xref: /linux/net/mptcp/protocol.c (revision 0ce92d548b44649a8de706f9bb9e74a4ed2f18a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/sock.h>
16 #include <net/inet_common.h>
17 #include <net/inet_hashtables.h>
18 #include <net/protocol.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/hotdata.h>
25 #include <net/xfrm.h>
26 #include <asm/ioctls.h>
27 #include "protocol.h"
28 #include "mib.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/mptcp.h>
32 
33 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
34 struct mptcp6_sock {
35 	struct mptcp_sock msk;
36 	struct ipv6_pinfo np;
37 };
38 #endif
39 
40 enum {
41 	MPTCP_CMSG_TS = BIT(0),
42 	MPTCP_CMSG_INQ = BIT(1),
43 };
44 
45 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
46 
47 static void __mptcp_destroy_sock(struct sock *sk);
48 static void mptcp_check_send_data_fin(struct sock *sk);
49 
50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
51 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
52 };
53 static struct net_device *mptcp_napi_dev;
54 
55 /* Returns end sequence number of the receiver's advertised window */
56 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
57 {
58 	return READ_ONCE(msk->wnd_end);
59 }
60 
61 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
62 {
63 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
64 	if (sk->sk_prot == &tcpv6_prot)
65 		return &inet6_stream_ops;
66 #endif
67 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
68 	return &inet_stream_ops;
69 }
70 
71 static int __mptcp_socket_create(struct mptcp_sock *msk)
72 {
73 	struct mptcp_subflow_context *subflow;
74 	struct sock *sk = (struct sock *)msk;
75 	struct socket *ssock;
76 	int err;
77 
78 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
79 	if (err)
80 		return err;
81 
82 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
83 	WRITE_ONCE(msk->first, ssock->sk);
84 	subflow = mptcp_subflow_ctx(ssock->sk);
85 	list_add(&subflow->node, &msk->conn_list);
86 	sock_hold(ssock->sk);
87 	subflow->request_mptcp = 1;
88 	subflow->subflow_id = msk->subflow_id++;
89 
90 	/* This is the first subflow, always with id 0 */
91 	WRITE_ONCE(subflow->local_id, 0);
92 	mptcp_sock_graft(msk->first, sk->sk_socket);
93 	iput(SOCK_INODE(ssock));
94 
95 	return 0;
96 }
97 
98 /* If the MPC handshake is not started, returns the first subflow,
99  * eventually allocating it.
100  */
101 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
102 {
103 	struct sock *sk = (struct sock *)msk;
104 	int ret;
105 
106 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
107 		return ERR_PTR(-EINVAL);
108 
109 	if (!msk->first) {
110 		ret = __mptcp_socket_create(msk);
111 		if (ret)
112 			return ERR_PTR(ret);
113 	}
114 
115 	return msk->first;
116 }
117 
118 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
119 {
120 	sk_drops_add(sk, skb);
121 	__kfree_skb(skb);
122 }
123 
124 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
125 			       struct sk_buff *from)
126 {
127 	bool fragstolen;
128 	int delta;
129 
130 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
131 	    MPTCP_SKB_CB(from)->offset ||
132 	    ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
133 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
134 		return false;
135 
136 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
137 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
138 		 to->len, MPTCP_SKB_CB(from)->end_seq);
139 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
140 
141 	/* note the fwd memory can reach a negative value after accounting
142 	 * for the delta, but the later skb free will restore a non
143 	 * negative one
144 	 */
145 	atomic_add(delta, &sk->sk_rmem_alloc);
146 	sk_mem_charge(sk, delta);
147 	kfree_skb_partial(from, fragstolen);
148 
149 	return true;
150 }
151 
152 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
153 				   struct sk_buff *from)
154 {
155 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
156 		return false;
157 
158 	return mptcp_try_coalesce((struct sock *)msk, to, from);
159 }
160 
161 /* "inspired" by tcp_data_queue_ofo(), main differences:
162  * - use mptcp seqs
163  * - don't cope with sacks
164  */
165 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
166 {
167 	struct sock *sk = (struct sock *)msk;
168 	struct rb_node **p, *parent;
169 	u64 seq, end_seq, max_seq;
170 	struct sk_buff *skb1;
171 
172 	seq = MPTCP_SKB_CB(skb)->map_seq;
173 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
174 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
175 
176 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
177 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
178 	if (after64(end_seq, max_seq)) {
179 		/* out of window */
180 		mptcp_drop(sk, skb);
181 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
182 			 (unsigned long long)end_seq - (unsigned long)max_seq,
183 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
184 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
185 		return;
186 	}
187 
188 	p = &msk->out_of_order_queue.rb_node;
189 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
190 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
191 		rb_link_node(&skb->rbnode, NULL, p);
192 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
193 		msk->ooo_last_skb = skb;
194 		goto end;
195 	}
196 
197 	/* with 2 subflows, adding at end of ooo queue is quite likely
198 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
199 	 */
200 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
201 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
202 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
203 		return;
204 	}
205 
206 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
207 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
208 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
209 		parent = &msk->ooo_last_skb->rbnode;
210 		p = &parent->rb_right;
211 		goto insert;
212 	}
213 
214 	/* Find place to insert this segment. Handle overlaps on the way. */
215 	parent = NULL;
216 	while (*p) {
217 		parent = *p;
218 		skb1 = rb_to_skb(parent);
219 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
220 			p = &parent->rb_left;
221 			continue;
222 		}
223 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
224 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
225 				/* All the bits are present. Drop. */
226 				mptcp_drop(sk, skb);
227 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
228 				return;
229 			}
230 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
231 				/* partial overlap:
232 				 *     |     skb      |
233 				 *  |     skb1    |
234 				 * continue traversing
235 				 */
236 			} else {
237 				/* skb's seq == skb1's seq and skb covers skb1.
238 				 * Replace skb1 with skb.
239 				 */
240 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
241 						&msk->out_of_order_queue);
242 				mptcp_drop(sk, skb1);
243 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
244 				goto merge_right;
245 			}
246 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
247 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
248 			return;
249 		}
250 		p = &parent->rb_right;
251 	}
252 
253 insert:
254 	/* Insert segment into RB tree. */
255 	rb_link_node(&skb->rbnode, parent, p);
256 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
257 
258 merge_right:
259 	/* Remove other segments covered by skb. */
260 	while ((skb1 = skb_rb_next(skb)) != NULL) {
261 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
262 			break;
263 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
264 		mptcp_drop(sk, skb1);
265 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
266 	}
267 	/* If there is no skb after us, we are the last_skb ! */
268 	if (!skb1)
269 		msk->ooo_last_skb = skb;
270 
271 end:
272 	skb_condense(skb);
273 	skb_set_owner_r(skb, sk);
274 }
275 
276 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
277 			     struct sk_buff *skb, unsigned int offset,
278 			     size_t copy_len)
279 {
280 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
281 	struct sock *sk = (struct sock *)msk;
282 	struct sk_buff *tail;
283 	bool has_rxtstamp;
284 
285 	__skb_unlink(skb, &ssk->sk_receive_queue);
286 
287 	skb_ext_reset(skb);
288 	skb_orphan(skb);
289 
290 	/* try to fetch required memory from subflow */
291 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
292 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
293 		goto drop;
294 	}
295 
296 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
297 
298 	/* the skb map_seq accounts for the skb offset:
299 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
300 	 * value
301 	 */
302 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
303 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
304 	MPTCP_SKB_CB(skb)->offset = offset;
305 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
306 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
307 
308 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
309 		/* in sequence */
310 		msk->bytes_received += copy_len;
311 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
312 		tail = skb_peek_tail(&sk->sk_receive_queue);
313 		if (tail && mptcp_try_coalesce(sk, tail, skb))
314 			return true;
315 
316 		skb_set_owner_r(skb, sk);
317 		__skb_queue_tail(&sk->sk_receive_queue, skb);
318 		return true;
319 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
320 		mptcp_data_queue_ofo(msk, skb);
321 		return false;
322 	}
323 
324 	/* old data, keep it simple and drop the whole pkt, sender
325 	 * will retransmit as needed, if needed.
326 	 */
327 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
328 drop:
329 	mptcp_drop(sk, skb);
330 	return false;
331 }
332 
333 static void mptcp_stop_rtx_timer(struct sock *sk)
334 {
335 	struct inet_connection_sock *icsk = inet_csk(sk);
336 
337 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
338 	mptcp_sk(sk)->timer_ival = 0;
339 }
340 
341 static void mptcp_close_wake_up(struct sock *sk)
342 {
343 	if (sock_flag(sk, SOCK_DEAD))
344 		return;
345 
346 	sk->sk_state_change(sk);
347 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
348 	    sk->sk_state == TCP_CLOSE)
349 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
350 	else
351 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
352 }
353 
354 /* called under the msk socket lock */
355 static bool mptcp_pending_data_fin_ack(struct sock *sk)
356 {
357 	struct mptcp_sock *msk = mptcp_sk(sk);
358 
359 	return ((1 << sk->sk_state) &
360 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
361 	       msk->write_seq == READ_ONCE(msk->snd_una);
362 }
363 
364 static void mptcp_check_data_fin_ack(struct sock *sk)
365 {
366 	struct mptcp_sock *msk = mptcp_sk(sk);
367 
368 	/* Look for an acknowledged DATA_FIN */
369 	if (mptcp_pending_data_fin_ack(sk)) {
370 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
371 
372 		switch (sk->sk_state) {
373 		case TCP_FIN_WAIT1:
374 			mptcp_set_state(sk, TCP_FIN_WAIT2);
375 			break;
376 		case TCP_CLOSING:
377 		case TCP_LAST_ACK:
378 			mptcp_set_state(sk, TCP_CLOSE);
379 			break;
380 		}
381 
382 		mptcp_close_wake_up(sk);
383 	}
384 }
385 
386 /* can be called with no lock acquired */
387 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
388 {
389 	struct mptcp_sock *msk = mptcp_sk(sk);
390 
391 	if (READ_ONCE(msk->rcv_data_fin) &&
392 	    ((1 << inet_sk_state_load(sk)) &
393 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
394 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
395 
396 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
397 			if (seq)
398 				*seq = rcv_data_fin_seq;
399 
400 			return true;
401 		}
402 	}
403 
404 	return false;
405 }
406 
407 static void mptcp_set_datafin_timeout(struct sock *sk)
408 {
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 	u32 retransmits;
411 
412 	retransmits = min_t(u32, icsk->icsk_retransmits,
413 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
414 
415 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
416 }
417 
418 static void __mptcp_set_timeout(struct sock *sk, long tout)
419 {
420 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
421 }
422 
423 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
424 {
425 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
426 
427 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
428 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
429 }
430 
431 static void mptcp_set_timeout(struct sock *sk)
432 {
433 	struct mptcp_subflow_context *subflow;
434 	long tout = 0;
435 
436 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
437 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
438 	__mptcp_set_timeout(sk, tout);
439 }
440 
441 static inline bool tcp_can_send_ack(const struct sock *ssk)
442 {
443 	return !((1 << inet_sk_state_load(ssk)) &
444 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
445 }
446 
447 void __mptcp_subflow_send_ack(struct sock *ssk)
448 {
449 	if (tcp_can_send_ack(ssk))
450 		tcp_send_ack(ssk);
451 }
452 
453 static void mptcp_subflow_send_ack(struct sock *ssk)
454 {
455 	bool slow;
456 
457 	slow = lock_sock_fast(ssk);
458 	__mptcp_subflow_send_ack(ssk);
459 	unlock_sock_fast(ssk, slow);
460 }
461 
462 static void mptcp_send_ack(struct mptcp_sock *msk)
463 {
464 	struct mptcp_subflow_context *subflow;
465 
466 	mptcp_for_each_subflow(msk, subflow)
467 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
468 }
469 
470 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
471 {
472 	bool slow;
473 
474 	slow = lock_sock_fast(ssk);
475 	if (tcp_can_send_ack(ssk))
476 		tcp_cleanup_rbuf(ssk, copied);
477 	unlock_sock_fast(ssk, slow);
478 }
479 
480 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
481 {
482 	const struct inet_connection_sock *icsk = inet_csk(ssk);
483 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
484 	const struct tcp_sock *tp = tcp_sk(ssk);
485 
486 	return (ack_pending & ICSK_ACK_SCHED) &&
487 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
488 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
489 		 (rx_empty && ack_pending &
490 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
491 }
492 
493 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
494 {
495 	int old_space = READ_ONCE(msk->old_wspace);
496 	struct mptcp_subflow_context *subflow;
497 	struct sock *sk = (struct sock *)msk;
498 	int space =  __mptcp_space(sk);
499 	bool cleanup, rx_empty;
500 
501 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
502 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
503 
504 	mptcp_for_each_subflow(msk, subflow) {
505 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
506 
507 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
508 			mptcp_subflow_cleanup_rbuf(ssk, copied);
509 	}
510 }
511 
512 static bool mptcp_check_data_fin(struct sock *sk)
513 {
514 	struct mptcp_sock *msk = mptcp_sk(sk);
515 	u64 rcv_data_fin_seq;
516 	bool ret = false;
517 
518 	/* Need to ack a DATA_FIN received from a peer while this side
519 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
520 	 * msk->rcv_data_fin was set when parsing the incoming options
521 	 * at the subflow level and the msk lock was not held, so this
522 	 * is the first opportunity to act on the DATA_FIN and change
523 	 * the msk state.
524 	 *
525 	 * If we are caught up to the sequence number of the incoming
526 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
527 	 * not caught up, do nothing and let the recv code send DATA_ACK
528 	 * when catching up.
529 	 */
530 
531 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
532 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
533 		WRITE_ONCE(msk->rcv_data_fin, 0);
534 
535 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
536 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
537 
538 		switch (sk->sk_state) {
539 		case TCP_ESTABLISHED:
540 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
541 			break;
542 		case TCP_FIN_WAIT1:
543 			mptcp_set_state(sk, TCP_CLOSING);
544 			break;
545 		case TCP_FIN_WAIT2:
546 			mptcp_set_state(sk, TCP_CLOSE);
547 			break;
548 		default:
549 			/* Other states not expected */
550 			WARN_ON_ONCE(1);
551 			break;
552 		}
553 
554 		ret = true;
555 		if (!__mptcp_check_fallback(msk))
556 			mptcp_send_ack(msk);
557 		mptcp_close_wake_up(sk);
558 	}
559 	return ret;
560 }
561 
562 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
563 {
564 	if (READ_ONCE(msk->allow_infinite_fallback)) {
565 		MPTCP_INC_STATS(sock_net(ssk),
566 				MPTCP_MIB_DSSCORRUPTIONFALLBACK);
567 		mptcp_do_fallback(ssk);
568 	} else {
569 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
570 		mptcp_subflow_reset(ssk);
571 	}
572 }
573 
574 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
575 					   struct sock *ssk)
576 {
577 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
578 	struct sock *sk = (struct sock *)msk;
579 	bool more_data_avail;
580 	struct tcp_sock *tp;
581 	bool ret = false;
582 
583 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
584 	tp = tcp_sk(ssk);
585 	do {
586 		u32 map_remaining, offset;
587 		u32 seq = tp->copied_seq;
588 		struct sk_buff *skb;
589 		bool fin;
590 
591 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
592 			break;
593 
594 		/* try to move as much data as available */
595 		map_remaining = subflow->map_data_len -
596 				mptcp_subflow_get_map_offset(subflow);
597 
598 		skb = skb_peek(&ssk->sk_receive_queue);
599 		if (unlikely(!skb))
600 			break;
601 
602 		if (__mptcp_check_fallback(msk)) {
603 			/* Under fallback skbs have no MPTCP extension and TCP could
604 			 * collapse them between the dummy map creation and the
605 			 * current dequeue. Be sure to adjust the map size.
