1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 WRITE_ONCE(sock->ops, &inet_stream_ops); 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 WRITE_ONCE(sock->ops, &inet6_stream_ops); 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 94 WRITE_ONCE(msk->first, ssock->sk); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 subflow->local_id_valid = 1; 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 iput(SOCK_INODE(ssock)); 105 106 return 0; 107 } 108 109 /* If the MPC handshake is not started, returns the first subflow, 110 * eventually allocating it. 111 */ 112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 113 { 114 struct sock *sk = (struct sock *)msk; 115 int ret; 116 117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 118 return ERR_PTR(-EINVAL); 119 120 if (!msk->first) { 121 ret = __mptcp_socket_create(msk); 122 if (ret) 123 return ERR_PTR(ret); 124 125 mptcp_sockopt_sync(msk, msk->first); 126 } 127 128 return msk->first; 129 } 130 131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 132 { 133 sk_drops_add(sk, skb); 134 __kfree_skb(skb); 135 } 136 137 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 138 { 139 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 140 mptcp_sk(sk)->rmem_fwd_alloc + size); 141 } 142 143 static void mptcp_rmem_charge(struct sock *sk, int size) 144 { 145 mptcp_rmem_fwd_alloc_add(sk, -size); 146 } 147 148 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 149 struct sk_buff *from) 150 { 151 bool fragstolen; 152 int delta; 153 154 if (MPTCP_SKB_CB(from)->offset || 155 !skb_try_coalesce(to, from, &fragstolen, &delta)) 156 return false; 157 158 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 159 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 160 to->len, MPTCP_SKB_CB(from)->end_seq); 161 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 162 163 /* note the fwd memory can reach a negative value after accounting 164 * for the delta, but the later skb free will restore a non 165 * negative one 166 */ 167 atomic_add(delta, &sk->sk_rmem_alloc); 168 mptcp_rmem_charge(sk, delta); 169 kfree_skb_partial(from, fragstolen); 170 171 return true; 172 } 173 174 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 175 struct sk_buff *from) 176 { 177 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 178 return false; 179 180 return mptcp_try_coalesce((struct sock *)msk, to, from); 181 } 182 183 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 184 { 185 amount >>= PAGE_SHIFT; 186 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 187 __sk_mem_reduce_allocated(sk, amount); 188 } 189 190 static void mptcp_rmem_uncharge(struct sock *sk, int size) 191 { 192 struct mptcp_sock *msk = mptcp_sk(sk); 193 int reclaimable; 194 195 mptcp_rmem_fwd_alloc_add(sk, size); 196 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 197 198 /* see sk_mem_uncharge() for the rationale behind the following schema */ 199 if (unlikely(reclaimable >= PAGE_SIZE)) 200 __mptcp_rmem_reclaim(sk, reclaimable); 201 } 202 203 static void mptcp_rfree(struct sk_buff *skb) 204 { 205 unsigned int len = skb->truesize; 206 struct sock *sk = skb->sk; 207 208 atomic_sub(len, &sk->sk_rmem_alloc); 209 mptcp_rmem_uncharge(sk, len); 210 } 211 212 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 213 { 214 skb_orphan(skb); 215 skb->sk = sk; 216 skb->destructor = mptcp_rfree; 217 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 218 mptcp_rmem_charge(sk, skb->truesize); 219 } 220 221 /* "inspired" by tcp_data_queue_ofo(), main differences: 222 * - use mptcp seqs 223 * - don't cope with sacks 224 */ 225 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 226 { 227 struct sock *sk = (struct sock *)msk; 228 struct rb_node **p, *parent; 229 u64 seq, end_seq, max_seq; 230 struct sk_buff *skb1; 231 232 seq = MPTCP_SKB_CB(skb)->map_seq; 233 end_seq = MPTCP_SKB_CB(skb)->end_seq; 234 max_seq = atomic64_read(&msk->rcv_wnd_sent); 235 236 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 237 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 238 if (after64(end_seq, max_seq)) { 239 /* out of window */ 240 mptcp_drop(sk, skb); 241 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 242 (unsigned long long)end_seq - (unsigned long)max_seq, 243 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 245 return; 246 } 247 248 p = &msk->out_of_order_queue.rb_node; 249 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 250 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 251 rb_link_node(&skb->rbnode, NULL, p); 252 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 253 msk->ooo_last_skb = skb; 254 goto end; 255 } 256 257 /* with 2 subflows, adding at end of ooo queue is quite likely 258 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 259 */ 260 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 261 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 263 return; 264 } 265 266 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 267 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 268 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 269 parent = &msk->ooo_last_skb->rbnode; 270 p = &parent->rb_right; 271 goto insert; 272 } 273 274 /* Find place to insert this segment. Handle overlaps on the way. */ 275 parent = NULL; 276 while (*p) { 277 parent = *p; 278 skb1 = rb_to_skb(parent); 279 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 280 p = &parent->rb_left; 281 continue; 282 } 283 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 284 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 285 /* All the bits are present. Drop. */ 286 mptcp_drop(sk, skb); 287 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 288 return; 289 } 290 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 291 /* partial overlap: 292 * | skb | 293 * | skb1 | 294 * continue traversing 295 */ 296 } else { 297 /* skb's seq == skb1's seq and skb covers skb1. 298 * Replace skb1 with skb. 299 */ 300 rb_replace_node(&skb1->rbnode, &skb->rbnode, 301 &msk->out_of_order_queue); 302 mptcp_drop(sk, skb1); 303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 304 goto merge_right; 305 } 306 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 308 return; 309 } 310 p = &parent->rb_right; 311 } 312 313 insert: 314 /* Insert segment into RB tree. */ 315 rb_link_node(&skb->rbnode, parent, p); 316 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 317 318 merge_right: 319 /* Remove other segments covered by skb. */ 320 while ((skb1 = skb_rb_next(skb)) != NULL) { 321 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 322 break; 323 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 324 mptcp_drop(sk, skb1); 325 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 326 } 327 /* If there is no skb after us, we are the last_skb ! */ 328 if (!skb1) 329 msk->ooo_last_skb = skb; 330 331 end: 332 skb_condense(skb); 333 mptcp_set_owner_r(skb, sk); 334 } 335 336 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 337 { 338 struct mptcp_sock *msk = mptcp_sk(sk); 339 int amt, amount; 340 341 if (size <= msk->rmem_fwd_alloc) 342 return true; 343 344 size -= msk->rmem_fwd_alloc; 345 amt = sk_mem_pages(size); 346 amount = amt << PAGE_SHIFT; 347 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 348 return false; 349 350 mptcp_rmem_fwd_alloc_add(sk, amount); 351 return true; 352 } 353 354 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 355 struct sk_buff *skb, unsigned int offset, 356 size_t copy_len) 357 { 358 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 359 struct sock *sk = (struct sock *)msk; 360 struct sk_buff *tail; 361 bool has_rxtstamp; 362 363 __skb_unlink(skb, &ssk->sk_receive_queue); 364 365 skb_ext_reset(skb); 366 skb_orphan(skb); 367 368 /* try to fetch required memory from subflow */ 369 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 370 goto drop; 371 372 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 373 374 /* the skb map_seq accounts for the skb offset: 375 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 376 * value 377 */ 378 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 379 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 380 MPTCP_SKB_CB(skb)->offset = offset; 381 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 382 383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 384 /* in sequence */ 385 msk->bytes_received += copy_len; 386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 387 tail = skb_peek_tail(&sk->sk_receive_queue); 388 if (tail && mptcp_try_coalesce(sk, tail, skb)) 389 return true; 390 391 mptcp_set_owner_r(skb, sk); 392 __skb_queue_tail(&sk->sk_receive_queue, skb); 393 return true; 394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 395 mptcp_data_queue_ofo(msk, skb); 396 return false; 397 } 398 399 /* old data, keep it simple and drop the whole pkt, sender 400 * will retransmit as needed, if needed. 401 */ 402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 403 drop: 404 mptcp_drop(sk, skb); 405 return false; 406 } 407 408 static void mptcp_stop_rtx_timer(struct sock *sk) 409 { 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 413 mptcp_sk(sk)->timer_ival = 0; 414 } 415 416 static void mptcp_close_wake_up(struct sock *sk) 417 { 418 if (sock_flag(sk, SOCK_DEAD)) 419 return; 420 421 sk->sk_state_change(sk); 422 if (sk->sk_shutdown == SHUTDOWN_MASK || 423 sk->sk_state == TCP_CLOSE) 424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 425 else 426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 427 } 428 429 static bool mptcp_pending_data_fin_ack(struct sock *sk) 430 { 431 struct mptcp_sock *msk = mptcp_sk(sk); 432 433 return ((1 << sk->sk_state) & 434 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 435 msk->write_seq == READ_ONCE(msk->snd_una); 436 } 437 438 static void mptcp_check_data_fin_ack(struct sock *sk) 439 { 440 struct mptcp_sock *msk = mptcp_sk(sk); 441 442 /* Look for an acknowledged DATA_FIN */ 443 if (mptcp_pending_data_fin_ack(sk)) { 444 WRITE_ONCE(msk->snd_data_fin_enable, 0); 445 446 switch (sk->sk_state) { 447 case TCP_FIN_WAIT1: 448 inet_sk_state_store(sk, TCP_FIN_WAIT2); 449 break; 450 case TCP_CLOSING: 451 case TCP_LAST_ACK: 452 inet_sk_state_store(sk, TCP_CLOSE); 453 break; 454 } 455 456 mptcp_close_wake_up(sk); 457 } 458 } 459 460 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 461 { 462 struct mptcp_sock *msk = mptcp_sk(sk); 463 464 if (READ_ONCE(msk->rcv_data_fin) && 465 ((1 << sk->sk_state) & 466 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 467 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 468 469 if (msk->ack_seq == rcv_data_fin_seq) { 470 if (seq) 471 *seq = rcv_data_fin_seq; 472 473 return true; 474 } 475 } 476 477 return false; 478 } 479 480 static void mptcp_set_datafin_timeout(struct sock *sk) 481 { 482 struct inet_connection_sock *icsk = inet_csk(sk); 483 u32 retransmits; 484 485 retransmits = min_t(u32, icsk->icsk_retransmits, 486 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 487 488 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 489 } 490 491 static void __mptcp_set_timeout(struct sock *sk, long tout) 492 { 493 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 494 } 495 496 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 497 { 498 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 499 500 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 501 inet_csk(ssk)->icsk_timeout - jiffies : 0; 502 } 503 504 static void mptcp_set_timeout(struct sock *sk) 505 { 506 struct mptcp_subflow_context *subflow; 507 long tout = 0; 508 509 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 510 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 511 __mptcp_set_timeout(sk, tout); 512 } 513 514 static inline bool tcp_can_send_ack(const struct sock *ssk) 515 { 516 return !