1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp_states.h> 19 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 20 #include <net/transp_v6.h> 21 #endif 22 #include <net/mptcp.h> 23 #include <net/xfrm.h> 24 #include <asm/ioctls.h> 25 #include "protocol.h" 26 #include "mib.h" 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/mptcp.h> 30 31 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 32 struct mptcp6_sock { 33 struct mptcp_sock msk; 34 struct ipv6_pinfo np; 35 }; 36 #endif 37 38 enum { 39 MPTCP_CMSG_TS = BIT(0), 40 MPTCP_CMSG_INQ = BIT(1), 41 }; 42 43 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 44 45 static void __mptcp_destroy_sock(struct sock *sk); 46 static void mptcp_check_send_data_fin(struct sock *sk); 47 48 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 49 static struct net_device mptcp_napi_dev; 50 51 /* Returns end sequence number of the receiver's advertised window */ 52 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 53 { 54 return READ_ONCE(msk->wnd_end); 55 } 56 57 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 58 { 59 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 60 if (sk->sk_prot == &tcpv6_prot) 61 return &inet6_stream_ops; 62 #endif 63 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 64 return &inet_stream_ops; 65 } 66 67 static int __mptcp_socket_create(struct mptcp_sock *msk) 68 { 69 struct mptcp_subflow_context *subflow; 70 struct sock *sk = (struct sock *)msk; 71 struct socket *ssock; 72 int err; 73 74 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 75 if (err) 76 return err; 77 78 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 79 WRITE_ONCE(msk->first, ssock->sk); 80 subflow = mptcp_subflow_ctx(ssock->sk); 81 list_add(&subflow->node, &msk->conn_list); 82 sock_hold(ssock->sk); 83 subflow->request_mptcp = 1; 84 subflow->subflow_id = msk->subflow_id++; 85 86 /* This is the first subflow, always with id 0 */ 87 WRITE_ONCE(subflow->local_id, 0); 88 mptcp_sock_graft(msk->first, sk->sk_socket); 89 iput(SOCK_INODE(ssock)); 90 91 return 0; 92 } 93 94 /* If the MPC handshake is not started, returns the first subflow, 95 * eventually allocating it. 96 */ 97 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 98 { 99 struct sock *sk = (struct sock *)msk; 100 int ret; 101 102 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 103 return ERR_PTR(-EINVAL); 104 105 if (!msk->first) { 106 ret = __mptcp_socket_create(msk); 107 if (ret) 108 return ERR_PTR(ret); 109 } 110 111 return msk->first; 112 } 113 114 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 115 { 116 sk_drops_add(sk, skb); 117 __kfree_skb(skb); 118 } 119 120 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 121 { 122 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 123 mptcp_sk(sk)->rmem_fwd_alloc + size); 124 } 125 126 static void mptcp_rmem_charge(struct sock *sk, int size) 127 { 128 mptcp_rmem_fwd_alloc_add(sk, -size); 129 } 130 131 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 132 struct sk_buff *from) 133 { 134 bool fragstolen; 135 int delta; 136 137 if (MPTCP_SKB_CB(from)->offset || 138 !skb_try_coalesce(to, from, &fragstolen, &delta)) 139 return false; 140 141 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 142 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 143 to->len, MPTCP_SKB_CB(from)->end_seq); 144 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 145 146 /* note the fwd memory can reach a negative value after accounting 147 * for the delta, but the later skb free will restore a non 148 * negative one 149 */ 150 atomic_add(delta, &sk->sk_rmem_alloc); 151 mptcp_rmem_charge(sk, delta); 152 kfree_skb_partial(from, fragstolen); 153 154 return true; 155 } 156 157 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 158 struct sk_buff *from) 159 { 160 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 161 return false; 162 163 return mptcp_try_coalesce((struct sock *)msk, to, from); 164 } 165 166 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 167 { 168 amount >>= PAGE_SHIFT; 169 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 170 __sk_mem_reduce_allocated(sk, amount); 171 } 172 173 static void mptcp_rmem_uncharge(struct sock *sk, int size) 174 { 175 struct mptcp_sock *msk = mptcp_sk(sk); 176 int reclaimable; 177 178 mptcp_rmem_fwd_alloc_add(sk, size); 179 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 180 181 /* see sk_mem_uncharge() for the rationale behind the following schema */ 182 if (unlikely(reclaimable >= PAGE_SIZE)) 183 __mptcp_rmem_reclaim(sk, reclaimable); 184 } 185 186 static void mptcp_rfree(struct sk_buff *skb) 187 { 188 unsigned int len = skb->truesize; 189 struct sock *sk = skb->sk; 190 191 atomic_sub(len, &sk->sk_rmem_alloc); 192 mptcp_rmem_uncharge(sk, len); 193 } 194 195 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 196 { 197 skb_orphan(skb); 198 skb->sk = sk; 199 skb->destructor = mptcp_rfree; 200 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 201 mptcp_rmem_charge(sk, skb->truesize); 202 } 203 204 /* "inspired" by tcp_data_queue_ofo(), main differences: 205 * - use mptcp seqs 206 * - don't cope with sacks 207 */ 208 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 209 { 210 struct sock *sk = (struct sock *)msk; 211 struct rb_node **p, *parent; 212 u64 seq, end_seq, max_seq; 213 struct sk_buff *skb1; 214 215 seq = MPTCP_SKB_CB(skb)->map_seq; 216 end_seq = MPTCP_SKB_CB(skb)->end_seq; 217 max_seq = atomic64_read(&msk->rcv_wnd_sent); 218 219 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 220 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 221 if (after64(end_seq, max_seq)) { 222 /* out of window */ 223 mptcp_drop(sk, skb); 224 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 225 (unsigned long long)end_seq - (unsigned long)max_seq, 226 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 227 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 228 return; 229 } 230 231 p = &msk->out_of_order_queue.rb_node; 232 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 233 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 234 rb_link_node(&skb->rbnode, NULL, p); 235 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 236 msk->ooo_last_skb = skb; 237 goto end; 238 } 239 240 /* with 2 subflows, adding at end of ooo queue is quite likely 241 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 242 */ 243 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 246 return; 247 } 248 249 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 250 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 251 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 252 parent = &msk->ooo_last_skb->rbnode; 253 p = &parent->rb_right; 254 goto insert; 255 } 256 257 /* Find place to insert this segment. Handle overlaps on the way. */ 258 parent = NULL; 259 while (*p) { 260 parent = *p; 261 skb1 = rb_to_skb(parent); 262 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 263 p = &parent->rb_left; 264 continue; 265 } 266 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 267 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 268 /* All the bits are present. Drop. */ 269 mptcp_drop(sk, skb); 270 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 271 return; 272 } 273 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 274 /* partial overlap: 275 * | skb | 276 * | skb1 | 277 * continue traversing 278 */ 279 } else { 280 /* skb's seq == skb1's seq and skb covers skb1. 281 * Replace skb1 with skb. 282 */ 283 rb_replace_node(&skb1->rbnode, &skb->rbnode, 284 &msk->out_of_order_queue); 285 mptcp_drop(sk, skb1); 286 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 287 goto merge_right; 288 } 289 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 290 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 291 return; 292 } 293 p = &parent->rb_right; 294 } 295 296 insert: 297 /* Insert segment into RB tree. */ 298 rb_link_node(&skb->rbnode, parent, p); 299 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 300 301 merge_right: 302 /* Remove other segments covered by skb. */ 303 while ((skb1 = skb_rb_next(skb)) != NULL) { 304 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 305 break; 306 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 307 mptcp_drop(sk, skb1); 308 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 309 } 310 /* If there is no skb after us, we are the last_skb ! */ 311 if (!skb1) 312 msk->ooo_last_skb = skb; 313 314 end: 315 skb_condense(skb); 316 mptcp_set_owner_r(skb, sk); 317 } 318 319 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 320 { 321 struct mptcp_sock *msk = mptcp_sk(sk); 322 int amt, amount; 323 324 if (size <= msk->rmem_fwd_alloc) 325 return true; 326 327 size -= msk->rmem_fwd_alloc; 328 amt = sk_mem_pages(size); 329 amount = amt << PAGE_SHIFT; 330 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 331 return false; 332 333 mptcp_rmem_fwd_alloc_add(sk, amount); 334 return true; 335 } 336 337 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 338 struct sk_buff *skb, unsigned int offset, 339 size_t copy_len) 340 { 341 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 342 struct sock *sk = (struct sock *)msk; 343 struct sk_buff *tail; 344 bool has_rxtstamp; 345 346 __skb_unlink(skb, &ssk->sk_receive_queue); 347 348 skb_ext_reset(skb); 349 skb_orphan(skb); 350 351 /* try to fetch required memory from subflow */ 352 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 353 goto drop; 354 355 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 356 357 /* the skb map_seq accounts for the skb offset: 358 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 359 * value 360 */ 361 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 362 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 363 MPTCP_SKB_CB(skb)->offset = offset; 364 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 365 366 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 367 /* in sequence */ 368 msk->bytes_received += copy_len; 369 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 370 tail = skb_peek_tail(&sk->sk_receive_queue); 371 if (tail && mptcp_try_coalesce(sk, tail, skb)) 372 return true; 373 374 mptcp_set_owner_r(skb, sk); 375 __skb_queue_tail(&sk->sk_receive_queue, skb); 376 return true; 377 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 378 mptcp_data_queue_ofo(msk, skb); 379 return false; 380 } 381 382 /* old data, keep it simple and drop the whole pkt, sender 383 * will retransmit as needed, if needed. 384 */ 385 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 386 drop: 387 mptcp_drop(sk, skb); 388 return false; 389 } 390 391 static void mptcp_stop_rtx_timer(struct sock *sk) 392 { 393 struct inet_connection_sock *icsk = inet_csk(sk); 394 395 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 396 mptcp_sk(sk)->timer_ival = 0; 397 } 398 399 static void mptcp_close_wake_up(struct sock *sk) 400 { 401 if (sock_flag(sk, SOCK_DEAD)) 402 return; 403 404 sk->sk_state_change(sk); 405 if (sk->sk_shutdown == SHUTDOWN_MASK || 406 sk->sk_state == TCP_CLOSE) 407 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 408 else 409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 410 } 411 412 /* called under the msk socket lock */ 413 static bool mptcp_pending_data_fin_ack(struct sock *sk) 414 { 415 struct mptcp_sock *msk = mptcp_sk(sk); 416 417 return ((1 << sk->sk_state) & 418 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 419 msk->write_seq == READ_ONCE(msk->snd_una); 420 } 421 422 static void mptcp_check_data_fin_ack(struct sock *sk) 423 { 424 struct mptcp_sock *msk = mptcp_sk(sk); 425 426 /* Look for an acknowledged DATA_FIN */ 427 if (mptcp_pending_data_fin_ack(sk)) { 428 WRITE_ONCE(msk->snd_data_fin_enable, 0); 429 430 switch (sk->sk_state) { 431 case TCP_FIN_WAIT1: 432 mptcp_set_state(sk, TCP_FIN_WAIT2); 433 break; 434 case TCP_CLOSING: 435 case TCP_LAST_ACK: 436 mptcp_set_state(sk, TCP_CLOSE); 437 break; 438 } 439 440 mptcp_close_wake_up(sk); 441 } 442 } 443 444 /* can be called with no lock acquired */ 445 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 446 { 447 struct mptcp_sock *msk = mptcp_sk(sk); 448 449 if (READ_ONCE(msk->rcv_data_fin) && 450 ((1 << inet_sk_state_load(sk)) & 451 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 452 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 453 454 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 455 if (seq) 456 *seq = rcv_data_fin_seq; 457 458 return true; 459 } 460 } 461 462 return false; 463 } 464 465 static void mptcp_set_datafin_timeout(struct sock *sk) 466 { 467 struct inet_connection_sock *icsk = inet_csk(sk); 468 u32 retransmits; 469 470 retransmits = min_t(u32, icsk->icsk_retransmits, 471 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 472 473 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 474 } 475 476 static void __mptcp_set_timeout(struct sock *sk, long tout) 477 { 478 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 479 } 480 481 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 482 { 483 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 484 485 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 486 inet_csk(ssk)->icsk_timeout - jiffies : 0; 487 } 488 489 static void mptcp_set_timeout(struct sock *sk) 490 { 491 struct mptcp_subflow_context *subflow; 492 long tout = 0; 493 494 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 495 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 496 __mptcp_set_timeout(sk, tout); 497 } 498 499 static inline bool tcp_can_send_ack(const struct sock *ssk) 500 { 501 return !((1 << inet_sk_state_load(ssk)) & 502 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 503 } 504 505 void __mptcp_subflow_send_ack(struct sock *ssk) 506 { 507 if (tcp_can_send_ack(ssk)) 508 tcp_send_ack(ssk); 509 } 510 511 static void mptcp_subflow_send_ack(struct sock *ssk) 512 { 513 bool slow; 514 515 slow = lock_sock_fast(ssk); 516 __mptcp_subflow_send_ack(ssk); 517 unlock_sock_fast(ssk, slow); 518 } 519 520 static void mptcp_send_ack(struct mptcp_sock *msk) 521 { 522 struct mptcp_subflow_context *subflow; 523 524 mptcp_for_each_subflow(msk, subflow) 525 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 526 } 527 528 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 529 { 530 bool slow; 531 532 slow = lock_sock_fast(ssk); 533 if (tcp_can_send_ack(ssk)) 534 tcp_cleanup_rbuf(ssk, 1); 535 unlock_sock_fast(ssk, slow); 536 } 537 538 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 539 { 540 const struct inet_connection_sock *icsk = inet_csk(ssk); 541 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 542 const struct tcp_sock *tp = tcp_sk(ssk); 543 544 return (ack_pending & ICSK_ACK_SCHED) && 545 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 546 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 547 (rx_empty && ack_pending & 548 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 549 } 550 551 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 552 { 553 int old_space = READ_ONCE(msk->old_wspace); 554 struct mptcp_subflow_context *subflow; 555 struct sock *sk = (struct sock *)msk; 556 int space = __mptcp_space(sk); 557 bool cleanup, rx_empty; 558 559 cleanup = (space > 0) && (space >= (old_space << 1)); 560 rx_empty = !