606 			 */
607 			map_remaining = skb->len;
608 			subflow->map_data_len = skb->len;
609 		}
610 
611 		offset = seq - TCP_SKB_CB(skb)->seq;
612 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
613 		if (fin)
614 			seq++;
615 
616 		if (offset < skb->len) {
617 			size_t len = skb->len - offset;
618 
619 			ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret;
620 			seq += len;
621 
622 			if (unlikely(map_remaining < len)) {
623 				DEBUG_NET_WARN_ON_ONCE(1);
624 				mptcp_dss_corruption(msk, ssk);
625 			}
626 		} else {
627 			if (unlikely(!fin)) {
628 				DEBUG_NET_WARN_ON_ONCE(1);
629 				mptcp_dss_corruption(msk, ssk);
630 			}
631 
632 			sk_eat_skb(ssk, skb);
633 		}
634 
635 		WRITE_ONCE(tp->copied_seq, seq);
636 		more_data_avail = mptcp_subflow_data_available(ssk);
637 
638 	} while (more_data_avail);
639 
640 	if (ret)
641 		msk->last_data_recv = tcp_jiffies32;
642 	return ret;
643 }
644 
645 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
646 {
647 	struct sock *sk = (struct sock *)msk;
648 	struct sk_buff *skb, *tail;
649 	bool moved = false;
650 	struct rb_node *p;
651 	u64 end_seq;
652 
653 	p = rb_first(&msk->out_of_order_queue);
654 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
655 	while (p) {
656 		skb = rb_to_skb(p);
657 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
658 			break;
659 
660 		p = rb_next(p);
661 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
662 
663 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
664 				      msk->ack_seq))) {
665 			mptcp_drop(sk, skb);
666 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
667 			continue;
668 		}
669 
670 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
671 		tail = skb_peek_tail(&sk->sk_receive_queue);
672 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
673 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
674 
675 			/* skip overlapping data, if any */
676 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
677 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
678 				 delta);
679 			MPTCP_SKB_CB(skb)->offset += delta;
680 			MPTCP_SKB_CB(skb)->map_seq += delta;
681 			__skb_queue_tail(&sk->sk_receive_queue, skb);
682 		}
683 		msk->bytes_received += end_seq - msk->ack_seq;
684 		WRITE_ONCE(msk->ack_seq, end_seq);
685 		moved = true;
686 	}
687 	return moved;
688 }
689 
690 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
691 {
692 	int err = sock_error(ssk);
693 	int ssk_state;
694 
695 	if (!err)
696 		return false;
697 
698 	/* only propagate errors on fallen-back sockets or
699 	 * on MPC connect
700 	 */
701 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
702 		return false;
703 
704 	/* We need to propagate only transition to CLOSE state.
705 	 * Orphaned socket will see such state change via
706 	 * subflow_sched_work_if_closed() and that path will properly
707 	 * destroy the msk as needed.
708 	 */
709 	ssk_state = inet_sk_state_load(ssk);
710 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
711 		mptcp_set_state(sk, ssk_state);
712 	WRITE_ONCE(sk->sk_err, -err);
713 
714 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
715 	smp_wmb();
716 	sk_error_report(sk);
717 	return true;
718 }
719 
720 void __mptcp_error_report(struct sock *sk)
721 {
722 	struct mptcp_subflow_context *subflow;
723 	struct mptcp_sock *msk = mptcp_sk(sk);
724 
725 	mptcp_for_each_subflow(msk, subflow)
726 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
727 			break;
728 }
729 
730 /* In most cases we will be able to lock the mptcp socket.  If its already
731  * owned, we need to defer to the work queue to avoid ABBA deadlock.
732  */
733 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
734 {
735 	struct sock *sk = (struct sock *)msk;
736 	bool moved;
737 
738 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
739 	__mptcp_ofo_queue(msk);
740 	if (unlikely(ssk->sk_err)) {
741 		if (!sock_owned_by_user(sk))
742 			__mptcp_error_report(sk);
743 		else
744 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
745 	}
746 
747 	/* If the moves have caught up with the DATA_FIN sequence number
748 	 * it's time to ack the DATA_FIN and change socket state, but
749 	 * this is not a good place to change state. Let the workqueue
750 	 * do it.
751 	 */
752 	if (mptcp_pending_data_fin(sk, NULL))
753 		mptcp_schedule_work(sk);
754 	return moved;
755 }
756 
757 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk)
758 {
759 	if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf))
760 		WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf);
761 }
762 
763 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
764 {
765 	struct mptcp_sock *msk = mptcp_sk(sk);
766 
767 	__mptcp_rcvbuf_update(sk, ssk);
768 
769 	/* Wake-up the reader only for in-sequence data */
770 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
771 		sk->sk_data_ready(sk);
772 }
773 
774 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
775 {
776 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
777 
778 	/* The peer can send data while we are shutting down this
779 	 * subflow at msk destruction time, but we must avoid enqueuing
780 	 * more data to the msk receive queue
781 	 */
782 	if (unlikely(subflow->disposable))
783 		return;
784 
785 	mptcp_data_lock(sk);
786 	if (!sock_owned_by_user(sk))
787 		__mptcp_data_ready(sk, ssk);
788 	else
789 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
790 	mptcp_data_unlock(sk);
791 }
792 
793 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
794 {
795 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
796 	WRITE_ONCE(msk->allow_infinite_fallback, false);
797 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
798 }
799 
800 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
801 {
802 	struct sock *sk = (struct sock *)msk;
803 
804 	if (sk->sk_state != TCP_ESTABLISHED)
805 		return false;
806 
807 	/* attach to msk socket only after we are sure we will deal with it
808 	 * at close time
809 	 */
810 	if (sk->sk_socket && !ssk->sk_socket)
811 		mptcp_sock_graft(ssk, sk->sk_socket);
812 
813 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
814 	mptcp_sockopt_sync_locked(msk, ssk);
815 	mptcp_subflow_joined(msk, ssk);
816 	mptcp_stop_tout_timer(sk);
817 	__mptcp_propagate_sndbuf(sk, ssk);
818 	return true;
819 }
820 
821 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
822 {
823 	struct mptcp_subflow_context *tmp, *subflow;
824 	struct mptcp_sock *msk = mptcp_sk(sk);
825 
826 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
827 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
828 		bool slow = lock_sock_fast(ssk);
829 
830 		list_move_tail(&subflow->node, &msk->conn_list);
831 		if (!__mptcp_finish_join(msk, ssk))
832 			mptcp_subflow_reset(ssk);
833 		unlock_sock_fast(ssk, slow);
834 	}
835 }
836 
837 static bool mptcp_rtx_timer_pending(struct sock *sk)
838 {
839 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
840 }
841 
842 static void mptcp_reset_rtx_timer(struct sock *sk)
843 {
844 	struct inet_connection_sock *icsk = inet_csk(sk);
845 	unsigned long tout;
846 
847 	/* prevent rescheduling on close */
848 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
849 		return;
850 
851 	tout = mptcp_sk(sk)->timer_ival;
852 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
853 }
854 
855 bool mptcp_schedule_work(struct sock *sk)
856 {
857 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
858 	    schedule_work(&mptcp_sk(sk)->work)) {
859 		/* each subflow already holds a reference to the sk, and the
860 		 * workqueue is invoked by a subflow, so sk can't go away here.
861 		 */
862 		sock_hold(sk);
863 		return true;
864 	}
865 	return false;
866 }
867 
868 static bool mptcp_skb_can_collapse_to(u64 write_seq,
869 				      const struct sk_buff *skb,
870 				      const struct mptcp_ext *mpext)
871 {
872 	if (!tcp_skb_can_collapse_to(skb))
873 		return false;
874 
875 	/* can collapse only if MPTCP level sequence is in order and this
876 	 * mapping has not been xmitted yet
877 	 */
878 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
879 	       !mpext->frozen;
880 }
881 
882 /* we can append data to the given data frag if:
883  * - there is space available in the backing page_frag
884  * - the data frag tail matches the current page_frag free offset
885  * - the data frag end sequence number matches the current write seq
886  */
887 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
888 				       const struct page_frag *pfrag,
889 				       const struct mptcp_data_frag *df)
890 {
891 	return df && pfrag->page == df->page &&
892 		pfrag->size - pfrag->offset > 0 &&
893 		pfrag->offset == (df->offset + df->data_len) &&
894 		df->data_seq + df->data_len == msk->write_seq;
895 }
896 
897 static void dfrag_uncharge(struct sock *sk, int len)
898 {
899 	sk_mem_uncharge(sk, len);
900 	sk_wmem_queued_add(sk, -len);
901 }
902 
903 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
904 {
905 	int len = dfrag->data_len + dfrag->overhead;
906 
907 	list_del(&dfrag->list);
908 	dfrag_uncharge(sk, len);
909 	put_page(dfrag->page);
910 }
911 
912 /* called under both the msk socket lock and the data lock */
913 static void __mptcp_clean_una(struct sock *sk)
914 {
915 	struct mptcp_sock *msk = mptcp_sk(sk);
916 	struct mptcp_data_frag *dtmp, *dfrag;
917 	u64 snd_una;
918 
919 	snd_una = msk->snd_una;
920 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
921 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
922 			break;
923 
924 		if (unlikely(dfrag == msk->first_pending)) {
925 			/* in recovery mode can see ack after the current snd head */
926 			if (WARN_ON_ONCE(!msk->recovery))
927 				break;
928 
929 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
930 		}
931 
932 		dfrag_clear(sk, dfrag);
933 	}
934 
935 	dfrag = mptcp_rtx_head(sk);
936 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
937 		u64 delta = snd_una - dfrag->data_seq;
938 
939 		/* prevent wrap around in recovery mode */
940 		if (unlikely(delta > dfrag->already_sent)) {
941 			if (WARN_ON_ONCE(!msk->recovery))
942 				goto out;
943 			if (WARN_ON_ONCE(delta > dfrag->data_len))
944 				goto out;
945 			dfrag->already_sent += delta - dfrag->already_sent;
946 		}
947 
948 		dfrag->data_seq += delta;
949 		dfrag->offset += delta;
950 		dfrag->data_len -= delta;
951 		dfrag->already_sent -= delta;
952 
953 		dfrag_uncharge(sk, delta);
954 	}
955 
956 	/* all retransmitted data acked, recovery completed */
957 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
958 		msk->recovery = false;
959 
960 out:
961 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
962 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
963 			mptcp_stop_rtx_timer(sk);
964 	} else {
965 		mptcp_reset_rtx_timer(sk);
966 	}
967 
968 	if (mptcp_pending_data_fin_ack(sk))
969 		mptcp_schedule_work(sk);
970 }
971 
972 static void __mptcp_clean_una_wakeup(struct sock *sk)
973 {
974 	lockdep_assert_held_once(&sk->sk_lock.slock);
975 
976 	__mptcp_clean_una(sk);
977 	mptcp_write_space(sk);
978 }
979 
980 static void mptcp_clean_una_wakeup(struct sock *sk)
981 {
982 	mptcp_data_lock(sk);
983 	__mptcp_clean_una_wakeup(sk);
984 	mptcp_data_unlock(sk);
985 }
986 
987 static void mptcp_enter_memory_pressure(struct sock *sk)
988 {
989 	struct mptcp_subflow_context *subflow;
990 	struct mptcp_sock *msk = mptcp_sk(sk);
991 	bool first = true;
992 
993 	mptcp_for_each_subflow(msk, subflow) {
994 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
995 
996 		if (first)
997 			tcp_enter_memory_pressure(ssk);
998 		sk_stream_moderate_sndbuf(ssk);
999 
1000 		first = false;
1001 	}
1002 	__mptcp_sync_sndbuf(sk);
1003 }
1004 
1005 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1006  * data
1007  */
1008 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1009 {
1010 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1011 					pfrag, sk->sk_allocation)))
1012 		return true;
1013 
1014 	mptcp_enter_memory_pressure(sk);
1015 	return false;
1016 }
1017 
1018 static struct mptcp_data_frag *
1019 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1020 		      int orig_offset)
1021 {
1022 	int offset = ALIGN(orig_offset, sizeof(long));
1023 	struct mptcp_data_frag *dfrag;
1024 
1025 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1026 	dfrag->data_len = 0;
1027 	dfrag->data_seq = msk->write_seq;
1028 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1029 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1030 	dfrag->already_sent = 0;
1031 	dfrag->page = pfrag->page;
1032 
1033 	return dfrag;
1034 }
1035 
1036 struct mptcp_sendmsg_info {
1037 	int mss_now;
1038 	int size_goal;
1039 	u16 limit;
1040 	u16 sent;
1041 	unsigned int flags;
1042 	bool data_lock_held;
1043 };
1044 
1045 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1046 				    u64 data_seq, int avail_size)
1047 {
1048 	u64 window_end = mptcp_wnd_end(msk);
1049 	u64 mptcp_snd_wnd;
1050 
1051 	if (__mptcp_check_fallback(msk))
1052 		return avail_size;
1053 
1054 	mptcp_snd_wnd = window_end - data_seq;
1055 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1056 
1057 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1058 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1059 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1060 	}
1061 
1062 	return avail_size;
1063 }
1064 
1065 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1066 {
1067 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1068 
1069 	if (!mpext)
1070 		return false;
1071 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1072 	return true;
1073 }
1074 
1075 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1076 {
1077 	struct sk_buff *skb;
1078 
1079 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1080 	if (likely(skb)) {
1081 		if (likely(__mptcp_add_ext(skb, gfp))) {
1082 			skb_reserve(skb, MAX_TCP_HEADER);
1083 			skb->ip_summed = CHECKSUM_PARTIAL;
1084 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1085 			return skb;
1086 		}
1087 		__kfree_skb(skb);
1088 	} else {
1089 		mptcp_enter_memory_pressure(sk);
1090 	}
1091 	return NULL;
1092 }
1093 
1094 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1095 {
1096 	struct sk_buff *skb;
1097 
1098 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1099 	if (!skb)
1100 		return NULL;
1101 
1102 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1103 		tcp_skb_entail(ssk, skb);
1104 		return skb;
1105 	}
1106 	tcp_skb_tsorted_anchor_cleanup(skb);
1107 	kfree_skb(skb);
1108 	return NULL;
1109 }
1110 
1111 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1112 {
1113 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1114 
1115 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1116 }
1117 
1118 /* note: this always recompute the csum on the whole skb, even
1119  * if we just appended a single frag. More status info needed
1120  */
1121 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1122 {
1123 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1124 	__wsum csum = ~csum_unfold(mpext->csum);
1125 	int offset = skb->len - added;
1126 
1127 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1128 }
1129 
1130 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1131 				      struct sock *ssk,
1132 				      struct mptcp_ext *mpext)
1133 {
1134 	if (!mpext)
1135 		return;
1136 
1137 	mpext->infinite_map = 1;
1138 	mpext->data_len = 0;
1139 
1140 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1141 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1142 	pr_fallback(msk);
1143 	mptcp_do_fallback(ssk);
1144 }
1145 
1146 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1147 
1148 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1149 			      struct mptcp_data_frag *dfrag,
1150 			      struct mptcp_sendmsg_info *info)
1151 {
1152 	u64 data_seq = dfrag->data_seq + info->sent;
1153 	int offset = dfrag->offset + info->sent;
1154 	struct mptcp_sock *msk = mptcp_sk(sk);
1155 	bool zero_window_probe = false;
1156 	struct mptcp_ext *mpext = NULL;
1157 	bool can_coalesce = false;
1158 	bool reuse_skb = true;
1159 	struct sk_buff *skb;
1160 	size_t copy;
1161 	int i;
1162 
1163 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1164 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1165 
1166 	if (WARN_ON_ONCE(info->sent > info->limit ||
1167 			 info->limit > dfrag->data_len))
1168 		return 0;
1169 
1170 	if (unlikely(!__tcp_can_send(ssk)))
1171 		return -EAGAIN;
1172 
1173 	/* compute send limit */
1174 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1175 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1176 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1177 	copy = info->size_goal;
1178 
1179 	skb = tcp_write_queue_tail(ssk);
1180 	if (skb && copy > skb->len) {
1181 		/* Limit the write to the size available in the
1182 		 * current skb, if any, so that we create at most a new skb.
