1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/rps.h> 16 #include <net/sock.h> 17 #include <net/inet_common.h> 18 #include <net/inet_hashtables.h> 19 #include <net/protocol.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #endif 24 #include <net/mptcp.h> 25 #include <net/hotdata.h> 26 #include <net/xfrm.h> 27 #include <asm/ioctls.h> 28 #include "protocol.h" 29 #include "mib.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/mptcp.h> 33 34 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 35 struct mptcp6_sock { 36 struct mptcp_sock msk; 37 struct ipv6_pinfo np; 38 }; 39 #endif 40 41 enum { 42 MPTCP_CMSG_TS = BIT(0), 43 MPTCP_CMSG_INQ = BIT(1), 44 }; 45 46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 52 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 53 }; 54 static struct net_device *mptcp_napi_dev; 55 56 /* Returns end sequence number of the receiver's advertised window */ 57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 58 { 59 return READ_ONCE(msk->wnd_end); 60 } 61 62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 63 { 64 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 65 if (sk->sk_prot == &tcpv6_prot) 66 return &inet6_stream_ops; 67 #endif 68 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 69 return &inet_stream_ops; 70 } 71 72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 73 { 74 struct net *net = sock_net((struct sock *)msk); 75 76 if (__mptcp_check_fallback(msk)) 77 return true; 78 79 spin_lock_bh(&msk->fallback_lock); 80 if (!msk->allow_infinite_fallback) { 81 spin_unlock_bh(&msk->fallback_lock); 82 return false; 83 } 84 85 msk->allow_subflows = false; 86 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 87 __MPTCP_INC_STATS(net, fb_mib); 88 spin_unlock_bh(&msk->fallback_lock); 89 return true; 90 } 91 92 static int __mptcp_socket_create(struct mptcp_sock *msk) 93 { 94 struct mptcp_subflow_context *subflow; 95 struct sock *sk = (struct sock *)msk; 96 struct socket *ssock; 97 int err; 98 99 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 100 if (err) 101 return err; 102 103 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 104 WRITE_ONCE(msk->first, ssock->sk); 105 subflow = mptcp_subflow_ctx(ssock->sk); 106 list_add(&subflow->node, &msk->conn_list); 107 sock_hold(ssock->sk); 108 subflow->request_mptcp = 1; 109 subflow->subflow_id = msk->subflow_id++; 110 111 /* This is the first subflow, always with id 0 */ 112 WRITE_ONCE(subflow->local_id, 0); 113 mptcp_sock_graft(msk->first, sk->sk_socket); 114 iput(SOCK_INODE(ssock)); 115 116 return 0; 117 } 118 119 /* If the MPC handshake is not started, returns the first subflow, 120 * eventually allocating it. 121 */ 122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 123 { 124 struct sock *sk = (struct sock *)msk; 125 int ret; 126 127 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 128 return ERR_PTR(-EINVAL); 129 130 if (!msk->first) { 131 ret = __mptcp_socket_create(msk); 132 if (ret) 133 return ERR_PTR(ret); 134 } 135 136 return msk->first; 137 } 138 139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 140 { 141 sk_drops_skbadd(sk, skb); 142 __kfree_skb(skb); 143 } 144 145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 146 struct sk_buff *from, bool *fragstolen, 147 int *delta) 148 { 149 int limit = READ_ONCE(sk->sk_rcvbuf); 150 151 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 152 MPTCP_SKB_CB(from)->offset || 153 ((to->len + from->len) > (limit >> 3)) || 154 !skb_try_coalesce(to, from, fragstolen, delta)) 155 return false; 156 157 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 158 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 159 to->len, MPTCP_SKB_CB(from)->end_seq); 160 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 161 return true; 162 } 163 164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 165 struct sk_buff *from) 166 { 167 bool fragstolen; 168 int delta; 169 170 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta)) 171 return false; 172 173 /* note the fwd memory can reach a negative value after accounting 174 * for the delta, but the later skb free will restore a non 175 * negative one 176 */ 177 atomic_add(delta, &sk->sk_rmem_alloc); 178 sk_mem_charge(sk, delta); 179 kfree_skb_partial(from, fragstolen); 180 181 return true; 182 } 183 184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 185 struct sk_buff *from) 186 { 187 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 188 return false; 189 190 return mptcp_try_coalesce((struct sock *)msk, to, from); 191 } 192 193 /* "inspired" by tcp_rcvbuf_grow(), main difference: 194 * - mptcp does not maintain a msk-level window clamp 195 * - returns true when the receive buffer is actually updated 196 */ 197 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval) 198 { 199 struct mptcp_sock *msk = mptcp_sk(sk); 200 const struct net *net = sock_net(sk); 201 u32 rcvwin, rcvbuf, cap, oldval; 202 u64 grow; 203 204 oldval = msk->rcvq_space.space; 205 msk->rcvq_space.space = newval; 206 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 207 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 208 return false; 209 210 /* DRS is always one RTT late. */ 211 rcvwin = newval << 1; 212 213 /* slow start: allow the sender to double its rate. */ 214 grow = (u64)rcvwin * (newval - oldval); 215 do_div(grow, oldval); 216 rcvwin += grow << 1; 217 218 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue)) 219 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq; 220 221 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 222 223 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap); 224 if (rcvbuf > sk->sk_rcvbuf) { 225 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 226 return true; 227 } 228 return false; 229 } 230 231 /* "inspired" by tcp_data_queue_ofo(), main differences: 232 * - use mptcp seqs 233 * - don't cope with sacks 234 */ 235 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 236 { 237 struct sock *sk = (struct sock *)msk; 238 struct rb_node **p, *parent; 239 u64 seq, end_seq, max_seq; 240 struct sk_buff *skb1; 241 242 seq = MPTCP_SKB_CB(skb)->map_seq; 243 end_seq = MPTCP_SKB_CB(skb)->end_seq; 244 max_seq = atomic64_read(&msk->rcv_wnd_sent); 245 246 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 247 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 248 if (after64(end_seq, max_seq)) { 249 /* out of window */ 250 mptcp_drop(sk, skb); 251 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 252 (unsigned long long)end_seq - (unsigned long)max_seq, 253 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 255 return; 256 } 257 258 p = &msk->out_of_order_queue.rb_node; 259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 260 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 261 rb_link_node(&skb->rbnode, NULL, p); 262 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 263 msk->ooo_last_skb = skb; 264 goto end; 265 } 266 267 /* with 2 subflows, adding at end of ooo queue is quite likely 268 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 269 */ 270 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 273 return; 274 } 275 276 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 277 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 279 parent = &msk->ooo_last_skb->rbnode; 280 p = &parent->rb_right; 281 goto insert; 282 } 283 284 /* Find place to insert this segment. Handle overlaps on the way. */ 285 parent = NULL; 286 while (*p) { 287 parent = *p; 288 skb1 = rb_to_skb(parent); 289 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 290 p = &parent->rb_left; 291 continue; 292 } 293 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 294 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 295 /* All the bits are present. Drop. */ 296 mptcp_drop(sk, skb); 297 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 298 return; 299 } 300 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 301 /* partial overlap: 302 * | skb | 303 * | skb1 | 304 * continue traversing 305 */ 306 } else { 307 /* skb's seq == skb1's seq and skb covers skb1. 308 * Replace skb1 with skb. 309 */ 310 rb_replace_node(&skb1->rbnode, &skb->rbnode, 311 &msk->out_of_order_queue); 312 mptcp_drop(sk, skb1); 313 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 314 goto merge_right; 315 } 316 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 317 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 318 return; 319 } 320 p = &parent->rb_right; 321 } 322 323 insert: 324 /* Insert segment into RB tree. */ 325 rb_link_node(&skb->rbnode, parent, p); 326 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 327 328 merge_right: 329 /* Remove other segments covered by skb. */ 330 while ((skb1 = skb_rb_next(skb)) != NULL) { 331 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 332 break; 333 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 334 mptcp_drop(sk, skb1); 335 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 336 } 337 /* If there is no skb after us, we are the last_skb ! */ 338 if (!skb1) 339 msk->ooo_last_skb = skb; 340 341 end: 342 skb_condense(skb); 343 skb_set_owner_r(skb, sk); 344 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 345 if (sk->sk_socket) 346 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space); 347 } 348 349 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset, 350 int copy_len) 351 { 352 const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 353 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 354 355 /* the skb map_seq accounts for the skb offset: 356 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 357 * value 358 */ 359 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 360 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 361 MPTCP_SKB_CB(skb)->offset = offset; 362 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 363 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 364 365 __skb_unlink(skb, &ssk->sk_receive_queue); 366 367 skb_ext_reset(skb); 368 skb_dst_drop(skb); 369 } 370 371 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb) 372 { 373 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq; 374 struct mptcp_sock *msk = mptcp_sk(sk); 375 struct sk_buff *tail; 376 377 /* try to fetch required memory from subflow */ 378 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 379 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 380 goto drop; 381 } 382 383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 384 /* in sequence */ 385 msk->bytes_received += copy_len; 386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 387 tail = skb_peek_tail(&sk->sk_receive_queue); 388 if (tail && mptcp_try_coalesce(sk, tail, skb)) 389 return true; 390 391 skb_set_owner_r(skb, sk); 392 __skb_queue_tail(&sk->sk_receive_queue, skb); 393 return true; 394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 395 mptcp_data_queue_ofo(msk, skb); 396 return false; 397 } 398 399 /* old data, keep it simple and drop the whole pkt, sender 400 * will retransmit as needed, if needed. 401 */ 402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 403 drop: 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_rtx_timer(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 413 mptcp_sk(sk)->timer_ival = 0; 414 } 415 416 static void mptcp_close_wake_up(struct sock *sk) 417 { 418 if (sock_flag(sk, SOCK_DEAD)) 419 return; 420 421 sk->sk_state_change(sk); 422 if (sk->sk_shutdown == SHUTDOWN_MASK || 423 sk->sk_state == TCP_CLOSE) 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 425 else 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 427 } 428 429 static void mptcp_shutdown_subflows(struct mptcp_sock *msk) 430 { 431 struct mptcp_subflow_context *subflow; 432 433 mptcp_for_each_subflow(msk, subflow) { 434 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 435 bool slow; 436 437 slow = lock_sock_fast(ssk); 438 tcp_shutdown(ssk, SEND_SHUTDOWN); 439 unlock_sock_fast(ssk, slow); 440 } 441 } 442 443 /* called under the msk socket lock */ 444 static bool mptcp_pending_data_fin_ack(struct sock *sk) 445 { 446 struct mptcp_sock *msk = mptcp_sk(sk); 447 448 return ((1 << sk->sk_state) & 449 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 450 msk->write_seq == READ_ONCE(msk->snd_una); 451 } 452 453 static void mptcp_check_data_fin_ack(struct sock *sk) 454 { 455 struct mptcp_sock *msk = mptcp_sk(sk); 456 457 /* Look for an acknowledged DATA_FIN */ 458 if (mptcp_pending_data_fin_ack(sk)) { 459 WRITE_ONCE(msk->snd_data_fin_enable, 0); 460 461 switch (sk->sk_state) { 462 case TCP_FIN_WAIT1: 463 mptcp_set_state(sk, TCP_FIN_WAIT2); 464 break; 465 case TCP_CLOSING: 466 case TCP_LAST_ACK: 467 mptcp_shutdown_subflows(msk); 468 mptcp_set_state(sk, TCP_CLOSE); 469 break; 470 } 471 472 mptcp_close_wake_up(sk); 473 } 474 } 475 476 /* can be called with no lock acquired */ 477 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 478 { 479 struct mptcp_sock *msk = mptcp_sk(sk); 480 481 if (READ_ONCE(msk->rcv_data_fin) && 482 ((1 << inet_sk_state_load(sk)) & 483 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 484 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 485 486 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 487 if (seq) 488 *seq = rcv_data_fin_seq; 489 490 return true; 491 } 492 } 493 494 return false; 495 } 496 497 static void mptcp_set_datafin_timeout(struct sock *sk) 498 { 499 struct inet_connection_sock *icsk = inet_csk(sk); 500 u32 retransmits; 501 502 retransmits = min_t(u32, icsk->icsk_retransmits, 503 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 504 505 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 506 } 507 508 static void __mptcp_set_timeout(struct sock *sk, long tout) 509 { 510 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 511 } 512 513 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 514 { 515 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 516 517 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 518 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 519 } 520 521 static void mptcp_set_timeout(struct sock *sk) 522 { 523 struct mptcp_subflow_context *subflow; 524 long tout = 0; 525 526 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 527 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 528 __mptcp_set_timeout(sk, tout); 529 } 530 531 static inline bool tcp_can_send_ack(const struct sock *ssk) 532 { 533 return !