__mptcp_rmem(sk); 561 562 mptcp_for_each_subflow(msk, subflow) { 563 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 564 565 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 566 mptcp_subflow_cleanup_rbuf(ssk); 567 } 568 } 569 570 static bool mptcp_check_data_fin(struct sock *sk) 571 { 572 struct mptcp_sock *msk = mptcp_sk(sk); 573 u64 rcv_data_fin_seq; 574 bool ret = false; 575 576 /* Need to ack a DATA_FIN received from a peer while this side 577 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 578 * msk->rcv_data_fin was set when parsing the incoming options 579 * at the subflow level and the msk lock was not held, so this 580 * is the first opportunity to act on the DATA_FIN and change 581 * the msk state. 582 * 583 * If we are caught up to the sequence number of the incoming 584 * DATA_FIN, send the DATA_ACK now and do state transition. If 585 * not caught up, do nothing and let the recv code send DATA_ACK 586 * when catching up. 587 */ 588 589 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 590 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 591 WRITE_ONCE(msk->rcv_data_fin, 0); 592 593 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 594 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 595 596 switch (sk->sk_state) { 597 case TCP_ESTABLISHED: 598 mptcp_set_state(sk, TCP_CLOSE_WAIT); 599 break; 600 case TCP_FIN_WAIT1: 601 mptcp_set_state(sk, TCP_CLOSING); 602 break; 603 case TCP_FIN_WAIT2: 604 mptcp_set_state(sk, TCP_CLOSE); 605 break; 606 default: 607 /* Other states not expected */ 608 WARN_ON_ONCE(1); 609 break; 610 } 611 612 ret = true; 613 if (!__mptcp_check_fallback(msk)) 614 mptcp_send_ack(msk); 615 mptcp_close_wake_up(sk); 616 } 617 return ret; 618 } 619 620 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 621 struct sock *ssk, 622 unsigned int *bytes) 623 { 624 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 625 struct sock *sk = (struct sock *)msk; 626 unsigned int moved = 0; 627 bool more_data_avail; 628 struct tcp_sock *tp; 629 bool done = false; 630 int sk_rbuf; 631 632 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 633 634 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 635 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 636 637 if (unlikely(ssk_rbuf > sk_rbuf)) { 638 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 639 sk_rbuf = ssk_rbuf; 640 } 641 } 642 643 pr_debug("msk=%p ssk=%p", msk, ssk); 644 tp = tcp_sk(ssk); 645 do { 646 u32 map_remaining, offset; 647 u32 seq = tp->copied_seq; 648 struct sk_buff *skb; 649 bool fin; 650 651 /* try to move as much data as available */ 652 map_remaining = subflow->map_data_len - 653 mptcp_subflow_get_map_offset(subflow); 654 655 skb = skb_peek(&ssk->sk_receive_queue); 656 if (!skb) { 657 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 658 * a different CPU can have already processed the pending 659 * data, stop here or we can enter an infinite loop 660 */ 661 if (!moved) 662 done = true; 663 break; 664 } 665 666 if (__mptcp_check_fallback(msk)) { 667 /* Under fallback skbs have no MPTCP extension and TCP could 668 * collapse them between the dummy map creation and the 669 * current dequeue. Be sure to adjust the map size. 670 */ 671 map_remaining = skb->len; 672 subflow->map_data_len = skb->len; 673 } 674 675 offset = seq - TCP_SKB_CB(skb)->seq; 676 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 677 if (fin) { 678 done = true; 679 seq++; 680 } 681 682 if (offset < skb->len) { 683 size_t len = skb->len - offset; 684 685 if (tp->urg_data) 686 done = true; 687 688 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 689 moved += len; 690 seq += len; 691 692 if (WARN_ON_ONCE(map_remaining < len)) 693 break; 694 } else { 695 WARN_ON_ONCE(!fin); 696 sk_eat_skb(ssk, skb); 697 done = true; 698 } 699 700 WRITE_ONCE(tp->copied_seq, seq); 701 more_data_avail = mptcp_subflow_data_available(ssk); 702 703 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 704 done = true; 705 break; 706 } 707 } while (more_data_avail); 708 709 *bytes += moved; 710 return done; 711 } 712 713 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 714 { 715 struct sock *sk = (struct sock *)msk; 716 struct sk_buff *skb, *tail; 717 bool moved = false; 718 struct rb_node *p; 719 u64 end_seq; 720 721 p = rb_first(&msk->out_of_order_queue); 722 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 723 while (p) { 724 skb = rb_to_skb(p); 725 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 726 break; 727 728 p = rb_next(p); 729 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 730 731 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 732 msk->ack_seq))) { 733 mptcp_drop(sk, skb); 734 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 735 continue; 736 } 737 738 end_seq = MPTCP_SKB_CB(skb)->end_seq; 739 tail = skb_peek_tail(&sk->sk_receive_queue); 740 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 741 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 742 743 /* skip overlapping data, if any */ 744 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 745 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 746 delta); 747 MPTCP_SKB_CB(skb)->offset += delta; 748 MPTCP_SKB_CB(skb)->map_seq += delta; 749 __skb_queue_tail(&sk->sk_receive_queue, skb); 750 } 751 msk->bytes_received += end_seq - msk->ack_seq; 752 WRITE_ONCE(msk->ack_seq, end_seq); 753 moved = true; 754 } 755 return moved; 756 } 757 758 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 759 { 760 int err = sock_error(ssk); 761 int ssk_state; 762 763 if (!err) 764 return false; 765 766 /* only propagate errors on fallen-back sockets or 767 * on MPC connect 768 */ 769 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 770 return false; 771 772 /* We need to propagate only transition to CLOSE state. 773 * Orphaned socket will see such state change via 774 * subflow_sched_work_if_closed() and that path will properly 775 * destroy the msk as needed. 776 */ 777 ssk_state = inet_sk_state_load(ssk); 778 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 779 mptcp_set_state(sk, ssk_state); 780 WRITE_ONCE(sk->sk_err, -err); 781 782 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 783 smp_wmb(); 784 sk_error_report(sk); 785 return true; 786 } 787 788 void __mptcp_error_report(struct sock *sk) 789 { 790 struct mptcp_subflow_context *subflow; 791 struct mptcp_sock *msk = mptcp_sk(sk); 792 793 mptcp_for_each_subflow(msk, subflow) 794 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 795 break; 796 } 797 798 /* In most cases we will be able to lock the mptcp socket. If its already 799 * owned, we need to defer to the work queue to avoid ABBA deadlock. 800 */ 801 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 802 { 803 struct sock *sk = (struct sock *)msk; 804 unsigned int moved = 0; 805 806 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 807 __mptcp_ofo_queue(msk); 808 if (unlikely(ssk->sk_err)) { 809 if (!sock_owned_by_user(sk)) 810 __mptcp_error_report(sk); 811 else 812 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 813 } 814 815 /* If the moves have caught up with the DATA_FIN sequence number 816 * it's time to ack the DATA_FIN and change socket state, but 817 * this is not a good place to change state. Let the workqueue 818 * do it. 819 */ 820 if (mptcp_pending_data_fin(sk, NULL)) 821 mptcp_schedule_work(sk); 822 return moved > 0; 823 } 824 825 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 826 { 827 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 828 struct mptcp_sock *msk = mptcp_sk(sk); 829 int sk_rbuf, ssk_rbuf; 830 831 /* The peer can send data while we are shutting down this 832 * subflow at msk destruction time, but we must avoid enqueuing 833 * more data to the msk receive queue 834 */ 835 if (unlikely(subflow->disposable)) 836 return; 837 838 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 839 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 840 if (unlikely(ssk_rbuf > sk_rbuf)) 841 sk_rbuf = ssk_rbuf; 842 843 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 844 if (__mptcp_rmem(sk) > sk_rbuf) { 845 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 846 return; 847 } 848 849 /* Wake-up the reader only for in-sequence data */ 850 mptcp_data_lock(sk); 851 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 852 sk->sk_data_ready(sk); 853 mptcp_data_unlock(sk); 854 } 855 856 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 857 { 858 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 859 WRITE_ONCE(msk->allow_infinite_fallback, false); 860 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 861 } 862 863 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 864 { 865 struct sock *sk = (struct sock *)msk; 866 867 if (sk->sk_state != TCP_ESTABLISHED) 868 return false; 869 870 /* attach to msk socket only after we are sure we will deal with it 871 * at close time 872 */ 873 if (sk->sk_socket && !ssk->sk_socket) 874 mptcp_sock_graft(ssk, sk->sk_socket); 875 876 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 877 mptcp_sockopt_sync_locked(msk, ssk); 878 mptcp_subflow_joined(msk, ssk); 879 mptcp_stop_tout_timer(sk); 880 __mptcp_propagate_sndbuf(sk, ssk); 881 return true; 882 } 883 884 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 885 { 886 struct mptcp_subflow_context *tmp, *subflow; 887 struct mptcp_sock *msk = mptcp_sk(sk); 888 889 list_for_each_entry_safe(subflow, tmp, join_list, node) { 890 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 891 bool slow = lock_sock_fast(ssk); 892 893 list_move_tail(&subflow->node, &msk->conn_list); 894 if (!__mptcp_finish_join(msk, ssk)) 895 mptcp_subflow_reset(ssk); 896 unlock_sock_fast(ssk, slow); 897 } 898 } 899 900 static bool mptcp_rtx_timer_pending(struct sock *sk) 901 { 902 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 903 } 904 905 static void mptcp_reset_rtx_timer(struct sock *sk) 906 { 907 struct inet_connection_sock *icsk = inet_csk(sk); 908 unsigned long tout; 909 910 /* prevent rescheduling on close */ 911 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 912 return; 913 914 tout = mptcp_sk(sk)->timer_ival; 915 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 916 } 917 918 bool mptcp_schedule_work(struct sock *sk) 919 { 920 if (inet_sk_state_load(sk) != TCP_CLOSE && 921 schedule_work(&mptcp_sk(sk)->work)) { 922 /* each subflow already holds a reference to the sk, and the 923 * workqueue is invoked by a subflow, so sk can't go away here. 924 */ 925 sock_hold(sk); 926 return true; 927 } 928 return false; 929 } 930 931 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 932 { 933 struct mptcp_subflow_context *subflow; 934 935 msk_owned_by_me(msk); 936 937 mptcp_for_each_subflow(msk, subflow) { 938 if (READ_ONCE(subflow->data_avail)) 939 return mptcp_subflow_tcp_sock(subflow); 940 } 941 942 return NULL; 943 } 944 945 static bool mptcp_skb_can_collapse_to(u64 write_seq, 946 const struct sk_buff *skb, 947 const struct mptcp_ext *mpext) 948 { 949 if (!tcp_skb_can_collapse_to(skb)) 950 return false; 951 952 /* can collapse only if MPTCP level sequence is in order and this 953 * mapping has not been xmitted yet 954 */ 955 return mpext && mpext->data_seq + mpext->data_len == write_seq && 956 !mpext->frozen; 957 } 958 959 /* we can append data to the given data frag if: 960 * - there is space available in the backing page_frag 961 * - the data frag tail matches the current page_frag free offset 962 * - the data frag end sequence number matches the current write seq 963 */ 964 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 965 const struct page_frag *pfrag, 966 const struct mptcp_data_frag *df) 967 { 968 return df && pfrag->page == df->page && 969 pfrag->size - pfrag->offset > 0 && 970 pfrag->offset == (df->offset + df->data_len) && 971 df->data_seq + df->data_len == msk->write_seq; 972 } 973 974 static void dfrag_uncharge(struct sock *sk, int len) 975 { 976 sk_mem_uncharge(sk, len); 977 sk_wmem_queued_add(sk, -len); 978 } 979 980 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 981 { 982 int len = dfrag->data_len + dfrag->overhead; 983 984 list_del(&dfrag->list); 985 dfrag_uncharge(sk, len); 986 put_page(dfrag->page); 987 } 988 989 /* called under both the msk socket lock and the data lock */ 990 static void __mptcp_clean_una(struct sock *sk) 991 { 992 struct mptcp_sock *msk = mptcp_sk(sk); 993 struct mptcp_data_frag *dtmp, *dfrag; 994 u64 snd_una; 995 996 snd_una = msk->snd_una; 997 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 998 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 999 break; 1000 1001 if (unlikely(dfrag == msk->first_pending)) { 1002 /* in recovery mode can see ack after the current snd head */ 1003 if (WARN_ON_ONCE(!msk->recovery)) 1004 break; 1005 1006 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1007 } 1008 1009 dfrag_clear(sk, dfrag); 1010 } 1011 1012 dfrag = mptcp_rtx_head(sk); 1013 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1014 u64 delta = snd_una - dfrag->data_seq; 1015 1016 /* prevent wrap around in recovery mode */ 1017 if (unlikely(delta > dfrag->already_sent)) { 1018 if (WARN_ON_ONCE(!msk->recovery)) 1019 goto out; 1020 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1021 goto out; 1022 dfrag->already_sent += delta - dfrag->already_sent; 1023 } 1024 1025 dfrag->data_seq += delta; 1026 dfrag->offset += delta; 1027 dfrag->data_len -= delta; 1028 dfrag->already_sent -= delta; 1029 1030 dfrag_uncharge(sk, delta); 1031 } 1032 1033 /* all retransmitted data acked, recovery completed */ 1034 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1035 msk->recovery = false; 1036 1037 out: 1038 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1039 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1040 mptcp_stop_rtx_timer(sk); 1041 } else { 1042 mptcp_reset_rtx_timer(sk); 1043 } 1044 1045 if (mptcp_pending_data_fin_ack(sk)) 1046 mptcp_schedule_work(sk); 1047 } 1048 1049 static void __mptcp_clean_una_wakeup(struct sock *sk) 1050 { 1051 lockdep_assert_held_once(&sk->sk_lock.slock); 1052 1053 __mptcp_clean_una(sk); 1054 mptcp_write_space(sk); 1055 } 1056 1057 static void mptcp_clean_una_wakeup(struct sock *sk) 1058 { 1059 mptcp_data_lock(sk); 1060 __mptcp_clean_una_wakeup(sk); 1061 mptcp_data_unlock(sk); 1062 } 1063 1064 static void mptcp_enter_memory_pressure(struct sock *sk) 1065 { 1066 struct mptcp_subflow_context *subflow; 1067 struct mptcp_sock *msk = mptcp_sk(sk); 1068 bool first = true; 1069 1070 mptcp_for_each_subflow(msk, subflow) { 1071 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1072 1073 if (first) 1074 tcp_enter_memory_pressure(ssk); 1075 sk_stream_moderate_sndbuf(ssk); 1076 1077 first = false; 1078 } 1079 __mptcp_sync_sndbuf(sk); 1080 } 1081 1082 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1083 * data 1084 */ 1085 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1086 { 1087 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1088 pfrag, sk->sk_allocation))) 1089 return true; 1090 1091 mptcp_enter_memory_pressure(sk); 1092 return false; 1093 } 1094 1095 static struct mptcp_data_frag * 1096 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1097 int orig_offset) 1098 { 1099 int offset = ALIGN(orig_offset, sizeof(long)); 1100 struct mptcp_data_frag *dfrag; 1101 1102 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1103 dfrag->data_len = 0; 1104 dfrag->data_seq = msk->write_seq; 1105 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1106 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1107 dfrag->already_sent = 0; 1108 dfrag->page = pfrag->page; 1109 1110 return dfrag; 1111 } 1112 1113 struct mptcp_sendmsg_info { 1114 int mss_now; 1115 int size_goal; 1116 u16 limit; 1117 u16 sent; 1118 unsigned int flags; 1119 bool data_lock_held; 1120 }; 1121 1122 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1123 u64 data_seq, int avail_size) 1124 { 1125 u64 window_end = mptcp_wnd_end(msk); 1126 u64 mptcp_snd_wnd; 1127 1128 if (__mptcp_check_fallback(msk)) 1129 return avail_size; 1130 1131 mptcp_snd_wnd = window_end - data_seq; 1132 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1133 1134 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1135 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1136 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1137 } 1138 1139 return avail_size; 1140 } 1141 1142 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1143 { 1144 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1145 1146 if (!mpext) 1147 return false; 1148 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1149 return true; 1150 } 1151 1152 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1153 { 1154 struct sk_buff *skb; 1155 1156 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1157 if (likely(skb)) { 1158 if (likely(__mptcp_add_ext(skb, gfp))) { 1159 skb_reserve(skb, MAX_TCP_HEADER); 1160 skb->ip_summed = CHECKSUM_PARTIAL; 1161 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1162 return skb; 1163 } 1164 __kfree_skb(skb); 1165 } else { 1166 mptcp_enter_memory_pressure(sk); 1167 } 1168 return NULL; 1169 } 1170 1171 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1172 { 1173 struct sk_buff *skb; 1174 1175 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1176 if (!skb) 1177 return NULL; 1178 1179 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1180 tcp_skb_entail(ssk, skb); 1181 return skb; 1182 } 1183 tcp_skb_tsorted_anchor_cleanup(skb); 1184 kfree_skb(skb); 1185 return NULL; 1186 } 1187 1188 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1189 { 1190 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1191 1192 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1193 } 1194 1195 /* note: this always recompute the csum on the whole skb, even 1196 * if we just appended a single frag. More status info needed 1197 */ 1198 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1199 { 1200 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1201 __wsum csum = ~csum_unfold(mpext->csum); 1202 int offset = skb->len - added; 1203 1204 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1205 } 1206 1207 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1208 struct sock *ssk, 1209 struct mptcp_ext *mpext) 1210 { 1211 if (!mpext) 1212 return; 1213 1214 mpext->infinite_map = 1; 1215 mpext->data_len = 0; 1216 1217 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1218 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1219 pr_fallback(msk); 1220 mptcp_do_fallback(ssk); 1221 } 1222 1223 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1224 1225 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1226 struct mptcp_data_frag *dfrag, 1227 struct mptcp_sendmsg_info *info) 1228 { 1229 u64 data_seq = dfrag->data_seq + info->sent; 1230 int offset = dfrag->offset + info->sent; 1231 struct mptcp_sock *msk = mptcp_sk(sk); 1232 bool zero_window_probe = false; 1233 struct mptcp_ext *mpext = NULL; 1234 bool can_coalesce = false; 1235 bool reuse_skb = true; 1236 struct sk_buff *skb; 1237 size_t copy; 1238 int i; 1239 1240 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1241 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1242 1243 if (WARN_ON_ONCE(info->sent > info->limit || 1244 info->limit > dfrag->data_len)) 1245 return 0; 1246 1247 if (unlikely(!__tcp_can_send(ssk))) 1248 return -EAGAIN; 1249 1250 /* compute send limit */ 1251 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1252 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1253 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1254 copy = info->size_goal; 1255 1256 skb = tcp_write_queue_tail(ssk); 1257 if (skb && copy > skb->len) { 1258 /* Limit the write to the size available in the 1259 * current skb, if any, so that we create at most a new skb. 1260 * Explicitly tells TCP internals to avoid collapsing on later 1261 * queue management operation, to avoid breaking the ext <-> 1262 * SSN association set here 1263 */ 1264 mpext = mptcp_get_ext(skb); 1265 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1266 TCP_SKB_CB(skb)->eor = 1; 1267 tcp_mark_push(tcp_sk(ssk), skb); 1268 goto alloc_skb; 1269 } 1270 1271 i = skb_shinfo(skb)->nr_frags; 1272 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1273 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1274 tcp_mark_push(tcp_sk(ssk), skb); 1275 goto alloc_skb; 1276 } 1277 1278 copy -= skb->len; 1279 } else { 1280 alloc_skb: 1281 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1282 if (!skb) 1283 return -ENOMEM; 1284 1285 i = skb_shinfo(skb)->nr_frags; 1286 reuse_skb = false; 1287 mpext = mptcp_get_ext(skb); 1288 } 1289 1290 /* Zero window and all data acked? Probe. */ 1291 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1292 if (copy == 0) { 1293 u64 snd_una = READ_ONCE(msk->snd_una); 1294 1295 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1296 tcp_remove_empty_skb(ssk); 1297 return 0; 1298 } 1299 1300 zero_window_probe = true; 1301 data_seq = snd_una - 1; 1302 copy = 1; 1303 } 1304 1305 copy = min_t(size_t, copy, info->limit - info->sent); 1306 if (!sk_wmem_schedule(ssk, copy)) { 1307 tcp_remove_empty_skb(ssk); 1308 return -ENOMEM; 1309 } 1310 1311 if (can_coalesce) { 1312 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1313 } else { 1314 get_page(dfrag->page); 1315 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1316 } 1317 1318 skb->len += copy; 1319 skb->data_len += copy; 1320 skb->truesize += copy; 1321 sk_wmem_queued_add(ssk, copy); 1322 sk_mem_charge(ssk, copy); 1323 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1324 TCP_SKB_CB(skb)->end_seq += copy; 1325 tcp_skb_pcount_set(skb, 0); 1326 1327 /* on skb reuse we just need to update the DSS len */ 1328 if (reuse_skb) { 1329 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1330 mpext->data_len += copy; 1331 goto out; 1332 } 1333 1334 memset(mpext, 0, sizeof(*mpext)); 1335 mpext->data_seq = data_seq; 1336 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1337 mpext->data_len = copy; 1338 mpext->use_map = 1; 1339 mpext->dsn64 = 1; 1340 1341 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1342 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1343 mpext->dsn64); 1344 1345 if (zero_window_probe) { 1346 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1347 mpext->frozen = 1; 1348 if (READ_ONCE(msk->csum_enabled)) 1349 mptcp_update_data_checksum(skb, copy); 1350 tcp_push_pending_frames(ssk); 1351 return 0; 1352 } 1353 out: 1354 if (READ_ONCE(msk->csum_enabled)) 1355 mptcp_update_data_checksum(skb, copy); 1356 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1357 mptcp_update_infinite_map(msk, ssk, mpext); 1358 trace_mptcp_sendmsg_frag(mpext); 1359 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1360 return copy; 1361 } 1362 1363 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1364 sizeof(struct tcphdr) - \ 1365 MAX_TCP_OPTION_SPACE - \ 1366 sizeof(struct ipv6hdr) - \ 1367 sizeof(struct frag_hdr)) 1368 1369 struct subflow_send_info { 1370 struct sock *ssk; 1371 u64 linger_time; 1372 }; 1373 1374 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1375 { 1376 if (!subflow->stale) 1377 return; 1378 1379 subflow->stale = 0; 1380 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1381 } 1382 1383 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1384 { 1385 if (unlikely(subflow->stale)) { 1386 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1387 1388 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1389 return false; 1390 1391 mptcp_subflow_set_active(subflow); 1392 } 1393 return __mptcp_subflow_active(subflow); 1394 } 1395 1396 #define SSK_MODE_ACTIVE 0 1397 #define SSK_MODE_BACKUP 1 1398 #define SSK_MODE_MAX 2 1399 1400 /* implement the mptcp packet scheduler; 1401 * returns the subflow that will transmit the next DSS 1402 * additionally updates the rtx timeout 1403 */ 1404 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1405 { 1406 struct subflow_send_info send_info[SSK_MODE_MAX]; 1407 struct mptcp_subflow_context *subflow; 1408 struct sock *sk = (struct sock *)msk; 1409 u32 pace, burst, wmem; 1410 int i, nr_active = 0; 1411 struct sock *ssk; 1412 u64 linger_time; 1413 long tout = 0; 1414 1415 /* pick the subflow with the lower wmem/wspace ratio */ 1416 for (i = 0; i < SSK_MODE_MAX; ++i) { 1417 send_info[i].ssk = NULL; 1418 send_info[i].linger_time = -1; 1419 } 1420 1421 mptcp_for_each_subflow(msk, subflow) { 1422 trace_mptcp_subflow_get_send(subflow); 1423 ssk = mptcp_subflow_tcp_sock(subflow); 1424 if (!mptcp_subflow_active(subflow)) 1425 continue; 1426 1427 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1428 nr_active += !subflow->backup; 1429 pace = subflow->avg_pacing_rate; 1430 if (unlikely(!pace)) { 1431 /* init pacing rate from socket */ 1432 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1433 pace = subflow->avg_pacing_rate; 1434 if (!pace) 1435 continue; 1436 } 1437 1438 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1439 if (linger_time < send_info[subflow->backup].linger_time) { 1440 send_info[subflow->backup].ssk = ssk; 1441 send_info[subflow->backup].linger_time = linger_time; 1442 } 1443 } 1444 __mptcp_set_timeout(sk, tout); 1445 1446 /* pick the best backup if no other subflow is active */ 1447 if (!nr_active) 1448 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1449 1450 /* According to the blest algorithm, to avoid HoL blocking for the 1451 * faster flow, we need to: 1452 * - estimate the faster flow linger time 1453 * - use the above to estimate the amount of byte transferred 1454 * by the faster flow 1455 * - check that the amount of queued data is greter than the above, 1456 * otherwise do not use the picked, slower, subflow 1457 * We select the subflow with the shorter estimated time to flush 1458 * the queued mem, which basically ensure the above. We just need 1459 * to check that subflow has a non empty cwin. 1460 */ 1461 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1462 if (!ssk || !sk_stream_memory_free(ssk)) 1463 return NULL; 1464 1465 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1466 wmem = READ_ONCE(ssk->sk_wmem_queued); 1467 if (!burst) 1468 return ssk; 1469 1470 subflow = mptcp_subflow_ctx(ssk); 1471 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1472 READ_ONCE(ssk->sk_pacing_rate) * burst, 1473 burst + wmem); 1474 msk->snd_burst = burst; 1475 return ssk; 1476 } 1477 1478 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1479 { 1480 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1481 release_sock(ssk); 1482 } 1483 1484 static void mptcp_update_post_push(struct mptcp_sock *msk, 1485 struct mptcp_data_frag *dfrag, 1486 u32 sent) 1487 { 1488 u64 snd_nxt_new = dfrag->data_seq; 1489 1490 dfrag->already_sent += sent; 1491 1492 msk->snd_burst -= sent; 1493 1494 snd_nxt_new += dfrag->already_sent; 1495 1496 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1497 * is recovering after a failover. In that event, this re-sends 1498 * old segments. 1499 * 1500 * Thus compute snd_nxt_new candidate based on 1501 * the dfrag->data_seq that was sent and the data 1502 * that has been handed to the subflow for transmission 1503 * and skip update in case it was old dfrag. 