((1 << inet_sk_state_load(ssk)) & 517 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 518 } 519 520 void __mptcp_subflow_send_ack(struct sock *ssk) 521 { 522 if (tcp_can_send_ack(ssk)) 523 tcp_send_ack(ssk); 524 } 525 526 static void mptcp_subflow_send_ack(struct sock *ssk) 527 { 528 bool slow; 529 530 slow = lock_sock_fast(ssk); 531 __mptcp_subflow_send_ack(ssk); 532 unlock_sock_fast(ssk, slow); 533 } 534 535 static void mptcp_send_ack(struct mptcp_sock *msk) 536 { 537 struct mptcp_subflow_context *subflow; 538 539 mptcp_for_each_subflow(msk, subflow) 540 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 541 } 542 543 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 544 { 545 bool slow; 546 547 slow = lock_sock_fast(ssk); 548 if (tcp_can_send_ack(ssk)) 549 tcp_cleanup_rbuf(ssk, 1); 550 unlock_sock_fast(ssk, slow); 551 } 552 553 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 554 { 555 const struct inet_connection_sock *icsk = inet_csk(ssk); 556 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 557 const struct tcp_sock *tp = tcp_sk(ssk); 558 559 return (ack_pending & ICSK_ACK_SCHED) && 560 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 561 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 562 (rx_empty && ack_pending & 563 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 564 } 565 566 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 567 { 568 int old_space = READ_ONCE(msk->old_wspace); 569 struct mptcp_subflow_context *subflow; 570 struct sock *sk = (struct sock *)msk; 571 int space = __mptcp_space(sk); 572 bool cleanup, rx_empty; 573 574 cleanup = (space > 0) && (space >= (old_space << 1)); 575 rx_empty = !__mptcp_rmem(sk); 576 577 mptcp_for_each_subflow(msk, subflow) { 578 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 579 580 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 581 mptcp_subflow_cleanup_rbuf(ssk); 582 } 583 } 584 585 static bool mptcp_check_data_fin(struct sock *sk) 586 { 587 struct mptcp_sock *msk = mptcp_sk(sk); 588 u64 rcv_data_fin_seq; 589 bool ret = false; 590 591 /* Need to ack a DATA_FIN received from a peer while this side 592 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 593 * msk->rcv_data_fin was set when parsing the incoming options 594 * at the subflow level and the msk lock was not held, so this 595 * is the first opportunity to act on the DATA_FIN and change 596 * the msk state. 597 * 598 * If we are caught up to the sequence number of the incoming 599 * DATA_FIN, send the DATA_ACK now and do state transition. If 600 * not caught up, do nothing and let the recv code send DATA_ACK 601 * when catching up. 602 */ 603 604 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 605 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 606 WRITE_ONCE(msk->rcv_data_fin, 0); 607 608 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 609 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 610 611 switch (sk->sk_state) { 612 case TCP_ESTABLISHED: 613 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 614 break; 615 case TCP_FIN_WAIT1: 616 inet_sk_state_store(sk, TCP_CLOSING); 617 break; 618 case TCP_FIN_WAIT2: 619 inet_sk_state_store(sk, TCP_CLOSE); 620 break; 621 default: 622 /* Other states not expected */ 623 WARN_ON_ONCE(1); 624 break; 625 } 626 627 ret = true; 628 if (!__mptcp_check_fallback(msk)) 629 mptcp_send_ack(msk); 630 mptcp_close_wake_up(sk); 631 } 632 return ret; 633 } 634 635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 636 struct sock *ssk, 637 unsigned int *bytes) 638 { 639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 640 struct sock *sk = (struct sock *)msk; 641 unsigned int moved = 0; 642 bool more_data_avail; 643 struct tcp_sock *tp; 644 bool done = false; 645 int sk_rbuf; 646 647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 648 649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 651 652 if (unlikely(ssk_rbuf > sk_rbuf)) { 653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 654 sk_rbuf = ssk_rbuf; 655 } 656 } 657 658 pr_debug("msk=%p ssk=%p", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 /* try to move as much data as available */ 667 map_remaining = subflow->map_data_len - 668 mptcp_subflow_get_map_offset(subflow); 669 670 skb = skb_peek(&ssk->sk_receive_queue); 671 if (!skb) { 672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 673 * a different CPU can have already processed the pending 674 * data, stop here or we can enter an infinite loop 675 */ 676 if (!moved) 677 done = true; 678 break; 679 } 680 681 if (__mptcp_check_fallback(msk)) { 682 /* Under fallback skbs have no MPTCP extension and TCP could 683 * collapse them between the dummy map creation and the 684 * current dequeue. Be sure to adjust the map size. 685 */ 686 map_remaining = skb->len; 687 subflow->map_data_len = skb->len; 688 } 689 690 offset = seq - TCP_SKB_CB(skb)->seq; 691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 692 if (fin) { 693 done = true; 694 seq++; 695 } 696 697 if (offset < skb->len) { 698 size_t len = skb->len - offset; 699 700 if (tp->urg_data) 701 done = true; 702 703 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 704 moved += len; 705 seq += len; 706 707 if (WARN_ON_ONCE(map_remaining < len)) 708 break; 709 } else { 710 WARN_ON_ONCE(!fin); 711 sk_eat_skb(ssk, skb); 712 done = true; 713 } 714 715 WRITE_ONCE(tp->copied_seq, seq); 716 more_data_avail = mptcp_subflow_data_available(ssk); 717 718 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 719 done = true; 720 break; 721 } 722 } while (more_data_avail); 723 724 *bytes += moved; 725 return done; 726 } 727 728 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 729 { 730 struct sock *sk = (struct sock *)msk; 731 struct sk_buff *skb, *tail; 732 bool moved = false; 733 struct rb_node *p; 734 u64 end_seq; 735 736 p = rb_first(&msk->out_of_order_queue); 737 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 738 while (p) { 739 skb = rb_to_skb(p); 740 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 741 break; 742 743 p = rb_next(p); 744 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 745 746 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 747 msk->ack_seq))) { 748 mptcp_drop(sk, skb); 749 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 750 continue; 751 } 752 753 end_seq = MPTCP_SKB_CB(skb)->end_seq; 754 tail = skb_peek_tail(&sk->sk_receive_queue); 755 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 756 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 757 758 /* skip overlapping data, if any */ 759 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 760 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 761 delta); 762 MPTCP_SKB_CB(skb)->offset += delta; 763 MPTCP_SKB_CB(skb)->map_seq += delta; 764 __skb_queue_tail(&sk->sk_receive_queue, skb); 765 } 766 msk->bytes_received += end_seq - msk->ack_seq; 767 msk->ack_seq = end_seq; 768 moved = true; 769 } 770 return moved; 771 } 772 773 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 774 { 775 int err = sock_error(ssk); 776 int ssk_state; 777 778 if (!err) 779 return false; 780 781 /* only propagate errors on fallen-back sockets or 782 * on MPC connect 783 */ 784 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 785 return false; 786 787 /* We need to propagate only transition to CLOSE state. 788 * Orphaned socket will see such state change via 789 * subflow_sched_work_if_closed() and that path will properly 790 * destroy the msk as needed. 791 */ 792 ssk_state = inet_sk_state_load(ssk); 793 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 794 inet_sk_state_store(sk, ssk_state); 795 WRITE_ONCE(sk->sk_err, -err); 796 797 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 798 smp_wmb(); 799 sk_error_report(sk); 800 return true; 801 } 802 803 void __mptcp_error_report(struct sock *sk) 804 { 805 struct mptcp_subflow_context *subflow; 806 struct mptcp_sock *msk = mptcp_sk(sk); 807 808 mptcp_for_each_subflow(msk, subflow) 809 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 810 break; 811 } 812 813 /* In most cases we will be able to lock the mptcp socket. If its already 814 * owned, we need to defer to the work queue to avoid ABBA deadlock. 815 */ 816 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 817 { 818 struct sock *sk = (struct sock *)msk; 819 unsigned int moved = 0; 820 821 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 822 __mptcp_ofo_queue(msk); 823 if (unlikely(ssk->sk_err)) { 824 if (!sock_owned_by_user(sk)) 825 __mptcp_error_report(sk); 826 else 827 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 828 } 829 830 /* If the moves have caught up with the DATA_FIN sequence number 831 * it's time to ack the DATA_FIN and change socket state, but 832 * this is not a good place to change state. Let the workqueue 833 * do it. 834 */ 835 if (mptcp_pending_data_fin(sk, NULL)) 836 mptcp_schedule_work(sk); 837 return moved > 0; 838 } 839 840 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 841 { 842 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 843 struct mptcp_sock *msk = mptcp_sk(sk); 844 int sk_rbuf, ssk_rbuf; 845 846 /* The peer can send data while we are shutting down this 847 * subflow at msk destruction time, but we must avoid enqueuing 848 * more data to the msk receive queue 849 */ 850 if (unlikely(subflow->disposable)) 851 return; 852 853 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 854 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 855 if (unlikely(ssk_rbuf > sk_rbuf)) 856 sk_rbuf = ssk_rbuf; 857 858 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 859 if (__mptcp_rmem(sk) > sk_rbuf) { 860 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 861 return; 862 } 863 864 /* Wake-up the reader only for in-sequence data */ 865 mptcp_data_lock(sk); 866 if (move_skbs_to_msk(msk, ssk)) 867 sk->sk_data_ready(sk); 868 869 mptcp_data_unlock(sk); 870 } 871 872 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 873 { 874 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 875 WRITE_ONCE(msk->allow_infinite_fallback, false); 876 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 877 } 878 879 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 880 { 881 struct sock *sk = (struct sock *)msk; 882 883 if (sk->sk_state != TCP_ESTABLISHED) 884 return false; 885 886 /* attach to msk socket only after we are sure we will deal with it 887 * at close time 888 */ 889 if (sk->sk_socket && !ssk->sk_socket) 890 mptcp_sock_graft(ssk, sk->sk_socket); 891 892 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 893 mptcp_sockopt_sync_locked(msk, ssk); 894 mptcp_subflow_joined(msk, ssk); 895 mptcp_stop_tout_timer(sk); 896 return true; 897 } 898 899 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 900 { 901 struct mptcp_subflow_context *tmp, *subflow; 902 struct mptcp_sock *msk = mptcp_sk(sk); 903 904 list_for_each_entry_safe(subflow, tmp, join_list, node) { 905 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 906 bool slow = lock_sock_fast(ssk); 907 908 list_move_tail(&subflow->node, &msk->conn_list); 909 if (!