1183 		 * Explicitly tells TCP internals to avoid collapsing on later
1184 		 * queue management operation, to avoid breaking the ext <->
1185 		 * SSN association set here
1186 		 */
1187 		mpext = mptcp_get_ext(skb);
1188 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1189 			TCP_SKB_CB(skb)->eor = 1;
1190 			tcp_mark_push(tcp_sk(ssk), skb);
1191 			goto alloc_skb;
1192 		}
1193 
1194 		i = skb_shinfo(skb)->nr_frags;
1195 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1196 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1197 			tcp_mark_push(tcp_sk(ssk), skb);
1198 			goto alloc_skb;
1199 		}
1200 
1201 		copy -= skb->len;
1202 	} else {
1203 alloc_skb:
1204 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1205 		if (!skb)
1206 			return -ENOMEM;
1207 
1208 		i = skb_shinfo(skb)->nr_frags;
1209 		reuse_skb = false;
1210 		mpext = mptcp_get_ext(skb);
1211 	}
1212 
1213 	/* Zero window and all data acked? Probe. */
1214 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1215 	if (copy == 0) {
1216 		u64 snd_una = READ_ONCE(msk->snd_una);
1217 
1218 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1219 			tcp_remove_empty_skb(ssk);
1220 			return 0;
1221 		}
1222 
1223 		zero_window_probe = true;
1224 		data_seq = snd_una - 1;
1225 		copy = 1;
1226 	}
1227 
1228 	copy = min_t(size_t, copy, info->limit - info->sent);
1229 	if (!sk_wmem_schedule(ssk, copy)) {
1230 		tcp_remove_empty_skb(ssk);
1231 		return -ENOMEM;
1232 	}
1233 
1234 	if (can_coalesce) {
1235 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1236 	} else {
1237 		get_page(dfrag->page);
1238 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1239 	}
1240 
1241 	skb->len += copy;
1242 	skb->data_len += copy;
1243 	skb->truesize += copy;
1244 	sk_wmem_queued_add(ssk, copy);
1245 	sk_mem_charge(ssk, copy);
1246 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1247 	TCP_SKB_CB(skb)->end_seq += copy;
1248 	tcp_skb_pcount_set(skb, 0);
1249 
1250 	/* on skb reuse we just need to update the DSS len */
1251 	if (reuse_skb) {
1252 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1253 		mpext->data_len += copy;
1254 		goto out;
1255 	}
1256 
1257 	memset(mpext, 0, sizeof(*mpext));
1258 	mpext->data_seq = data_seq;
1259 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1260 	mpext->data_len = copy;
1261 	mpext->use_map = 1;
1262 	mpext->dsn64 = 1;
1263 
1264 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1265 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1266 		 mpext->dsn64);
1267 
1268 	if (zero_window_probe) {
1269 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1270 		mpext->frozen = 1;
1271 		if (READ_ONCE(msk->csum_enabled))
1272 			mptcp_update_data_checksum(skb, copy);
1273 		tcp_push_pending_frames(ssk);
1274 		return 0;
1275 	}
1276 out:
1277 	if (READ_ONCE(msk->csum_enabled))
1278 		mptcp_update_data_checksum(skb, copy);
1279 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1280 		mptcp_update_infinite_map(msk, ssk, mpext);
1281 	trace_mptcp_sendmsg_frag(mpext);
1282 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1283 	return copy;
1284 }
1285 
1286 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1287 					 sizeof(struct tcphdr) - \
1288 					 MAX_TCP_OPTION_SPACE - \
1289 					 sizeof(struct ipv6hdr) - \
1290 					 sizeof(struct frag_hdr))
1291 
1292 struct subflow_send_info {
1293 	struct sock *ssk;
1294 	u64 linger_time;
1295 };
1296 
1297 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1298 {
1299 	if (!subflow->stale)
1300 		return;
1301 
1302 	subflow->stale = 0;
1303 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1304 }
1305 
1306 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1307 {
1308 	if (unlikely(subflow->stale)) {
1309 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1310 
1311 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1312 			return false;
1313 
1314 		mptcp_subflow_set_active(subflow);
1315 	}
1316 	return __mptcp_subflow_active(subflow);
1317 }
1318 
1319 #define SSK_MODE_ACTIVE	0
1320 #define SSK_MODE_BACKUP	1
1321 #define SSK_MODE_MAX	2
1322 
1323 /* implement the mptcp packet scheduler;
1324  * returns the subflow that will transmit the next DSS
1325  * additionally updates the rtx timeout
1326  */
1327 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1328 {
1329 	struct subflow_send_info send_info[SSK_MODE_MAX];
1330 	struct mptcp_subflow_context *subflow;
1331 	struct sock *sk = (struct sock *)msk;
1332 	u32 pace, burst, wmem;
1333 	int i, nr_active = 0;
1334 	struct sock *ssk;
1335 	u64 linger_time;
1336 	long tout = 0;
1337 
1338 	/* pick the subflow with the lower wmem/wspace ratio */
1339 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1340 		send_info[i].ssk = NULL;
1341 		send_info[i].linger_time = -1;
1342 	}
1343 
1344 	mptcp_for_each_subflow(msk, subflow) {
1345 		bool backup = subflow->backup || subflow->request_bkup;
1346 
1347 		trace_mptcp_subflow_get_send(subflow);
1348 		ssk =  mptcp_subflow_tcp_sock(subflow);
1349 		if (!mptcp_subflow_active(subflow))
1350 			continue;
1351 
1352 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1353 		nr_active += !backup;
1354 		pace = subflow->avg_pacing_rate;
1355 		if (unlikely(!pace)) {
1356 			/* init pacing rate from socket */
1357 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1358 			pace = subflow->avg_pacing_rate;
1359 			if (!pace)
1360 				continue;
1361 		}
1362 
1363 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1364 		if (linger_time < send_info[backup].linger_time) {
1365 			send_info[backup].ssk = ssk;
1366 			send_info[backup].linger_time = linger_time;
1367 		}
1368 	}
1369 	__mptcp_set_timeout(sk, tout);
1370 
1371 	/* pick the best backup if no other subflow is active */
1372 	if (!nr_active)
1373 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1374 
1375 	/* According to the blest algorithm, to avoid HoL blocking for the
1376 	 * faster flow, we need to:
1377 	 * - estimate the faster flow linger time
1378 	 * - use the above to estimate the amount of byte transferred
1379 	 *   by the faster flow
1380 	 * - check that the amount of queued data is greter than the above,
1381 	 *   otherwise do not use the picked, slower, subflow
1382 	 * We select the subflow with the shorter estimated time to flush
1383 	 * the queued mem, which basically ensure the above. We just need
1384 	 * to check that subflow has a non empty cwin.
1385 	 */
1386 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1387 	if (!ssk || !sk_stream_memory_free(ssk))
1388 		return NULL;
1389 
1390 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1391 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1392 	if (!burst)
1393 		return ssk;
1394 
1395 	subflow = mptcp_subflow_ctx(ssk);
1396 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1397 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1398 					   burst + wmem);
1399 	msk->snd_burst = burst;
1400 	return ssk;
1401 }
1402 
1403 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1404 {
1405 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1406 	release_sock(ssk);
1407 }
1408 
1409 static void mptcp_update_post_push(struct mptcp_sock *msk,
1410 				   struct mptcp_data_frag *dfrag,
1411 				   u32 sent)
1412 {
1413 	u64 snd_nxt_new = dfrag->data_seq;
1414 
1415 	dfrag->already_sent += sent;
1416 
1417 	msk->snd_burst -= sent;
1418 
1419 	snd_nxt_new += dfrag->already_sent;
1420 
1421 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1422 	 * is recovering after a failover. In that event, this re-sends
1423 	 * old segments.
1424 	 *
1425 	 * Thus compute snd_nxt_new candidate based on
1426 	 * the dfrag->data_seq that was sent and the data
1427 	 * that has been handed to the subflow for transmission
1428 	 * and skip update in case it was old dfrag.
1429 	 */
1430 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1431 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1432 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1433 	}
1434 }
1435 
1436 void mptcp_check_and_set_pending(struct sock *sk)
1437 {
1438 	if (mptcp_send_head(sk)) {
1439 		mptcp_data_lock(sk);
1440 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1441 		mptcp_data_unlock(sk);
1442 	}
1443 }
1444 
1445 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1446 				  struct mptcp_sendmsg_info *info)
1447 {
1448 	struct mptcp_sock *msk = mptcp_sk(sk);
1449 	struct mptcp_data_frag *dfrag;
1450 	int len, copied = 0, err = 0;
1451 
1452 	while ((dfrag = mptcp_send_head(sk))) {
1453 		info->sent = dfrag->already_sent;
1454 		info->limit = dfrag->data_len;
1455 		len = dfrag->data_len - dfrag->already_sent;
1456 		while (len > 0) {
1457 			int ret = 0;
1458 
1459 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1460 			if (ret <= 0) {
1461 				err = copied ? : ret;
1462 				goto out;
1463 			}
1464 
1465 			info->sent += ret;
1466 			copied += ret;
1467 			len -= ret;
1468 
1469 			mptcp_update_post_push(msk, dfrag, ret);
1470 		}
1471 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1472 
1473 		if (msk->snd_burst <= 0 ||
1474 		    !sk_stream_memory_free(ssk) ||
1475 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1476 			err = copied;
1477 			goto out;
1478 		}
1479 		mptcp_set_timeout(sk);
1480 	}
1481 	err = copied;
1482 
1483 out:
1484 	if (err > 0)
1485 		msk->last_data_sent = tcp_jiffies32;
1486 	return err;
1487 }
1488 
1489 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1490 {
1491 	struct sock *prev_ssk = NULL, *ssk = NULL;
1492 	struct mptcp_sock *msk = mptcp_sk(sk);
1493 	struct mptcp_sendmsg_info info = {
1494 				.flags = flags,
1495 	};
1496 	bool do_check_data_fin = false;
1497 	int push_count = 1;
1498 
1499 	while (mptcp_send_head(sk) && (push_count > 0)) {
1500 		struct mptcp_subflow_context *subflow;
1501 		int ret = 0;
1502 
1503 		if (mptcp_sched_get_send(msk))
1504 			break;
1505 
1506 		push_count = 0;
1507 
1508 		mptcp_for_each_subflow(msk, subflow) {
1509 			if (READ_ONCE(subflow->scheduled)) {
1510 				mptcp_subflow_set_scheduled(subflow, false);
1511 
1512 				prev_ssk = ssk;
1513 				ssk = mptcp_subflow_tcp_sock(subflow);
1514 				if (ssk != prev_ssk) {
1515 					/* First check. If the ssk has changed since
1516 					 * the last round, release prev_ssk
1517 					 */
1518 					if (prev_ssk)
1519 						mptcp_push_release(prev_ssk, &info);
1520 
1521 					/* Need to lock the new subflow only if different
1522 					 * from the previous one, otherwise we are still
1523 					 * helding the relevant lock
1524 					 */
1525 					lock_sock(ssk);
1526 				}
1527 
1528 				push_count++;
1529 
1530 				ret = __subflow_push_pending(sk, ssk, &info);
1531 				if (ret <= 0) {
1532 					if (ret != -EAGAIN ||
1533 					    (1 << ssk->sk_state) &
1534 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1535 						push_count--;
1536 					continue;
1537 				}
1538 				do_check_data_fin = true;
1539 			}
1540 		}
1541 	}
1542 
1543 	/* at this point we held the socket lock for the last subflow we used */
1544 	if (ssk)
1545 		mptcp_push_release(ssk, &info);
1546 
1547 	/* ensure the rtx timer is running */
1548 	if (!mptcp_rtx_timer_pending(sk))
1549 		mptcp_reset_rtx_timer(sk);
1550 	if (do_check_data_fin)
1551 		mptcp_check_send_data_fin(sk);
1552 }
1553 
1554 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1555 {
1556 	struct mptcp_sock *msk = mptcp_sk(sk);
1557 	struct mptcp_sendmsg_info info = {
1558 		.data_lock_held = true,
1559 	};
1560 	bool keep_pushing = true;
1561 	struct sock *xmit_ssk;
1562 	int copied = 0;
1563 
1564 	info.flags = 0;
1565 	while (mptcp_send_head(sk) && keep_pushing) {
1566 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1567 		int ret = 0;
1568 
1569 		/* check for a different subflow usage only after
1570 		 * spooling the first chunk of data
1571 		 */
1572 		if (first) {
1573 			mptcp_subflow_set_scheduled(subflow, false);
1574 			ret = __subflow_push_pending(sk, ssk, &info);
1575 			first = false;
1576 			if (ret <= 0)
1577 				break;
1578 			copied += ret;
1579 			continue;
1580 		}
1581 
1582 		if (mptcp_sched_get_send(msk))
1583 			goto out;
1584 
1585 		if (READ_ONCE(subflow->scheduled)) {
1586 			mptcp_subflow_set_scheduled(subflow, false);
1587 			ret = __subflow_push_pending(sk, ssk, &info);
1588 			if (ret <= 0)
1589 				keep_pushing = false;
1590 			copied += ret;
1591 		}
1592 
1593 		mptcp_for_each_subflow(msk, subflow) {
1594 			if (READ_ONCE(subflow->scheduled)) {
1595 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1596 				if (xmit_ssk != ssk) {
1597 					mptcp_subflow_delegate(subflow,
1598 							       MPTCP_DELEGATE_SEND);
1599 					keep_pushing = false;
1600 				}
1601 			}
1602 		}
1603 	}
1604 
1605 out:
1606 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1607 	 * not going to flush it via release_sock()
1608 	 */
1609 	if (copied) {
1610 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1611 			 info.size_goal);
1612 		if (!mptcp_rtx_timer_pending(sk))
1613 			mptcp_reset_rtx_timer(sk);
1614 
1615 		if (msk->snd_data_fin_enable &&
1616 		    msk->snd_nxt + 1 == msk->write_seq)
1617 			mptcp_schedule_work(sk);
1618 	}
1619 }
1620 
1621 static int mptcp_disconnect(struct sock *sk, int flags);
1622 
1623 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1624 				  size_t len, int *copied_syn)
1625 {
1626 	unsigned int saved_flags = msg->msg_flags;
1627 	struct mptcp_sock *msk = mptcp_sk(sk);
1628 	struct sock *ssk;
1629 	int ret;
1630 
1631 	/* on flags based fastopen the mptcp is supposed to create the
1632 	 * first subflow right now. Otherwise we are in the defer_connect
1633 	 * path, and the first subflow must be already present.
1634 	 * Since the defer_connect flag is cleared after the first succsful
1635 	 * fastopen attempt, no need to check for additional subflow status.