1504 */ 1505 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1506 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1507 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1508 } 1509 } 1510 1511 void mptcp_check_and_set_pending(struct sock *sk) 1512 { 1513 if (mptcp_send_head(sk)) { 1514 mptcp_data_lock(sk); 1515 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1516 mptcp_data_unlock(sk); 1517 } 1518 } 1519 1520 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1521 struct mptcp_sendmsg_info *info) 1522 { 1523 struct mptcp_sock *msk = mptcp_sk(sk); 1524 struct mptcp_data_frag *dfrag; 1525 int len, copied = 0, err = 0; 1526 1527 while ((dfrag = mptcp_send_head(sk))) { 1528 info->sent = dfrag->already_sent; 1529 info->limit = dfrag->data_len; 1530 len = dfrag->data_len - dfrag->already_sent; 1531 while (len > 0) { 1532 int ret = 0; 1533 1534 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1535 if (ret <= 0) { 1536 err = copied ? : ret; 1537 goto out; 1538 } 1539 1540 info->sent += ret; 1541 copied += ret; 1542 len -= ret; 1543 1544 mptcp_update_post_push(msk, dfrag, ret); 1545 } 1546 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1547 1548 if (msk->snd_burst <= 0 || 1549 !sk_stream_memory_free(ssk) || 1550 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1551 err = copied; 1552 goto out; 1553 } 1554 mptcp_set_timeout(sk); 1555 } 1556 err = copied; 1557 1558 out: 1559 return err; 1560 } 1561 1562 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1563 { 1564 struct sock *prev_ssk = NULL, *ssk = NULL; 1565 struct mptcp_sock *msk = mptcp_sk(sk); 1566 struct mptcp_sendmsg_info info = { 1567 .flags = flags, 1568 }; 1569 bool do_check_data_fin = false; 1570 int push_count = 1; 1571 1572 while (mptcp_send_head(sk) && (push_count > 0)) { 1573 struct mptcp_subflow_context *subflow; 1574 int ret = 0; 1575 1576 if (mptcp_sched_get_send(msk)) 1577 break; 1578 1579 push_count = 0; 1580 1581 mptcp_for_each_subflow(msk, subflow) { 1582 if (READ_ONCE(subflow->scheduled)) { 1583 mptcp_subflow_set_scheduled(subflow, false); 1584 1585 prev_ssk = ssk; 1586 ssk = mptcp_subflow_tcp_sock(subflow); 1587 if (ssk != prev_ssk) { 1588 /* First check. If the ssk has changed since 1589 * the last round, release prev_ssk 1590 */ 1591 if (prev_ssk) 1592 mptcp_push_release(prev_ssk, &info); 1593 1594 /* Need to lock the new subflow only if different 1595 * from the previous one, otherwise we are still 1596 * helding the relevant lock 1597 */ 1598 lock_sock(ssk); 1599 } 1600 1601 push_count++; 1602 1603 ret = __subflow_push_pending(sk, ssk, &info); 1604 if (ret <= 0) { 1605 if (ret != -EAGAIN || 1606 (1 << ssk->sk_state) & 1607 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1608 push_count--; 1609 continue; 1610 } 1611 do_check_data_fin = true; 1612 } 1613 } 1614 } 1615 1616 /* at this point we held the socket lock for the last subflow we used */ 1617 if (ssk) 1618 mptcp_push_release(ssk, &info); 1619 1620 /* ensure the rtx timer is running */ 1621 if (!mptcp_rtx_timer_pending(sk)) 1622 mptcp_reset_rtx_timer(sk); 1623 if (do_check_data_fin) 1624 mptcp_check_send_data_fin(sk); 1625 } 1626 1627 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1628 { 1629 struct mptcp_sock *msk = mptcp_sk(sk); 1630 struct mptcp_sendmsg_info info = { 1631 .data_lock_held = true, 1632 }; 1633 bool keep_pushing = true; 1634 struct sock *xmit_ssk; 1635 int copied = 0; 1636 1637 info.flags = 0; 1638 while (mptcp_send_head(sk) && keep_pushing) { 1639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1640 int ret = 0; 1641 1642 /* check for a different subflow usage only after 1643 * spooling the first chunk of data 1644 */ 1645 if (first) { 1646 mptcp_subflow_set_scheduled(subflow, false); 1647 ret = __subflow_push_pending(sk, ssk, &info); 1648 first = false; 1649 if (ret <= 0) 1650 break; 1651 copied += ret; 1652 continue; 1653 } 1654 1655 if (mptcp_sched_get_send(msk)) 1656 goto out; 1657 1658 if (READ_ONCE(subflow->scheduled)) { 1659 mptcp_subflow_set_scheduled(subflow, false); 1660 ret = __subflow_push_pending(sk, ssk, &info); 1661 if (ret <= 0) 1662 keep_pushing = false; 1663 copied += ret; 1664 } 1665 1666 mptcp_for_each_subflow(msk, subflow) { 1667 if (READ_ONCE(subflow->scheduled)) { 1668 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1669 if (xmit_ssk != ssk) { 1670 mptcp_subflow_delegate(subflow, 1671 MPTCP_DELEGATE_SEND); 1672 keep_pushing = false; 1673 } 1674 } 1675 } 1676 } 1677 1678 out: 1679 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1680 * not going to flush it via release_sock() 1681 */ 1682 if (copied) { 1683 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1684 info.size_goal); 1685 if (!mptcp_rtx_timer_pending(sk)) 1686 mptcp_reset_rtx_timer(sk); 1687 1688 if (msk->snd_data_fin_enable && 1689 msk->snd_nxt + 1 == msk->write_seq) 1690 mptcp_schedule_work(sk); 1691 } 1692 } 1693 1694 static int mptcp_disconnect(struct sock *sk, int flags); 1695 1696 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1697 size_t len, int *copied_syn) 1698 { 1699 unsigned int saved_flags = msg->msg_flags; 1700 struct mptcp_sock *msk = mptcp_sk(sk); 1701 struct sock *ssk; 1702 int ret; 1703 1704 /* on flags based fastopen the mptcp is supposed to create the 1705 * first subflow right now. Otherwise we are in the defer_connect 1706 * path, and the first subflow must be already present. 1707 * Since the defer_connect flag is cleared after the first succsful 1708 * fastopen attempt, no need to check for additional subflow status. 1709 */ 1710 if (msg->msg_flags & MSG_FASTOPEN) { 1711 ssk = __mptcp_nmpc_sk(msk); 1712 if (IS_ERR(ssk)) 1713 return PTR_ERR(ssk); 1714 } 1715 if (!msk->first) 1716 return -EINVAL; 1717 1718 ssk = msk->first; 1719 1720 lock_sock(ssk); 1721 msg->msg_flags |= MSG_DONTWAIT; 1722 msk->fastopening = 1; 1723 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1724 msk->fastopening = 0; 1725 msg->msg_flags = saved_flags; 1726 release_sock(ssk); 1727 1728 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1729 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1730 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1731 msg->msg_namelen, msg->msg_flags, 1); 1732 1733 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1734 * case of any error, except timeout or signal 1735 */ 1736 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1737 *copied_syn = 0; 1738 } else if (ret && ret != -EINPROGRESS) { 1739 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1740 * __inet_stream_connect() can fail, due to looking check, 1741 * see mptcp_disconnect(). 1742 * Attempt it again outside the problematic scope. 1743 */ 1744 if (!mptcp_disconnect(sk, 0)) 1745 sk->sk_socket->state = SS_UNCONNECTED; 1746 } 1747 inet_clear_bit(DEFER_CONNECT, sk); 1748 1749 return ret; 1750 } 1751 1752 static int do_copy_data_nocache(struct sock *sk, int copy, 1753 struct iov_iter *from, char *to) 1754 { 1755 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1756 if (!copy_from_iter_full_nocache(to, copy, from)) 1757 return -EFAULT; 1758 } else if (!copy_from_iter_full(to, copy, from)) { 1759 return -EFAULT; 1760 } 1761 return 0; 1762 } 1763 1764 /* open-code sk_stream_memory_free() plus sent limit computation to 1765 * avoid indirect calls in fast-path. 1766 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1767 * annotations. 1768 */ 1769 static u32 mptcp_send_limit(const struct sock *sk) 1770 { 1771 const struct mptcp_sock *msk = mptcp_sk(sk); 1772 u32 limit, not_sent; 1773 1774 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1775 return 0; 1776 1777 limit = mptcp_notsent_lowat(sk); 1778 if (limit == UINT_MAX) 1779 return UINT_MAX; 1780 1781 not_sent = msk->write_seq - msk->snd_nxt; 1782 if (not_sent >= limit) 1783 return 0; 1784 1785 return limit - not_sent; 1786 } 1787 1788 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1789 { 1790 struct mptcp_sock *msk = mptcp_sk(sk); 1791 struct page_frag *pfrag; 1792 size_t copied = 0; 1793 int ret = 0; 1794 long timeo; 1795 1796 /* silently ignore everything else */ 1797 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1798 1799 lock_sock(sk); 1800 1801 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1802 msg->msg_flags & MSG_FASTOPEN)) { 1803 int copied_syn = 0; 1804 1805 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1806 copied += copied_syn; 1807 if (ret == -EINPROGRESS && copied_syn > 0) 1808 goto out; 1809 else if (ret) 1810 goto do_error; 1811 } 1812 1813 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1814 1815 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1816 ret = sk_stream_wait_connect(sk, &timeo); 1817 if (ret) 1818 goto do_error; 1819 } 1820 1821 ret = -EPIPE; 1822 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1823 goto do_error; 1824 1825 pfrag = sk_page_frag(sk); 1826 1827 while (msg_data_left(msg)) { 1828 int total_ts, frag_truesize = 0; 1829 struct mptcp_data_frag *dfrag; 1830 bool dfrag_collapsed; 1831 size_t psize, offset; 1832 u32 copy_limit; 1833 1834 /* ensure fitting the notsent_lowat() constraint */ 1835 copy_limit = mptcp_send_limit(sk); 1836 if (!copy_limit) 1837 goto wait_for_memory; 1838 1839 /* reuse tail pfrag, if possible, or carve a new one from the 1840 * page allocator 1841 */ 1842 dfrag = mptcp_pending_tail(sk); 1843 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1844 if (!dfrag_collapsed) { 1845 if (!mptcp_page_frag_refill(sk, pfrag)) 1846 goto wait_for_memory; 1847 1848 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1849 frag_truesize = dfrag->overhead; 1850 } 1851 1852 /* we do not bound vs wspace, to allow a single packet. 1853 * memory accounting will prevent execessive memory usage 1854 * anyway 1855 */ 1856 offset = dfrag->offset + dfrag->data_len; 1857 psize = pfrag->size - offset; 1858 psize = min_t(size_t, psize, msg_data_left(msg)); 1859 psize = min_t(size_t, psize, copy_limit); 1860 total_ts = psize + frag_truesize; 1861 1862 if (!sk_wmem_schedule(sk, total_ts)) 1863 goto wait_for_memory; 1864 1865 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1866 page_address(dfrag->page) + offset); 1867 if (ret) 1868 goto do_error; 1869 1870 /* data successfully copied into the write queue */ 1871 sk_forward_alloc_add(sk, -total_ts); 1872 copied += psize; 1873 dfrag->data_len += psize; 1874 frag_truesize += psize; 1875 pfrag->offset += frag_truesize; 1876 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1877 1878 /* charge data on mptcp pending queue to the msk socket 1879 * Note: we charge such data both to sk and ssk 1880 */ 1881 sk_wmem_queued_add(sk, frag_truesize); 1882 if (!dfrag_collapsed) { 1883 get_page(dfrag->page); 1884 list_add_tail(&dfrag->list, &msk->rtx_queue); 1885 if (!msk->first_pending) 1886 WRITE_ONCE(msk->first_pending, dfrag); 1887 } 1888 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1889 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1890 !dfrag_collapsed); 1891 1892 continue; 1893 1894 wait_for_memory: 1895 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1896 __mptcp_push_pending(sk, msg->msg_flags); 1897 ret = sk_stream_wait_memory(sk, &timeo); 1898 if (ret) 1899 goto do_error; 1900 } 1901 1902 if (copied) 1903 __mptcp_push_pending(sk, msg->msg_flags); 1904 1905 out: 1906 release_sock(sk); 1907 return copied; 1908 1909 do_error: 1910 if (copied) 1911 goto out; 1912 1913 copied = sk_stream_error(sk, msg->msg_flags, ret); 1914 goto out; 1915 } 1916 1917 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1918 struct msghdr *msg, 1919 size_t len, int flags, 1920 struct scm_timestamping_internal *tss, 1921 int *cmsg_flags) 1922 { 1923 struct sk_buff *skb, *tmp; 1924 int copied = 0; 1925 1926 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1927 u32 offset = MPTCP_SKB_CB(skb)->offset; 1928 u32 data_len = skb->len - offset; 1929 u32 count = min_t(size_t, len - copied, data_len); 1930 int err; 1931 1932 if (!(flags & MSG_TRUNC)) { 1933 err = skb_copy_datagram_msg(skb, offset, msg, count); 1934 if (unlikely(err < 0)) { 1935 if (!copied) 1936 return err; 1937 break; 1938 } 1939 } 1940 1941 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1942 tcp_update_recv_tstamps(skb, tss); 1943 *cmsg_flags |= MPTCP_CMSG_TS; 1944 } 1945 1946 copied += count; 1947 1948 if (count < data_len) { 1949 if (!(flags & MSG_PEEK)) { 1950 MPTCP_SKB_CB(skb)->offset += count; 1951 MPTCP_SKB_CB(skb)->map_seq += count; 1952 msk->bytes_consumed += count; 1953 } 1954 break; 1955 } 1956 1957 if (!(flags & MSG_PEEK)) { 1958 /* we will bulk release the skb memory later */ 1959 skb->destructor = NULL; 1960 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1961 __skb_unlink(skb, &msk->receive_queue); 1962 __kfree_skb(skb); 1963 msk->bytes_consumed += count; 1964 } 1965 1966 if (copied >= len) 1967 break; 1968 } 1969 1970 return copied; 1971 } 1972 1973 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1974 * 1975 * Only difference: Use highest rtt estimate of the subflows in use. 1976 */ 1977 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1978 { 1979 struct mptcp_subflow_context *subflow; 1980 struct sock *sk = (struct sock *)msk; 1981 u8 scaling_ratio = U8_MAX; 1982 u32 time, advmss = 1; 1983 u64 rtt_us, mstamp; 1984 1985 msk_owned_by_me(msk); 1986 1987 if (copied <= 0) 1988 return; 1989 1990 if (!msk->rcvspace_init) 1991 mptcp_rcv_space_init(msk, msk->first); 1992 1993 msk->rcvq_space.copied += copied; 1994 1995 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1996 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1997 1998 rtt_us = msk->rcvq_space.rtt_us; 1999 if (rtt_us && time < (rtt_us >> 3)) 2000 return; 2001 2002 rtt_us = 0; 2003 mptcp_for_each_subflow(msk, subflow) { 2004 const struct tcp_sock *tp; 2005 u64 sf_rtt_us; 2006 u32 sf_advmss; 2007 2008 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2009 2010 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2011 sf_advmss = READ_ONCE(tp->advmss); 2012 2013 rtt_us = max(sf_rtt_us, rtt_us); 2014 advmss = max(sf_advmss, advmss); 2015 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2016 } 2017 2018 msk->rcvq_space.rtt_us = rtt_us; 2019 msk->scaling_ratio = scaling_ratio; 2020 if (time < (rtt_us >> 3) || rtt_us == 0) 2021 return; 2022 2023 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2024 goto new_measure; 2025 2026 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2027 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2028 u64 rcvwin, grow; 2029 int rcvbuf; 2030 2031 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2032 2033 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2034 2035 do_div(grow, msk->rcvq_space.space); 2036 rcvwin += (grow << 1); 2037 2038 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2039 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2040 2041 if (rcvbuf > sk->sk_rcvbuf) { 2042 u32 window_clamp; 2043 2044 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2045 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2046 2047 /* Make subflows follow along. If we do not do this, we 2048 * get drops at subflow level if skbs can't be moved to 2049 * the mptcp rx queue fast enough (announced rcv_win can 2050 * exceed ssk->sk_rcvbuf). 