__mptcp_finish_join(msk, ssk)) 910 mptcp_subflow_reset(ssk); 911 unlock_sock_fast(ssk, slow); 912 } 913 } 914 915 static bool mptcp_rtx_timer_pending(struct sock *sk) 916 { 917 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 918 } 919 920 static void mptcp_reset_rtx_timer(struct sock *sk) 921 { 922 struct inet_connection_sock *icsk = inet_csk(sk); 923 unsigned long tout; 924 925 /* prevent rescheduling on close */ 926 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 927 return; 928 929 tout = mptcp_sk(sk)->timer_ival; 930 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 931 } 932 933 bool mptcp_schedule_work(struct sock *sk) 934 { 935 if (inet_sk_state_load(sk) != TCP_CLOSE && 936 schedule_work(&mptcp_sk(sk)->work)) { 937 /* each subflow already holds a reference to the sk, and the 938 * workqueue is invoked by a subflow, so sk can't go away here. 939 */ 940 sock_hold(sk); 941 return true; 942 } 943 return false; 944 } 945 946 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 947 { 948 struct mptcp_subflow_context *subflow; 949 950 msk_owned_by_me(msk); 951 952 mptcp_for_each_subflow(msk, subflow) { 953 if (READ_ONCE(subflow->data_avail)) 954 return mptcp_subflow_tcp_sock(subflow); 955 } 956 957 return NULL; 958 } 959 960 static bool mptcp_skb_can_collapse_to(u64 write_seq, 961 const struct sk_buff *skb, 962 const struct mptcp_ext *mpext) 963 { 964 if (!tcp_skb_can_collapse_to(skb)) 965 return false; 966 967 /* can collapse only if MPTCP level sequence is in order and this 968 * mapping has not been xmitted yet 969 */ 970 return mpext && mpext->data_seq + mpext->data_len == write_seq && 971 !mpext->frozen; 972 } 973 974 /* we can append data to the given data frag if: 975 * - there is space available in the backing page_frag 976 * - the data frag tail matches the current page_frag free offset 977 * - the data frag end sequence number matches the current write seq 978 */ 979 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 980 const struct page_frag *pfrag, 981 const struct mptcp_data_frag *df) 982 { 983 return df && pfrag->page == df->page && 984 pfrag->size - pfrag->offset > 0 && 985 pfrag->offset == (df->offset + df->data_len) && 986 df->data_seq + df->data_len == msk->write_seq; 987 } 988 989 static void dfrag_uncharge(struct sock *sk, int len) 990 { 991 sk_mem_uncharge(sk, len); 992 sk_wmem_queued_add(sk, -len); 993 } 994 995 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 996 { 997 int len = dfrag->data_len + dfrag->overhead; 998 999 list_del(&dfrag->list); 1000 dfrag_uncharge(sk, len); 1001 put_page(dfrag->page); 1002 } 1003 1004 static void __mptcp_clean_una(struct sock *sk) 1005 { 1006 struct mptcp_sock *msk = mptcp_sk(sk); 1007 struct mptcp_data_frag *dtmp, *dfrag; 1008 u64 snd_una; 1009 1010 snd_una = msk->snd_una; 1011 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1012 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1013 break; 1014 1015 if (unlikely(dfrag == msk->first_pending)) { 1016 /* in recovery mode can see ack after the current snd head */ 1017 if (WARN_ON_ONCE(!msk->recovery)) 1018 break; 1019 1020 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1021 } 1022 1023 dfrag_clear(sk, dfrag); 1024 } 1025 1026 dfrag = mptcp_rtx_head(sk); 1027 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1028 u64 delta = snd_una - dfrag->data_seq; 1029 1030 /* prevent wrap around in recovery mode */ 1031 if (unlikely(delta > dfrag->already_sent)) { 1032 if (WARN_ON_ONCE(!msk->recovery)) 1033 goto out; 1034 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1035 goto out; 1036 dfrag->already_sent += delta - dfrag->already_sent; 1037 } 1038 1039 dfrag->data_seq += delta; 1040 dfrag->offset += delta; 1041 dfrag->data_len -= delta; 1042 dfrag->already_sent -= delta; 1043 1044 dfrag_uncharge(sk, delta); 1045 } 1046 1047 /* all retransmitted data acked, recovery completed */ 1048 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1049 msk->recovery = false; 1050 1051 out: 1052 if (snd_una == READ_ONCE(msk->snd_nxt) && 1053 snd_una == READ_ONCE(msk->write_seq)) { 1054 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1055 mptcp_stop_rtx_timer(sk); 1056 } else { 1057 mptcp_reset_rtx_timer(sk); 1058 } 1059 } 1060 1061 static void __mptcp_clean_una_wakeup(struct sock *sk) 1062 { 1063 lockdep_assert_held_once(&sk->sk_lock.slock); 1064 1065 __mptcp_clean_una(sk); 1066 mptcp_write_space(sk); 1067 } 1068 1069 static void mptcp_clean_una_wakeup(struct sock *sk) 1070 { 1071 mptcp_data_lock(sk); 1072 __mptcp_clean_una_wakeup(sk); 1073 mptcp_data_unlock(sk); 1074 } 1075 1076 static void mptcp_enter_memory_pressure(struct sock *sk) 1077 { 1078 struct mptcp_subflow_context *subflow; 1079 struct mptcp_sock *msk = mptcp_sk(sk); 1080 bool first = true; 1081 1082 sk_stream_moderate_sndbuf(sk); 1083 mptcp_for_each_subflow(msk, subflow) { 1084 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1085 1086 if (first) 1087 tcp_enter_memory_pressure(ssk); 1088 sk_stream_moderate_sndbuf(ssk); 1089 first = false; 1090 } 1091 } 1092 1093 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1094 * data 1095 */ 1096 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1097 { 1098 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1099 pfrag, sk->sk_allocation))) 1100 return true; 1101 1102 mptcp_enter_memory_pressure(sk); 1103 return false; 1104 } 1105 1106 static struct mptcp_data_frag * 1107 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1108 int orig_offset) 1109 { 1110 int offset = ALIGN(orig_offset, sizeof(long)); 1111 struct mptcp_data_frag *dfrag; 1112 1113 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1114 dfrag->data_len = 0; 1115 dfrag->data_seq = msk->write_seq; 1116 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1117 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1118 dfrag->already_sent = 0; 1119 dfrag->page = pfrag->page; 1120 1121 return dfrag; 1122 } 1123 1124 struct mptcp_sendmsg_info { 1125 int mss_now; 1126 int size_goal; 1127 u16 limit; 1128 u16 sent; 1129 unsigned int flags; 1130 bool data_lock_held; 1131 }; 1132 1133 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1134 u64 data_seq, int avail_size) 1135 { 1136 u64 window_end = mptcp_wnd_end(msk); 1137 u64 mptcp_snd_wnd; 1138 1139 if (__mptcp_check_fallback(msk)) 1140 return avail_size; 1141 1142 mptcp_snd_wnd = window_end - data_seq; 1143 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1144 1145 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1146 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1147 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1148 } 1149 1150 return avail_size; 1151 } 1152 1153 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1154 { 1155 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1156 1157 if (!mpext) 1158 return false; 1159 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1160 return true; 1161 } 1162 1163 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1164 { 1165 struct sk_buff *skb; 1166 1167 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1168 if (likely(skb)) { 1169 if (likely(__mptcp_add_ext(skb, gfp))) { 1170 skb_reserve(skb, MAX_TCP_HEADER); 1171 skb->ip_summed = CHECKSUM_PARTIAL; 1172 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1173 return skb; 1174 } 1175 __kfree_skb(skb); 1176 } else { 1177 mptcp_enter_memory_pressure(sk); 1178 } 1179 return NULL; 1180 } 1181 1182 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1183 { 1184 struct sk_buff *skb; 1185 1186 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1187 if (!skb) 1188 return NULL; 1189 1190 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1191 tcp_skb_entail(ssk, skb); 1192 return skb; 1193 } 1194 tcp_skb_tsorted_anchor_cleanup(skb); 1195 kfree_skb(skb); 1196 return NULL; 1197 } 1198 1199 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1200 { 1201 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1202 1203 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1204 } 1205 1206 /* note: this always recompute the csum on the whole skb, even 1207 * if we just appended a single frag. More status info needed 1208 */ 1209 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1210 { 1211 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1212 __wsum csum = ~csum_unfold(mpext->csum); 1213 int offset = skb->len - added; 1214 1215 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1216 } 1217 1218 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1219 struct sock *ssk, 1220 struct mptcp_ext *mpext) 1221 { 1222 if (!mpext) 1223 return; 1224 1225 mpext->infinite_map = 1; 1226 mpext->data_len = 0; 1227 1228 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1229 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1230 pr_fallback(msk); 1231 mptcp_do_fallback(ssk); 1232 } 1233 1234 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1235 struct mptcp_data_frag *dfrag, 1236 struct mptcp_sendmsg_info *info) 1237 { 1238 u64 data_seq = dfrag->data_seq + info->sent; 1239 int offset = dfrag->offset + info->sent; 1240 struct mptcp_sock *msk = mptcp_sk(sk); 1241 bool zero_window_probe = false; 1242 struct mptcp_ext *mpext = NULL; 1243 bool can_coalesce = false; 1244 bool reuse_skb = true; 1245 struct sk_buff *skb; 1246 size_t copy; 1247 int i; 1248 1249 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1250 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1251 1252 if (WARN_ON_ONCE(info->sent > info->limit || 1253 info->limit > dfrag->data_len)) 1254 return 0; 1255 1256 if (unlikely(!