1636 	 */
1637 	if (msg->msg_flags & MSG_FASTOPEN) {
1638 		ssk = __mptcp_nmpc_sk(msk);
1639 		if (IS_ERR(ssk))
1640 			return PTR_ERR(ssk);
1641 	}
1642 	if (!msk->first)
1643 		return -EINVAL;
1644 
1645 	ssk = msk->first;
1646 
1647 	lock_sock(ssk);
1648 	msg->msg_flags |= MSG_DONTWAIT;
1649 	msk->fastopening = 1;
1650 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1651 	msk->fastopening = 0;
1652 	msg->msg_flags = saved_flags;
1653 	release_sock(ssk);
1654 
1655 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1656 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1657 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1658 					    msg->msg_namelen, msg->msg_flags, 1);
1659 
1660 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1661 		 * case of any error, except timeout or signal
1662 		 */
1663 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1664 			*copied_syn = 0;
1665 	} else if (ret && ret != -EINPROGRESS) {
1666 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1667 		 * __inet_stream_connect() can fail, due to looking check,
1668 		 * see mptcp_disconnect().
1669 		 * Attempt it again outside the problematic scope.
1670 		 */
1671 		if (!mptcp_disconnect(sk, 0)) {
1672 			sk->sk_disconnects++;
1673 			sk->sk_socket->state = SS_UNCONNECTED;
1674 		}
1675 	}
1676 	inet_clear_bit(DEFER_CONNECT, sk);
1677 
1678 	return ret;
1679 }
1680 
1681 static int do_copy_data_nocache(struct sock *sk, int copy,
1682 				struct iov_iter *from, char *to)
1683 {
1684 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1685 		if (!copy_from_iter_full_nocache(to, copy, from))
1686 			return -EFAULT;
1687 	} else if (!copy_from_iter_full(to, copy, from)) {
1688 		return -EFAULT;
1689 	}
1690 	return 0;
1691 }
1692 
1693 /* open-code sk_stream_memory_free() plus sent limit computation to
1694  * avoid indirect calls in fast-path.
1695  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1696  * annotations.
1697  */
1698 static u32 mptcp_send_limit(const struct sock *sk)
1699 {
1700 	const struct mptcp_sock *msk = mptcp_sk(sk);
1701 	u32 limit, not_sent;
1702 
1703 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1704 		return 0;
1705 
1706 	limit = mptcp_notsent_lowat(sk);
1707 	if (limit == UINT_MAX)
1708 		return UINT_MAX;
1709 
1710 	not_sent = msk->write_seq - msk->snd_nxt;
1711 	if (not_sent >= limit)
1712 		return 0;
1713 
1714 	return limit - not_sent;
1715 }
1716 
1717 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1718 {
1719 	struct mptcp_sock *msk = mptcp_sk(sk);
1720 	struct page_frag *pfrag;
1721 	size_t copied = 0;
1722 	int ret = 0;
1723 	long timeo;
1724 
1725 	/* silently ignore everything else */
1726 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1727 
1728 	lock_sock(sk);
1729 
1730 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1731 		     msg->msg_flags & MSG_FASTOPEN)) {
1732 		int copied_syn = 0;
1733 
1734 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1735 		copied += copied_syn;
1736 		if (ret == -EINPROGRESS && copied_syn > 0)
1737 			goto out;
1738 		else if (ret)
1739 			goto do_error;
1740 	}
1741 
1742 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1743 
1744 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1745 		ret = sk_stream_wait_connect(sk, &timeo);
1746 		if (ret)
1747 			goto do_error;
1748 	}
1749 
1750 	ret = -EPIPE;
1751 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1752 		goto do_error;
1753 
1754 	pfrag = sk_page_frag(sk);
1755 
1756 	while (msg_data_left(msg)) {
1757 		int total_ts, frag_truesize = 0;
1758 		struct mptcp_data_frag *dfrag;
1759 		bool dfrag_collapsed;
1760 		size_t psize, offset;
1761 		u32 copy_limit;
1762 
1763 		/* ensure fitting the notsent_lowat() constraint */
1764 		copy_limit = mptcp_send_limit(sk);
1765 		if (!copy_limit)
1766 			goto wait_for_memory;
1767 
1768 		/* reuse tail pfrag, if possible, or carve a new one from the
1769 		 * page allocator
1770 		 */
1771 		dfrag = mptcp_pending_tail(sk);
1772 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1773 		if (!dfrag_collapsed) {
1774 			if (!mptcp_page_frag_refill(sk, pfrag))
1775 				goto wait_for_memory;
1776 
1777 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1778 			frag_truesize = dfrag->overhead;
1779 		}
1780 
1781 		/* we do not bound vs wspace, to allow a single packet.
1782 		 * memory accounting will prevent execessive memory usage
1783 		 * anyway
1784 		 */
1785 		offset = dfrag->offset + dfrag->data_len;
1786 		psize = pfrag->size - offset;
1787 		psize = min_t(size_t, psize, msg_data_left(msg));
1788 		psize = min_t(size_t, psize, copy_limit);
1789 		total_ts = psize + frag_truesize;
1790 
1791 		if (!sk_wmem_schedule(sk, total_ts))
1792 			goto wait_for_memory;
1793 
1794 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1795 					   page_address(dfrag->page) + offset);
1796 		if (ret)
1797 			goto do_error;
1798 
1799 		/* data successfully copied into the write queue */
1800 		sk_forward_alloc_add(sk, -total_ts);
1801 		copied += psize;
1802 		dfrag->data_len += psize;
1803 		frag_truesize += psize;
1804 		pfrag->offset += frag_truesize;
1805 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1806 
1807 		/* charge data on mptcp pending queue to the msk socket
1808 		 * Note: we charge such data both to sk and ssk
1809 		 */
1810 		sk_wmem_queued_add(sk, frag_truesize);
1811 		if (!dfrag_collapsed) {
1812 			get_page(dfrag->page);
1813 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1814 			if (!msk->first_pending)
1815 				WRITE_ONCE(msk->first_pending, dfrag);
1816 		}
1817 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1818 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1819 			 !dfrag_collapsed);
1820 
1821 		continue;
1822 
1823 wait_for_memory:
1824 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1825 		__mptcp_push_pending(sk, msg->msg_flags);
1826 		ret = sk_stream_wait_memory(sk, &timeo);
1827 		if (ret)
1828 			goto do_error;
1829 	}
1830 
1831 	if (copied)
1832 		__mptcp_push_pending(sk, msg->msg_flags);
1833 
1834 out:
1835 	release_sock(sk);
1836 	return copied;
1837 
1838 do_error:
1839 	if (copied)
1840 		goto out;
1841 
1842 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1843 	goto out;
1844 }
1845 
1846 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1847 
1848 static int __mptcp_recvmsg_mskq(struct sock *sk,
1849 				struct msghdr *msg,
1850 				size_t len, int flags,
1851 				struct scm_timestamping_internal *tss,
1852 				int *cmsg_flags)
1853 {
1854 	struct mptcp_sock *msk = mptcp_sk(sk);
1855 	struct sk_buff *skb, *tmp;
1856 	int copied = 0;
1857 
1858 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1859 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1860 		u32 data_len = skb->len - offset;
1861 		u32 count = min_t(size_t, len - copied, data_len);
1862 		int err;
1863 
1864 		if (!(flags & MSG_TRUNC)) {
1865 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1866 			if (unlikely(err < 0)) {
1867 				if (!copied)
1868 					return err;
1869 				break;
1870 			}
1871 		}
1872 
1873 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1874 			tcp_update_recv_tstamps(skb, tss);
1875 			*cmsg_flags |= MPTCP_CMSG_TS;
1876 		}
1877 
1878 		copied += count;
1879 
1880 		if (count < data_len) {
1881 			if (!(flags & MSG_PEEK)) {
1882 				MPTCP_SKB_CB(skb)->offset += count;
1883 				MPTCP_SKB_CB(skb)->map_seq += count;
1884 				msk->bytes_consumed += count;
1885 			}
1886 			break;
1887 		}
1888 
1889 		if (!(flags & MSG_PEEK)) {
1890 			/* avoid the indirect call, we know the destructor is sock_wfree */
1891 			skb->destructor = NULL;
1892 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1893 			sk_mem_uncharge(sk, skb->truesize);
1894 			__skb_unlink(skb, &sk->sk_receive_queue);
1895 			__kfree_skb(skb);
1896 			msk->bytes_consumed += count;
1897 		}
1898 
1899 		if (copied >= len)
1900 			break;
1901 	}
1902 
1903 	mptcp_rcv_space_adjust(msk, copied);
1904 	return copied;
1905 }
1906 
1907 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1908  *
1909  * Only difference: Use highest rtt estimate of the subflows in use.
1910  */
1911 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1912 {
1913 	struct mptcp_subflow_context *subflow;
1914 	struct sock *sk = (struct sock *)msk;
1915 	u8 scaling_ratio = U8_MAX;
1916 	u32 time, advmss = 1;
1917 	u64 rtt_us, mstamp;
1918 
1919 	msk_owned_by_me(msk);
1920 
1921 	if (copied <= 0)
1922 		return;
1923 
1924 	if (!msk->rcvspace_init)
1925 		mptcp_rcv_space_init(msk, msk->first);
1926 
1927 	msk->rcvq_space.copied += copied;
1928 
1929 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1930 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1931 
1932 	rtt_us = msk->rcvq_space.rtt_us;
1933 	if (rtt_us && time < (rtt_us >> 3))
1934 		return;
1935 
1936 	rtt_us = 0;
1937 	mptcp_for_each_subflow(msk, subflow) {
1938 		const struct tcp_sock *tp;
1939 		u64 sf_rtt_us;
1940 		u32 sf_advmss;
1941 
1942 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1943 
1944 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1945 		sf_advmss = READ_ONCE(tp->advmss);
1946 
1947 		rtt_us = max(sf_rtt_us, rtt_us);
1948 		advmss = max(sf_advmss, advmss);
1949 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1950 	}
1951 
1952 	msk->rcvq_space.rtt_us = rtt_us;
1953 	msk->scaling_ratio = scaling_ratio;
1954 	if (time < (rtt_us >> 3) || rtt_us == 0)
1955 		return;
1956 
1957 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1958 		goto new_measure;
1959 
1960 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1961 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1962 		u64 rcvwin, grow;
1963 		int rcvbuf;
1964 
1965 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1966 
1967 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1968 
1969 		do_div(grow, msk->rcvq_space.space);
1970 		rcvwin += (grow << 1);
1971 
1972 		rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
1973 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1974 
1975 		if (rcvbuf > sk->sk_rcvbuf) {
1976 			u32 window_clamp;
1977 
1978 			window_clamp = mptcp_win_from_space(sk, rcvbuf);
1979 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1980 
1981 			/* Make subflows follow along.  If we do not do this, we
1982 			 * get drops at subflow level if skbs can't be moved to
1983 			 * the mptcp rx queue fast enough (announced rcv_win can
1984 			 * exceed ssk->sk_rcvbuf).
1985 			 */
1986 			mptcp_for_each_subflow(msk, subflow) {
1987 				struct sock *ssk;
1988 				bool slow;
1989 
1990 				ssk = mptcp_subflow_tcp_sock(subflow);
1991 				slow = lock_sock_fast(ssk);
1992 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1993 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
1994 				if (tcp_can_send_ack(ssk))
1995 					tcp_cleanup_rbuf(ssk, 1);
1996 				unlock_sock_fast(ssk, slow);
1997 			}
1998 		}
1999 	}
2000 
2001 	msk->rcvq_space.space = msk->rcvq_space.copied;
2002 new_measure:
2003 	msk->rcvq_space.copied = 0;
2004 	msk->rcvq_space.time = mstamp;
2005 }
2006 
2007 static struct mptcp_subflow_context *
2008 __mptcp_first_ready_from(struct mptcp_sock *msk,
2009 			 struct mptcp_subflow_context *subflow)
2010 {
2011 	struct mptcp_subflow_context *start_subflow = subflow;
2012 
2013 	while (!READ_ONCE(subflow->data_avail)) {
2014 		subflow = mptcp_next_subflow(msk, subflow);
2015 		if (subflow == start_subflow)
2016 			return NULL;
2017 	}
2018 	return subflow;
2019 }
2020 
2021 static bool __mptcp_move_skbs(struct sock *sk)
2022 {
2023 	struct mptcp_subflow_context *subflow;
2024 	struct mptcp_sock *msk = mptcp_sk(sk);
2025 	bool ret = false;
2026 
2027 	if (list_empty(&msk->conn_list))
2028 		return false;
2029 
2030 	/* verify we can move any data from the subflow, eventually updating */
2031 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
2032 		mptcp_for_each_subflow(msk, subflow)
2033 			__mptcp_rcvbuf_update(sk, subflow->tcp_sock);
2034 
2035 	subflow = list_first_entry(&msk->conn_list,
2036 				   struct mptcp_subflow_context, node);
2037 	for (;;) {
2038 		struct sock *ssk;
2039 		bool slowpath;
2040 
2041 		/*
2042 		 * As an optimization avoid traversing the subflows list
2043 		 * and ev. acquiring the subflow socket lock before baling out
2044 		 */
2045 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2046 			break;
2047 
2048 		subflow = __mptcp_first_ready_from(msk, subflow);
2049 		if (!subflow)
2050 			break;
2051 
2052 		ssk = mptcp_subflow_tcp_sock(subflow);
2053 		slowpath = lock_sock_fast(ssk);
2054 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2055 		if (unlikely(ssk->sk_err))
2056 			__mptcp_error_report(sk);
2057 		unlock_sock_fast(ssk, slowpath);
2058 
2059 		subflow = mptcp_next_subflow(msk, subflow);
2060 	}
2061 
2062 	__mptcp_ofo_queue(msk);
2063 	if (ret)
2064 		mptcp_check_data_fin((struct sock *)msk);
2065 	return ret;
2066 }
2067 
2068 static unsigned int mptcp_inq_hint(const struct sock *sk)
2069 {
2070 	const struct mptcp_sock *msk = mptcp_sk(sk);
2071 	const struct sk_buff *skb;
2072 
2073 	skb = skb_peek(&sk->sk_receive_queue);
2074 	if (skb) {
2075 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2076 
2077 		if (hint_val >= INT_MAX)
2078 			return INT_MAX;
2079 
2080 		return (unsigned int)hint_val;
2081 	}
2082 
2083 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2084 		return 1;
2085 
2086 	return 0;
2087 }
2088 
2089 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2090 			 int flags, int *addr_len)
2091 {
2092 	struct mptcp_sock *msk = mptcp_sk(sk);
2093 	struct scm_timestamping_internal tss;
2094 	int copied = 0, cmsg_flags = 0;
2095 	int target;
2096 	long timeo;
2097 
2098 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2099 	if (unlikely(flags & MSG_ERRQUEUE))
2100 		return inet_recv_error(sk, msg, len, addr_len);
2101 
2102 	lock_sock(sk);
2103 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2104 		copied = -ENOTCONN;
2105 		goto out_err;
2106 	}
2107 
2108 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2109 
2110 	len = min_t(size_t, len, INT_MAX);
2111 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2112 
2113 	if (unlikely(msk->recvmsg_inq))
2114 		cmsg_flags = MPTCP_CMSG_INQ;
2115 
2116 	while (copied < len) {
2117 		int err, bytes_read;
2118 
2119 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags);
2120 		if (unlikely(bytes_read < 0)) {
2121 			if (!copied)
2122 				copied = bytes_read;
2123 			goto out_err;
2124 		}
2125 
2126 		copied += bytes_read;
2127 
2128 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2129 			continue;
2130 
2131 		/* only the MPTCP socket status is relevant here. The exit
2132 		 * conditions mirror closely tcp_recvmsg()
2133 		 */
2134 		if (copied >= target)
2135 			break;
2136 
2137 		if (copied) {
2138 			if (sk->sk_err ||
2139 			    sk->sk_state == TCP_CLOSE ||
2140 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2141 			    !timeo ||
2142 			    signal_pending(current))
2143 				break;
2144 		} else {
2145 			if (sk->sk_err) {
2146 				copied = sock_error(sk);
2147 				break;
2148 			}
2149 
2150 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2151 				/* race breaker: the shutdown could be after the
2152 				 * previous receive queue check
2153 				 */
2154 				if (__mptcp_move_skbs(sk))
2155 					continue;
2156 				break;
2157 			}
2158 
2159 			if (sk->sk_state == TCP_CLOSE) {
2160 				copied = -ENOTCONN;
2161 				break;
2162 			}
2163 
2164 			if (!timeo) {
2165 				copied = -EAGAIN;
2166 				break;
2167 			}
2168 
2169 			if (signal_pending(current)) {
2170 				copied = sock_intr_errno(timeo);
2171 				break;
2172 			}
2173 		}
2174 
2175 		pr_debug("block timeout %ld\n", timeo);
2176 		mptcp_cleanup_rbuf(msk, copied);
2177 		err = sk_wait_data(sk, &timeo, NULL);
2178 		if (err < 0) {
2179 			err = copied ? : err;
2180 			goto out_err;
2181 		}
2182 	}
2183 
2184 	mptcp_cleanup_rbuf(msk, copied);
2185 
2186 out_err:
2187 	if (cmsg_flags && copied >= 0) {
2188 		if (cmsg_flags & MPTCP_CMSG_TS)
2189 			tcp_recv_timestamp(msg, sk, &tss);
2190 
2191 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2192 			unsigned int inq = mptcp_inq_hint(sk);
2193 
2194 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2195 		}
2196 	}
2197 
2198 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2199 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2200 
2201 	release_sock(sk);
2202 	return copied;
2203 }
2204 
2205 static void mptcp_retransmit_timer(struct timer_list *t)
2206 {
2207 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2208 							       icsk_retransmit_timer);
2209 	struct sock *sk = &icsk->icsk_inet.sk;
2210 	struct mptcp_sock *msk = mptcp_sk(sk);
2211 
2212 	bh_lock_sock(sk);
2213 	if (!sock_owned_by_user(sk)) {
2214 		/* we need a process context to retransmit */
2215 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2216 			mptcp_schedule_work(sk);
2217 	} else {
2218 		/* delegate our work to tcp_release_cb() */
2219 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2220 	}
2221 	bh_unlock_sock(sk);
2222 	sock_put(sk);
2223 }
2224 
2225 static void mptcp_tout_timer(struct timer_list *t)
2226 {
2227 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2228 
2229 	mptcp_schedule_work(sk);
2230 	sock_put(sk);
2231 }
2232 
2233 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2234  * level.