2051 */ 2052 mptcp_for_each_subflow(msk, subflow) { 2053 struct sock *ssk; 2054 bool slow; 2055 2056 ssk = mptcp_subflow_tcp_sock(subflow); 2057 slow = lock_sock_fast(ssk); 2058 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2059 tcp_sk(ssk)->window_clamp = window_clamp; 2060 tcp_cleanup_rbuf(ssk, 1); 2061 unlock_sock_fast(ssk, slow); 2062 } 2063 } 2064 } 2065 2066 msk->rcvq_space.space = msk->rcvq_space.copied; 2067 new_measure: 2068 msk->rcvq_space.copied = 0; 2069 msk->rcvq_space.time = mstamp; 2070 } 2071 2072 static void __mptcp_update_rmem(struct sock *sk) 2073 { 2074 struct mptcp_sock *msk = mptcp_sk(sk); 2075 2076 if (!msk->rmem_released) 2077 return; 2078 2079 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2080 mptcp_rmem_uncharge(sk, msk->rmem_released); 2081 WRITE_ONCE(msk->rmem_released, 0); 2082 } 2083 2084 static void __mptcp_splice_receive_queue(struct sock *sk) 2085 { 2086 struct mptcp_sock *msk = mptcp_sk(sk); 2087 2088 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2089 } 2090 2091 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2092 { 2093 struct sock *sk = (struct sock *)msk; 2094 unsigned int moved = 0; 2095 bool ret, done; 2096 2097 do { 2098 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2099 bool slowpath; 2100 2101 /* we can have data pending in the subflows only if the msk 2102 * receive buffer was full at subflow_data_ready() time, 2103 * that is an unlikely slow path. 2104 */ 2105 if (likely(!ssk)) 2106 break; 2107 2108 slowpath = lock_sock_fast(ssk); 2109 mptcp_data_lock(sk); 2110 __mptcp_update_rmem(sk); 2111 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2112 mptcp_data_unlock(sk); 2113 2114 if (unlikely(ssk->sk_err)) 2115 __mptcp_error_report(sk); 2116 unlock_sock_fast(ssk, slowpath); 2117 } while (!done); 2118 2119 /* acquire the data lock only if some input data is pending */ 2120 ret = moved > 0; 2121 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2122 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2123 mptcp_data_lock(sk); 2124 __mptcp_update_rmem(sk); 2125 ret |= __mptcp_ofo_queue(msk); 2126 __mptcp_splice_receive_queue(sk); 2127 mptcp_data_unlock(sk); 2128 } 2129 if (ret) 2130 mptcp_check_data_fin((struct sock *)msk); 2131 return !skb_queue_empty(&msk->receive_queue); 2132 } 2133 2134 static unsigned int mptcp_inq_hint(const struct sock *sk) 2135 { 2136 const struct mptcp_sock *msk = mptcp_sk(sk); 2137 const struct sk_buff *skb; 2138 2139 skb = skb_peek(&msk->receive_queue); 2140 if (skb) { 2141 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2142 2143 if (hint_val >= INT_MAX) 2144 return INT_MAX; 2145 2146 return (unsigned int)hint_val; 2147 } 2148 2149 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2150 return 1; 2151 2152 return 0; 2153 } 2154 2155 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2156 int flags, int *addr_len) 2157 { 2158 struct mptcp_sock *msk = mptcp_sk(sk); 2159 struct scm_timestamping_internal tss; 2160 int copied = 0, cmsg_flags = 0; 2161 int target; 2162 long timeo; 2163 2164 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2165 if (unlikely(flags & MSG_ERRQUEUE)) 2166 return inet_recv_error(sk, msg, len, addr_len); 2167 2168 lock_sock(sk); 2169 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2170 copied = -ENOTCONN; 2171 goto out_err; 2172 } 2173 2174 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2175 2176 len = min_t(size_t, len, INT_MAX); 2177 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2178 2179 if (unlikely(msk->recvmsg_inq)) 2180 cmsg_flags = MPTCP_CMSG_INQ; 2181 2182 while (copied < len) { 2183 int bytes_read; 2184 2185 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2186 if (unlikely(bytes_read < 0)) { 2187 if (!copied) 2188 copied = bytes_read; 2189 goto out_err; 2190 } 2191 2192 copied += bytes_read; 2193 2194 /* be sure to advertise window change */ 2195 mptcp_cleanup_rbuf(msk); 2196 2197 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2198 continue; 2199 2200 /* only the master socket status is relevant here. The exit 2201 * conditions mirror closely tcp_recvmsg() 2202 */ 2203 if (copied >= target) 2204 break; 2205 2206 if (copied) { 2207 if (sk->sk_err || 2208 sk->sk_state == TCP_CLOSE || 2209 (sk->sk_shutdown & RCV_SHUTDOWN) || 2210 !timeo || 2211 signal_pending(current)) 2212 break; 2213 } else { 2214 if (sk->sk_err) { 2215 copied = sock_error(sk); 2216 break; 2217 } 2218 2219 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2220 /* race breaker: the shutdown could be after the 2221 * previous receive queue check 2222 */ 2223 if (__mptcp_move_skbs(msk)) 2224 continue; 2225 break; 2226 } 2227 2228 if (sk->sk_state == TCP_CLOSE) { 2229 copied = -ENOTCONN; 2230 break; 2231 } 2232 2233 if (!timeo) { 2234 copied = -EAGAIN; 2235 break; 2236 } 2237 2238 if (signal_pending(current)) { 2239 copied = sock_intr_errno(timeo); 2240 break; 2241 } 2242 } 2243 2244 pr_debug("block timeout %ld", timeo); 2245 sk_wait_data(sk, &timeo, NULL); 2246 } 2247 2248 out_err: 2249 if (cmsg_flags && copied >= 0) { 2250 if (cmsg_flags & MPTCP_CMSG_TS) 2251 tcp_recv_timestamp(msg, sk, &tss); 2252 2253 if (cmsg_flags & MPTCP_CMSG_INQ) { 2254 unsigned int inq = mptcp_inq_hint(sk); 2255 2256 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2257 } 2258 } 2259 2260 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2261 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2262 skb_queue_empty(&msk->receive_queue), copied); 2263 if (!(flags & MSG_PEEK)) 2264 mptcp_rcv_space_adjust(msk, copied); 2265 2266 release_sock(sk); 2267 return copied; 2268 } 2269 2270 static void mptcp_retransmit_timer(struct timer_list *t) 2271 { 2272 struct inet_connection_sock *icsk = from_timer(icsk, t, 2273 icsk_retransmit_timer); 2274 struct sock *sk = &icsk->icsk_inet.sk; 2275 struct mptcp_sock *msk = mptcp_sk(sk); 2276 2277 bh_lock_sock(sk); 2278 if (!sock_owned_by_user(sk)) { 2279 /* we need a process context to retransmit */ 2280 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2281 mptcp_schedule_work(sk); 2282 } else { 2283 /* delegate our work to tcp_release_cb() */ 2284 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2285 } 2286 bh_unlock_sock(sk); 2287 sock_put(sk); 2288 } 2289 2290 static void mptcp_tout_timer(struct timer_list *t) 2291 { 2292 struct sock *sk = from_timer(sk, t, sk_timer); 2293 2294 mptcp_schedule_work(sk); 2295 sock_put(sk); 2296 } 2297 2298 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2299 * level. 2300 * 2301 * A backup subflow is returned only if that is the only kind available. 2302 */ 2303 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2304 { 2305 struct sock *backup = NULL, *pick = NULL; 2306 struct mptcp_subflow_context *subflow; 2307 int min_stale_count = INT_MAX; 2308 2309 mptcp_for_each_subflow(msk, subflow) { 2310 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2311 2312 if (!__mptcp_subflow_active(subflow)) 2313 continue; 2314 2315 /* still data outstanding at TCP level? skip this */ 2316 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2317 mptcp_pm_subflow_chk_stale(msk, ssk); 2318 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2319 continue; 2320 } 2321 2322 if (subflow->backup) { 2323 if (!backup) 2324 backup = ssk; 2325 continue; 2326 } 2327 2328 if (!pick) 2329 pick = ssk; 2330 } 2331 2332 if (pick) 2333 return pick; 2334 2335 /* use backup only if there are no progresses anywhere */ 2336 return min_stale_count > 1 ? backup : NULL; 2337 } 2338 2339 bool __mptcp_retransmit_pending_data(struct sock *sk) 2340 { 2341 struct mptcp_data_frag *cur, *rtx_head; 2342 struct mptcp_sock *msk = mptcp_sk(sk); 2343 2344 if (__mptcp_check_fallback(msk)) 2345 return false; 2346 2347 /* the closing socket has some data untransmitted and/or unacked: 2348 * some data in the mptcp rtx queue has not really xmitted yet. 2349 * keep it simple and re-inject the whole mptcp level rtx queue 2350 */ 2351 mptcp_data_lock(sk); 2352 __mptcp_clean_una_wakeup(sk); 2353 rtx_head = mptcp_rtx_head(sk); 2354 if (!rtx_head) { 2355 mptcp_data_unlock(sk); 2356 return false; 2357 } 2358 2359 msk->recovery_snd_nxt = msk->snd_nxt; 2360 msk->recovery = true; 2361 mptcp_data_unlock(sk); 2362 2363 msk->first_pending = rtx_head; 2364 msk->snd_burst = 0; 2365 2366 /* be sure to clear the "sent status" on all re-injected fragments */ 2367 list_for_each_entry(cur, &msk->rtx_queue, list) { 2368 if (!cur->already_sent) 2369 break; 2370 cur->already_sent = 0; 2371 } 2372 2373 return true; 2374 } 2375 2376 /* flags for __mptcp_close_ssk() */ 2377 #define MPTCP_CF_PUSH BIT(1) 2378 #define MPTCP_CF_FASTCLOSE BIT(2) 2379 2380 /* be sure to send a reset only if the caller asked for it, also 2381 * clean completely the subflow status when the subflow reaches 2382 * TCP_CLOSE state 2383 */ 2384 static void __mptcp_subflow_disconnect(struct sock *ssk, 2385 struct mptcp_subflow_context *subflow, 2386 unsigned int flags) 2387 { 2388 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2389 (flags & MPTCP_CF_FASTCLOSE)) { 2390 /* The MPTCP code never wait on the subflow sockets, TCP-level 2391 * disconnect should never fail 2392 */ 2393 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2394 mptcp_subflow_ctx_reset(subflow); 2395 } else { 2396 tcp_shutdown(ssk, SEND_SHUTDOWN); 2397 } 2398 } 2399 2400 /* subflow sockets can be either outgoing (connect) or incoming 2401 * (accept). 2402 * 2403 * Outgoing subflows use in-kernel sockets. 2404 * Incoming subflows do not have their own 'struct socket' allocated, 2405 * so we need to use tcp_close() after detaching them from the mptcp 2406 * parent socket. 2407 */ 2408 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2409 struct mptcp_subflow_context *subflow, 2410 unsigned int flags) 2411 { 2412 struct mptcp_sock *msk = mptcp_sk(sk); 2413 bool dispose_it, need_push = false; 2414 2415 /* If the first subflow moved to a close state before accept, e.g. due 2416 * to an incoming reset or listener shutdown, the subflow socket is 2417 * already deleted by inet_child_forget() and the mptcp socket can't 2418 * survive too. 2419 */ 2420 if (msk->in_accept_queue && msk->first == ssk && 2421 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2422 /* ensure later check in mptcp_worker() will dispose the msk */ 2423 sock_set_flag(sk, SOCK_DEAD); 2424 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2425 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2426 mptcp_subflow_drop_ctx(ssk); 2427 goto out_release; 2428 } 2429 2430 dispose_it = msk->free_first || ssk != msk->first; 2431 if (dispose_it) 2432 list_del(&subflow->node); 2433 2434 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2435 2436 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2437 /* be sure to force the tcp_close path 2438 * to generate the egress reset 2439 */ 2440 ssk->sk_lingertime = 0; 2441 sock_set_flag(ssk, SOCK_LINGER); 2442 subflow->send_fastclose = 1; 2443 } 2444 2445 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2446 if (!dispose_it) { 2447 __mptcp_subflow_disconnect(ssk, subflow, flags); 2448 release_sock(ssk); 2449 2450 goto out; 2451 } 2452 2453 subflow->disposable = 1; 2454 2455 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2456 * the ssk has been already destroyed, we just need to release the 2457 * reference owned by msk; 2458 */ 2459 if (!inet_csk(ssk)->icsk_ulp_ops) { 2460 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2461 kfree_rcu(subflow, rcu); 2462 } else { 2463 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2464 __tcp_close(ssk, 0); 2465 2466 /* close acquired an extra ref */ 2467 __sock_put(ssk); 2468 } 2469 2470 out_release: 2471 __mptcp_subflow_error_report(sk, ssk); 2472 release_sock(ssk); 2473 2474 sock_put(ssk); 2475 2476 if (ssk == msk->first) 2477 WRITE_ONCE(msk->first, NULL); 2478 2479 out: 2480 __mptcp_sync_sndbuf(sk); 2481 if (need_push) 2482 __mptcp_push_pending(sk, 0); 2483 2484 /* Catch every 'all subflows closed' scenario, including peers silently 2485 * closing them, e.g. due to timeout. 2486 * For established sockets, allow an additional timeout before closing, 2487 * as the protocol can still create more subflows. 2488 */ 2489 if (list_is_singular(&msk->conn_list) && msk->first && 2490 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2491 if (sk->sk_state != TCP_ESTABLISHED || 2492 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2493 mptcp_set_state(sk, TCP_CLOSE); 2494 mptcp_close_wake_up(sk); 2495 } else { 2496 mptcp_start_tout_timer(sk); 2497 } 2498 } 2499 } 2500 2501 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2502 struct mptcp_subflow_context *subflow) 2503 { 2504 if (sk->sk_state == TCP_ESTABLISHED) 2505 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2506 2507 /* subflow aborted before reaching the fully_established status 2508 * attempt the creation of the next subflow 2509 */ 2510 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2511 2512 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2513 } 2514 2515 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2516 { 2517 return 0; 2518 } 2519 2520 static void __mptcp_close_subflow(struct sock *sk) 2521 { 2522 struct mptcp_subflow_context *subflow, *tmp; 2523 struct mptcp_sock *msk = mptcp_sk(sk); 2524 2525 might_sleep(); 2526 2527 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2528 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2529 2530 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2531 continue; 2532 2533 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2534 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2535 continue; 2536 2537 mptcp_close_ssk(sk, ssk, subflow); 2538 } 2539 2540 } 2541 2542 static bool mptcp_close_tout_expired(const struct sock *sk) 2543 { 2544 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2545 sk->sk_state == TCP_CLOSE) 2546 return false; 2547 2548 return time_after32(tcp_jiffies32, 2549 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2550 } 2551 2552 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2553 { 2554 struct mptcp_subflow_context *subflow, *tmp; 2555 struct sock *sk = (struct sock *)msk; 2556 2557 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2558 return; 2559 2560 mptcp_token_destroy(msk); 2561 2562 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2563 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2564 bool slow; 2565 2566 slow = lock_sock_fast(tcp_sk); 2567 if (tcp_sk->sk_state != TCP_CLOSE) { 2568 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2569 tcp_set_state(tcp_sk, TCP_CLOSE); 2570 } 2571 unlock_sock_fast(tcp_sk, slow); 2572 } 2573 2574 /* Mirror the tcp_reset() error propagation */ 2575 switch (sk->sk_state) { 2576 case TCP_SYN_SENT: 2577 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2578 break; 2579 case TCP_CLOSE_WAIT: 2580 WRITE_ONCE(sk->sk_err, EPIPE); 2581 break; 2582 case TCP_CLOSE: 2583 return; 2584 default: 2585 WRITE_ONCE(sk->sk_err, ECONNRESET); 2586 } 2587 2588 mptcp_set_state(sk, TCP_CLOSE); 2589 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2590 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2591 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2592 2593 /* the calling mptcp_worker will properly destroy the socket */ 2594 if (sock_flag(sk, SOCK_DEAD)) 2595 return; 2596 2597 sk->sk_state_change(sk); 2598 sk_error_report(sk); 2599 } 2600 2601 static void __mptcp_retrans(struct sock *sk) 2602 { 2603 struct mptcp_sock *msk = mptcp_sk(sk); 2604 struct mptcp_subflow_context *subflow; 2605 struct mptcp_sendmsg_info info = {}; 2606 struct mptcp_data_frag *dfrag; 2607 struct sock *ssk; 2608 int ret, err; 2609 u16 len = 0; 2610 2611 mptcp_clean_una_wakeup(sk); 2612 2613 /* first check ssk: need to kick "stale" logic */ 2614 err = mptcp_sched_get_retrans(msk); 2615 dfrag = mptcp_rtx_head(sk); 2616 if (!dfrag) { 2617 if (mptcp_data_fin_enabled(msk)) { 2618 struct inet_connection_sock *icsk = inet_csk(sk); 2619 2620 icsk->icsk_retransmits++; 2621 mptcp_set_datafin_timeout(sk); 2622 mptcp_send_ack(msk); 2623 2624 goto reset_timer; 2625 } 2626 2627 if (!mptcp_send_head(sk)) 2628 return; 2629 2630 goto reset_timer; 2631 } 2632 2633 if (err) 2634 goto reset_timer; 2635 2636 mptcp_for_each_subflow(msk, subflow) { 2637 if (READ_ONCE(subflow->scheduled)) { 2638 u16 copied = 0; 2639 2640 mptcp_subflow_set_scheduled(subflow, false); 2641 2642 ssk = mptcp_subflow_tcp_sock(subflow); 2643 2644 lock_sock(ssk); 2645 2646 /* limit retransmission to the bytes already sent on some subflows */ 2647 info.sent = 0; 2648 