *)msk; 96 struct socket *ssock; 97 int err; 98 99 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 100 if (err) 101 return err; 102 103 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 104 WRITE_ONCE(msk->first, ssock->sk); 105 subflow = mptcp_subflow_ctx(ssock->sk); 106 list_add(&subflow->node, &msk->conn_list); 107 sock_hold(ssock->sk); 108 subflow->request_mptcp = 1; 109 subflow->subflow_id = msk->subflow_id++; 110 111 /* This is the first subflow, always with id 0 */ 112 WRITE_ONCE(subflow->local_id, 0); 113 mptcp_sock_graft(msk->first, sk->sk_socket); 114 iput(SOCK_INODE(ssock)); 115 116 return 0; 117 } 118 119 /* If the MPC handshake is not started, returns the first subflow, 120 * eventually allocating it. 121 */ 122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 123 { 124 struct sock *sk = (struct sock *)msk; 125 int ret; 126 127 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 128 return ERR_PTR(-EINVAL); 129 130 if (!msk->first) { 131 ret = __mptcp_socket_create(msk); 132 if (ret) 133 return ERR_PTR(ret); 134 } 135 136 return msk->first; 137 } 138 139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 140 { 141 sk_drops_skbadd(sk, skb); 142 __kfree_skb(skb); 143 } 144 145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 146 struct sk_buff *from, bool *fragstolen, 147 int *delta) 148 { 149 int limit = READ_ONCE(sk->sk_rcvbuf); 150 151 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 152 MPTCP_SKB_CB(from)->offset || 153 ((to->len + from->len) > (limit >> 3)) || 154 !skb_try_coalesce(to, from, fragstolen, delta)) 155 return false; 156 157 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 158 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 159 to->len, MPTCP_SKB_CB(from)->end_seq); 160 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 161 return true; 162 } 163 164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 165 struct sk_buff *from) 166 { 167 bool fragstolen; 168 int delta; 169 170 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 171 return false; 172 173 /* note the fwd memory can reach a negative value after accounting 174 * for the delta, but the later skb free will restore a non 175 * negative one 176 */ 177 atomic_add(delta, &sk->sk_rmem_alloc); 178 sk_mem_charge(sk, delta); 179 kfree_skb_partial(from, fragstolen); 180 181 return true; 182 } 183 184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 185 struct sk_buff *from) 186 { 187 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 188 return false; 189 190 return mptcp_try_coalesce((struct sock *)msk, to, from); 191 } 192 193 /* "inspired" by tcp_rcvbuf_grow(), main difference: 194 * - mptcp does not maintain a msk-level window clamp 195 * - returns true when the receive buffer is actually updated 196 */ 197 static bool mptcp_rcvbuf_grow(struct sock *sk) 198 { 199 struct mptcp_sock *msk = mptcp_sk(sk); 200 const struct net *net = sock_net(sk); 201 int rcvwin, rcvbuf, cap; 202 203 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 204 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 205 return false; 206 207 rcvwin = msk->rcvq_space.space << 1; 208 209 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 210 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 211 212 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 213 214 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 215 if (rcvbuf > sk->sk_rcvbuf) { 216 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 217 return true; 218 } 219 return false; 220 } 221 222 /* "inspired" by tcp_data_queue_ofo(), main differences: 223 * - use mptcp seqs 224 * - don't cope with sacks 225 */ 226 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 227 { 228 struct sock *sk = (struct sock *)msk; 229 struct rb_node **p, *parent; 230 u64 seq, end_seq, max_seq; 231 struct sk_buff *skb1; 232 233 seq = MPTCP_SKB_CB(skb)->map_seq; 234 end_seq = MPTCP_SKB_CB(skb)->end_seq; 235 max_seq = atomic64_read(&msk->rcv_wnd_sent); 236 237 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 238 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 239 if (after64(end_seq, max_seq)) { 240 /* out of window */ 241 mptcp_drop(sk, skb); 242 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 243 (unsigned long long)end_seq - (unsigned long)max_seq, 244 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 246 return; 247 } 248 249 p = &msk->out_of_order_queue.rb_node; 250 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 251 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 252 rb_link_node(&skb->rbnode, NULL, p); 253 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 254 msk->ooo_last_skb = skb; 255 goto end; 256 } 257 258 /* with 2 subflows, adding at end of ooo queue is quite likely 259 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 260 */ 261 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 264 return; 265 } 266 267 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 268 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 269 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 270 parent = &msk->ooo_last_skb->rbnode; 271 p = &parent->rb_right; 272 goto insert; 273 } 274 275 /* Find place to insert this segment. Handle overlaps on the way. */ 276 parent = NULL; 277 while (*p) { 278 parent = *p; 279 skb1 = rb_to_skb(parent); 280 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 281 p = &parent->rb_left; 282 continue; 283 } 284 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 285 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 286 /* All the bits are present. Drop. */ 287 mptcp_drop(sk, skb); 288 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 289 return; 290 } 291 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 292 /* partial overlap: 293 * | skb | 294 * | skb1 | 295 * continue traversing 296 */ 297 } else { 298 /* skb's seq == skb1's seq and skb covers skb1. 299 * Replace skb1 with skb. 300 */ 301 rb_replace_node(&skb1->rbnode, &skb->rbnode, 302 &msk->out_of_order_queue); 303 mptcp_drop(sk, skb1); 304 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 305 goto merge_right; 306 } 307 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 308 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 309 return; 310 } 311 p = &parent->rb_right; 312 } 313 314 insert: 315 /* Insert segment into RB tree. */ 316 rb_link_node(&skb->rbnode, parent, p); 317 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 318 319 merge_right: 320 /* Remove other segments covered by skb. */ 321 while ((skb1 = skb_rb_next(skb)) != NULL) { 322 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 323 break; 324 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 325 mptcp_drop(sk, skb1); 326 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 327 } 328 /* If there is no skb after us, we are the last_skb ! */ 329 if (!skb1) 330 msk->ooo_last_skb = skb; 331 332 end: 333 skb_condense(skb); 334 skb_set_owner_r(skb, sk); 335 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 336 if (sk->sk_socket) 337 mptcp_rcvbuf_grow(sk); 338 } 339 340 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 341 int copy_len) 342 { 343 const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 344 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 345 346 /* the skb map_seq accounts for the skb offset: 347 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 348 * value 349 */ 350 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 351 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 352 MPTCP_SKB_CB(skb)->offset = offset; 353 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 354 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 355 356 __skb_unlink(skb, &ssk->sk_receive_queue); 357 358 skb_ext_reset(skb); 359 skb_dst_drop(skb); 360 } 361 362 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 363 { 364 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 365 struct mptcp_sock *msk = mptcp_sk(sk); 366 struct sk_buff *tail; 367 368 /* try to fetch required memory from subflow */ 369 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 370 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 371 goto drop; 372 } 373 374 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 375 /* in sequence */ 376 msk->bytes_received += copy_len; 377 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 378 tail = skb_peek_tail(&sk->sk_receive_queue); 379 if (tail && mptcp_try_coalesce(sk, tail, skb)) 380 return true; 381 382 skb_set_owner_r(skb, sk); 383 __skb_queue_tail(&sk->sk_receive_queue, skb); 384 return true; 385 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 386 mptcp_data_queue_ofo(msk, skb); 387 return false; 388 } 389 390 /* old data, keep it simple and drop the whole pkt, sender 391 * will retransmit as needed, if needed. 392 */ 393 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 394 drop: 395 mptcp_drop(sk, skb); 396 return false; 397 } 398 399 static void mptcp_stop_rtx_timer(struct sock *sk) 400 { 401 struct inet_connection_sock *icsk = inet_csk(sk); 402 403 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 404 mptcp_sk(sk)->timer_ival = 0; 405 } 406 407 static void mptcp_close_wake_up(struct sock *sk) 408 { 409 if (sock_flag(sk, SOCK_DEAD)) 410 return; 411 412 sk->sk_state_change(sk); 413 if (sk->sk_shutdown == SHUTDOWN_MASK || 414 sk->sk_state == TCP_CLOSE) 415 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 416 else 417 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 418 } 419 420 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 421 { 422 struct mptcp_subflow_context *subflow; 423 424 mptcp_for_each_subflow(msk, subflow) { 425 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 426 bool slow; 427 428 slow = lock_sock_fast(ssk); 429 tcp_shutdown(ssk, SEND_SHUTDOWN); 430 unlock_sock_fast(ssk, slow); 431 } 432 } 433 434 /* called under the msk socket lock */ 435 static bool mptcp_pending_data_fin_ack(struct sock *sk) 436 { 437 struct mptcp_sock *msk = mptcp_sk(sk); 438 439 return ((1 << sk->sk_state) & 440 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 441 msk->write_seq == READ_ONCE(msk->snd_una); 442 } 443 444 static void mptcp_check_data_fin_ack(struct sock *sk) 445 { 446 struct mptcp_sock *msk = mptcp_sk(sk); 447 448 /* Look for an acknowledged DATA_FIN */ 449 if (mptcp_pending_data_fin_ack(sk)) { 450 WRITE_ONCE(msk->snd_data_fin_enable, 0); 451 452 switch (sk->sk_state) { 453 case TCP_FIN_WAIT1: 454 mptcp_set_state(sk, TCP_FIN_WAIT2); 455 break; 456 case TCP_CLOSING: 457 case TCP_LAST_ACK: 458 mptcp_shutdown_subflows(msk); 459 mptcp_set_state(sk, TCP_CLOSE); 460 break; 461 } 462 463 mptcp_close_wake_up(sk); 464 } 465 } 466 467 /* can be called with no lock acquired */ 468 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 469 { 470 struct mptcp_sock *msk = mptcp_sk(sk); 471 472 if (READ_ONCE(msk->rcv_data_fin) && 473 ((1 << inet_sk_state_load(sk)) & 474 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 475 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 476 477 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 478 if (seq) 479 *seq = rcv_data_fin_seq; 480 481 return true; 482 } 483 } 484 485 return false; 486 } 487 488 static void mptcp_set_datafin_timeout(struct sock *sk) 489 { 490 struct inet_connection_sock *icsk = inet_csk(sk); 491 u32 retransmits; 492 493 retransmits = min_t(u32, icsk->icsk_retransmits, 494 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 495 496 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 497 } 498 499 static void __mptcp_set_timeout(struct sock *sk, long tout) 500 { 501 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 502 } 503 504 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 505 { 506 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 507 508 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 509 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 510 } 511 512 static void mptcp_set_timeout(struct sock *sk) 513 { 514 struct mptcp_subflow_context *subflow; 515 long tout = 0; 516 517 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 518 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 519 __mptcp_set_timeout(sk, tout); 520 } 521 522 static inline bool tcp_can_send_ack(const struct sock *ssk) 523 { 524 return !((1 << inet_sk_state_load(ssk)) & 525 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 526 } 527 528 void __mptcp_subflow_send_ack(struct sock *ssk) 529 { 530 if (tcp_can_send_ack(ssk)) 531 tcp_send_ack(ssk); 532 } 533 534 static void mptcp_subflow_send_ack(struct sock *ssk) 535 { 536 bool slow; 537 538 slow = lock_sock_fast(ssk); 539 __mptcp_subflow_send_ack(ssk); 540 unlock_sock_fast(ssk, slow); 541 } 542 543 static void mptcp_send_ack(struct mptcp_sock *msk) 544 { 545 struct mptcp_subflow_context *subflow; 546 547 mptcp_for_each_subflow(msk, subflow) 548 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 549 } 550 551 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 552 { 553 bool slow; 554 555 slow = lock_sock_fast(ssk); 556 if (tcp_can_send_ack(ssk)) 557 tcp_cleanup_rbuf(ssk, copied); 558 unlock_sock_fast(ssk, slow); 559 } 560 561 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 562 { 563 const struct inet_connection_sock *icsk = inet_csk(ssk); 564 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 565 const struct tcp_sock *tp = tcp_sk(ssk); 566 567 return (ack_pending & ICSK_ACK_SCHED) && 568 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 569 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 570 (rx_empty && ack_pending & 571 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 572 } 573 574 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 575 { 576 int old_space = READ_ONCE(msk->old_wspace); 577 struct mptcp_subflow_context *subflow; 578 struct sock *sk = (struct sock *)msk; 579 int space = __mptcp_space(sk); 580 bool cleanup, rx_empty; 581 582 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 583 rx_empty = !sk_rmem_alloc_get(sk) && copied; 584 585 mptcp_for_each_subflow(msk, subflow) { 586 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 587 588 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 589 mptcp_subflow_cleanup_rbuf(ssk, copied); 590 } 591 } 592 593 static void mptcp_check_data_fin(struct sock *sk) 594 { 595 struct mptcp_sock *msk = mptcp_sk(sk); 596 u64 rcv_data_fin_seq; 597 598 /* Need to ack a DATA_FIN received from a peer while this side 599 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 600 * msk->rcv_data_fin was set when parsing the incoming options 601 * at the subflow level and the msk lock was not held, so this 602 * is the first opportunity to act on the DATA_FIN and change 603 * the msk state. 