2235  *
2236  * A backup subflow is returned only if that is the only kind available.
2237  */
2238 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2239 {
2240 	struct sock *backup = NULL, *pick = NULL;
2241 	struct mptcp_subflow_context *subflow;
2242 	int min_stale_count = INT_MAX;
2243 
2244 	mptcp_for_each_subflow(msk, subflow) {
2245 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2246 
2247 		if (!__mptcp_subflow_active(subflow))
2248 			continue;
2249 
2250 		/* still data outstanding at TCP level? skip this */
2251 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2252 			mptcp_pm_subflow_chk_stale(msk, ssk);
2253 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2254 			continue;
2255 		}
2256 
2257 		if (subflow->backup || subflow->request_bkup) {
2258 			if (!backup)
2259 				backup = ssk;
2260 			continue;
2261 		}
2262 
2263 		if (!pick)
2264 			pick = ssk;
2265 	}
2266 
2267 	if (pick)
2268 		return pick;
2269 
2270 	/* use backup only if there are no progresses anywhere */
2271 	return min_stale_count > 1 ? backup : NULL;
2272 }
2273 
2274 bool __mptcp_retransmit_pending_data(struct sock *sk)
2275 {
2276 	struct mptcp_data_frag *cur, *rtx_head;
2277 	struct mptcp_sock *msk = mptcp_sk(sk);
2278 
2279 	if (__mptcp_check_fallback(msk))
2280 		return false;
2281 
2282 	/* the closing socket has some data untransmitted and/or unacked:
2283 	 * some data in the mptcp rtx queue has not really xmitted yet.
2284 	 * keep it simple and re-inject the whole mptcp level rtx queue
2285 	 */
2286 	mptcp_data_lock(sk);
2287 	__mptcp_clean_una_wakeup(sk);
2288 	rtx_head = mptcp_rtx_head(sk);
2289 	if (!rtx_head) {
2290 		mptcp_data_unlock(sk);
2291 		return false;
2292 	}
2293 
2294 	msk->recovery_snd_nxt = msk->snd_nxt;
2295 	msk->recovery = true;
2296 	mptcp_data_unlock(sk);
2297 
2298 	msk->first_pending = rtx_head;
2299 	msk->snd_burst = 0;
2300 
2301 	/* be sure to clear the "sent status" on all re-injected fragments */
2302 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2303 		if (!cur->already_sent)
2304 			break;
2305 		cur->already_sent = 0;
2306 	}
2307 
2308 	return true;
2309 }
2310 
2311 /* flags for __mptcp_close_ssk() */
2312 #define MPTCP_CF_PUSH		BIT(1)
2313 #define MPTCP_CF_FASTCLOSE	BIT(2)
2314 
2315 /* be sure to send a reset only if the caller asked for it, also
2316  * clean completely the subflow status when the subflow reaches
2317  * TCP_CLOSE state
2318  */
2319 static void __mptcp_subflow_disconnect(struct sock *ssk,
2320 				       struct mptcp_subflow_context *subflow,
2321 				       unsigned int flags)
2322 {
2323 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2324 	    (flags & MPTCP_CF_FASTCLOSE)) {
2325 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2326 		 * disconnect should never fail
2327 		 */
2328 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2329 		mptcp_subflow_ctx_reset(subflow);
2330 	} else {
2331 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2332 	}
2333 }
2334 
2335 /* subflow sockets can be either outgoing (connect) or incoming
2336  * (accept).
2337  *
2338  * Outgoing subflows use in-kernel sockets.
2339  * Incoming subflows do not have their own 'struct socket' allocated,
2340  * so we need to use tcp_close() after detaching them from the mptcp
2341  * parent socket.
2342  */
2343 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2344 			      struct mptcp_subflow_context *subflow,
2345 			      unsigned int flags)
2346 {
2347 	struct mptcp_sock *msk = mptcp_sk(sk);
2348 	bool dispose_it, need_push = false;
2349 
2350 	/* If the first subflow moved to a close state before accept, e.g. due
2351 	 * to an incoming reset or listener shutdown, the subflow socket is
2352 	 * already deleted by inet_child_forget() and the mptcp socket can't
2353 	 * survive too.
2354 	 */
2355 	if (msk->in_accept_queue && msk->first == ssk &&
2356 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2357 		/* ensure later check in mptcp_worker() will dispose the msk */
2358 		sock_set_flag(sk, SOCK_DEAD);
2359 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2360 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2361 		mptcp_subflow_drop_ctx(ssk);
2362 		goto out_release;
2363 	}
2364 
2365 	dispose_it = msk->free_first || ssk != msk->first;
2366 	if (dispose_it)
2367 		list_del(&subflow->node);
2368 
2369 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2370 
2371 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2372 		/* be sure to force the tcp_close path
2373 		 * to generate the egress reset
2374 		 */
2375 		ssk->sk_lingertime = 0;
2376 		sock_set_flag(ssk, SOCK_LINGER);
2377 		subflow->send_fastclose = 1;
2378 	}
2379 
2380 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2381 	if (!dispose_it) {
2382 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2383 		release_sock(ssk);
2384 
2385 		goto out;
2386 	}
2387 
2388 	subflow->disposable = 1;
2389 
2390 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2391 	 * the ssk has been already destroyed, we just need to release the
2392 	 * reference owned by msk;
2393 	 */
2394 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2395 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2396 		kfree_rcu(subflow, rcu);
2397 	} else {
2398 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2399 		__tcp_close(ssk, 0);
2400 
2401 		/* close acquired an extra ref */
2402 		__sock_put(ssk);
2403 	}
2404 
2405 out_release:
2406 	__mptcp_subflow_error_report(sk, ssk);
2407 	release_sock(ssk);
2408 
2409 	sock_put(ssk);
2410 
2411 	if (ssk == msk->first)
2412 		WRITE_ONCE(msk->first, NULL);
2413 
2414 out:
2415 	__mptcp_sync_sndbuf(sk);
2416 	if (need_push)
2417 		__mptcp_push_pending(sk, 0);
2418 
2419 	/* Catch every 'all subflows closed' scenario, including peers silently
2420 	 * closing them, e.g. due to timeout.
2421 	 * For established sockets, allow an additional timeout before closing,
2422 	 * as the protocol can still create more subflows.
2423 	 */
2424 	if (list_is_singular(&msk->conn_list) && msk->first &&
2425 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2426 		if (sk->sk_state != TCP_ESTABLISHED ||
2427 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2428 			mptcp_set_state(sk, TCP_CLOSE);
2429 			mptcp_close_wake_up(sk);
2430 		} else {
2431 			mptcp_start_tout_timer(sk);
2432 		}
2433 	}
2434 }
2435 
2436 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2437 		     struct mptcp_subflow_context *subflow)
2438 {
2439 	/* The first subflow can already be closed and still in the list */
2440 	if (subflow->close_event_done)
2441 		return;
2442 
2443 	subflow->close_event_done = true;
2444 
2445 	if (sk->sk_state == TCP_ESTABLISHED)
2446 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2447 
2448 	/* subflow aborted before reaching the fully_established status
2449 	 * attempt the creation of the next subflow
2450 	 */
2451 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2452 
2453 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2454 }
2455 
2456 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2457 {
2458 	return 0;
2459 }
2460 
2461 static void __mptcp_close_subflow(struct sock *sk)
2462 {
2463 	struct mptcp_subflow_context *subflow, *tmp;
2464 	struct mptcp_sock *msk = mptcp_sk(sk);
2465 
2466 	might_sleep();
2467 
2468 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2469 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2470 		int ssk_state = inet_sk_state_load(ssk);
2471 
2472 		if (ssk_state != TCP_CLOSE &&
2473 		    (ssk_state != TCP_CLOSE_WAIT ||
2474 		     inet_sk_state_load(sk) != TCP_ESTABLISHED))
2475 			continue;
2476 
2477 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2478 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2479 			continue;
2480 
2481 		mptcp_close_ssk(sk, ssk, subflow);
2482 	}
2483 
2484 }
2485 
2486 static bool mptcp_close_tout_expired(const struct sock *sk)
2487 {
2488 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2489 	    sk->sk_state == TCP_CLOSE)
2490 		return false;
2491 
2492 	return time_after32(tcp_jiffies32,
2493 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2494 }
2495 
2496 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2497 {
2498 	struct mptcp_subflow_context *subflow, *tmp;
2499 	struct sock *sk = (struct sock *)msk;
2500 
2501 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2502 		return;
2503 
2504 	mptcp_token_destroy(msk);
2505 
2506 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2507 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2508 		bool slow;
2509 
2510 		slow = lock_sock_fast(tcp_sk);
2511 		if (tcp_sk->sk_state != TCP_CLOSE) {
2512 			mptcp_send_active_reset_reason(tcp_sk);
2513 			tcp_set_state(tcp_sk, TCP_CLOSE);
2514 		}
2515 		unlock_sock_fast(tcp_sk, slow);
2516 	}
2517 
2518 	/* Mirror the tcp_reset() error propagation */
2519 	switch (sk->sk_state) {
2520 	case TCP_SYN_SENT:
2521 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2522 		break;
2523 	case TCP_CLOSE_WAIT:
2524 		WRITE_ONCE(sk->sk_err, EPIPE);
2525 		break;
2526 	case TCP_CLOSE:
2527 		return;
2528 	default:
2529 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2530 	}
2531 
2532 	mptcp_set_state(sk, TCP_CLOSE);
2533 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2534 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2535 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2536 
2537 	/* the calling mptcp_worker will properly destroy the socket */
2538 	if (sock_flag(sk, SOCK_DEAD))
2539 		return;
2540 
2541 	sk->sk_state_change(sk);
2542 	sk_error_report(sk);
2543 }
2544 
2545 static void __mptcp_retrans(struct sock *sk)
2546 {
2547 	struct mptcp_sock *msk = mptcp_sk(sk);
2548 	struct mptcp_subflow_context *subflow;
2549 	struct mptcp_sendmsg_info info = {};
2550 	struct mptcp_data_frag *dfrag;
2551 	struct sock *ssk;
2552 	int ret, err;
2553 	u16 len = 0;
2554 
2555 	mptcp_clean_una_wakeup(sk);
2556 
2557 	/* first check ssk: need to kick "stale" logic */
2558 	err = mptcp_sched_get_retrans(msk);
2559 	dfrag = mptcp_rtx_head(sk);
2560 	if (!dfrag) {
2561 		if (mptcp_data_fin_enabled(msk)) {
2562 			struct inet_connection_sock *icsk = inet_csk(sk);
2563 
2564 			icsk->icsk_retransmits++;
2565 			mptcp_set_datafin_timeout(sk);
2566 			mptcp_send_ack(msk);
2567 
2568 			goto reset_timer;
2569 		}
2570 
2571 		if (!mptcp_send_head(sk))
2572 			return;
2573 
2574 		goto reset_timer;
2575 	}
2576 
2577 	if (err)
2578 		goto reset_timer;
2579 
2580 	mptcp_for_each_subflow(msk, subflow) {
2581 		if (READ_ONCE(subflow->scheduled)) {
2582 			u16 copied = 0;
2583 
2584 			mptcp_subflow_set_scheduled(subflow, false);
2585 
2586 			ssk = mptcp_subflow_tcp_sock(subflow);
2587 
2588 			lock_sock(ssk);
2589 
2590 			/* limit retransmission to the bytes already sent on some subflows */
2591 			info.sent = 0;
2592 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2593 								    dfrag->already_sent;
2594 			while (info.sent < info.limit) {
2595 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2596 				if (ret <= 0)
2597 					break;
2598 
2599 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2600 				copied += ret;
2601 				info.sent += ret;
2602 			}
2603 			if (copied) {
2604 				len = max(copied, len);
2605 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2606 					 info.size_goal);
2607 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2608 			}
2609 
2610 			release_sock(ssk);
2611 		}
2612 	}
2613 
2614 	msk->bytes_retrans += len;
2615 	dfrag->already_sent = max(dfrag->already_sent, len);
2616 
2617 reset_timer:
2618 	mptcp_check_and_set_pending(sk);
2619 
2620 	if (!mptcp_rtx_timer_pending(sk))
2621 		mptcp_reset_rtx_timer(sk);
2622 }
2623 
2624 /* schedule the timeout timer for the relevant event: either close timeout
2625  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2626  */
2627 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2628 {
2629 	struct sock *sk = (struct sock *)msk;
2630 	unsigned long timeout, close_timeout;
2631 
2632 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2633 		return;
2634 
2635 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2636 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2637 
2638 	/* the close timeout takes precedence on the fail one, and here at least one of
2639 	 * them is active
2640 	 */
2641 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2642 
2643 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2644 }
2645 
2646 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2647 {
2648 	struct sock *ssk = msk->first;
2649 	bool slow;
2650 
2651 	if (!ssk)
2652 		return;
2653 
2654 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2655 
2656 	slow = lock_sock_fast(ssk);
2657 	mptcp_subflow_reset(ssk);
2658 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2659 	unlock_sock_fast(ssk, slow);
2660 }
2661 
2662 static void mptcp_do_fastclose(struct sock *sk)
2663 {
2664 	struct mptcp_subflow_context *subflow, *tmp;
2665 	struct mptcp_sock *msk = mptcp_sk(sk);
2666 
2667 	mptcp_set_state(sk, TCP_CLOSE);
