1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp_states.h> 19 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 20 #include <net/transp_v6.h> 21 #endif 22 #include <net/mptcp.h> 23 #include <net/hotdata.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 50 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 51 }; 52 static struct net_device *mptcp_napi_dev; 53 54 /* Returns end sequence number of the receiver's advertised window */ 55 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 56 { 57 return READ_ONCE(msk->wnd_end); 58 } 59 60 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 61 { 62 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 63 if (sk->sk_prot == &tcpv6_prot) 64 return &inet6_stream_ops; 65 #endif 66 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 67 return &inet_stream_ops; 68 } 69 70 static int __mptcp_socket_create(struct mptcp_sock *msk) 71 { 72 struct mptcp_subflow_context *subflow; 73 struct sock *sk = (struct sock *)msk; 74 struct socket *ssock; 75 int err; 76 77 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 78 if (err) 79 return err; 80 81 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 82 WRITE_ONCE(msk->first, ssock->sk); 83 subflow = mptcp_subflow_ctx(ssock->sk); 84 list_add(&subflow->node, &msk->conn_list); 85 sock_hold(ssock->sk); 86 subflow->request_mptcp = 1; 87 subflow->subflow_id = msk->subflow_id++; 88 89 /* This is the first subflow, always with id 0 */ 90 WRITE_ONCE(subflow->local_id, 0); 91 mptcp_sock_graft(msk->first, sk->sk_socket); 92 iput(SOCK_INODE(ssock)); 93 94 return 0; 95 } 96 97 /* If the MPC handshake is not started, returns the first subflow, 98 * eventually allocating it. 99 */ 100 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 101 { 102 struct sock *sk = (struct sock *)msk; 103 int ret; 104 105 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 106 return ERR_PTR(-EINVAL); 107 108 if (!msk->first) { 109 ret = __mptcp_socket_create(msk); 110 if (ret) 111 return ERR_PTR(ret); 112 } 113 114 return msk->first; 115 } 116 117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 118 { 119 sk_drops_add(sk, skb); 120 __kfree_skb(skb); 121 } 122 123 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 124 struct sk_buff *from) 125 { 126 bool fragstolen; 127 int delta; 128 129 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 130 MPTCP_SKB_CB(from)->offset || 131 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 132 !skb_try_coalesce(to, from, &fragstolen, &delta)) 133 return false; 134 135 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 136 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 137 to->len, MPTCP_SKB_CB(from)->end_seq); 138 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 139 140 /* note the fwd memory can reach a negative value after accounting 141 * for the delta, but the later skb free will restore a non 142 * negative one 143 */ 144 atomic_add(delta, &sk->sk_rmem_alloc); 145 sk_mem_charge(sk, delta); 146 kfree_skb_partial(from, fragstolen); 147 148 return true; 149 } 150 151 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 152 struct sk_buff *from) 153 { 154 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 155 return false; 156 157 return mptcp_try_coalesce((struct sock *)msk, to, from); 158 } 159 160 /* "inspired" by tcp_data_queue_ofo(), main differences: 161 * - use mptcp seqs 162 * - don't cope with sacks 163 */ 164 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 165 { 166 struct sock *sk = (struct sock *)msk; 167 struct rb_node **p, *parent; 168 u64 seq, end_seq, max_seq; 169 struct sk_buff *skb1; 170 171 seq = MPTCP_SKB_CB(skb)->map_seq; 172 end_seq = MPTCP_SKB_CB(skb)->end_seq; 173 max_seq = atomic64_read(&msk->rcv_wnd_sent); 174 175 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 176 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 177 if (after64(end_seq, max_seq)) { 178 /* out of window */ 179 mptcp_drop(sk, skb); 180 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 181 (unsigned long long)end_seq - (unsigned long)max_seq, 182 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 183 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 184 return; 185 } 186 187 p = &msk->out_of_order_queue.rb_node; 188 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 189 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 190 rb_link_node(&skb->rbnode, NULL, p); 191 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 192 msk->ooo_last_skb = skb; 193 goto end; 194 } 195 196 /* with 2 subflows, adding at end of ooo queue is quite likely 197 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 198 */ 199 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 200 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 201 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 202 return; 203 } 204 205 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 206 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 207 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 208 parent = &msk->ooo_last_skb->rbnode; 209 p = &parent->rb_right; 210 goto insert; 211 } 212 213 /* Find place to insert this segment. Handle overlaps on the way. */ 214 parent = NULL; 215 while (*p) { 216 parent = *p; 217 skb1 = rb_to_skb(parent); 218 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 219 p = &parent->rb_left; 220 continue; 221 } 222 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 223 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 224 /* All the bits are present. Drop. */ 225 mptcp_drop(sk, skb); 226 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 227 return; 228 } 229 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 230 /* partial overlap: 231 * | skb | 232 * | skb1 | 233 * continue traversing 234 */ 235 } else { 236 /* skb's seq == skb1's seq and skb covers skb1. 237 * Replace skb1 with skb. 238 */ 239 rb_replace_node(&skb1->rbnode, &skb->rbnode, 240 &msk->out_of_order_queue); 241 mptcp_drop(sk, skb1); 242 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 243 goto merge_right; 244 } 245 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 247 return; 248 } 249 p = &parent->rb_right; 250 } 251 252 insert: 253 /* Insert segment into RB tree. */ 254 rb_link_node(&skb->rbnode, parent, p); 255 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 256 257 merge_right: 258 /* Remove other segments covered by skb. */ 259 while ((skb1 = skb_rb_next(skb)) != NULL) { 260 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 261 break; 262 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 263 mptcp_drop(sk, skb1); 264 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 265 } 266 /* If there is no skb after us, we are the last_skb ! */ 267 if (!skb1) 268 msk->ooo_last_skb = skb; 269 270 end: 271 skb_condense(skb); 272 skb_set_owner_r(skb, sk); 273 } 274 275 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 276 struct sk_buff *skb, unsigned int offset, 277 size_t copy_len) 278 { 279 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 280 struct sock *sk = (struct sock *)msk; 281 struct sk_buff *tail; 282 bool has_rxtstamp; 283 284 __skb_unlink(skb, &ssk->sk_receive_queue); 285 286 skb_ext_reset(skb); 287 skb_orphan(skb); 288 289 /* try to fetch required memory from subflow */ 290 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 291 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 292 goto drop; 293 } 294 295 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 296 297 /* the skb map_seq accounts for the skb offset: 298 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 299 * value 300 */ 301 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 302 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 303 MPTCP_SKB_CB(skb)->offset = offset; 304 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 305 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 306 307 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 308 /* in sequence */ 309 msk->bytes_received += copy_len; 310 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 311 tail = skb_peek_tail(&sk->sk_receive_queue); 312 if (tail && mptcp_try_coalesce(sk, tail, skb)) 313 return true; 314 315 skb_set_owner_r(skb, sk); 316 __skb_queue_tail(&sk->sk_receive_queue, skb); 317 return true; 318 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 319 mptcp_data_queue_ofo(msk, skb); 320 return false; 321 } 322 323 /* old data, keep it simple and drop the whole pkt, sender 324 * will retransmit as needed, if needed. 325 */ 326 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 327 drop: 328 mptcp_drop(sk, skb); 329 return false; 330 } 331 332 static void mptcp_stop_rtx_timer(struct sock *sk) 333 { 334 struct inet_connection_sock *icsk = inet_csk(sk); 335 336 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 337 mptcp_sk(sk)->timer_ival = 0; 338 } 339 340 static void mptcp_close_wake_up(struct sock *sk) 341 { 342 if (sock_flag(sk, SOCK_DEAD)) 343 return; 344 345 sk->sk_state_change(sk); 346 if (sk->sk_shutdown == SHUTDOWN_MASK || 347 sk->sk_state == TCP_CLOSE) 348 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 349 else 350 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 351 } 352 353 /* called under the msk socket lock */ 354 static bool mptcp_pending_data_fin_ack(struct sock *sk) 355 { 356 struct mptcp_sock *msk = mptcp_sk(sk); 357 358 return ((1 << sk->sk_state) & 359 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 360 msk->write_seq == READ_ONCE(msk->snd_una); 361 } 362 363 static void mptcp_check_data_fin_ack(struct sock *sk) 364 { 365 struct mptcp_sock *msk = mptcp_sk(sk); 366 367 /* Look for an acknowledged DATA_FIN */ 368 if (mptcp_pending_data_fin_ack(sk)) { 369 WRITE_ONCE(msk->snd_data_fin_enable, 0); 370 371 switch (sk->sk_state) { 372 case TCP_FIN_WAIT1: 373 mptcp_set_state(sk, TCP_FIN_WAIT2); 374 break; 375 case TCP_CLOSING: 376 case TCP_LAST_ACK: 377 mptcp_set_state(sk, TCP_CLOSE); 378 break; 379 } 380 381 mptcp_close_wake_up(sk); 382 } 383 } 384 385 /* can be called with no lock acquired */ 386 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 387 { 388 struct mptcp_sock *msk = mptcp_sk(sk); 389 390 if (READ_ONCE(msk->rcv_data_fin) && 391 ((1 << inet_sk_state_load(sk)) & 392 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 393 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 394 395 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 396 if (seq) 397 *seq = rcv_data_fin_seq; 398 399 return true; 400 } 401 } 402 403 return false; 404 } 405 406 static void mptcp_set_datafin_timeout(struct sock *sk) 407 { 408 struct inet_connection_sock *icsk = inet_csk(sk); 409 u32 retransmits; 410 411 retransmits = min_t(u32, icsk->icsk_retransmits, 412 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 413 414 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 415 } 416 417 static void __mptcp_set_timeout(struct sock *sk, long tout) 418 { 419 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 420 } 421 422 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 423 { 424 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 425 426 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 427 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 428 } 429 430 static void mptcp_set_timeout(struct sock *sk) 431 { 432 struct mptcp_subflow_context *subflow; 433 long tout = 0; 434 435 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 436 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 437 __mptcp_set_timeout(sk, tout); 438 } 439 440 static inline bool tcp_can_send_ack(const struct sock *ssk) 441 { 442 return !((1 << inet_sk_state_load(ssk)) & 443 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 444 } 445 446 void __mptcp_subflow_send_ack(struct sock *ssk) 447 { 448 if (tcp_can_send_ack(ssk)) 449 tcp_send_ack(ssk); 450 } 451 452 static void mptcp_subflow_send_ack(struct sock *ssk) 453 { 454 bool slow; 455 456 slow = lock_sock_fast(ssk); 457 __mptcp_subflow_send_ack(ssk); 458 unlock_sock_fast(ssk, slow); 459 } 460 461 static void mptcp_send_ack(struct mptcp_sock *msk) 462 { 463 struct mptcp_subflow_context *subflow; 464 465 mptcp_for_each_subflow(msk, subflow) 466 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 467 } 468 469 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 470 { 471 bool slow; 472 473 slow = lock_sock_fast(ssk); 474 if (tcp_can_send_ack(ssk)) 475 tcp_cleanup_rbuf(ssk, copied); 476 unlock_sock_fast(ssk, slow); 477 } 478 479 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 480 { 481 const struct inet_connection_sock *icsk = inet_csk(ssk); 482 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 483 const struct tcp_sock *tp = tcp_sk(ssk); 484 485 return (ack_pending & ICSK_ACK_SCHED) && 486 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 487 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 488 (rx_empty && ack_pending & 489 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 490 } 491 492 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 493 { 494 int old_space = READ_ONCE(msk->old_wspace); 495 struct mptcp_subflow_context *subflow; 496 struct sock *sk = (struct sock *)msk; 497 int space = __mptcp_space(sk); 498 bool cleanup, rx_empty; 499 500 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 501 rx_empty = !sk_rmem_alloc_get(sk) && copied; 502 503 mptcp_for_each_subflow(msk, subflow) { 504 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 505 506 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 507 mptcp_subflow_cleanup_rbuf(ssk, copied); 508 } 509 } 510 511 static bool mptcp_check_data_fin(struct sock *sk) 512 { 513 struct mptcp_sock *msk = mptcp_sk(sk); 514 u64 rcv_data_fin_seq; 515 bool ret = false; 516 517 /* Need to ack a DATA_FIN received from a peer while this side 518 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 519 * msk->rcv_data_fin was set when parsing the incoming options 520 * at the subflow level and the msk lock was not held, so this 521 * is the first opportunity to act on the DATA_FIN and change 522 * the msk state. 523 * 524 * If we are caught up to the sequence number of the incoming 525 * DATA_FIN, send the DATA_ACK now and do state transition. If 526 * not caught up, do nothing and let the recv code send DATA_ACK 527 * when catching up. 528 */ 529 530 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 531 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 532 WRITE_ONCE(msk->rcv_data_fin, 0); 533 534 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 535 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 536 537 switch (sk->sk_state) { 538 case TCP_ESTABLISHED: 539 mptcp_set_state(sk, TCP_CLOSE_WAIT); 540 break; 541 case TCP_FIN_WAIT1: 542 mptcp_set_state(sk, TCP_CLOSING); 543 break; 544 case TCP_FIN_WAIT2: 545 mptcp_set_state(sk, TCP_CLOSE); 546 break; 547 default: 548 /* Other states not expected */ 549 WARN_ON_ONCE(1); 550 break; 551 } 552 553 ret = true; 554 if (!