604 * 605 * If we are caught up to the sequence number of the incoming 606 * DATA_FIN, send the DATA_ACK now and do state transition. If 607 * not caught up, do nothing and let the recv code send DATA_ACK 608 * when catching up. 609 */ 610 611 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 612 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 613 WRITE_ONCE(msk->rcv_data_fin, 0); 614 615 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 616 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 617 618 switch (sk->sk_state) { 619 case TCP_ESTABLISHED: 620 mptcp_set_state(sk, TCP_CLOSE_WAIT); 621 break; 622 case TCP_FIN_WAIT1: 623 mptcp_set_state(sk, TCP_CLOSING); 624 break; 625 case TCP_FIN_WAIT2: 626 mptcp_shutdown_subflows(msk); 627 mptcp_set_state(sk, TCP_CLOSE); 628 break; 629 default: 630 /* Other states not expected */ 631 WARN_ON_ONCE(1); 632 break; 633 } 634 635 if (!__mptcp_check_fallback(msk)) 636 mptcp_send_ack(msk); 637 mptcp_close_wake_up(sk); 638 } 639 } 640 641 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 642 { 643 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 644 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 645 mptcp_subflow_reset(ssk); 646 } 647 } 648 649 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 650 struct sock *ssk) 651 { 652 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 653 struct sock *sk = (struct sock *)msk; 654 bool more_data_avail; 655 struct tcp_sock *tp; 656 bool ret = false; 657 658 pr_debug("msk=%p ssk=%p\n", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 667 break; 668 669 /* try to move as much data as available */ 670 map_remaining = subflow->map_data_len - 671 mptcp_subflow_get_map_offset(subflow); 672 673 skb = skb_peek(&ssk->sk_receive_queue); 674 if (unlikely(!skb)) 675 break; 676 677 if (__mptcp_check_fallback(msk)) { 678 /* Under fallback skbs have no MPTCP extension and TCP could 679 * collapse them between the dummy map creation and the 680 * current dequeue. Be sure to adjust the map size. 681 */ 682 map_remaining = skb->len; 683 subflow->map_data_len = skb->len; 684 } 685 686 offset = seq - TCP_SKB_CB(skb)->seq; 687 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 688 if (fin) 689 seq++; 690 691 if (offset < skb->len) { 692 size_t len = skb->len - offset; 693 694 mptcp_init_skb(ssk, skb, offset, len); 695 skb_orphan(skb); 696 ret = __mptcp_move_skb(sk, skb) || ret; 697 seq += len; 698 699 if (unlikely(map_remaining < len)) { 700 DEBUG_NET_WARN_ON_ONCE(1); 701 mptcp_dss_corruption(msk, ssk); 702 } 703 } else { 704 if (unlikely(!fin)) { 705 DEBUG_NET_WARN_ON_ONCE(1); 706 mptcp_dss_corruption(msk, ssk); 707 } 708 709 sk_eat_skb(ssk, skb); 710 } 711 712 WRITE_ONCE(tp->copied_seq, seq); 713 more_data_avail = mptcp_subflow_data_available(ssk); 714 715 } while (more_data_avail); 716 717 if (ret) 718 msk->last_data_recv = tcp_jiffies32; 719 return ret; 720 } 721 722 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 723 { 724 struct sock *sk = (struct sock *)msk; 725 struct sk_buff *skb, *tail; 726 bool moved = false; 727 struct rb_node *p; 728 u64 end_seq; 729 730 p = rb_first(&msk->out_of_order_queue); 731 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 732 while (p) { 733 skb = rb_to_skb(p); 734 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 735 break; 736 737 p = rb_next(p); 738 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 739 740 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 741 msk->ack_seq))) { 742 mptcp_drop(sk, skb); 743 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 744 continue; 745 } 746 747 end_seq = MPTCP_SKB_CB(skb)->end_seq; 748 tail = skb_peek_tail(&sk->sk_receive_queue); 749 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 750 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 751 752 /* skip overlapping data, if any */ 753 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 754 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 755 delta); 756 MPTCP_SKB_CB(skb)->offset += delta; 757 MPTCP_SKB_CB(skb)->map_seq += delta; 758 __skb_queue_tail(&sk->sk_receive_queue, skb); 759 } 760 msk->bytes_received += end_seq - msk->ack_seq; 761 WRITE_ONCE(msk->ack_seq, end_seq); 762 moved = true; 763 } 764 return moved; 765 } 766 767 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 768 { 769 int err = sock_error(ssk); 770 int ssk_state; 771 772 if (!err) 773 return false; 774 775 /* only propagate errors on fallen-back sockets or 776 * on MPC connect 777 */ 778 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 779 return false; 780 781 /* We need to propagate only transition to CLOSE state. 782 * Orphaned socket will see such state change via 783 * subflow_sched_work_if_closed() and that path will properly 784 * destroy the msk as needed. 785 */ 786 ssk_state = inet_sk_state_load(ssk); 787 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 788 mptcp_set_state(sk, ssk_state); 789 WRITE_ONCE(sk->sk_err, -err); 790 791 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 792 smp_wmb(); 793 sk_error_report(sk); 794 return true; 795 } 796 797 void __mptcp_error_report(struct sock *sk) 798 { 799 struct mptcp_subflow_context *subflow; 800 struct mptcp_sock *msk = mptcp_sk(sk); 801 802 mptcp_for_each_subflow(msk, subflow) 803 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 804 break; 805 } 806 807 /* In most cases we will be able to lock the mptcp socket. If its already 808 * owned, we need to defer to the work queue to avoid ABBA deadlock. 809 */ 810 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 811 { 812 struct sock *sk = (struct sock *)msk; 813 bool moved; 814 815 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 816 __mptcp_ofo_queue(msk); 817 if (unlikely(ssk->sk_err)) 818 __mptcp_subflow_error_report(sk, ssk); 819 820 /* If the moves have caught up with the DATA_FIN sequence number 821 * it's time to ack the DATA_FIN and change socket state, but 822 * this is not a good place to change state. Let the workqueue 823 * do it. 824 */ 825 if (mptcp_pending_data_fin(sk, NULL)) 826 mptcp_schedule_work(sk); 827 return moved; 828 } 829 830 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 831 { 832 struct mptcp_sock *msk = mptcp_sk(sk); 833 834 /* Wake-up the reader only for in-sequence data */ 835 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 836 sk->sk_data_ready(sk); 837 } 838 839 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 840 { 841 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 842 843 /* The peer can send data while we are shutting down this 844 * subflow at msk destruction time, but we must avoid enqueuing 845 * more data to the msk receive queue 846 */ 847 if (unlikely(subflow->disposable)) 848 return; 849 850 mptcp_data_lock(sk); 851 if (!sock_owned_by_user(sk)) 852 __mptcp_data_ready(sk, ssk); 853 else 854 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 855 mptcp_data_unlock(sk); 856 } 857 858 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 859 { 860 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 861 msk->allow_infinite_fallback = false; 862 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 863 } 864 865 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 866 { 867 struct sock *sk = (struct sock *)msk; 868 869 if (sk->sk_state != TCP_ESTABLISHED) 870 return false; 871 872 spin_lock_bh(&msk->fallback_lock); 873 if (!msk->allow_subflows) { 874 spin_unlock_bh(&msk->fallback_lock); 875 return false; 876 } 877 mptcp_subflow_joined(msk, ssk); 878 spin_unlock_bh(&msk->fallback_lock); 879 880 /* attach to msk socket only after we are sure we will deal with it 881 * at close time 882 */ 883 if (sk->sk_socket && !ssk->sk_socket) 884 mptcp_sock_graft(ssk, sk->sk_socket); 885 886 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 887 mptcp_sockopt_sync_locked(msk, ssk); 888 mptcp_stop_tout_timer(sk); 889 __mptcp_propagate_sndbuf(sk, ssk); 890 return true; 891 } 892 893 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 894 { 895 struct mptcp_subflow_context *tmp, *subflow; 896 struct mptcp_sock *msk = mptcp_sk(sk); 897 898 list_for_each_entry_safe(subflow, tmp, join_list, node) { 899 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 900 bool slow = lock_sock_fast(ssk); 901 902 list_move_tail(&subflow->node, &msk->conn_list); 903 if (!__mptcp_finish_join(msk, ssk)) 904 mptcp_subflow_reset(ssk); 905 unlock_sock_fast(ssk, slow); 906 } 907 } 908 909 static bool mptcp_rtx_timer_pending(struct sock *sk) 910 { 911 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 912 } 913 914 static void mptcp_reset_rtx_timer(struct sock *sk) 915 { 916 struct inet_connection_sock *icsk = inet_csk(sk); 917 unsigned long tout; 918 919 /* prevent rescheduling on close */ 920 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 921 return; 922 923 tout = mptcp_sk(sk)->timer_ival; 924 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 925 } 926 927 bool mptcp_schedule_work(struct sock *sk) 928 { 929 if (inet_sk_state_load(sk) != TCP_CLOSE && 930 schedule_work(&mptcp_sk(sk)->work)) { 931 /* each subflow already holds a reference to the sk, and the 932 * workqueue is invoked by a subflow, so sk can't go away here. 933 */ 934 sock_hold(sk); 935 return true; 936 } 937 return false; 938 } 939 940 static bool mptcp_skb_can_collapse_to(u64 write_seq, 941 const struct sk_buff *skb, 942 const struct mptcp_ext *mpext) 943 { 944 if (!tcp_skb_can_collapse_to(skb)) 945 return false; 946 947 /* can collapse only if MPTCP level sequence is in order and this 948 * mapping has not been xmitted yet 949 */ 950 return mpext && mpext->data_seq + mpext->data_len == write_seq && 951 !mpext->frozen; 952 } 953 954 /* we can append data to the given data frag if: 955 * - there is space available in the backing page_frag 956 * - the data frag tail matches the current page_frag free offset 957 * - the data frag end sequence number matches the current write seq 958 */ 959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 960 const struct page_frag *pfrag, 961 const struct mptcp_data_frag *df) 962 { 963 return df && pfrag->page == df->page && 964 pfrag->size - pfrag->offset > 0 && 965 pfrag->offset == (df->offset + df->data_len) && 966 df->data_seq + df->data_len == msk->write_seq; 967 } 968 969 static void dfrag_uncharge(struct sock *sk, int len) 970 { 971 sk_mem_uncharge(sk, len); 972 sk_wmem_queued_add(sk, -len); 973 } 974 975 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 976 { 977 int len = dfrag->data_len + dfrag->overhead; 978 979 list_del(&dfrag->list); 980 dfrag_uncharge(sk, len); 981 put_page(dfrag->page); 982 } 983 984 /* called under both the msk socket lock and the data lock */ 985 static void __mptcp_clean_una(struct sock *sk) 986 { 987 struct mptcp_sock *msk = mptcp_sk(sk); 988 struct mptcp_data_frag *dtmp, *dfrag; 989 u64 snd_una; 990 991 snd_una = msk->snd_una; 992 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 993 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 994 break; 995 996 if (unlikely(dfrag == msk->first_pending)) { 997 /* in recovery mode can see ack after the current snd head */ 998 if (WARN_ON_ONCE(!msk->recovery)) 999 break; 1000 1001 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1002 } 1003 1004 dfrag_clear(sk, dfrag); 1005 } 1006 1007 dfrag = mptcp_rtx_head(sk); 1008 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1009 u64 delta = snd_una - dfrag->data_seq; 1010 1011 /* prevent wrap around in recovery mode */ 1012 if (unlikely(delta > dfrag->already_sent)) { 1013 if (WARN_ON_ONCE(!msk->recovery)) 1014 goto out; 1015 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1016 goto out; 1017 dfrag->already_sent += delta - dfrag->already_sent; 1018 } 1019 1020 dfrag->data_seq += delta; 1021 dfrag->offset += delta; 1022 dfrag->data_len -= delta; 1023 dfrag->already_sent -= delta; 1024 1025 dfrag_uncharge(sk, delta); 1026 } 1027 1028 /* all retransmitted data acked, recovery completed */ 1029 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1030 msk->recovery = false; 1031 1032 out: 1033 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1034 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1035 mptcp_stop_rtx_timer(sk); 1036 } else { 1037 mptcp_reset_rtx_timer(sk); 1038 } 1039 1040 if (mptcp_pending_data_fin_ack(sk)) 1041 mptcp_schedule_work(sk); 1042 } 1043 1044 static void __mptcp_clean_una_wakeup(struct sock *sk) 1045 { 1046 lockdep_assert_held_once(&sk->sk_lock.slock); 1047 1048 __mptcp_clean_una(sk); 1049 mptcp_write_space(sk); 1050 } 1051 1052 static void mptcp_clean_una_wakeup(struct sock *sk) 1053 { 1054 mptcp_data_lock(sk); 1055 __mptcp_clean_una_wakeup(sk); 1056 mptcp_data_unlock(sk); 1057 } 1058 1059 static void mptcp_enter_memory_pressure(struct sock *sk) 1060 { 1061 struct mptcp_subflow_context *subflow; 1062 struct mptcp_sock *msk = mptcp_sk(sk); 1063 bool first = true; 1064 1065 mptcp_for_each_subflow(msk, subflow) { 1066 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1067 1068 if (first && !ssk->sk_bypass_prot_mem) { 1069 tcp_enter_memory_pressure(ssk); 1070 first = false; 1071 } 1072 1073 sk_stream_moderate_sndbuf(ssk); 1074 } 1075 __mptcp_sync_sndbuf(sk); 1076 } 1077 1078 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1079 * data 1080 */ 1081 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1082 { 1083 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1084 pfrag, sk->sk_allocation))) 1085 return true; 1086 1087 mptcp_enter_memory_pressure(sk); 1088 return false; 1089 } 1090 1091 static struct mptcp_data_frag * 1092 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1093 int orig_offset) 1094 { 1095 int offset = ALIGN(orig_offset, sizeof(long)); 1096 struct mptcp_data_frag *dfrag; 1097 1098 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1099 dfrag->data_len = 0; 1100 dfrag->data_seq = msk->write_seq; 1101 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1102 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1103 dfrag->already_sent = 0; 1104 dfrag->page = pfrag->page; 1105 1106 return dfrag; 1107 } 1108 1109 struct mptcp_sendmsg_info { 1110 int mss_now; 1111 int size_goal; 1112 u16 limit; 1113 u16 sent; 1114 unsigned int flags; 1115 bool data_lock_held; 1116 }; 1117 1118 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1119 u64 data_seq, int avail_size) 1120 { 1121 u64 window_end = mptcp_wnd_end(msk); 1122 u64 mptcp_snd_wnd; 1123 1124 if (__mptcp_check_fallback(msk)) 1125 return avail_size; 1126 1127 mptcp_snd_wnd = window_end - data_seq; 1128 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1129 1130 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1131 