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2649 dfrag->already_sent; 2650 while (info.sent < info.limit) { 2651 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2652 if (ret <= 0) 2653 break; 2654 2655 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2656 copied += ret; 2657 info.sent += ret; 2658 } 2659 if (copied) { 2660 len = max(copied, len); 2661 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2662 info.size_goal); 2663 WRITE_ONCE(msk->allow_infinite_fallback, false); 2664 } 2665 2666 release_sock(ssk); 2667 } 2668 } 2669 2670 msk->bytes_retrans += len; 2671 dfrag->already_sent = max(dfrag->already_sent, len); 2672 2673 reset_timer: 2674 mptcp_check_and_set_pending(sk); 2675 2676 if (!mptcp_rtx_timer_pending(sk)) 2677 mptcp_reset_rtx_timer(sk); 2678 } 2679 2680 /* schedule the timeout timer for the relevant event: either close timeout 2681 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2682 */ 2683 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2684 { 2685 struct sock *sk = (struct sock *)msk; 2686 unsigned long timeout, close_timeout; 2687 2688 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2689 return; 2690 2691 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2692 mptcp_close_timeout(sk); 2693 2694 /* the close timeout takes precedence on the fail one, and here at least one of 2695 * them is active 2696 */ 2697 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2698 2699 sk_reset_timer(sk, &sk->sk_timer, timeout); 2700 } 2701 2702 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2703 { 2704 struct sock *ssk = msk->first; 2705 bool slow; 2706 2707 if (!ssk) 2708 return; 2709 2710 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2711 2712 slow = lock_sock_fast(ssk); 2713 mptcp_subflow_reset(ssk); 2714 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2715 unlock_sock_fast(ssk, slow); 2716 } 2717 2718 static void mptcp_do_fastclose(struct sock *sk) 2719 { 2720 struct mptcp_subflow_context *subflow, *tmp; 2721 struct mptcp_sock *msk = mptcp_sk(sk); 2722 2723 mptcp_set_state(sk, TCP_CLOSE); 2724 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2725 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2726 subflow, MPTCP_CF_FASTCLOSE); 2727 } 2728 2729 static void mptcp_worker(struct work_struct *work) 2730 { 2731 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2732 struct sock *sk = (struct sock *)msk; 2733 unsigned long fail_tout; 2734 int state; 2735 2736 lock_sock(sk); 2737 state = sk->sk_state; 2738 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2739 goto unlock; 2740 2741 mptcp_check_fastclose(msk); 2742 2743 mptcp_pm_nl_work(msk); 2744 2745 mptcp_check_send_data_fin(sk); 2746 mptcp_check_data_fin_ack(sk); 2747 mptcp_check_data_fin(sk); 2748 2749 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2750 __mptcp_close_subflow(sk); 2751 2752 if (mptcp_close_tout_expired(sk)) { 2753 mptcp_do_fastclose(sk); 2754 mptcp_close_wake_up(sk); 2755 } 2756 2757 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2758 __mptcp_destroy_sock(sk); 2759 goto unlock; 2760 } 2761 2762 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2763 __mptcp_retrans(sk); 2764 2765 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2766 if (fail_tout && time_after(jiffies, fail_tout)) 2767 mptcp_mp_fail_no_response(msk); 2768 2769 unlock: 2770 release_sock(sk); 2771 sock_put(sk); 2772 } 2773 2774 static void __mptcp_init_sock(struct sock *sk) 2775 { 2776 struct mptcp_sock *msk = mptcp_sk(sk); 2777 2778 INIT_LIST_HEAD(&msk->conn_list); 2779 INIT_LIST_HEAD(&msk->join_list); 2780 INIT_LIST_HEAD(&msk->rtx_queue); 2781 INIT_WORK(&msk->work, mptcp_worker); 2782 __skb_queue_head_init(&msk->receive_queue); 2783 msk->out_of_order_queue = RB_ROOT; 2784 msk->first_pending = NULL; 2785 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 2786 WRITE_ONCE(msk->rmem_released, 0); 2787 msk->timer_ival = TCP_RTO_MIN; 2788 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2789 2790 WRITE_ONCE(msk->first, NULL); 2791 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2792 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2793 WRITE_ONCE(msk->allow_infinite_fallback, true); 2794 msk->recovery = false; 2795 msk->subflow_id = 1; 2796 2797 mptcp_pm_data_init(msk); 2798 2799 /* re-use the csk retrans timer for MPTCP-level retrans */ 2800 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2801 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2802 } 2803 2804 static void mptcp_ca_reset(struct sock *sk) 2805 { 2806 struct inet_connection_sock *icsk = inet_csk(sk); 2807 2808 tcp_assign_congestion_control(sk); 2809 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2810 2811 /* no need to keep a reference to the ops, the name will suffice */ 2812 tcp_cleanup_congestion_control(sk); 2813 icsk->icsk_ca_ops = NULL; 2814 } 2815 2816 static int mptcp_init_sock(struct sock *sk) 2817 { 2818 struct net *net = sock_net(sk); 2819 int ret; 2820 2821 __mptcp_init_sock(sk); 2822 2823 if (!mptcp_is_enabled(net)) 2824 return -ENOPROTOOPT; 2825 2826 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2827 return -ENOMEM; 2828 2829 ret = mptcp_init_sched(mptcp_sk(sk), 2830 mptcp_sched_find(mptcp_get_scheduler(net))); 2831 if (ret) 2832 return ret; 2833 2834 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2835 2836 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2837 * propagate the correct value 2838 */ 2839 mptcp_ca_reset(sk); 2840 2841 sk_sockets_allocated_inc(sk); 2842 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2843 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2844 2845 return 0; 2846 } 2847 2848 static void __mptcp_clear_xmit(struct sock *sk) 2849 { 2850 struct mptcp_sock *msk = mptcp_sk(sk); 2851 struct mptcp_data_frag *dtmp, *dfrag; 2852 2853 WRITE_ONCE(msk->first_pending, NULL); 2854 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2855 dfrag_clear(sk, dfrag); 2856 } 2857 2858 void mptcp_cancel_work(struct sock *sk) 2859 { 2860 struct mptcp_sock *msk = mptcp_sk(sk); 2861 2862 if (cancel_work_sync(&msk->work)) 2863 __sock_put(sk); 2864 } 2865 2866 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2867 { 2868 lock_sock(ssk); 2869 2870 switch (ssk->sk_state) { 2871 case TCP_LISTEN: 2872 if (!(how & RCV_SHUTDOWN)) 2873 break; 2874 fallthrough; 2875 case TCP_SYN_SENT: 2876 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2877 break; 2878 default: 2879 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2880 pr_debug("Fallback"); 2881 ssk->sk_shutdown |= how; 2882 tcp_shutdown(ssk, how); 2883 2884 /* simulate the data_fin ack reception to let the state 2885 * machine move forward 2886 */ 2887 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2888 mptcp_schedule_work(sk); 2889 } else { 2890 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2891 tcp_send_ack(ssk); 2892 if (!mptcp_rtx_timer_pending(sk)) 2893 mptcp_reset_rtx_timer(sk); 2894 } 2895 break; 2896 } 2897 2898 release_sock(ssk); 2899 } 2900 2901 void mptcp_set_state(struct sock *sk, int state) 2902 { 2903 int oldstate = sk->sk_state; 2904 2905 switch (state) { 2906 case TCP_ESTABLISHED: 2907 if (oldstate != TCP_ESTABLISHED) 2908 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2909 break; 2910 2911 default: 2912 if (oldstate == TCP_ESTABLISHED) 2913 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2914 } 2915 2916 inet_sk_state_store(sk, state); 2917 } 2918 2919 static const unsigned char new_state[16] = { 2920 /* current state: new state: action: */ 2921 [0 /* (Invalid) */] = TCP_CLOSE, 2922 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2923 [TCP_SYN_SENT] = TCP_CLOSE, 2924 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2925 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2926 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2927 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2928 [TCP_CLOSE] = TCP_CLOSE, 2929 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2930 [TCP_LAST_ACK] = TCP_LAST_ACK, 2931 [TCP_LISTEN] = TCP_CLOSE, 2932 [TCP_CLOSING] = TCP_CLOSING, 2933 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2934 }; 2935 2936 static int mptcp_close_state(struct sock *sk) 2937 { 2938 int next = (int)new_state[sk->sk_state]; 2939 int ns = next & TCP_STATE_MASK; 2940 2941 mptcp_set_state(sk, ns); 2942 2943 return next & TCP_ACTION_FIN; 2944 } 2945 2946 static void mptcp_check_send_data_fin(struct sock *sk) 2947 { 2948 struct mptcp_subflow_context *subflow; 2949 struct mptcp_sock *msk = mptcp_sk(sk); 2950 2951 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2952 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2953 msk->snd_nxt, msk->write_seq); 2954 2955 /* we still need to enqueue subflows or not really shutting down, 2956 * skip this 2957 */ 2958 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2959 mptcp_send_head(sk)) 2960 return; 2961 2962 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2963 2964 mptcp_for_each_subflow(msk, subflow) { 2965 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2966 2967 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2968 } 2969 } 2970 2971 static void __mptcp_wr_shutdown(struct sock *sk) 2972 { 2973 struct mptcp_sock *msk = mptcp_sk(sk); 2974 2975 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2976 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2977 !!mptcp_send_head(sk)); 2978 2979 /* will be ignored by fallback sockets */ 2980 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2981 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2982 2983 mptcp_check_send_data_fin(sk); 2984 } 2985 2986 static void __mptcp_destroy_sock(struct sock *sk) 2987 { 2988 struct mptcp_sock *msk = mptcp_sk(sk); 2989 2990 pr_debug("msk=%p", msk); 2991 2992 might_sleep(); 2993 2994 mptcp_stop_rtx_timer(sk); 2995 sk_stop_timer(sk, &sk->sk_timer); 2996 msk->pm.status = 0; 2997 mptcp_release_sched(msk); 2998 2999 sk->sk_prot->destroy(sk); 3000 3001 WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc)); 3002 WARN_ON_ONCE(msk->rmem_released); 3003 sk_stream_kill_queues(sk); 3004 xfrm_sk_free_policy(sk); 3005 3006 sock_put(sk); 3007 } 3008 3009 void __mptcp_unaccepted_force_close(struct sock *sk) 3010 { 3011 sock_set_flag(sk, SOCK_DEAD); 3012 mptcp_do_fastclose(sk); 3013 __mptcp_destroy_sock(sk); 3014 } 3015 3016 static __poll_t mptcp_check_readable(struct sock *sk) 3017 { 3018 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3019 } 3020 3021 static void mptcp_check_listen_stop(struct sock *sk) 3022 { 3023 struct sock *ssk; 3024 3025 if (inet_sk_state_load(sk) != TCP_LISTEN) 3026 return; 3027 3028 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3029 ssk = mptcp_sk(sk)->first; 3030 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3031 return; 3032 3033 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3034 tcp_set_state(ssk, TCP_CLOSE); 3035 mptcp_subflow_queue_clean(sk, ssk); 3036 inet_csk_listen_stop(ssk); 3037 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3038 release_sock(ssk); 3039 } 3040 3041 bool __mptcp_close(struct sock *sk, long timeout) 3042 { 3043 struct mptcp_subflow_context *subflow; 3044 struct mptcp_sock *msk = mptcp_sk(sk); 3045 bool do_cancel_work = false; 3046 int subflows_alive = 0; 3047 3048 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3049 3050 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3051 mptcp_check_listen_stop(sk); 3052 mptcp_set_state(sk, TCP_CLOSE); 3053 goto cleanup; 3054 } 3055 3056 if (mptcp_data_avail(msk) || timeout < 0) { 3057 /* If the msk has read data, or the caller explicitly ask it, 3058 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3059 */ 3060 mptcp_do_fastclose(sk); 3061 timeout = 0; 3062 } else if (mptcp_close_state(sk)) { 3063 __mptcp_wr_shutdown(sk); 3064 } 3065 3066 sk_stream_wait_close(sk, timeout); 3067 3068 cleanup: 3069 /* orphan all the subflows */ 3070 mptcp_for_each_subflow(msk, subflow) { 3071 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3072 bool slow = lock_sock_fast_nested(ssk); 3073 3074 subflows_alive += ssk->sk_state != TCP_CLOSE; 3075 3076 /* since the close timeout takes precedence on the fail one, 3077 * cancel the latter 3078 */ 3079 if (ssk == msk->first) 3080 subflow->fail_tout = 0; 3081 3082 /* detach from the parent socket, but allow data_ready to 3083 * push incoming data into the mptcp stack, to properly ack it 3084 */ 3085 ssk->sk_socket = NULL; 3086 ssk->sk_wq = NULL; 3087 unlock_sock_fast(ssk, slow); 3088 } 3089 sock_orphan(sk); 3090 3091 /* all the subflows are closed, only timeout can change the msk 3092 * state, let's not keep resources busy for no reasons 3093 */ 3094 if (subflows_alive == 0) 3095 mptcp_set_state(sk, TCP_CLOSE); 3096 3097 sock_hold(sk); 3098 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3099 if (msk->token) 3100 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3101 3102 if (sk->sk_state == TCP_CLOSE) { 3103 __mptcp_destroy_sock(sk); 3104 do_cancel_work = true; 3105 } else { 3106 mptcp_start_tout_timer(sk); 3107 } 3108 3109 return do_cancel_work; 3110 } 3111 3112 static void mptcp_close(struct sock *sk, long timeout) 3113 { 3114 bool do_cancel_work; 3115 3116 lock_sock(sk); 3117 3118 do_cancel_work = __mptcp_close(sk, timeout); 3119 release_sock(sk); 3120 if (do_cancel_work) 3121 mptcp_cancel_work(sk); 3122 3123 sock_put(sk); 3124 } 3125 3126 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3127 { 3128 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3129 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3130 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3131 3132 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3133 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3134 3135 if (msk6 && ssk6) { 3136 msk6->saddr = ssk6->saddr; 3137 msk6->flow_label = ssk6->flow_label; 3138 } 3139 #endif 3140 3141 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3142 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3143 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3144 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3145 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3146 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3147 } 3148 3149 static int mptcp_disconnect(struct sock *sk, int flags) 3150 { 3151 struct mptcp_sock *msk = mptcp_sk(sk); 3152 3153 /* We are on the fastopen error path. We can't call straight into the 3154 * subflows cleanup code due to lock nesting (we are already under 3155 * msk->firstsocket lock). 