__tcp_can_send(ssk))) 1257 return -EAGAIN; 1258 1259 /* compute send limit */ 1260 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1261 copy = info->size_goal; 1262 1263 skb = tcp_write_queue_tail(ssk); 1264 if (skb && copy > skb->len) { 1265 /* Limit the write to the size available in the 1266 * current skb, if any, so that we create at most a new skb. 1267 * Explicitly tells TCP internals to avoid collapsing on later 1268 * queue management operation, to avoid breaking the ext <-> 1269 * SSN association set here 1270 */ 1271 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1272 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1273 TCP_SKB_CB(skb)->eor = 1; 1274 goto alloc_skb; 1275 } 1276 1277 i = skb_shinfo(skb)->nr_frags; 1278 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1279 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1280 tcp_mark_push(tcp_sk(ssk), skb); 1281 goto alloc_skb; 1282 } 1283 1284 copy -= skb->len; 1285 } else { 1286 alloc_skb: 1287 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1288 if (!skb) 1289 return -ENOMEM; 1290 1291 i = skb_shinfo(skb)->nr_frags; 1292 reuse_skb = false; 1293 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1294 } 1295 1296 /* Zero window and all data acked? Probe. */ 1297 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1298 if (copy == 0) { 1299 u64 snd_una = READ_ONCE(msk->snd_una); 1300 1301 if (snd_una != msk->snd_nxt) { 1302 tcp_remove_empty_skb(ssk); 1303 return 0; 1304 } 1305 1306 zero_window_probe = true; 1307 data_seq = snd_una - 1; 1308 copy = 1; 1309 1310 /* all mptcp-level data is acked, no skbs should be present into the 1311 * ssk write queue 1312 */ 1313 WARN_ON_ONCE(reuse_skb); 1314 } 1315 1316 copy = min_t(size_t, copy, info->limit - info->sent); 1317 if (!sk_wmem_schedule(ssk, copy)) { 1318 tcp_remove_empty_skb(ssk); 1319 return -ENOMEM; 1320 } 1321 1322 if (can_coalesce) { 1323 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1324 } else { 1325 get_page(dfrag->page); 1326 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1327 } 1328 1329 skb->len += copy; 1330 skb->data_len += copy; 1331 skb->truesize += copy; 1332 sk_wmem_queued_add(ssk, copy); 1333 sk_mem_charge(ssk, copy); 1334 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1335 TCP_SKB_CB(skb)->end_seq += copy; 1336 tcp_skb_pcount_set(skb, 0); 1337 1338 /* on skb reuse we just need to update the DSS len */ 1339 if (reuse_skb) { 1340 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1341 mpext->data_len += copy; 1342 WARN_ON_ONCE(zero_window_probe); 1343 goto out; 1344 } 1345 1346 memset(mpext, 0, sizeof(*mpext)); 1347 mpext->data_seq = data_seq; 1348 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1349 mpext->data_len = copy; 1350 mpext->use_map = 1; 1351 mpext->dsn64 = 1; 1352 1353 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1354 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1355 mpext->dsn64); 1356 1357 if (zero_window_probe) { 1358 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1359 mpext->frozen = 1; 1360 if (READ_ONCE(msk->csum_enabled)) 1361 mptcp_update_data_checksum(skb, copy); 1362 tcp_push_pending_frames(ssk); 1363 return 0; 1364 } 1365 out: 1366 if (READ_ONCE(msk->csum_enabled)) 1367 mptcp_update_data_checksum(skb, copy); 1368 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1369 mptcp_update_infinite_map(msk, ssk, mpext); 1370 trace_mptcp_sendmsg_frag(mpext); 1371 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1372 return copy; 1373 } 1374 1375 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1376 sizeof(struct tcphdr) - \ 1377 MAX_TCP_OPTION_SPACE - \ 1378 sizeof(struct ipv6hdr) - \ 1379 sizeof(struct frag_hdr)) 1380 1381 struct subflow_send_info { 1382 struct sock *ssk; 1383 u64 linger_time; 1384 }; 1385 1386 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1387 { 1388 if (!subflow->stale) 1389 return; 1390 1391 subflow->stale = 0; 1392 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1393 } 1394 1395 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1396 { 1397 if (unlikely(subflow->stale)) { 1398 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1399 1400 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1401 return false; 1402 1403 mptcp_subflow_set_active(subflow); 1404 } 1405 return __mptcp_subflow_active(subflow); 1406 } 1407 1408 #define SSK_MODE_ACTIVE 0 1409 #define SSK_MODE_BACKUP 1 1410 #define SSK_MODE_MAX 2 1411 1412 /* implement the mptcp packet scheduler; 1413 * returns the subflow that will transmit the next DSS 1414 * additionally updates the rtx timeout 1415 */ 1416 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1417 { 1418 struct subflow_send_info send_info[SSK_MODE_MAX]; 1419 struct mptcp_subflow_context *subflow; 1420 struct sock *sk = (struct sock *)msk; 1421 u32 pace, burst, wmem; 1422 int i, nr_active = 0; 1423 struct sock *ssk; 1424 u64 linger_time; 1425 long tout = 0; 1426 1427 /* pick the subflow with the lower wmem/wspace ratio */ 1428 for (i = 0; i < SSK_MODE_MAX; ++i) { 1429 send_info[i].ssk = NULL; 1430 send_info[i].linger_time = -1; 1431 } 1432 1433 mptcp_for_each_subflow(msk, subflow) { 1434 trace_mptcp_subflow_get_send(subflow); 1435 ssk = mptcp_subflow_tcp_sock(subflow); 1436 if (!mptcp_subflow_active(subflow)) 1437 continue; 1438 1439 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1440 nr_active += !subflow->backup; 1441 pace = subflow->avg_pacing_rate; 1442 if (unlikely(!pace)) { 1443 /* init pacing rate from socket */ 1444 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1445 pace = subflow->avg_pacing_rate; 1446 if (!pace) 1447 continue; 1448 } 1449 1450 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1451 if (linger_time < send_info[subflow->backup].linger_time) { 1452 send_info[subflow->backup].ssk = ssk; 1453 send_info[subflow->backup].linger_time = linger_time; 1454 } 1455 } 1456 __mptcp_set_timeout(sk, tout); 1457 1458 /* pick the best backup if no other subflow is active */ 1459 if (!nr_active) 1460 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1461 1462 /* According to the blest algorithm, to avoid HoL blocking for the 1463 * faster flow, we need to: 1464 * - estimate the faster flow linger time 1465 * - use the above to estimate the amount of byte transferred 1466 * by the faster flow 1467 * - check that the amount of queued data is greter than the above, 1468 * otherwise do not use the picked, slower, subflow 1469 * We select the subflow with the shorter estimated time to flush 1470 * the queued mem, which basically ensure the above. We just need 1471 * to check that subflow has a non empty cwin. 1472 */ 1473 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1474 if (!ssk || !sk_stream_memory_free(ssk)) 1475 return NULL; 1476 1477 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1478 wmem = READ_ONCE(ssk->sk_wmem_queued); 1479 if (!burst) 1480 return ssk; 1481 1482 subflow = mptcp_subflow_ctx(ssk); 1483 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1484 READ_ONCE(ssk->sk_pacing_rate) * burst, 1485 burst + wmem); 1486 msk->snd_burst = burst; 1487 return ssk; 1488 } 1489 1490 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1491 { 1492 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1493 release_sock(ssk); 1494 } 1495 1496 static void mptcp_update_post_push(struct mptcp_sock *msk, 1497 struct mptcp_data_frag *dfrag, 1498 u32 sent) 1499 { 1500 u64 snd_nxt_new = dfrag->data_seq; 1501 1502 dfrag->already_sent += sent; 1503 1504 msk->snd_burst -= sent; 1505 1506 snd_nxt_new += dfrag->already_sent; 1507 1508 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1509 * is recovering after a failover. In that event, this re-sends 1510 * old segments. 1511 * 1512 * Thus compute snd_nxt_new candidate based on 1513 * the dfrag->data_seq that was sent and the data 1514 * that has been handed to the subflow for transmission 1515 * and skip update in case it was old dfrag. 1516 */ 1517 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1518 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1519 msk->snd_nxt = snd_nxt_new; 1520 } 1521 } 1522 1523 void mptcp_check_and_set_pending(struct sock *sk) 1524 { 1525 if (mptcp_send_head(sk)) 1526 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1527 } 1528 1529 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1530 struct mptcp_sendmsg_info *info) 1531 { 1532 struct mptcp_sock *msk = mptcp_sk(sk); 1533 struct mptcp_data_frag *dfrag; 1534 int len, copied = 0, err = 0; 1535 1536 while ((dfrag = mptcp_send_head(sk))) { 1537 info->sent = dfrag->already_sent; 1538 info->limit = dfrag->data_len; 1539 len = dfrag->data_len - dfrag->already_sent; 1540 while (len > 0) { 1541 int ret = 0; 1542 1543 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1544 if (ret <= 0) { 1545 err = copied ? : ret; 1546 goto out; 1547 } 1548 1549 info->sent += ret; 1550 copied += ret; 1551 len -= ret; 1552 1553 mptcp_update_post_push(msk, dfrag, ret); 1554 } 1555 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1556 1557 if (msk->snd_burst <= 0 || 1558 !sk_stream_memory_free(ssk) || 1559 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1560 err = copied; 1561 goto out; 1562 } 1563 mptcp_set_timeout(sk); 1564 } 1565 err = copied; 1566 1567 out: 1568 return err; 1569 } 1570 1571 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1572 { 1573 struct sock *prev_ssk = NULL, *ssk = NULL; 1574 struct mptcp_sock *msk = mptcp_sk(sk); 1575 struct mptcp_sendmsg_info info = { 1576 .flags = flags, 1577 }; 1578 bool do_check_data_fin = false; 1579 int push_count = 1; 1580 1581 while (mptcp_send_head(sk) && (push_count > 0)) { 1582 struct mptcp_subflow_context *subflow; 1583 int ret = 0; 1584 1585 if (mptcp_sched_get_send(msk)) 1586 break; 1587 1588 push_count = 0; 1589 1590 mptcp_for_each_subflow(msk, subflow) { 1591 if (READ_ONCE(subflow->scheduled)) { 1592 mptcp_subflow_set_scheduled(subflow, false); 1593 1594 prev_ssk = ssk; 1595 ssk = mptcp_subflow_tcp_sock(subflow); 1596 if (ssk != prev_ssk) { 1597 /* First check. If the ssk has changed since 1598 * the last round, release prev_ssk 1599 */ 1600 if (prev_ssk) 1601 mptcp_push_release(prev_ssk, &info); 1602 1603 /* Need to lock the new subflow only if different 1604 * from the previous one, otherwise we are still 1605 * helding the relevant lock 1606 */ 1607 lock_sock(ssk); 1608 } 1609 1610 push_count++; 1611 1612 ret = __subflow_push_pending(sk, ssk, &info); 1613 if (ret <= 0) { 1614 if (ret != -EAGAIN || 1615 (1 << ssk->sk_state) & 1616 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1617 push_count--; 1618 continue; 1619 } 1620 do_check_data_fin = true; 1621 } 1622 } 1623 } 1624 1625 /* at this point we held the socket lock for the last subflow we used */ 1626 if (ssk) 1627 mptcp_push_release(ssk, &info); 1628 1629 /* ensure the rtx timer is running */ 1630 if (!mptcp_rtx_timer_pending(sk)) 1631 mptcp_reset_rtx_timer(sk); 1632 if (do_check_data_fin) 1633 mptcp_check_send_data_fin(sk); 1634 } 1635 1636 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1637 { 1638 struct mptcp_sock *msk = mptcp_sk(sk); 1639 struct mptcp_sendmsg_info info = { 1640 .data_lock_held = true, 1641 }; 1642 bool keep_pushing = true; 1643 struct sock *xmit_ssk; 1644 int copied = 0; 1645 1646 info.flags = 0; 1647 while (mptcp_send_head(sk) && keep_pushing) { 1648 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1649 int ret = 0; 1650 1651 /* check for a different subflow usage only after 1652 * spooling the first chunk of data 