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1132 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1133 } 1134 1135 return avail_size; 1136 } 1137 1138 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1139 { 1140 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1141 1142 if (!mpext) 1143 return false; 1144 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1145 return true; 1146 } 1147 1148 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1149 { 1150 struct sk_buff *skb; 1151 1152 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1153 if (likely(skb)) { 1154 if (likely(__mptcp_add_ext(skb, gfp))) { 1155 skb_reserve(skb, MAX_TCP_HEADER); 1156 skb->ip_summed = CHECKSUM_PARTIAL; 1157 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1158 return skb; 1159 } 1160 __kfree_skb(skb); 1161 } else { 1162 mptcp_enter_memory_pressure(sk); 1163 } 1164 return NULL; 1165 } 1166 1167 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1168 { 1169 struct sk_buff *skb; 1170 1171 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1172 if (!skb) 1173 return NULL; 1174 1175 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1176 tcp_skb_entail(ssk, skb); 1177 return skb; 1178 } 1179 tcp_skb_tsorted_anchor_cleanup(skb); 1180 kfree_skb(skb); 1181 return NULL; 1182 } 1183 1184 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1185 { 1186 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1187 1188 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1189 } 1190 1191 /* note: this always recompute the csum on the whole skb, even 1192 * if we just appended a single frag. More status info needed 1193 */ 1194 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1195 { 1196 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1197 __wsum csum = ~csum_unfold(mpext->csum); 1198 int offset = skb->len - added; 1199 1200 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1201 } 1202 1203 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1204 struct sock *ssk, 1205 struct mptcp_ext *mpext) 1206 { 1207 if (!mpext) 1208 return; 1209 1210 mpext->infinite_map = 1; 1211 mpext->data_len = 0; 1212 1213 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1214 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1215 mptcp_subflow_reset(ssk); 1216 return; 1217 } 1218 1219 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1220 } 1221 1222 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1223 1224 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1225 struct mptcp_data_frag *dfrag, 1226 struct mptcp_sendmsg_info *info) 1227 { 1228 u64 data_seq = dfrag->data_seq + info->sent; 1229 int offset = dfrag->offset + info->sent; 1230 struct mptcp_sock *msk = mptcp_sk(sk); 1231 bool zero_window_probe = false; 1232 struct mptcp_ext *mpext = NULL; 1233 bool can_coalesce = false; 1234 bool reuse_skb = true; 1235 struct sk_buff *skb; 1236 size_t copy; 1237 int i; 1238 1239 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1240 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1241 1242 if (WARN_ON_ONCE(info->sent > info->limit || 1243 info->limit > dfrag->data_len)) 1244 return 0; 1245 1246 if (unlikely(!__tcp_can_send(ssk))) 1247 return -EAGAIN; 1248 1249 /* compute send limit */ 1250 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1251 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1252 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1253 copy = info->size_goal; 1254 1255 skb = tcp_write_queue_tail(ssk); 1256 if (skb && copy > skb->len) { 1257 /* Limit the write to the size available in the 1258 * current skb, if any, so that we create at most a new skb. 1259 * Explicitly tells TCP internals to avoid collapsing on later 1260 * queue management operation, to avoid breaking the ext <-> 1261 * SSN association set here 1262 */ 1263 mpext = mptcp_get_ext(skb); 1264 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1265 TCP_SKB_CB(skb)->eor = 1; 1266 tcp_mark_push(tcp_sk(ssk), skb); 1267 goto alloc_skb; 1268 } 1269 1270 i = skb_shinfo(skb)->nr_frags; 1271 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1272 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1273 tcp_mark_push(tcp_sk(ssk), skb); 1274 goto alloc_skb; 1275 } 1276 1277 copy -= skb->len; 1278 } else { 1279 alloc_skb: 1280 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1281 if (!skb) 1282 return -ENOMEM; 1283 1284 i = skb_shinfo(skb)->nr_frags; 1285 reuse_skb = false; 1286 mpext = mptcp_get_ext(skb); 1287 } 1288 1289 /* Zero window and all data acked? Probe. */ 1290 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1291 if (copy == 0) { 1292 u64 snd_una = READ_ONCE(msk->snd_una); 1293 1294 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1295 tcp_remove_empty_skb(ssk); 1296 return 0; 1297 } 1298 1299 zero_window_probe = true; 1300 data_seq = snd_una - 1; 1301 copy = 1; 1302 } 1303 1304 copy = min_t(size_t, copy, info->limit - info->sent); 1305 if (!sk_wmem_schedule(ssk, copy)) { 1306 tcp_remove_empty_skb(ssk); 1307 return -ENOMEM; 1308 } 1309 1310 if (can_coalesce) { 1311 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1312 } else { 1313 get_page(dfrag->page); 1314 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1315 } 1316 1317 skb->len += copy; 1318 skb->data_len += copy; 1319 skb->truesize += copy; 1320 sk_wmem_queued_add(ssk, copy); 1321 sk_mem_charge(ssk, copy); 1322 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1323 TCP_SKB_CB(skb)->end_seq += copy; 1324 tcp_skb_pcount_set(skb, 0); 1325 1326 /* on skb reuse we just need to update the DSS len */ 1327 if (reuse_skb) { 1328 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1329 mpext->data_len += copy; 1330 goto out; 1331 } 1332 1333 memset(mpext, 0, sizeof(*mpext)); 1334 mpext->data_seq = data_seq; 1335 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1336 mpext->data_len = copy; 1337 mpext->use_map = 1; 1338 mpext->dsn64 = 1; 1339 1340 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1341 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1342 mpext->dsn64); 1343 1344 if (zero_window_probe) { 1345 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1346 mpext->frozen = 1; 1347 if (READ_ONCE(msk->csum_enabled)) 1348 mptcp_update_data_checksum(skb, copy); 1349 tcp_push_pending_frames(ssk); 1350 return 0; 1351 } 1352 out: 1353 if (READ_ONCE(msk->csum_enabled)) 1354 mptcp_update_data_checksum(skb, copy); 1355 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1356 mptcp_update_infinite_map(msk, ssk, mpext); 1357 trace_mptcp_sendmsg_frag(mpext); 1358 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1359 return copy; 1360 } 1361 1362 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1363 sizeof(struct tcphdr) - \ 1364 MAX_TCP_OPTION_SPACE - \ 1365 sizeof(struct ipv6hdr) - \ 1366 sizeof(struct frag_hdr)) 1367 1368 struct subflow_send_info { 1369 struct sock *ssk; 1370 u64 linger_time; 1371 }; 1372 1373 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1374 { 1375 if (!subflow->stale) 1376 return; 1377 1378 subflow->stale = 0; 1379 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1380 } 1381 1382 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1383 { 1384 if (unlikely(subflow->stale)) { 1385 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1386 1387 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1388 return false; 1389 1390 mptcp_subflow_set_active(subflow); 1391 } 1392 return __mptcp_subflow_active(subflow); 1393 } 1394 1395 #define SSK_MODE_ACTIVE 0 1396 #define SSK_MODE_BACKUP 1 1397 #define SSK_MODE_MAX 2 1398 1399 /* implement the mptcp packet scheduler; 1400 * returns the subflow that will transmit the next DSS 1401 * additionally updates the rtx timeout 1402 */ 1403 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1404 { 1405 struct subflow_send_info send_info[SSK_MODE_MAX]; 1406 struct mptcp_subflow_context *subflow; 1407 struct sock *sk = (struct sock *)msk; 1408 u32 pace, burst, wmem; 1409 int i, nr_active = 0; 1410 struct sock *ssk; 1411 u64 linger_time; 1412 long tout = 0; 1413 1414 /* pick the subflow with the lower wmem/wspace ratio */ 1415 for (i = 0; i < SSK_MODE_MAX; ++i) { 1416 send_info[i].ssk = NULL; 1417 send_info[i].linger_time = -1; 1418 } 1419 1420 mptcp_for_each_subflow(msk, subflow) { 1421 bool backup = subflow->backup || subflow->request_bkup; 1422 1423 trace_mptcp_subflow_get_send(subflow); 1424 ssk = mptcp_subflow_tcp_sock(subflow); 1425 if (!mptcp_subflow_active(subflow)) 1426 continue; 1427 1428 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1429 nr_active += !backup; 1430 pace = subflow->avg_pacing_rate; 1431 if (unlikely(!pace)) { 1432 /* init pacing rate from socket */ 1433 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1434 pace = subflow->avg_pacing_rate; 1435 if (!pace) 1436 continue; 1437 } 1438 1439 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1440 if (linger_time < send_info[backup].linger_time) { 1441 send_info[backup].ssk = ssk; 1442 send_info[backup].linger_time = linger_time; 1443 } 1444 } 1445 __mptcp_set_timeout(sk, tout); 1446 1447 /* pick the best backup if no other subflow is active */ 1448 if (!nr_active) 1449 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1450 1451 /* According to the blest algorithm, to avoid HoL blocking for the 1452 * faster flow, we need to: 1453 * - estimate the faster flow linger time 1454 * - use the above to estimate the amount of byte transferred 1455 * by the faster flow 1456 * - check that the amount of queued data is greater than the above, 1457 * otherwise do not use the picked, slower, subflow 1458 * We select the subflow with the shorter estimated time to flush 1459 * the queued mem, which basically ensure the above. We just need 1460 * to check that subflow has a non empty cwin. 1461 */ 1462 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1463 if (!ssk || !sk_stream_memory_free(ssk)) 1464 return NULL; 1465 1466 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1467 wmem = READ_ONCE(ssk->sk_wmem_queued); 1468 if (!burst) 1469 return ssk; 1470 1471 subflow = mptcp_subflow_ctx(ssk); 1472 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1473 READ_ONCE(ssk->sk_pacing_rate) * burst, 1474 burst + wmem); 1475 msk->snd_burst = burst; 1476 return ssk; 1477 } 1478 1479 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1480 { 1481 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1482 release_sock(ssk); 1483 } 1484 1485 static void mptcp_update_post_push(struct mptcp_sock *msk, 1486 struct mptcp_data_frag *dfrag, 1487 u32 sent) 1488 { 1489 u64 snd_nxt_new = dfrag->data_seq; 1490 1491 dfrag->already_sent += sent; 1492 1493 msk->snd_burst -= sent; 1494 1495 snd_nxt_new += dfrag->already_sent; 1496 1497 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1498 * is recovering after a failover. In that event, this re-sends 1499 * old segments. 1500 * 1501 * Thus compute snd_nxt_new candidate based on 1502 * the dfrag->data_seq that was sent and the data 1503 * that has been handed to the subflow for transmission 1504 * and skip update in case it was old dfrag. 1505 */ 1506 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1507 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1508 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1509 } 1510 } 1511 1512 void mptcp_check_and_set_pending(struct sock *sk) 1513 { 1514 if (mptcp_send_head(sk)) { 1515 mptcp_data_lock(sk); 1516 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1517 mptcp_data_unlock(sk); 1518 } 1519 } 1520 1521 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1522 struct mptcp_sendmsg_info *info) 1523 { 1524 struct mptcp_sock *msk = mptcp_sk(sk); 1525 struct mptcp_data_frag *dfrag; 1526 int len, copied = 0, err = 0; 1527 1528 while ((dfrag = mptcp_send_head(sk))) { 1529 info->sent = dfrag->already_sent; 1530 info->limit = dfrag->data_len; 1531 len = dfrag->data_len - dfrag->already_sent; 1532 while (len > 0) { 1533 int ret = 0; 1534 1535 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1536 if (ret <= 0) { 1537 err = copied ? : ret; 1538 goto out; 1539 } 1540 1541 info->sent += ret; 1542 copied += ret; 1543 len -= ret; 1544 1545 mptcp_update_post_push(msk, dfrag, ret); 1546 } 1547 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1548 1549 if (msk->snd_burst <= 0 || 1550 !sk_stream_memory_free(ssk) || 1551 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1552 err = copied; 1553 goto out; 1554 } 1555 mptcp_set_timeout(sk); 1556 } 1557 err = copied; 1558 1559 out: 1560 if (err > 0) 1561 msk->last_data_sent = tcp_jiffies32; 1562 return err; 1563 } 1564 1565 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1566 { 1567 struct sock *prev_ssk = NULL, *ssk = NULL; 1568 struct mptcp_sock *msk = mptcp_sk(sk); 1569 struct mptcp_sendmsg_info info = { 1570 .flags = flags, 1571 }; 1572 bool do_check_data_fin = false; 1573 int push_count = 1; 1574 1575 while (mptcp_send_head(sk) && (push_count > 0)) { 1576 struct mptcp_subflow_context *subflow; 1577 int ret = 0; 1578 1579 if (mptcp_sched_get_send(msk)) 1580 break; 1581 1582 push_count = 0; 1583 1584 mptcp_for_each_subflow(msk, subflow) { 1585 if (READ_ONCE(subflow->scheduled)) { 1586 mptcp_subflow_set_scheduled(subflow, false); 1587 1588 prev_ssk = ssk; 1589 ssk = mptcp_subflow_tcp_sock(subflow); 1590 if (ssk != prev_ssk) { 1591 /* First check. If the ssk has changed since 1592 * the last round, release prev_ssk 1593 */ 1594 if (prev_ssk) 1595 mptcp_push_release(prev_ssk, &info); 1596 1597 /* Need to lock the new subflow only if different 1598 * from the previous one, otherwise we are still 1599 * helding the relevant lock 1600 */ 1601 lock_sock(ssk); 1602 } 1603 1604 push_count++; 1605 1606 ret = __subflow_push_pending(sk, ssk, &info); 1607 if (ret <= 0) { 1608 if (ret != -EAGAIN || 1609 (1 << ssk->sk_state) & 1610 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1611 push_count--; 1612 continue; 1613 } 1614 do_check_data_fin = true; 1615 } 1616 } 1617 } 1618 1619 /* at this point we held the socket lock for the last subflow we used */ 1620 if (ssk) 1621 mptcp_push_release(ssk, &info); 1622 1623 /* ensure the rtx timer is running */ 1624 if (!mptcp_rtx_timer_pending(sk)) 1625 mptcp_reset_rtx_timer(sk); 1626 if (do_check_data_fin) 1627 mptcp_check_send_data_fin(sk); 1628 } 1629 1630 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1631 { 1632 struct mptcp_sock *msk = mptcp_sk(sk); 1633 struct mptcp_sendmsg_info info = { 1634 .data_lock_held = true, 1635 }; 1636 bool keep_pushing = true; 1637 struct sock *xmit_ssk; 1638 int copied = 0; 1639 1640 info.flags = 0; 1641 while (mptcp_send_head(sk) && keep_pushing) { 1642 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1643 int ret = 0; 1644 1645 /* check for a different subflow usage only after 1646 * spooling the first chunk of data 1647 */ 1648 if (first) { 1649 mptcp_subflow_set_scheduled(subflow, false); 1650 ret = __subflow_push_pending(sk, ssk, &info); 1651 first = false; 1652 if (ret <= 0) 1653 break; 1654 copied += ret; 1655 continue; 1656 } 1657 1658 if (mptcp_sched_get_send(msk)) 1659 goto out; 1660 1661 if (READ_ONCE(subflow->scheduled)) { 1662 mptcp_subflow_set_scheduled(subflow, false); 1663 ret = __subflow_push_pending(sk, ssk, &info); 1664 if (ret <= 0) 1665 keep_pushing = false; 1666 copied += ret; 1667 } 1668 1669 mptcp_for_each_subflow(msk, subflow) { 1670 if (READ_ONCE(subflow->scheduled)) { 1671 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1672 if (xmit_ssk != ssk) { 1673 mptcp_subflow_delegate(subflow, 1674 MPTCP_DELEGATE_SEND); 1675 keep_pushing = false; 1676 } 1677 } 1678 } 1679 } 1680 1681 out: 1682 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1683 * not going to flush it via release_sock() 1684 */ 1685 if (copied) { 1686 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1687 info.size_goal); 1688 if (!mptcp_rtx_timer_pending(sk)) 1689 mptcp_reset_rtx_timer(sk); 1690 1691 if (msk->snd_data_fin_enable && 1692 msk->snd_nxt + 1 == msk->write_seq) 1693 mptcp_schedule_work(sk); 1694 } 1695 } 1696 1697 static int mptcp_disconnect(struct sock *sk, int flags); 1698 1699 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1700 size_t len, int *copied_syn) 1701 { 1702 unsigned int saved_flags = msg->msg_flags; 1703 struct mptcp_sock *msk = mptcp_sk(sk); 1704 struct sock *ssk; 1705 int ret; 1706 1707 /* on flags based fastopen the mptcp is supposed to create the 1708 * first subflow right now. Otherwise we are in the defer_connect 1709 * path, and the first subflow must be already present. 