__mptcp_check_fallback(msk)) 555 mptcp_send_ack(msk); 556 mptcp_close_wake_up(sk); 557 } 558 return ret; 559 } 560 561 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 562 { 563 if (mptcp_try_fallback(ssk)) { 564 MPTCP_INC_STATS(sock_net(ssk), 565 MPTCP_MIB_DSSCORRUPTIONFALLBACK); 566 } else { 567 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 568 mptcp_subflow_reset(ssk); 569 } 570 } 571 572 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 573 struct sock *ssk) 574 { 575 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 576 struct sock *sk = (struct sock *)msk; 577 bool more_data_avail; 578 struct tcp_sock *tp; 579 bool ret = false; 580 581 pr_debug("msk=%p ssk=%p\n", msk, ssk); 582 tp = tcp_sk(ssk); 583 do { 584 u32 map_remaining, offset; 585 u32 seq = tp->copied_seq; 586 struct sk_buff *skb; 587 bool fin; 588 589 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 590 break; 591 592 /* try to move as much data as available */ 593 map_remaining = subflow->map_data_len - 594 mptcp_subflow_get_map_offset(subflow); 595 596 skb = skb_peek(&ssk->sk_receive_queue); 597 if (unlikely(!skb)) 598 break; 599 600 if (__mptcp_check_fallback(msk)) { 601 /* Under fallback skbs have no MPTCP extension and TCP could 602 * collapse them between the dummy map creation and the 603 * current dequeue. Be sure to adjust the map size. 604 */ 605 map_remaining = skb->len; 606 subflow->map_data_len = skb->len; 607 } 608 609 offset = seq - TCP_SKB_CB(skb)->seq; 610 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 611 if (fin) 612 seq++; 613 614 if (offset < skb->len) { 615 size_t len = skb->len - offset; 616 617 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret; 618 seq += len; 619 620 if (unlikely(map_remaining < len)) { 621 DEBUG_NET_WARN_ON_ONCE(1); 622 mptcp_dss_corruption(msk, ssk); 623 } 624 } else { 625 if (unlikely(!fin)) { 626 DEBUG_NET_WARN_ON_ONCE(1); 627 mptcp_dss_corruption(msk, ssk); 628 } 629 630 sk_eat_skb(ssk, skb); 631 } 632 633 WRITE_ONCE(tp->copied_seq, seq); 634 more_data_avail = mptcp_subflow_data_available(ssk); 635 636 } while (more_data_avail); 637 638 if (ret) 639 msk->last_data_recv = tcp_jiffies32; 640 return ret; 641 } 642 643 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 644 { 645 struct sock *sk = (struct sock *)msk; 646 struct sk_buff *skb, *tail; 647 bool moved = false; 648 struct rb_node *p; 649 u64 end_seq; 650 651 p = rb_first(&msk->out_of_order_queue); 652 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 653 while (p) { 654 skb = rb_to_skb(p); 655 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 656 break; 657 658 p = rb_next(p); 659 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 660 661 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 662 msk->ack_seq))) { 663 mptcp_drop(sk, skb); 664 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 665 continue; 666 } 667 668 end_seq = MPTCP_SKB_CB(skb)->end_seq; 669 tail = skb_peek_tail(&sk->sk_receive_queue); 670 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 671 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 672 673 /* skip overlapping data, if any */ 674 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 675 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 676 delta); 677 MPTCP_SKB_CB(skb)->offset += delta; 678 MPTCP_SKB_CB(skb)->map_seq += delta; 679 __skb_queue_tail(&sk->sk_receive_queue, skb); 680 } 681 msk->bytes_received += end_seq - msk->ack_seq; 682 WRITE_ONCE(msk->ack_seq, end_seq); 683 moved = true; 684 } 685 return moved; 686 } 687 688 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 689 { 690 int err = sock_error(ssk); 691 int ssk_state; 692 693 if (!err) 694 return false; 695 696 /* only propagate errors on fallen-back sockets or 697 * on MPC connect 698 */ 699 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 700 return false; 701 702 /* We need to propagate only transition to CLOSE state. 703 * Orphaned socket will see such state change via 704 * subflow_sched_work_if_closed() and that path will properly 705 * destroy the msk as needed. 706 */ 707 ssk_state = inet_sk_state_load(ssk); 708 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 709 mptcp_set_state(sk, ssk_state); 710 WRITE_ONCE(sk->sk_err, -err); 711 712 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 713 smp_wmb(); 714 sk_error_report(sk); 715 return true; 716 } 717 718 void __mptcp_error_report(struct sock *sk) 719 { 720 struct mptcp_subflow_context *subflow; 721 struct mptcp_sock *msk = mptcp_sk(sk); 722 723 mptcp_for_each_subflow(msk, subflow) 724 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 725 break; 726 } 727 728 /* In most cases we will be able to lock the mptcp socket. If its already 729 * owned, we need to defer to the work queue to avoid ABBA deadlock. 730 */ 731 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 732 { 733 struct sock *sk = (struct sock *)msk; 734 bool moved; 735 736 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 737 __mptcp_ofo_queue(msk); 738 if (unlikely(ssk->sk_err)) { 739 if (!sock_owned_by_user(sk)) 740 __mptcp_error_report(sk); 741 else 742 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 743 } 744 745 /* If the moves have caught up with the DATA_FIN sequence number 746 * it's time to ack the DATA_FIN and change socket state, but 747 * this is not a good place to change state. Let the workqueue 748 * do it. 749 */ 750 if (mptcp_pending_data_fin(sk, NULL)) 751 mptcp_schedule_work(sk); 752 return moved; 753 } 754 755 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk) 756 { 757 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf)) 758 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf); 759 } 760 761 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 762 { 763 struct mptcp_sock *msk = mptcp_sk(sk); 764 765 __mptcp_rcvbuf_update(sk, ssk); 766 767 /* Wake-up the reader only for in-sequence data */ 768 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 769 sk->sk_data_ready(sk); 770 } 771 772 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 773 { 774 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 775 776 /* The peer can send data while we are shutting down this 777 * subflow at msk destruction time, but we must avoid enqueuing 778 * more data to the msk receive queue 779 */ 780 if (unlikely(subflow->disposable)) 781 return; 782 783 mptcp_data_lock(sk); 784 if (!sock_owned_by_user(sk)) 785 __mptcp_data_ready(sk, ssk); 786 else 787 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 788 mptcp_data_unlock(sk); 789 } 790 791 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 792 { 793 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 794 msk->allow_infinite_fallback = false; 795 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 796 } 797 798 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 799 { 800 struct sock *sk = (struct sock *)msk; 801 802 if (sk->sk_state != TCP_ESTABLISHED) 803 return false; 804 805 spin_lock_bh(&msk->fallback_lock); 806 if (!msk->allow_subflows) { 807 spin_unlock_bh(&msk->fallback_lock); 808 return false; 809 } 810 mptcp_subflow_joined(msk, ssk); 811 spin_unlock_bh(&msk->fallback_lock); 812 813 /* attach to msk socket only after we are sure we will deal with it 814 * at close time 815 */ 816 if (sk->sk_socket && !ssk->sk_socket) 817 mptcp_sock_graft(ssk, sk->sk_socket); 818 819 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 820 mptcp_sockopt_sync_locked(msk, ssk); 821 mptcp_stop_tout_timer(sk); 822 __mptcp_propagate_sndbuf(sk, ssk); 823 return true; 824 } 825 826 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 827 { 828 struct mptcp_subflow_context *tmp, *subflow; 829 struct mptcp_sock *msk = mptcp_sk(sk); 830 831 list_for_each_entry_safe(subflow, tmp, join_list, node) { 832 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 833 bool slow = lock_sock_fast(ssk); 834 835 list_move_tail(&subflow->node, &msk->conn_list); 836 if (!__mptcp_finish_join(msk, ssk)) 837 mptcp_subflow_reset(ssk); 838 unlock_sock_fast(ssk, slow); 839 } 840 } 841 842 static bool mptcp_rtx_timer_pending(struct sock *sk) 843 { 844 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 845 } 846 847 static void mptcp_reset_rtx_timer(struct sock *sk) 848 { 849 struct inet_connection_sock *icsk = inet_csk(sk); 850 unsigned long tout; 851 852 /* prevent rescheduling on close */ 853 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 854 return; 855 856 tout = mptcp_sk(sk)->timer_ival; 857 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 858 } 859 860 bool mptcp_schedule_work(struct sock *sk) 861 { 862 if (inet_sk_state_load(sk) != TCP_CLOSE && 863 schedule_work(&mptcp_sk(sk)->work)) { 864 /* each subflow already holds a reference to the sk, and the 865 * workqueue is invoked by a subflow, so sk can't go away here. 866 */ 867 sock_hold(sk); 868 return true; 869 } 870 return false; 871 } 872 873 static bool mptcp_skb_can_collapse_to(u64 write_seq, 874 const struct sk_buff *skb, 875 const struct mptcp_ext *mpext) 876 { 877 if (!tcp_skb_can_collapse_to(skb)) 878 return false; 879 880 /* can collapse only if MPTCP level sequence is in order and this 881 * mapping has not been xmitted yet 882 */ 883 return mpext && mpext->data_seq + mpext->data_len == write_seq && 884 !mpext->frozen; 885 } 886 887 /* we can append data to the given data frag if: 888 * - there is space available in the backing page_frag 889 * - the data frag tail matches the current page_frag free offset 890 * - the data frag end sequence number matches the current write seq 891 */ 892 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 893 const struct page_frag *pfrag, 894 const struct mptcp_data_frag *df) 895 { 896 return df && pfrag->page == df->page && 897 pfrag->size - pfrag->offset > 0 && 898 pfrag->offset == (df->offset + df->data_len) && 899 df->data_seq + df->data_len == msk->write_seq; 900 } 901 902 static void dfrag_uncharge(struct sock *sk, int len) 903 { 904 sk_mem_uncharge(sk, len); 905 sk_wmem_queued_add(sk, -len); 906 } 907 908 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 909 { 910 int len = dfrag->data_len + dfrag->overhead; 911 912 list_del(&dfrag->list); 913 dfrag_uncharge(sk, len); 914 put_page(dfrag->page); 915 } 916 917 /* called under both the msk socket lock and the data lock */ 918 static void __mptcp_clean_una(struct sock *sk) 919 { 920 struct mptcp_sock *msk = mptcp_sk(sk); 921 struct mptcp_data_frag *dtmp, *dfrag; 922 u64 snd_una; 923 924 snd_una = msk->snd_una; 925 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 926 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 927 break; 928 929 if (unlikely(dfrag == msk->first_pending)) { 930 /* in recovery mode can see ack after the current snd head */ 931 if (WARN_ON_ONCE(!msk->recovery)) 932 break; 933 934 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 935 } 936 937 dfrag_clear(sk, dfrag); 938 } 939 940 dfrag = mptcp_rtx_head(sk); 941 if (dfrag && after64(snd_una, dfrag->data_seq)) { 942 u64 delta = snd_una - dfrag->data_seq; 943 944 /* prevent wrap around in recovery mode */ 945 if (unlikely(delta > dfrag->already_sent)) { 946 if (WARN_ON_ONCE(!msk->recovery)) 947 goto out; 948 if (WARN_ON_ONCE(delta > dfrag->data_len)) 949 goto out; 950 dfrag->already_sent += delta - dfrag->already_sent; 951 } 952 953 dfrag->data_seq += delta; 954 dfrag->offset += delta; 955 dfrag->data_len -= delta; 956 dfrag->already_sent -= delta; 957 958 dfrag_uncharge(sk, delta); 959 } 960 961 /* all retransmitted data acked, recovery completed */ 962 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 963 msk->recovery = false; 964 965 out: 966 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 967 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 968 mptcp_stop_rtx_timer(sk); 969 } else { 970 mptcp_reset_rtx_timer(sk); 971 } 972 973 if (mptcp_pending_data_fin_ack(sk)) 974 mptcp_schedule_work(sk); 975 } 976 977 static void __mptcp_clean_una_wakeup(struct sock *sk) 978 { 979 lockdep_assert_held_once(&sk->sk_lock.slock); 980 981 __mptcp_clean_una(sk); 982 mptcp_write_space(sk); 983 } 984 985 static void mptcp_clean_una_wakeup(struct sock *sk) 986 { 987 mptcp_data_lock(sk); 988 __mptcp_clean_una_wakeup(sk); 989 mptcp_data_unlock(sk); 990 } 991 992 static void mptcp_enter_memory_pressure(struct sock *sk) 993 { 994 struct mptcp_subflow_context *subflow; 995 struct mptcp_sock *msk = mptcp_sk(sk); 996 bool first = true; 997 998 mptcp_for_each_subflow(msk, subflow) { 999 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1000 1001 if (first) 1002 tcp_enter_memory_pressure(ssk); 1003 sk_stream_moderate_sndbuf(ssk); 1004 1005 first = false; 1006 } 1007 __mptcp_sync_sndbuf(sk); 1008 } 1009 1010 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1011 * data 1012 */ 1013 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1014 { 1015 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1016 pfrag, sk->sk_allocation))) 1017 return true; 1018 1019 mptcp_enter_memory_pressure(sk); 1020 return false; 1021 } 1022 1023 static struct mptcp_data_frag * 1024 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1025 int orig_offset) 1026 { 1027 int offset = ALIGN(orig_offset, sizeof(long)); 1028 struct mptcp_data_frag *dfrag; 1029 1030 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1031 dfrag->data_len = 0; 1032 dfrag->data_seq = msk->write_seq; 1033 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1034 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1035 dfrag->already_sent = 0; 1036 dfrag->page = pfrag->page; 1037 1038 return dfrag; 1039 } 1040 1041 struct mptcp_sendmsg_info { 1042 int mss_now; 1043 int size_goal; 1044 u16 limit; 1045 u16 sent; 1046 unsigned int flags; 1047 bool data_lock_held; 1048 }; 1049 1050 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1051 u64 data_seq, int avail_size) 1052 { 1053 u64 window_end = mptcp_wnd_end(msk); 1054 u64 mptcp_snd_wnd; 1055 1056 if (__mptcp_check_fallback(msk)) 1057 return avail_size; 1058 1059 mptcp_snd_wnd = window_end - data_seq; 1060 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1061 1062 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1063 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1064 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1065 } 1066 1067 return avail_size; 1068 } 1069 1070 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1071 { 1072 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1073 1074 if (!mpext) 1075 return false; 1076 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1077 