1653 */ 1654 if (first) { 1655 mptcp_subflow_set_scheduled(subflow, false); 1656 ret = __subflow_push_pending(sk, ssk, &info); 1657 first = false; 1658 if (ret <= 0) 1659 break; 1660 copied += ret; 1661 continue; 1662 } 1663 1664 if (mptcp_sched_get_send(msk)) 1665 goto out; 1666 1667 if (READ_ONCE(subflow->scheduled)) { 1668 mptcp_subflow_set_scheduled(subflow, false); 1669 ret = __subflow_push_pending(sk, ssk, &info); 1670 if (ret <= 0) 1671 keep_pushing = false; 1672 copied += ret; 1673 } 1674 1675 mptcp_for_each_subflow(msk, subflow) { 1676 if (READ_ONCE(subflow->scheduled)) { 1677 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1678 if (xmit_ssk != ssk) { 1679 mptcp_subflow_delegate(subflow, 1680 MPTCP_DELEGATE_SEND); 1681 keep_pushing = false; 1682 } 1683 } 1684 } 1685 } 1686 1687 out: 1688 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1689 * not going to flush it via release_sock() 1690 */ 1691 if (copied) { 1692 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1693 info.size_goal); 1694 if (!mptcp_rtx_timer_pending(sk)) 1695 mptcp_reset_rtx_timer(sk); 1696 1697 if (msk->snd_data_fin_enable && 1698 msk->snd_nxt + 1 == msk->write_seq) 1699 mptcp_schedule_work(sk); 1700 } 1701 } 1702 1703 static void mptcp_set_nospace(struct sock *sk) 1704 { 1705 /* enable autotune */ 1706 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1707 1708 /* will be cleared on avail space */ 1709 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1710 } 1711 1712 static int mptcp_disconnect(struct sock *sk, int flags); 1713 1714 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1715 size_t len, int *copied_syn) 1716 { 1717 unsigned int saved_flags = msg->msg_flags; 1718 struct mptcp_sock *msk = mptcp_sk(sk); 1719 struct sock *ssk; 1720 int ret; 1721 1722 /* on flags based fastopen the mptcp is supposed to create the 1723 * first subflow right now. Otherwise we are in the defer_connect 1724 * path, and the first subflow must be already present. 1725 * Since the defer_connect flag is cleared after the first succsful 1726 * fastopen attempt, no need to check for additional subflow status. 1727 */ 1728 if (msg->msg_flags & MSG_FASTOPEN) { 1729 ssk = __mptcp_nmpc_sk(msk); 1730 if (IS_ERR(ssk)) 1731 return PTR_ERR(ssk); 1732 } 1733 if (!msk->first) 1734 return -EINVAL; 1735 1736 ssk = msk->first; 1737 1738 lock_sock(ssk); 1739 msg->msg_flags |= MSG_DONTWAIT; 1740 msk->fastopening = 1; 1741 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1742 msk->fastopening = 0; 1743 msg->msg_flags = saved_flags; 1744 release_sock(ssk); 1745 1746 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1747 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1748 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1749 msg->msg_namelen, msg->msg_flags, 1); 1750 1751 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1752 * case of any error, except timeout or signal 1753 */ 1754 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1755 *copied_syn = 0; 1756 } else if (ret && ret != -EINPROGRESS) { 1757 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1758 * __inet_stream_connect() can fail, due to looking check, 1759 * see mptcp_disconnect(). 1760 * Attempt it again outside the problematic scope. 1761 */ 1762 if (!mptcp_disconnect(sk, 0)) 1763 sk->sk_socket->state = SS_UNCONNECTED; 1764 } 1765 inet_clear_bit(DEFER_CONNECT, sk); 1766 1767 return ret; 1768 } 1769 1770 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1771 { 1772 struct mptcp_sock *msk = mptcp_sk(sk); 1773 struct page_frag *pfrag; 1774 size_t copied = 0; 1775 int ret = 0; 1776 long timeo; 1777 1778 /* silently ignore everything else */ 1779 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1780 1781 lock_sock(sk); 1782 1783 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1784 msg->msg_flags & MSG_FASTOPEN)) { 1785 int copied_syn = 0; 1786 1787 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1788 copied += copied_syn; 1789 if (ret == -EINPROGRESS && copied_syn > 0) 1790 goto out; 1791 else if (ret) 1792 goto do_error; 1793 } 1794 1795 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1796 1797 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1798 ret = sk_stream_wait_connect(sk, &timeo); 1799 if (ret) 1800 goto do_error; 1801 } 1802 1803 ret = -EPIPE; 1804 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1805 goto do_error; 1806 1807 pfrag = sk_page_frag(sk); 1808 1809 while (msg_data_left(msg)) { 1810 int total_ts, frag_truesize = 0; 1811 struct mptcp_data_frag *dfrag; 1812 bool dfrag_collapsed; 1813 size_t psize, offset; 1814 1815 /* reuse tail pfrag, if possible, or carve a new one from the 1816 * page allocator 1817 */ 1818 dfrag = mptcp_pending_tail(sk); 1819 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1820 if (!dfrag_collapsed) { 1821 if (!sk_stream_memory_free(sk)) 1822 goto wait_for_memory; 1823 1824 if (!mptcp_page_frag_refill(sk, pfrag)) 1825 goto wait_for_memory; 1826 1827 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1828 frag_truesize = dfrag->overhead; 1829 } 1830 1831 /* we do not bound vs wspace, to allow a single packet. 1832 * memory accounting will prevent execessive memory usage 1833 * anyway 1834 */ 1835 offset = dfrag->offset + dfrag->data_len; 1836 psize = pfrag->size - offset; 1837 psize = min_t(size_t, psize, msg_data_left(msg)); 1838 total_ts = psize + frag_truesize; 1839 1840 if (!sk_wmem_schedule(sk, total_ts)) 1841 goto wait_for_memory; 1842 1843 if (copy_page_from_iter(dfrag->page, offset, psize, 1844 &msg->msg_iter) != psize) { 1845 ret = -EFAULT; 1846 goto do_error; 1847 } 1848 1849 /* data successfully copied into the write queue */ 1850 sk_forward_alloc_add(sk, -total_ts); 1851 copied += psize; 1852 dfrag->data_len += psize; 1853 frag_truesize += psize; 1854 pfrag->offset += frag_truesize; 1855 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1856 1857 /* charge data on mptcp pending queue to the msk socket 1858 * Note: we charge such data both to sk and ssk 1859 */ 1860 sk_wmem_queued_add(sk, frag_truesize); 1861 if (!dfrag_collapsed) { 1862 get_page(dfrag->page); 1863 list_add_tail(&dfrag->list, &msk->rtx_queue); 1864 if (!msk->first_pending) 1865 WRITE_ONCE(msk->first_pending, dfrag); 1866 } 1867 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1868 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1869 !dfrag_collapsed); 1870 1871 continue; 1872 1873 wait_for_memory: 1874 mptcp_set_nospace(sk); 1875 __mptcp_push_pending(sk, msg->msg_flags); 1876 ret = sk_stream_wait_memory(sk, &timeo); 1877 if (ret) 1878 goto do_error; 1879 } 1880 1881 if (copied) 1882 __mptcp_push_pending(sk, msg->msg_flags); 1883 1884 out: 1885 release_sock(sk); 1886 return copied; 1887 1888 do_error: 1889 if (copied) 1890 goto out; 1891 1892 copied = sk_stream_error(sk, msg->msg_flags, ret); 1893 goto out; 1894 } 1895 1896 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1897 struct msghdr *msg, 1898 size_t len, int flags, 1899 struct scm_timestamping_internal *tss, 1900 int *cmsg_flags) 1901 { 1902 struct sk_buff *skb, *tmp; 1903 int copied = 0; 1904 1905 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1906 u32 offset = MPTCP_SKB_CB(skb)->offset; 1907 u32 data_len = skb->len - offset; 1908 u32 count = min_t(size_t, len - copied, data_len); 1909 int err; 1910 1911 if (!(flags & MSG_TRUNC)) { 1912 err = skb_copy_datagram_msg(skb, offset, msg, count); 1913 if (unlikely(err < 0)) { 1914 if (!copied) 1915 return err; 1916 break; 1917 } 1918 } 1919 1920 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1921 tcp_update_recv_tstamps(skb, tss); 1922 *cmsg_flags |= MPTCP_CMSG_TS; 1923 } 1924 1925 copied += count; 1926 1927 if (count < data_len) { 1928 if (!(flags & MSG_PEEK)) { 1929 MPTCP_SKB_CB(skb)->offset += count; 1930 MPTCP_SKB_CB(skb)->map_seq += count; 1931 } 1932 break; 1933 } 1934 1935 if (!(flags & MSG_PEEK)) { 1936 /* we will bulk release the skb memory later */ 1937 skb->destructor = NULL; 1938 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1939 __skb_unlink(skb, &msk->receive_queue); 1940 __kfree_skb(skb); 1941 } 1942 1943 if (copied >= len) 1944 break; 1945 } 1946 1947 return copied; 1948 } 1949 1950 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1951 * 1952 * Only difference: Use highest rtt estimate of the subflows in use. 1953 */ 1954 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1955 { 1956 struct mptcp_subflow_context *subflow; 1957 struct sock *sk = (struct sock *)msk; 1958 u8 scaling_ratio = U8_MAX; 1959 u32 time, advmss = 1; 1960 u64 rtt_us, mstamp; 1961 1962 msk_owned_by_me(msk); 1963 1964 if (copied <= 0) 1965 return; 1966 1967 msk->rcvq_space.copied += copied; 1968 1969 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1970 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1971 1972 rtt_us = msk->rcvq_space.rtt_us; 1973 if (rtt_us && time < (rtt_us >> 3)) 1974 return; 1975 1976 rtt_us = 0; 1977 mptcp_for_each_subflow(msk, subflow) { 1978 const struct tcp_sock *tp; 1979 u64 sf_rtt_us; 1980 u32 sf_advmss; 1981 1982 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1983 1984 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1985 sf_advmss = READ_ONCE(tp->advmss); 1986 1987 rtt_us = max(sf_rtt_us, rtt_us); 1988 advmss = max(sf_advmss, advmss); 1989 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1990 } 1991 1992 msk->rcvq_space.rtt_us = rtt_us; 1993 msk->scaling_ratio = scaling_ratio; 1994 if (time < (rtt_us >> 3) || rtt_us == 0) 1995 return; 1996 1997 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1998 goto new_measure; 1999 2000 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2001 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2002 u64 rcvwin, grow; 2003 int rcvbuf; 2004 2005 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2006 2007 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2008 2009 do_div(grow, msk->rcvq_space.space); 2010 rcvwin += (grow << 1); 2011 2012 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2013 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2014 2015 if (rcvbuf > sk->sk_rcvbuf) { 2016 u32 window_clamp; 2017 2018 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2019 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2020 2021 /* Make subflows follow along. If we do not do this, we 2022 * get drops at subflow level if skbs can't be moved to 2023 * the mptcp rx queue fast enough (announced rcv_win can 2024 * exceed ssk->sk_rcvbuf). 