1710 * Since the defer_connect flag is cleared after the first succsful 1711 * fastopen attempt, no need to check for additional subflow status. 1712 */ 1713 if (msg->msg_flags & MSG_FASTOPEN) { 1714 ssk = __mptcp_nmpc_sk(msk); 1715 if (IS_ERR(ssk)) 1716 return PTR_ERR(ssk); 1717 } 1718 if (!msk->first) 1719 return -EINVAL; 1720 1721 ssk = msk->first; 1722 1723 lock_sock(ssk); 1724 msg->msg_flags |= MSG_DONTWAIT; 1725 msk->fastopening = 1; 1726 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1727 msk->fastopening = 0; 1728 msg->msg_flags = saved_flags; 1729 release_sock(ssk); 1730 1731 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1732 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1733 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1734 msg->msg_namelen, msg->msg_flags, 1); 1735 1736 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1737 * case of any error, except timeout or signal 1738 */ 1739 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1740 *copied_syn = 0; 1741 } else if (ret && ret != -EINPROGRESS) { 1742 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1743 * __inet_stream_connect() can fail, due to looking check, 1744 * see mptcp_disconnect(). 1745 * Attempt it again outside the problematic scope. 1746 */ 1747 if (!mptcp_disconnect(sk, 0)) { 1748 sk->sk_disconnects++; 1749 sk->sk_socket->state = SS_UNCONNECTED; 1750 } 1751 } 1752 inet_clear_bit(DEFER_CONNECT, sk); 1753 1754 return ret; 1755 } 1756 1757 static int do_copy_data_nocache(struct sock *sk, int copy, 1758 struct iov_iter *from, char *to) 1759 { 1760 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1761 if (!copy_from_iter_full_nocache(to, copy, from)) 1762 return -EFAULT; 1763 } else if (!copy_from_iter_full(to, copy, from)) { 1764 return -EFAULT; 1765 } 1766 return 0; 1767 } 1768 1769 /* open-code sk_stream_memory_free() plus sent limit computation to 1770 * avoid indirect calls in fast-path. 1771 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1772 * annotations. 1773 */ 1774 static u32 mptcp_send_limit(const struct sock *sk) 1775 { 1776 const struct mptcp_sock *msk = mptcp_sk(sk); 1777 u32 limit, not_sent; 1778 1779 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1780 return 0; 1781 1782 limit = mptcp_notsent_lowat(sk); 1783 if (limit == UINT_MAX) 1784 return UINT_MAX; 1785 1786 not_sent = msk->write_seq - msk->snd_nxt; 1787 if (not_sent >= limit) 1788 return 0; 1789 1790 return limit - not_sent; 1791 } 1792 1793 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1794 { 1795 struct mptcp_subflow_context *subflow; 1796 1797 if (!rfs_is_needed()) 1798 return; 1799 1800 mptcp_for_each_subflow(msk, subflow) { 1801 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1802 1803 sock_rps_record_flow(ssk); 1804 } 1805 } 1806 1807 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1808 { 1809 struct mptcp_sock *msk = mptcp_sk(sk); 1810 struct page_frag *pfrag; 1811 size_t copied = 0; 1812 int ret = 0; 1813 long timeo; 1814 1815 /* silently ignore everything else */ 1816 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1817 1818 lock_sock(sk); 1819 1820 mptcp_rps_record_subflows(msk); 1821 1822 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1823 msg->msg_flags & MSG_FASTOPEN)) { 1824 int copied_syn = 0; 1825 1826 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1827 copied += copied_syn; 1828 if (ret == -EINPROGRESS && copied_syn > 0) 1829 goto out; 1830 else if (ret) 1831 goto do_error; 1832 } 1833 1834 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1835 1836 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1837 ret = sk_stream_wait_connect(sk, &timeo); 1838 if (ret) 1839 goto do_error; 1840 } 1841 1842 ret = -EPIPE; 1843 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1844 goto do_error; 1845 1846 pfrag = sk_page_frag(sk); 1847 1848 while (msg_data_left(msg)) { 1849 int total_ts, frag_truesize = 0; 1850 struct mptcp_data_frag *dfrag; 1851 bool dfrag_collapsed; 1852 size_t psize, offset; 1853 u32 copy_limit; 1854 1855 /* ensure fitting the notsent_lowat() constraint */ 1856 copy_limit = mptcp_send_limit(sk); 1857 if (!copy_limit) 1858 goto wait_for_memory; 1859 1860 /* reuse tail pfrag, if possible, or carve a new one from the 1861 * page allocator 1862 */ 1863 dfrag = mptcp_pending_tail(sk); 1864 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1865 if (!dfrag_collapsed) { 1866 if (!mptcp_page_frag_refill(sk, pfrag)) 1867 goto wait_for_memory; 1868 1869 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1870 frag_truesize = dfrag->overhead; 1871 } 1872 1873 /* we do not bound vs wspace, to allow a single packet. 1874 * memory accounting will prevent execessive memory usage 1875 * anyway 1876 */ 1877 offset = dfrag->offset + dfrag->data_len; 1878 psize = pfrag->size - offset; 1879 psize = min_t(size_t, psize, msg_data_left(msg)); 1880 psize = min_t(size_t, psize, copy_limit); 1881 total_ts = psize + frag_truesize; 1882 1883 if (!sk_wmem_schedule(sk, total_ts)) 1884 goto wait_for_memory; 1885 1886 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1887 page_address(dfrag->page) + offset); 1888 if (ret) 1889 goto do_error; 1890 1891 /* data successfully copied into the write queue */ 1892 sk_forward_alloc_add(sk, -total_ts); 1893 copied += psize; 1894 dfrag->data_len += psize; 1895 frag_truesize += psize; 1896 pfrag->offset += frag_truesize; 1897 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1898 1899 /* charge data on mptcp pending queue to the msk socket 1900 * Note: we charge such data both to sk and ssk 1901 */ 1902 sk_wmem_queued_add(sk, frag_truesize); 1903 if (!dfrag_collapsed) { 1904 get_page(dfrag->page); 1905 list_add_tail(&dfrag->list, &msk->rtx_queue); 1906 if (!msk->first_pending) 1907 WRITE_ONCE(msk->first_pending, dfrag); 1908 } 1909 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1910 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1911 !dfrag_collapsed); 1912 1913 continue; 1914 1915 wait_for_memory: 1916 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1917 __mptcp_push_pending(sk, msg->msg_flags); 1918 ret = sk_stream_wait_memory(sk, &timeo); 1919 if (ret) 1920 goto do_error; 1921 } 1922 1923 if (copied) 1924 __mptcp_push_pending(sk, msg->msg_flags); 1925 1926 out: 1927 release_sock(sk); 1928 return copied; 1929 1930 do_error: 1931 if (copied) 1932 goto out; 1933 1934 copied = sk_stream_error(sk, msg->msg_flags, ret); 1935 goto out; 1936 } 1937 1938 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1939 1940 static int __mptcp_recvmsg_mskq(struct sock *sk, 1941 struct msghdr *msg, 1942 size_t len, int flags, 1943 struct scm_timestamping_internal *tss, 1944 int *cmsg_flags) 1945 { 1946 struct mptcp_sock *msk = mptcp_sk(sk); 1947 struct sk_buff *skb, *tmp; 1948 int copied = 0; 1949 1950 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1951 u32 offset = MPTCP_SKB_CB(skb)->offset; 1952 u32 data_len = skb->len - offset; 1953 u32 count = min_t(size_t, len - copied, data_len); 1954 int err; 1955 1956 if (!(flags & MSG_TRUNC)) { 1957 err = skb_copy_datagram_msg(skb, offset, msg, count); 1958 if (unlikely(err < 0)) { 1959 if (!copied) 1960 return err; 1961 break; 1962 } 1963 } 1964 1965 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1966 tcp_update_recv_tstamps(skb, tss); 1967 *cmsg_flags |= MPTCP_CMSG_TS; 1968 } 1969 1970 copied += count; 1971 1972 if (count < data_len) { 1973 if (!(flags & MSG_PEEK)) { 1974 MPTCP_SKB_CB(skb)->offset += count; 1975 MPTCP_SKB_CB(skb)->map_seq += count; 1976 msk->bytes_consumed += count; 1977 } 1978 break; 1979 } 1980 1981 if (!(flags & MSG_PEEK)) { 1982 /* avoid the indirect call, we know the destructor is sock_rfree */ 1983 skb->destructor = NULL; 1984 skb->sk = NULL; 1985 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1986 sk_mem_uncharge(sk, skb->truesize); 1987 __skb_unlink(skb, &sk->sk_receive_queue); 1988 skb_attempt_defer_free(skb); 1989 msk->bytes_consumed += count; 1990 } 1991 1992 if (copied >= len) 1993 break; 1994 } 1995 1996 mptcp_rcv_space_adjust(msk, copied); 1997 return copied; 1998 } 1999 2000 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2001 * 2002 * Only difference: Use highest rtt estimate of the subflows in use. 2003 */ 2004 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2005 { 2006 struct mptcp_subflow_context *subflow; 2007 struct sock *sk = (struct sock *)msk; 2008 u8 scaling_ratio = U8_MAX; 2009 u32 time, advmss = 1; 2010 u64 rtt_us, mstamp; 2011 2012 msk_owned_by_me(msk); 2013 2014 if (copied <= 0) 2015 return; 2016 2017 if (!msk->rcvspace_init) 2018 mptcp_rcv_space_init(msk, msk->first); 2019 2020 msk->rcvq_space.copied += copied; 2021 2022 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2023 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2024 2025 rtt_us = msk->rcvq_space.rtt_us; 2026 if (rtt_us && time < (rtt_us >> 3)) 2027 return; 2028 2029 rtt_us = 0; 2030 mptcp_for_each_subflow(msk, subflow) { 2031 const struct tcp_sock *tp; 2032 u64 sf_rtt_us; 2033 u32 sf_advmss; 2034 2035 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2036 2037 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2038 sf_advmss = READ_ONCE(tp->advmss); 2039 2040 rtt_us = max(sf_rtt_us, rtt_us); 2041 advmss = max(sf_advmss, advmss); 2042 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2043 } 2044 2045 msk->rcvq_space.rtt_us = rtt_us; 2046 msk->scaling_ratio = scaling_ratio; 2047 if (time < (rtt_us >> 3) || rtt_us == 0) 2048 return; 2049 2050 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2051 goto new_measure; 2052 2053 msk->rcvq_space.space = msk->rcvq_space.copied; 2054 if (mptcp_rcvbuf_grow(sk)) { 2055 2056 /* Make subflows follow along. If we do not do this, we 2057 * get drops at subflow level if skbs can't be moved to 2058 * the mptcp rx queue fast enough (announced rcv_win can 2059 * exceed ssk->sk_rcvbuf). 2060 */ 2061 mptcp_for_each_subflow(msk, subflow) { 2062 struct sock *ssk; 2063 bool slow; 2064 2065 ssk = mptcp_subflow_tcp_sock(subflow); 2066 slow = lock_sock_fast(ssk); 2067 tcp_sk(ssk)->rcvq_space.space = msk->rcvq_space.copied; 2068 tcp_rcvbuf_grow(ssk); 2069 unlock_sock_fast(ssk, slow); 2070 } 2071 } 2072 2073 new_measure: 2074 msk->rcvq_space.copied = 0; 2075 msk->rcvq_space.time = mstamp; 2076 } 2077 2078 static struct mptcp_subflow_context * 2079 __mptcp_first_ready_from(struct mptcp_sock *msk, 2080 struct mptcp_subflow_context *subflow) 2081 { 2082 struct mptcp_subflow_context *start_subflow = subflow; 2083 2084 while (!READ_ONCE(subflow->data_avail)) { 2085 subflow = mptcp_next_subflow(msk, subflow); 2086 if (subflow == start_subflow) 2087 return NULL; 2088 } 2089 return subflow; 2090 } 2091 2092 static bool __mptcp_move_skbs(struct sock *sk) 2093 { 2094 struct mptcp_subflow_context *subflow; 2095 struct mptcp_sock *msk = mptcp_sk(sk); 2096 bool ret = false; 2097 2098 if (list_empty(&msk->conn_list)) 2099 return false; 2100 2101 subflow = list_first_entry(&msk->conn_list, 2102 struct mptcp_subflow_context, node); 2103 for (;;) { 2104 struct sock *ssk; 2105 bool slowpath; 2106 2107 /* 2108 * As an optimization avoid traversing the subflows list 2109 * and ev. acquiring the subflow socket lock before baling out 2110 */ 2111 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2112 break; 2113 2114 subflow = __mptcp_first_ready_from(msk, subflow); 2115 if (!subflow) 2116 break; 2117 2118 ssk = mptcp_subflow_tcp_sock(subflow); 2119 slowpath = lock_sock_fast(ssk); 2120 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2121 if (unlikely(ssk->sk_err)) 2122 __mptcp_error_report(sk); 2123 unlock_sock_fast(ssk, slowpath); 2124 2125 subflow = mptcp_next_subflow(msk, subflow); 2126 } 2127 2128 __mptcp_ofo_queue(msk); 2129 if (ret) 2130 mptcp_check_data_fin((struct sock *)msk); 2131 return ret; 2132 } 2133 2134 static unsigned int mptcp_inq_hint(const struct sock *sk) 2135 { 2136 const struct mptcp_sock *msk = mptcp_sk(sk); 2137 const struct sk_buff *skb; 2138 2139 skb = skb_peek(&sk->sk_receive_queue); 2140 if (skb) { 2141 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2142 2143 if (hint_val >= INT_MAX) 2144 return INT_MAX; 2145 2146 return (unsigned int)hint_val; 2147 } 2148 2149 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2150 return 1; 2151 2152 return 0; 2153 } 2154 2155 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2156 int flags, int *addr_len) 2157 { 2158 struct mptcp_sock *msk = mptcp_sk(sk); 2159 struct scm_timestamping_internal tss; 2160 int copied = 0, cmsg_flags = 0; 2161 int target; 2162 long timeo; 2163 2164 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2165 if (unlikely(flags & MSG_ERRQUEUE)) 2166 return inet_recv_error(sk, msg, len, addr_len); 2167 2168 lock_sock(sk); 2169 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2170 copied = -ENOTCONN; 2171 goto out_err; 2172 } 2173 2174 mptcp_rps_record_subflows(msk); 2175 2176 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2177 2178 len = min_t(size_t, len, INT_MAX); 2179 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2180 2181 if (unlikely(msk->recvmsg_inq)) 2182 cmsg_flags = MPTCP_CMSG_INQ; 2183 2184 while (copied < len) { 2185 int err, bytes_read; 2186 2187 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2188 if (unlikely(bytes_read < 0)) { 2189 if (!copied) 2190 copied = bytes_read; 2191 goto out_err; 2192 } 2193 2194 copied += bytes_read; 2195 2196 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2197 continue; 2198 2199 /* only the MPTCP socket status is relevant here. The exit 2200 * conditions mirror closely tcp_recvmsg() 2201 */ 2202 if (copied >= target) 2203 break; 2204 2205 if (copied) { 2206 if (sk->sk_err || 2207 sk->sk_state == TCP_CLOSE || 2208 (sk->sk_shutdown & RCV_SHUTDOWN) || 2209 !timeo || 2210 signal_pending(current)) 2211 break; 2212 } else { 2213 if (sk->sk_err) { 2214 copied = sock_error(sk); 2215 break; 2216 } 2217 2218 if (sk->sk_shutdown & RCV_SHUTDOWN) 2219 break; 2220 2221 if (sk->sk_state == TCP_CLOSE) { 2222 copied = -ENOTCONN; 2223 break; 2224 } 2225 2226 if (!timeo) { 2227 copied = -EAGAIN; 2228 break; 2229 } 2230 2231 if (signal_pending(current)) { 2232 copied = sock_intr_errno(timeo); 2233 break; 2234 } 2235 } 2236 2237 pr_debug("block timeout %ld\n", timeo); 2238 mptcp_cleanup_rbuf(msk, copied); 2239 err = sk_wait_data(sk, &timeo, NULL); 2240 if (err < 0) { 2241 err = copied ? : err; 2242 goto out_err; 2243 } 2244 } 2245 2246 mptcp_cleanup_rbuf(msk, copied); 2247 2248 out_err: 2249 if (cmsg_flags && copied >= 0) { 2250 if (cmsg_flags & MPTCP_CMSG_TS) 2251 tcp_recv_timestamp(msg, sk, &tss); 2252 2253 if (cmsg_flags & MPTCP_CMSG_INQ) { 2254 unsigned int inq = mptcp_inq_hint(sk); 2255 2256 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2257 } 2258 } 2259 2260 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2261 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2262 2263 release_sock(sk); 2264 return copied; 2265 } 2266 2267 static void mptcp_retransmit_timer(struct timer_list *t) 2268 { 2269 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2270 icsk_retransmit_timer); 2271 struct sock *sk = &icsk->icsk_inet.sk; 2272 struct mptcp_sock *msk = mptcp_sk(sk); 2273 2274 bh_lock_sock(sk); 2275 if (!sock_owned_by_user(sk)) { 2276 /* we need a process context to retransmit */ 2277 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2278 mptcp_schedule_work(sk); 2279 } else { 2280 /* delegate our work to tcp_release_cb() */ 2281 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2282 } 2283 bh_unlock_sock(sk); 2284 sock_put(sk); 2285 } 2286 2287 static void mptcp_tout_timer(struct timer_list *t) 2288 { 2289 struct sock *sk = timer_container_of(sk, t, sk_timer); 2290 2291 mptcp_schedule_work(sk); 2292 sock_put(sk); 2293 } 2294 2295 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2296 * level. 2297 * 2298 * A backup subflow is returned only if that is the only kind available. 2299 */ 2300 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2301 { 2302 struct sock *backup = NULL, *pick = NULL; 2303 struct mptcp_subflow_context *subflow; 2304 int min_stale_count = INT_MAX; 2305 2306 mptcp_for_each_subflow(msk, subflow) { 2307 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2308 2309 if (!__mptcp_subflow_active(subflow)) 2310 continue; 2311 2312 /* still data outstanding at TCP level? skip this */ 2313 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2314 mptcp_pm_subflow_chk_stale(msk, ssk); 2315 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2316 continue; 2317 } 2318 2319 if (subflow->backup || subflow->request_bkup) { 2320 if (!backup) 2321 backup = ssk; 2322 continue; 2323 } 2324 2325 if (!pick) 2326 pick = ssk; 2327 } 2328 2329 if (pick) 2330 return pick; 2331 2332 /* use backup only if there are no progresses anywhere */ 2333 return min_stale_count > 1 ? backup : NULL; 2334 } 2335 2336 bool __mptcp_retransmit_pending_data(struct sock *sk) 2337 { 2338 struct mptcp_data_frag *cur, *rtx_head; 2339 struct mptcp_sock *msk = mptcp_sk(sk); 2340 2341 if (__mptcp_check_fallback(msk)) 2342 return false; 2343 2344 /* the closing socket has some data untransmitted and/or unacked: 2345 * some data in the mptcp rtx queue has not really xmitted yet. 2346 * keep it simple and re-inject the whole mptcp level rtx queue 2347 */ 2348 mptcp_data_lock(sk); 2349 __mptcp_clean_una_wakeup(sk); 2350 rtx_head = mptcp_rtx_head(sk); 2351 if (!rtx_head) { 2352 mptcp_data_unlock(sk); 2353 return false; 2354 } 2355 2356 msk->recovery_snd_nxt = msk->snd_nxt; 2357 msk->recovery = true; 2358 mptcp_data_unlock(sk); 2359 2360 msk->first_pending = rtx_head; 2361 msk->snd_burst = 0; 2362 2363 /* be sure to clear the "sent status" on all re-injected fragments */ 2364 list_for_each_entry(cur, &msk->rtx_queue, list) { 2365 if (!cur->already_sent) 2366 break; 2367 cur->already_sent = 0; 2368 } 2369 2370 return true; 2371 } 2372 2373 /* flags for __mptcp_close_ssk() */ 2374 #define MPTCP_CF_PUSH BIT(1) 2375 #define MPTCP_CF_FASTCLOSE BIT(2) 2376 2377 /* be sure to send a reset only if the caller asked for it, also 2378 * clean completely the subflow status when the subflow reaches 2379 * TCP_CLOSE state 2380 */ 2381 static void __mptcp_subflow_disconnect(struct sock *ssk, 2382 struct mptcp_subflow_context *subflow, 2383 unsigned int flags) 2384 { 2385 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2386 (flags & MPTCP_CF_FASTCLOSE)) { 2387 /* The MPTCP code never wait on the subflow sockets, TCP-level 2388 * disconnect should never fail 2389 */ 2390 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2391 mptcp_subflow_ctx_reset(subflow); 2392 } else { 2393 tcp_shutdown(ssk, SEND_SHUTDOWN); 2394 } 2395 } 2396 2397 /* subflow sockets can be either outgoing (connect) or incoming 2398 * (accept). 2399 * 2400 * Outgoing subflows use in-kernel sockets. 2401 * Incoming subflows do not have their own 'struct socket' allocated, 2402 * so we need to use tcp_close() after detaching them from the mptcp 2403 * parent socket. 2404 */ 2405 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2406 struct mptcp_subflow_context *subflow, 2407 unsigned int flags) 2408 { 2409 struct mptcp_sock *msk = mptcp_sk(sk); 2410 bool dispose_it, need_push = false; 2411 2412 /* If the first subflow moved to a close state before accept, e.g. due 2413 * to an incoming reset or listener shutdown, the subflow socket is 2414 * already deleted by inet_child_forget() and the mptcp socket can't 2415 * survive too. 2416 */ 2417 if (msk->in_accept_queue && msk->first == ssk && 2418 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2419 /* ensure later check in mptcp_worker() will dispose the msk */ 2420 sock_set_flag(sk, SOCK_DEAD); 2421 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2422 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2423 mptcp_subflow_drop_ctx(ssk); 2424 goto out_release; 2425 } 2426 2427 dispose_it = msk->free_first || ssk != msk->first; 2428 if (dispose_it) 2429 list_del(&subflow->node); 2430 2431 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2432 2433 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2434 /* be sure to force the tcp_close path 2435 * to generate the egress reset 2436 */ 2437 ssk->sk_lingertime = 0; 2438 sock_set_flag(ssk, SOCK_LINGER); 2439 subflow->send_fastclose = 1; 2440 } 2441 2442 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2443 if (!dispose_it) { 2444 __mptcp_subflow_disconnect(ssk, subflow, flags); 2445 release_sock(ssk); 2446 2447 goto out; 2448 } 2449 2450 subflow->disposable = 1; 2451 2452 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2453 * the ssk has been already destroyed, we just need to release the 2454 * reference owned by msk; 2455 */ 2456 if (!inet_csk(ssk)->icsk_ulp_ops) { 2457 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2458 kfree_rcu(subflow, rcu); 2459 } else { 2460 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2461 __tcp_close(ssk, 0); 2462 2463 /* close acquired an extra ref */ 2464 __sock_put(ssk); 2465 } 2466 2467 out_release: 2468 __mptcp_subflow_error_report(sk, ssk); 2469 release_sock(ssk); 2470 2471 sock_put(ssk); 2472 2473 if (ssk == msk->first) 2474 WRITE_ONCE(msk->first, NULL); 2475 2476 out: 2477 __mptcp_sync_sndbuf(sk); 2478 if (need_push) 2479 __mptcp_push_pending(sk, 0); 2480 2481 /* Catch every 'all subflows closed' scenario, including peers silently 2482 * closing them, e.g. due to timeout. 2483 * For established sockets, allow an additional timeout before closing, 2484 * as the protocol can still create more subflows. 2485 */ 2486 if (list_is_singular(&msk->conn_list) && msk->first && 2487 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2488 if (sk->sk_state != TCP_ESTABLISHED || 2489 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2490 mptcp_set_state(sk, TCP_CLOSE); 2491 mptcp_close_wake_up(sk); 2492 } else { 2493 mptcp_start_tout_timer(sk); 2494 } 2495 } 2496 } 2497 2498 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2499 struct mptcp_subflow_context *subflow) 2500 { 2501 /* The first subflow can already be closed and still in the list */ 2502 if (subflow->close_event_done) 2503 return; 2504 2505 subflow->close_event_done = true; 2506 2507 if (sk->sk_state == TCP_ESTABLISHED) 2508 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2509 2510 /* subflow aborted before reaching the fully_established status 2511 * attempt the creation of the next subflow 2512 */ 2513 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2514 2515 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2516 } 2517 2518 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2519 { 2520 return 0; 2521 } 2522 2523 static void __mptcp_close_subflow(struct sock *sk) 2524 { 2525 struct mptcp_subflow_context *subflow, *tmp; 2526 struct mptcp_sock *msk = mptcp_sk(sk); 2527 2528 might_sleep(); 2529 2530 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2531 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2532 int ssk_state = inet_sk_state_load(ssk); 2533 2534 if (ssk_state != TCP_CLOSE && 2535 (ssk_state != TCP_CLOSE_WAIT || 2536 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2537 continue; 2538 2539 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2540 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2541 continue; 2542 2543 mptcp_close_ssk(sk, ssk, subflow); 2544 } 2545 2546 } 2547 2548 static bool mptcp_close_tout_expired(const struct sock *sk) 2549 { 2550 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2551 sk->sk_state == TCP_CLOSE) 2552 return false; 2553 2554 return time_after32(tcp_jiffies32, 2555 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2556 } 2557 2558 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2559 { 2560 struct mptcp_subflow_context *subflow, *tmp; 2561 struct sock *sk = (struct sock *)msk; 2562 2563 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2564 return; 2565 2566 mptcp_token_destroy(msk); 2567 2568 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2569 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2570 bool slow; 2571 2572 slow = lock_sock_fast(tcp_sk); 2573 if (tcp_sk->sk_state != TCP_CLOSE) { 2574 mptcp_send_active_reset_reason(tcp_sk); 2575 tcp_set_state(tcp_sk, TCP_CLOSE); 2576 } 2577 unlock_sock_fast(tcp_sk, slow); 2578 } 2579 2580 /* Mirror the tcp_reset() error propagation */ 2581 switch (sk->sk_state) { 2582 case TCP_SYN_SENT: 2583 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2584 break; 2585 case TCP_CLOSE_WAIT: 2586 WRITE_ONCE(sk->sk_err, EPIPE); 2587 break; 2588 case TCP_CLOSE: 2589 return; 2590 default: 2591 WRITE_ONCE(sk->sk_err, ECONNRESET); 2592 } 2593 2594 mptcp_set_state(sk, TCP_CLOSE); 2595 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2596 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2597 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2598 2599 /* the calling mptcp_worker will properly destroy the socket */ 2600 if (sock_flag(sk, SOCK_DEAD)) 2601 return; 2602 2603 sk->sk_state_change(sk); 2604 sk_error_report(sk); 2605 } 2606 2607 static void __mptcp_retrans(struct sock *sk) 2608 { 2609 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2610 struct mptcp_sock *msk = mptcp_sk(sk); 2611 struct mptcp_subflow_context *subflow; 2612 struct mptcp_data_frag *dfrag; 2613 struct sock *ssk; 2614 int ret, err; 2615 u16 len = 0; 2616 2617 mptcp_clean_una_wakeup(sk); 2618 2619 /* first check ssk: need to kick "stale" logic */ 2620 err = mptcp_sched_get_retrans(msk); 2621 dfrag = mptcp_rtx_head(sk); 2622 if (!dfrag) { 2623 if (mptcp_data_fin_enabled(msk)) { 2624 struct inet_connection_sock *icsk = inet_csk(sk); 2625 2626 WRITE_ONCE(icsk->icsk_retransmits, 2627 icsk->icsk_retransmits + 1); 2628 mptcp_set_datafin_timeout(sk); 2629 mptcp_send_ack(msk); 2630 2631 goto reset_timer; 2632 } 2633 2634 if (!mptcp_send_head(sk)) 2635 return; 2636 2637 goto reset_timer; 2638 } 2639 2640 if (err) 2641 goto reset_timer; 2642 2643 mptcp_for_each_subflow(msk, subflow) { 2644 if (READ_ONCE(subflow->scheduled)) { 2645 u16 copied = 0; 2646 2647 mptcp_subflow_set_scheduled(subflow, false); 2648 2649 ssk = mptcp_subflow_tcp_sock(subflow); 2650 2651 lock_sock(ssk); 2652 2653 /* limit retransmission to the bytes already sent on some subflows */ 2654 info.sent = 0; 2655 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2656 dfrag->already_sent; 2657 2658 /* 2659 * make the whole retrans decision, xmit, disallow 2660 * fallback atomic 2661 */ 2662 spin_lock_bh(&msk->fallback_lock); 2663 if (__mptcp_check_fallback(msk)) { 2664 spin_unlock_bh(&msk->fallback_lock); 2665 release_sock(ssk); 2666 return; 2667 } 2668 2669 while (info.sent < info.limit) { 2670 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2671 if (ret <= 0) 2672 break; 2673 2674 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2675 copied += ret; 2676 info.sent += ret; 2677 } 2678 if (copied) { 2679 len = max(copied, len); 2680 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2681 info.size_goal); 2682 msk->allow_infinite_fallback = false; 2683 } 2684 spin_unlock_bh(&msk->fallback_lock); 2685 2686 release_sock(ssk); 2687 } 2688 } 2689 2690 msk->bytes_retrans += len; 2691 dfrag->already_sent = max(dfrag->already_sent, len); 2692 2693 reset_timer: 2694 mptcp_check_and_set_pending(sk); 2695 2696 if (!mptcp_rtx_timer_pending(sk)) 2697 mptcp_reset_rtx_timer(sk); 2698 } 2699 2700 /* schedule the timeout timer for the relevant event: either close timeout 2701 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2702 */ 2703 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2704 { 2705 struct sock *sk = (struct sock *)msk; 2706 unsigned long timeout, close_timeout; 2707 2708 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2709 return; 2710 2711 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2712 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2713 2714 /* the close timeout takes precedence on the fail one, and here at least one of 2715 * them is active 2716 */ 2717 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2718 2719 sk_reset_timer(sk, &sk->sk_timer, timeout); 2720 } 2721 2722 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2723 { 2724 struct sock *ssk = msk->first; 2725 bool slow; 2726 2727 if (!ssk) 2728 return; 2729 2730 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2731 2732 slow = lock_sock_fast(ssk); 2733 mptcp_subflow_reset(ssk); 2734 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2735 unlock_sock_fast(ssk, slow); 2736 } 2737 2738 static void mptcp_do_fastclose(struct sock *sk) 2739 { 2740 struct mptcp_subflow_context *subflow, *tmp; 2741 struct mptcp_sock *msk = mptcp_sk(sk); 2742 2743 mptcp_set_state(sk, TCP_CLOSE); 2744 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2745 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2746 subflow, MPTCP_CF_FASTCLOSE); 2747 } 2748 2749 static void mptcp_worker(struct work_struct *work) 2750 { 2751 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2752 struct sock *sk = (struct sock *)msk; 2753 unsigned long fail_tout; 2754 int state; 2755 2756 lock_sock(sk); 2757 state = sk->sk_state; 2758 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2759 goto unlock; 2760 2761 mptcp_check_fastclose(msk); 2762 2763 mptcp_pm_worker(msk); 2764 2765 mptcp_check_send_data_fin(sk); 2766 mptcp_check_data_fin_ack(sk); 2767 mptcp_check_data_fin(sk); 2768 2769 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2770 __mptcp_close_subflow(sk); 2771 2772 if (mptcp_close_tout_expired(sk)) { 2773 mptcp_do_fastclose(sk); 2774 mptcp_close_wake_up(sk); 2775 } 2776 2777 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2778 __mptcp_destroy_sock(sk); 2779 goto unlock; 2780 } 2781 2782 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2783 __mptcp_retrans(sk); 2784 2785 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2786 if (fail_tout && time_after(jiffies, fail_tout)) 2787 mptcp_mp_fail_no_response(msk); 2788 2789 unlock: 2790 release_sock(sk); 2791 sock_put(sk); 2792 } 2793 2794 static void __mptcp_init_sock(struct sock *sk) 2795 { 2796 struct mptcp_sock *msk = mptcp_sk(sk); 2797 2798 INIT_LIST_HEAD(&msk->conn_list); 2799 INIT_LIST_HEAD(&msk->join_list); 2800 INIT_LIST_HEAD(&msk->rtx_queue); 2801 INIT_WORK(&msk->work, mptcp_worker); 2802 msk->out_of_order_queue = RB_ROOT; 2803 msk->first_pending = NULL; 2804 msk->timer_ival = TCP_RTO_MIN; 2805 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2806 2807 WRITE_ONCE(msk->first, NULL); 2808 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2809 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2810 msk->allow_infinite_fallback = true; 2811 msk->allow_subflows = true; 2812 msk->recovery = false; 2813 msk->subflow_id = 1; 2814 msk->last_data_sent = tcp_jiffies32; 2815 msk->last_data_recv = tcp_jiffies32; 2816 msk->last_ack_recv = tcp_jiffies32; 2817 2818 mptcp_pm_data_init(msk); 2819 spin_lock_init(&msk->fallback_lock); 2820 2821 /* re-use the csk retrans timer for MPTCP-level retrans */ 2822 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2823 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2824 } 2825 2826 static void mptcp_ca_reset(struct sock *sk) 2827 { 2828 struct inet_connection_sock *icsk = inet_csk(sk); 2829 2830 tcp_assign_congestion_control(sk); 2831 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2832 sizeof(mptcp_sk(sk)->ca_name)); 2833 2834 /* no need to keep a reference to the ops, the name will suffice */ 2835 tcp_cleanup_congestion_control(sk); 2836 icsk->icsk_ca_ops = NULL; 2837 } 2838 2839 static int mptcp_init_sock(struct sock *sk) 2840 { 2841 struct net *net = sock_net(sk); 2842 int ret; 2843 2844 __mptcp_init_sock(sk); 2845 2846 if (!mptcp_is_enabled(net)) 2847 return -ENOPROTOOPT; 2848 2849 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2850 return -ENOMEM; 2851 2852 rcu_read_lock(); 2853 ret = mptcp_init_sched(mptcp_sk(sk), 2854 mptcp_sched_find(mptcp_get_scheduler(net))); 2855 rcu_read_unlock(); 2856 if (ret) 2857 return ret; 2858 2859 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2860 2861 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2862 * propagate the correct value 2863 */ 2864 mptcp_ca_reset(sk); 2865 2866 sk_sockets_allocated_inc(sk); 2867 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2868 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2869 2870 return 0; 2871 } 2872 2873 static void __mptcp_clear_xmit(struct sock *sk) 2874 { 2875 struct mptcp_sock *msk = mptcp_sk(sk); 2876 struct mptcp_data_frag *dtmp, *dfrag; 2877 2878 WRITE_ONCE(msk->first_pending, NULL); 2879 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2880 dfrag_clear(sk, dfrag); 2881 } 2882 2883 void mptcp_cancel_work(struct sock *sk) 2884 { 2885 struct mptcp_sock *msk = mptcp_sk(sk); 2886 2887 if (cancel_work_sync(&msk->work)) 2888 __sock_put(sk); 2889 } 2890 2891 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2892 { 2893 lock_sock(ssk); 2894 2895 switch (ssk->sk_state) { 2896 case TCP_LISTEN: 2897 if (!(how & RCV_SHUTDOWN)) 2898 break; 2899 fallthrough; 2900 case TCP_SYN_SENT: 2901 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2902 break; 2903 default: 2904 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2905 pr_debug("Fallback\n"); 2906 ssk->sk_shutdown |= how; 2907 tcp_shutdown(ssk, how); 2908 2909 /* simulate the data_fin ack reception to let the state 2910 * machine move forward 2911 */ 2912 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2913 mptcp_schedule_work(sk); 2914 } else { 2915 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2916 tcp_send_ack(ssk); 2917 if (!mptcp_rtx_timer_pending(sk)) 2918 mptcp_reset_rtx_timer(sk); 2919 } 2920 break; 2921 } 2922 2923 release_sock(ssk); 2924 } 2925 2926 void mptcp_set_state(struct sock *sk, int state) 2927 { 2928 int oldstate = sk->sk_state; 2929 2930 switch (state) { 2931 case TCP_ESTABLISHED: 2932 if (oldstate != TCP_ESTABLISHED) 2933 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2934 break; 2935 case TCP_CLOSE_WAIT: 2936 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2937 * MPTCP "accepted" sockets will be created later on. So no 2938 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2939 */ 2940 break; 2941 default: 2942 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2943 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2944 } 2945 2946 inet_sk_state_store(sk, state); 2947 } 2948 2949 static const unsigned char new_state[16] = { 2950 /* current state: new state: action: */ 2951 [0 /* (Invalid) */] = TCP_CLOSE, 2952 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2953 [TCP_SYN_SENT] = TCP_CLOSE, 2954 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2955 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2956 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2957 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2958 [TCP_CLOSE] = TCP_CLOSE, 2959 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2960 [TCP_LAST_ACK] = TCP_LAST_ACK, 2961 [TCP_LISTEN] = TCP_CLOSE, 2962 [TCP_CLOSING] = TCP_CLOSING, 2963 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2964 }; 2965 2966 static int mptcp_close_state(struct sock *sk) 2967 { 2968 int next = (int)new_state[sk->sk_state]; 2969 int ns = next & TCP_STATE_MASK; 2970 2971 mptcp_set_state(sk, ns); 2972 2973 return next & TCP_ACTION_FIN; 2974 } 2975 2976 static void mptcp_check_send_data_fin(struct sock *sk) 2977 { 2978 struct mptcp_subflow_context *subflow; 2979 struct mptcp_sock *msk = mptcp_sk(sk); 2980 2981 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2982 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2983 msk->snd_nxt, msk->write_seq); 2984 2985 /* we still need to enqueue subflows or not really shutting down, 2986 * skip this 2987 */ 2988 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2989 mptcp_send_head(sk)) 2990 return; 2991 2992 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2993 2994 mptcp_for_each_subflow(msk, subflow) { 2995 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2996 2997 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2998 } 2999 } 3000 3001 static void __mptcp_wr_shutdown(struct sock *sk) 3002 { 3003 struct mptcp_sock *msk = mptcp_sk(sk); 3004 3005 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3006 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3007 !!mptcp_send_head(sk)); 3008 3009 /* will be ignored by fallback sockets */ 3010 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3011 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3012 3013 mptcp_check_send_data_fin(sk); 3014 } 3015 3016 static void __mptcp_destroy_sock(struct sock *sk) 3017 { 3018 struct mptcp_sock *msk = mptcp_sk(sk); 3019 3020 pr_debug("msk=%p\n", msk); 3021 3022 might_sleep(); 3023 3024 mptcp_stop_rtx_timer(sk); 3025 sk_stop_timer(sk, &sk->sk_timer); 3026 msk->pm.status = 0; 3027 mptcp_release_sched(msk); 3028 3029 sk->sk_prot->destroy(sk); 3030 3031 sk_stream_kill_queues(sk); 3032 xfrm_sk_free_policy(sk); 3033 3034 sock_put(sk); 3035 } 3036 3037 void __mptcp_unaccepted_force_close(struct sock *sk) 3038 { 3039 sock_set_flag(sk, SOCK_DEAD); 3040 mptcp_do_fastclose(sk); 3041 __mptcp_destroy_sock(sk); 3042 } 3043 3044 static __poll_t mptcp_check_readable(struct sock *sk) 3045 { 3046 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3047 } 3048 3049 static void mptcp_check_listen_stop(struct sock *sk) 3050 { 3051 struct sock *ssk; 3052 3053 if (inet_sk_state_load(sk) != TCP_LISTEN) 3054 return; 3055 3056 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3057 ssk = mptcp_sk(sk)->first; 3058 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3059 return; 3060 3061 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3062 tcp_set_state(ssk, TCP_CLOSE); 3063 mptcp_subflow_queue_clean(sk, ssk); 3064 inet_csk_listen_stop(ssk); 3065 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3066 release_sock(ssk); 3067 } 3068 3069 bool __mptcp_close(struct sock *sk, long timeout) 3070 { 3071 struct mptcp_subflow_context *subflow; 3072 struct mptcp_sock *msk = mptcp_sk(sk); 3073 bool do_cancel_work = false; 3074 int subflows_alive = 0; 3075 3076 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3077 3078 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3079 mptcp_check_listen_stop(sk); 3080 mptcp_set_state(sk, TCP_CLOSE); 3081 goto cleanup; 3082 } 3083 3084 if (mptcp_data_avail(msk) || timeout < 0) { 3085 /* If the msk has read data, or the caller explicitly ask it, 3086 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3087 */ 3088 mptcp_do_fastclose(sk); 3089 timeout = 0; 3090 } else if (mptcp_close_state(sk)) { 3091 __mptcp_wr_shutdown(sk); 3092 } 3093 3094 sk_stream_wait_close(sk, timeout); 3095 3096 cleanup: 3097 /* orphan all the subflows */ 3098 mptcp_for_each_subflow(msk, subflow) { 3099 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3100 bool slow = lock_sock_fast_nested(ssk); 3101 3102 subflows_alive += ssk->sk_state != TCP_CLOSE; 3103 3104 /* since the close timeout takes precedence on the fail one, 3105 * cancel the latter 3106 */ 3107 if (ssk == msk->first) 3108 subflow->fail_tout = 0; 3109 3110 /* detach from the parent socket, but allow data_ready to 3111 * push incoming data into the mptcp stack, to properly ack it 3112 */ 3113 ssk->sk_socket = NULL; 3114 ssk->sk_wq = NULL; 3115 unlock_sock_fast(ssk, slow); 3116 } 3117 sock_orphan(sk); 3118 3119 /* all the subflows are closed, only timeout can change the msk 3120 * state, let's not keep resources busy for no reasons 3121 */ 3122 if (subflows_alive == 0) 3123 mptcp_set_state(sk, TCP_CLOSE); 3124 3125 sock_hold(sk); 3126 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3127 mptcp_pm_connection_closed(msk); 3128 3129 if (sk->sk_state == TCP_CLOSE) { 3130 __mptcp_destroy_sock(sk); 3131 do_cancel_work = true; 3132 } else { 3133 mptcp_start_tout_timer(sk); 3134 } 3135 3136 return do_cancel_work; 3137 } 3138 3139 static void mptcp_close(struct sock *sk, long timeout) 3140 { 3141 bool do_cancel_work; 3142 3143 lock_sock(sk); 3144 3145 do_cancel_work = __mptcp_close(sk, timeout); 3146 release_sock(sk); 3147 if (do_cancel_work) 3148 mptcp_cancel_work(sk); 3149 3150 sock_put(sk); 3151 } 3152 3153 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3154 { 3155 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3156 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3157 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3158 3159 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3160 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3161 3162 if (msk6 && ssk6) { 3163 msk6->saddr = ssk6->saddr; 3164 msk6->flow_label = ssk6->flow_label; 3165 } 3166 #endif 3167 3168 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3169 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3170 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3171 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3172 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3173 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3174 } 3175 3176 static int mptcp_disconnect(struct sock *sk, int flags) 3177 { 3178 struct mptcp_sock *msk = mptcp_sk(sk); 3179 3180 /* We are on the fastopen error path. We can't call straight into the 3181 * subflows cleanup code due to lock nesting (we are already under 3182 * msk->firstsocket lock). 