return true; 1078 } 1079 1080 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1081 { 1082 struct sk_buff *skb; 1083 1084 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1085 if (likely(skb)) { 1086 if (likely(__mptcp_add_ext(skb, gfp))) { 1087 skb_reserve(skb, MAX_TCP_HEADER); 1088 skb->ip_summed = CHECKSUM_PARTIAL; 1089 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1090 return skb; 1091 } 1092 __kfree_skb(skb); 1093 } else { 1094 mptcp_enter_memory_pressure(sk); 1095 } 1096 return NULL; 1097 } 1098 1099 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1100 { 1101 struct sk_buff *skb; 1102 1103 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1104 if (!skb) 1105 return NULL; 1106 1107 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1108 tcp_skb_entail(ssk, skb); 1109 return skb; 1110 } 1111 tcp_skb_tsorted_anchor_cleanup(skb); 1112 kfree_skb(skb); 1113 return NULL; 1114 } 1115 1116 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1117 { 1118 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1119 1120 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1121 } 1122 1123 /* note: this always recompute the csum on the whole skb, even 1124 * if we just appended a single frag. More status info needed 1125 */ 1126 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1127 { 1128 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1129 __wsum csum = ~csum_unfold(mpext->csum); 1130 int offset = skb->len - added; 1131 1132 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1133 } 1134 1135 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1136 struct sock *ssk, 1137 struct mptcp_ext *mpext) 1138 { 1139 if (!mpext) 1140 return; 1141 1142 mpext->infinite_map = 1; 1143 mpext->data_len = 0; 1144 1145 if (!mptcp_try_fallback(ssk)) { 1146 mptcp_subflow_reset(ssk); 1147 return; 1148 } 1149 1150 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1151 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1152 pr_fallback(msk); 1153 } 1154 1155 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1156 1157 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1158 struct mptcp_data_frag *dfrag, 1159 struct mptcp_sendmsg_info *info) 1160 { 1161 u64 data_seq = dfrag->data_seq + info->sent; 1162 int offset = dfrag->offset + info->sent; 1163 struct mptcp_sock *msk = mptcp_sk(sk); 1164 bool zero_window_probe = false; 1165 struct mptcp_ext *mpext = NULL; 1166 bool can_coalesce = false; 1167 bool reuse_skb = true; 1168 struct sk_buff *skb; 1169 size_t copy; 1170 int i; 1171 1172 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1173 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1174 1175 if (WARN_ON_ONCE(info->sent > info->limit || 1176 info->limit > dfrag->data_len)) 1177 return 0; 1178 1179 if (unlikely(!__tcp_can_send(ssk))) 1180 return -EAGAIN; 1181 1182 /* compute send limit */ 1183 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1184 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1185 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1186 copy = info->size_goal; 1187 1188 skb = tcp_write_queue_tail(ssk); 1189 if (skb && copy > skb->len) { 1190 /* Limit the write to the size available in the 1191 * current skb, if any, so that we create at most a new skb. 1192 * Explicitly tells TCP internals to avoid collapsing on later 1193 * queue management operation, to avoid breaking the ext <-> 1194 * SSN association set here 1195 */ 1196 mpext = mptcp_get_ext(skb); 1197 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1198 TCP_SKB_CB(skb)->eor = 1; 1199 tcp_mark_push(tcp_sk(ssk), skb); 1200 goto alloc_skb; 1201 } 1202 1203 i = skb_shinfo(skb)->nr_frags; 1204 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1205 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1206 tcp_mark_push(tcp_sk(ssk), skb); 1207 goto alloc_skb; 1208 } 1209 1210 copy -= skb->len; 1211 } else { 1212 alloc_skb: 1213 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1214 if (!skb) 1215 return -ENOMEM; 1216 1217 i = skb_shinfo(skb)->nr_frags; 1218 reuse_skb = false; 1219 mpext = mptcp_get_ext(skb); 1220 } 1221 1222 /* Zero window and all data acked? Probe. */ 1223 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1224 if (copy == 0) { 1225 u64 snd_una = READ_ONCE(msk->snd_una); 1226 1227 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1228 tcp_remove_empty_skb(ssk); 1229 return 0; 1230 } 1231 1232 zero_window_probe = true; 1233 data_seq = snd_una - 1; 1234 copy = 1; 1235 } 1236 1237 copy = min_t(size_t, copy, info->limit - info->sent); 1238 if (!sk_wmem_schedule(ssk, copy)) { 1239 tcp_remove_empty_skb(ssk); 1240 return -ENOMEM; 1241 } 1242 1243 if (can_coalesce) { 1244 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1245 } else { 1246 get_page(dfrag->page); 1247 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1248 } 1249 1250 skb->len += copy; 1251 skb->data_len += copy; 1252 skb->truesize += copy; 1253 sk_wmem_queued_add(ssk, copy); 1254 sk_mem_charge(ssk, copy); 1255 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1256 TCP_SKB_CB(skb)->end_seq += copy; 1257 tcp_skb_pcount_set(skb, 0); 1258 1259 /* on skb reuse we just need to update the DSS len */ 1260 if (reuse_skb) { 1261 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1262 mpext->data_len += copy; 1263 goto out; 1264 } 1265 1266 memset(mpext, 0, sizeof(*mpext)); 1267 mpext->data_seq = data_seq; 1268 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1269 mpext->data_len = copy; 1270 mpext->use_map = 1; 1271 mpext->dsn64 = 1; 1272 1273 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1274 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1275 mpext->dsn64); 1276 1277 if (zero_window_probe) { 1278 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1279 mpext->frozen = 1; 1280 if (READ_ONCE(msk->csum_enabled)) 1281 mptcp_update_data_checksum(skb, copy); 1282 tcp_push_pending_frames(ssk); 1283 return 0; 1284 } 1285 out: 1286 if (READ_ONCE(msk->csum_enabled)) 1287 mptcp_update_data_checksum(skb, copy); 1288 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1289 mptcp_update_infinite_map(msk, ssk, mpext); 1290 trace_mptcp_sendmsg_frag(mpext); 1291 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1292 return copy; 1293 } 1294 1295 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1296 sizeof(struct tcphdr) - \ 1297 MAX_TCP_OPTION_SPACE - \ 1298 sizeof(struct ipv6hdr) - \ 1299 sizeof(struct frag_hdr)) 1300 1301 struct subflow_send_info { 1302 struct sock *ssk; 1303 u64 linger_time; 1304 }; 1305 1306 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1307 { 1308 if (!subflow->stale) 1309 return; 1310 1311 subflow->stale = 0; 1312 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1313 } 1314 1315 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1316 { 1317 if (unlikely(subflow->stale)) { 1318 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1319 1320 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1321 return false; 1322 1323 mptcp_subflow_set_active(subflow); 1324 } 1325 return __mptcp_subflow_active(subflow); 1326 } 1327 1328 #define SSK_MODE_ACTIVE 0 1329 #define SSK_MODE_BACKUP 1 1330 #define SSK_MODE_MAX 2 1331 1332 /* implement the mptcp packet scheduler; 1333 * returns the subflow that will transmit the next DSS 1334 * additionally updates the rtx timeout 1335 */ 1336 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1337 { 1338 struct subflow_send_info send_info[SSK_MODE_MAX]; 1339 struct mptcp_subflow_context *subflow; 1340 struct sock *sk = (struct sock *)msk; 1341 u32 pace, burst, wmem; 1342 int i, nr_active = 0; 1343 struct sock *ssk; 1344 u64 linger_time; 1345 long tout = 0; 1346 1347 /* pick the subflow with the lower wmem/wspace ratio */ 1348 for (i = 0; i < SSK_MODE_MAX; ++i) { 1349 send_info[i].ssk = NULL; 1350 send_info[i].linger_time = -1; 1351 } 1352 1353 mptcp_for_each_subflow(msk, subflow) { 1354 bool backup = subflow->backup || subflow->request_bkup; 1355 1356 trace_mptcp_subflow_get_send(subflow); 1357 ssk = mptcp_subflow_tcp_sock(subflow); 1358 if (!mptcp_subflow_active(subflow)) 1359 continue; 1360 1361 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1362 nr_active += !backup; 1363 pace = subflow->avg_pacing_rate; 1364 if (unlikely(!pace)) { 1365 /* init pacing rate from socket */ 1366 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1367 pace = subflow->avg_pacing_rate; 1368 if (!pace) 1369 continue; 1370 } 1371 1372 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1373 if (linger_time < send_info[backup].linger_time) { 1374 send_info[backup].ssk = ssk; 1375 send_info[backup].linger_time = linger_time; 1376 } 1377 } 1378 __mptcp_set_timeout(sk, tout); 1379 1380 /* pick the best backup if no other subflow is active */ 1381 if (!nr_active) 1382 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1383 1384 /* According to the blest algorithm, to avoid HoL blocking for the 1385 * faster flow, we need to: 1386 * - estimate the faster flow linger time 1387 * - use the above to estimate the amount of byte transferred 1388 * by the faster flow 1389 * - check that the amount of queued data is greter than the above, 1390 * otherwise do not use the picked, slower, subflow 1391 * We select the subflow with the shorter estimated time to flush 1392 * the queued mem, which basically ensure the above. We just need 1393 * to check that subflow has a non empty cwin. 1394 */ 1395 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1396 if (!ssk || !sk_stream_memory_free(ssk)) 1397 return NULL; 1398 1399 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1400 wmem = READ_ONCE(ssk->sk_wmem_queued); 1401 if (!burst) 1402 return ssk; 1403 1404 subflow = mptcp_subflow_ctx(ssk); 1405 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1406 READ_ONCE(ssk->sk_pacing_rate) * burst, 1407 burst + wmem); 1408 msk->snd_burst = burst; 1409 return ssk; 1410 } 1411 1412 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1413 { 1414 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1415 release_sock(ssk); 1416 } 1417 1418 static void mptcp_update_post_push(struct mptcp_sock *msk, 1419 struct mptcp_data_frag *dfrag, 1420 u32 sent) 1421 { 1422 u64 snd_nxt_new = dfrag->data_seq; 1423 1424 dfrag->already_sent += sent; 1425 1426 msk->snd_burst -= sent; 1427 1428 snd_nxt_new += dfrag->already_sent; 1429 1430 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1431 * is recovering after a failover. In that event, this re-sends 1432 * old segments. 1433 * 1434 * Thus compute snd_nxt_new candidate based on 1435 * the dfrag->data_seq that was sent and the data 1436 * that has been handed to the subflow for transmission 1437 * and skip update in case it was old dfrag. 1438 */ 1439 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1440 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1441 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1442 } 1443 } 1444 1445 void mptcp_check_and_set_pending(struct sock *sk) 1446 { 1447 if (mptcp_send_head(sk)) { 1448 mptcp_data_lock(sk); 1449 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1450 mptcp_data_unlock(sk); 1451 } 1452 } 1453 1454 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1455 struct mptcp_sendmsg_info *info) 1456 { 1457 struct mptcp_sock *msk = mptcp_sk(sk); 1458 struct mptcp_data_frag *dfrag; 1459 int len, copied = 0, err = 0; 1460 1461 while ((dfrag = mptcp_send_head(sk))) { 1462 info->sent = dfrag->already_sent; 1463 info->limit = dfrag->data_len; 1464 len = dfrag->data_len - dfrag->already_sent; 1465 while (len > 0) { 1466 int ret = 0; 1467 1468 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1469 if (ret <= 0) { 1470 err = copied ? : ret; 1471 goto out; 1472 } 1473 1474 info->sent += ret; 1475 copied += ret; 1476 len -= ret; 1477 1478 mptcp_update_post_push(msk, dfrag, ret); 1479 } 1480 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1481 1482 if (msk->snd_burst <= 0 || 1483 !sk_stream_memory_free(ssk) || 1484 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1485 err = copied; 1486 goto out; 1487 } 1488 mptcp_set_timeout(sk); 1489 } 1490 err = copied; 1491 1492 out: 1493 if (err > 0) 1494 msk->last_data_sent = tcp_jiffies32; 1495 return err; 1496 } 1497 1498 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1499 { 1500 struct sock *prev_ssk = NULL, *ssk = NULL; 1501 struct mptcp_sock *msk = mptcp_sk(sk); 1502 struct mptcp_sendmsg_info info = { 1503 .flags = flags, 1504 }; 1505 bool do_check_data_fin = false; 1506 int push_count = 1; 1507 1508 while (mptcp_send_head(sk) && (push_count > 0)) { 1509 struct mptcp_subflow_context *subflow; 1510 int ret = 0; 1511 1512 if (mptcp_sched_get_send(msk)) 1513 break; 1514 1515 push_count = 0; 1516 1517 mptcp_for_each_subflow(msk, subflow) { 1518 if (READ_ONCE(subflow->scheduled)) { 1519 mptcp_subflow_set_scheduled(subflow, false); 1520 1521 prev_ssk = ssk; 1522 ssk = mptcp_subflow_tcp_sock(subflow); 1523 if (ssk != prev_ssk) { 1524 /* First check. If the ssk has changed since 1525 * the last round, release prev_ssk 1526 */ 1527 if (prev_ssk) 1528 mptcp_push_release(prev_ssk, &info); 1529 1530 /* Need to lock the new subflow only if different 1531 * from the previous one, otherwise we are still 1532 * helding the relevant lock 1533 */ 1534 lock_sock(ssk); 1535 } 1536 1537 push_count++; 1538 1539 ret = __subflow_push_pending(sk, ssk, &info); 1540 if (ret <= 0) { 1541 if (ret != -EAGAIN || 1542 (1 << ssk->sk_state) & 1543 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1544 push_count--; 1545 continue; 1546 } 1547 do_check_data_fin = true; 1548 } 1549 } 1550 } 1551 1552 /* at this point we held the socket lock for the last subflow we used */ 1553 if (ssk) 1554 mptcp_push_release(ssk, &info); 1555 1556 /* ensure the rtx timer is running */ 1557 if (!mptcp_rtx_timer_pending(sk)) 1558 mptcp_reset_rtx_timer(sk); 1559 if (do_check_data_fin) 1560 mptcp_check_send_data_fin(sk); 1561 } 1562 1563 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1564 { 1565 struct mptcp_sock *msk = mptcp_sk(sk); 1566 struct mptcp_sendmsg_info info = { 1567 .data_lock_held = true, 1568 }; 1569 bool keep_pushing = true; 1570 struct sock *xmit_ssk; 1571 int copied = 0; 1572 1573 info.flags = 0; 1574 while (mptcp_send_head(sk) && keep_pushing) { 1575 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1576 int ret = 0; 1577 1578 /* check for a different subflow usage only after 1579 * spooling the first chunk of data 1580 */ 1581 if (first) { 1582 mptcp_subflow_set_scheduled(subflow, false); 1583 ret = __subflow_push_pending(sk, ssk, &info); 1584 first = false; 1585 if (ret <= 0) 1586 break; 1587 copied += ret; 1588 continue; 1589 } 1590 1591 if (mptcp_sched_get_send(msk)) 1592 goto out; 1593 1594 if (READ_ONCE(subflow->scheduled)) { 1595 mptcp_subflow_set_scheduled(subflow, false); 1596 ret = __subflow_push_pending(sk, ssk, &info); 1597 if (ret <= 0) 1598 keep_pushing = false; 1599 copied += ret; 1600 } 1601 1602 mptcp_for_each_subflow(msk, subflow) { 1603 if (READ_ONCE(subflow->scheduled)) { 1604 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1605 if (xmit_ssk != ssk) { 1606 mptcp_subflow_delegate(subflow, 1607 MPTCP_DELEGATE_SEND); 1608 keep_pushing = false; 1609 } 1610 } 1611 } 1612 } 1613 1614 out: 1615 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1616 * not going to flush it via release_sock() 1617 */ 1618 if (copied) { 1619 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1620 info.size_goal); 1621 if (!mptcp_rtx_timer_pending(sk)) 1622 mptcp_reset_rtx_timer(sk); 1623 1624 if (msk->snd_data_fin_enable && 1625 msk->snd_nxt + 1 == msk->write_seq) 1626 mptcp_schedule_work(sk); 1627 } 1628 } 1629 1630 static int mptcp_disconnect(struct sock *sk, int flags); 1631 1632 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1633 size_t len, int *copied_syn) 1634 { 1635 unsigned int saved_flags = msg->msg_flags; 1636 struct mptcp_sock *msk = mptcp_sk(sk); 1637 struct sock *ssk; 1638 int ret; 1639 1640 /* on flags based fastopen the mptcp is supposed to create the 1641 * first subflow right now. Otherwise we are in the defer_connect 1642 * path, and the first subflow must be already present. 