2668 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2669 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2670 				  subflow, MPTCP_CF_FASTCLOSE);
2671 }
2672 
2673 static void mptcp_worker(struct work_struct *work)
2674 {
2675 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2676 	struct sock *sk = (struct sock *)msk;
2677 	unsigned long fail_tout;
2678 	int state;
2679 
2680 	lock_sock(sk);
2681 	state = sk->sk_state;
2682 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2683 		goto unlock;
2684 
2685 	mptcp_check_fastclose(msk);
2686 
2687 	mptcp_pm_worker(msk);
2688 
2689 	mptcp_check_send_data_fin(sk);
2690 	mptcp_check_data_fin_ack(sk);
2691 	mptcp_check_data_fin(sk);
2692 
2693 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2694 		__mptcp_close_subflow(sk);
2695 
2696 	if (mptcp_close_tout_expired(sk)) {
2697 		mptcp_do_fastclose(sk);
2698 		mptcp_close_wake_up(sk);
2699 	}
2700 
2701 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2702 		__mptcp_destroy_sock(sk);
2703 		goto unlock;
2704 	}
2705 
2706 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2707 		__mptcp_retrans(sk);
2708 
2709 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2710 	if (fail_tout && time_after(jiffies, fail_tout))
2711 		mptcp_mp_fail_no_response(msk);
2712 
2713 unlock:
2714 	release_sock(sk);
2715 	sock_put(sk);
2716 }
2717 
2718 static void __mptcp_init_sock(struct sock *sk)
2719 {
2720 	struct mptcp_sock *msk = mptcp_sk(sk);
2721 
2722 	INIT_LIST_HEAD(&msk->conn_list);
2723 	INIT_LIST_HEAD(&msk->join_list);
2724 	INIT_LIST_HEAD(&msk->rtx_queue);
2725 	INIT_WORK(&msk->work, mptcp_worker);
2726 	msk->out_of_order_queue = RB_ROOT;
2727 	msk->first_pending = NULL;
2728 	msk->timer_ival = TCP_RTO_MIN;
2729 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2730 
2731 	WRITE_ONCE(msk->first, NULL);
2732 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2733 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2734 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2735 	msk->recovery = false;
2736 	msk->subflow_id = 1;
2737 	msk->last_data_sent = tcp_jiffies32;
2738 	msk->last_data_recv = tcp_jiffies32;
2739 	msk->last_ack_recv = tcp_jiffies32;
2740 
2741 	mptcp_pm_data_init(msk);
2742 
2743 	/* re-use the csk retrans timer for MPTCP-level retrans */
2744 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2745 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2746 }
2747 
2748 static void mptcp_ca_reset(struct sock *sk)
2749 {
2750 	struct inet_connection_sock *icsk = inet_csk(sk);
2751 
2752 	tcp_assign_congestion_control(sk);
2753 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2754 		sizeof(mptcp_sk(sk)->ca_name));
2755 
2756 	/* no need to keep a reference to the ops, the name will suffice */
2757 	tcp_cleanup_congestion_control(sk);
2758 	icsk->icsk_ca_ops = NULL;
2759 }
2760 
2761 static int mptcp_init_sock(struct sock *sk)
2762 {
2763 	struct net *net = sock_net(sk);
2764 	int ret;
2765 
2766 	__mptcp_init_sock(sk);
2767 
2768 	if (!mptcp_is_enabled(net))
2769 		return -ENOPROTOOPT;
2770 
2771 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2772 		return -ENOMEM;
2773 
2774 	rcu_read_lock();
2775 	ret = mptcp_init_sched(mptcp_sk(sk),
2776 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2777 	rcu_read_unlock();
2778 	if (ret)
2779 		return ret;
2780 
2781 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2782 
2783 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2784 	 * propagate the correct value
2785 	 */
2786 	mptcp_ca_reset(sk);
2787 
2788 	sk_sockets_allocated_inc(sk);
2789 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2790 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2791 
2792 	return 0;
2793 }
2794 
2795 static void __mptcp_clear_xmit(struct sock *sk)
2796 {
2797 	struct mptcp_sock *msk = mptcp_sk(sk);
2798 	struct mptcp_data_frag *dtmp, *dfrag;
2799 
2800 	WRITE_ONCE(msk->first_pending, NULL);
2801 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2802 		dfrag_clear(sk, dfrag);
2803 }
2804 
2805 void mptcp_cancel_work(struct sock *sk)
2806 {
2807 	struct mptcp_sock *msk = mptcp_sk(sk);
2808 
2809 	if (cancel_work_sync(&msk->work))
2810 		__sock_put(sk);
2811 }
2812 
2813 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2814 {
2815 	lock_sock(ssk);
2816 
2817 	switch (ssk->sk_state) {
2818 	case TCP_LISTEN:
2819 		if (!(how & RCV_SHUTDOWN))
2820 			break;
2821 		fallthrough;
2822 	case TCP_SYN_SENT:
2823 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2824 		break;
2825 	default:
2826 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2827 			pr_debug("Fallback\n");
2828 			ssk->sk_shutdown |= how;
2829 			tcp_shutdown(ssk, how);
2830 
2831 			/* simulate the data_fin ack reception to let the state
2832 			 * machine move forward
2833 			 */
2834 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2835 			mptcp_schedule_work(sk);
2836 		} else {
2837 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2838 			tcp_send_ack(ssk);
2839 			if (!mptcp_rtx_timer_pending(sk))
2840 				mptcp_reset_rtx_timer(sk);
2841 		}
2842 		break;
2843 	}
2844 
2845 	release_sock(ssk);
2846 }
2847 
2848 void mptcp_set_state(struct sock *sk, int state)
2849 {
2850 	int oldstate = sk->sk_state;
2851 
2852 	switch (state) {
2853 	case TCP_ESTABLISHED:
2854 		if (oldstate != TCP_ESTABLISHED)
2855 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2856 		break;
2857 	case TCP_CLOSE_WAIT:
2858 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2859 		 * MPTCP "accepted" sockets will be created later on. So no
2860 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2861 		 */
2862 		break;
2863 	default:
2864 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2865 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2866 	}
2867 
2868 	inet_sk_state_store(sk, state);
2869 }
2870 
2871 static const unsigned char new_state[16] = {
2872 	/* current state:     new state:      action:	*/
2873 	[0 /* (Invalid) */] = TCP_CLOSE,
2874 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2875 	[TCP_SYN_SENT]      = TCP_CLOSE,
2876 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2877 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2878 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2879 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2880 	[TCP_CLOSE]         = TCP_CLOSE,
2881 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2882 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2883 	[TCP_LISTEN]        = TCP_CLOSE,
2884 	[TCP_CLOSING]       = TCP_CLOSING,
2885 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2886 };
2887 
2888 static int mptcp_close_state(struct sock *sk)
2889 {
2890 	int next = (int)new_state[sk->sk_state];
2891 	int ns = next & TCP_STATE_MASK;
2892 
2893 	mptcp_set_state(sk, ns);
2894 
2895 	return next & TCP_ACTION_FIN;
2896 }
2897 
2898 static void mptcp_check_send_data_fin(struct sock *sk)
2899 {
2900 	struct mptcp_subflow_context *subflow;
2901 	struct mptcp_sock *msk = mptcp_sk(sk);
2902 
2903 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
2904 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2905 		 msk->snd_nxt, msk->write_seq);
2906 
2907 	/* we still need to enqueue subflows or not really shutting down,
2908 	 * skip this
2909 	 */
2910 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2911 	    mptcp_send_head(sk))
2912 		return;
2913 
2914 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2915 
2916 	mptcp_for_each_subflow(msk, subflow) {
2917 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2918 
2919 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2920 	}
2921 }
2922 
2923 static void __mptcp_wr_shutdown(struct sock *sk)
2924 {
2925 	struct mptcp_sock *msk = mptcp_sk(sk);
2926 
2927 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
2928 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2929 		 !!mptcp_send_head(sk));
2930 
2931 	/* will be ignored by fallback sockets */
2932 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2933 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2934 
2935 	mptcp_check_send_data_fin(sk);
2936 }
2937 
2938 static void __mptcp_destroy_sock(struct sock *sk)
2939 {
2940 	struct mptcp_sock *msk = mptcp_sk(sk);
2941 
2942 	pr_debug("msk=%p\n", msk);
2943 
2944 	might_sleep();
2945 
2946 	mptcp_stop_rtx_timer(sk);
2947 	sk_stop_timer(sk, &sk->sk_timer);
2948 	msk->pm.status = 0;
2949 	mptcp_release_sched(msk);
2950 
2951 	sk->sk_prot->destroy(sk);
2952 
2953 	sk_stream_kill_queues(sk);
2954 	xfrm_sk_free_policy(sk);
2955 
2956 	sock_put(sk);
2957 }
2958 
2959 void __mptcp_unaccepted_force_close(struct sock *sk)
2960 {
2961 	sock_set_flag(sk, SOCK_DEAD);
2962 	mptcp_do_fastclose(sk);
2963 	__mptcp_destroy_sock(sk);
2964 }
2965 
2966 static __poll_t mptcp_check_readable(struct sock *sk)
2967 {
2968 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2969 }
2970 
2971 static void mptcp_check_listen_stop(struct sock *sk)
2972 {
2973 	struct sock *ssk;
2974 
2975 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2976 		return;
2977 
2978 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2979 	ssk = mptcp_sk(sk)->first;
2980 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2981 		return;
2982 
2983 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2984 	tcp_set_state(ssk, TCP_CLOSE);
2985 	mptcp_subflow_queue_clean(sk, ssk);
2986 	inet_csk_listen_stop(ssk);
2987 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2988 	release_sock(ssk);
2989 }
2990 
2991 bool __mptcp_close(struct sock *sk, long timeout)
2992 {
2993 	struct mptcp_subflow_context *subflow;
2994 	struct mptcp_sock *msk = mptcp_sk(sk);
2995 	bool do_cancel_work = false;
2996 	int subflows_alive = 0;
2997 
2998 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2999 
3000 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3001 		mptcp_check_listen_stop(sk);
3002 		mptcp_set_state(sk, TCP_CLOSE);
3003 		goto cleanup;
3004 	}
3005 
3006 	if (mptcp_data_avail(msk) || timeout < 0) {
3007 		/* If the msk has read data, or the caller explicitly ask it,
3008 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3009 		 */
3010 		mptcp_do_fastclose(sk);
3011 		timeout = 0;
3012 	} else if (mptcp_close_state(sk)) {
3013 		__mptcp_wr_shutdown(sk);
3014 	}
3015 
3016 	sk_stream_wait_close(sk, timeout);
3017 
3018 cleanup:
3019 	/* orphan all the subflows */
3020 	mptcp_for_each_subflow(msk, subflow) {
3021 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3022 		bool slow = lock_sock_fast_nested(ssk);
3023 
3024 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3025 
3026 		/* since the close timeout takes precedence on the fail one,
3027 		 * cancel the latter
3028 		 */
3029 		if (ssk == msk->first)
3030 			subflow->fail_tout = 0;
3031 
3032 		/* detach from the parent socket, but allow data_ready to
3033 		 * push incoming data into the mptcp stack, to properly ack it
3034 		 */
3035 		ssk->sk_socket = NULL;
3036 		ssk->sk_wq = NULL;
3037 		unlock_sock_fast(ssk, slow);
3038 	}
3039 	sock_orphan(sk);
3040 
3041 	/* all the subflows are closed, only timeout can change the msk
3042 	 * state, let's not keep resources busy for no reasons
3043 	 */
3044 	if (subflows_alive == 0)
3045 		mptcp_set_state(sk, TCP_CLOSE);
3046 
3047 	sock_hold(sk);
3048 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3049 	mptcp_pm_connection_closed(msk);
3050 
3051 	if (sk->sk_state == TCP_CLOSE) {
3052 		__mptcp_destroy_sock(sk);
3053 		do_cancel_work = true;
3054 	} else {
3055 		mptcp_start_tout_timer(sk);
3056 	}
3057 
3058 	return do_cancel_work;
3059 }
3060 
3061 static void mptcp_close(struct sock *sk, long timeout)
3062 {
3063 	bool do_cancel_work;
3064 
3065 	lock_sock(sk);
3066 
3067 	do_cancel_work = __mptcp_close(sk, timeout);
3068 	release_sock(sk);
3069 	if (do_cancel_work)
3070 		mptcp_cancel_work(sk);
3071 
3072 	sock_put(sk);
3073 }
3074 
3075 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3076 {
3077 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3078 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3079 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3080 
3081 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3082 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3083 
3084 	if (msk6 && ssk6) {
3085 		msk6->saddr = ssk6->saddr;
3086 		msk6->flow_label = ssk6->flow_label;
3087 	}
3088 #endif
3089 
3090 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3091 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3092 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3093 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3094 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3095 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3096 }
3097 
3098 static int mptcp_disconnect(struct sock *sk, int flags)
3099 {
3100 	struct mptcp_sock *msk = mptcp_sk(sk);
3101 
3102 	/* We are on the fastopen error path. We can't call straight into the
3103 	 * subflows cleanup code due to lock nesting (we are already under
3104 	 * msk->firstsocket lock).