3183 */ 3184 if (msk->fastopening) 3185 return -EBUSY; 3186 3187 mptcp_check_listen_stop(sk); 3188 mptcp_set_state(sk, TCP_CLOSE); 3189 3190 mptcp_stop_rtx_timer(sk); 3191 mptcp_stop_tout_timer(sk); 3192 3193 mptcp_pm_connection_closed(msk); 3194 3195 /* msk->subflow is still intact, the following will not free the first 3196 * subflow 3197 */ 3198 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3199 3200 /* The first subflow is already in TCP_CLOSE status, the following 3201 * can't overlap with a fallback anymore 3202 */ 3203 spin_lock_bh(&msk->fallback_lock); 3204 msk->allow_subflows = true; 3205 msk->allow_infinite_fallback = true; 3206 WRITE_ONCE(msk->flags, 0); 3207 spin_unlock_bh(&msk->fallback_lock); 3208 3209 msk->cb_flags = 0; 3210 msk->recovery = false; 3211 WRITE_ONCE(msk->can_ack, false); 3212 WRITE_ONCE(msk->fully_established, false); 3213 WRITE_ONCE(msk->rcv_data_fin, false); 3214 WRITE_ONCE(msk->snd_data_fin_enable, false); 3215 WRITE_ONCE(msk->rcv_fastclose, false); 3216 WRITE_ONCE(msk->use_64bit_ack, false); 3217 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3218 mptcp_pm_data_reset(msk); 3219 mptcp_ca_reset(sk); 3220 msk->bytes_consumed = 0; 3221 msk->bytes_acked = 0; 3222 msk->bytes_received = 0; 3223 msk->bytes_sent = 0; 3224 msk->bytes_retrans = 0; 3225 msk->rcvspace_init = 0; 3226 3227 WRITE_ONCE(sk->sk_shutdown, 0); 3228 sk_error_report(sk); 3229 return 0; 3230 } 3231 3232 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3233 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3234 { 3235 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3236 3237 return &msk6->np; 3238 } 3239 3240 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3241 { 3242 const struct ipv6_pinfo *np = inet6_sk(sk); 3243 struct ipv6_txoptions *opt; 3244 struct ipv6_pinfo *newnp; 3245 3246 newnp = inet6_sk(newsk); 3247 3248 rcu_read_lock(); 3249 opt = rcu_dereference(np->opt); 3250 if (opt) { 3251 opt = ipv6_dup_options(newsk, opt); 3252 if (!opt) 3253 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3254 } 3255 RCU_INIT_POINTER(newnp->opt, opt); 3256 rcu_read_unlock(); 3257 } 3258 #endif 3259 3260 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3261 { 3262 struct ip_options_rcu *inet_opt, *newopt = NULL; 3263 const struct inet_sock *inet = inet_sk(sk); 3264 struct inet_sock *newinet; 3265 3266 newinet = inet_sk(newsk); 3267 3268 rcu_read_lock(); 3269 inet_opt = rcu_dereference(inet->inet_opt); 3270 if (inet_opt) { 3271 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3272 inet_opt->opt.optlen, GFP_ATOMIC); 3273 if (!newopt) 3274 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3275 } 3276 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3277 rcu_read_unlock(); 3278 } 3279 3280 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3281 const struct mptcp_options_received *mp_opt, 3282 struct sock *ssk, 3283 struct request_sock *req) 3284 { 3285 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3286 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3287 struct mptcp_subflow_context *subflow; 3288 struct mptcp_sock *msk; 3289 3290 if (!nsk) 3291 return NULL; 3292 3293 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3294 if (nsk->sk_family == AF_INET6) 3295 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3296 #endif 3297 3298 __mptcp_init_sock(nsk); 3299 3300 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3301 if (nsk->sk_family == AF_INET6) 3302 mptcp_copy_ip6_options(nsk, sk); 3303 else 3304 #endif 3305 mptcp_copy_ip_options(nsk, sk); 3306 3307 msk = mptcp_sk(nsk); 3308 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3309 WRITE_ONCE(msk->token, subflow_req->token); 3310 msk->in_accept_queue = 1; 3311 WRITE_ONCE(msk->fully_established, false); 3312 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3313 WRITE_ONCE(msk->csum_enabled, true); 3314 3315 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3316 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3317 WRITE_ONCE(msk->snd_una, msk->write_seq); 3318 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3319 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3320 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3321 3322 /* passive msk is created after the first/MPC subflow */ 3323 msk->subflow_id = 2; 3324 3325 sock_reset_flag(nsk, SOCK_RCU_FREE); 3326 security_inet_csk_clone(nsk, req); 3327 3328 /* this can't race with mptcp_close(), as the msk is 3329 * not yet exposted to user-space 3330 */ 3331 mptcp_set_state(nsk, TCP_ESTABLISHED); 3332 3333 /* The msk maintain a ref to each subflow in the connections list */ 3334 WRITE_ONCE(msk->first, ssk); 3335 subflow = mptcp_subflow_ctx(ssk); 3336 list_add(&subflow->node, &msk->conn_list); 3337 sock_hold(ssk); 3338 3339 /* new mpc subflow takes ownership of the newly 3340 * created mptcp socket 3341 */ 3342 mptcp_token_accept(subflow_req, msk); 3343 3344 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3345 * uses the correct data 3346 */ 3347 mptcp_copy_inaddrs(nsk, ssk); 3348 __mptcp_propagate_sndbuf(nsk, ssk); 3349 3350 mptcp_rcv_space_init(msk, ssk); 3351 3352 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3353 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3354 bh_unlock_sock(nsk); 3355 3356 /* note: the newly allocated socket refcount is 2 now */ 3357 return nsk; 3358 } 3359 3360 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3361 { 3362 const struct tcp_sock *tp = tcp_sk(ssk); 3363 3364 msk->rcvspace_init = 1; 3365 msk->rcvq_space.copied = 0; 3366 msk->rcvq_space.rtt_us = 0; 3367 3368 msk->rcvq_space.time = tp->tcp_mstamp; 3369 3370 /* initial rcv_space offering made to peer */ 3371 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3372 TCP_INIT_CWND * tp->advmss); 3373 if (msk->rcvq_space.space == 0) 3374 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3375 } 3376 3377 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3378 { 3379 struct mptcp_subflow_context *subflow, *tmp; 3380 struct sock *sk = (struct sock *)msk; 3381 3382 __mptcp_clear_xmit(sk); 3383 3384 /* join list will be eventually flushed (with rst) at sock lock release time */ 3385 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3386 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3387 3388 __skb_queue_purge(&sk->sk_receive_queue); 3389 skb_rbtree_purge(&msk->out_of_order_queue); 3390 3391 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3392 * inet_sock_destruct() will dispose it 3393 */ 3394 mptcp_token_destroy(msk); 3395 mptcp_pm_destroy(msk); 3396 } 3397 3398 static void mptcp_destroy(struct sock *sk) 3399 { 3400 struct mptcp_sock *msk = mptcp_sk(sk); 3401 3402 /* allow the following to close even the initial subflow */ 3403 msk->free_first = 1; 3404 mptcp_destroy_common(msk, 0); 3405 sk_sockets_allocated_dec(sk); 3406 } 3407 3408 void __mptcp_data_acked(struct sock *sk) 3409 { 3410 if (!sock_owned_by_user(sk)) 3411 __mptcp_clean_una(sk); 3412 else 3413 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3414 } 3415 3416 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3417 { 3418 if (!mptcp_send_head(sk)) 3419 return; 3420 3421 if (!sock_owned_by_user(sk)) 3422 __mptcp_subflow_push_pending(sk, ssk, false); 3423 else 3424 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3425 } 3426 3427 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3428 BIT(MPTCP_RETRANSMIT) | \ 3429 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3430 BIT(MPTCP_DEQUEUE)) 3431 3432 /* processes deferred events and flush wmem */ 3433 static void mptcp_release_cb(struct sock *sk) 3434 __must_hold(&sk->sk_lock.slock) 3435 { 3436 struct mptcp_sock *msk = mptcp_sk(sk); 3437 3438 for (;;) { 3439 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3440 struct list_head join_list; 3441 3442 if (!flags) 3443 break; 3444 3445 INIT_LIST_HEAD(&join_list); 3446 list_splice_init(&msk->join_list, &join_list); 3447 3448 /* the following actions acquire the subflow socket lock 3449 * 3450 * 1) can't be invoked in atomic scope 3451 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3452 * datapath acquires the msk socket spinlock while helding 3453 * the subflow socket lock 3454 */ 3455 msk->cb_flags &= ~flags; 3456 spin_unlock_bh(&sk->sk_lock.slock); 3457 3458 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3459 __mptcp_flush_join_list(sk, &join_list); 3460 if (flags & BIT(MPTCP_PUSH_PENDING)) 3461 __mptcp_push_pending(sk, 0); 3462 if (flags & BIT(MPTCP_RETRANSMIT)) 3463 __mptcp_retrans(sk); 3464 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3465 /* notify ack seq update */ 3466 mptcp_cleanup_rbuf(msk, 0); 3467 sk->sk_data_ready(sk); 3468 } 3469 3470 cond_resched(); 3471 spin_lock_bh(&sk->sk_lock.slock); 3472 } 3473 3474 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3475 __mptcp_clean_una_wakeup(sk); 3476 if (unlikely(msk->cb_flags)) { 3477 /* be sure to sync the msk state before taking actions 3478 * depending on sk_state (MPTCP_ERROR_REPORT) 3479 * On sk release avoid actions depending on the first subflow 3480 */ 3481 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3482 __mptcp_sync_state(sk, msk->pending_state); 3483 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3484 __mptcp_error_report(sk); 3485 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3486 __mptcp_sync_sndbuf(sk); 3487 } 3488 } 3489 3490 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3491 * TCP can't schedule delack timer before the subflow is fully established. 3492 * MPTCP uses the delack timer to do 3rd ack retransmissions 3493 */ 3494 static void schedule_3rdack_retransmission(struct sock *ssk) 3495 { 3496 struct inet_connection_sock *icsk = inet_csk(ssk); 3497 struct tcp_sock *tp = tcp_sk(ssk); 3498 unsigned long timeout; 3499 3500 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3501 return; 3502 3503 /* reschedule with a timeout above RTT, as we must look only for drop */ 3504 if (tp->srtt_us) 3505 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3506 else 3507 timeout = TCP_TIMEOUT_INIT; 3508 timeout += jiffies; 3509 3510 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3511 smp_store_release(&icsk->icsk_ack.pending, 3512 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3513 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3514 } 3515 3516 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3517 { 3518 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3519 struct sock *sk = subflow->conn; 3520 3521 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3522 mptcp_data_lock(sk); 3523 if (!sock_owned_by_user(sk)) 3524 __mptcp_subflow_push_pending(sk, ssk, true); 3525 else 3526 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3527 mptcp_data_unlock(sk); 3528 } 3529 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3530 mptcp_data_lock(sk); 3531 if (!sock_owned_by_user(sk)) 3532 __mptcp_sync_sndbuf(sk); 3533 else 3534 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3535 mptcp_data_unlock(sk); 3536 } 3537 if (status & BIT(MPTCP_DELEGATE_ACK)) 3538 schedule_3rdack_retransmission(ssk); 3539 } 3540 3541 static int mptcp_hash(struct sock *sk) 3542 { 3543 /* should never be called, 3544 * we hash the TCP subflows not the MPTCP socket 3545 */ 3546 WARN_ON_ONCE(1); 3547 return 0; 3548 } 3549 3550 static void mptcp_unhash(struct sock *sk) 3551 { 3552 /* called from sk_common_release(), but nothing to do here */ 3553 } 3554 3555 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3556 { 3557 struct mptcp_sock *msk = mptcp_sk(sk); 3558 3559 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3560 if (WARN_ON_ONCE(!msk->first)) 3561 return -EINVAL; 3562 3563 return inet_csk_get_port(msk->first, snum); 3564 } 3565 3566 void mptcp_finish_connect(struct sock *ssk) 3567 { 3568 struct mptcp_subflow_context *subflow; 3569 struct mptcp_sock *msk; 3570 struct sock *sk; 3571 3572 subflow = mptcp_subflow_ctx(ssk); 3573 sk = subflow->conn; 3574 msk = mptcp_sk(sk); 3575 3576 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3577 3578 subflow->map_seq = subflow->iasn; 3579 subflow->map_subflow_seq = 1; 3580 3581 /* the socket is not connected yet, no msk/subflow ops can access/race 3582 * accessing the field below 3583 */ 3584 WRITE_ONCE(msk->local_key, subflow->local_key); 3585 3586 mptcp_pm_new_connection(msk, ssk, 0); 3587 } 3588 3589 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3590 { 3591 write_lock_bh(&sk->sk_callback_lock); 3592 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3593 sk_set_socket(sk, parent); 3594 write_unlock_bh(&sk->sk_callback_lock); 3595 } 3596 3597 bool mptcp_finish_join(struct sock *ssk) 3598 { 3599 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3600 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3601 struct sock *parent = (void *)msk; 3602 bool ret = true; 3603 3604 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3605 3606 /* mptcp socket already closing? */ 3607 if (!mptcp_is_fully_established(parent)) { 3608 subflow->reset_reason = MPTCP_RST_EMPTCP; 3609 return false; 3610 } 3611 3612 /* active subflow, already present inside the conn_list */ 3613 if (!list_empty(&subflow->node)) { 3614 spin_lock_bh(&msk->fallback_lock); 3615 if (!msk->allow_subflows) { 3616 spin_unlock_bh(&msk->fallback_lock); 3617 return false; 3618 } 3619 mptcp_subflow_joined(msk, ssk); 3620 spin_unlock_bh(&msk->fallback_lock); 3621 mptcp_propagate_sndbuf(parent, ssk); 3622 return true; 3623 } 3624 3625 if (!mptcp_pm_allow_new_subflow(msk)) { 3626 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3627 goto err_prohibited; 3628 } 3629 3630 /* If we can't acquire msk socket lock here, let the release callback 3631 * handle it 3632 */ 3633 mptcp_data_lock(parent); 3634 if (!sock_owned_by_user(parent)) { 3635 ret = __mptcp_finish_join(msk, ssk); 3636 if (ret) { 3637 sock_hold(ssk); 3638 list_add_tail(&subflow->node, &msk->conn_list); 3639 } 3640 } else { 3641 sock_hold(ssk); 3642 list_add_tail(&subflow->node, &msk->join_list); 3643 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3644 } 3645 mptcp_data_unlock(parent); 3646 3647 if (!ret) { 3648 err_prohibited: 3649 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3650 return false; 3651 } 3652 3653 return true; 3654 } 3655 3656 static void mptcp_shutdown(struct sock *sk, int how) 3657 { 3658 pr_debug("sk=%p, how=%d\n", sk, how); 3659 3660 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3661 __mptcp_wr_shutdown(sk); 3662 } 3663 3664 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3665 { 3666 const struct sock *sk = (void *)msk; 3667 u64 delta; 3668 3669 if (sk->sk_state == TCP_LISTEN) 3670 return -EINVAL; 3671 3672 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3673 return 0; 3674 3675 delta = msk->write_seq - v; 3676 if (__mptcp_check_fallback(msk) && msk->first) { 3677 struct tcp_sock *tp = tcp_sk(msk->first); 3678 3679 /* the first subflow is disconnected after close - see 3680 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3681 * so ignore that status, too. 3682 */ 3683 if (!