((1 << inet_sk_state_load(ssk)) & 534 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 535 } 536 537 void __mptcp_subflow_send_ack(struct sock *ssk) 538 { 539 if (tcp_can_send_ack(ssk)) 540 tcp_send_ack(ssk); 541 } 542 543 static void mptcp_subflow_send_ack(struct sock *ssk) 544 { 545 bool slow; 546 547 slow = lock_sock_fast(ssk); 548 __mptcp_subflow_send_ack(ssk); 549 unlock_sock_fast(ssk, slow); 550 } 551 552 static void mptcp_send_ack(struct mptcp_sock *msk) 553 { 554 struct mptcp_subflow_context *subflow; 555 556 mptcp_for_each_subflow(msk, subflow) 557 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 558 } 559 560 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 561 { 562 bool slow; 563 564 slow = lock_sock_fast(ssk); 565 if (tcp_can_send_ack(ssk)) 566 tcp_cleanup_rbuf(ssk, copied); 567 unlock_sock_fast(ssk, slow); 568 } 569 570 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 571 { 572 const struct inet_connection_sock *icsk = inet_csk(ssk); 573 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 574 const struct tcp_sock *tp = tcp_sk(ssk); 575 576 return (ack_pending & ICSK_ACK_SCHED) && 577 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 578 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 579 (rx_empty && ack_pending & 580 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 581 } 582 583 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 584 { 585 int old_space = READ_ONCE(msk->old_wspace); 586 struct mptcp_subflow_context *subflow; 587 struct sock *sk = (struct sock *)msk; 588 int space = __mptcp_space(sk); 589 bool cleanup, rx_empty; 590 591 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 592 rx_empty = !sk_rmem_alloc_get(sk) && copied; 593 594 mptcp_for_each_subflow(msk, subflow) { 595 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 596 597 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 598 mptcp_subflow_cleanup_rbuf(ssk, copied); 599 } 600 } 601 602 static void mptcp_check_data_fin(struct sock *sk) 603 { 604 struct mptcp_sock *msk = mptcp_sk(sk); 605 u64 rcv_data_fin_seq; 606 607 /* Need to ack a DATA_FIN received from a peer while this side 608 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 609 * msk->rcv_data_fin was set when parsing the incoming options 610 * at the subflow level and the msk lock was not held, so this 611 * is the first opportunity to act on the DATA_FIN and change 612 * the msk state. 613 * 614 * If we are caught up to the sequence number of the incoming 615 * DATA_FIN, send the DATA_ACK now and do state transition. If 616 * not caught up, do nothing and let the recv code send DATA_ACK 617 * when catching up. 618 */ 619 620 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 621 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 622 WRITE_ONCE(msk->rcv_data_fin, 0); 623 624 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 625 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 626 627 switch (sk->sk_state) { 628 case TCP_ESTABLISHED: 629 mptcp_set_state(sk, TCP_CLOSE_WAIT); 630 break; 631 case TCP_FIN_WAIT1: 632 mptcp_set_state(sk, TCP_CLOSING); 633 break; 634 case TCP_FIN_WAIT2: 635 mptcp_shutdown_subflows(msk); 636 mptcp_set_state(sk, TCP_CLOSE); 637 break; 638 default: 639 /* Other states not expected */ 640 WARN_ON_ONCE(1); 641 break; 642 } 643 644 if (!__mptcp_check_fallback(msk)) 645 mptcp_send_ack(msk); 646 mptcp_close_wake_up(sk); 647 } 648 } 649 650 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 651 { 652 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 653 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 654 mptcp_subflow_reset(ssk); 655 } 656 } 657 658 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 659 struct sock *ssk) 660 { 661 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 662 struct sock *sk = (struct sock *)msk; 663 bool more_data_avail; 664 struct tcp_sock *tp; 665 bool ret = false; 666 667 pr_debug("msk=%p ssk=%p\n", msk, ssk); 668 tp = tcp_sk(ssk); 669 do { 670 u32 map_remaining, offset; 671 u32 seq = tp->copied_seq; 672 struct sk_buff *skb; 673 bool fin; 674 675 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 676 break; 677 678 /* try to move as much data as available */ 679 map_remaining = subflow->map_data_len - 680 mptcp_subflow_get_map_offset(subflow); 681 682 skb = skb_peek(&ssk->sk_receive_queue); 683 if (unlikely(!skb)) 684 break; 685 686 if (__mptcp_check_fallback(msk)) { 687 /* Under fallback skbs have no MPTCP extension and TCP could 688 * collapse them between the dummy map creation and the 689 * current dequeue. Be sure to adjust the map size. 690 */ 691 map_remaining = skb->len; 692 subflow->map_data_len = skb->len; 693 } 694 695 offset = seq - TCP_SKB_CB(skb)->seq; 696 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 697 if (fin) 698 seq++; 699 700 if (offset < skb->len) { 701 size_t len = skb->len - offset; 702 703 mptcp_init_skb(ssk, skb, offset, len); 704 skb_orphan(skb); 705 ret = __mptcp_move_skb(sk, skb) || ret; 706 seq += len; 707 708 if (unlikely(map_remaining < len)) { 709 DEBUG_NET_WARN_ON_ONCE(1); 710 mptcp_dss_corruption(msk, ssk); 711 } 712 } else { 713 if (unlikely(!fin)) { 714 DEBUG_NET_WARN_ON_ONCE(1); 715 mptcp_dss_corruption(msk, ssk); 716 } 717 718 sk_eat_skb(ssk, skb); 719 } 720 721 WRITE_ONCE(tp->copied_seq, seq); 722 more_data_avail = mptcp_subflow_data_available(ssk); 723 724 } while (more_data_avail); 725 726 if (ret) 727 msk->last_data_recv = tcp_jiffies32; 728 return ret; 729 } 730 731 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 732 { 733 struct sock *sk = (struct sock *)msk; 734 struct sk_buff *skb, *tail; 735 bool moved = false; 736 struct rb_node *p; 737 u64 end_seq; 738 739 p = rb_first(&msk->out_of_order_queue); 740 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 741 while (p) { 742 skb = rb_to_skb(p); 743 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 744 break; 745 746 p = rb_next(p); 747 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 748 749 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 750 msk->ack_seq))) { 751 mptcp_drop(sk, skb); 752 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 753 continue; 754 } 755 756 end_seq = MPTCP_SKB_CB(skb)->end_seq; 757 tail = skb_peek_tail(&sk->sk_receive_queue); 758 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 759 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 760 761 /* skip overlapping data, if any */ 762 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 763 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 764 delta); 765 MPTCP_SKB_CB(skb)->offset += delta; 766 MPTCP_SKB_CB(skb)->map_seq += delta; 767 __skb_queue_tail(&sk->sk_receive_queue, skb); 768 } 769 msk->bytes_received += end_seq - msk->ack_seq; 770 WRITE_ONCE(msk->ack_seq, end_seq); 771 moved = true; 772 } 773 return moved; 774 } 775 776 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 777 { 778 int err = sock_error(ssk); 779 int ssk_state; 780 781 if (!err) 782 return false; 783 784 /* only propagate errors on fallen-back sockets or 785 * on MPC connect 786 */ 787 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 788 return false; 789 790 /* We need to propagate only transition to CLOSE state. 791 * Orphaned socket will see such state change via 792 * subflow_sched_work_if_closed() and that path will properly 793 * destroy the msk as needed. 794 */ 795 ssk_state = inet_sk_state_load(ssk); 796 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 797 mptcp_set_state(sk, ssk_state); 798 WRITE_ONCE(sk->sk_err, -err); 799 800 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 801 smp_wmb(); 802 sk_error_report(sk); 803 return true; 804 } 805 806 void __mptcp_error_report(struct sock *sk) 807 { 808 struct mptcp_subflow_context *subflow; 809 struct mptcp_sock *msk = mptcp_sk(sk); 810 811 mptcp_for_each_subflow(msk, subflow) 812 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 813 break; 814 } 815 816 /* In most cases we will be able to lock the mptcp socket. If its already 817 * owned, we need to defer to the work queue to avoid ABBA deadlock. 818 */ 819 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 820 { 821 struct sock *sk = (struct sock *)msk; 822 bool moved; 823 824 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 825 __mptcp_ofo_queue(msk); 826 if (unlikely(ssk->sk_err)) 827 __mptcp_subflow_error_report(sk, ssk); 828 829 /* If the moves have caught up with the DATA_FIN sequence number 830 * it's time to ack the DATA_FIN and change socket state, but 831 * this is not a good place to change state. Let the workqueue 832 * do it. 833 */ 834 if (mptcp_pending_data_fin(sk, NULL)) 835 mptcp_schedule_work(sk); 836 return moved; 837 } 838 839 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 840 { 841 struct mptcp_sock *msk = mptcp_sk(sk); 842 843 /* Wake-up the reader only for in-sequence data */ 844 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 845 sk->sk_data_ready(sk); 846 } 847 848 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 849 { 850 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 851 852 /* The peer can send data while we are shutting down this 853 * subflow at msk destruction time, but we must avoid enqueuing 854 * more data to the msk receive queue 855 */ 856 if (unlikely(subflow->disposable)) 857 return; 858 859 mptcp_data_lock(sk); 860 if (!sock_owned_by_user(sk)) 861 __mptcp_data_ready(sk, ssk); 862 else 863 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 864 mptcp_data_unlock(sk); 865 } 866 867 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 868 { 869 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 870 msk->allow_infinite_fallback = false; 871 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 872 } 873 874 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 875 { 876 struct sock *sk = (struct sock *)msk; 877 878 if (sk->sk_state != TCP_ESTABLISHED) 879 return false; 880 881 spin_lock_bh(&msk->fallback_lock); 882 if (!msk->allow_subflows) { 883 spin_unlock_bh(&msk->fallback_lock); 884 return false; 885 } 886 mptcp_subflow_joined(msk, ssk); 887 spin_unlock_bh(&msk->fallback_lock); 888 889 /* attach to msk socket only after we are sure we will deal with it 890 * at close time 891 */ 892 if (sk->sk_socket && !ssk->sk_socket) 893 mptcp_sock_graft(ssk, sk->sk_socket); 894 895 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 896 mptcp_sockopt_sync_locked(msk, ssk); 897 mptcp_stop_tout_timer(sk); 898 __mptcp_propagate_sndbuf(sk, ssk); 899 return true; 900 } 901 902 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 903 { 904 struct mptcp_subflow_context *tmp, *subflow; 905 struct mptcp_sock *msk = mptcp_sk(sk); 906 907 list_for_each_entry_safe(subflow, tmp, join_list, node) { 908 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 909 bool slow = lock_sock_fast(ssk); 910 911 list_move_tail(&subflow->node, &msk->conn_list); 912 if (!__mptcp_finish_join(msk, ssk)) 913 mptcp_subflow_reset(ssk); 914 unlock_sock_fast(ssk, slow); 915 } 916 } 917 918 static bool mptcp_rtx_timer_pending(struct sock *sk) 919 { 920 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 921 } 922 923 static void mptcp_reset_rtx_timer(struct sock *sk) 924 { 925 struct inet_connection_sock *icsk = inet_csk(sk); 926 unsigned long tout; 927 928 /* prevent rescheduling on close */ 929 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 930 return; 931 932 tout = mptcp_sk(sk)->timer_ival; 933 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 934 } 935 936 bool mptcp_schedule_work(struct sock *sk) 937 { 938 if (inet_sk_state_load(sk) != TCP_CLOSE && 939 schedule_work(&mptcp_sk(sk)->work)) { 940 /* each subflow already holds a reference to the sk, and the 941 * workqueue is invoked by a subflow, so sk can't go away here. 942 */ 943 sock_hold(sk); 944 return true; 945 } 946 return false; 947 } 948 949 static bool mptcp_skb_can_collapse_to(u64 write_seq, 950 const struct sk_buff *skb, 951 const struct mptcp_ext *mpext) 952 { 953 if (!tcp_skb_can_collapse_to(skb)) 954 return false; 955 956 /* can collapse only if MPTCP level sequence is in order and this 957 * mapping has not been xmitted yet 958 */ 959 return mpext && mpext->data_seq + mpext->data_len == write_seq && 960 !mpext->frozen; 961 } 962 963 /* we can append data to the given data frag if: 964 * - there is space available in the backing page_frag 965 * - the data frag tail matches the current page_frag free offset 966 * - the data frag end sequence number matches the current write seq 967 */ 968 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 969 const struct page_frag *pfrag, 970 const struct mptcp_data_frag *df) 971 { 972 return df && pfrag->page == df->page && 973 pfrag->size - pfrag->offset > 0 && 974 pfrag->offset == (df->offset + df->data_len) && 975 df->data_seq + df->data_len == msk->write_seq; 976 } 977 978 static void dfrag_uncharge(struct sock *sk, int len) 979 { 980 sk_mem_uncharge(sk, len); 981 sk_wmem_queued_add(sk, -len); 982 } 983 984 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 985 { 986 int len = dfrag->data_len + dfrag->overhead; 987 988 list_del(&dfrag->list); 989 dfrag_uncharge(sk, len); 990 put_page(dfrag->page); 991 } 992 993 /* called under both the msk socket lock and the data lock */ 994 static void __mptcp_clean_una(struct sock *sk) 995 { 996 struct mptcp_sock *msk = mptcp_sk(sk); 997 struct mptcp_data_frag *dtmp, *dfrag; 998 u64 snd_una; 999 1000 snd_una = msk->snd_una; 1001 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1002 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1003 break; 1004 1005 if (unlikely(dfrag == msk->first_pending)) { 1006 /* in recovery mode can see ack after the current snd head */ 1007 if (WARN_ON_ONCE(!msk->recovery)) 1008 break; 1009 1010 msk->first_pending = mptcp_send_next(sk); 1011 } 1012 1013 dfrag_clear(sk, dfrag); 1014 } 1015 1016 dfrag = mptcp_rtx_head(sk); 1017 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1018 u64 delta = snd_una - dfrag->data_seq; 1019 1020 /* prevent wrap around in recovery mode */ 1021 if (unlikely(delta > dfrag->already_sent)) { 1022 if (WARN_ON_ONCE(!msk->recovery)) 1023 goto out; 1024 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1025 goto out; 1026 dfrag->already_sent += delta - dfrag->already_sent; 1027 } 1028 1029 dfrag->data_seq += delta; 1030 dfrag->offset += delta; 1031 dfrag->data_len -= delta; 1032 dfrag->already_sent -= delta; 1033 1034 dfrag_uncharge(sk, delta); 1035 } 1036 1037 /* all retransmitted data acked, recovery completed */ 1038 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1039 msk->recovery = false; 1040 1041 out: 1042 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 1043 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1044 mptcp_stop_rtx_timer(sk); 1045 } else { 1046 mptcp_reset_rtx_timer(sk); 1047 } 1048 1049 if (mptcp_pending_data_fin_ack(sk)) 1050 mptcp_schedule_work(sk); 1051 } 1052 1053 static void __mptcp_clean_una_wakeup(struct sock *sk) 1054 { 1055 lockdep_assert_held_once(&sk->sk_lock.slock); 1056 1057 __mptcp_clean_una(sk); 1058 mptcp_write_space(sk); 1059 } 1060 1061 static void mptcp_clean_una_wakeup(struct sock *sk) 1062 { 1063 mptcp_data_lock(sk); 1064 __mptcp_clean_una_wakeup(sk); 1065 mptcp_data_unlock(sk); 1066 } 1067 1068 static void mptcp_enter_memory_pressure(struct sock *sk) 1069 { 1070 struct mptcp_subflow_context *subflow; 1071 struct mptcp_sock *msk = mptcp_sk(sk); 1072 bool first = true; 1073 1074 mptcp_for_each_subflow(msk, subflow) { 1075 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1076 1077 if (first) 1078 tcp_enter_memory_pressure(ssk); 1079 sk_stream_moderate_sndbuf(ssk); 