1643 * Since the defer_connect flag is cleared after the first succsful 1644 * fastopen attempt, no need to check for additional subflow status. 1645 */ 1646 if (msg->msg_flags & MSG_FASTOPEN) { 1647 ssk = __mptcp_nmpc_sk(msk); 1648 if (IS_ERR(ssk)) 1649 return PTR_ERR(ssk); 1650 } 1651 if (!msk->first) 1652 return -EINVAL; 1653 1654 ssk = msk->first; 1655 1656 lock_sock(ssk); 1657 msg->msg_flags |= MSG_DONTWAIT; 1658 msk->fastopening = 1; 1659 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1660 msk->fastopening = 0; 1661 msg->msg_flags = saved_flags; 1662 release_sock(ssk); 1663 1664 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1665 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1666 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1667 msg->msg_namelen, msg->msg_flags, 1); 1668 1669 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1670 * case of any error, except timeout or signal 1671 */ 1672 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1673 *copied_syn = 0; 1674 } else if (ret && ret != -EINPROGRESS) { 1675 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1676 * __inet_stream_connect() can fail, due to looking check, 1677 * see mptcp_disconnect(). 1678 * Attempt it again outside the problematic scope. 1679 */ 1680 if (!mptcp_disconnect(sk, 0)) { 1681 sk->sk_disconnects++; 1682 sk->sk_socket->state = SS_UNCONNECTED; 1683 } 1684 } 1685 inet_clear_bit(DEFER_CONNECT, sk); 1686 1687 return ret; 1688 } 1689 1690 static int do_copy_data_nocache(struct sock *sk, int copy, 1691 struct iov_iter *from, char *to) 1692 { 1693 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1694 if (!copy_from_iter_full_nocache(to, copy, from)) 1695 return -EFAULT; 1696 } else if (!copy_from_iter_full(to, copy, from)) { 1697 return -EFAULT; 1698 } 1699 return 0; 1700 } 1701 1702 /* open-code sk_stream_memory_free() plus sent limit computation to 1703 * avoid indirect calls in fast-path. 1704 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1705 * annotations. 1706 */ 1707 static u32 mptcp_send_limit(const struct sock *sk) 1708 { 1709 const struct mptcp_sock *msk = mptcp_sk(sk); 1710 u32 limit, not_sent; 1711 1712 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1713 return 0; 1714 1715 limit = mptcp_notsent_lowat(sk); 1716 if (limit == UINT_MAX) 1717 return UINT_MAX; 1718 1719 not_sent = msk->write_seq - msk->snd_nxt; 1720 if (not_sent >= limit) 1721 return 0; 1722 1723 return limit - not_sent; 1724 } 1725 1726 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1727 { 1728 struct mptcp_sock *msk = mptcp_sk(sk); 1729 struct page_frag *pfrag; 1730 size_t copied = 0; 1731 int ret = 0; 1732 long timeo; 1733 1734 /* silently ignore everything else */ 1735 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1736 1737 lock_sock(sk); 1738 1739 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1740 msg->msg_flags & MSG_FASTOPEN)) { 1741 int copied_syn = 0; 1742 1743 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1744 copied += copied_syn; 1745 if (ret == -EINPROGRESS && copied_syn > 0) 1746 goto out; 1747 else if (ret) 1748 goto do_error; 1749 } 1750 1751 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1752 1753 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1754 ret = sk_stream_wait_connect(sk, &timeo); 1755 if (ret) 1756 goto do_error; 1757 } 1758 1759 ret = -EPIPE; 1760 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1761 goto do_error; 1762 1763 pfrag = sk_page_frag(sk); 1764 1765 while (msg_data_left(msg)) { 1766 int total_ts, frag_truesize = 0; 1767 struct mptcp_data_frag *dfrag; 1768 bool dfrag_collapsed; 1769 size_t psize, offset; 1770 u32 copy_limit; 1771 1772 /* ensure fitting the notsent_lowat() constraint */ 1773 copy_limit = mptcp_send_limit(sk); 1774 if (!copy_limit) 1775 goto wait_for_memory; 1776 1777 /* reuse tail pfrag, if possible, or carve a new one from the 1778 * page allocator 1779 */ 1780 dfrag = mptcp_pending_tail(sk); 1781 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1782 if (!dfrag_collapsed) { 1783 if (!mptcp_page_frag_refill(sk, pfrag)) 1784 goto wait_for_memory; 1785 1786 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1787 frag_truesize = dfrag->overhead; 1788 } 1789 1790 /* we do not bound vs wspace, to allow a single packet. 1791 * memory accounting will prevent execessive memory usage 1792 * anyway 1793 */ 1794 offset = dfrag->offset + dfrag->data_len; 1795 psize = pfrag->size - offset; 1796 psize = min_t(size_t, psize, msg_data_left(msg)); 1797 psize = min_t(size_t, psize, copy_limit); 1798 total_ts = psize + frag_truesize; 1799 1800 if (!sk_wmem_schedule(sk, total_ts)) 1801 goto wait_for_memory; 1802 1803 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1804 page_address(dfrag->page) + offset); 1805 if (ret) 1806 goto do_error; 1807 1808 /* data successfully copied into the write queue */ 1809 sk_forward_alloc_add(sk, -total_ts); 1810 copied += psize; 1811 dfrag->data_len += psize; 1812 frag_truesize += psize; 1813 pfrag->offset += frag_truesize; 1814 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1815 1816 /* charge data on mptcp pending queue to the msk socket 1817 * Note: we charge such data both to sk and ssk 1818 */ 1819 sk_wmem_queued_add(sk, frag_truesize); 1820 if (!dfrag_collapsed) { 1821 get_page(dfrag->page); 1822 list_add_tail(&dfrag->list, &msk->rtx_queue); 1823 if (!msk->first_pending) 1824 WRITE_ONCE(msk->first_pending, dfrag); 1825 } 1826 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1827 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1828 !dfrag_collapsed); 1829 1830 continue; 1831 1832 wait_for_memory: 1833 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1834 __mptcp_push_pending(sk, msg->msg_flags); 1835 ret = sk_stream_wait_memory(sk, &timeo); 1836 if (ret) 1837 goto do_error; 1838 } 1839 1840 if (copied) 1841 __mptcp_push_pending(sk, msg->msg_flags); 1842 1843 out: 1844 release_sock(sk); 1845 return copied; 1846 1847 do_error: 1848 if (copied) 1849 goto out; 1850 1851 copied = sk_stream_error(sk, msg->msg_flags, ret); 1852 goto out; 1853 } 1854 1855 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1856 1857 static int __mptcp_recvmsg_mskq(struct sock *sk, 1858 struct msghdr *msg, 1859 size_t len, int flags, 1860 struct scm_timestamping_internal *tss, 1861 int *cmsg_flags) 1862 { 1863 struct mptcp_sock *msk = mptcp_sk(sk); 1864 struct sk_buff *skb, *tmp; 1865 int copied = 0; 1866 1867 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1868 u32 offset = MPTCP_SKB_CB(skb)->offset; 1869 u32 data_len = skb->len - offset; 1870 u32 count = min_t(size_t, len - copied, data_len); 1871 int err; 1872 1873 if (!(flags & MSG_TRUNC)) { 1874 err = skb_copy_datagram_msg(skb, offset, msg, count); 1875 if (unlikely(err < 0)) { 1876 if (!copied) 1877 return err; 1878 break; 1879 } 1880 } 1881 1882 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1883 tcp_update_recv_tstamps(skb, tss); 1884 *cmsg_flags |= MPTCP_CMSG_TS; 1885 } 1886 1887 copied += count; 1888 1889 if (count < data_len) { 1890 if (!(flags & MSG_PEEK)) { 1891 MPTCP_SKB_CB(skb)->offset += count; 1892 MPTCP_SKB_CB(skb)->map_seq += count; 1893 msk->bytes_consumed += count; 1894 } 1895 break; 1896 } 1897 1898 if (!(flags & MSG_PEEK)) { 1899 /* avoid the indirect call, we know the destructor is sock_wfree */ 1900 skb->destructor = NULL; 1901 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1902 sk_mem_uncharge(sk, skb->truesize); 1903 __skb_unlink(skb, &sk->sk_receive_queue); 1904 __kfree_skb(skb); 1905 msk->bytes_consumed += count; 1906 } 1907 1908 if (copied >= len) 1909 break; 1910 } 1911 1912 mptcp_rcv_space_adjust(msk, copied); 1913 return copied; 1914 } 1915 1916 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1917 * 1918 * Only difference: Use highest rtt estimate of the subflows in use. 1919 */ 1920 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1921 { 1922 struct mptcp_subflow_context *subflow; 1923 struct sock *sk = (struct sock *)msk; 1924 u8 scaling_ratio = U8_MAX; 1925 u32 time, advmss = 1; 1926 u64 rtt_us, mstamp; 1927 1928 msk_owned_by_me(msk); 1929 1930 if (copied <= 0) 1931 return; 1932 1933 if (!msk->rcvspace_init) 1934 mptcp_rcv_space_init(msk, msk->first); 1935 1936 msk->rcvq_space.copied += copied; 1937 1938 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1939 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1940 1941 rtt_us = msk->rcvq_space.rtt_us; 1942 if (rtt_us && time < (rtt_us >> 3)) 1943 return; 1944 1945 rtt_us = 0; 1946 mptcp_for_each_subflow(msk, subflow) { 1947 const struct tcp_sock *tp; 1948 u64 sf_rtt_us; 1949 u32 sf_advmss; 1950 1951 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1952 1953 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1954 sf_advmss = READ_ONCE(tp->advmss); 1955 1956 rtt_us = max(sf_rtt_us, rtt_us); 1957 advmss = max(sf_advmss, advmss); 1958 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1959 } 1960 1961 msk->rcvq_space.rtt_us = rtt_us; 1962 msk->scaling_ratio = scaling_ratio; 1963 if (time < (rtt_us >> 3) || rtt_us == 0) 1964 return; 1965 1966 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1967 goto new_measure; 1968 1969 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1970 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1971 u64 rcvwin, grow; 1972 int rcvbuf; 1973 1974 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1975 1976 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1977 1978 do_div(grow, msk->rcvq_space.space); 1979 rcvwin += (grow << 1); 1980 1981 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 1982 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1983 1984 if (rcvbuf > sk->sk_rcvbuf) { 1985 u32 window_clamp; 1986 1987 window_clamp = mptcp_win_from_space(sk, rcvbuf); 1988 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1989 1990 /* Make subflows follow along. If we do not do this, we 1991 * get drops at subflow level if skbs can't be moved to 1992 * the mptcp rx queue fast enough (announced rcv_win can 1993 * exceed ssk->sk_rcvbuf). 1994 */ 1995 mptcp_for_each_subflow(msk, subflow) { 1996 struct sock *ssk; 1997 bool slow; 1998 1999 ssk = mptcp_subflow_tcp_sock(subflow); 2000 slow = lock_sock_fast(ssk); 2001 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2002 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2003 if (tcp_can_send_ack(ssk)) 2004 tcp_cleanup_rbuf(ssk, 1); 2005 unlock_sock_fast(ssk, slow); 2006 } 2007 } 2008 } 2009 2010 msk->rcvq_space.space = msk->rcvq_space.copied; 2011 new_measure: 2012 msk->rcvq_space.copied = 0; 2013 msk->rcvq_space.time = mstamp; 2014 } 2015 2016 static struct mptcp_subflow_context * 2017 __mptcp_first_ready_from(struct mptcp_sock *msk, 2018 struct mptcp_subflow_context *subflow) 2019 { 2020 struct mptcp_subflow_context *start_subflow = subflow; 2021 2022 while (!READ_ONCE(subflow->data_avail)) { 2023 subflow = mptcp_next_subflow(msk, subflow); 2024 if (subflow == start_subflow) 2025 return NULL; 2026 } 2027 return subflow; 2028 } 2029 2030 static bool __mptcp_move_skbs(struct sock *sk) 2031 { 2032 struct mptcp_subflow_context *subflow; 2033 struct mptcp_sock *msk = mptcp_sk(sk); 2034 bool ret = false; 2035 2036 if (list_empty(&msk->conn_list)) 2037 return false; 2038 2039 /* verify we can move any data from the subflow, eventually updating */ 2040 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 2041 mptcp_for_each_subflow(msk, subflow) 2042 __mptcp_rcvbuf_update(sk, subflow->tcp_sock); 2043 2044 subflow = list_first_entry(&msk->conn_list, 2045 struct mptcp_subflow_context, node); 2046 for (;;) { 2047 struct sock *ssk; 2048 bool slowpath; 2049 2050 /* 2051 * As an optimization avoid traversing the subflows list 2052 * and ev. acquiring the subflow socket lock before baling out 2053 */ 2054 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2055 break; 2056 2057 subflow = __mptcp_first_ready_from(msk, subflow); 2058 if (!subflow) 2059 break; 2060 2061 ssk = mptcp_subflow_tcp_sock(subflow); 2062 slowpath = lock_sock_fast(ssk); 2063 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2064 if (unlikely(ssk->sk_err)) 2065 __mptcp_error_report(sk); 2066 unlock_sock_fast(ssk, slowpath); 2067 2068 subflow = mptcp_next_subflow(msk, subflow); 2069 } 2070 2071 __mptcp_ofo_queue(msk); 2072 if (ret) 2073 mptcp_check_data_fin((struct sock *)msk); 2074 return ret; 2075 } 2076 2077 static unsigned int mptcp_inq_hint(const struct sock *sk) 2078 { 2079 const struct mptcp_sock *msk = mptcp_sk(sk); 2080 const struct sk_buff *skb; 2081 2082 skb = skb_peek(&sk->sk_receive_queue); 2083 if (skb) { 2084 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2085 2086 if (hint_val >= INT_MAX) 2087 return INT_MAX; 2088 2089 return (unsigned int)hint_val; 2090 } 2091 2092 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2093 return 1; 2094 2095 return 0; 2096 } 2097 2098 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2099 int flags, int *addr_len) 2100 { 2101 struct mptcp_sock *msk = mptcp_sk(sk); 2102 struct scm_timestamping_internal tss; 2103 int copied = 0, cmsg_flags = 0; 2104 int target; 2105 long timeo; 2106 2107 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2108 if (unlikely(flags & MSG_ERRQUEUE)) 2109 return inet_recv_error(sk, msg, len, addr_len); 2110 2111 