((1 << msk->first->sk_state) & 3684 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3685 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3686 } 3687 if (delta > INT_MAX) 3688 delta = INT_MAX; 3689 3690 return (int)delta; 3691 } 3692 3693 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3694 { 3695 struct mptcp_sock *msk = mptcp_sk(sk); 3696 bool slow; 3697 3698 switch (cmd) { 3699 case SIOCINQ: 3700 if (sk->sk_state == TCP_LISTEN) 3701 return -EINVAL; 3702 3703 lock_sock(sk); 3704 if (__mptcp_move_skbs(sk)) 3705 mptcp_cleanup_rbuf(msk, 0); 3706 *karg = mptcp_inq_hint(sk); 3707 release_sock(sk); 3708 break; 3709 case SIOCOUTQ: 3710 slow = lock_sock_fast(sk); 3711 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3712 unlock_sock_fast(sk, slow); 3713 break; 3714 case SIOCOUTQNSD: 3715 slow = lock_sock_fast(sk); 3716 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3717 unlock_sock_fast(sk, slow); 3718 break; 3719 default: 3720 return -ENOIOCTLCMD; 3721 } 3722 3723 return 0; 3724 } 3725 3726 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3727 { 3728 struct mptcp_subflow_context *subflow; 3729 struct mptcp_sock *msk = mptcp_sk(sk); 3730 int err = -EINVAL; 3731 struct sock *ssk; 3732 3733 ssk = __mptcp_nmpc_sk(msk); 3734 if (IS_ERR(ssk)) 3735 return PTR_ERR(ssk); 3736 3737 mptcp_set_state(sk, TCP_SYN_SENT); 3738 subflow = mptcp_subflow_ctx(ssk); 3739 #ifdef CONFIG_TCP_MD5SIG 3740 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3741 * TCP option space. 3742 */ 3743 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3744 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3745 #endif 3746 if (subflow->request_mptcp) { 3747 if (mptcp_active_should_disable(sk)) 3748 mptcp_early_fallback(msk, subflow, 3749 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3750 else if (mptcp_token_new_connect(ssk) < 0) 3751 mptcp_early_fallback(msk, subflow, 3752 MPTCP_MIB_TOKENFALLBACKINIT); 3753 } 3754 3755 WRITE_ONCE(msk->write_seq, subflow->idsn); 3756 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3757 WRITE_ONCE(msk->snd_una, subflow->idsn); 3758 if (likely(!__mptcp_check_fallback(msk))) 3759 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3760 3761 /* if reaching here via the fastopen/sendmsg path, the caller already 3762 * acquired the subflow socket lock, too. 3763 */ 3764 if (!msk->fastopening) 3765 lock_sock(ssk); 3766 3767 /* the following mirrors closely a very small chunk of code from 3768 * __inet_stream_connect() 3769 */ 3770 if (ssk->sk_state != TCP_CLOSE) 3771 goto out; 3772 3773 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3774 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3775 if (err) 3776 goto out; 3777 } 3778 3779 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3780 if (err < 0) 3781 goto out; 3782 3783 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3784 3785 out: 3786 if (!msk->fastopening) 3787 release_sock(ssk); 3788 3789 /* on successful connect, the msk state will be moved to established by 3790 * subflow_finish_connect() 3791 */ 3792 if (unlikely(err)) { 3793 /* avoid leaving a dangling token in an unconnected socket */ 3794 mptcp_token_destroy(msk); 3795 mptcp_set_state(sk, TCP_CLOSE); 3796 return err; 3797 } 3798 3799 mptcp_copy_inaddrs(sk, ssk); 3800 return 0; 3801 } 3802 3803 static struct proto mptcp_prot = { 3804 .name = "MPTCP", 3805 .owner = THIS_MODULE, 3806 .init = mptcp_init_sock, 3807 .connect = mptcp_connect, 3808 .disconnect = mptcp_disconnect, 3809 .close = mptcp_close, 3810 .setsockopt = mptcp_setsockopt, 3811 .getsockopt = mptcp_getsockopt, 3812 .shutdown = mptcp_shutdown, 3813 .destroy = mptcp_destroy, 3814 .sendmsg = mptcp_sendmsg, 3815 .ioctl = mptcp_ioctl, 3816 .recvmsg = mptcp_recvmsg, 3817 .release_cb = mptcp_release_cb, 3818 .hash = mptcp_hash, 3819 .unhash = mptcp_unhash, 3820 .get_port = mptcp_get_port, 3821 .stream_memory_free = mptcp_stream_memory_free, 3822 .sockets_allocated = &mptcp_sockets_allocated, 3823 3824 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3825 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3826 3827 .memory_pressure = &tcp_memory_pressure, 3828 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3829 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3830 .sysctl_mem = sysctl_tcp_mem, 3831 .obj_size = sizeof(struct mptcp_sock), 3832 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3833 .no_autobind = true, 3834 }; 3835 3836 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3837 { 3838 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3839 struct sock *ssk, *sk = sock->sk; 3840 int err = -EINVAL; 3841 3842 lock_sock(sk); 3843 ssk = __mptcp_nmpc_sk(msk); 3844 if (IS_ERR(ssk)) { 3845 err = PTR_ERR(ssk); 3846 goto unlock; 3847 } 3848 3849 if (sk->sk_family == AF_INET) 3850 err = inet_bind_sk(ssk, uaddr, addr_len); 3851 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3852 else if (sk->sk_family == AF_INET6) 3853 err = inet6_bind_sk(ssk, uaddr, addr_len); 3854 #endif 3855 if (!err) 3856 mptcp_copy_inaddrs(sk, ssk); 3857 3858 unlock: 3859 release_sock(sk); 3860 return err; 3861 } 3862 3863 static int mptcp_listen(struct socket *sock, int backlog) 3864 { 3865 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3866 struct sock *sk = sock->sk; 3867 struct sock *ssk; 3868 int err; 3869 3870 pr_debug("msk=%p\n", msk); 3871 3872 lock_sock(sk); 3873 3874 err = -EINVAL; 3875 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3876 goto unlock; 3877 3878 ssk = __mptcp_nmpc_sk(msk); 3879 if (IS_ERR(ssk)) { 3880 err = PTR_ERR(ssk); 3881 goto unlock; 3882 } 3883 3884 mptcp_set_state(sk, TCP_LISTEN); 3885 sock_set_flag(sk, SOCK_RCU_FREE); 3886 3887 lock_sock(ssk); 3888 err = __inet_listen_sk(ssk, backlog); 3889 release_sock(ssk); 3890 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3891 3892 if (!err) { 3893 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3894 mptcp_copy_inaddrs(sk, ssk); 3895 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3896 } 3897 3898 unlock: 3899 release_sock(sk); 3900 return err; 3901 } 3902 3903 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3904 struct proto_accept_arg *arg) 3905 { 3906 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3907 struct sock *ssk, *newsk; 3908 3909 pr_debug("msk=%p\n", msk); 3910 3911 /* Buggy applications can call accept on socket states other then LISTEN 3912 * but no need to allocate the first subflow just to error out. 3913 */ 3914 ssk = READ_ONCE(msk->first); 3915 if (!ssk) 3916 return -EINVAL; 3917 3918 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3919 newsk = inet_csk_accept(ssk, arg); 3920 if (!newsk) 3921 return arg->err; 3922 3923 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3924 if (sk_is_mptcp(newsk)) { 3925 struct mptcp_subflow_context *subflow; 3926 struct sock *new_mptcp_sock; 3927 3928 subflow = mptcp_subflow_ctx(newsk); 3929 new_mptcp_sock = subflow->conn; 3930 3931 /* is_mptcp should be false if subflow->conn is missing, see 3932 * subflow_syn_recv_sock() 3933 */ 3934 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3935 tcp_sk(newsk)->is_mptcp = 0; 3936 goto tcpfallback; 3937 } 3938 3939 newsk = new_mptcp_sock; 3940 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3941 3942 newsk->sk_kern_sock = arg->kern; 3943 lock_sock(newsk); 3944 __inet_accept(sock, newsock, newsk); 3945 3946 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3947 msk = mptcp_sk(newsk); 3948 msk->in_accept_queue = 0; 3949 3950 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3951 * This is needed so NOSPACE flag can be set from tcp stack. 3952 */ 3953 mptcp_for_each_subflow(msk, subflow) { 3954 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3955 3956 if (!ssk->sk_socket) 3957 mptcp_sock_graft(ssk, newsock); 3958 } 3959 3960 mptcp_rps_record_subflows(msk); 3961 3962 /* Do late cleanup for the first subflow as necessary. Also 3963 * deal with bad peers not doing a complete shutdown. 3964 */ 3965 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3966 __mptcp_close_ssk(newsk, msk->first, 3967 mptcp_subflow_ctx(msk->first), 0); 3968 if (unlikely(list_is_singular(&msk->conn_list))) 3969 mptcp_set_state(newsk, TCP_CLOSE); 3970 } 3971 } else { 3972 tcpfallback: 3973 newsk->sk_kern_sock = arg->kern; 3974 lock_sock(newsk); 3975 __inet_accept(sock, newsock, newsk); 3976 /* we are being invoked after accepting a non-mp-capable 3977 * flow: sk is a tcp_sk, not an mptcp one. 3978 * 3979 * Hand the socket over to tcp so all further socket ops 3980 * bypass mptcp. 3981 */ 3982 WRITE_ONCE(newsock->sk->sk_socket->ops, 3983 mptcp_fallback_tcp_ops(newsock->sk)); 3984 } 3985 release_sock(newsk); 3986 3987 return 0; 3988 } 3989 3990 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3991 { 3992 struct sock *sk = (struct sock *)msk; 3993 3994 if (__mptcp_stream_is_writeable(sk, 1)) 3995 return EPOLLOUT | EPOLLWRNORM; 3996 3997 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3998 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3999 if (__mptcp_stream_is_writeable(sk, 1)) 4000 return EPOLLOUT | EPOLLWRNORM; 4001 4002 return 0; 4003 } 4004 4005 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4006 struct poll_table_struct *wait) 4007 { 4008 struct sock *sk = sock->sk; 4009 struct mptcp_sock *msk; 4010 __poll_t mask = 0; 4011 u8 shutdown; 4012 int state; 4013 4014 msk = mptcp_sk(sk); 4015 sock_poll_wait(file, sock, wait); 4016 4017 state = inet_sk_state_load(sk); 4018 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4019 if (state == TCP_LISTEN) { 4020 struct sock *ssk = READ_ONCE(msk->first); 4021 4022 if (WARN_ON_ONCE(!ssk)) 4023 return 0; 4024 4025 return inet_csk_listen_poll(ssk); 4026 } 4027 4028 shutdown = READ_ONCE(sk->sk_shutdown); 4029 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4030 mask |= EPOLLHUP; 4031 if (shutdown & RCV_SHUTDOWN) 4032 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4033 4034 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4035 mask |= mptcp_check_readable(sk); 4036 if (shutdown & SEND_SHUTDOWN) 4037 mask |= EPOLLOUT | EPOLLWRNORM; 4038 else 4039 mask |= mptcp_check_writeable(msk); 4040 } else if (state == TCP_SYN_SENT && 4041 inet_test_bit(DEFER_CONNECT, sk)) { 4042 /* cf tcp_poll() note about TFO */ 4043 mask |= EPOLLOUT | EPOLLWRNORM; 4044 } 4045 4046 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4047 smp_rmb(); 4048 if (READ_ONCE(sk->sk_err)) 4049 mask |= EPOLLERR; 4050 4051 return mask; 4052 } 4053 4054 static const struct proto_ops mptcp_stream_ops = { 4055 .family = PF_INET, 4056 .owner = THIS_MODULE, 4057 .release = inet_release, 4058 .bind = mptcp_bind, 4059 .connect = inet_stream_connect, 4060 .socketpair = sock_no_socketpair, 4061 .accept = mptcp_stream_accept, 4062 .getname = inet_getname, 4063 .poll = mptcp_poll, 4064 .ioctl = inet_ioctl, 4065 .gettstamp = sock_gettstamp, 4066 .listen = mptcp_listen, 4067 .shutdown = inet_shutdown, 4068 .setsockopt = sock_common_setsockopt, 4069 .getsockopt = sock_common_getsockopt, 4070 .sendmsg = inet_sendmsg, 4071 .recvmsg = inet_recvmsg, 4072 .mmap = sock_no_mmap, 4073 .set_rcvlowat = mptcp_set_rcvlowat, 4074 }; 4075 4076 static struct inet_protosw mptcp_protosw = { 4077 .type = SOCK_STREAM, 4078 .protocol = IPPROTO_MPTCP, 4079 .prot = &mptcp_prot, 4080 .ops = &mptcp_stream_ops, 4081 .flags = INET_PROTOSW_ICSK, 4082 }; 4083 4084 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4085 { 4086 struct mptcp_delegated_action *delegated; 4087 struct mptcp_subflow_context *subflow; 4088 int work_done = 0; 4089 4090 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4091 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4092 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4093 4094 bh_lock_sock_nested(ssk); 4095 if (!sock_owned_by_user(ssk)) { 4096 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4097 } else { 4098 /* tcp_release_cb_override already processed 4099 * the action or will do at next release_sock(). 4100 * In both case must dequeue the subflow here - on the same 4101 * CPU that scheduled it. 4102 */ 4103 smp_wmb(); 4104 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4105 } 4106 bh_unlock_sock(ssk); 4107 sock_put(ssk); 4108 4109 if (++work_done == budget) 4110 return budget; 4111 } 4112 4113 /* always provide a 0 'work_done' argument, so that napi_complete_done 4114 * will not try accessing the NULL napi->dev ptr 4115 */ 4116 napi_complete_done(napi, 0); 4117 return work_done; 4118 } 4119 4120 void __init mptcp_proto_init(void) 4121 { 4122 struct mptcp_delegated_action *delegated; 4123 int cpu; 4124 4125 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4126 4127 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4128 panic("Failed to allocate MPTCP pcpu counter\n"); 4129 4130 mptcp_napi_dev = alloc_netdev_dummy(0); 4131 if (!mptcp_napi_dev) 4132 panic("Failed to allocate MPTCP dummy netdev\n"); 4133 for_each_possible_cpu(cpu) { 4134 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4135 INIT_LIST_HEAD(&delegated->head); 4136 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4137 mptcp_napi_poll); 4138 napi_enable(&delegated->napi); 4139 } 4140 4141 mptcp_subflow_init(); 4142 mptcp_pm_init(); 4143 mptcp_sched_init(); 4144 mptcp_token_init(); 4145 4146 if (proto_register(&mptcp_prot, 1) != 0) 4147 panic("Failed to register MPTCP proto.\n"); 4148 4149 inet_register_protosw(&mptcp_protosw); 4150 4151 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4152 } 4153 4154 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4155 static const struct proto_ops mptcp_v6_stream_ops = { 4156 .family = PF_INET6, 4157 .owner = THIS_MODULE, 4158 .release = inet6_release, 4159 .bind = mptcp_bind, 4160 .connect = inet_stream_connect, 4161 .socketpair = sock_no_socketpair, 4162 .accept = mptcp_stream_accept, 4163 .getname = inet6_getname, 4164 .poll = mptcp_poll, 4165 .ioctl = inet6_ioctl, 4166 .gettstamp = sock_gettstamp, 4167 .listen = mptcp_listen, 4168 .shutdown = inet_shutdown, 4169 .setsockopt = sock_common_setsockopt, 4170 .getsockopt = sock_common_getsockopt, 4171 .sendmsg = inet6_sendmsg, 4172 .recvmsg = inet6_recvmsg, 4173 .mmap = sock_no_mmap, 4174 #ifdef CONFIG_COMPAT 4175 .compat_ioctl = inet6_compat_ioctl, 4176 #endif 4177 .set_rcvlowat = mptcp_set_rcvlowat, 4178 }; 4179 4180 static struct proto mptcp_v6_prot; 4181 4182 static struct inet_protosw mptcp_v6_protosw = { 4183 .type = SOCK_STREAM, 4184 .protocol = IPPROTO_MPTCP, 4185 .prot = &mptcp_v6_prot, 4186 .ops = &mptcp_v6_stream_ops, 4187 .flags = INET_PROTOSW_ICSK, 4188 }; 4189 4190 int __init mptcp_proto_v6_init(void) 4191 { 4192 int err; 4193 4194 mptcp_v6_prot = mptcp_prot; 4195 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4196 mptcp_v6_prot.slab = NULL; 4197 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4198 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4199 4200 err = proto_register(&mptcp_v6_prot, 1); 4201 if (err) 4202 return err; 4203 4204 err = inet6_register_protosw(&mptcp_v6_protosw); 4205 if (err) 4206 proto_unregister(&mptcp_v6_prot); 4207 4208 return err; 4209 } 4210 #endif 4211