3156 */ 3157 if (msk->fastopening) 3158 return -EBUSY; 3159 3160 mptcp_check_listen_stop(sk); 3161 mptcp_set_state(sk, TCP_CLOSE); 3162 3163 mptcp_stop_rtx_timer(sk); 3164 mptcp_stop_tout_timer(sk); 3165 3166 if (msk->token) 3167 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3168 3169 /* msk->subflow is still intact, the following will not free the first 3170 * subflow 3171 */ 3172 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3173 WRITE_ONCE(msk->flags, 0); 3174 msk->cb_flags = 0; 3175 msk->recovery = false; 3176 WRITE_ONCE(msk->can_ack, false); 3177 WRITE_ONCE(msk->fully_established, false); 3178 WRITE_ONCE(msk->rcv_data_fin, false); 3179 WRITE_ONCE(msk->snd_data_fin_enable, false); 3180 WRITE_ONCE(msk->rcv_fastclose, false); 3181 WRITE_ONCE(msk->use_64bit_ack, false); 3182 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3183 mptcp_pm_data_reset(msk); 3184 mptcp_ca_reset(sk); 3185 msk->bytes_consumed = 0; 3186 msk->bytes_acked = 0; 3187 msk->bytes_received = 0; 3188 msk->bytes_sent = 0; 3189 msk->bytes_retrans = 0; 3190 msk->rcvspace_init = 0; 3191 3192 WRITE_ONCE(sk->sk_shutdown, 0); 3193 sk_error_report(sk); 3194 return 0; 3195 } 3196 3197 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3198 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3199 { 3200 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3201 3202 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3203 } 3204 3205 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3206 { 3207 const struct ipv6_pinfo *np = inet6_sk(sk); 3208 struct ipv6_txoptions *opt; 3209 struct ipv6_pinfo *newnp; 3210 3211 newnp = inet6_sk(newsk); 3212 3213 rcu_read_lock(); 3214 opt = rcu_dereference(np->opt); 3215 if (opt) { 3216 opt = ipv6_dup_options(newsk, opt); 3217 if (!opt) 3218 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3219 } 3220 RCU_INIT_POINTER(newnp->opt, opt); 3221 rcu_read_unlock(); 3222 } 3223 #endif 3224 3225 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3226 { 3227 struct ip_options_rcu *inet_opt, *newopt = NULL; 3228 const struct inet_sock *inet = inet_sk(sk); 3229 struct inet_sock *newinet; 3230 3231 newinet = inet_sk(newsk); 3232 3233 rcu_read_lock(); 3234 inet_opt = rcu_dereference(inet->inet_opt); 3235 if (inet_opt) { 3236 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3237 inet_opt->opt.optlen, GFP_ATOMIC); 3238 if (newopt) 3239 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3240 inet_opt->opt.optlen); 3241 else 3242 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3243 } 3244 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3245 rcu_read_unlock(); 3246 } 3247 3248 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3249 const struct mptcp_options_received *mp_opt, 3250 struct sock *ssk, 3251 struct request_sock *req) 3252 { 3253 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3254 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3255 struct mptcp_subflow_context *subflow; 3256 struct mptcp_sock *msk; 3257 3258 if (!nsk) 3259 return NULL; 3260 3261 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3262 if (nsk->sk_family == AF_INET6) 3263 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3264 #endif 3265 3266 __mptcp_init_sock(nsk); 3267 3268 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3269 if (nsk->sk_family == AF_INET6) 3270 mptcp_copy_ip6_options(nsk, sk); 3271 else 3272 #endif 3273 mptcp_copy_ip_options(nsk, sk); 3274 3275 msk = mptcp_sk(nsk); 3276 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3277 WRITE_ONCE(msk->token, subflow_req->token); 3278 msk->in_accept_queue = 1; 3279 WRITE_ONCE(msk->fully_established, false); 3280 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3281 WRITE_ONCE(msk->csum_enabled, true); 3282 3283 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3284 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3285 WRITE_ONCE(msk->snd_una, msk->write_seq); 3286 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3287 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3288 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3289 3290 /* passive msk is created after the first/MPC subflow */ 3291 msk->subflow_id = 2; 3292 3293 sock_reset_flag(nsk, SOCK_RCU_FREE); 3294 security_inet_csk_clone(nsk, req); 3295 3296 /* this can't race with mptcp_close(), as the msk is 3297 * not yet exposted to user-space 3298 */ 3299 mptcp_set_state(nsk, TCP_ESTABLISHED); 3300 3301 /* The msk maintain a ref to each subflow in the connections list */ 3302 WRITE_ONCE(msk->first, ssk); 3303 subflow = mptcp_subflow_ctx(ssk); 3304 list_add(&subflow->node, &msk->conn_list); 3305 sock_hold(ssk); 3306 3307 /* new mpc subflow takes ownership of the newly 3308 * created mptcp socket 3309 */ 3310 mptcp_token_accept(subflow_req, msk); 3311 3312 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3313 * uses the correct data 3314 */ 3315 mptcp_copy_inaddrs(nsk, ssk); 3316 __mptcp_propagate_sndbuf(nsk, ssk); 3317 3318 mptcp_rcv_space_init(msk, ssk); 3319 3320 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3321 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3322 bh_unlock_sock(nsk); 3323 3324 /* note: the newly allocated socket refcount is 2 now */ 3325 return nsk; 3326 } 3327 3328 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3329 { 3330 const struct tcp_sock *tp = tcp_sk(ssk); 3331 3332 msk->rcvspace_init = 1; 3333 msk->rcvq_space.copied = 0; 3334 msk->rcvq_space.rtt_us = 0; 3335 3336 msk->rcvq_space.time = tp->tcp_mstamp; 3337 3338 /* initial rcv_space offering made to peer */ 3339 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3340 TCP_INIT_CWND * tp->advmss); 3341 if (msk->rcvq_space.space == 0) 3342 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3343 } 3344 3345 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3346 { 3347 struct mptcp_subflow_context *subflow, *tmp; 3348 struct sock *sk = (struct sock *)msk; 3349 3350 __mptcp_clear_xmit(sk); 3351 3352 /* join list will be eventually flushed (with rst) at sock lock release time */ 3353 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3354 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3355 3356 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3357 mptcp_data_lock(sk); 3358 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3359 __skb_queue_purge(&sk->sk_receive_queue); 3360 skb_rbtree_purge(&msk->out_of_order_queue); 3361 mptcp_data_unlock(sk); 3362 3363 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3364 * inet_sock_destruct() will dispose it 3365 */ 3366 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3367 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3368 mptcp_token_destroy(msk); 3369 mptcp_pm_free_anno_list(msk); 3370 mptcp_free_local_addr_list(msk); 3371 } 3372 3373 static void mptcp_destroy(struct sock *sk) 3374 { 3375 struct mptcp_sock *msk = mptcp_sk(sk); 3376 3377 /* allow the following to close even the initial subflow */ 3378 msk->free_first = 1; 3379 mptcp_destroy_common(msk, 0); 3380 sk_sockets_allocated_dec(sk); 3381 } 3382 3383 void __mptcp_data_acked(struct sock *sk) 3384 { 3385 if (!sock_owned_by_user(sk)) 3386 __mptcp_clean_una(sk); 3387 else 3388 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3389 } 3390 3391 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3392 { 3393 if (!mptcp_send_head(sk)) 3394 return; 3395 3396 if (!sock_owned_by_user(sk)) 3397 __mptcp_subflow_push_pending(sk, ssk, false); 3398 else 3399 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3400 } 3401 3402 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3403 BIT(MPTCP_RETRANSMIT) | \ 3404 BIT(MPTCP_FLUSH_JOIN_LIST)) 3405 3406 /* processes deferred events and flush wmem */ 3407 static void mptcp_release_cb(struct sock *sk) 3408 __must_hold(&sk->sk_lock.slock) 3409 { 3410 struct mptcp_sock *msk = mptcp_sk(sk); 3411 3412 for (;;) { 3413 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3414 struct list_head join_list; 3415 3416 if (!flags) 3417 break; 3418 3419 INIT_LIST_HEAD(&join_list); 3420 list_splice_init(&msk->join_list, &join_list); 3421 3422 /* the following actions acquire the subflow socket lock 3423 * 3424 * 1) can't be invoked in atomic scope 3425 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3426 * datapath acquires the msk socket spinlock while helding 3427 * the subflow socket lock 3428 */ 3429 msk->cb_flags &= ~flags; 3430 spin_unlock_bh(&sk->sk_lock.slock); 3431 3432 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3433 __mptcp_flush_join_list(sk, &join_list); 3434 if (flags & BIT(MPTCP_PUSH_PENDING)) 3435 __mptcp_push_pending(sk, 0); 3436 if (flags & BIT(MPTCP_RETRANSMIT)) 3437 __mptcp_retrans(sk); 3438 3439 cond_resched(); 3440 spin_lock_bh(&sk->sk_lock.slock); 3441 } 3442 3443 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3444 __mptcp_clean_una_wakeup(sk); 3445 if (unlikely(msk->cb_flags)) { 3446 /* be sure to sync the msk state before taking actions 3447 * depending on sk_state (MPTCP_ERROR_REPORT) 3448 * On sk release avoid actions depending on the first subflow 3449 */ 3450 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3451 __mptcp_sync_state(sk, msk->pending_state); 3452 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3453 __mptcp_error_report(sk); 3454 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3455 __mptcp_sync_sndbuf(sk); 3456 } 3457 3458 __mptcp_update_rmem(sk); 3459 } 3460 3461 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3462 * TCP can't schedule delack timer before the subflow is fully established. 3463 * MPTCP uses the delack timer to do 3rd ack retransmissions 3464 */ 3465 static void schedule_3rdack_retransmission(struct sock *ssk) 3466 { 3467 struct inet_connection_sock *icsk = inet_csk(ssk); 3468 struct tcp_sock *tp = tcp_sk(ssk); 3469 unsigned long timeout; 3470 3471 if (mptcp_subflow_ctx(ssk)->fully_established) 3472 return; 3473 3474 /* reschedule with a timeout above RTT, as we must look only for drop */ 3475 if (tp->srtt_us) 3476 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3477 else 3478 timeout = TCP_TIMEOUT_INIT; 3479 timeout += jiffies; 3480 3481 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3482 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3483 icsk->icsk_ack.timeout = timeout; 3484 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3485 } 3486 3487 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3488 { 3489 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3490 struct sock *sk = subflow->conn; 3491 3492 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3493 mptcp_data_lock(sk); 3494 if (!sock_owned_by_user(sk)) 3495 __mptcp_subflow_push_pending(sk, ssk, true); 3496 else 3497 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3498 mptcp_data_unlock(sk); 3499 } 3500 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3501 mptcp_data_lock(sk); 3502 if (!sock_owned_by_user(sk)) 3503 __mptcp_sync_sndbuf(sk); 3504 else 3505 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3506 mptcp_data_unlock(sk); 3507 } 3508 if (status & BIT(MPTCP_DELEGATE_ACK)) 3509 schedule_3rdack_retransmission(ssk); 3510 } 3511 3512 static int mptcp_hash(struct sock *sk) 3513 { 3514 /* should never be called, 3515 * we hash the TCP subflows not the master socket 3516 */ 3517 WARN_ON_ONCE(1); 3518 return 0; 3519 } 3520 3521 static void mptcp_unhash(struct sock *sk) 3522 { 3523 /* called from sk_common_release(), but nothing to do here */ 3524 } 3525 3526 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3527 { 3528 struct mptcp_sock *msk = mptcp_sk(sk); 3529 3530 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3531 if (WARN_ON_ONCE(!msk->first)) 3532 return -EINVAL; 3533 3534 return inet_csk_get_port(msk->first, snum); 3535 } 3536 3537 void mptcp_finish_connect(struct sock *ssk) 3538 { 3539 struct mptcp_subflow_context *subflow; 3540 struct mptcp_sock *msk; 3541 struct sock *sk; 3542 3543 subflow = mptcp_subflow_ctx(ssk); 3544 sk = subflow->conn; 3545 msk = mptcp_sk(sk); 3546 3547 pr_debug("msk=%p, token=%u", sk, subflow->token); 3548 3549 subflow->map_seq = subflow->iasn; 3550 subflow->map_subflow_seq = 1; 3551 3552 /* the socket is not connected yet, no msk/subflow ops can access/race 3553 * accessing the field below 3554 */ 3555 WRITE_ONCE(msk->local_key, subflow->local_key); 3556 3557 mptcp_pm_new_connection(msk, ssk, 0); 3558 } 3559 3560 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3561 { 3562 write_lock_bh(&sk->sk_callback_lock); 3563 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3564 sk_set_socket(sk, parent); 3565 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3566 write_unlock_bh(&sk->sk_callback_lock); 3567 } 3568 3569 bool mptcp_finish_join(struct sock *ssk) 3570 { 3571 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3572 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3573 struct sock *parent = (void *)msk; 3574 bool ret = true; 3575 3576 pr_debug("msk=%p, subflow=%p", msk, subflow); 3577 3578 /* mptcp socket already closing? */ 3579 if (!mptcp_is_fully_established(parent)) { 3580 subflow->reset_reason = MPTCP_RST_EMPTCP; 3581 return false; 3582 } 3583 3584 /* active subflow, already present inside the conn_list */ 3585 if (!list_empty(&subflow->node)) { 3586 mptcp_subflow_joined(msk, ssk); 3587 mptcp_propagate_sndbuf(parent, ssk); 3588 return true; 3589 } 3590 3591 if (!mptcp_pm_allow_new_subflow(msk)) 3592 goto err_prohibited; 3593 3594 /* If we can't acquire msk socket lock here, let the release callback 3595 * handle it 3596 */ 3597 mptcp_data_lock(parent); 3598 if (!sock_owned_by_user(parent)) { 3599 ret = __mptcp_finish_join(msk, ssk); 3600 if (ret) { 3601 sock_hold(ssk); 3602 list_add_tail(&subflow->node, &msk->conn_list); 3603 } 3604 } else { 3605 sock_hold(ssk); 3606 list_add_tail(&subflow->node, &msk->join_list); 3607 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3608 } 3609 mptcp_data_unlock(parent); 3610 3611 if (!ret) { 3612 err_prohibited: 3613 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3614 return false; 3615 } 3616 3617 return true; 3618 } 3619 3620 static void mptcp_shutdown(struct sock *sk, int how) 3621 { 3622 pr_debug("sk=%p, how=%d", sk, how); 3623 3624 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3625 __mptcp_wr_shutdown(sk); 3626 } 3627 3628 static int mptcp_forward_alloc_get(const struct sock *sk) 3629 { 3630 return READ_ONCE(sk->sk_forward_alloc) + 3631 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3632 } 3633 3634 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3635 { 3636 const struct sock *sk = (void *)msk; 3637 u64 delta; 3638 3639 if (sk->sk_state == TCP_LISTEN) 3640 return -EINVAL; 3641 3642 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3643 return 0; 3644 3645 delta = msk->write_seq - v; 3646 if (__mptcp_check_fallback(msk) && msk->first) { 3647 struct tcp_sock *tp = tcp_sk(msk->first); 3648 3649 /* the first subflow is disconnected after close - see 3650 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3651 * so ignore that status, too. 3652 */ 3653 if (!