lock_sock(sk); 2112 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2113 copied = -ENOTCONN; 2114 goto out_err; 2115 } 2116 2117 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2118 2119 len = min_t(size_t, len, INT_MAX); 2120 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2121 2122 if (unlikely(msk->recvmsg_inq)) 2123 cmsg_flags = MPTCP_CMSG_INQ; 2124 2125 while (copied < len) { 2126 int err, bytes_read; 2127 2128 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2129 if (unlikely(bytes_read < 0)) { 2130 if (!copied) 2131 copied = bytes_read; 2132 goto out_err; 2133 } 2134 2135 copied += bytes_read; 2136 2137 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2138 continue; 2139 2140 /* only the MPTCP socket status is relevant here. The exit 2141 * conditions mirror closely tcp_recvmsg() 2142 */ 2143 if (copied >= target) 2144 break; 2145 2146 if (copied) { 2147 if (sk->sk_err || 2148 sk->sk_state == TCP_CLOSE || 2149 (sk->sk_shutdown & RCV_SHUTDOWN) || 2150 !timeo || 2151 signal_pending(current)) 2152 break; 2153 } else { 2154 if (sk->sk_err) { 2155 copied = sock_error(sk); 2156 break; 2157 } 2158 2159 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2160 /* race breaker: the shutdown could be after the 2161 * previous receive queue check 2162 */ 2163 if (__mptcp_move_skbs(sk)) 2164 continue; 2165 break; 2166 } 2167 2168 if (sk->sk_state == TCP_CLOSE) { 2169 copied = -ENOTCONN; 2170 break; 2171 } 2172 2173 if (!timeo) { 2174 copied = -EAGAIN; 2175 break; 2176 } 2177 2178 if (signal_pending(current)) { 2179 copied = sock_intr_errno(timeo); 2180 break; 2181 } 2182 } 2183 2184 pr_debug("block timeout %ld\n", timeo); 2185 mptcp_cleanup_rbuf(msk, copied); 2186 err = sk_wait_data(sk, &timeo, NULL); 2187 if (err < 0) { 2188 err = copied ? : err; 2189 goto out_err; 2190 } 2191 } 2192 2193 mptcp_cleanup_rbuf(msk, copied); 2194 2195 out_err: 2196 if (cmsg_flags && copied >= 0) { 2197 if (cmsg_flags & MPTCP_CMSG_TS) 2198 tcp_recv_timestamp(msg, sk, &tss); 2199 2200 if (cmsg_flags & MPTCP_CMSG_INQ) { 2201 unsigned int inq = mptcp_inq_hint(sk); 2202 2203 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2204 } 2205 } 2206 2207 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2208 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2209 2210 release_sock(sk); 2211 return copied; 2212 } 2213 2214 static void mptcp_retransmit_timer(struct timer_list *t) 2215 { 2216 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2217 icsk_retransmit_timer); 2218 struct sock *sk = &icsk->icsk_inet.sk; 2219 struct mptcp_sock *msk = mptcp_sk(sk); 2220 2221 bh_lock_sock(sk); 2222 if (!sock_owned_by_user(sk)) { 2223 /* we need a process context to retransmit */ 2224 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2225 mptcp_schedule_work(sk); 2226 } else { 2227 /* delegate our work to tcp_release_cb() */ 2228 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2229 } 2230 bh_unlock_sock(sk); 2231 sock_put(sk); 2232 } 2233 2234 static void mptcp_tout_timer(struct timer_list *t) 2235 { 2236 struct sock *sk = timer_container_of(sk, t, sk_timer); 2237 2238 mptcp_schedule_work(sk); 2239 sock_put(sk); 2240 } 2241 2242 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2243 * level. 2244 * 2245 * A backup subflow is returned only if that is the only kind available. 2246 */ 2247 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2248 { 2249 struct sock *backup = NULL, *pick = NULL; 2250 struct mptcp_subflow_context *subflow; 2251 int min_stale_count = INT_MAX; 2252 2253 mptcp_for_each_subflow(msk, subflow) { 2254 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2255 2256 if (!__mptcp_subflow_active(subflow)) 2257 continue; 2258 2259 /* still data outstanding at TCP level? skip this */ 2260 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2261 mptcp_pm_subflow_chk_stale(msk, ssk); 2262 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2263 continue; 2264 } 2265 2266 if (subflow->backup || subflow->request_bkup) { 2267 if (!backup) 2268 backup = ssk; 2269 continue; 2270 } 2271 2272 if (!pick) 2273 pick = ssk; 2274 } 2275 2276 if (pick) 2277 return pick; 2278 2279 /* use backup only if there are no progresses anywhere */ 2280 return min_stale_count > 1 ? backup : NULL; 2281 } 2282 2283 bool __mptcp_retransmit_pending_data(struct sock *sk) 2284 { 2285 struct mptcp_data_frag *cur, *rtx_head; 2286 struct mptcp_sock *msk = mptcp_sk(sk); 2287 2288 if (__mptcp_check_fallback(msk)) 2289 return false; 2290 2291 /* the closing socket has some data untransmitted and/or unacked: 2292 * some data in the mptcp rtx queue has not really xmitted yet. 2293 * keep it simple and re-inject the whole mptcp level rtx queue 2294 */ 2295 mptcp_data_lock(sk); 2296 __mptcp_clean_una_wakeup(sk); 2297 rtx_head = mptcp_rtx_head(sk); 2298 if (!rtx_head) { 2299 mptcp_data_unlock(sk); 2300 return false; 2301 } 2302 2303 msk->recovery_snd_nxt = msk->snd_nxt; 2304 msk->recovery = true; 2305 mptcp_data_unlock(sk); 2306 2307 msk->first_pending = rtx_head; 2308 msk->snd_burst = 0; 2309 2310 /* be sure to clear the "sent status" on all re-injected fragments */ 2311 list_for_each_entry(cur, &msk->rtx_queue, list) { 2312 if (!cur->already_sent) 2313 break; 2314 cur->already_sent = 0; 2315 } 2316 2317 return true; 2318 } 2319 2320 /* flags for __mptcp_close_ssk() */ 2321 #define MPTCP_CF_PUSH BIT(1) 2322 #define MPTCP_CF_FASTCLOSE BIT(2) 2323 2324 /* be sure to send a reset only if the caller asked for it, also 2325 * clean completely the subflow status when the subflow reaches 2326 * TCP_CLOSE state 2327 */ 2328 static void __mptcp_subflow_disconnect(struct sock *ssk, 2329 struct mptcp_subflow_context *subflow, 2330 unsigned int flags) 2331 { 2332 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2333 (flags & MPTCP_CF_FASTCLOSE)) { 2334 /* The MPTCP code never wait on the subflow sockets, TCP-level 2335 * disconnect should never fail 2336 */ 2337 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2338 mptcp_subflow_ctx_reset(subflow); 2339 } else { 2340 tcp_shutdown(ssk, SEND_SHUTDOWN); 2341 } 2342 } 2343 2344 /* subflow sockets can be either outgoing (connect) or incoming 2345 * (accept). 2346 * 2347 * Outgoing subflows use in-kernel sockets. 2348 * Incoming subflows do not have their own 'struct socket' allocated, 2349 * so we need to use tcp_close() after detaching them from the mptcp 2350 * parent socket. 2351 */ 2352 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2353 struct mptcp_subflow_context *subflow, 2354 unsigned int flags) 2355 { 2356 struct mptcp_sock *msk = mptcp_sk(sk); 2357 bool dispose_it, need_push = false; 2358 2359 /* If the first subflow moved to a close state before accept, e.g. due 2360 * to an incoming reset or listener shutdown, the subflow socket is 2361 * already deleted by inet_child_forget() and the mptcp socket can't 2362 * survive too. 2363 */ 2364 if (msk->in_accept_queue && msk->first == ssk && 2365 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2366 /* ensure later check in mptcp_worker() will dispose the msk */ 2367 sock_set_flag(sk, SOCK_DEAD); 2368 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2369 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2370 mptcp_subflow_drop_ctx(ssk); 2371 goto out_release; 2372 } 2373 2374 dispose_it = msk->free_first || ssk != msk->first; 2375 if (dispose_it) 2376 list_del(&subflow->node); 2377 2378 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2379 2380 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2381 /* be sure to force the tcp_close path 2382 * to generate the egress reset 2383 */ 2384 ssk->sk_lingertime = 0; 2385 sock_set_flag(ssk, SOCK_LINGER); 2386 subflow->send_fastclose = 1; 2387 } 2388 2389 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2390 if (!dispose_it) { 2391 __mptcp_subflow_disconnect(ssk, subflow, flags); 2392 release_sock(ssk); 2393 2394 goto out; 2395 } 2396 2397 subflow->disposable = 1; 2398 2399 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2400 * the ssk has been already destroyed, we just need to release the 2401 * reference owned by msk; 2402 */ 2403 if (!inet_csk(ssk)->icsk_ulp_ops) { 2404 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2405 kfree_rcu(subflow, rcu); 2406 } else { 2407 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2408 __tcp_close(ssk, 0); 2409 2410 /* close acquired an extra ref */ 2411 __sock_put(ssk); 2412 } 2413 2414 out_release: 2415 __mptcp_subflow_error_report(sk, ssk); 2416 release_sock(ssk); 2417 2418 sock_put(ssk); 2419 2420 if (ssk == msk->first) 2421 WRITE_ONCE(msk->first, NULL); 2422 2423 out: 2424 __mptcp_sync_sndbuf(sk); 2425 if (need_push) 2426 __mptcp_push_pending(sk, 0); 2427 2428 /* Catch every 'all subflows closed' scenario, including peers silently 2429 * closing them, e.g. due to timeout. 2430 * For established sockets, allow an additional timeout before closing, 2431 * as the protocol can still create more subflows. 2432 */ 2433 if (list_is_singular(&msk->conn_list) && msk->first && 2434 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2435 if (sk->sk_state != TCP_ESTABLISHED || 2436 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2437 mptcp_set_state(sk, TCP_CLOSE); 2438 mptcp_close_wake_up(sk); 2439 } else { 2440 mptcp_start_tout_timer(sk); 2441 } 2442 } 2443 } 2444 2445 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2446 struct mptcp_subflow_context *subflow) 2447 { 2448 /* The first subflow can already be closed and still in the list */ 2449 if (subflow->close_event_done) 2450 return; 2451 2452 subflow->close_event_done = true; 2453 2454 if (sk->sk_state == TCP_ESTABLISHED) 2455 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2456 2457 /* subflow aborted before reaching the fully_established status 2458 * attempt the creation of the next subflow 2459 */ 2460 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2461 2462 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2463 } 2464 2465 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2466 { 2467 return 0; 2468 } 2469 2470 static void __mptcp_close_subflow(struct sock *sk) 2471 { 2472 struct mptcp_subflow_context *subflow, *tmp; 2473 struct mptcp_sock *msk = mptcp_sk(sk); 2474 2475 might_sleep(); 2476 2477 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2478 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2479 int ssk_state = inet_sk_state_load(ssk); 2480 2481 if (ssk_state != TCP_CLOSE && 2482 (ssk_state != TCP_CLOSE_WAIT || 2483 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2484 continue; 2485 2486 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2487 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2488 continue; 2489 2490 mptcp_close_ssk(sk, ssk, subflow); 2491 } 2492 2493 } 2494 2495 static bool mptcp_close_tout_expired(const struct sock *sk) 2496 { 2497 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2498 sk->sk_state == TCP_CLOSE) 2499 return false; 2500 2501 return time_after32(tcp_jiffies32, 2502 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2503 } 2504 2505 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2506 { 2507 struct mptcp_subflow_context *subflow, *tmp; 2508 struct sock *sk = (struct sock *)msk; 2509 2510 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2511 return; 2512 2513 mptcp_token_destroy(msk); 2514 2515 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2516 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2517 bool slow; 2518 2519 slow = lock_sock_fast(tcp_sk); 2520 if (tcp_sk->sk_state != TCP_CLOSE) { 2521 mptcp_send_active_reset_reason(tcp_sk); 2522 tcp_set_state(tcp_sk, TCP_CLOSE); 2523 } 2524 unlock_sock_fast(tcp_sk, slow); 2525 } 2526 2527 /* Mirror the tcp_reset() error propagation */ 2528 switch (sk->sk_state) { 2529 case TCP_SYN_SENT: 2530 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2531 break; 2532 case TCP_CLOSE_WAIT: 2533 WRITE_ONCE(sk->sk_err, EPIPE); 2534 break; 2535 case TCP_CLOSE: 2536 return; 2537 default: 2538 WRITE_ONCE(sk->sk_err, ECONNRESET); 2539 } 2540 2541 mptcp_set_state(sk, TCP_CLOSE); 2542 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2543 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2544 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2545 2546 /* the calling mptcp_worker will properly destroy the socket */ 2547 if (sock_flag(sk, SOCK_DEAD)) 2548 return; 2549 2550 sk->sk_state_change(sk); 2551 sk_error_report(sk); 2552 } 2553 2554 static void __mptcp_retrans(struct sock *sk) 2555 { 2556 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2557 struct mptcp_sock *msk = mptcp_sk(sk); 2558 struct mptcp_subflow_context *subflow; 2559 struct mptcp_data_frag *dfrag; 2560 struct sock *ssk; 2561 int ret, err; 2562 u16 len = 0; 2563 2564 mptcp_clean_una_wakeup(sk); 2565 2566 /* first check ssk: need to kick "stale" logic */ 2567 err = mptcp_sched_get_retrans(msk); 2568 dfrag = mptcp_rtx_head(sk); 2569 if (!dfrag) { 2570 if (mptcp_data_fin_enabled(msk)) { 2571 struct inet_connection_sock *icsk = inet_csk(sk); 2572 2573 icsk->icsk_retransmits++; 2574 mptcp_set_datafin_timeout(sk); 2575 mptcp_send_ack(msk); 2576 2577 goto reset_timer; 2578 } 2579 2580 if (!mptcp_send_head(sk)) 2581 return; 2582 2583 goto reset_timer; 2584 } 2585 2586 if (err) 2587 goto reset_timer; 2588 2589 mptcp_for_each_subflow(msk, subflow) { 2590 if (READ_ONCE(subflow->scheduled)) { 2591 u16 copied = 0; 2592 2593 mptcp_subflow_set_scheduled(subflow, false); 2594 2595 ssk = mptcp_subflow_tcp_sock(subflow); 2596 2597 lock_sock(ssk); 2598 2599 /* limit retransmission to the bytes already sent on some subflows */ 2600 info.sent = 0; 2601 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2602 dfrag->already_sent; 2603 2604 /* 2605 * make the whole retrans decision, xmit, disallow 2606 * fallback atomic 2607 */ 2608 spin_lock_bh(&msk->fallback_lock); 2609 if (__mptcp_check_fallback(msk)) { 2610 spin_unlock_bh(&msk->fallback_lock); 2611 release_sock(ssk); 2612 return; 2613 } 2614 2615 while (info.sent < info.limit) { 2616 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2617 if (ret <= 0) 2618 break; 2619 2620 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2621 copied += ret; 2622 info.sent += ret; 2623 } 2624 if (copied) { 2625 len = max(copied, len); 2626 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2627 info.size_goal); 2628 msk->allow_infinite_fallback = false; 2629 } 2630 spin_unlock_bh(&msk->fallback_lock); 2631 2632 release_sock(ssk); 2633 } 2634 } 2635 2636 msk->bytes_retrans += len; 2637 dfrag->already_sent = max(dfrag->already_sent, len); 2638 2639 reset_timer: 2640 mptcp_check_and_set_pending(sk); 2641 2642 if (!mptcp_rtx_timer_pending(sk)) 2643 mptcp_reset_rtx_timer(sk); 2644 } 2645 