1080 1081 first = false; 1082 } 1083 __mptcp_sync_sndbuf(sk); 1084 } 1085 1086 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1087 * data 1088 */ 1089 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1090 { 1091 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1092 pfrag, sk->sk_allocation))) 1093 return true; 1094 1095 mptcp_enter_memory_pressure(sk); 1096 return false; 1097 } 1098 1099 static struct mptcp_data_frag * 1100 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1101 int orig_offset) 1102 { 1103 int offset = ALIGN(orig_offset, sizeof(long)); 1104 struct mptcp_data_frag *dfrag; 1105 1106 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1107 dfrag->data_len = 0; 1108 dfrag->data_seq = msk->write_seq; 1109 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1110 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1111 dfrag->already_sent = 0; 1112 dfrag->page = pfrag->page; 1113 1114 return dfrag; 1115 } 1116 1117 struct mptcp_sendmsg_info { 1118 int mss_now; 1119 int size_goal; 1120 u16 limit; 1121 u16 sent; 1122 unsigned int flags; 1123 bool data_lock_held; 1124 }; 1125 1126 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1127 u64 data_seq, int avail_size) 1128 { 1129 u64 window_end = mptcp_wnd_end(msk); 1130 u64 mptcp_snd_wnd; 1131 1132 if (__mptcp_check_fallback(msk)) 1133 return avail_size; 1134 1135 mptcp_snd_wnd = window_end - data_seq; 1136 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1137 1138 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1139 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1140 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1141 } 1142 1143 return avail_size; 1144 } 1145 1146 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1147 { 1148 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1149 1150 if (!mpext) 1151 return false; 1152 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1153 return true; 1154 } 1155 1156 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1157 { 1158 struct sk_buff *skb; 1159 1160 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1161 if (likely(skb)) { 1162 if (likely(__mptcp_add_ext(skb, gfp))) { 1163 skb_reserve(skb, MAX_TCP_HEADER); 1164 skb->ip_summed = CHECKSUM_PARTIAL; 1165 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1166 return skb; 1167 } 1168 __kfree_skb(skb); 1169 } else { 1170 mptcp_enter_memory_pressure(sk); 1171 } 1172 return NULL; 1173 } 1174 1175 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1176 { 1177 struct sk_buff *skb; 1178 1179 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1180 if (!skb) 1181 return NULL; 1182 1183 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1184 tcp_skb_entail(ssk, skb); 1185 return skb; 1186 } 1187 tcp_skb_tsorted_anchor_cleanup(skb); 1188 kfree_skb(skb); 1189 return NULL; 1190 } 1191 1192 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1193 { 1194 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1195 1196 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1197 } 1198 1199 /* note: this always recompute the csum on the whole skb, even 1200 * if we just appended a single frag. More status info needed 1201 */ 1202 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1203 { 1204 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1205 __wsum csum = ~csum_unfold(mpext->csum); 1206 int offset = skb->len - added; 1207 1208 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1209 } 1210 1211 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1212 struct sock *ssk, 1213 struct mptcp_ext *mpext) 1214 { 1215 if (!mpext) 1216 return; 1217 1218 mpext->infinite_map = 1; 1219 mpext->data_len = 0; 1220 1221 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1222 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1223 mptcp_subflow_reset(ssk); 1224 return; 1225 } 1226 1227 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1228 } 1229 1230 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1231 1232 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1233 struct mptcp_data_frag *dfrag, 1234 struct mptcp_sendmsg_info *info) 1235 { 1236 u64 data_seq = dfrag->data_seq + info->sent; 1237 int offset = dfrag->offset + info->sent; 1238 struct mptcp_sock *msk = mptcp_sk(sk); 1239 bool zero_window_probe = false; 1240 struct mptcp_ext *mpext = NULL; 1241 bool can_coalesce = false; 1242 bool reuse_skb = true; 1243 struct sk_buff *skb; 1244 size_t copy; 1245 int i; 1246 1247 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1248 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1249 1250 if (WARN_ON_ONCE(info->sent > info->limit || 1251 info->limit > dfrag->data_len)) 1252 return 0; 1253 1254 if (unlikely(!__tcp_can_send(ssk))) 1255 return -EAGAIN; 1256 1257 /* compute send limit */ 1258 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1259 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1260 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1261 copy = info->size_goal; 1262 1263 skb = tcp_write_queue_tail(ssk); 1264 if (skb && copy > skb->len) { 1265 /* Limit the write to the size available in the 1266 * current skb, if any, so that we create at most a new skb. 1267 * Explicitly tells TCP internals to avoid collapsing on later 1268 * queue management operation, to avoid breaking the ext <-> 1269 * SSN association set here 1270 */ 1271 mpext = mptcp_get_ext(skb); 1272 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1273 TCP_SKB_CB(skb)->eor = 1; 1274 tcp_mark_push(tcp_sk(ssk), skb); 1275 goto alloc_skb; 1276 } 1277 1278 i = skb_shinfo(skb)->nr_frags; 1279 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1280 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1281 tcp_mark_push(tcp_sk(ssk), skb); 1282 goto alloc_skb; 1283 } 1284 1285 copy -= skb->len; 1286 } else { 1287 alloc_skb: 1288 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1289 if (!skb) 1290 return -ENOMEM; 1291 1292 i = skb_shinfo(skb)->nr_frags; 1293 reuse_skb = false; 1294 mpext = mptcp_get_ext(skb); 1295 } 1296 1297 /* Zero window and all data acked? Probe. */ 1298 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1299 if (copy == 0) { 1300 u64 snd_una = READ_ONCE(msk->snd_una); 1301 1302 /* No need for zero probe if there are any data pending 1303 * either at the msk or ssk level; skb is the current write 1304 * queue tail and can be empty at this point. 1305 */ 1306 if (snd_una != msk->snd_nxt || skb->len || 1307 skb != tcp_send_head(ssk)) { 1308 tcp_remove_empty_skb(ssk); 1309 return 0; 1310 } 1311 1312 zero_window_probe = true; 1313 data_seq = snd_una - 1; 1314 copy = 1; 1315 } 1316 1317 copy = min_t(size_t, copy, info->limit - info->sent); 1318 if (!sk_wmem_schedule(ssk, copy)) { 1319 tcp_remove_empty_skb(ssk); 1320 return -ENOMEM; 1321 } 1322 1323 if (can_coalesce) { 1324 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1325 } else { 1326 get_page(dfrag->page); 1327 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1328 } 1329 1330 skb->len += copy; 1331 skb->data_len += copy; 1332 skb->truesize += copy; 1333 sk_wmem_queued_add(ssk, copy); 1334 sk_mem_charge(ssk, copy); 1335 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1336 TCP_SKB_CB(skb)->end_seq += copy; 1337 tcp_skb_pcount_set(skb, 0); 1338 1339 /* on skb reuse we just need to update the DSS len */ 1340 if (reuse_skb) { 1341 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1342 mpext->data_len += copy; 1343 goto out; 1344 } 1345 1346 memset(mpext, 0, sizeof(*mpext)); 1347 mpext->data_seq = data_seq; 1348 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1349 mpext->data_len = copy; 1350 mpext->use_map = 1; 1351 mpext->dsn64 = 1; 1352 1353 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1354 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1355 mpext->dsn64); 1356 1357 if (zero_window_probe) { 1358 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE); 1359 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1360 mpext->frozen = 1; 1361 if (READ_ONCE(msk->csum_enabled)) 1362 mptcp_update_data_checksum(skb, copy); 1363 tcp_push_pending_frames(ssk); 1364 return 0; 1365 } 1366 out: 1367 if (READ_ONCE(msk->csum_enabled)) 1368 mptcp_update_data_checksum(skb, copy); 1369 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1370 mptcp_update_infinite_map(msk, ssk, mpext); 1371 trace_mptcp_sendmsg_frag(mpext); 1372 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1373 return copy; 1374 } 1375 1376 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1377 sizeof(struct tcphdr) - \ 1378 MAX_TCP_OPTION_SPACE - \ 1379 sizeof(struct ipv6hdr) - \ 1380 sizeof(struct frag_hdr)) 1381 1382 struct subflow_send_info { 1383 struct sock *ssk; 1384 u64 linger_time; 1385 }; 1386 1387 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1388 { 1389 if (!subflow->stale) 1390 return; 1391 1392 subflow->stale = 0; 1393 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1394 } 1395 1396 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1397 { 1398 if (unlikely(subflow->stale)) { 1399 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1400 1401 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1402 return false; 1403 1404 mptcp_subflow_set_active(subflow); 1405 } 1406 return __mptcp_subflow_active(subflow); 1407 } 1408 1409 #define SSK_MODE_ACTIVE 0 1410 #define SSK_MODE_BACKUP 1 1411 #define SSK_MODE_MAX 2 1412 1413 /* implement the mptcp packet scheduler; 1414 * returns the subflow that will transmit the next DSS 1415 * additionally updates the rtx timeout 1416 */ 1417 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1418 { 1419 struct subflow_send_info send_info[SSK_MODE_MAX]; 1420 struct mptcp_subflow_context *subflow; 1421 struct sock *sk = (struct sock *)msk; 1422 u32 pace, burst, wmem; 1423 int i, nr_active = 0; 1424 struct sock *ssk; 1425 u64 linger_time; 1426 long tout = 0; 1427 1428 /* pick the subflow with the lower wmem/wspace ratio */ 1429 for (i = 0; i < SSK_MODE_MAX; ++i) { 1430 send_info[i].ssk = NULL; 1431 send_info[i].linger_time = -1; 1432 } 1433 1434 mptcp_for_each_subflow(msk, subflow) { 1435 bool backup = subflow->backup || subflow->request_bkup; 1436 1437 trace_mptcp_subflow_get_send(subflow); 1438 ssk = mptcp_subflow_tcp_sock(subflow); 1439 if (!mptcp_subflow_active(subflow)) 1440 continue; 1441 1442 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1443 nr_active += !backup; 1444 pace = subflow->avg_pacing_rate; 1445 if (unlikely(!pace)) { 1446 /* init pacing rate from socket */ 1447 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1448 pace = subflow->avg_pacing_rate; 1449 if (!pace) 1450 continue; 1451 } 1452 1453 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1454 if (linger_time < send_info[backup].linger_time) { 1455 send_info[backup].ssk = ssk; 1456 send_info[backup].linger_time = linger_time; 1457 } 1458 } 1459 __mptcp_set_timeout(sk, tout); 1460 1461 /* pick the best backup if no other subflow is active */ 1462 if (!nr_active) 1463 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1464 1465 /* According to the blest algorithm, to avoid HoL blocking for the 1466 * faster flow, we need to: 1467 * - estimate the faster flow linger time 1468 * - use the above to estimate the amount of byte transferred 1469 * by the faster flow 1470 * - check that the amount of queued data is greater than the above, 1471 * otherwise do not use the picked, slower, subflow 1472 * We select the subflow with the shorter estimated time to flush 1473 * the queued mem, which basically ensure the above. We just need 1474 * to check that subflow has a non empty cwin. 1475 */ 1476 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1477 if (!ssk || !sk_stream_memory_free(ssk)) 1478 return NULL; 1479 1480 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1481 wmem = READ_ONCE(ssk->sk_wmem_queued); 1482 if (!burst) 1483 return ssk; 1484 1485 subflow = mptcp_subflow_ctx(ssk); 1486 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1487 READ_ONCE(ssk->sk_pacing_rate) * burst, 1488 burst + wmem); 1489 msk->snd_burst = burst; 1490 return ssk; 1491 } 1492 1493 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1494 { 1495 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1496 release_sock(ssk); 1497 } 1498 1499 static void mptcp_update_post_push(struct mptcp_sock *msk, 1500 struct mptcp_data_frag *dfrag, 1501 u32 sent) 1502 { 1503 u64 snd_nxt_new = dfrag->data_seq; 1504 1505 dfrag->already_sent += sent; 1506 1507 msk->snd_burst -= sent; 1508 1509 snd_nxt_new += dfrag->already_sent; 1510 1511 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1512 * is recovering after a failover. In that event, this re-sends 1513 * old segments. 1514 * 1515 * Thus compute snd_nxt_new candidate based on 1516 * the dfrag->data_seq that was sent and the data 1517 * that has been handed to the subflow for transmission 1518 * and skip update in case it was old dfrag. 