((1 << msk->first->sk_state) & 3654 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3655 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3656 } 3657 if (delta > INT_MAX) 3658 delta = INT_MAX; 3659 3660 return (int)delta; 3661 } 3662 3663 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3664 { 3665 struct mptcp_sock *msk = mptcp_sk(sk); 3666 bool slow; 3667 3668 switch (cmd) { 3669 case SIOCINQ: 3670 if (sk->sk_state == TCP_LISTEN) 3671 return -EINVAL; 3672 3673 lock_sock(sk); 3674 __mptcp_move_skbs(msk); 3675 *karg = mptcp_inq_hint(sk); 3676 release_sock(sk); 3677 break; 3678 case SIOCOUTQ: 3679 slow = lock_sock_fast(sk); 3680 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3681 unlock_sock_fast(sk, slow); 3682 break; 3683 case SIOCOUTQNSD: 3684 slow = lock_sock_fast(sk); 3685 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3686 unlock_sock_fast(sk, slow); 3687 break; 3688 default: 3689 return -ENOIOCTLCMD; 3690 } 3691 3692 return 0; 3693 } 3694 3695 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3696 struct mptcp_subflow_context *subflow) 3697 { 3698 subflow->request_mptcp = 0; 3699 __mptcp_do_fallback(msk); 3700 } 3701 3702 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3703 { 3704 struct mptcp_subflow_context *subflow; 3705 struct mptcp_sock *msk = mptcp_sk(sk); 3706 int err = -EINVAL; 3707 struct sock *ssk; 3708 3709 ssk = __mptcp_nmpc_sk(msk); 3710 if (IS_ERR(ssk)) 3711 return PTR_ERR(ssk); 3712 3713 mptcp_set_state(sk, TCP_SYN_SENT); 3714 subflow = mptcp_subflow_ctx(ssk); 3715 #ifdef CONFIG_TCP_MD5SIG 3716 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3717 * TCP option space. 3718 */ 3719 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3720 mptcp_subflow_early_fallback(msk, subflow); 3721 #endif 3722 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3723 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3724 mptcp_subflow_early_fallback(msk, subflow); 3725 } 3726 3727 WRITE_ONCE(msk->write_seq, subflow->idsn); 3728 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3729 if (likely(!__mptcp_check_fallback(msk))) 3730 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3731 3732 /* if reaching here via the fastopen/sendmsg path, the caller already 3733 * acquired the subflow socket lock, too. 3734 */ 3735 if (!msk->fastopening) 3736 lock_sock(ssk); 3737 3738 /* the following mirrors closely a very small chunk of code from 3739 * __inet_stream_connect() 3740 */ 3741 if (ssk->sk_state != TCP_CLOSE) 3742 goto out; 3743 3744 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3745 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3746 if (err) 3747 goto out; 3748 } 3749 3750 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3751 if (err < 0) 3752 goto out; 3753 3754 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3755 3756 out: 3757 if (!msk->fastopening) 3758 release_sock(ssk); 3759 3760 /* on successful connect, the msk state will be moved to established by 3761 * subflow_finish_connect() 3762 */ 3763 if (unlikely(err)) { 3764 /* avoid leaving a dangling token in an unconnected socket */ 3765 mptcp_token_destroy(msk); 3766 mptcp_set_state(sk, TCP_CLOSE); 3767 return err; 3768 } 3769 3770 mptcp_copy_inaddrs(sk, ssk); 3771 return 0; 3772 } 3773 3774 static struct proto mptcp_prot = { 3775 .name = "MPTCP", 3776 .owner = THIS_MODULE, 3777 .init = mptcp_init_sock, 3778 .connect = mptcp_connect, 3779 .disconnect = mptcp_disconnect, 3780 .close = mptcp_close, 3781 .setsockopt = mptcp_setsockopt, 3782 .getsockopt = mptcp_getsockopt, 3783 .shutdown = mptcp_shutdown, 3784 .destroy = mptcp_destroy, 3785 .sendmsg = mptcp_sendmsg, 3786 .ioctl = mptcp_ioctl, 3787 .recvmsg = mptcp_recvmsg, 3788 .release_cb = mptcp_release_cb, 3789 .hash = mptcp_hash, 3790 .unhash = mptcp_unhash, 3791 .get_port = mptcp_get_port, 3792 .forward_alloc_get = mptcp_forward_alloc_get, 3793 .stream_memory_free = mptcp_stream_memory_free, 3794 .sockets_allocated = &mptcp_sockets_allocated, 3795 3796 .memory_allocated = &tcp_memory_allocated, 3797 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3798 3799 .memory_pressure = &tcp_memory_pressure, 3800 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3801 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3802 .sysctl_mem = sysctl_tcp_mem, 3803 .obj_size = sizeof(struct mptcp_sock), 3804 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3805 .no_autobind = true, 3806 }; 3807 3808 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3809 { 3810 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3811 struct sock *ssk, *sk = sock->sk; 3812 int err = -EINVAL; 3813 3814 lock_sock(sk); 3815 ssk = __mptcp_nmpc_sk(msk); 3816 if (IS_ERR(ssk)) { 3817 err = PTR_ERR(ssk); 3818 goto unlock; 3819 } 3820 3821 if (sk->sk_family == AF_INET) 3822 err = inet_bind_sk(ssk, uaddr, addr_len); 3823 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3824 else if (sk->sk_family == AF_INET6) 3825 err = inet6_bind_sk(ssk, uaddr, addr_len); 3826 #endif 3827 if (!err) 3828 mptcp_copy_inaddrs(sk, ssk); 3829 3830 unlock: 3831 release_sock(sk); 3832 return err; 3833 } 3834 3835 static int mptcp_listen(struct socket *sock, int backlog) 3836 { 3837 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3838 struct sock *sk = sock->sk; 3839 struct sock *ssk; 3840 int err; 3841 3842 pr_debug("msk=%p", msk); 3843 3844 lock_sock(sk); 3845 3846 err = -EINVAL; 3847 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3848 goto unlock; 3849 3850 ssk = __mptcp_nmpc_sk(msk); 3851 if (IS_ERR(ssk)) { 3852 err = PTR_ERR(ssk); 3853 goto unlock; 3854 } 3855 3856 mptcp_set_state(sk, TCP_LISTEN); 3857 sock_set_flag(sk, SOCK_RCU_FREE); 3858 3859 lock_sock(ssk); 3860 err = __inet_listen_sk(ssk, backlog); 3861 release_sock(ssk); 3862 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3863 3864 if (!err) { 3865 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3866 mptcp_copy_inaddrs(sk, ssk); 3867 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3868 } 3869 3870 unlock: 3871 release_sock(sk); 3872 return err; 3873 } 3874 3875 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3876 int flags, bool kern) 3877 { 3878 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3879 struct sock *ssk, *newsk; 3880 int err; 3881 3882 pr_debug("msk=%p", msk); 3883 3884 /* Buggy applications can call accept on socket states other then LISTEN 3885 * but no need to allocate the first subflow just to error out. 3886 */ 3887 ssk = READ_ONCE(msk->first); 3888 if (!ssk) 3889 return -EINVAL; 3890 3891 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3892 newsk = inet_csk_accept(ssk, flags, &err, kern); 3893 if (!newsk) 3894 return err; 3895 3896 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3897 if (sk_is_mptcp(newsk)) { 3898 struct mptcp_subflow_context *subflow; 3899 struct sock *new_mptcp_sock; 3900 3901 subflow = mptcp_subflow_ctx(newsk); 3902 new_mptcp_sock = subflow->conn; 3903 3904 /* is_mptcp should be false if subflow->conn is missing, see 3905 * subflow_syn_recv_sock() 3906 */ 3907 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3908 tcp_sk(newsk)->is_mptcp = 0; 3909 goto tcpfallback; 3910 } 3911 3912 newsk = new_mptcp_sock; 3913 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3914 3915 newsk->sk_kern_sock = kern; 3916 lock_sock(newsk); 3917 __inet_accept(sock, newsock, newsk); 3918 3919 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3920 msk = mptcp_sk(newsk); 3921 msk->in_accept_queue = 0; 3922 3923 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3924 * This is needed so NOSPACE flag can be set from tcp stack. 3925 */ 3926 mptcp_for_each_subflow(msk, subflow) { 3927 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3928 3929 if (!ssk->sk_socket) 3930 mptcp_sock_graft(ssk, newsock); 3931 } 3932 3933 /* Do late cleanup for the first subflow as necessary. Also 3934 * deal with bad peers not doing a complete shutdown. 3935 */ 3936 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3937 __mptcp_close_ssk(newsk, msk->first, 3938 mptcp_subflow_ctx(msk->first), 0); 3939 if (unlikely(list_is_singular(&msk->conn_list))) 3940 mptcp_set_state(newsk, TCP_CLOSE); 3941 } 3942 } else { 3943 tcpfallback: 3944 newsk->sk_kern_sock = kern; 3945 lock_sock(newsk); 3946 __inet_accept(sock, newsock, newsk); 3947 /* we are being invoked after accepting a non-mp-capable 3948 * flow: sk is a tcp_sk, not an mptcp one. 3949 * 3950 * Hand the socket over to tcp so all further socket ops 3951 * bypass mptcp. 3952 */ 3953 WRITE_ONCE(newsock->sk->sk_socket->ops, 3954 mptcp_fallback_tcp_ops(newsock->sk)); 3955 } 3956 release_sock(newsk); 3957 3958 return 0; 3959 } 3960 3961 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3962 { 3963 struct sock *sk = (struct sock *)msk; 3964 3965 if (__mptcp_stream_is_writeable(sk, 1)) 3966 return EPOLLOUT | EPOLLWRNORM; 3967 3968 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3969 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3970 if (__mptcp_stream_is_writeable(sk, 1)) 3971 return EPOLLOUT | EPOLLWRNORM; 3972 3973 return 0; 3974 } 3975 3976 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3977 struct poll_table_struct *wait) 3978 { 3979 struct sock *sk = sock->sk; 3980 struct mptcp_sock *msk; 3981 __poll_t mask = 0; 3982 u8 shutdown; 3983 int state; 3984 3985 msk = mptcp_sk(sk); 3986 sock_poll_wait(file, sock, wait); 3987 3988 state = inet_sk_state_load(sk); 3989 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3990 if (state == TCP_LISTEN) { 3991 struct sock *ssk = READ_ONCE(msk->first); 3992 3993 if (WARN_ON_ONCE(!ssk)) 3994 return 0; 3995 3996 return inet_csk_listen_poll(ssk); 3997 } 3998 3999 shutdown = READ_ONCE(sk->sk_shutdown); 4000 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4001 mask |= EPOLLHUP; 4002 if (shutdown & RCV_SHUTDOWN) 4003 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4004 4005 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4006 mask |= mptcp_check_readable(sk); 4007 if (shutdown & SEND_SHUTDOWN) 4008 mask |= EPOLLOUT | EPOLLWRNORM; 4009 else 4010 mask |= mptcp_check_writeable(msk); 4011 } else if (state == TCP_SYN_SENT && 4012 inet_test_bit(DEFER_CONNECT, sk)) { 4013 /* cf tcp_poll() note about TFO */ 4014 mask |= EPOLLOUT | EPOLLWRNORM; 4015 } 4016 4017 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4018 smp_rmb(); 4019 if (READ_ONCE(sk->sk_err)) 4020 mask |= EPOLLERR; 4021 4022 return mask; 4023 } 4024 4025 static const struct proto_ops mptcp_stream_ops = { 4026 .family = PF_INET, 4027 .owner = THIS_MODULE, 4028 .release = inet_release, 4029 .bind = mptcp_bind, 4030 .connect = inet_stream_connect, 4031 .socketpair = sock_no_socketpair, 4032 .accept = mptcp_stream_accept, 4033 .getname = inet_getname, 4034 .poll = mptcp_poll, 4035 .ioctl = inet_ioctl, 4036 .gettstamp = sock_gettstamp, 4037 .listen = mptcp_listen, 4038 .shutdown = inet_shutdown, 4039 .setsockopt = sock_common_setsockopt, 4040 .getsockopt = sock_common_getsockopt, 4041 .sendmsg = inet_sendmsg, 4042 .recvmsg = inet_recvmsg, 4043 .mmap = sock_no_mmap, 4044 .set_rcvlowat = mptcp_set_rcvlowat, 4045 }; 4046 4047 static struct inet_protosw mptcp_protosw = { 4048 .type = SOCK_STREAM, 4049 .protocol = IPPROTO_MPTCP, 4050 .prot = &mptcp_prot, 4051 .ops = &mptcp_stream_ops, 4052 .flags = INET_PROTOSW_ICSK, 4053 }; 4054 4055 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4056 { 4057 struct mptcp_delegated_action *delegated; 4058 struct mptcp_subflow_context *subflow; 4059 int work_done = 0; 4060 4061 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4062 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4063 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4064 4065 bh_lock_sock_nested(ssk); 4066 if (!sock_owned_by_user(ssk)) { 4067 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4068 } else { 4069 /* tcp_release_cb_override already processed 4070 * the action or will do at next release_sock(). 4071 * In both case must dequeue the subflow here - on the same 4072 * CPU that scheduled it. 4073 */ 4074 smp_wmb(); 4075 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4076 } 4077 bh_unlock_sock(ssk); 4078 sock_put(ssk); 4079 4080 if (++work_done == budget) 4081 return budget; 4082 } 4083 4084 /* always provide a 0 'work_done' argument, so that napi_complete_done 4085 * will not try accessing the NULL napi->dev ptr 4086 */ 4087 napi_complete_done(napi, 0); 4088 return work_done; 4089 } 4090 4091 void __init mptcp_proto_init(void) 4092 { 4093 struct mptcp_delegated_action *delegated; 4094 int cpu; 4095 4096 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4097 4098 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4099 panic("Failed to allocate MPTCP pcpu counter\n"); 4100 4101 init_dummy_netdev(&mptcp_napi_dev); 4102 for_each_possible_cpu(cpu) { 4103 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4104 INIT_LIST_HEAD(&delegated->head); 4105 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4106 mptcp_napi_poll); 4107 napi_enable(&delegated->napi); 4108 } 4109 4110 mptcp_subflow_init(); 4111 mptcp_pm_init(); 4112 mptcp_sched_init(); 4113 mptcp_token_init(); 4114 4115 if (proto_register(&mptcp_prot, 1) != 0) 4116 panic("Failed to register MPTCP proto.\n"); 4117 4118 inet_register_protosw(&mptcp_protosw); 4119 4120 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4121 } 4122 4123 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4124 static const struct proto_ops mptcp_v6_stream_ops = { 4125 .family = PF_INET6, 4126 .owner = THIS_MODULE, 4127 .release = inet6_release, 4128 .bind = mptcp_bind, 4129 .connect = inet_stream_connect, 4130 .socketpair = sock_no_socketpair, 4131 .accept = mptcp_stream_accept, 4132 .getname = inet6_getname, 4133 .poll = mptcp_poll, 4134 .ioctl = inet6_ioctl, 4135 .gettstamp = sock_gettstamp, 4136 .listen = mptcp_listen, 4137 .shutdown = inet_shutdown, 4138 .setsockopt = sock_common_setsockopt, 4139 .getsockopt = sock_common_getsockopt, 4140 .sendmsg = inet6_sendmsg, 4141 .recvmsg = inet6_recvmsg, 4142 .mmap = sock_no_mmap, 4143 #ifdef CONFIG_COMPAT 4144 .compat_ioctl = inet6_compat_ioctl, 4145 #endif 4146 .set_rcvlowat = mptcp_set_rcvlowat, 4147 }; 4148 4149 static struct proto mptcp_v6_prot; 4150 4151 static struct inet_protosw mptcp_v6_protosw = { 4152 .type = SOCK_STREAM, 4153 .protocol = IPPROTO_MPTCP, 4154 .prot = &mptcp_v6_prot, 4155 .ops = &mptcp_v6_stream_ops, 4156 .flags = INET_PROTOSW_ICSK, 4157 }; 4158 4159 int __init mptcp_proto_v6_init(void) 4160 { 4161 int err; 4162 4163 mptcp_v6_prot = mptcp_prot; 4164 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4165 mptcp_v6_prot.slab = NULL; 4166 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4167 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4168 4169 err = proto_register(&mptcp_v6_prot, 1); 4170 if (err) 4171 return err; 4172 4173 err = inet6_register_protosw(&mptcp_v6_protosw); 4174 if (err) 4175 proto_unregister(&mptcp_v6_prot); 4176 4177 return err; 4178 } 4179 #endif 4180