2646 /* schedule the timeout timer for the relevant event: either close timeout 2647 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2648 */ 2649 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2650 { 2651 struct sock *sk = (struct sock *)msk; 2652 unsigned long timeout, close_timeout; 2653 2654 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2655 return; 2656 2657 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2658 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2659 2660 /* the close timeout takes precedence on the fail one, and here at least one of 2661 * them is active 2662 */ 2663 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2664 2665 sk_reset_timer(sk, &sk->sk_timer, timeout); 2666 } 2667 2668 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2669 { 2670 struct sock *ssk = msk->first; 2671 bool slow; 2672 2673 if (!ssk) 2674 return; 2675 2676 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2677 2678 slow = lock_sock_fast(ssk); 2679 mptcp_subflow_reset(ssk); 2680 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2681 unlock_sock_fast(ssk, slow); 2682 } 2683 2684 static void mptcp_do_fastclose(struct sock *sk) 2685 { 2686 struct mptcp_subflow_context *subflow, *tmp; 2687 struct mptcp_sock *msk = mptcp_sk(sk); 2688 2689 mptcp_set_state(sk, TCP_CLOSE); 2690 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2691 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2692 subflow, MPTCP_CF_FASTCLOSE); 2693 } 2694 2695 static void mptcp_worker(struct work_struct *work) 2696 { 2697 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2698 struct sock *sk = (struct sock *)msk; 2699 unsigned long fail_tout; 2700 int state; 2701 2702 lock_sock(sk); 2703 state = sk->sk_state; 2704 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2705 goto unlock; 2706 2707 mptcp_check_fastclose(msk); 2708 2709 mptcp_pm_worker(msk); 2710 2711 mptcp_check_send_data_fin(sk); 2712 mptcp_check_data_fin_ack(sk); 2713 mptcp_check_data_fin(sk); 2714 2715 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2716 __mptcp_close_subflow(sk); 2717 2718 if (mptcp_close_tout_expired(sk)) { 2719 mptcp_do_fastclose(sk); 2720 mptcp_close_wake_up(sk); 2721 } 2722 2723 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2724 __mptcp_destroy_sock(sk); 2725 goto unlock; 2726 } 2727 2728 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2729 __mptcp_retrans(sk); 2730 2731 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2732 if (fail_tout && time_after(jiffies, fail_tout)) 2733 mptcp_mp_fail_no_response(msk); 2734 2735 unlock: 2736 release_sock(sk); 2737 sock_put(sk); 2738 } 2739 2740 static void __mptcp_init_sock(struct sock *sk) 2741 { 2742 struct mptcp_sock *msk = mptcp_sk(sk); 2743 2744 INIT_LIST_HEAD(&msk->conn_list); 2745 INIT_LIST_HEAD(&msk->join_list); 2746 INIT_LIST_HEAD(&msk->rtx_queue); 2747 INIT_WORK(&msk->work, mptcp_worker); 2748 msk->out_of_order_queue = RB_ROOT; 2749 msk->first_pending = NULL; 2750 msk->timer_ival = TCP_RTO_MIN; 2751 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2752 2753 WRITE_ONCE(msk->first, NULL); 2754 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2755 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2756 msk->allow_infinite_fallback = true; 2757 msk->allow_subflows = true; 2758 msk->recovery = false; 2759 msk->subflow_id = 1; 2760 msk->last_data_sent = tcp_jiffies32; 2761 msk->last_data_recv = tcp_jiffies32; 2762 msk->last_ack_recv = tcp_jiffies32; 2763 2764 mptcp_pm_data_init(msk); 2765 spin_lock_init(&msk->fallback_lock); 2766 2767 /* re-use the csk retrans timer for MPTCP-level retrans */ 2768 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2769 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2770 } 2771 2772 static void mptcp_ca_reset(struct sock *sk) 2773 { 2774 struct inet_connection_sock *icsk = inet_csk(sk); 2775 2776 tcp_assign_congestion_control(sk); 2777 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2778 sizeof(mptcp_sk(sk)->ca_name)); 2779 2780 /* no need to keep a reference to the ops, the name will suffice */ 2781 tcp_cleanup_congestion_control(sk); 2782 icsk->icsk_ca_ops = NULL; 2783 } 2784 2785 static int mptcp_init_sock(struct sock *sk) 2786 { 2787 struct net *net = sock_net(sk); 2788 int ret; 2789 2790 __mptcp_init_sock(sk); 2791 2792 if (!mptcp_is_enabled(net)) 2793 return -ENOPROTOOPT; 2794 2795 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2796 return -ENOMEM; 2797 2798 rcu_read_lock(); 2799 ret = mptcp_init_sched(mptcp_sk(sk), 2800 mptcp_sched_find(mptcp_get_scheduler(net))); 2801 rcu_read_unlock(); 2802 if (ret) 2803 return ret; 2804 2805 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2806 2807 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2808 * propagate the correct value 2809 */ 2810 mptcp_ca_reset(sk); 2811 2812 sk_sockets_allocated_inc(sk); 2813 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2814 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2815 2816 return 0; 2817 } 2818 2819 static void __mptcp_clear_xmit(struct sock *sk) 2820 { 2821 struct mptcp_sock *msk = mptcp_sk(sk); 2822 struct mptcp_data_frag *dtmp, *dfrag; 2823 2824 WRITE_ONCE(msk->first_pending, NULL); 2825 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2826 dfrag_clear(sk, dfrag); 2827 } 2828 2829 void mptcp_cancel_work(struct sock *sk) 2830 { 2831 struct mptcp_sock *msk = mptcp_sk(sk); 2832 2833 if (cancel_work_sync(&msk->work)) 2834 __sock_put(sk); 2835 } 2836 2837 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2838 { 2839 lock_sock(ssk); 2840 2841 switch (ssk->sk_state) { 2842 case TCP_LISTEN: 2843 if (!(how & RCV_SHUTDOWN)) 2844 break; 2845 fallthrough; 2846 case TCP_SYN_SENT: 2847 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2848 break; 2849 default: 2850 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2851 pr_debug("Fallback\n"); 2852 ssk->sk_shutdown |= how; 2853 tcp_shutdown(ssk, how); 2854 2855 /* simulate the data_fin ack reception to let the state 2856 * machine move forward 2857 */ 2858 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2859 mptcp_schedule_work(sk); 2860 } else { 2861 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2862 tcp_send_ack(ssk); 2863 if (!mptcp_rtx_timer_pending(sk)) 2864 mptcp_reset_rtx_timer(sk); 2865 } 2866 break; 2867 } 2868 2869 release_sock(ssk); 2870 } 2871 2872 void mptcp_set_state(struct sock *sk, int state) 2873 { 2874 int oldstate = sk->sk_state; 2875 2876 switch (state) { 2877 case TCP_ESTABLISHED: 2878 if (oldstate != TCP_ESTABLISHED) 2879 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2880 break; 2881 case TCP_CLOSE_WAIT: 2882 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2883 * MPTCP "accepted" sockets will be created later on. So no 2884 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2885 */ 2886 break; 2887 default: 2888 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2889 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2890 } 2891 2892 inet_sk_state_store(sk, state); 2893 } 2894 2895 static const unsigned char new_state[16] = { 2896 /* current state: new state: action: */ 2897 [0 /* (Invalid) */] = TCP_CLOSE, 2898 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2899 [TCP_SYN_SENT] = TCP_CLOSE, 2900 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2901 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2902 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2903 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2904 [TCP_CLOSE] = TCP_CLOSE, 2905 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2906 [TCP_LAST_ACK] = TCP_LAST_ACK, 2907 [TCP_LISTEN] = TCP_CLOSE, 2908 [TCP_CLOSING] = TCP_CLOSING, 2909 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2910 }; 2911 2912 static int mptcp_close_state(struct sock *sk) 2913 { 2914 int next = (int)new_state[sk->sk_state]; 2915 int ns = next & TCP_STATE_MASK; 2916 2917 mptcp_set_state(sk, ns); 2918 2919 return next & TCP_ACTION_FIN; 2920 } 2921 2922 static void mptcp_check_send_data_fin(struct sock *sk) 2923 { 2924 struct mptcp_subflow_context *subflow; 2925 struct mptcp_sock *msk = mptcp_sk(sk); 2926 2927 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2928 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2929 msk->snd_nxt, msk->write_seq); 2930 2931 /* we still need to enqueue subflows or not really shutting down, 2932 * skip this 2933 */ 2934 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2935 mptcp_send_head(sk)) 2936 return; 2937 2938 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2939 2940 mptcp_for_each_subflow(msk, subflow) { 2941 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2942 2943 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2944 } 2945 } 2946 2947 static void __mptcp_wr_shutdown(struct sock *sk) 2948 { 2949 struct mptcp_sock *msk = mptcp_sk(sk); 2950 2951 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2952 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2953 !!mptcp_send_head(sk)); 2954 2955 /* will be ignored by fallback sockets */ 2956 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2957 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2958 2959 mptcp_check_send_data_fin(sk); 2960 } 2961 2962 static void __mptcp_destroy_sock(struct sock *sk) 2963 { 2964 struct mptcp_sock *msk = mptcp_sk(sk); 2965 2966 pr_debug("msk=%p\n", msk); 2967 2968 might_sleep(); 2969 2970 mptcp_stop_rtx_timer(sk); 2971 sk_stop_timer(sk, &sk->sk_timer); 2972 msk->pm.status = 0; 2973 mptcp_release_sched(msk); 2974 2975 sk->sk_prot->destroy(sk); 2976 2977 sk_stream_kill_queues(sk); 2978 xfrm_sk_free_policy(sk); 2979 2980 sock_put(sk); 2981 } 2982 2983 void __mptcp_unaccepted_force_close(struct sock *sk) 2984 { 2985 sock_set_flag(sk, SOCK_DEAD); 2986 mptcp_do_fastclose(sk); 2987 __mptcp_destroy_sock(sk); 2988 } 2989 2990 static __poll_t mptcp_check_readable(struct sock *sk) 2991 { 2992 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2993 } 2994 2995 static void mptcp_check_listen_stop(struct sock *sk) 2996 { 2997 struct sock *ssk; 2998 2999 if (inet_sk_state_load(sk) != TCP_LISTEN) 3000 return; 3001 3002 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3003 ssk = mptcp_sk(sk)->first; 3004 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3005 return; 3006 3007 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3008 tcp_set_state(ssk, TCP_CLOSE); 3009 mptcp_subflow_queue_clean(sk, ssk); 3010 inet_csk_listen_stop(ssk); 3011 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3012 release_sock(ssk); 3013 } 3014 3015 bool __mptcp_close(struct sock *sk, long timeout) 3016 { 3017 struct mptcp_subflow_context *subflow; 3018 struct mptcp_sock *msk = mptcp_sk(sk); 3019 bool do_cancel_work = false; 3020 int subflows_alive = 0; 3021 3022 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3023 3024 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3025 mptcp_check_listen_stop(sk); 3026 mptcp_set_state(sk, TCP_CLOSE); 3027 goto cleanup; 3028 } 3029 3030 if (mptcp_data_avail(msk) || timeout < 0) { 3031 /* If the msk has read data, or the caller explicitly ask it, 3032 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3033 */ 3034 mptcp_do_fastclose(sk); 3035 timeout = 0; 3036 } else if (mptcp_close_state(sk)) { 3037 __mptcp_wr_shutdown(sk); 3038 } 3039 3040 sk_stream_wait_close(sk, timeout); 3041 3042 cleanup: 3043 /* orphan all the subflows */ 3044 mptcp_for_each_subflow(msk, subflow) { 3045 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3046 bool slow = lock_sock_fast_nested(ssk); 3047 3048 subflows_alive += ssk->sk_state != TCP_CLOSE; 3049 3050 /* since the close timeout takes precedence on the fail one, 3051 * cancel the latter 3052 */ 3053 if (ssk == msk->first) 3054 subflow->fail_tout = 0; 3055 3056 /* detach from the parent socket, but allow data_ready to 3057 * push incoming data into the mptcp stack, to properly ack it 3058 */ 3059 ssk->sk_socket = NULL; 3060 ssk->sk_wq = NULL; 3061 unlock_sock_fast(ssk, slow); 3062 } 3063 sock_orphan(sk); 3064 3065 /* all the subflows are closed, only timeout can change the msk 3066 * state, let's not keep resources busy for no reasons 3067 */ 3068 if (subflows_alive == 0) 3069 mptcp_set_state(sk, TCP_CLOSE); 3070 3071 sock_hold(sk); 3072 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3073 mptcp_pm_connection_closed(msk); 3074 3075 if (sk->sk_state == TCP_CLOSE) { 3076 __mptcp_destroy_sock(sk); 3077 do_cancel_work = true; 3078 } else { 3079 mptcp_start_tout_timer(sk); 3080 } 3081 3082 return do_cancel_work; 3083 } 3084 3085 static void mptcp_close(struct sock *sk, long timeout) 3086 { 3087 bool do_cancel_work; 3088 3089 lock_sock(sk); 3090 3091 do_cancel_work = __mptcp_close(sk, timeout); 3092 release_sock(sk); 3093 if (do_cancel_work) 3094 mptcp_cancel_work(sk); 3095 3096 sock_put(sk); 3097 } 3098 3099 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3100 { 3101 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3102 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3103 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3104 3105 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3106 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3107 3108 if (msk6 && ssk6) { 3109 msk6->saddr = ssk6->saddr; 3110 msk6->flow_label = ssk6->flow_label; 3111 } 3112 #endif 3113 3114 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3115 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3116 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3117 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3118 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3119 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3120 } 3121 3122 static int mptcp_disconnect(struct sock *sk, int flags) 3123 { 3124 struct mptcp_sock *msk = mptcp_sk(sk); 3125 3126 /* We are on the fastopen error path. We can't call straight into the 3127 * subflows cleanup code due to lock nesting (we are already under 3128 * msk->firstsocket lock). 