1519 */ 1520 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1521 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1522 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1523 } 1524 } 1525 1526 void mptcp_check_and_set_pending(struct sock *sk) 1527 { 1528 if (mptcp_send_head(sk)) { 1529 mptcp_data_lock(sk); 1530 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1531 mptcp_data_unlock(sk); 1532 } 1533 } 1534 1535 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1536 struct mptcp_sendmsg_info *info) 1537 { 1538 struct mptcp_sock *msk = mptcp_sk(sk); 1539 struct mptcp_data_frag *dfrag; 1540 int len, copied = 0, err = 0; 1541 1542 while ((dfrag = mptcp_send_head(sk))) { 1543 info->sent = dfrag->already_sent; 1544 info->limit = dfrag->data_len; 1545 len = dfrag->data_len - dfrag->already_sent; 1546 while (len > 0) { 1547 int ret = 0; 1548 1549 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1550 if (ret <= 0) { 1551 err = copied ? : ret; 1552 goto out; 1553 } 1554 1555 info->sent += ret; 1556 copied += ret; 1557 len -= ret; 1558 1559 mptcp_update_post_push(msk, dfrag, ret); 1560 } 1561 msk->first_pending = mptcp_send_next(sk); 1562 1563 if (msk->snd_burst <= 0 || 1564 !sk_stream_memory_free(ssk) || 1565 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1566 err = copied; 1567 goto out; 1568 } 1569 mptcp_set_timeout(sk); 1570 } 1571 err = copied; 1572 1573 out: 1574 if (err > 0) 1575 msk->last_data_sent = tcp_jiffies32; 1576 return err; 1577 } 1578 1579 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1580 { 1581 struct sock *prev_ssk = NULL, *ssk = NULL; 1582 struct mptcp_sock *msk = mptcp_sk(sk); 1583 struct mptcp_sendmsg_info info = { 1584 .flags = flags, 1585 }; 1586 bool do_check_data_fin = false; 1587 int push_count = 1; 1588 1589 while (mptcp_send_head(sk) && (push_count > 0)) { 1590 struct mptcp_subflow_context *subflow; 1591 int ret = 0; 1592 1593 if (mptcp_sched_get_send(msk)) 1594 break; 1595 1596 push_count = 0; 1597 1598 mptcp_for_each_subflow(msk, subflow) { 1599 if (READ_ONCE(subflow->scheduled)) { 1600 mptcp_subflow_set_scheduled(subflow, false); 1601 1602 prev_ssk = ssk; 1603 ssk = mptcp_subflow_tcp_sock(subflow); 1604 if (ssk != prev_ssk) { 1605 /* First check. If the ssk has changed since 1606 * the last round, release prev_ssk 1607 */ 1608 if (prev_ssk) 1609 mptcp_push_release(prev_ssk, &info); 1610 1611 /* Need to lock the new subflow only if different 1612 * from the previous one, otherwise we are still 1613 * helding the relevant lock 1614 */ 1615 lock_sock(ssk); 1616 } 1617 1618 push_count++; 1619 1620 ret = __subflow_push_pending(sk, ssk, &info); 1621 if (ret <= 0) { 1622 if (ret != -EAGAIN || 1623 (1 << ssk->sk_state) & 1624 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1625 push_count--; 1626 continue; 1627 } 1628 do_check_data_fin = true; 1629 } 1630 } 1631 } 1632 1633 /* at this point we held the socket lock for the last subflow we used */ 1634 if (ssk) 1635 mptcp_push_release(ssk, &info); 1636 1637 /* ensure the rtx timer is running */ 1638 if (!mptcp_rtx_timer_pending(sk)) 1639 mptcp_reset_rtx_timer(sk); 1640 if (do_check_data_fin) 1641 mptcp_check_send_data_fin(sk); 1642 } 1643 1644 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1645 { 1646 struct mptcp_sock *msk = mptcp_sk(sk); 1647 struct mptcp_sendmsg_info info = { 1648 .data_lock_held = true, 1649 }; 1650 bool keep_pushing = true; 1651 struct sock *xmit_ssk; 1652 int copied = 0; 1653 1654 info.flags = 0; 1655 while (mptcp_send_head(sk) && keep_pushing) { 1656 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1657 int ret = 0; 1658 1659 /* check for a different subflow usage only after 1660 * spooling the first chunk of data 1661 */ 1662 if (first) { 1663 mptcp_subflow_set_scheduled(subflow, false); 1664 ret = __subflow_push_pending(sk, ssk, &info); 1665 first = false; 1666 if (ret <= 0) 1667 break; 1668 copied += ret; 1669 continue; 1670 } 1671 1672 if (mptcp_sched_get_send(msk)) 1673 goto out; 1674 1675 if (READ_ONCE(subflow->scheduled)) { 1676 mptcp_subflow_set_scheduled(subflow, false); 1677 ret = __subflow_push_pending(sk, ssk, &info); 1678 if (ret <= 0) 1679 keep_pushing = false; 1680 copied += ret; 1681 } 1682 1683 mptcp_for_each_subflow(msk, subflow) { 1684 if (READ_ONCE(subflow->scheduled)) { 1685 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1686 if (xmit_ssk != ssk) { 1687 mptcp_subflow_delegate(subflow, 1688 MPTCP_DELEGATE_SEND); 1689 keep_pushing = false; 1690 } 1691 } 1692 } 1693 } 1694 1695 out: 1696 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1697 * not going to flush it via release_sock() 1698 */ 1699 if (copied) { 1700 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1701 info.size_goal); 1702 if (!mptcp_rtx_timer_pending(sk)) 1703 mptcp_reset_rtx_timer(sk); 1704 1705 if (msk->snd_data_fin_enable && 1706 msk->snd_nxt + 1 == msk->write_seq) 1707 mptcp_schedule_work(sk); 1708 } 1709 } 1710 1711 static int mptcp_disconnect(struct sock *sk, int flags); 1712 1713 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1714 size_t len, int *copied_syn) 1715 { 1716 unsigned int saved_flags = msg->msg_flags; 1717 struct mptcp_sock *msk = mptcp_sk(sk); 1718 struct sock *ssk; 1719 int ret; 1720 1721 /* on flags based fastopen the mptcp is supposed to create the 1722 * first subflow right now. Otherwise we are in the defer_connect 1723 * path, and the first subflow must be already present. 1724 * Since the defer_connect flag is cleared after the first succsful 1725 * fastopen attempt, no need to check for additional subflow status. 1726 */ 1727 if (msg->msg_flags & MSG_FASTOPEN) { 1728 ssk = __mptcp_nmpc_sk(msk); 1729 if (IS_ERR(ssk)) 1730 return PTR_ERR(ssk); 1731 } 1732 if (!msk->first) 1733 return -EINVAL; 1734 1735 ssk = msk->first; 1736 1737 lock_sock(ssk); 1738 msg->msg_flags |= MSG_DONTWAIT; 1739 msk->fastopening = 1; 1740 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1741 msk->fastopening = 0; 1742 msg->msg_flags = saved_flags; 1743 release_sock(ssk); 1744 1745 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1746 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1747 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1748 msg->msg_namelen, msg->msg_flags, 1); 1749 1750 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1751 * case of any error, except timeout or signal 1752 */ 1753 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1754 *copied_syn = 0; 1755 } else if (ret && ret != -EINPROGRESS) { 1756 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1757 * __inet_stream_connect() can fail, due to looking check, 1758 * see mptcp_disconnect(). 1759 * Attempt it again outside the problematic scope. 1760 */ 1761 if (!mptcp_disconnect(sk, 0)) { 1762 sk->sk_disconnects++; 1763 sk->sk_socket->state = SS_UNCONNECTED; 1764 } 1765 } 1766 inet_clear_bit(DEFER_CONNECT, sk); 1767 1768 return ret; 1769 } 1770 1771 static int do_copy_data_nocache(struct sock *sk, int copy, 1772 struct iov_iter *from, char *to) 1773 { 1774 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1775 if (!copy_from_iter_full_nocache(to, copy, from)) 1776 return -EFAULT; 1777 } else if (!copy_from_iter_full(to, copy, from)) { 1778 return -EFAULT; 1779 } 1780 return 0; 1781 } 1782 1783 /* open-code sk_stream_memory_free() plus sent limit computation to 1784 * avoid indirect calls in fast-path. 1785 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1786 * annotations. 1787 */ 1788 static u32 mptcp_send_limit(const struct sock *sk) 1789 { 1790 const struct mptcp_sock *msk = mptcp_sk(sk); 1791 u32 limit, not_sent; 1792 1793 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1794 return 0; 1795 1796 limit = mptcp_notsent_lowat(sk); 1797 if (limit == UINT_MAX) 1798 return UINT_MAX; 1799 1800 not_sent = msk->write_seq - msk->snd_nxt; 1801 if (not_sent >= limit) 1802 return 0; 1803 1804 return limit - not_sent; 1805 } 1806 1807 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk) 1808 { 1809 struct mptcp_subflow_context *subflow; 1810 1811 if (!rfs_is_needed()) 1812 return; 1813 1814 mptcp_for_each_subflow(msk, subflow) { 1815 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1816 1817 sock_rps_record_flow(ssk); 1818 } 1819 } 1820 1821 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1822 { 1823 struct mptcp_sock *msk = mptcp_sk(sk); 1824 struct page_frag *pfrag; 1825 size_t copied = 0; 1826 int ret = 0; 1827 long timeo; 1828 1829 /* silently ignore everything else */ 1830 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1831 1832 lock_sock(sk); 1833 1834 mptcp_rps_record_subflows(msk); 1835 1836 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1837 msg->msg_flags & MSG_FASTOPEN)) { 1838 int copied_syn = 0; 1839 1840 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1841 copied += copied_syn; 1842 if (ret == -EINPROGRESS && copied_syn > 0) 1843 goto out; 1844 else if (ret) 1845 goto do_error; 1846 } 1847 1848 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1849 1850 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1851 ret = sk_stream_wait_connect(sk, &timeo); 1852 if (ret) 1853 goto do_error; 1854 } 1855 1856 ret = -EPIPE; 1857 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1858 goto do_error; 1859 1860 pfrag = sk_page_frag(sk); 1861 1862 while (msg_data_left(msg)) { 1863 int total_ts, frag_truesize = 0; 1864 struct mptcp_data_frag *dfrag; 1865 bool dfrag_collapsed; 1866 size_t psize, offset; 1867 u32 copy_limit; 1868 1869 /* ensure fitting the notsent_lowat() constraint */ 1870 copy_limit = mptcp_send_limit(sk); 1871 if (!copy_limit) 1872 goto wait_for_memory; 1873 1874 /* reuse tail pfrag, if possible, or carve a new one from the 1875 * page allocator 1876 */ 1877 dfrag = mptcp_pending_tail(sk); 1878 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1879 if (!dfrag_collapsed) { 1880 if (!mptcp_page_frag_refill(sk, pfrag)) 1881 goto wait_for_memory; 1882 1883 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1884 frag_truesize = dfrag->overhead; 1885 } 1886 1887 /* we do not bound vs wspace, to allow a single packet. 1888 * memory accounting will prevent execessive memory usage 1889 * anyway 1890 */ 1891 offset = dfrag->offset + dfrag->data_len; 1892 psize = pfrag->size - offset; 1893 psize = min_t(size_t, psize, msg_data_left(msg)); 1894 psize = min_t(size_t, psize, copy_limit); 1895 total_ts = psize + frag_truesize; 1896 1897 if (!sk_wmem_schedule(sk, total_ts)) 1898 goto wait_for_memory; 1899 1900 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1901 page_address(dfrag->page) + offset); 1902 if (ret) 1903 goto do_error; 1904 1905 /* data successfully copied into the write queue */ 1906 sk_forward_alloc_add(sk, -total_ts); 1907 copied += psize; 1908 dfrag->data_len += psize; 1909 frag_truesize += psize; 1910 pfrag->offset += frag_truesize; 1911 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1912 1913 /* charge data on mptcp pending queue to the msk socket 1914 * Note: we charge such data both to sk and ssk 1915 */ 1916 sk_wmem_queued_add(sk, frag_truesize); 1917 if (!dfrag_collapsed) { 1918 get_page(dfrag->page); 1919 list_add_tail(&dfrag->list, &msk->rtx_queue); 1920 if (!msk->first_pending) 1921 msk->first_pending = dfrag; 1922 } 1923 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1924 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1925 !dfrag_collapsed); 1926 1927 continue; 1928 1929 wait_for_memory: 1930 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1931 __mptcp_push_pending(sk, msg->msg_flags); 1932 ret = sk_stream_wait_memory(sk, &timeo); 1933 if (ret) 1934 goto do_error; 1935 } 1936 1937 if (copied) 1938 __mptcp_push_pending(sk, msg->msg_flags); 1939 1940 out: 1941 release_sock(sk); 1942 return copied; 1943 1944 do_error: 1945 if (copied) 1946 goto out; 1947 1948 copied = sk_stream_error(sk, msg->msg_flags, ret); 1949 goto out; 1950 } 1951 1952 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1953 1954 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg, 1955 size_t len, int flags, int copied_total, 1956 struct scm_timestamping_internal *tss, 1957 int *cmsg_flags) 1958 { 1959 struct mptcp_sock *msk = mptcp_sk(sk); 1960 struct sk_buff *skb, *tmp; 1961 int total_data_len = 0; 1962 int copied = 0; 1963 1964 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1965 u32 delta, offset = MPTCP_SKB_CB(skb)->offset; 1966 u32 data_len = skb->len - offset; 1967 u32 count; 1968 int err; 1969 1970 if (flags & MSG_PEEK) { 1971 /* skip already peeked skbs */ 1972 if (total_data_len + data_len <= copied_total) { 1973 total_data_len += data_len; 1974 continue; 1975 } 1976 1977 /* skip the already peeked data in the current skb */ 1978 delta = copied_total - total_data_len; 1979 offset += delta; 1980 data_len -= delta; 1981 } 1982 1983 count = min_t(size_t, len - copied, data_len); 1984 if (!(flags & MSG_TRUNC)) { 1985 err = skb_copy_datagram_msg(skb, offset, msg, count); 1986 if (unlikely(err < 0)) { 1987 if (!copied) 1988 return err; 1989 break; 1990 } 1991 } 1992 1993 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1994 tcp_update_recv_tstamps(skb, tss); 1995 *cmsg_flags |= MPTCP_CMSG_TS; 1996 } 1997 1998 copied += count; 1999 2000 if (!(flags & MSG_PEEK)) { 2001 msk->bytes_consumed += count; 2002 if (count < data_len) { 2003 MPTCP_SKB_CB(skb)->offset += count; 2004 MPTCP_SKB_CB(skb)->map_seq += count; 2005 break; 2006 } 2007 2008 /* avoid the indirect call, we know the destructor is sock_rfree */ 2009 skb->destructor = NULL; 2010 skb->sk = NULL; 2011 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 2012 sk_mem_uncharge(sk, skb->truesize); 2013 __skb_unlink(skb, &sk->sk_receive_queue); 2014 skb_attempt_defer_free(skb); 2015 } 2016 2017 if (copied >= len) 2018 break; 2019 } 2020 2021 mptcp_rcv_space_adjust(msk, copied); 2022 return copied; 2023 } 2024 2025 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 2026 * 2027 * Only difference: Use highest rtt estimate of the subflows in use. 2028 */ 2029 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 2030 { 2031 struct mptcp_subflow_context *subflow; 2032 struct sock *sk = (struct sock *)msk; 2033 u8 scaling_ratio = U8_MAX; 2034 u32 time, advmss = 1; 2035 u64 rtt_us, mstamp; 2036 2037 msk_owned_by_me(msk); 2038 2039 if (copied <= 0) 2040 return; 2041 2042 if (!msk->rcvspace_init) 2043 mptcp_rcv_space_init(msk, msk->first); 2044 2045 msk->rcvq_space.copied += copied; 2046 2047 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 2048 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 2049 2050 rtt_us = msk->rcvq_space.rtt_us; 2051 if (rtt_us && time < (rtt_us >> 3)) 2052 return; 2053 2054 rtt_us = 0; 2055 mptcp_for_each_subflow(msk, subflow) { 2056 const struct tcp_sock *tp; 2057 u64 sf_rtt_us; 2058 u32 sf_advmss; 2059 2060 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 2061 2062 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 2063 sf_advmss = READ_ONCE(tp->advmss); 2064 2065 rtt_us = max(sf_rtt_us, rtt_us); 2066 advmss = max(sf_advmss, advmss); 2067 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2068 } 2069 2070 msk->rcvq_space.rtt_us = rtt_us; 2071 msk->scaling_ratio = scaling_ratio; 2072 if (time < (rtt_us >> 3) || rtt_us == 0) 2073 return; 2074 2075 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2076 goto new_measure; 2077 2078 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) { 2079 /* Make subflows follow along. If we do not do this, we 2080 * get drops at subflow level if skbs can't be moved to 2081 * the mptcp rx queue fast enough (announced rcv_win can 2082 * exceed ssk->sk_rcvbuf). 