3105 	 */
3106 	if (msk->fastopening)
3107 		return -EBUSY;
3108 
3109 	mptcp_check_listen_stop(sk);
3110 	mptcp_set_state(sk, TCP_CLOSE);
3111 
3112 	mptcp_stop_rtx_timer(sk);
3113 	mptcp_stop_tout_timer(sk);
3114 
3115 	mptcp_pm_connection_closed(msk);
3116 
3117 	/* msk->subflow is still intact, the following will not free the first
3118 	 * subflow
3119 	 */
3120 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3121 	WRITE_ONCE(msk->flags, 0);
3122 	msk->cb_flags = 0;
3123 	msk->recovery = false;
3124 	WRITE_ONCE(msk->can_ack, false);
3125 	WRITE_ONCE(msk->fully_established, false);
3126 	WRITE_ONCE(msk->rcv_data_fin, false);
3127 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3128 	WRITE_ONCE(msk->rcv_fastclose, false);
3129 	WRITE_ONCE(msk->use_64bit_ack, false);
3130 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3131 	mptcp_pm_data_reset(msk);
3132 	mptcp_ca_reset(sk);
3133 	msk->bytes_consumed = 0;
3134 	msk->bytes_acked = 0;
3135 	msk->bytes_received = 0;
3136 	msk->bytes_sent = 0;
3137 	msk->bytes_retrans = 0;
3138 	msk->rcvspace_init = 0;
3139 
3140 	WRITE_ONCE(sk->sk_shutdown, 0);
3141 	sk_error_report(sk);
3142 	return 0;
3143 }
3144 
3145 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3146 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3147 {
3148 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3149 
3150 	return &msk6->np;
3151 }
3152 
3153 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3154 {
3155 	const struct ipv6_pinfo *np = inet6_sk(sk);
3156 	struct ipv6_txoptions *opt;
3157 	struct ipv6_pinfo *newnp;
3158 
3159 	newnp = inet6_sk(newsk);
3160 
3161 	rcu_read_lock();
3162 	opt = rcu_dereference(np->opt);
3163 	if (opt) {
3164 		opt = ipv6_dup_options(newsk, opt);
3165 		if (!opt)
3166 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3167 	}
3168 	RCU_INIT_POINTER(newnp->opt, opt);
3169 	rcu_read_unlock();
3170 }
3171 #endif
3172 
3173 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3174 {
3175 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3176 	const struct inet_sock *inet = inet_sk(sk);
3177 	struct inet_sock *newinet;
3178 
3179 	newinet = inet_sk(newsk);
3180 
3181 	rcu_read_lock();
3182 	inet_opt = rcu_dereference(inet->inet_opt);
3183 	if (inet_opt) {
3184 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3185 				      inet_opt->opt.optlen, GFP_ATOMIC);
3186 		if (!newopt)
3187 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3188 	}
3189 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3190 	rcu_read_unlock();
3191 }
3192 
3193 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3194 				 const struct mptcp_options_received *mp_opt,
3195 				 struct sock *ssk,
3196 				 struct request_sock *req)
3197 {
3198 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3199 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3200 	struct mptcp_subflow_context *subflow;
3201 	struct mptcp_sock *msk;
3202 
3203 	if (!nsk)
3204 		return NULL;
3205 
3206 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3207 	if (nsk->sk_family == AF_INET6)
3208 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3209 #endif
3210 
3211 	__mptcp_init_sock(nsk);
3212 
3213 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3214 	if (nsk->sk_family == AF_INET6)
3215 		mptcp_copy_ip6_options(nsk, sk);
3216 	else
3217 #endif
3218 		mptcp_copy_ip_options(nsk, sk);
3219 
3220 	msk = mptcp_sk(nsk);
3221 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3222 	WRITE_ONCE(msk->token, subflow_req->token);
3223 	msk->in_accept_queue = 1;
3224 	WRITE_ONCE(msk->fully_established, false);
3225 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3226 		WRITE_ONCE(msk->csum_enabled, true);
3227 
3228 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3229 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3230 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3231 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3232 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3233 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3234 
3235 	/* passive msk is created after the first/MPC subflow */
3236 	msk->subflow_id = 2;
3237 
3238 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3239 	security_inet_csk_clone(nsk, req);
3240 
3241 	/* this can't race with mptcp_close(), as the msk is
3242 	 * not yet exposted to user-space
3243 	 */
3244 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3245 
3246 	/* The msk maintain a ref to each subflow in the connections list */
3247 	WRITE_ONCE(msk->first, ssk);
3248 	subflow = mptcp_subflow_ctx(ssk);
3249 	list_add(&subflow->node, &msk->conn_list);
3250 	sock_hold(ssk);
3251 
3252 	/* new mpc subflow takes ownership of the newly
3253 	 * created mptcp socket
3254 	 */
3255 	mptcp_token_accept(subflow_req, msk);
3256 
3257 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3258 	 * uses the correct data
3259 	 */
3260 	mptcp_copy_inaddrs(nsk, ssk);
3261 	__mptcp_propagate_sndbuf(nsk, ssk);
3262 
3263 	mptcp_rcv_space_init(msk, ssk);
3264 
3265 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3266 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3267 	bh_unlock_sock(nsk);
3268 
3269 	/* note: the newly allocated socket refcount is 2 now */
3270 	return nsk;
3271 }
3272 
3273 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3274 {
3275 	const struct tcp_sock *tp = tcp_sk(ssk);
3276 
3277 	msk->rcvspace_init = 1;
3278 	msk->rcvq_space.copied = 0;
3279 	msk->rcvq_space.rtt_us = 0;
3280 
3281 	msk->rcvq_space.time = tp->tcp_mstamp;
3282 
3283 	/* initial rcv_space offering made to peer */
3284 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3285 				      TCP_INIT_CWND * tp->advmss);
3286 	if (msk->rcvq_space.space == 0)
3287 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3288 }
3289 
3290 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3291 {
3292 	struct mptcp_subflow_context *subflow, *tmp;
3293 	struct sock *sk = (struct sock *)msk;
3294 
3295 	__mptcp_clear_xmit(sk);
3296 
3297 	/* join list will be eventually flushed (with rst) at sock lock release time */
3298 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3299 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3300 
3301 	__skb_queue_purge(&sk->sk_receive_queue);
3302 	skb_rbtree_purge(&msk->out_of_order_queue);
3303 
3304 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3305 	 * inet_sock_destruct() will dispose it
3306 	 */
3307 	mptcp_token_destroy(msk);
3308 	mptcp_pm_destroy(msk);
3309 }
3310 
3311 static void mptcp_destroy(struct sock *sk)
3312 {
3313 	struct mptcp_sock *msk = mptcp_sk(sk);
3314 
3315 	/* allow the following to close even the initial subflow */
3316 	msk->free_first = 1;
3317 	mptcp_destroy_common(msk, 0);
3318 	sk_sockets_allocated_dec(sk);
3319 }
3320 
3321 void __mptcp_data_acked(struct sock *sk)
3322 {
3323 	if (!sock_owned_by_user(sk))
3324 		__mptcp_clean_una(sk);
3325 	else
3326 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3327 }
3328 
3329 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3330 {
3331 	if (!mptcp_send_head(sk))
3332 		return;
3333 
3334 	if (!sock_owned_by_user(sk))
3335 		__mptcp_subflow_push_pending(sk, ssk, false);
3336 	else
3337 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3338 }
3339 
3340 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3341 				      BIT(MPTCP_RETRANSMIT) | \
3342 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3343 				      BIT(MPTCP_DEQUEUE))
3344 
3345 /* processes deferred events and flush wmem */
3346 static void mptcp_release_cb(struct sock *sk)
3347 	__must_hold(&sk->sk_lock.slock)
3348 {
3349 	struct mptcp_sock *msk = mptcp_sk(sk);
3350 
3351 	for (;;) {
3352 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3353 		struct list_head join_list;
3354 
3355 		if (!flags)
3356 			break;
3357 
3358 		INIT_LIST_HEAD(&join_list);
3359 		list_splice_init(&msk->join_list, &join_list);
3360 
3361 		/* the following actions acquire the subflow socket lock
3362 		 *
3363 		 * 1) can't be invoked in atomic scope
3364 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3365 		 *    datapath acquires the msk socket spinlock while helding
3366 		 *    the subflow socket lock
3367 		 */
3368 		msk->cb_flags &= ~flags;
3369 		spin_unlock_bh(&sk->sk_lock.slock);
3370 
3371 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3372 			__mptcp_flush_join_list(sk, &join_list);
3373 		if (flags & BIT(MPTCP_PUSH_PENDING))
3374 			__mptcp_push_pending(sk, 0);
3375 		if (flags & BIT(MPTCP_RETRANSMIT))
3376 			__mptcp_retrans(sk);
3377 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3378 			/* notify ack seq update */
3379 			mptcp_cleanup_rbuf(msk, 0);
3380 			sk->sk_data_ready(sk);
3381 		}
3382 
3383 		cond_resched();
3384 		spin_lock_bh(&sk->sk_lock.slock);
3385 	}
3386 
3387 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3388 		__mptcp_clean_una_wakeup(sk);
3389 	if (unlikely(msk->cb_flags)) {
3390 		/* be sure to sync the msk state before taking actions
3391 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3392 		 * On sk release avoid actions depending on the first subflow
3393 		 */
3394 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3395 			__mptcp_sync_state(sk, msk->pending_state);
3396 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3397 			__mptcp_error_report(sk);
3398 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3399 			__mptcp_sync_sndbuf(sk);
3400 	}
3401 }
3402 
3403 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3404  * TCP can't schedule delack timer before the subflow is fully established.
3405  * MPTCP uses the delack timer to do 3rd ack retransmissions
3406  */
3407 static void schedule_3rdack_retransmission(struct sock *ssk)
3408 {
3409 	struct inet_connection_sock *icsk = inet_csk(ssk);
3410 	struct tcp_sock *tp = tcp_sk(ssk);
3411 	unsigned long timeout;
3412 
3413 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3414 		return;
3415 
3416 	/* reschedule with a timeout above RTT, as we must look only for drop */
3417 	if (tp->srtt_us)
3418 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3419 	else
3420 		timeout = TCP_TIMEOUT_INIT;
3421 	timeout += jiffies;
3422 
3423 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3424 	smp_store_release(&icsk->icsk_ack.pending,
3425 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3426 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3427 }
3428 
3429 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3430 {
3431 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3432 	struct sock *sk = subflow->conn;
3433 
3434 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3435 		mptcp_data_lock(sk);
3436 		if (!sock_owned_by_user(sk))
3437 			__mptcp_subflow_push_pending(sk, ssk, true);
3438 		else
3439 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3440 		mptcp_data_unlock(sk);
3441 	}
3442 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3443 		mptcp_data_lock(sk);
3444 		if (!sock_owned_by_user(sk))
3445 			__mptcp_sync_sndbuf(sk);
3446 		else
3447 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3448 		mptcp_data_unlock(sk);
3449 	}
3450 	if (status & BIT(MPTCP_DELEGATE_ACK))
3451 		schedule_3rdack_retransmission(ssk);
3452 }
3453 
3454 static int mptcp_hash(struct sock *sk)
3455 {
3456 	/* should never be called,
3457 	 * we hash the TCP subflows not the MPTCP socket
3458 	 */
3459 	WARN_ON_ONCE(1);
3460 	return 0;
3461 }
3462 
3463 static void mptcp_unhash(struct sock *sk)
3464 {
3465 	/* called from sk_common_release(), but nothing to do here */
3466 }
3467 
3468 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3469 {
3470 	struct mptcp_sock *msk = mptcp_sk(sk);
3471 
3472 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3473 	if (WARN_ON_ONCE(!msk->first))
3474 		return -EINVAL;
3475 
3476 	return inet_csk_get_port(msk->first, snum);
3477 }
3478 
3479 void mptcp_finish_connect(struct sock *ssk)
3480 {
3481 	struct mptcp_subflow_context *subflow;
3482 	struct mptcp_sock *msk;
3483 	struct sock *sk;
3484 
3485 	subflow = mptcp_subflow_ctx(ssk);
3486 	sk = subflow->conn;
3487 	msk = mptcp_sk(sk);
3488 
3489 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3490 
3491 	subflow->map_seq = subflow->iasn;
3492 	subflow->map_subflow_seq = 1;
3493 
3494 	/* the socket is not connected yet, no msk/subflow ops can access/race
3495 	 * accessing the field below
3496 	 */
3497 	WRITE_ONCE(msk->local_key, subflow->local_key);
3498 
3499 	mptcp_pm_new_connection(msk, ssk, 0);
3500 }
3501 
3502 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3503 {
3504 	write_lock_bh(&sk->sk_callback_lock);
3505 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3506 	sk_set_socket(sk, parent);
3507 	WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid);
3508 	write_unlock_bh(&sk->sk_callback_lock);
3509 }
3510 
3511 bool mptcp_finish_join(struct sock *ssk)
3512 {
3513 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3514 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3515 	struct sock *parent = (void *)msk;
3516 	bool ret = true;
3517 
3518 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3519 
3520 	/* mptcp socket already closing? */
3521 	if (!mptcp_is_fully_established(parent)) {
3522 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3523 		return false;
3524 	}
3525 
3526 	/* active subflow, already present inside the conn_list */
3527 	if (!list_empty(&subflow->node)) {
3528 		mptcp_subflow_joined(msk, ssk);
3529 		mptcp_propagate_sndbuf(parent, ssk);
3530 		return true;
3531 	}
3532 
3533 	if (!mptcp_pm_allow_new_subflow(msk)) {
3534 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3535 		goto err_prohibited;
3536 	}
3537 
3538 	/* If we can't acquire msk socket lock here, let the release callback
3539 	 * handle it
3540 	 */
3541 	mptcp_data_lock(parent);
3542 	if (!sock_owned_by_user(parent)) {
3543 		ret = __mptcp_finish_join(msk, ssk);
3544 		if (ret) {
3545 			sock_hold(ssk);
3546 			list_add_tail(&subflow->node, &msk->conn_list);
3547 		}
3548 	} else {
3549 		sock_hold(ssk);
3550 		list_add_tail(&subflow->node, &msk->join_list);
3551 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3552 	}
3553 	mptcp_data_unlock(parent);
3554 
3555 	if (!ret) {
3556 err_prohibited:
3557 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3558 		return false;
3559 	}
3560 
3561 	return true;
3562 }
3563 
3564 static void mptcp_shutdown(struct sock *sk, int how)
3565 {
3566 	pr_debug("sk=%p, how=%d\n", sk, how);
3567 
3568 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3569 		__mptcp_wr_shutdown(sk);
3570 }
3571 
3572 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3573 {
3574 	const struct sock *sk = (void *)msk;
3575 	u64 delta;
3576 
3577 	if (sk->sk_state == TCP_LISTEN)
3578 		return -EINVAL;
3579 
3580 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3581 		return 0;
3582 
3583 	delta = msk->write_seq - v;
3584 	if (__mptcp_check_fallback(msk) && msk->first) {
3585 		struct tcp_sock *tp = tcp_sk(msk->first);
3586 
3587 		/* the first subflow is disconnected after close - see
3588 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3589 		 * so ignore that status, too.
3590 		 */
3591 		if (!((1 << msk->first->sk_state) &
3592 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3593 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3594 	}
3595 	if (delta > INT_MAX)
3596 		delta = INT_MAX;
3597 
3598 	return (int)delta;
3599 }
3600 
3601 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3602 {
3603 	struct mptcp_sock *msk = mptcp_sk(sk);
3604 	bool slow;
3605 
3606 	switch (cmd) {
3607 	case SIOCINQ:
3608 		if (sk->sk_state == TCP_LISTEN)
3609 			return -EINVAL;
3610 
3611 		lock_sock(sk);
3612 		if (__mptcp_move_skbs(sk))
3613 			mptcp_cleanup_rbuf(msk, 0);
3614 		*karg = mptcp_inq_hint(sk);
3615 		release_sock(sk);
3616 		break;
3617 	case SIOCOUTQ:
3618 		slow = lock_sock_fast(sk);
3619 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3620 		unlock_sock_fast(sk, slow);
3621 		break;
3622 	case SIOCOUTQNSD:
3623 		slow = lock_sock_fast(sk);
3624 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3625 		unlock_sock_fast(sk, slow);
3626 		break;
3627 	default:
3628 		return -ENOIOCTLCMD;
3629 	}
3630 
3631 	return 0;
3632 }
3633 
3634 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3635 {
3636 	struct mptcp_subflow_context *subflow;
3637 	struct mptcp_sock *msk = mptcp_sk(sk);
3638 	int err = -EINVAL;
3639 	struct sock *ssk;
3640 
3641 	ssk = __mptcp_nmpc_sk(msk);
3642 	if (IS_ERR(ssk))
3643 		return PTR_ERR(ssk);
3644 
3645 	mptcp_set_state(sk, TCP_SYN_SENT);
3646 	subflow = mptcp_subflow_ctx(ssk);
3647 #ifdef CONFIG_TCP_MD5SIG
3648 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3649 	 * TCP option space.