3129 */ 3130 if (msk->fastopening) 3131 return -EBUSY; 3132 3133 mptcp_check_listen_stop(sk); 3134 mptcp_set_state(sk, TCP_CLOSE); 3135 3136 mptcp_stop_rtx_timer(sk); 3137 mptcp_stop_tout_timer(sk); 3138 3139 mptcp_pm_connection_closed(msk); 3140 3141 /* msk->subflow is still intact, the following will not free the first 3142 * subflow 3143 */ 3144 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3145 3146 /* The first subflow is already in TCP_CLOSE status, the following 3147 * can't overlap with a fallback anymore 3148 */ 3149 spin_lock_bh(&msk->fallback_lock); 3150 msk->allow_subflows = true; 3151 msk->allow_infinite_fallback = true; 3152 WRITE_ONCE(msk->flags, 0); 3153 spin_unlock_bh(&msk->fallback_lock); 3154 3155 msk->cb_flags = 0; 3156 msk->recovery = false; 3157 WRITE_ONCE(msk->can_ack, false); 3158 WRITE_ONCE(msk->fully_established, false); 3159 WRITE_ONCE(msk->rcv_data_fin, false); 3160 WRITE_ONCE(msk->snd_data_fin_enable, false); 3161 WRITE_ONCE(msk->rcv_fastclose, false); 3162 WRITE_ONCE(msk->use_64bit_ack, false); 3163 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3164 mptcp_pm_data_reset(msk); 3165 mptcp_ca_reset(sk); 3166 msk->bytes_consumed = 0; 3167 msk->bytes_acked = 0; 3168 msk->bytes_received = 0; 3169 msk->bytes_sent = 0; 3170 msk->bytes_retrans = 0; 3171 msk->rcvspace_init = 0; 3172 3173 WRITE_ONCE(sk->sk_shutdown, 0); 3174 sk_error_report(sk); 3175 return 0; 3176 } 3177 3178 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3179 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3180 { 3181 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3182 3183 return &msk6->np; 3184 } 3185 3186 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3187 { 3188 const struct ipv6_pinfo *np = inet6_sk(sk); 3189 struct ipv6_txoptions *opt; 3190 struct ipv6_pinfo *newnp; 3191 3192 newnp = inet6_sk(newsk); 3193 3194 rcu_read_lock(); 3195 opt = rcu_dereference(np->opt); 3196 if (opt) { 3197 opt = ipv6_dup_options(newsk, opt); 3198 if (!opt) 3199 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3200 } 3201 RCU_INIT_POINTER(newnp->opt, opt); 3202 rcu_read_unlock(); 3203 } 3204 #endif 3205 3206 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3207 { 3208 struct ip_options_rcu *inet_opt, *newopt = NULL; 3209 const struct inet_sock *inet = inet_sk(sk); 3210 struct inet_sock *newinet; 3211 3212 newinet = inet_sk(newsk); 3213 3214 rcu_read_lock(); 3215 inet_opt = rcu_dereference(inet->inet_opt); 3216 if (inet_opt) { 3217 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3218 inet_opt->opt.optlen, GFP_ATOMIC); 3219 if (!newopt) 3220 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3221 } 3222 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3223 rcu_read_unlock(); 3224 } 3225 3226 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3227 const struct mptcp_options_received *mp_opt, 3228 struct sock *ssk, 3229 struct request_sock *req) 3230 { 3231 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3232 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3233 struct mptcp_subflow_context *subflow; 3234 struct mptcp_sock *msk; 3235 3236 if (!nsk) 3237 return NULL; 3238 3239 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3240 if (nsk->sk_family == AF_INET6) 3241 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3242 #endif 3243 3244 __mptcp_init_sock(nsk); 3245 3246 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3247 if (nsk->sk_family == AF_INET6) 3248 mptcp_copy_ip6_options(nsk, sk); 3249 else 3250 #endif 3251 mptcp_copy_ip_options(nsk, sk); 3252 3253 msk = mptcp_sk(nsk); 3254 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3255 WRITE_ONCE(msk->token, subflow_req->token); 3256 msk->in_accept_queue = 1; 3257 WRITE_ONCE(msk->fully_established, false); 3258 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3259 WRITE_ONCE(msk->csum_enabled, true); 3260 3261 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3262 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3263 WRITE_ONCE(msk->snd_una, msk->write_seq); 3264 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3265 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3266 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3267 3268 /* passive msk is created after the first/MPC subflow */ 3269 msk->subflow_id = 2; 3270 3271 sock_reset_flag(nsk, SOCK_RCU_FREE); 3272 security_inet_csk_clone(nsk, req); 3273 3274 /* this can't race with mptcp_close(), as the msk is 3275 * not yet exposted to user-space 3276 */ 3277 mptcp_set_state(nsk, TCP_ESTABLISHED); 3278 3279 /* The msk maintain a ref to each subflow in the connections list */ 3280 WRITE_ONCE(msk->first, ssk); 3281 subflow = mptcp_subflow_ctx(ssk); 3282 list_add(&subflow->node, &msk->conn_list); 3283 sock_hold(ssk); 3284 3285 /* new mpc subflow takes ownership of the newly 3286 * created mptcp socket 3287 */ 3288 mptcp_token_accept(subflow_req, msk); 3289 3290 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3291 * uses the correct data 3292 */ 3293 mptcp_copy_inaddrs(nsk, ssk); 3294 __mptcp_propagate_sndbuf(nsk, ssk); 3295 3296 mptcp_rcv_space_init(msk, ssk); 3297 3298 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3299 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3300 bh_unlock_sock(nsk); 3301 3302 /* note: the newly allocated socket refcount is 2 now */ 3303 return nsk; 3304 } 3305 3306 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3307 { 3308 const struct tcp_sock *tp = tcp_sk(ssk); 3309 3310 msk->rcvspace_init = 1; 3311 msk->rcvq_space.copied = 0; 3312 msk->rcvq_space.rtt_us = 0; 3313 3314 msk->rcvq_space.time = tp->tcp_mstamp; 3315 3316 /* initial rcv_space offering made to peer */ 3317 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3318 TCP_INIT_CWND * tp->advmss); 3319 if (msk->rcvq_space.space == 0) 3320 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3321 } 3322 3323 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3324 { 3325 struct mptcp_subflow_context *subflow, *tmp; 3326 struct sock *sk = (struct sock *)msk; 3327 3328 __mptcp_clear_xmit(sk); 3329 3330 /* join list will be eventually flushed (with rst) at sock lock release time */ 3331 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3332 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3333 3334 __skb_queue_purge(&sk->sk_receive_queue); 3335 skb_rbtree_purge(&msk->out_of_order_queue); 3336 3337 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3338 * inet_sock_destruct() will dispose it 3339 */ 3340 mptcp_token_destroy(msk); 3341 mptcp_pm_destroy(msk); 3342 } 3343 3344 static void mptcp_destroy(struct sock *sk) 3345 { 3346 struct mptcp_sock *msk = mptcp_sk(sk); 3347 3348 /* allow the following to close even the initial subflow */ 3349 msk->free_first = 1; 3350 mptcp_destroy_common(msk, 0); 3351 sk_sockets_allocated_dec(sk); 3352 } 3353 3354 void __mptcp_data_acked(struct sock *sk) 3355 { 3356 if (!sock_owned_by_user(sk)) 3357 __mptcp_clean_una(sk); 3358 else 3359 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3360 } 3361 3362 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3363 { 3364 if (!mptcp_send_head(sk)) 3365 return; 3366 3367 if (!sock_owned_by_user(sk)) 3368 __mptcp_subflow_push_pending(sk, ssk, false); 3369 else 3370 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3371 } 3372 3373 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3374 BIT(MPTCP_RETRANSMIT) | \ 3375 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3376 BIT(MPTCP_DEQUEUE)) 3377 3378 /* processes deferred events and flush wmem */ 3379 static void mptcp_release_cb(struct sock *sk) 3380 __must_hold(&sk->sk_lock.slock) 3381 { 3382 struct mptcp_sock *msk = mptcp_sk(sk); 3383 3384 for (;;) { 3385 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3386 struct list_head join_list; 3387 3388 if (!flags) 3389 break; 3390 3391 INIT_LIST_HEAD(&join_list); 3392 list_splice_init(&msk->join_list, &join_list); 3393 3394 /* the following actions acquire the subflow socket lock 3395 * 3396 * 1) can't be invoked in atomic scope 3397 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3398 * datapath acquires the msk socket spinlock while helding 3399 * the subflow socket lock 3400 */ 3401 msk->cb_flags &= ~flags; 3402 spin_unlock_bh(&sk->sk_lock.slock); 3403 3404 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3405 __mptcp_flush_join_list(sk, &join_list); 3406 if (flags & BIT(MPTCP_PUSH_PENDING)) 3407 __mptcp_push_pending(sk, 0); 3408 if (flags & BIT(MPTCP_RETRANSMIT)) 3409 __mptcp_retrans(sk); 3410 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3411 /* notify ack seq update */ 3412 mptcp_cleanup_rbuf(msk, 0); 3413 sk->sk_data_ready(sk); 3414 } 3415 3416 cond_resched(); 3417 spin_lock_bh(&sk->sk_lock.slock); 3418 } 3419 3420 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3421 __mptcp_clean_una_wakeup(sk); 3422 if (unlikely(msk->cb_flags)) { 3423 /* be sure to sync the msk state before taking actions 3424 * depending on sk_state (MPTCP_ERROR_REPORT) 3425 * On sk release avoid actions depending on the first subflow 3426 */ 3427 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3428 __mptcp_sync_state(sk, msk->pending_state); 3429 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3430 __mptcp_error_report(sk); 3431 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3432 __mptcp_sync_sndbuf(sk); 3433 } 3434 } 3435 3436 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3437 * TCP can't schedule delack timer before the subflow is fully established. 3438 * MPTCP uses the delack timer to do 3rd ack retransmissions 3439 */ 3440 static void schedule_3rdack_retransmission(struct sock *ssk) 3441 { 3442 struct inet_connection_sock *icsk = inet_csk(ssk); 3443 struct tcp_sock *tp = tcp_sk(ssk); 3444 unsigned long timeout; 3445 3446 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3447 return; 3448 3449 /* reschedule with a timeout above RTT, as we must look only for drop */ 3450 if (tp->srtt_us) 3451 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3452 else 3453 timeout = TCP_TIMEOUT_INIT; 3454 timeout += jiffies; 3455 3456 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3457 smp_store_release(&icsk->icsk_ack.pending, 3458 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3459 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3460 } 3461 3462 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3463 { 3464 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3465 struct sock *sk = subflow->conn; 3466 3467 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3468 mptcp_data_lock(sk); 3469 if (!sock_owned_by_user(sk)) 3470 __mptcp_subflow_push_pending(sk, ssk, true); 3471 else 3472 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3473 mptcp_data_unlock(sk); 3474 } 3475 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3476 mptcp_data_lock(sk); 3477 if (!sock_owned_by_user(sk)) 3478 __mptcp_sync_sndbuf(sk); 3479 else 3480 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3481 mptcp_data_unlock(sk); 3482 } 3483 if (status & BIT(MPTCP_DELEGATE_ACK)) 3484 schedule_3rdack_retransmission(ssk); 3485 } 3486 3487 static int mptcp_hash(struct sock *sk) 3488 { 3489 /* should never be called, 3490 * we hash the TCP subflows not the MPTCP socket 3491 */ 3492 WARN_ON_ONCE(1); 3493 return 0; 3494 } 3495 3496 static void mptcp_unhash(struct sock *sk) 3497 { 3498 /* called from sk_common_release(), but nothing to do here */ 3499 } 3500 3501 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3502 { 3503 struct mptcp_sock *msk = mptcp_sk(sk); 3504 3505 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3506 if (WARN_ON_ONCE(!msk->first)) 3507 return -EINVAL; 3508 3509 return inet_csk_get_port(msk->first, snum); 3510 } 3511 3512 void mptcp_finish_connect(struct sock *ssk) 3513 { 3514 struct mptcp_subflow_context *subflow; 3515 struct mptcp_sock *msk; 3516 struct sock *sk; 3517 3518 subflow = mptcp_subflow_ctx(ssk); 3519 sk = subflow->conn; 3520 msk = mptcp_sk(sk); 3521 3522 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3523 3524 subflow->map_seq = subflow->iasn; 3525 subflow->map_subflow_seq = 1; 3526 3527 /* the socket is not connected yet, no msk/subflow ops can access/race 3528 * accessing the field below 3529 */ 3530 WRITE_ONCE(msk->local_key, subflow->local_key); 3531 3532 mptcp_pm_new_connection(msk, ssk, 0); 3533 } 3534 3535 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3536 { 3537 write_lock_bh(&sk->sk_callback_lock); 3538 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3539 sk_set_socket(sk, parent); 3540 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3541 write_unlock_bh(&sk->sk_callback_lock); 3542 } 3543 3544 bool mptcp_finish_join(struct sock *ssk) 3545 { 3546 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3547 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3548 struct sock *parent = (void *)msk; 3549 bool ret = true; 3550 3551 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3552 3553 /* mptcp socket already closing? */ 3554 if (!mptcp_is_fully_established(parent)) { 3555 subflow->reset_reason = MPTCP_RST_EMPTCP; 3556 return false; 3557 } 3558 3559 /* active subflow, already present inside the conn_list */ 3560 if (!list_empty(&subflow->node)) { 3561 spin_lock_bh(&msk->fallback_lock); 3562 if (!msk->allow_subflows) { 3563 spin_unlock_bh(&msk->fallback_lock); 3564 return false; 3565 } 3566 mptcp_subflow_joined(msk, ssk); 3567 spin_unlock_bh(&msk->fallback_lock); 3568 mptcp_propagate_sndbuf(parent, ssk); 3569 return true; 3570 } 3571 3572 if (!mptcp_pm_allow_new_subflow(msk)) { 3573 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3574 goto err_prohibited; 3575 } 3576 3577 /* If we can't acquire msk socket lock here, let the release callback 3578 * handle it 3579 */ 3580 mptcp_data_lock(parent); 3581 if (!sock_owned_by_user(parent)) { 3582 ret = __mptcp_finish_join(msk, ssk); 3583 if (ret) { 3584 sock_hold(ssk); 3585 list_add_tail(&subflow->node, &msk->conn_list); 3586 } 3587 } else { 3588 sock_hold(ssk); 3589 list_add_tail(&subflow->node, &msk->join_list); 3590 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3591 } 3592 mptcp_data_unlock(parent); 3593 3594 if (!ret) { 3595 err_prohibited: 3596 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3597 return false; 3598 } 3599 3600 return true; 3601 } 3602 3603 static void mptcp_shutdown(struct sock *sk, int how) 3604 { 3605 pr_debug("sk=%p, how=%d\n", sk, how); 3606 3607 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3608 __mptcp_wr_shutdown(sk); 3609 } 3610 3611 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3612 { 3613 const struct sock *sk = (void *)msk; 3614 u64 delta; 3615 3616 if (sk->sk_state == TCP_LISTEN) 3617 return -EINVAL; 3618 3619 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3620 return 0; 3621 3622 delta = msk->write_seq - v; 3623 if (__mptcp_check_fallback(msk) && msk->first) { 3624 struct tcp_sock *tp = tcp_sk(msk->first); 3625 3626 /* the first subflow is disconnected after close - see 3627 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3628 * so ignore that status, too. 3629 */ 3630 if (!