2025 */ 2026 mptcp_for_each_subflow(msk, subflow) { 2027 struct sock *ssk; 2028 bool slow; 2029 2030 ssk = mptcp_subflow_tcp_sock(subflow); 2031 slow = lock_sock_fast(ssk); 2032 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2033 tcp_sk(ssk)->window_clamp = window_clamp; 2034 tcp_cleanup_rbuf(ssk, 1); 2035 unlock_sock_fast(ssk, slow); 2036 } 2037 } 2038 } 2039 2040 msk->rcvq_space.space = msk->rcvq_space.copied; 2041 new_measure: 2042 msk->rcvq_space.copied = 0; 2043 msk->rcvq_space.time = mstamp; 2044 } 2045 2046 static void __mptcp_update_rmem(struct sock *sk) 2047 { 2048 struct mptcp_sock *msk = mptcp_sk(sk); 2049 2050 if (!msk->rmem_released) 2051 return; 2052 2053 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2054 mptcp_rmem_uncharge(sk, msk->rmem_released); 2055 WRITE_ONCE(msk->rmem_released, 0); 2056 } 2057 2058 static void __mptcp_splice_receive_queue(struct sock *sk) 2059 { 2060 struct mptcp_sock *msk = mptcp_sk(sk); 2061 2062 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2063 } 2064 2065 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2066 { 2067 struct sock *sk = (struct sock *)msk; 2068 unsigned int moved = 0; 2069 bool ret, done; 2070 2071 do { 2072 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2073 bool slowpath; 2074 2075 /* we can have data pending in the subflows only if the msk 2076 * receive buffer was full at subflow_data_ready() time, 2077 * that is an unlikely slow path. 2078 */ 2079 if (likely(!ssk)) 2080 break; 2081 2082 slowpath = lock_sock_fast(ssk); 2083 mptcp_data_lock(sk); 2084 __mptcp_update_rmem(sk); 2085 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2086 mptcp_data_unlock(sk); 2087 2088 if (unlikely(ssk->sk_err)) 2089 __mptcp_error_report(sk); 2090 unlock_sock_fast(ssk, slowpath); 2091 } while (!done); 2092 2093 /* acquire the data lock only if some input data is pending */ 2094 ret = moved > 0; 2095 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2096 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2097 mptcp_data_lock(sk); 2098 __mptcp_update_rmem(sk); 2099 ret |= __mptcp_ofo_queue(msk); 2100 __mptcp_splice_receive_queue(sk); 2101 mptcp_data_unlock(sk); 2102 } 2103 if (ret) 2104 mptcp_check_data_fin((struct sock *)msk); 2105 return !skb_queue_empty(&msk->receive_queue); 2106 } 2107 2108 static unsigned int mptcp_inq_hint(const struct sock *sk) 2109 { 2110 const struct mptcp_sock *msk = mptcp_sk(sk); 2111 const struct sk_buff *skb; 2112 2113 skb = skb_peek(&msk->receive_queue); 2114 if (skb) { 2115 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2116 2117 if (hint_val >= INT_MAX) 2118 return INT_MAX; 2119 2120 return (unsigned int)hint_val; 2121 } 2122 2123 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2124 return 1; 2125 2126 return 0; 2127 } 2128 2129 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2130 int flags, int *addr_len) 2131 { 2132 struct mptcp_sock *msk = mptcp_sk(sk); 2133 struct scm_timestamping_internal tss; 2134 int copied = 0, cmsg_flags = 0; 2135 int target; 2136 long timeo; 2137 2138 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2139 if (unlikely(flags & MSG_ERRQUEUE)) 2140 return inet_recv_error(sk, msg, len, addr_len); 2141 2142 lock_sock(sk); 2143 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2144 copied = -ENOTCONN; 2145 goto out_err; 2146 } 2147 2148 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2149 2150 len = min_t(size_t, len, INT_MAX); 2151 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2152 2153 if (unlikely(msk->recvmsg_inq)) 2154 cmsg_flags = MPTCP_CMSG_INQ; 2155 2156 while (copied < len) { 2157 int bytes_read; 2158 2159 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2160 if (unlikely(bytes_read < 0)) { 2161 if (!copied) 2162 copied = bytes_read; 2163 goto out_err; 2164 } 2165 2166 copied += bytes_read; 2167 2168 /* be sure to advertise window change */ 2169 mptcp_cleanup_rbuf(msk); 2170 2171 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2172 continue; 2173 2174 /* only the master socket status is relevant here. The exit 2175 * conditions mirror closely tcp_recvmsg() 2176 */ 2177 if (copied >= target) 2178 break; 2179 2180 if (copied) { 2181 if (sk->sk_err || 2182 sk->sk_state == TCP_CLOSE || 2183 (sk->sk_shutdown & RCV_SHUTDOWN) || 2184 !timeo || 2185 signal_pending(current)) 2186 break; 2187 } else { 2188 if (sk->sk_err) { 2189 copied = sock_error(sk); 2190 break; 2191 } 2192 2193 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2194 /* race breaker: the shutdown could be after the 2195 * previous receive queue check 2196 */ 2197 if (__mptcp_move_skbs(msk)) 2198 continue; 2199 break; 2200 } 2201 2202 if (sk->sk_state == TCP_CLOSE) { 2203 copied = -ENOTCONN; 2204 break; 2205 } 2206 2207 if (!timeo) { 2208 copied = -EAGAIN; 2209 break; 2210 } 2211 2212 if (signal_pending(current)) { 2213 copied = sock_intr_errno(timeo); 2214 break; 2215 } 2216 } 2217 2218 pr_debug("block timeout %ld", timeo); 2219 sk_wait_data(sk, &timeo, NULL); 2220 } 2221 2222 out_err: 2223 if (cmsg_flags && copied >= 0) { 2224 if (cmsg_flags & MPTCP_CMSG_TS) 2225 tcp_recv_timestamp(msg, sk, &tss); 2226 2227 if (cmsg_flags & MPTCP_CMSG_INQ) { 2228 unsigned int inq = mptcp_inq_hint(sk); 2229 2230 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2231 } 2232 } 2233 2234 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2235 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2236 skb_queue_empty(&msk->receive_queue), copied); 2237 if (!(flags & MSG_PEEK)) 2238 mptcp_rcv_space_adjust(msk, copied); 2239 2240 release_sock(sk); 2241 return copied; 2242 } 2243 2244 static void mptcp_retransmit_timer(struct timer_list *t) 2245 { 2246 struct inet_connection_sock *icsk = from_timer(icsk, t, 2247 icsk_retransmit_timer); 2248 struct sock *sk = &icsk->icsk_inet.sk; 2249 struct mptcp_sock *msk = mptcp_sk(sk); 2250 2251 bh_lock_sock(sk); 2252 if (!sock_owned_by_user(sk)) { 2253 /* we need a process context to retransmit */ 2254 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2255 mptcp_schedule_work(sk); 2256 } else { 2257 /* delegate our work to tcp_release_cb() */ 2258 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2259 } 2260 bh_unlock_sock(sk); 2261 sock_put(sk); 2262 } 2263 2264 static void mptcp_tout_timer(struct timer_list *t) 2265 { 2266 struct sock *sk = from_timer(sk, t, sk_timer); 2267 2268 mptcp_schedule_work(sk); 2269 sock_put(sk); 2270 } 2271 2272 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2273 * level. 2274 * 2275 * A backup subflow is returned only if that is the only kind available. 2276 */ 2277 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2278 { 2279 struct sock *backup = NULL, *pick = NULL; 2280 struct mptcp_subflow_context *subflow; 2281 int min_stale_count = INT_MAX; 2282 2283 mptcp_for_each_subflow(msk, subflow) { 2284 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2285 2286 if (!__mptcp_subflow_active(subflow)) 2287 continue; 2288 2289 /* still data outstanding at TCP level? skip this */ 2290 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2291 mptcp_pm_subflow_chk_stale(msk, ssk); 2292 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2293 continue; 2294 } 2295 2296 if (subflow->backup) { 2297 if (!backup) 2298 backup = ssk; 2299 continue; 2300 } 2301 2302 if (!pick) 2303 pick = ssk; 2304 } 2305 2306 if (pick) 2307 return pick; 2308 2309 /* use backup only if there are no progresses anywhere */ 2310 return min_stale_count > 1 ? backup : NULL; 2311 } 2312 2313 bool __mptcp_retransmit_pending_data(struct sock *sk) 2314 { 2315 struct mptcp_data_frag *cur, *rtx_head; 2316 struct mptcp_sock *msk = mptcp_sk(sk); 2317 2318 if (__mptcp_check_fallback(msk)) 2319 return false; 2320 2321 if (tcp_rtx_and_write_queues_empty(sk)) 2322 return false; 2323 2324 /* the closing socket has some data untransmitted and/or unacked: 2325 * some data in the mptcp rtx queue has not really xmitted yet. 2326 * keep it simple and re-inject the whole mptcp level rtx queue 2327 */ 2328 mptcp_data_lock(sk); 2329 __mptcp_clean_una_wakeup(sk); 2330 rtx_head = mptcp_rtx_head(sk); 2331 if (!rtx_head) { 2332 mptcp_data_unlock(sk); 2333 return false; 2334 } 2335 2336 msk->recovery_snd_nxt = msk->snd_nxt; 2337 msk->recovery = true; 2338 mptcp_data_unlock(sk); 2339 2340 msk->first_pending = rtx_head; 2341 msk->snd_burst = 0; 2342 2343 /* be sure to clear the "sent status" on all re-injected fragments */ 2344 list_for_each_entry(cur, &msk->rtx_queue, list) { 2345 if (!cur->already_sent) 2346 break; 2347 cur->already_sent = 0; 2348 } 2349 2350 return true; 2351 } 2352 2353 /* flags for __mptcp_close_ssk() */ 2354 #define MPTCP_CF_PUSH BIT(1) 2355 #define MPTCP_CF_FASTCLOSE BIT(2) 2356 2357 /* subflow sockets can be either outgoing (connect) or incoming 2358 * (accept). 2359 * 2360 * Outgoing subflows use in-kernel sockets. 2361 * Incoming subflows do not have their own 'struct socket' allocated, 2362 * so we need to use tcp_close() after detaching them from the mptcp 2363 * parent socket. 2364 */ 2365 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2366 struct mptcp_subflow_context *subflow, 2367 unsigned int flags) 2368 { 2369 struct mptcp_sock *msk = mptcp_sk(sk); 2370 bool dispose_it, need_push = false; 2371 2372 /* If the first subflow moved to a close state before accept, e.g. due 2373 * to an incoming reset or listener shutdown, the subflow socket is 2374 * already deleted by inet_child_forget() and the mptcp socket can't 2375 * survive too. 2376 */ 2377 if (msk->in_accept_queue && msk->first == ssk && 2378 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2379 /* ensure later check in mptcp_worker() will dispose the msk */ 2380 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2381 sock_set_flag(sk, SOCK_DEAD); 2382 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2383 mptcp_subflow_drop_ctx(ssk); 2384 goto out_release; 2385 } 2386 2387 dispose_it = msk->free_first || ssk != msk->first; 2388 if (dispose_it) 2389 list_del(&subflow->node); 2390 2391 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2392 2393 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2394 /* be sure to force the tcp_disconnect() path, 2395 * to generate the egress reset 2396 */ 2397 ssk->sk_lingertime = 0; 2398 sock_set_flag(ssk, SOCK_LINGER); 2399 subflow->send_fastclose = 1; 2400 } 2401 2402 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2403 if (!dispose_it) { 2404 /* The MPTCP code never wait on the subflow sockets, TCP-level 2405 * disconnect should never fail 2406 */ 2407 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2408 mptcp_subflow_ctx_reset(subflow); 2409 release_sock(ssk); 2410 2411 goto out; 2412 } 2413 2414 subflow->disposable = 1; 2415 2416 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2417 * the ssk has been already destroyed, we just need to release the 2418 * reference owned by msk; 2419 */ 2420 if (!inet_csk(ssk)->icsk_ulp_ops) { 2421 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2422 kfree_rcu(subflow, rcu); 2423 } else { 2424 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2425 __tcp_close(ssk, 0); 2426 2427 /* close acquired an extra ref */ 2428 __sock_put(ssk); 2429 } 2430 2431 out_release: 2432 __mptcp_subflow_error_report(sk, ssk); 2433 release_sock(ssk); 2434 2435 sock_put(ssk); 2436 2437 if (ssk == msk->first) 2438 WRITE_ONCE(msk->first, NULL); 2439 2440 out: 2441 if (need_push) 2442 __mptcp_push_pending(sk, 0); 2443 2444 /* Catch every 'all subflows closed' scenario, including peers silently 2445 * closing them, e.g. due to timeout. 