2083 */ 2084 mptcp_for_each_subflow(msk, subflow) { 2085 struct sock *ssk; 2086 bool slow; 2087 2088 ssk = mptcp_subflow_tcp_sock(subflow); 2089 slow = lock_sock_fast(ssk); 2090 /* subflows can be added before tcp_init_transfer() */ 2091 if (tcp_sk(ssk)->rcvq_space.space) 2092 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied); 2093 unlock_sock_fast(ssk, slow); 2094 } 2095 } 2096 2097 new_measure: 2098 msk->rcvq_space.copied = 0; 2099 msk->rcvq_space.time = mstamp; 2100 } 2101 2102 static struct mptcp_subflow_context * 2103 __mptcp_first_ready_from(struct mptcp_sock *msk, 2104 struct mptcp_subflow_context *subflow) 2105 { 2106 struct mptcp_subflow_context *start_subflow = subflow; 2107 2108 while (!READ_ONCE(subflow->data_avail)) { 2109 subflow = mptcp_next_subflow(msk, subflow); 2110 if (subflow == start_subflow) 2111 return NULL; 2112 } 2113 return subflow; 2114 } 2115 2116 static bool __mptcp_move_skbs(struct sock *sk) 2117 { 2118 struct mptcp_subflow_context *subflow; 2119 struct mptcp_sock *msk = mptcp_sk(sk); 2120 bool ret = false; 2121 2122 if (list_empty(&msk->conn_list)) 2123 return false; 2124 2125 subflow = list_first_entry(&msk->conn_list, 2126 struct mptcp_subflow_context, node); 2127 for (;;) { 2128 struct sock *ssk; 2129 bool slowpath; 2130 2131 /* 2132 * As an optimization avoid traversing the subflows list 2133 * and ev. acquiring the subflow socket lock before baling out 2134 */ 2135 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2136 break; 2137 2138 subflow = __mptcp_first_ready_from(msk, subflow); 2139 if (!subflow) 2140 break; 2141 2142 ssk = mptcp_subflow_tcp_sock(subflow); 2143 slowpath = lock_sock_fast(ssk); 2144 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2145 if (unlikely(ssk->sk_err)) 2146 __mptcp_error_report(sk); 2147 unlock_sock_fast(ssk, slowpath); 2148 2149 subflow = mptcp_next_subflow(msk, subflow); 2150 } 2151 2152 __mptcp_ofo_queue(msk); 2153 if (ret) 2154 mptcp_check_data_fin((struct sock *)msk); 2155 return ret; 2156 } 2157 2158 static unsigned int mptcp_inq_hint(const struct sock *sk) 2159 { 2160 const struct mptcp_sock *msk = mptcp_sk(sk); 2161 const struct sk_buff *skb; 2162 2163 skb = skb_peek(&sk->sk_receive_queue); 2164 if (skb) { 2165 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2166 2167 if (hint_val >= INT_MAX) 2168 return INT_MAX; 2169 2170 return (unsigned int)hint_val; 2171 } 2172 2173 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2174 return 1; 2175 2176 return 0; 2177 } 2178 2179 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2180 int flags, int *addr_len) 2181 { 2182 struct mptcp_sock *msk = mptcp_sk(sk); 2183 struct scm_timestamping_internal tss; 2184 int copied = 0, cmsg_flags = 0; 2185 int target; 2186 long timeo; 2187 2188 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2189 if (unlikely(flags & MSG_ERRQUEUE)) 2190 return inet_recv_error(sk, msg, len, addr_len); 2191 2192 lock_sock(sk); 2193 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2194 copied = -ENOTCONN; 2195 goto out_err; 2196 } 2197 2198 mptcp_rps_record_subflows(msk); 2199 2200 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2201 2202 len = min_t(size_t, len, INT_MAX); 2203 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2204 2205 if (unlikely(msk->recvmsg_inq)) 2206 cmsg_flags = MPTCP_CMSG_INQ; 2207 2208 while (copied < len) { 2209 int err, bytes_read; 2210 2211 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, 2212 copied, &tss, &cmsg_flags); 2213 if (unlikely(bytes_read < 0)) { 2214 if (!copied) 2215 copied = bytes_read; 2216 goto out_err; 2217 } 2218 2219 copied += bytes_read; 2220 2221 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2222 continue; 2223 2224 /* only the MPTCP socket status is relevant here. The exit 2225 * conditions mirror closely tcp_recvmsg() 2226 */ 2227 if (copied >= target) 2228 break; 2229 2230 if (copied) { 2231 if (sk->sk_err || 2232 sk->sk_state == TCP_CLOSE || 2233 (sk->sk_shutdown & RCV_SHUTDOWN) || 2234 !timeo || 2235 signal_pending(current)) 2236 break; 2237 } else { 2238 if (sk->sk_err) { 2239 copied = sock_error(sk); 2240 break; 2241 } 2242 2243 if (sk->sk_shutdown & RCV_SHUTDOWN) 2244 break; 2245 2246 if (sk->sk_state == TCP_CLOSE) { 2247 copied = -ENOTCONN; 2248 break; 2249 } 2250 2251 if (!timeo) { 2252 copied = -EAGAIN; 2253 break; 2254 } 2255 2256 if (signal_pending(current)) { 2257 copied = sock_intr_errno(timeo); 2258 break; 2259 } 2260 } 2261 2262 pr_debug("block timeout %ld\n", timeo); 2263 mptcp_cleanup_rbuf(msk, copied); 2264 err = sk_wait_data(sk, &timeo, NULL); 2265 if (err < 0) { 2266 err = copied ? : err; 2267 goto out_err; 2268 } 2269 } 2270 2271 mptcp_cleanup_rbuf(msk, copied); 2272 2273 out_err: 2274 if (cmsg_flags && copied >= 0) { 2275 if (cmsg_flags & MPTCP_CMSG_TS) 2276 tcp_recv_timestamp(msg, sk, &tss); 2277 2278 if (cmsg_flags & MPTCP_CMSG_INQ) { 2279 unsigned int inq = mptcp_inq_hint(sk); 2280 2281 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2282 } 2283 } 2284 2285 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2286 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2287 2288 release_sock(sk); 2289 return copied; 2290 } 2291 2292 static void mptcp_retransmit_timer(struct timer_list *t) 2293 { 2294 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2295 icsk_retransmit_timer); 2296 struct sock *sk = &icsk->icsk_inet.sk; 2297 struct mptcp_sock *msk = mptcp_sk(sk); 2298 2299 bh_lock_sock(sk); 2300 if (!sock_owned_by_user(sk)) { 2301 /* we need a process context to retransmit */ 2302 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2303 mptcp_schedule_work(sk); 2304 } else { 2305 /* delegate our work to tcp_release_cb() */ 2306 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2307 } 2308 bh_unlock_sock(sk); 2309 sock_put(sk); 2310 } 2311 2312 static void mptcp_tout_timer(struct timer_list *t) 2313 { 2314 struct sock *sk = timer_container_of(sk, t, sk_timer); 2315 2316 mptcp_schedule_work(sk); 2317 sock_put(sk); 2318 } 2319 2320 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2321 * level. 2322 * 2323 * A backup subflow is returned only if that is the only kind available. 2324 */ 2325 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2326 { 2327 struct sock *backup = NULL, *pick = NULL; 2328 struct mptcp_subflow_context *subflow; 2329 int min_stale_count = INT_MAX; 2330 2331 mptcp_for_each_subflow(msk, subflow) { 2332 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2333 2334 if (!__mptcp_subflow_active(subflow)) 2335 continue; 2336 2337 /* still data outstanding at TCP level? skip this */ 2338 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2339 mptcp_pm_subflow_chk_stale(msk, ssk); 2340 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2341 continue; 2342 } 2343 2344 if (subflow->backup || subflow->request_bkup) { 2345 if (!backup) 2346 backup = ssk; 2347 continue; 2348 } 2349 2350 if (!pick) 2351 pick = ssk; 2352 } 2353 2354 if (pick) 2355 return pick; 2356 2357 /* use backup only if there are no progresses anywhere */ 2358 return min_stale_count > 1 ? backup : NULL; 2359 } 2360 2361 bool __mptcp_retransmit_pending_data(struct sock *sk) 2362 { 2363 struct mptcp_data_frag *cur, *rtx_head; 2364 struct mptcp_sock *msk = mptcp_sk(sk); 2365 2366 if (__mptcp_check_fallback(msk)) 2367 return false; 2368 2369 /* the closing socket has some data untransmitted and/or unacked: 2370 * some data in the mptcp rtx queue has not really xmitted yet. 2371 * keep it simple and re-inject the whole mptcp level rtx queue 2372 */ 2373 mptcp_data_lock(sk); 2374 __mptcp_clean_una_wakeup(sk); 2375 rtx_head = mptcp_rtx_head(sk); 2376 if (!rtx_head) { 2377 mptcp_data_unlock(sk); 2378 return false; 2379 } 2380 2381 msk->recovery_snd_nxt = msk->snd_nxt; 2382 msk->recovery = true; 2383 mptcp_data_unlock(sk); 2384 2385 msk->first_pending = rtx_head; 2386 msk->snd_burst = 0; 2387 2388 /* be sure to clear the "sent status" on all re-injected fragments */ 2389 list_for_each_entry(cur, &msk->rtx_queue, list) { 2390 if (!cur->already_sent) 2391 break; 2392 cur->already_sent = 0; 2393 } 2394 2395 return true; 2396 } 2397 2398 /* flags for __mptcp_close_ssk() */ 2399 #define MPTCP_CF_PUSH BIT(1) 2400 #define MPTCP_CF_FASTCLOSE BIT(2) 2401 2402 /* be sure to send a reset only if the caller asked for it, also 2403 * clean completely the subflow status when the subflow reaches 2404 * TCP_CLOSE state 2405 */ 2406 static void __mptcp_subflow_disconnect(struct sock *ssk, 2407 struct mptcp_subflow_context *subflow, 2408 unsigned int flags) 2409 { 2410 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2411 (flags & MPTCP_CF_FASTCLOSE)) { 2412 /* The MPTCP code never wait on the subflow sockets, TCP-level 2413 * disconnect should never fail 2414 */ 2415 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2416 mptcp_subflow_ctx_reset(subflow); 2417 } else { 2418 tcp_shutdown(ssk, SEND_SHUTDOWN); 2419 } 2420 } 2421 2422 /* subflow sockets can be either outgoing (connect) or incoming 2423 * (accept). 2424 * 2425 * Outgoing subflows use in-kernel sockets. 2426 * Incoming subflows do not have their own 'struct socket' allocated, 2427 * so we need to use tcp_close() after detaching them from the mptcp 2428 * parent socket. 2429 */ 2430 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2431 struct mptcp_subflow_context *subflow, 2432 unsigned int flags) 2433 { 2434 struct mptcp_sock *msk = mptcp_sk(sk); 2435 bool dispose_it, need_push = false; 2436 2437 /* If the first subflow moved to a close state before accept, e.g. due 2438 * to an incoming reset or listener shutdown, the subflow socket is 2439 * already deleted by inet_child_forget() and the mptcp socket can't 2440 * survive too. 2441 */ 2442 if (msk->in_accept_queue && msk->first == ssk && 2443 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2444 /* ensure later check in mptcp_worker() will dispose the msk */ 2445 sock_set_flag(sk, SOCK_DEAD); 2446 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2447 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2448 mptcp_subflow_drop_ctx(ssk); 2449 goto out_release; 2450 } 2451 2452 dispose_it = msk->free_first || ssk != msk->first; 2453 if (dispose_it) 2454 list_del(&subflow->node); 2455 2456 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2457 2458 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2459 /* be sure to force the tcp_close path 2460 * to generate the egress reset 2461 */ 2462 ssk->sk_lingertime = 0; 2463 sock_set_flag(ssk, SOCK_LINGER); 2464 subflow->send_fastclose = 1; 2465 } 2466 2467 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2468 if (!dispose_it) { 2469 __mptcp_subflow_disconnect(ssk, subflow, flags); 2470 release_sock(ssk); 2471 2472 goto out; 2473 } 2474 2475 subflow->disposable = 1; 2476 2477 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2478 * the ssk has been already destroyed, we just need to release the 2479 * reference owned by msk; 2480 */ 2481 if (!inet_csk(ssk)->icsk_ulp_ops) { 2482 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2483 kfree_rcu(subflow, rcu); 2484 } else { 2485 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2486 __tcp_close(ssk, 0); 2487 2488 /* close acquired an extra ref */ 2489 __sock_put(ssk); 2490 } 2491 2492 out_release: 2493 __mptcp_subflow_error_report(sk, ssk); 2494 release_sock(ssk); 2495 2496 sock_put(ssk); 2497 2498 if (ssk == msk->first) 2499 WRITE_ONCE(msk->first, NULL); 2500 2501 out: 2502 __mptcp_sync_sndbuf(sk); 2503 if (need_push) 2504 __mptcp_push_pending(sk, 0); 2505 2506 /* Catch every 'all subflows closed' scenario, including peers silently 2507 * closing them, e.g. due to timeout. 2508 * For established sockets, allow an additional timeout before closing, 2509 * as the protocol can still create more subflows. 2510 */ 2511 if (list_is_singular(&msk->conn_list) && msk->first && 2512 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2513 if (sk->sk_state != TCP_ESTABLISHED || 2514 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2515 mptcp_set_state(sk, TCP_CLOSE); 2516 mptcp_close_wake_up(sk); 2517 } else { 2518 mptcp_start_tout_timer(sk); 2519 } 2520 } 2521 } 2522 2523 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2524 struct mptcp_subflow_context *subflow) 2525 { 2526 /* The first subflow can already be closed and still in the list */ 2527 if (subflow->close_event_done) 2528 return; 2529 2530 subflow->close_event_done = true; 2531 2532 if (sk->sk_state == TCP_ESTABLISHED) 2533 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2534 2535 /* subflow aborted before reaching the fully_established status 2536 * attempt the creation of the next subflow 2537 */ 2538 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2539 2540 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2541 } 2542 2543 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2544 { 2545 return 0; 2546 } 2547 2548 static void __mptcp_close_subflow(struct sock *sk) 2549 { 2550 struct mptcp_subflow_context *subflow, *tmp; 2551 struct mptcp_sock *msk = mptcp_sk(sk); 2552 2553 might_sleep(); 2554 2555 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2556 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2557 int ssk_state = inet_sk_state_load(ssk); 2558 2559 if (ssk_state != TCP_CLOSE && 2560 (ssk_state != TCP_CLOSE_WAIT || 2561 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2562 continue; 2563 2564 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2565 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2566 continue; 2567 2568 mptcp_close_ssk(sk, ssk, subflow); 2569 } 2570 2571 } 2572 2573 static bool mptcp_close_tout_expired(const struct sock *sk) 2574 { 2575 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2576 sk->sk_state == TCP_CLOSE) 2577 return false; 2578 2579 return time_after32(tcp_jiffies32, 2580 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2581 } 2582 2583 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2584 { 2585 struct mptcp_subflow_context *subflow, *tmp; 2586 struct sock *sk = (struct sock *)msk; 2587 2588 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2589 return; 2590 2591 mptcp_token_destroy(msk); 2592 2593 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2594 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2595 bool slow; 2596 2597 slow = lock_sock_fast(tcp_sk); 2598 if (tcp_sk->sk_state != TCP_CLOSE) { 2599 mptcp_send_active_reset_reason(tcp_sk); 2600 tcp_set_state(tcp_sk, TCP_CLOSE); 2601 } 2602 unlock_sock_fast(tcp_sk, slow); 2603 } 2604 2605 /* Mirror the tcp_reset() error propagation */ 2606 switch (sk->sk_state) { 2607 case TCP_SYN_SENT: 2608 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2609 break; 2610 case TCP_CLOSE_WAIT: 2611 WRITE_ONCE(sk->sk_err, EPIPE); 2612 break; 2613 case TCP_CLOSE: 2614 return; 2615 default: 2616 WRITE_ONCE(sk->sk_err, ECONNRESET); 2617 } 2618 2619 mptcp_set_state(sk, TCP_CLOSE); 2620 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2621 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2622 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2623 2624 /* the calling mptcp_worker will properly destroy the socket */ 2625 if (sock_flag(sk, SOCK_DEAD)) 2626 return; 2627 2628 sk->sk_state_change(sk); 2629 sk_error_report(sk); 2630 } 2631 2632 static void __mptcp_retrans(struct sock *sk) 2633 { 2634 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2635 struct mptcp_sock *msk = mptcp_sk(sk); 2636 struct mptcp_subflow_context *subflow; 2637 struct mptcp_data_frag *dfrag; 2638 struct sock *ssk; 2639 int ret, err; 2640 u16 len = 0; 2641 2642 mptcp_clean_una_wakeup(sk); 2643 2644 /* first check ssk: need to kick "stale" logic */ 2645 err = mptcp_sched_get_retrans(msk); 2646 dfrag = mptcp_rtx_head(sk); 2647 if (!dfrag) { 2648 if (mptcp_data_fin_enabled(msk)) { 2649 struct inet_connection_sock *icsk = inet_csk(sk); 2650 2651 WRITE_ONCE(icsk->icsk_retransmits, 2652 icsk->icsk_retransmits + 1); 2653 mptcp_set_datafin_timeout(sk); 2654 mptcp_send_ack(msk); 2655 2656 goto reset_timer; 2657 } 2658 2659 if (!mptcp_send_head(sk)) 2660 return; 2661 2662 goto reset_timer; 2663 } 2664 2665 if (err) 2666 goto reset_timer; 2667 2668 mptcp_for_each_subflow(msk, subflow) { 2669 if (READ_ONCE(subflow->scheduled)) { 2670 u16 copied = 0; 2671 2672 mptcp_subflow_set_scheduled(subflow, false); 2673 2674 ssk = mptcp_subflow_tcp_sock(subflow); 2675 2676 lock_sock(ssk); 2677 2678 /* limit retransmission to the bytes already sent on some subflows */ 2679 info.sent = 0; 2680 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2681 dfrag->already_sent; 2682 2683 /* 2684 * make the whole retrans decision, xmit, disallow 2685 * fallback atomic 2686 */ 2687 spin_lock_bh(&msk->fallback_lock); 2688 if (__mptcp_check_fallback(msk)) { 2689 spin_unlock_bh(&msk->fallback_lock); 2690 release_sock(ssk); 2691 return; 2692 } 2693 2694 while (info.sent < info.limit) { 2695 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2696 if (ret <= 0) 2697 break; 2698 2699 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2700 copied += ret; 2701 info.sent += ret; 2702 } 2703 if (copied) { 2704 len = max(copied, len); 2705 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2706 info.size_goal); 2707 msk->allow_infinite_fallback = false; 2708 } 2709 spin_unlock_bh(&msk->fallback_lock); 2710 2711 release_sock(ssk); 2712 } 2713 } 2714 2715 msk->bytes_retrans += len; 2716 dfrag->already_sent = max(dfrag->already_sent, len); 2717 2718 reset_timer: 2719 mptcp_check_and_set_pending(sk); 2720 2721 if (!mptcp_rtx_timer_pending(sk)) 2722 mptcp_reset_rtx_timer(sk); 2723 } 2724 2725 /* schedule the timeout timer for the relevant event: either close timeout 2726 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2727 */ 2728 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2729 { 2730 struct sock *sk = (struct sock *)msk; 2731 unsigned long timeout, close_timeout; 2732 2733 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2734 return; 2735 2736 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2737 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2738 2739 /* the close timeout takes precedence on the fail one, and here at least one of 2740 * them is active 2741 */ 2742 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2743 2744 sk_reset_timer(sk, &sk->sk_timer, timeout); 2745 } 2746 2747 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2748 { 2749 struct sock *ssk = msk->first; 2750 bool slow; 2751 2752 if (!ssk) 2753 return; 2754 2755 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2756 2757 slow = lock_sock_fast(ssk); 2758 mptcp_subflow_reset(ssk); 2759 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2760 unlock_sock_fast(ssk, slow); 2761 } 2762 2763 static void mptcp_do_fastclose(struct sock *sk) 2764 { 2765 struct mptcp_subflow_context *subflow, *tmp; 2766 struct mptcp_sock *msk = mptcp_sk(sk); 2767 2768 mptcp_set_state(sk, TCP_CLOSE); 2769 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2770 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2771 subflow, MPTCP_CF_FASTCLOSE); 2772 } 2773 2774 static void mptcp_worker(struct work_struct *work) 2775 { 2776 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2777 struct sock *sk = (struct sock *)msk; 2778 unsigned long fail_tout; 2779 int state; 2780 2781 lock_sock(sk); 2782 state = sk->sk_state; 2783 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2784 goto unlock; 2785 2786 mptcp_check_fastclose(msk); 2787 2788 mptcp_pm_worker(msk); 2789 2790 mptcp_check_send_data_fin(sk); 2791 mptcp_check_data_fin_ack(sk); 2792 mptcp_check_data_fin(sk); 2793 2794 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2795 __mptcp_close_subflow(sk); 2796 2797 if (mptcp_close_tout_expired(sk)) { 2798 mptcp_do_fastclose(sk); 2799 mptcp_close_wake_up(sk); 2800 } 2801 2802 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2803 __mptcp_destroy_sock(sk); 2804 goto unlock; 2805 } 2806 2807 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2808 __mptcp_retrans(sk); 2809 2810 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2811 if (fail_tout && time_after(jiffies, fail_tout)) 2812 mptcp_mp_fail_no_response(msk); 2813 2814 unlock: 2815 release_sock(sk); 2816 sock_put(sk); 2817 } 2818 2819 static void __mptcp_init_sock(struct sock *sk) 2820 { 2821 struct mptcp_sock *msk = mptcp_sk(sk); 2822 2823 INIT_LIST_HEAD(&msk->conn_list); 2824 INIT_LIST_HEAD(&msk->join_list); 2825 INIT_LIST_HEAD(&msk->rtx_queue); 2826 INIT_WORK(&msk->work, mptcp_worker); 2827 msk->out_of_order_queue = RB_ROOT; 2828 msk->first_pending = NULL; 2829 msk->timer_ival = TCP_RTO_MIN; 2830 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2831 2832 WRITE_ONCE(msk->first, NULL); 2833 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2834 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2835 msk->allow_infinite_fallback = true; 2836 msk->allow_subflows = true; 2837 msk->recovery = false; 2838 msk->subflow_id = 1; 2839 msk->last_data_sent = tcp_jiffies32; 2840 msk->last_data_recv = tcp_jiffies32; 2841 msk->last_ack_recv = tcp_jiffies32; 2842 2843 mptcp_pm_data_init(msk); 2844 spin_lock_init(&msk->fallback_lock); 2845 2846 /* re-use the csk retrans timer for MPTCP-level retrans */ 2847 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2848 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2849 } 2850 2851 static void mptcp_ca_reset(struct sock *sk) 2852 { 2853 struct inet_connection_sock *icsk = inet_csk(sk); 2854 2855 tcp_assign_congestion_control(sk); 2856 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2857 sizeof(mptcp_sk(sk)->ca_name)); 2858 2859 /* no need to keep a reference to the ops, the name will suffice */ 2860 tcp_cleanup_congestion_control(sk); 2861 icsk->icsk_ca_ops = NULL; 2862 } 2863 2864 static int mptcp_init_sock(struct sock *sk) 2865 { 2866 struct net *net = sock_net(sk); 2867 int ret; 2868 2869 __mptcp_init_sock(sk); 2870 2871 if (!mptcp_is_enabled(net)) 2872 return -ENOPROTOOPT; 2873 2874 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2875 return -ENOMEM; 2876 2877 rcu_read_lock(); 2878 ret = mptcp_init_sched(mptcp_sk(sk), 2879 mptcp_sched_find(mptcp_get_scheduler(net))); 2880 rcu_read_unlock(); 2881 if (ret) 2882 return ret; 2883 2884 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2885 2886 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2887 * propagate the correct value 2888 */ 2889 mptcp_ca_reset(sk); 2890 2891 sk_sockets_allocated_inc(sk); 2892 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2893 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2894 2895 return 0; 2896 } 2897 2898 static void __mptcp_clear_xmit(struct sock *sk) 2899 { 2900 struct mptcp_sock *msk = mptcp_sk(sk); 2901 struct mptcp_data_frag *dtmp, *dfrag; 2902 2903 msk->first_pending = NULL; 2904 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2905 dfrag_clear(sk, dfrag); 2906 } 2907 2908 void mptcp_cancel_work(struct sock *sk) 2909 { 2910 struct mptcp_sock *msk = mptcp_sk(sk); 2911 2912 if (cancel_work_sync(&msk->work)) 2913 __sock_put(sk); 2914 } 2915 2916 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2917 { 2918 lock_sock(ssk); 2919 2920 switch (ssk->sk_state) { 2921 case TCP_LISTEN: 2922 if (!(how & RCV_SHUTDOWN)) 2923 break; 2924 fallthrough; 2925 case TCP_SYN_SENT: 2926 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2927 break; 2928 default: 2929 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2930 pr_debug("Fallback\n"); 2931 ssk->sk_shutdown |= how; 2932 tcp_shutdown(ssk, how); 2933 2934 /* simulate the data_fin ack reception to let the state 2935 * machine move forward 2936 */ 2937 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2938 mptcp_schedule_work(sk); 2939 } else { 2940 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2941 tcp_send_ack(ssk); 2942 if (!mptcp_rtx_timer_pending(sk)) 2943 mptcp_reset_rtx_timer(sk); 2944 } 2945 break; 2946 } 2947 2948 release_sock(ssk); 2949 } 2950 2951 void mptcp_set_state(struct sock *sk, int state) 2952 { 2953 int oldstate = sk->sk_state; 2954 2955 switch (state) { 2956 case TCP_ESTABLISHED: 2957 if (oldstate != TCP_ESTABLISHED) 2958 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2959 break; 2960 case TCP_CLOSE_WAIT: 2961 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2962 * MPTCP "accepted" sockets will be created later on. So no 2963 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2964 */ 2965 break; 2966 default: 2967 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2968 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2969 } 2970 2971 inet_sk_state_store(sk, state); 2972 } 2973 2974 static const unsigned char new_state[16] = { 2975 /* current state: new state: action: */ 2976 [0 /* (Invalid) */] = TCP_CLOSE, 2977 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2978 [TCP_SYN_SENT] = TCP_CLOSE, 2979 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2980 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2981 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2982 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2983 [TCP_CLOSE] = TCP_CLOSE, 2984 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2985 [TCP_LAST_ACK] = TCP_LAST_ACK, 2986 [TCP_LISTEN] = TCP_CLOSE, 2987 [TCP_CLOSING] = TCP_CLOSING, 2988 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2989 }; 2990 2991 static int mptcp_close_state(struct sock *sk) 2992 { 2993 int next = (int)new_state[sk->sk_state]; 2994 int ns = next & TCP_STATE_MASK; 2995 2996 mptcp_set_state(sk, ns); 2997 2998 return next & TCP_ACTION_FIN; 2999 } 3000 3001 static void mptcp_check_send_data_fin(struct sock *sk) 3002 { 3003 struct mptcp_subflow_context *subflow; 3004 struct mptcp_sock *msk = mptcp_sk(sk); 3005 3006 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 3007 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 3008 msk->snd_nxt, msk->write_seq); 3009 3010 /* we still need to enqueue subflows or not really shutting down, 3011 * skip this 3012 */ 3013 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 3014 mptcp_send_head(sk)) 3015 return; 3016 3017 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3018 3019 mptcp_for_each_subflow(msk, subflow) { 3020 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 3021 3022 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 3023 } 3024 } 3025 3026 static void __mptcp_wr_shutdown(struct sock *sk) 3027 { 3028 struct mptcp_sock *msk = mptcp_sk(sk); 3029 3030 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 3031 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 3032 !!mptcp_send_head(sk)); 3033 3034 /* will be ignored by fallback sockets */ 3035 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 3036 WRITE_ONCE(msk->snd_data_fin_enable, 1); 3037 3038 mptcp_check_send_data_fin(sk); 3039 } 3040 3041 static void __mptcp_destroy_sock(struct sock *sk) 3042 { 3043 struct mptcp_sock *msk = mptcp_sk(sk); 3044 3045 pr_debug("msk=%p\n", msk); 3046 3047 might_sleep(); 3048 3049 mptcp_stop_rtx_timer(sk); 3050 sk_stop_timer(sk, &sk->sk_timer); 3051 msk->pm.status = 0; 3052 mptcp_release_sched(msk); 3053 3054 sk->sk_prot->destroy(sk); 3055 3056 sk_stream_kill_queues(sk); 3057 xfrm_sk_free_policy(sk); 3058 3059 sock_put(sk); 3060 } 3061 3062 void __mptcp_unaccepted_force_close(struct sock *sk) 3063 { 3064 sock_set_flag(sk, SOCK_DEAD); 3065 mptcp_do_fastclose(sk); 3066 __mptcp_destroy_sock(sk); 3067 } 3068 3069 static __poll_t mptcp_check_readable(struct sock *sk) 3070 { 3071 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3072 } 3073 3074 static void mptcp_check_listen_stop(struct sock *sk) 3075 { 3076 struct sock *ssk; 3077 3078 if (inet_sk_state_load(sk) != TCP_LISTEN) 3079 return; 3080 3081 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3082 ssk = mptcp_sk(sk)->first; 3083 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3084 return; 3085 3086 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3087 tcp_set_state(ssk, TCP_CLOSE); 3088 mptcp_subflow_queue_clean(sk, ssk); 3089 inet_csk_listen_stop(ssk); 3090 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3091 release_sock(ssk); 3092 } 3093 3094 bool __mptcp_close(struct sock *sk, long timeout) 3095 { 3096 struct mptcp_subflow_context *subflow; 3097 struct mptcp_sock *msk = mptcp_sk(sk); 3098 bool do_cancel_work = false; 3099 int subflows_alive = 0; 3100 3101 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3102 3103 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3104 mptcp_check_listen_stop(sk); 3105 mptcp_set_state(sk, TCP_CLOSE); 3106 goto cleanup; 3107 } 3108 3109 if (mptcp_data_avail(msk) || timeout < 0) { 3110 /* If the msk has read data, or the caller explicitly ask it, 3111 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3112 */ 3113 mptcp_do_fastclose(sk); 3114 timeout = 0; 3115 } else if (mptcp_close_state(sk)) { 3116 __mptcp_wr_shutdown(sk); 3117 } 3118 3119 sk_stream_wait_close(sk, timeout); 3120 3121 cleanup: 3122 /* orphan all the subflows */ 3123 mptcp_for_each_subflow(msk, subflow) { 3124 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3125 bool slow = lock_sock_fast_nested(ssk); 3126 3127 subflows_alive += ssk->sk_state != TCP_CLOSE; 3128 3129 /* since the close timeout takes precedence on the fail one, 3130 * cancel the latter 3131 */ 3132 if (ssk == msk->first) 3133 subflow->fail_tout = 0; 3134 3135 /* detach from the parent socket, but allow data_ready to 3136 * push incoming data into the mptcp stack, to properly ack it 3137 */ 3138 ssk->sk_socket = NULL; 3139 ssk->sk_wq = NULL; 3140 unlock_sock_fast(ssk, slow); 3141 } 3142 sock_orphan(sk); 3143 3144 /* all the subflows are closed, only timeout can change the msk 3145 * state, let's not keep resources busy for no reasons 3146 */ 3147 if (subflows_alive == 0) 3148 mptcp_set_state(sk, TCP_CLOSE); 3149 3150 sock_hold(sk); 3151 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3152 mptcp_pm_connection_closed(msk); 3153 3154 if (sk->sk_state == TCP_CLOSE) { 3155 __mptcp_destroy_sock(sk); 3156 do_cancel_work = true; 3157 } else { 3158 mptcp_start_tout_timer(sk); 3159 } 3160 3161 return do_cancel_work; 3162 } 3163 3164 static void mptcp_close(struct sock *sk, long timeout) 3165 { 3166 bool do_cancel_work; 3167 3168 lock_sock(sk); 3169 3170 do_cancel_work = __mptcp_close(sk, timeout); 3171 release_sock(sk); 3172 if (do_cancel_work) 3173 mptcp_cancel_work(sk); 3174 3175 sock_put(sk); 3176 } 3177 3178 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3179 { 3180 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3181 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3182 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3183 3184 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3185 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3186 3187 if (msk6 && ssk6) { 3188 msk6->saddr = ssk6->saddr; 3189 msk6->flow_label = ssk6->flow_label; 3190 } 3191 #endif 3192 3193 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3194 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3195 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3196 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3197 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3198 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3199 } 3200 3201 static int mptcp_disconnect(struct sock *sk, int flags) 3202 { 3203 struct mptcp_sock *msk = mptcp_sk(sk); 3204 3205 /* We are on the fastopen error path. We can't call straight into the 3206 * subflows cleanup code due to lock nesting (we are already under 3207 * msk->firstsocket lock). 