3650 	 */
3651 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3652 		mptcp_subflow_early_fallback(msk, subflow);
3653 #endif
3654 	if (subflow->request_mptcp) {
3655 		if (mptcp_active_should_disable(sk)) {
3656 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3657 			mptcp_subflow_early_fallback(msk, subflow);
3658 		} else if (mptcp_token_new_connect(ssk) < 0) {
3659 			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3660 			mptcp_subflow_early_fallback(msk, subflow);
3661 		}
3662 	}
3663 
3664 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3665 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3666 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3667 	if (likely(!__mptcp_check_fallback(msk)))
3668 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3669 
3670 	/* if reaching here via the fastopen/sendmsg path, the caller already
3671 	 * acquired the subflow socket lock, too.
3672 	 */
3673 	if (!msk->fastopening)
3674 		lock_sock(ssk);
3675 
3676 	/* the following mirrors closely a very small chunk of code from
3677 	 * __inet_stream_connect()
3678 	 */
3679 	if (ssk->sk_state != TCP_CLOSE)
3680 		goto out;
3681 
3682 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3683 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3684 		if (err)
3685 			goto out;
3686 	}
3687 
3688 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3689 	if (err < 0)
3690 		goto out;
3691 
3692 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3693 
3694 out:
3695 	if (!msk->fastopening)
3696 		release_sock(ssk);
3697 
3698 	/* on successful connect, the msk state will be moved to established by
3699 	 * subflow_finish_connect()
3700 	 */
3701 	if (unlikely(err)) {
3702 		/* avoid leaving a dangling token in an unconnected socket */
3703 		mptcp_token_destroy(msk);
3704 		mptcp_set_state(sk, TCP_CLOSE);
3705 		return err;
3706 	}
3707 
3708 	mptcp_copy_inaddrs(sk, ssk);
3709 	return 0;
3710 }
3711 
3712 static struct proto mptcp_prot = {
3713 	.name		= "MPTCP",
3714 	.owner		= THIS_MODULE,
3715 	.init		= mptcp_init_sock,
3716 	.connect	= mptcp_connect,
3717 	.disconnect	= mptcp_disconnect,
3718 	.close		= mptcp_close,
3719 	.setsockopt	= mptcp_setsockopt,
3720 	.getsockopt	= mptcp_getsockopt,
3721 	.shutdown	= mptcp_shutdown,
3722 	.destroy	= mptcp_destroy,
3723 	.sendmsg	= mptcp_sendmsg,
3724 	.ioctl		= mptcp_ioctl,
3725 	.recvmsg	= mptcp_recvmsg,
3726 	.release_cb	= mptcp_release_cb,
3727 	.hash		= mptcp_hash,
3728 	.unhash		= mptcp_unhash,
3729 	.get_port	= mptcp_get_port,
3730 	.stream_memory_free	= mptcp_stream_memory_free,
3731 	.sockets_allocated	= &mptcp_sockets_allocated,
3732 
3733 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3734 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3735 
3736 	.memory_pressure	= &tcp_memory_pressure,
3737 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3738 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3739 	.sysctl_mem	= sysctl_tcp_mem,
3740 	.obj_size	= sizeof(struct mptcp_sock),
3741 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3742 	.no_autobind	= true,
3743 };
3744 
3745 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3746 {
3747 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3748 	struct sock *ssk, *sk = sock->sk;
3749 	int err = -EINVAL;
3750 
3751 	lock_sock(sk);
3752 	ssk = __mptcp_nmpc_sk(msk);
3753 	if (IS_ERR(ssk)) {
3754 		err = PTR_ERR(ssk);
3755 		goto unlock;
3756 	}
3757 
3758 	if (sk->sk_family == AF_INET)
3759 		err = inet_bind_sk(ssk, uaddr, addr_len);
3760 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3761 	else if (sk->sk_family == AF_INET6)
3762 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3763 #endif
3764 	if (!err)
3765 		mptcp_copy_inaddrs(sk, ssk);
3766 
3767 unlock:
3768 	release_sock(sk);
3769 	return err;
3770 }
3771 
3772 static int mptcp_listen(struct socket *sock, int backlog)
3773 {
3774 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3775 	struct sock *sk = sock->sk;
3776 	struct sock *ssk;
3777 	int err;
3778 
3779 	pr_debug("msk=%p\n", msk);
3780 
3781 	lock_sock(sk);
3782 
3783 	err = -EINVAL;
3784 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3785 		goto unlock;
3786 
3787 	ssk = __mptcp_nmpc_sk(msk);
3788 	if (IS_ERR(ssk)) {
3789 		err = PTR_ERR(ssk);
3790 		goto unlock;
3791 	}
3792 
3793 	mptcp_set_state(sk, TCP_LISTEN);
3794 	sock_set_flag(sk, SOCK_RCU_FREE);
3795 
3796 	lock_sock(ssk);
3797 	err = __inet_listen_sk(ssk, backlog);
3798 	release_sock(ssk);
3799 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3800 
3801 	if (!err) {
3802 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3803 		mptcp_copy_inaddrs(sk, ssk);
3804 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3805 	}
3806 
3807 unlock:
3808 	release_sock(sk);
3809 	return err;
3810 }
3811 
3812 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3813 			       struct proto_accept_arg *arg)
3814 {
3815 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3816 	struct sock *ssk, *newsk;
3817 
3818 	pr_debug("msk=%p\n", msk);
3819 
3820 	/* Buggy applications can call accept on socket states other then LISTEN
3821 	 * but no need to allocate the first subflow just to error out.
3822 	 */
3823 	ssk = READ_ONCE(msk->first);
3824 	if (!ssk)
3825 		return -EINVAL;
3826 
3827 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3828 	newsk = inet_csk_accept(ssk, arg);
3829 	if (!newsk)
3830 		return arg->err;
3831 
3832 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3833 	if (sk_is_mptcp(newsk)) {
3834 		struct mptcp_subflow_context *subflow;
3835 		struct sock *new_mptcp_sock;
3836 
3837 		subflow = mptcp_subflow_ctx(newsk);
3838 		new_mptcp_sock = subflow->conn;
3839 
3840 		/* is_mptcp should be false if subflow->conn is missing, see
3841 		 * subflow_syn_recv_sock()
3842 		 */
3843 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3844 			tcp_sk(newsk)->is_mptcp = 0;
3845 			goto tcpfallback;
3846 		}
3847 
3848 		newsk = new_mptcp_sock;
3849 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3850 
3851 		newsk->sk_kern_sock = arg->kern;
3852 		lock_sock(newsk);
3853 		__inet_accept(sock, newsock, newsk);
3854 
3855 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3856 		msk = mptcp_sk(newsk);
3857 		msk->in_accept_queue = 0;
3858 
3859 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3860 		 * This is needed so NOSPACE flag can be set from tcp stack.
3861 		 */
3862 		mptcp_for_each_subflow(msk, subflow) {
3863 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3864 
3865 			if (!ssk->sk_socket)
3866 				mptcp_sock_graft(ssk, newsock);
3867 		}
3868 
3869 		/* Do late cleanup for the first subflow as necessary. Also
3870 		 * deal with bad peers not doing a complete shutdown.
3871 		 */
3872 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3873 			__mptcp_close_ssk(newsk, msk->first,
3874 					  mptcp_subflow_ctx(msk->first), 0);
3875 			if (unlikely(list_is_singular(&msk->conn_list)))
3876 				mptcp_set_state(newsk, TCP_CLOSE);
3877 		}
3878 	} else {
3879 tcpfallback:
3880 		newsk->sk_kern_sock = arg->kern;
3881 		lock_sock(newsk);
3882 		__inet_accept(sock, newsock, newsk);
3883 		/* we are being invoked after accepting a non-mp-capable
3884 		 * flow: sk is a tcp_sk, not an mptcp one.
3885 		 *
3886 		 * Hand the socket over to tcp so all further socket ops
3887 		 * bypass mptcp.
3888 		 */
3889 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3890 			   mptcp_fallback_tcp_ops(newsock->sk));
3891 	}
3892 	release_sock(newsk);
3893 
3894 	return 0;
3895 }
3896 
3897 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3898 {
3899 	struct sock *sk = (struct sock *)msk;
3900 
3901 	if (__mptcp_stream_is_writeable(sk, 1))
3902 		return EPOLLOUT | EPOLLWRNORM;
3903 
3904 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
3905 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
3906 	if (__mptcp_stream_is_writeable(sk, 1))
3907 		return EPOLLOUT | EPOLLWRNORM;
3908 
3909 	return 0;
3910 }
3911 
3912 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3913 			   struct poll_table_struct *wait)
3914 {
3915 	struct sock *sk = sock->sk;
3916 	struct mptcp_sock *msk;
3917 	__poll_t mask = 0;
3918 	u8 shutdown;
3919 	int state;
3920 
3921 	msk = mptcp_sk(sk);
3922 	sock_poll_wait(file, sock, wait);
3923 
3924 	state = inet_sk_state_load(sk);
3925 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
3926 	if (state == TCP_LISTEN) {
3927 		struct sock *ssk = READ_ONCE(msk->first);
3928 
3929 		if (WARN_ON_ONCE(!ssk))
3930 			return 0;
3931 
3932 		return inet_csk_listen_poll(ssk);
3933 	}
3934 
3935 	shutdown = READ_ONCE(sk->sk_shutdown);
3936 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3937 		mask |= EPOLLHUP;
3938 	if (shutdown & RCV_SHUTDOWN)
3939 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3940 
3941 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3942 		mask |= mptcp_check_readable(sk);
3943 		if (shutdown & SEND_SHUTDOWN)
3944 			mask |= EPOLLOUT | EPOLLWRNORM;
3945 		else
3946 			mask |= mptcp_check_writeable(msk);
3947 	} else if (state == TCP_SYN_SENT &&
3948 		   inet_test_bit(DEFER_CONNECT, sk)) {
3949 		/* cf tcp_poll() note about TFO */
3950 		mask |= EPOLLOUT | EPOLLWRNORM;
3951 	}
3952 
3953 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3954 	smp_rmb();
3955 	if (READ_ONCE(sk->sk_err))
3956 		mask |= EPOLLERR;
3957 
3958 	return mask;
3959 }
3960 
3961 static const struct proto_ops mptcp_stream_ops = {
3962 	.family		   = PF_INET,
3963 	.owner		   = THIS_MODULE,
3964 	.release	   = inet_release,
3965 	.bind		   = mptcp_bind,
3966 	.connect	   = inet_stream_connect,
3967 	.socketpair	   = sock_no_socketpair,
3968 	.accept		   = mptcp_stream_accept,
3969 	.getname	   = inet_getname,
3970 	.poll		   = mptcp_poll,
3971 	.ioctl		   = inet_ioctl,
3972 	.gettstamp	   = sock_gettstamp,
3973 	.listen		   = mptcp_listen,
3974 	.shutdown	   = inet_shutdown,
3975 	.setsockopt	   = sock_common_setsockopt,
3976 	.getsockopt	   = sock_common_getsockopt,
3977 	.sendmsg	   = inet_sendmsg,
3978 	.recvmsg	   = inet_recvmsg,
3979 	.mmap		   = sock_no_mmap,
3980 	.set_rcvlowat	   = mptcp_set_rcvlowat,
3981 };
3982 
3983 static struct inet_protosw mptcp_protosw = {
3984 	.type		= SOCK_STREAM,
3985 	.protocol	= IPPROTO_MPTCP,
3986 	.prot		= &mptcp_prot,
3987 	.ops		= &mptcp_stream_ops,
3988 	.flags		= INET_PROTOSW_ICSK,
3989 };
3990 
3991 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3992 {
3993 	struct mptcp_delegated_action *delegated;
3994 	struct mptcp_subflow_context *subflow;
3995 	int work_done = 0;
3996 
3997 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3998 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3999 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4000 
4001 		bh_lock_sock_nested(ssk);
4002 		if (!sock_owned_by_user(ssk)) {
4003 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4004 		} else {
4005 			/* tcp_release_cb_override already processed
4006 			 * the action or will do at next release_sock().
4007 			 * In both case must dequeue the subflow here - on the same
4008 			 * CPU that scheduled it.
4009 			 */
4010 			smp_wmb();
4011 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4012 		}
4013 		bh_unlock_sock(ssk);
4014 		sock_put(ssk);
4015 
4016 		if (++work_done == budget)
4017 			return budget;
4018 	}
4019 
4020 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4021 	 * will not try accessing the NULL napi->dev ptr
4022 	 */
4023 	napi_complete_done(napi, 0);
4024 	return work_done;
4025 }
4026 
4027 void __init mptcp_proto_init(void)
4028 {
4029 	struct mptcp_delegated_action *delegated;
4030 	int cpu;
4031 
4032 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4033 
4034 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4035 		panic("Failed to allocate MPTCP pcpu counter\n");
4036 
4037 	mptcp_napi_dev = alloc_netdev_dummy(0);
4038 	if (!mptcp_napi_dev)
4039 		panic("Failed to allocate MPTCP dummy netdev\n");
4040 	for_each_possible_cpu(cpu) {
4041 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4042 		INIT_LIST_HEAD(&delegated->head);
4043 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4044 				  mptcp_napi_poll);
4045 		napi_enable(&delegated->napi);
4046 	}
4047 
4048 	mptcp_subflow_init();
4049 	mptcp_pm_init();
4050 	mptcp_sched_init();
4051 	mptcp_token_init();
4052 
4053 	if (proto_register(&mptcp_prot, 1) != 0)
4054 		panic("Failed to register MPTCP proto.\n");
4055 
4056 	inet_register_protosw(&mptcp_protosw);
4057 
4058 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4059 }
4060 
4061 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4062 static const struct proto_ops mptcp_v6_stream_ops = {
4063 	.family		   = PF_INET6,
4064 	.owner		   = THIS_MODULE,
4065 	.release	   = inet6_release,
4066 	.bind		   = mptcp_bind,
4067 	.connect	   = inet_stream_connect,
4068 	.socketpair	   = sock_no_socketpair,
4069 	.accept		   = mptcp_stream_accept,
4070 	.getname	   = inet6_getname,
4071 	.poll		   = mptcp_poll,
4072 	.ioctl		   = inet6_ioctl,
4073 	.gettstamp	   = sock_gettstamp,
4074 	.listen		   = mptcp_listen,
4075 	.shutdown	   = inet_shutdown,
4076 	.setsockopt	   = sock_common_setsockopt,
4077 	.getsockopt	   = sock_common_getsockopt,
4078 	.sendmsg	   = inet6_sendmsg,
4079 	.recvmsg	   = inet6_recvmsg,
4080 	.mmap		   = sock_no_mmap,
4081 #ifdef CONFIG_COMPAT
4082 	.compat_ioctl	   = inet6_compat_ioctl,
4083 #endif
4084 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4085 };
4086 
4087 static struct proto mptcp_v6_prot;
4088 
4089 static struct inet_protosw mptcp_v6_protosw = {
4090 	.type		= SOCK_STREAM,
4091 	.protocol	= IPPROTO_MPTCP,
4092 	.prot		= &mptcp_v6_prot,
4093 	.ops		= &mptcp_v6_stream_ops,
4094 	.flags		= INET_PROTOSW_ICSK,
4095 };
4096 
4097 int __init mptcp_proto_v6_init(void)
4098 {
4099 	int err;
4100 
4101 	mptcp_v6_prot = mptcp_prot;
4102 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4103 	mptcp_v6_prot.slab = NULL;
4104 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4105 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4106 
4107 	err = proto_register(&mptcp_v6_prot, 1);
4108 	if (err)
4109 		return err;
4110 
4111 	err = inet6_register_protosw(&mptcp_v6_protosw);
4112 	if (err)
4113 		proto_unregister(&mptcp_v6_prot);
4114 
4115 	return err;
4116 }
4117 #endif
4118