2446 * For established sockets, allow an additional timeout before closing, 2447 * as the protocol can still create more subflows. 2448 */ 2449 if (list_is_singular(&msk->conn_list) && msk->first && 2450 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2451 if (sk->sk_state != TCP_ESTABLISHED || 2452 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2453 inet_sk_state_store(sk, TCP_CLOSE); 2454 mptcp_close_wake_up(sk); 2455 } else { 2456 mptcp_start_tout_timer(sk); 2457 } 2458 } 2459 } 2460 2461 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2462 struct mptcp_subflow_context *subflow) 2463 { 2464 if (sk->sk_state == TCP_ESTABLISHED) 2465 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2466 2467 /* subflow aborted before reaching the fully_established status 2468 * attempt the creation of the next subflow 2469 */ 2470 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2471 2472 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2473 } 2474 2475 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2476 { 2477 return 0; 2478 } 2479 2480 static void __mptcp_close_subflow(struct sock *sk) 2481 { 2482 struct mptcp_subflow_context *subflow, *tmp; 2483 struct mptcp_sock *msk = mptcp_sk(sk); 2484 2485 might_sleep(); 2486 2487 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2488 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2489 2490 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2491 continue; 2492 2493 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2494 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2495 continue; 2496 2497 mptcp_close_ssk(sk, ssk, subflow); 2498 } 2499 2500 } 2501 2502 static bool mptcp_close_tout_expired(const struct sock *sk) 2503 { 2504 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2505 sk->sk_state == TCP_CLOSE) 2506 return false; 2507 2508 return time_after32(tcp_jiffies32, 2509 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2510 } 2511 2512 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2513 { 2514 struct mptcp_subflow_context *subflow, *tmp; 2515 struct sock *sk = (struct sock *)msk; 2516 2517 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2518 return; 2519 2520 mptcp_token_destroy(msk); 2521 2522 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2523 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2524 bool slow; 2525 2526 slow = lock_sock_fast(tcp_sk); 2527 if (tcp_sk->sk_state != TCP_CLOSE) { 2528 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2529 tcp_set_state(tcp_sk, TCP_CLOSE); 2530 } 2531 unlock_sock_fast(tcp_sk, slow); 2532 } 2533 2534 /* Mirror the tcp_reset() error propagation */ 2535 switch (sk->sk_state) { 2536 case TCP_SYN_SENT: 2537 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2538 break; 2539 case TCP_CLOSE_WAIT: 2540 WRITE_ONCE(sk->sk_err, EPIPE); 2541 break; 2542 case TCP_CLOSE: 2543 return; 2544 default: 2545 WRITE_ONCE(sk->sk_err, ECONNRESET); 2546 } 2547 2548 inet_sk_state_store(sk, TCP_CLOSE); 2549 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2550 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2551 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2552 2553 /* the calling mptcp_worker will properly destroy the socket */ 2554 if (sock_flag(sk, SOCK_DEAD)) 2555 return; 2556 2557 sk->sk_state_change(sk); 2558 sk_error_report(sk); 2559 } 2560 2561 static void __mptcp_retrans(struct sock *sk) 2562 { 2563 struct mptcp_sock *msk = mptcp_sk(sk); 2564 struct mptcp_subflow_context *subflow; 2565 struct mptcp_sendmsg_info info = {}; 2566 struct mptcp_data_frag *dfrag; 2567 struct sock *ssk; 2568 int ret, err; 2569 u16 len = 0; 2570 2571 mptcp_clean_una_wakeup(sk); 2572 2573 /* first check ssk: need to kick "stale" logic */ 2574 err = mptcp_sched_get_retrans(msk); 2575 dfrag = mptcp_rtx_head(sk); 2576 if (!dfrag) { 2577 if (mptcp_data_fin_enabled(msk)) { 2578 struct inet_connection_sock *icsk = inet_csk(sk); 2579 2580 icsk->icsk_retransmits++; 2581 mptcp_set_datafin_timeout(sk); 2582 mptcp_send_ack(msk); 2583 2584 goto reset_timer; 2585 } 2586 2587 if (!mptcp_send_head(sk)) 2588 return; 2589 2590 goto reset_timer; 2591 } 2592 2593 if (err) 2594 goto reset_timer; 2595 2596 mptcp_for_each_subflow(msk, subflow) { 2597 if (READ_ONCE(subflow->scheduled)) { 2598 u16 copied = 0; 2599 2600 mptcp_subflow_set_scheduled(subflow, false); 2601 2602 ssk = mptcp_subflow_tcp_sock(subflow); 2603 2604 lock_sock(ssk); 2605 2606 /* limit retransmission to the bytes already sent on some subflows */ 2607 info.sent = 0; 2608 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2609 dfrag->already_sent; 2610 while (info.sent < info.limit) { 2611 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2612 if (ret <= 0) 2613 break; 2614 2615 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2616 copied += ret; 2617 info.sent += ret; 2618 } 2619 if (copied) { 2620 len = max(copied, len); 2621 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2622 info.size_goal); 2623 WRITE_ONCE(msk->allow_infinite_fallback, false); 2624 } 2625 2626 release_sock(ssk); 2627 } 2628 } 2629 2630 msk->bytes_retrans += len; 2631 dfrag->already_sent = max(dfrag->already_sent, len); 2632 2633 reset_timer: 2634 mptcp_check_and_set_pending(sk); 2635 2636 if (!mptcp_rtx_timer_pending(sk)) 2637 mptcp_reset_rtx_timer(sk); 2638 } 2639 2640 /* schedule the timeout timer for the relevant event: either close timeout 2641 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2642 */ 2643 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2644 { 2645 struct sock *sk = (struct sock *)msk; 2646 unsigned long timeout, close_timeout; 2647 2648 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2649 return; 2650 2651 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2652 TCP_TIMEWAIT_LEN; 2653 2654 /* the close timeout takes precedence on the fail one, and here at least one of 2655 * them is active 2656 */ 2657 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2658 2659 sk_reset_timer(sk, &sk->sk_timer, timeout); 2660 } 2661 2662 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2663 { 2664 struct sock *ssk = msk->first; 2665 bool slow; 2666 2667 if (!ssk) 2668 return; 2669 2670 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2671 2672 slow = lock_sock_fast(ssk); 2673 mptcp_subflow_reset(ssk); 2674 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2675 unlock_sock_fast(ssk, slow); 2676 } 2677 2678 static void mptcp_do_fastclose(struct sock *sk) 2679 { 2680 struct mptcp_subflow_context *subflow, *tmp; 2681 struct mptcp_sock *msk = mptcp_sk(sk); 2682 2683 inet_sk_state_store(sk, TCP_CLOSE); 2684 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2685 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2686 subflow, MPTCP_CF_FASTCLOSE); 2687 } 2688 2689 static void mptcp_worker(struct work_struct *work) 2690 { 2691 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2692 struct sock *sk = (struct sock *)msk; 2693 unsigned long fail_tout; 2694 int state; 2695 2696 lock_sock(sk); 2697 state = sk->sk_state; 2698 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2699 goto unlock; 2700 2701 mptcp_check_fastclose(msk); 2702 2703 mptcp_pm_nl_work(msk); 2704 2705 mptcp_check_send_data_fin(sk); 2706 mptcp_check_data_fin_ack(sk); 2707 mptcp_check_data_fin(sk); 2708 2709 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2710 __mptcp_close_subflow(sk); 2711 2712 if (mptcp_close_tout_expired(sk)) { 2713 mptcp_do_fastclose(sk); 2714 mptcp_close_wake_up(sk); 2715 } 2716 2717 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2718 __mptcp_destroy_sock(sk); 2719 goto unlock; 2720 } 2721 2722 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2723 __mptcp_retrans(sk); 2724 2725 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2726 if (fail_tout && time_after(jiffies, fail_tout)) 2727 mptcp_mp_fail_no_response(msk); 2728 2729 unlock: 2730 release_sock(sk); 2731 sock_put(sk); 2732 } 2733 2734 static void __mptcp_init_sock(struct sock *sk) 2735 { 2736 struct mptcp_sock *msk = mptcp_sk(sk); 2737 2738 INIT_LIST_HEAD(&msk->conn_list); 2739 INIT_LIST_HEAD(&msk->join_list); 2740 INIT_LIST_HEAD(&msk->rtx_queue); 2741 INIT_WORK(&msk->work, mptcp_worker); 2742 __skb_queue_head_init(&msk->receive_queue); 2743 msk->out_of_order_queue = RB_ROOT; 2744 msk->first_pending = NULL; 2745 msk->rmem_fwd_alloc = 0; 2746 WRITE_ONCE(msk->rmem_released, 0); 2747 msk->timer_ival = TCP_RTO_MIN; 2748 2749 WRITE_ONCE(msk->first, NULL); 2750 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2751 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2752 WRITE_ONCE(msk->allow_infinite_fallback, true); 2753 msk->recovery = false; 2754 msk->subflow_id = 1; 2755 2756 mptcp_pm_data_init(msk); 2757 2758 /* re-use the csk retrans timer for MPTCP-level retrans */ 2759 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2760 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2761 } 2762 2763 static void mptcp_ca_reset(struct sock *sk) 2764 { 2765 struct inet_connection_sock *icsk = inet_csk(sk); 2766 2767 tcp_assign_congestion_control(sk); 2768 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2769 2770 /* no need to keep a reference to the ops, the name will suffice */ 2771 tcp_cleanup_congestion_control(sk); 2772 icsk->icsk_ca_ops = NULL; 2773 } 2774 2775 static int mptcp_init_sock(struct sock *sk) 2776 { 2777 struct net *net = sock_net(sk); 2778 int ret; 2779 2780 __mptcp_init_sock(sk); 2781 2782 if (!mptcp_is_enabled(net)) 2783 return -ENOPROTOOPT; 2784 2785 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2786 return -ENOMEM; 2787 2788 ret = mptcp_init_sched(mptcp_sk(sk), 2789 mptcp_sched_find(mptcp_get_scheduler(net))); 2790 if (ret) 2791 return ret; 2792 2793 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2794 2795 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2796 * propagate the correct value 2797 */ 2798 mptcp_ca_reset(sk); 2799 2800 sk_sockets_allocated_inc(sk); 2801 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2802 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2803 2804 return 0; 2805 } 2806 2807 static void __mptcp_clear_xmit(struct sock *sk) 2808 { 2809 struct mptcp_sock *msk = mptcp_sk(sk); 2810 struct mptcp_data_frag *dtmp, *dfrag; 2811 2812 WRITE_ONCE(msk->first_pending, NULL); 2813 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2814 dfrag_clear(sk, dfrag); 2815 } 2816 2817 void mptcp_cancel_work(struct sock *sk) 2818 { 2819 struct mptcp_sock *msk = mptcp_sk(sk); 2820 2821 if (cancel_work_sync(&msk->work)) 2822 __sock_put(sk); 2823 } 2824 2825 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2826 { 2827 lock_sock(ssk); 2828 2829 switch (ssk->sk_state) { 2830 case TCP_LISTEN: 2831 if (!