((1 << msk->first->sk_state) & 3631 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3632 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3633 } 3634 if (delta > INT_MAX) 3635 delta = INT_MAX; 3636 3637 return (int)delta; 3638 } 3639 3640 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3641 { 3642 struct mptcp_sock *msk = mptcp_sk(sk); 3643 bool slow; 3644 3645 switch (cmd) { 3646 case SIOCINQ: 3647 if (sk->sk_state == TCP_LISTEN) 3648 return -EINVAL; 3649 3650 lock_sock(sk); 3651 if (__mptcp_move_skbs(sk)) 3652 mptcp_cleanup_rbuf(msk, 0); 3653 *karg = mptcp_inq_hint(sk); 3654 release_sock(sk); 3655 break; 3656 case SIOCOUTQ: 3657 slow = lock_sock_fast(sk); 3658 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3659 unlock_sock_fast(sk, slow); 3660 break; 3661 case SIOCOUTQNSD: 3662 slow = lock_sock_fast(sk); 3663 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3664 unlock_sock_fast(sk, slow); 3665 break; 3666 default: 3667 return -ENOIOCTLCMD; 3668 } 3669 3670 return 0; 3671 } 3672 3673 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3674 { 3675 struct mptcp_subflow_context *subflow; 3676 struct mptcp_sock *msk = mptcp_sk(sk); 3677 int err = -EINVAL; 3678 struct sock *ssk; 3679 3680 ssk = __mptcp_nmpc_sk(msk); 3681 if (IS_ERR(ssk)) 3682 return PTR_ERR(ssk); 3683 3684 mptcp_set_state(sk, TCP_SYN_SENT); 3685 subflow = mptcp_subflow_ctx(ssk); 3686 #ifdef CONFIG_TCP_MD5SIG 3687 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3688 * TCP option space. 3689 */ 3690 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3691 mptcp_subflow_early_fallback(msk, subflow); 3692 #endif 3693 if (subflow->request_mptcp) { 3694 if (mptcp_active_should_disable(sk)) { 3695 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3696 mptcp_subflow_early_fallback(msk, subflow); 3697 } else if (mptcp_token_new_connect(ssk) < 0) { 3698 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3699 mptcp_subflow_early_fallback(msk, subflow); 3700 } 3701 } 3702 3703 WRITE_ONCE(msk->write_seq, subflow->idsn); 3704 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3705 WRITE_ONCE(msk->snd_una, subflow->idsn); 3706 if (likely(!__mptcp_check_fallback(msk))) 3707 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3708 3709 /* if reaching here via the fastopen/sendmsg path, the caller already 3710 * acquired the subflow socket lock, too. 3711 */ 3712 if (!msk->fastopening) 3713 lock_sock(ssk); 3714 3715 /* the following mirrors closely a very small chunk of code from 3716 * __inet_stream_connect() 3717 */ 3718 if (ssk->sk_state != TCP_CLOSE) 3719 goto out; 3720 3721 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3722 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3723 if (err) 3724 goto out; 3725 } 3726 3727 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3728 if (err < 0) 3729 goto out; 3730 3731 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3732 3733 out: 3734 if (!msk->fastopening) 3735 release_sock(ssk); 3736 3737 /* on successful connect, the msk state will be moved to established by 3738 * subflow_finish_connect() 3739 */ 3740 if (unlikely(err)) { 3741 /* avoid leaving a dangling token in an unconnected socket */ 3742 mptcp_token_destroy(msk); 3743 mptcp_set_state(sk, TCP_CLOSE); 3744 return err; 3745 } 3746 3747 mptcp_copy_inaddrs(sk, ssk); 3748 return 0; 3749 } 3750 3751 static struct proto mptcp_prot = { 3752 .name = "MPTCP", 3753 .owner = THIS_MODULE, 3754 .init = mptcp_init_sock, 3755 .connect = mptcp_connect, 3756 .disconnect = mptcp_disconnect, 3757 .close = mptcp_close, 3758 .setsockopt = mptcp_setsockopt, 3759 .getsockopt = mptcp_getsockopt, 3760 .shutdown = mptcp_shutdown, 3761 .destroy = mptcp_destroy, 3762 .sendmsg = mptcp_sendmsg, 3763 .ioctl = mptcp_ioctl, 3764 .recvmsg = mptcp_recvmsg, 3765 .release_cb = mptcp_release_cb, 3766 .hash = mptcp_hash, 3767 .unhash = mptcp_unhash, 3768 .get_port = mptcp_get_port, 3769 .stream_memory_free = mptcp_stream_memory_free, 3770 .sockets_allocated = &mptcp_sockets_allocated, 3771 3772 .memory_allocated = &tcp_memory_allocated, 3773 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3774 3775 .memory_pressure = &tcp_memory_pressure, 3776 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3777 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3778 .sysctl_mem = sysctl_tcp_mem, 3779 .obj_size = sizeof(struct mptcp_sock), 3780 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3781 .no_autobind = true, 3782 }; 3783 3784 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3785 { 3786 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3787 struct sock *ssk, *sk = sock->sk; 3788 int err = -EINVAL; 3789 3790 lock_sock(sk); 3791 ssk = __mptcp_nmpc_sk(msk); 3792 if (IS_ERR(ssk)) { 3793 err = PTR_ERR(ssk); 3794 goto unlock; 3795 } 3796 3797 if (sk->sk_family == AF_INET) 3798 err = inet_bind_sk(ssk, uaddr, addr_len); 3799 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3800 else if (sk->sk_family == AF_INET6) 3801 err = inet6_bind_sk(ssk, uaddr, addr_len); 3802 #endif 3803 if (!err) 3804 mptcp_copy_inaddrs(sk, ssk); 3805 3806 unlock: 3807 release_sock(sk); 3808 return err; 3809 } 3810 3811 static int mptcp_listen(struct socket *sock, int backlog) 3812 { 3813 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3814 struct sock *sk = sock->sk; 3815 struct sock *ssk; 3816 int err; 3817 3818 pr_debug("msk=%p\n", msk); 3819 3820 lock_sock(sk); 3821 3822 err = -EINVAL; 3823 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3824 goto unlock; 3825 3826 ssk = __mptcp_nmpc_sk(msk); 3827 if (IS_ERR(ssk)) { 3828 err = PTR_ERR(ssk); 3829 goto unlock; 3830 } 3831 3832 mptcp_set_state(sk, TCP_LISTEN); 3833 sock_set_flag(sk, SOCK_RCU_FREE); 3834 3835 lock_sock(ssk); 3836 err = __inet_listen_sk(ssk, backlog); 3837 release_sock(ssk); 3838 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3839 3840 if (!err) { 3841 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3842 mptcp_copy_inaddrs(sk, ssk); 3843 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3844 } 3845 3846 unlock: 3847 release_sock(sk); 3848 return err; 3849 } 3850 3851 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3852 struct proto_accept_arg *arg) 3853 { 3854 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3855 struct sock *ssk, *newsk; 3856 3857 pr_debug("msk=%p\n", msk); 3858 3859 /* Buggy applications can call accept on socket states other then LISTEN 3860 * but no need to allocate the first subflow just to error out. 3861 */ 3862 ssk = READ_ONCE(msk->first); 3863 if (!ssk) 3864 return -EINVAL; 3865 3866 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3867 newsk = inet_csk_accept(ssk, arg); 3868 if (!newsk) 3869 return arg->err; 3870 3871 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3872 if (sk_is_mptcp(newsk)) { 3873 struct mptcp_subflow_context *subflow; 3874 struct sock *new_mptcp_sock; 3875 3876 subflow = mptcp_subflow_ctx(newsk); 3877 new_mptcp_sock = subflow->conn; 3878 3879 /* is_mptcp should be false if subflow->conn is missing, see 3880 * subflow_syn_recv_sock() 3881 */ 3882 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3883 tcp_sk(newsk)->is_mptcp = 0; 3884 goto tcpfallback; 3885 } 3886 3887 newsk = new_mptcp_sock; 3888 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3889 3890 newsk->sk_kern_sock = arg->kern; 3891 lock_sock(newsk); 3892 __inet_accept(sock, newsock, newsk); 3893 3894 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3895 msk = mptcp_sk(newsk); 3896 msk->in_accept_queue = 0; 3897 3898 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3899 * This is needed so NOSPACE flag can be set from tcp stack. 3900 */ 3901 mptcp_for_each_subflow(msk, subflow) { 3902 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3903 3904 if (!ssk->sk_socket) 3905 mptcp_sock_graft(ssk, newsock); 3906 } 3907 3908 /* Do late cleanup for the first subflow as necessary. Also 3909 * deal with bad peers not doing a complete shutdown. 3910 */ 3911 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3912 __mptcp_close_ssk(newsk, msk->first, 3913 mptcp_subflow_ctx(msk->first), 0); 3914 if (unlikely(list_is_singular(&msk->conn_list))) 3915 mptcp_set_state(newsk, TCP_CLOSE); 3916 } 3917 } else { 3918 tcpfallback: 3919 newsk->sk_kern_sock = arg->kern; 3920 lock_sock(newsk); 3921 __inet_accept(sock, newsock, newsk); 3922 /* we are being invoked after accepting a non-mp-capable 3923 * flow: sk is a tcp_sk, not an mptcp one. 3924 * 3925 * Hand the socket over to tcp so all further socket ops 3926 * bypass mptcp. 3927 */ 3928 WRITE_ONCE(newsock->sk->sk_socket->ops, 3929 mptcp_fallback_tcp_ops(newsock->sk)); 3930 } 3931 release_sock(newsk); 3932 3933 return 0; 3934 } 3935 3936 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3937 { 3938 struct sock *sk = (struct sock *)msk; 3939 3940 if (__mptcp_stream_is_writeable(sk, 1)) 3941 return EPOLLOUT | EPOLLWRNORM; 3942 3943 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3944 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3945 if (__mptcp_stream_is_writeable(sk, 1)) 3946 return EPOLLOUT | EPOLLWRNORM; 3947 3948 return 0; 3949 } 3950 3951 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3952 struct poll_table_struct *wait) 3953 { 3954 struct sock *sk = sock->sk; 3955 struct mptcp_sock *msk; 3956 __poll_t mask = 0; 3957 u8 shutdown; 3958 int state; 3959 3960 msk = mptcp_sk(sk); 3961 sock_poll_wait(file, sock, wait); 3962 3963 state = inet_sk_state_load(sk); 3964 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 3965 if (state == TCP_LISTEN) { 3966 struct sock *ssk = READ_ONCE(msk->first); 3967 3968 if (WARN_ON_ONCE(!ssk)) 3969 return 0; 3970 3971 return inet_csk_listen_poll(ssk); 3972 } 3973 3974 shutdown = READ_ONCE(sk->sk_shutdown); 3975 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3976 mask |= EPOLLHUP; 3977 if (shutdown & RCV_SHUTDOWN) 3978 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3979 3980 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3981 mask |= mptcp_check_readable(sk); 3982 if (shutdown & SEND_SHUTDOWN) 3983 mask |= EPOLLOUT | EPOLLWRNORM; 3984 else 3985 mask |= mptcp_check_writeable(msk); 3986 } else if (state == TCP_SYN_SENT && 3987 inet_test_bit(DEFER_CONNECT, sk)) { 3988 /* cf tcp_poll() note about TFO */ 3989 mask |= EPOLLOUT | EPOLLWRNORM; 3990 } 3991 3992 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3993 smp_rmb(); 3994 if (READ_ONCE(sk->sk_err)) 3995 mask |= EPOLLERR; 3996 3997 return mask; 3998 } 3999 4000 static const struct proto_ops mptcp_stream_ops = { 4001 .family = PF_INET, 4002 .owner = THIS_MODULE, 4003 .release = inet_release, 4004 .bind = mptcp_bind, 4005 .connect = inet_stream_connect, 4006 .socketpair = sock_no_socketpair, 4007 .accept = mptcp_stream_accept, 4008 .getname = inet_getname, 4009 .poll = mptcp_poll, 4010 .ioctl = inet_ioctl, 4011 .gettstamp = sock_gettstamp, 4012 .listen = mptcp_listen, 4013 .shutdown = inet_shutdown, 4014 .setsockopt = sock_common_setsockopt, 4015 .getsockopt = sock_common_getsockopt, 4016 .sendmsg = inet_sendmsg, 4017 .recvmsg = inet_recvmsg, 4018 .mmap = sock_no_mmap, 4019 .set_rcvlowat = mptcp_set_rcvlowat, 4020 }; 4021 4022 static struct inet_protosw mptcp_protosw = { 4023 .type = SOCK_STREAM, 4024 .protocol = IPPROTO_MPTCP, 4025 .prot = &mptcp_prot, 4026 .ops = &mptcp_stream_ops, 4027 .flags = INET_PROTOSW_ICSK, 4028 }; 4029 4030 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4031 { 4032 struct mptcp_delegated_action *delegated; 4033 struct mptcp_subflow_context *subflow; 4034 int work_done = 0; 4035 4036 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4037 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4038 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4039 4040 bh_lock_sock_nested(ssk); 4041 if (!sock_owned_by_user(ssk)) { 4042 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4043 } else { 4044 /* tcp_release_cb_override already processed 4045 * the action or will do at next release_sock(). 4046 * In both case must dequeue the subflow here - on the same 4047 * CPU that scheduled it. 4048 */ 4049 smp_wmb(); 4050 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4051 } 4052 bh_unlock_sock(ssk); 4053 sock_put(ssk); 4054 4055 if (++work_done == budget) 4056 return budget; 4057 } 4058 4059 /* always provide a 0 'work_done' argument, so that napi_complete_done 4060 * will not try accessing the NULL napi->dev ptr 4061 */ 4062 napi_complete_done(napi, 0); 4063 return work_done; 4064 } 4065 4066 void __init mptcp_proto_init(void) 4067 { 4068 struct mptcp_delegated_action *delegated; 4069 int cpu; 4070 4071 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4072 4073 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4074 panic("Failed to allocate MPTCP pcpu counter\n"); 4075 4076 mptcp_napi_dev = alloc_netdev_dummy(0); 4077 if (!mptcp_napi_dev) 4078 panic("Failed to allocate MPTCP dummy netdev\n"); 4079 for_each_possible_cpu(cpu) { 4080 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4081 INIT_LIST_HEAD(&delegated->head); 4082 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4083 mptcp_napi_poll); 4084 napi_enable(&delegated->napi); 4085 } 4086 4087 mptcp_subflow_init(); 4088 mptcp_pm_init(); 4089 mptcp_sched_init(); 4090 mptcp_token_init(); 4091 4092 if (proto_register(&mptcp_prot, 1) != 0) 4093 panic("Failed to register MPTCP proto.\n"); 4094 4095 inet_register_protosw(&mptcp_protosw); 4096 4097 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4098 } 4099 4100 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4101 static const struct proto_ops mptcp_v6_stream_ops = { 4102 .family = PF_INET6, 4103 .owner = THIS_MODULE, 4104 .release = inet6_release, 4105 .bind = mptcp_bind, 4106 .connect = inet_stream_connect, 4107 .socketpair = sock_no_socketpair, 4108 .accept = mptcp_stream_accept, 4109 .getname = inet6_getname, 4110 .poll = mptcp_poll, 4111 .ioctl = inet6_ioctl, 4112 .gettstamp = sock_gettstamp, 4113 .listen = mptcp_listen, 4114 .shutdown = inet_shutdown, 4115 .setsockopt = sock_common_setsockopt, 4116 .getsockopt = sock_common_getsockopt, 4117 .sendmsg = inet6_sendmsg, 4118 .recvmsg = inet6_recvmsg, 4119 .mmap = sock_no_mmap, 4120 #ifdef CONFIG_COMPAT 4121 .compat_ioctl = inet6_compat_ioctl, 4122 #endif 4123 .set_rcvlowat = mptcp_set_rcvlowat, 4124 }; 4125 4126 static struct proto mptcp_v6_prot; 4127 4128 static struct inet_protosw mptcp_v6_protosw = { 4129 .type = SOCK_STREAM, 4130 .protocol = IPPROTO_MPTCP, 4131 .prot = &mptcp_v6_prot, 4132 .ops = &mptcp_v6_stream_ops, 4133 .flags = INET_PROTOSW_ICSK, 4134 }; 4135 4136 int __init mptcp_proto_v6_init(void) 4137 { 4138 int err; 4139 4140 mptcp_v6_prot = mptcp_prot; 4141 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4142 mptcp_v6_prot.slab = NULL; 4143 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4144 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4145 4146 err = proto_register(&mptcp_v6_prot, 1); 4147 if (err) 4148 return err; 4149 4150 err = inet6_register_protosw(&mptcp_v6_protosw); 4151 if (err) 4152 proto_unregister(&mptcp_v6_prot); 4153 4154 return err; 4155 } 4156 #endif 4157