3208 */ 3209 if (msk->fastopening) 3210 return -EBUSY; 3211 3212 mptcp_check_listen_stop(sk); 3213 mptcp_set_state(sk, TCP_CLOSE); 3214 3215 mptcp_stop_rtx_timer(sk); 3216 mptcp_stop_tout_timer(sk); 3217 3218 mptcp_pm_connection_closed(msk); 3219 3220 /* msk->subflow is still intact, the following will not free the first 3221 * subflow 3222 */ 3223 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3224 3225 /* The first subflow is already in TCP_CLOSE status, the following 3226 * can't overlap with a fallback anymore 3227 */ 3228 spin_lock_bh(&msk->fallback_lock); 3229 msk->allow_subflows = true; 3230 msk->allow_infinite_fallback = true; 3231 WRITE_ONCE(msk->flags, 0); 3232 spin_unlock_bh(&msk->fallback_lock); 3233 3234 msk->cb_flags = 0; 3235 msk->recovery = false; 3236 WRITE_ONCE(msk->can_ack, false); 3237 WRITE_ONCE(msk->fully_established, false); 3238 WRITE_ONCE(msk->rcv_data_fin, false); 3239 WRITE_ONCE(msk->snd_data_fin_enable, false); 3240 WRITE_ONCE(msk->rcv_fastclose, false); 3241 WRITE_ONCE(msk->use_64bit_ack, false); 3242 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3243 mptcp_pm_data_reset(msk); 3244 mptcp_ca_reset(sk); 3245 msk->bytes_consumed = 0; 3246 msk->bytes_acked = 0; 3247 msk->bytes_received = 0; 3248 msk->bytes_sent = 0; 3249 msk->bytes_retrans = 0; 3250 msk->rcvspace_init = 0; 3251 3252 WRITE_ONCE(sk->sk_shutdown, 0); 3253 sk_error_report(sk); 3254 return 0; 3255 } 3256 3257 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3258 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3259 { 3260 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3261 3262 return &msk6->np; 3263 } 3264 3265 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3266 { 3267 const struct ipv6_pinfo *np = inet6_sk(sk); 3268 struct ipv6_txoptions *opt; 3269 struct ipv6_pinfo *newnp; 3270 3271 newnp = inet6_sk(newsk); 3272 3273 rcu_read_lock(); 3274 opt = rcu_dereference(np->opt); 3275 if (opt) { 3276 opt = ipv6_dup_options(newsk, opt); 3277 if (!opt) 3278 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3279 } 3280 RCU_INIT_POINTER(newnp->opt, opt); 3281 rcu_read_unlock(); 3282 } 3283 #endif 3284 3285 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3286 { 3287 struct ip_options_rcu *inet_opt, *newopt = NULL; 3288 const struct inet_sock *inet = inet_sk(sk); 3289 struct inet_sock *newinet; 3290 3291 newinet = inet_sk(newsk); 3292 3293 rcu_read_lock(); 3294 inet_opt = rcu_dereference(inet->inet_opt); 3295 if (inet_opt) { 3296 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3297 inet_opt->opt.optlen, GFP_ATOMIC); 3298 if (!newopt) 3299 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3300 } 3301 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3302 rcu_read_unlock(); 3303 } 3304 3305 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3306 const struct mptcp_options_received *mp_opt, 3307 struct sock *ssk, 3308 struct request_sock *req) 3309 { 3310 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3311 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3312 struct mptcp_subflow_context *subflow; 3313 struct mptcp_sock *msk; 3314 3315 if (!nsk) 3316 return NULL; 3317 3318 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3319 if (nsk->sk_family == AF_INET6) 3320 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3321 #endif 3322 3323 __mptcp_init_sock(nsk); 3324 3325 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3326 if (nsk->sk_family == AF_INET6) 3327 mptcp_copy_ip6_options(nsk, sk); 3328 else 3329 #endif 3330 mptcp_copy_ip_options(nsk, sk); 3331 3332 msk = mptcp_sk(nsk); 3333 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3334 WRITE_ONCE(msk->token, subflow_req->token); 3335 msk->in_accept_queue = 1; 3336 WRITE_ONCE(msk->fully_established, false); 3337 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3338 WRITE_ONCE(msk->csum_enabled, true); 3339 3340 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3341 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3342 WRITE_ONCE(msk->snd_una, msk->write_seq); 3343 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3344 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3345 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3346 3347 /* passive msk is created after the first/MPC subflow */ 3348 msk->subflow_id = 2; 3349 3350 sock_reset_flag(nsk, SOCK_RCU_FREE); 3351 security_inet_csk_clone(nsk, req); 3352 3353 /* this can't race with mptcp_close(), as the msk is 3354 * not yet exposted to user-space 3355 */ 3356 mptcp_set_state(nsk, TCP_ESTABLISHED); 3357 3358 /* The msk maintain a ref to each subflow in the connections list */ 3359 WRITE_ONCE(msk->first, ssk); 3360 subflow = mptcp_subflow_ctx(ssk); 3361 list_add(&subflow->node, &msk->conn_list); 3362 sock_hold(ssk); 3363 3364 /* new mpc subflow takes ownership of the newly 3365 * created mptcp socket 3366 */ 3367 mptcp_token_accept(subflow_req, msk); 3368 3369 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3370 * uses the correct data 3371 */ 3372 mptcp_copy_inaddrs(nsk, ssk); 3373 __mptcp_propagate_sndbuf(nsk, ssk); 3374 3375 mptcp_rcv_space_init(msk, ssk); 3376 3377 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3378 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3379 bh_unlock_sock(nsk); 3380 3381 /* note: the newly allocated socket refcount is 2 now */ 3382 return nsk; 3383 } 3384 3385 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3386 { 3387 const struct tcp_sock *tp = tcp_sk(ssk); 3388 3389 msk->rcvspace_init = 1; 3390 msk->rcvq_space.copied = 0; 3391 msk->rcvq_space.rtt_us = 0; 3392 3393 msk->rcvq_space.time = tp->tcp_mstamp; 3394 3395 /* initial rcv_space offering made to peer */ 3396 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3397 TCP_INIT_CWND * tp->advmss); 3398 if (msk->rcvq_space.space == 0) 3399 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3400 } 3401 3402 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3403 { 3404 struct mptcp_subflow_context *subflow, *tmp; 3405 struct sock *sk = (struct sock *)msk; 3406 3407 __mptcp_clear_xmit(sk); 3408 3409 /* join list will be eventually flushed (with rst) at sock lock release time */ 3410 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3411 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3412 3413 __skb_queue_purge(&sk->sk_receive_queue); 3414 skb_rbtree_purge(&msk->out_of_order_queue); 3415 3416 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3417 * inet_sock_destruct() will dispose it 3418 */ 3419 mptcp_token_destroy(msk); 3420 mptcp_pm_destroy(msk); 3421 } 3422 3423 static void mptcp_destroy(struct sock *sk) 3424 { 3425 struct mptcp_sock *msk = mptcp_sk(sk); 3426 3427 /* allow the following to close even the initial subflow */ 3428 msk->free_first = 1; 3429 mptcp_destroy_common(msk, 0); 3430 sk_sockets_allocated_dec(sk); 3431 } 3432 3433 void __mptcp_data_acked(struct sock *sk) 3434 { 3435 if (!sock_owned_by_user(sk)) 3436 __mptcp_clean_una(sk); 3437 else 3438 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3439 } 3440 3441 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3442 { 3443 if (!sock_owned_by_user(sk)) 3444 __mptcp_subflow_push_pending(sk, ssk, false); 3445 else 3446 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3447 } 3448 3449 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3450 BIT(MPTCP_RETRANSMIT) | \ 3451 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3452 BIT(MPTCP_DEQUEUE)) 3453 3454 /* processes deferred events and flush wmem */ 3455 static void mptcp_release_cb(struct sock *sk) 3456 __must_hold(&sk->sk_lock.slock) 3457 { 3458 struct mptcp_sock *msk = mptcp_sk(sk); 3459 3460 for (;;) { 3461 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3462 struct list_head join_list; 3463 3464 if (!flags) 3465 break; 3466 3467 INIT_LIST_HEAD(&join_list); 3468 list_splice_init(&msk->join_list, &join_list); 3469 3470 /* the following actions acquire the subflow socket lock 3471 * 3472 * 1) can't be invoked in atomic scope 3473 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3474 * datapath acquires the msk socket spinlock while helding 3475 * the subflow socket lock 3476 */ 3477 msk->cb_flags &= ~flags; 3478 spin_unlock_bh(&sk->sk_lock.slock); 3479 3480 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3481 __mptcp_flush_join_list(sk, &join_list); 3482 if (flags & BIT(MPTCP_PUSH_PENDING)) 3483 __mptcp_push_pending(sk, 0); 3484 if (flags & BIT(MPTCP_RETRANSMIT)) 3485 __mptcp_retrans(sk); 3486 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3487 /* notify ack seq update */ 3488 mptcp_cleanup_rbuf(msk, 0); 3489 sk->sk_data_ready(sk); 3490 } 3491 3492 cond_resched(); 3493 spin_lock_bh(&sk->sk_lock.slock); 3494 } 3495 3496 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3497 __mptcp_clean_una_wakeup(sk); 3498 if (unlikely(msk->cb_flags)) { 3499 /* be sure to sync the msk state before taking actions 3500 * depending on sk_state (MPTCP_ERROR_REPORT) 3501 * On sk release avoid actions depending on the first subflow 3502 */ 3503 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3504 __mptcp_sync_state(sk, msk->pending_state); 3505 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3506 __mptcp_error_report(sk); 3507 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3508 __mptcp_sync_sndbuf(sk); 3509 } 3510 } 3511 3512 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3513 * TCP can't schedule delack timer before the subflow is fully established. 3514 * MPTCP uses the delack timer to do 3rd ack retransmissions 3515 */ 3516 static void schedule_3rdack_retransmission(struct sock *ssk) 3517 { 3518 struct inet_connection_sock *icsk = inet_csk(ssk); 3519 struct tcp_sock *tp = tcp_sk(ssk); 3520 unsigned long timeout; 3521 3522 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3523 return; 3524 3525 /* reschedule with a timeout above RTT, as we must look only for drop */ 3526 if (tp->srtt_us) 3527 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3528 else 3529 timeout = TCP_TIMEOUT_INIT; 3530 timeout += jiffies; 3531 3532 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3533 smp_store_release(&icsk->icsk_ack.pending, 3534 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3535 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3536 } 3537 3538 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3539 { 3540 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3541 struct sock *sk = subflow->conn; 3542 3543 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3544 mptcp_data_lock(sk); 3545 if (!sock_owned_by_user(sk)) 3546 __mptcp_subflow_push_pending(sk, ssk, true); 3547 else 3548 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3549 mptcp_data_unlock(sk); 3550 } 3551 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3552 mptcp_data_lock(sk); 3553 if (!sock_owned_by_user(sk)) 3554 __mptcp_sync_sndbuf(sk); 3555 else 3556 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3557 mptcp_data_unlock(sk); 3558 } 3559 if (status & BIT(MPTCP_DELEGATE_ACK)) 3560 schedule_3rdack_retransmission(ssk); 3561 } 3562 3563 static int mptcp_hash(struct sock *sk) 3564 { 3565 /* should never be called, 3566 * we hash the TCP subflows not the MPTCP socket 3567 */ 3568 WARN_ON_ONCE(1); 3569 return 0; 3570 } 3571 3572 static void mptcp_unhash(struct sock *sk) 3573 { 3574 /* called from sk_common_release(), but nothing to do here */ 3575 } 3576 3577 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3578 { 3579 struct mptcp_sock *msk = mptcp_sk(sk); 3580 3581 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3582 if (WARN_ON_ONCE(!msk->first)) 3583 return -EINVAL; 3584 3585 return inet_csk_get_port(msk->first, snum); 3586 } 3587 3588 void mptcp_finish_connect(struct sock *ssk) 3589 { 3590 struct mptcp_subflow_context *subflow; 3591 struct mptcp_sock *msk; 3592 struct sock *sk; 3593 3594 subflow = mptcp_subflow_ctx(ssk); 3595 sk = subflow->conn; 3596 msk = mptcp_sk(sk); 3597 3598 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3599 3600 subflow->map_seq = subflow->iasn; 3601 subflow->map_subflow_seq = 1; 3602 3603 /* the socket is not connected yet, no msk/subflow ops can access/race 3604 * accessing the field below 3605 */ 3606 WRITE_ONCE(msk->local_key, subflow->local_key); 3607 3608 mptcp_pm_new_connection(msk, ssk, 0); 3609 } 3610 3611 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3612 { 3613 write_lock_bh(&sk->sk_callback_lock); 3614 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3615 sk_set_socket(sk, parent); 3616 write_unlock_bh(&sk->sk_callback_lock); 3617 } 3618 3619 bool mptcp_finish_join(struct sock *ssk) 3620 { 3621 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3622 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3623 struct sock *parent = (void *)msk; 3624 bool ret = true; 3625 3626 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3627 3628 /* mptcp socket already closing? */ 3629 if (!mptcp_is_fully_established(parent)) { 3630 subflow->reset_reason = MPTCP_RST_EMPTCP; 3631 return false; 3632 } 3633 3634 /* active subflow, already present inside the conn_list */ 3635 if (!list_empty(&subflow->node)) { 3636 spin_lock_bh(&msk->fallback_lock); 3637 if (!msk->allow_subflows) { 3638 spin_unlock_bh(&msk->fallback_lock); 3639 return false; 3640 } 3641 mptcp_subflow_joined(msk, ssk); 3642 spin_unlock_bh(&msk->fallback_lock); 3643 mptcp_propagate_sndbuf(parent, ssk); 3644 return true; 3645 } 3646 3647 if (!mptcp_pm_allow_new_subflow(msk)) { 3648 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3649 goto err_prohibited; 3650 } 3651 3652 /* If we can't acquire msk socket lock here, let the release callback 3653 * handle it 3654 */ 3655 mptcp_data_lock(parent); 3656 if (!sock_owned_by_user(parent)) { 3657 ret = __mptcp_finish_join(msk, ssk); 3658 if (ret) { 3659 sock_hold(ssk); 3660 list_add_tail(&subflow->node, &msk->conn_list); 3661 } 3662 } else { 3663 sock_hold(ssk); 3664 list_add_tail(&subflow->node, &msk->join_list); 3665 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3666 } 3667 mptcp_data_unlock(parent); 3668 3669 if (!ret) { 3670 err_prohibited: 3671 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3672 return false; 3673 } 3674 3675 return true; 3676 } 3677 3678 static void mptcp_shutdown(struct sock *sk, int how) 3679 { 3680 pr_debug("sk=%p, how=%d\n", sk, how); 3681 3682 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3683 __mptcp_wr_shutdown(sk); 3684 } 3685 3686 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3687 { 3688 const struct sock *sk = (void *)msk; 3689 u64 delta; 3690 3691 if (sk->sk_state == TCP_LISTEN) 3692 return -EINVAL; 3693 3694 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3695 return 0; 3696 3697 delta = msk->write_seq - v; 3698 if (__mptcp_check_fallback(msk) && msk->first) { 3699 struct tcp_sock *tp = tcp_sk(msk->first); 3700 3701 /* the first subflow is disconnected after close - see 3702 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3703 * so ignore that status, too. 3704 */ 3705 if (!((1 << msk->first->sk_state) & 3706 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3707 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3708 } 3709 if (delta > INT_MAX) 3710 delta = INT_MAX; 3711 3712 return (int)delta; 3713 } 3714 3715 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3716 { 3717 struct mptcp_sock *msk = mptcp_sk(sk); 3718 bool slow; 3719 3720 switch (cmd) { 3721 case SIOCINQ: 3722 if (sk->sk_state == TCP_LISTEN) 3723 return -EINVAL; 3724 3725 lock_sock(sk); 3726 if (__mptcp_move_skbs(sk)) 3727 mptcp_cleanup_rbuf(msk, 0); 3728 *karg = mptcp_inq_hint(sk); 3729 release_sock(sk); 3730 break; 3731 case SIOCOUTQ: 3732 slow = lock_sock_fast(sk); 3733 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3734 unlock_sock_fast(sk, slow); 3735 break; 3736 case SIOCOUTQNSD: 3737 slow = lock_sock_fast(sk); 3738 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3739 unlock_sock_fast(sk, slow); 3740 break; 3741 default: 3742 return -ENOIOCTLCMD; 3743 } 3744 3745 return 0; 3746 } 3747 3748 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3749 { 3750 struct mptcp_subflow_context *subflow; 3751 struct mptcp_sock *msk = mptcp_sk(sk); 3752 int err = -EINVAL; 3753 struct sock *ssk; 3754 3755 ssk = __mptcp_nmpc_sk(msk); 3756 if (IS_ERR(ssk)) 3757 return PTR_ERR(ssk); 3758 3759 mptcp_set_state(sk, TCP_SYN_SENT); 3760 subflow = mptcp_subflow_ctx(ssk); 3761 #ifdef CONFIG_TCP_MD5SIG 3762 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3763 * TCP option space. 3764 */ 3765 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3766 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3767 #endif 3768 if (subflow->request_mptcp) { 3769 if (mptcp_active_should_disable(sk)) 3770 mptcp_early_fallback(msk, subflow, 3771 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3772 else if (mptcp_token_new_connect(ssk) < 0) 3773 mptcp_early_fallback(msk, subflow, 3774 MPTCP_MIB_TOKENFALLBACKINIT); 3775 } 3776 3777 WRITE_ONCE(msk->write_seq, subflow->idsn); 3778 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3779 WRITE_ONCE(msk->snd_una, subflow->idsn); 3780 if (likely(!__mptcp_check_fallback(msk))) 3781 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3782 3783 /* if reaching here via the fastopen/sendmsg path, the caller already 3784 * acquired the subflow socket lock, too. 3785 */ 3786 if (!msk->fastopening) 3787 lock_sock(ssk); 3788 3789 /* the following mirrors closely a very small chunk of code from 3790 * __inet_stream_connect() 3791 */ 3792 if (ssk->sk_state != TCP_CLOSE) 3793 goto out; 3794 3795 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3796 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3797 if (err) 3798 goto out; 3799 } 3800 3801 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3802 if (err < 0) 3803 goto out; 3804 3805 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3806 3807 out: 3808 if (!msk->fastopening) 3809 release_sock(ssk); 3810 3811 /* on successful connect, the msk state will be moved to established by 3812 * subflow_finish_connect() 3813 */ 3814 if (unlikely(err)) { 3815 /* avoid leaving a dangling token in an unconnected socket */ 3816 mptcp_token_destroy(msk); 3817 mptcp_set_state(sk, TCP_CLOSE); 3818 return err; 3819 } 3820 3821 mptcp_copy_inaddrs(sk, ssk); 3822 return 0; 3823 } 3824 3825 static struct proto mptcp_prot = { 3826 .name = "MPTCP", 3827 .owner = THIS_MODULE, 3828 .init = mptcp_init_sock, 3829 .connect = mptcp_connect, 3830 .disconnect = mptcp_disconnect, 3831 .close = mptcp_close, 3832 .setsockopt = mptcp_setsockopt, 3833 .getsockopt = mptcp_getsockopt, 3834 .shutdown = mptcp_shutdown, 3835 .destroy = mptcp_destroy, 3836 .sendmsg = mptcp_sendmsg, 3837 .ioctl = mptcp_ioctl, 3838 .recvmsg = mptcp_recvmsg, 3839 .release_cb = mptcp_release_cb, 3840 .hash = mptcp_hash, 3841 .unhash = mptcp_unhash, 3842 .get_port = mptcp_get_port, 3843 .stream_memory_free = mptcp_stream_memory_free, 3844 .sockets_allocated = &mptcp_sockets_allocated, 3845 3846 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3847 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3848 3849 .memory_pressure = &tcp_memory_pressure, 3850 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3851 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3852 .sysctl_mem = sysctl_tcp_mem, 3853 .obj_size = sizeof(struct mptcp_sock), 3854 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3855 .no_autobind = true, 3856 }; 3857 3858 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3859 { 3860 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3861 struct sock *ssk, *sk = sock->sk; 3862 int err = -EINVAL; 3863 3864 lock_sock(sk); 3865 ssk = __mptcp_nmpc_sk(msk); 3866 if (IS_ERR(ssk)) { 3867 err = PTR_ERR(ssk); 3868 goto unlock; 3869 } 3870 3871 if (sk->sk_family == AF_INET) 3872 err = inet_bind_sk(ssk, uaddr, addr_len); 3873 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3874 else if (sk->sk_family == AF_INET6) 3875 err = inet6_bind_sk(ssk, uaddr, addr_len); 3876 #endif 3877 if (!err) 3878 mptcp_copy_inaddrs(sk, ssk); 3879 3880 unlock: 3881 release_sock(sk); 3882 return err; 3883 } 3884 3885 static int mptcp_listen(struct socket *sock, int backlog) 3886 { 3887 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3888 struct sock *sk = sock->sk; 3889 struct sock *ssk; 3890 int err; 3891 3892 pr_debug("msk=%p\n", msk); 3893 3894 lock_sock(sk); 3895 3896 err = -EINVAL; 3897 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3898 goto unlock; 3899 3900 ssk = __mptcp_nmpc_sk(msk); 3901 if (IS_ERR(ssk)) { 3902 err = PTR_ERR(ssk); 3903 goto unlock; 3904 } 3905 3906 mptcp_set_state(sk, TCP_LISTEN); 3907 sock_set_flag(sk, SOCK_RCU_FREE); 3908 3909 lock_sock(ssk); 3910 err = __inet_listen_sk(ssk, backlog); 3911 release_sock(ssk); 3912 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3913 3914 if (!err) { 3915 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3916 mptcp_copy_inaddrs(sk, ssk); 3917 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3918 } 3919 3920 unlock: 3921 release_sock(sk); 3922 return err; 3923 } 3924 3925 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3926 struct proto_accept_arg *arg) 3927 { 3928 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3929 struct sock *ssk, *newsk; 3930 3931 pr_debug("msk=%p\n", msk); 3932 3933 /* Buggy applications can call accept on socket states other then LISTEN 3934 * but no need to allocate the first subflow just to error out. 3935 */ 3936 ssk = READ_ONCE(msk->first); 3937 if (!ssk) 3938 return -EINVAL; 3939 3940 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3941 newsk = inet_csk_accept(ssk, arg); 3942 if (!newsk) 3943 return arg->err; 3944 3945 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3946 if (sk_is_mptcp(newsk)) { 3947 struct mptcp_subflow_context *subflow; 3948 struct sock *new_mptcp_sock; 3949 3950 subflow = mptcp_subflow_ctx(newsk); 3951 new_mptcp_sock = subflow->conn; 3952 3953 /* is_mptcp should be false if subflow->conn is missing, see 3954 * subflow_syn_recv_sock() 3955 */ 3956 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3957 tcp_sk(newsk)->is_mptcp = 0; 3958 goto tcpfallback; 3959 } 3960 3961 newsk = new_mptcp_sock; 3962 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3963 3964 newsk->sk_kern_sock = arg->kern; 3965 lock_sock(newsk); 3966 __inet_accept(sock, newsock, newsk); 3967 3968 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3969 msk = mptcp_sk(newsk); 3970 msk->in_accept_queue = 0; 3971 3972 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3973 * This is needed so NOSPACE flag can be set from tcp stack. 3974 */ 3975 mptcp_for_each_subflow(msk, subflow) { 3976 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3977 3978 if (!ssk->sk_socket) 3979 mptcp_sock_graft(ssk, newsock); 3980 } 3981 3982 mptcp_rps_record_subflows(msk); 3983 3984 /* Do late cleanup for the first subflow as necessary. Also 3985 * deal with bad peers not doing a complete shutdown. 3986 */ 3987 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3988 __mptcp_close_ssk(newsk, msk->first, 3989 mptcp_subflow_ctx(msk->first), 0); 3990 if (unlikely(list_is_singular(&msk->conn_list))) 3991 mptcp_set_state(newsk, TCP_CLOSE); 3992 } 3993 } else { 3994 tcpfallback: 3995 newsk->sk_kern_sock = arg->kern; 3996 lock_sock(newsk); 3997 __inet_accept(sock, newsock, newsk); 3998 /* we are being invoked after accepting a non-mp-capable 3999 * flow: sk is a tcp_sk, not an mptcp one. 4000 * 4001 * Hand the socket over to tcp so all further socket ops 4002 * bypass mptcp. 4003 */ 4004 WRITE_ONCE(newsock->sk->sk_socket->ops, 4005 mptcp_fallback_tcp_ops(newsock->sk)); 4006 } 4007 release_sock(newsk); 4008 4009 return 0; 4010 } 4011 4012 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 4013 { 4014 struct sock *sk = (struct sock *)msk; 4015 4016 if (__mptcp_stream_is_writeable(sk, 1)) 4017 return EPOLLOUT | EPOLLWRNORM; 4018 4019 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 4020 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 4021 if (__mptcp_stream_is_writeable(sk, 1)) 4022 return EPOLLOUT | EPOLLWRNORM; 4023 4024 return 0; 4025 } 4026 4027 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 4028 struct poll_table_struct *wait) 4029 { 4030 struct sock *sk = sock->sk; 4031 struct mptcp_sock *msk; 4032 __poll_t mask = 0; 4033 u8 shutdown; 4034 int state; 4035 4036 msk = mptcp_sk(sk); 4037 sock_poll_wait(file, sock, wait); 4038 4039 state = inet_sk_state_load(sk); 4040 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 4041 if (state == TCP_LISTEN) { 4042 struct sock *ssk = READ_ONCE(msk->first); 4043 4044 if (WARN_ON_ONCE(!ssk)) 4045 return 0; 4046 4047 return inet_csk_listen_poll(ssk); 4048 } 4049 4050 shutdown = READ_ONCE(sk->sk_shutdown); 4051 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4052 mask |= EPOLLHUP; 4053 if (shutdown & RCV_SHUTDOWN) 4054 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4055 4056 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4057 mask |= mptcp_check_readable(sk); 4058 if (shutdown & SEND_SHUTDOWN) 4059 mask |= EPOLLOUT | EPOLLWRNORM; 4060 else 4061 mask |= mptcp_check_writeable(msk); 4062 } else if (state == TCP_SYN_SENT && 4063 inet_test_bit(DEFER_CONNECT, sk)) { 4064 /* cf tcp_poll() note about TFO */ 4065 mask |= EPOLLOUT | EPOLLWRNORM; 4066 } 4067 4068 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4069 smp_rmb(); 4070 if (READ_ONCE(sk->sk_err)) 4071 mask |= EPOLLERR; 4072 4073 return mask; 4074 } 4075 4076 static const struct proto_ops mptcp_stream_ops = { 4077 .family = PF_INET, 4078 .owner = THIS_MODULE, 4079 .release = inet_release, 4080 .bind = mptcp_bind, 4081 .connect = inet_stream_connect, 4082 .socketpair = sock_no_socketpair, 4083 .accept = mptcp_stream_accept, 4084 .getname = inet_getname, 4085 .poll = mptcp_poll, 4086 .ioctl = inet_ioctl, 4087 .gettstamp = sock_gettstamp, 4088 .listen = mptcp_listen, 4089 .shutdown = inet_shutdown, 4090 .setsockopt = sock_common_setsockopt, 4091 .getsockopt = sock_common_getsockopt, 4092 .sendmsg = inet_sendmsg, 4093 .recvmsg = inet_recvmsg, 4094 .mmap = sock_no_mmap, 4095 .set_rcvlowat = mptcp_set_rcvlowat, 4096 }; 4097 4098 static struct inet_protosw mptcp_protosw = { 4099 .type = SOCK_STREAM, 4100 .protocol = IPPROTO_MPTCP, 4101 .prot = &mptcp_prot, 4102 .ops = &mptcp_stream_ops, 4103 .flags = INET_PROTOSW_ICSK, 4104 }; 4105 4106 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4107 { 4108 struct mptcp_delegated_action *delegated; 4109 struct mptcp_subflow_context *subflow; 4110 int work_done = 0; 4111 4112 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4113 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4114 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4115 4116 bh_lock_sock_nested(ssk); 4117 if (!sock_owned_by_user(ssk)) { 4118 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4119 } else { 4120 /* tcp_release_cb_override already processed 4121 * the action or will do at next release_sock(). 4122 * In both case must dequeue the subflow here - on the same 4123 * CPU that scheduled it. 4124 */ 4125 smp_wmb(); 4126 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4127 } 4128 bh_unlock_sock(ssk); 4129 sock_put(ssk); 4130 4131 if (++work_done == budget) 4132 return budget; 4133 } 4134 4135 /* always provide a 0 'work_done' argument, so that napi_complete_done 4136 * will not try accessing the NULL napi->dev ptr 4137 */ 4138 napi_complete_done(napi, 0); 4139 return work_done; 4140 } 4141 4142 void __init mptcp_proto_init(void) 4143 { 4144 struct mptcp_delegated_action *delegated; 4145 int cpu; 4146 4147 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4148 4149 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4150 panic("Failed to allocate MPTCP pcpu counter\n"); 4151 4152 mptcp_napi_dev = alloc_netdev_dummy(0); 4153 if (!mptcp_napi_dev) 4154 panic("Failed to allocate MPTCP dummy netdev\n"); 4155 for_each_possible_cpu(cpu) { 4156 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4157 INIT_LIST_HEAD(&delegated->head); 4158 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4159 mptcp_napi_poll); 4160 napi_enable(&delegated->napi); 4161 } 4162 4163 mptcp_subflow_init(); 4164 mptcp_pm_init(); 4165 mptcp_sched_init(); 4166 mptcp_token_init(); 4167 4168 if (proto_register(&mptcp_prot, 1) != 0) 4169 panic("Failed to register MPTCP proto.\n"); 4170 4171 inet_register_protosw(&mptcp_protosw); 4172 4173 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4174 } 4175 4176 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4177 static const struct proto_ops mptcp_v6_stream_ops = { 4178 .family = PF_INET6, 4179 .owner = THIS_MODULE, 4180 .release = inet6_release, 4181 .bind = mptcp_bind, 4182 .connect = inet_stream_connect, 4183 .socketpair = sock_no_socketpair, 4184 .accept = mptcp_stream_accept, 4185 .getname = inet6_getname, 4186 .poll = mptcp_poll, 4187 .ioctl = inet6_ioctl, 4188 .gettstamp = sock_gettstamp, 4189 .listen = mptcp_listen, 4190 .shutdown = inet_shutdown, 4191 .setsockopt = sock_common_setsockopt, 4192 .getsockopt = sock_common_getsockopt, 4193 .sendmsg = inet6_sendmsg, 4194 .recvmsg = inet6_recvmsg, 4195 .mmap = sock_no_mmap, 4196 #ifdef CONFIG_COMPAT 4197 .compat_ioctl = inet6_compat_ioctl, 4198 #endif 4199 .set_rcvlowat = mptcp_set_rcvlowat, 4200 }; 4201 4202 static struct proto mptcp_v6_prot; 4203 4204 static struct inet_protosw mptcp_v6_protosw = { 4205 .type = SOCK_STREAM, 4206 .protocol = IPPROTO_MPTCP, 4207 .prot = &mptcp_v6_prot, 4208 .ops = &mptcp_v6_stream_ops, 4209 .flags = INET_PROTOSW_ICSK, 4210 }; 4211 4212 int __init mptcp_proto_v6_init(void) 4213 { 4214 int err; 4215 4216 mptcp_v6_prot = mptcp_prot; 4217 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4218 mptcp_v6_prot.slab = NULL; 4219 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4220 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4221 4222 err = proto_register(&mptcp_v6_prot, 1); 4223 if (err) 4224 return err; 4225 4226 err = inet6_register_protosw(&mptcp_v6_protosw); 4227 if (err) 4228 proto_unregister(&mptcp_v6_prot); 4229 4230 return err; 4231 } 4232 #endif 4233