(how & RCV_SHUTDOWN)) 2832 break; 2833 fallthrough; 2834 case TCP_SYN_SENT: 2835 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2836 break; 2837 default: 2838 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2839 pr_debug("Fallback"); 2840 ssk->sk_shutdown |= how; 2841 tcp_shutdown(ssk, how); 2842 2843 /* simulate the data_fin ack reception to let the state 2844 * machine move forward 2845 */ 2846 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2847 mptcp_schedule_work(sk); 2848 } else { 2849 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2850 tcp_send_ack(ssk); 2851 if (!mptcp_rtx_timer_pending(sk)) 2852 mptcp_reset_rtx_timer(sk); 2853 } 2854 break; 2855 } 2856 2857 release_sock(ssk); 2858 } 2859 2860 static const unsigned char new_state[16] = { 2861 /* current state: new state: action: */ 2862 [0 /* (Invalid) */] = TCP_CLOSE, 2863 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2864 [TCP_SYN_SENT] = TCP_CLOSE, 2865 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2866 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2867 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2868 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2869 [TCP_CLOSE] = TCP_CLOSE, 2870 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2871 [TCP_LAST_ACK] = TCP_LAST_ACK, 2872 [TCP_LISTEN] = TCP_CLOSE, 2873 [TCP_CLOSING] = TCP_CLOSING, 2874 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2875 }; 2876 2877 static int mptcp_close_state(struct sock *sk) 2878 { 2879 int next = (int)new_state[sk->sk_state]; 2880 int ns = next & TCP_STATE_MASK; 2881 2882 inet_sk_state_store(sk, ns); 2883 2884 return next & TCP_ACTION_FIN; 2885 } 2886 2887 static void mptcp_check_send_data_fin(struct sock *sk) 2888 { 2889 struct mptcp_subflow_context *subflow; 2890 struct mptcp_sock *msk = mptcp_sk(sk); 2891 2892 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2893 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2894 msk->snd_nxt, msk->write_seq); 2895 2896 /* we still need to enqueue subflows or not really shutting down, 2897 * skip this 2898 */ 2899 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2900 mptcp_send_head(sk)) 2901 return; 2902 2903 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2904 2905 mptcp_for_each_subflow(msk, subflow) { 2906 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2907 2908 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2909 } 2910 } 2911 2912 static void __mptcp_wr_shutdown(struct sock *sk) 2913 { 2914 struct mptcp_sock *msk = mptcp_sk(sk); 2915 2916 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2917 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2918 !!mptcp_send_head(sk)); 2919 2920 /* will be ignored by fallback sockets */ 2921 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2922 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2923 2924 mptcp_check_send_data_fin(sk); 2925 } 2926 2927 static void __mptcp_destroy_sock(struct sock *sk) 2928 { 2929 struct mptcp_sock *msk = mptcp_sk(sk); 2930 2931 pr_debug("msk=%p", msk); 2932 2933 might_sleep(); 2934 2935 mptcp_stop_rtx_timer(sk); 2936 sk_stop_timer(sk, &sk->sk_timer); 2937 msk->pm.status = 0; 2938 mptcp_release_sched(msk); 2939 2940 sk->sk_prot->destroy(sk); 2941 2942 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2943 WARN_ON_ONCE(msk->rmem_released); 2944 sk_stream_kill_queues(sk); 2945 xfrm_sk_free_policy(sk); 2946 2947 sock_put(sk); 2948 } 2949 2950 void __mptcp_unaccepted_force_close(struct sock *sk) 2951 { 2952 sock_set_flag(sk, SOCK_DEAD); 2953 mptcp_do_fastclose(sk); 2954 __mptcp_destroy_sock(sk); 2955 } 2956 2957 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2958 { 2959 /* Concurrent splices from sk_receive_queue into receive_queue will 2960 * always show at least one non-empty queue when checked in this order. 2961 */ 2962 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2963 skb_queue_empty_lockless(&msk->receive_queue)) 2964 return 0; 2965 2966 return EPOLLIN | EPOLLRDNORM; 2967 } 2968 2969 static void mptcp_check_listen_stop(struct sock *sk) 2970 { 2971 struct sock *ssk; 2972 2973 if (inet_sk_state_load(sk) != TCP_LISTEN) 2974 return; 2975 2976 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2977 ssk = mptcp_sk(sk)->first; 2978 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2979 return; 2980 2981 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2982 tcp_set_state(ssk, TCP_CLOSE); 2983 mptcp_subflow_queue_clean(sk, ssk); 2984 inet_csk_listen_stop(ssk); 2985 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 2986 release_sock(ssk); 2987 } 2988 2989 bool __mptcp_close(struct sock *sk, long timeout) 2990 { 2991 struct mptcp_subflow_context *subflow; 2992 struct mptcp_sock *msk = mptcp_sk(sk); 2993 bool do_cancel_work = false; 2994 int subflows_alive = 0; 2995 2996 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2997 2998 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2999 mptcp_check_listen_stop(sk); 3000 inet_sk_state_store(sk, TCP_CLOSE); 3001 goto cleanup; 3002 } 3003 3004 if (mptcp_check_readable(msk) || timeout < 0) { 3005 /* If the msk has read data, or the caller explicitly ask it, 3006 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3007 */ 3008 mptcp_do_fastclose(sk); 3009 timeout = 0; 3010 } else if (mptcp_close_state(sk)) { 3011 __mptcp_wr_shutdown(sk); 3012 } 3013 3014 sk_stream_wait_close(sk, timeout); 3015 3016 cleanup: 3017 /* orphan all the subflows */ 3018 mptcp_for_each_subflow(msk, subflow) { 3019 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3020 bool slow = lock_sock_fast_nested(ssk); 3021 3022 subflows_alive += ssk->sk_state != TCP_CLOSE; 3023 3024 /* since the close timeout takes precedence on the fail one, 3025 * cancel the latter 3026 */ 3027 if (ssk == msk->first) 3028 subflow->fail_tout = 0; 3029 3030 /* detach from the parent socket, but allow data_ready to 3031 * push incoming data into the mptcp stack, to properly ack it 3032 */ 3033 ssk->sk_socket = NULL; 3034 ssk->sk_wq = NULL; 3035 unlock_sock_fast(ssk, slow); 3036 } 3037 sock_orphan(sk); 3038 3039 /* all the subflows are closed, only timeout can change the msk 3040 * state, let's not keep resources busy for no reasons 3041 */ 3042 if (subflows_alive == 0) 3043 inet_sk_state_store(sk, TCP_CLOSE); 3044 3045 sock_hold(sk); 3046 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3047 if (msk->token) 3048 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3049 3050 if (sk->sk_state == TCP_CLOSE) { 3051 __mptcp_destroy_sock(sk); 3052 do_cancel_work = true; 3053 } else { 3054 mptcp_start_tout_timer(sk); 3055 } 3056 3057 return do_cancel_work; 3058 } 3059 3060 static void mptcp_close(struct sock *sk, long timeout) 3061 { 3062 bool do_cancel_work; 3063 3064 lock_sock(sk); 3065 3066 do_cancel_work = __mptcp_close(sk, timeout); 3067 release_sock(sk); 3068 if (do_cancel_work) 3069 mptcp_cancel_work(sk); 3070 3071 sock_put(sk); 3072 } 3073 3074 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3075 { 3076 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3077 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3078 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3079 3080 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3081 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3082 3083 if (msk6 && ssk6) { 3084 msk6->saddr = ssk6->saddr; 3085 msk6->flow_label = ssk6->flow_label; 3086 } 3087 #endif 3088 3089 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3090 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3091 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3092 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3093 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3094 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3095 } 3096 3097 static int mptcp_disconnect(struct sock *sk, int flags) 3098 { 3099 struct mptcp_sock *msk = mptcp_sk(sk); 3100 3101 /* Deny disconnect if other threads are blocked in sk_wait_event() 3102 * or inet_wait_for_connect(). 3103 */ 3104 if (sk->sk_wait_pending) 3105 return -EBUSY; 3106 3107 /* We are on the fastopen error path. We can't call straight into the 3108 * subflows cleanup code due to lock nesting (we are already under 3109 * msk->firstsocket lock). 3110 */ 3111 if (msk->fastopening) 3112 return -EBUSY; 3113 3114 mptcp_check_listen_stop(sk); 3115 inet_sk_state_store(sk, TCP_CLOSE); 3116 3117 mptcp_stop_rtx_timer(sk); 3118 mptcp_stop_tout_timer(sk); 3119 3120 if (msk->token) 3121 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3122 3123 /* msk->subflow is still intact, the following will not free the first 3124 * subflow 3125 */ 3126 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3127 WRITE_ONCE(msk->flags, 0); 3128 msk->cb_flags = 0; 3129 msk->push_pending = 0; 3130 msk->recovery = false; 3131 msk->can_ack = false; 3132 msk->fully_established = false; 3133 msk->rcv_data_fin = false; 3134 msk->snd_data_fin_enable = false; 3135 msk->rcv_fastclose = false; 3136 msk->use_64bit_ack = false; 3137 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3138 mptcp_pm_data_reset(msk); 3139 mptcp_ca_reset(sk); 3140 msk->bytes_acked = 0; 3141 msk->bytes_received = 0; 3142 msk->bytes_sent = 0; 3143 msk->bytes_retrans = 0; 3144 3145 WRITE_ONCE(sk->sk_shutdown, 0); 3146 sk_error_report(sk); 3147 return 0; 3148 } 3149 3150 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3151 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3152 { 3153 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3154 3155 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3156 } 3157 #endif 3158 3159 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3160 const struct mptcp_options_received *mp_opt, 3161 struct sock *ssk, 3162 struct request_sock *req) 3163 { 3164 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3165 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3166 struct mptcp_sock *msk; 3167 3168 if (!nsk) 3169 return NULL; 3170 3171 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3172 if (nsk->sk_family == AF_INET6) 3173 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3174 #endif 3175 3176 nsk->sk_wait_pending = 0; 3177 __mptcp_init_sock(nsk); 3178 3179 msk = mptcp_sk(nsk); 3180 msk->local_key = subflow_req->local_key; 3181 msk->token = subflow_req->token; 3182 msk->in_accept_queue = 1; 3183 WRITE_ONCE(msk->fully_established, false); 3184 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3185 WRITE_ONCE(msk->csum_enabled, true); 3186 3187 msk->write_seq = subflow_req->idsn + 1; 3188 msk->snd_nxt = msk->write_seq; 3189 msk->snd_una = msk->write_seq; 3190 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3191 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3192 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3193 3194 /* passive msk is created after the first/MPC subflow */ 3195 msk->subflow_id = 2; 3196 3197 sock_reset_flag(nsk, SOCK_RCU_FREE); 3198 security_inet_csk_clone(nsk, req); 3199 3200 /* this can't race with mptcp_close(), as the msk is 3201 * not yet exposted to user-space 3202 */ 3203 inet_sk_state_store(nsk, TCP_ESTABLISHED); 3204 3205 /* The msk maintain a ref to each subflow in the connections list */ 3206 WRITE_ONCE(msk->first, ssk); 3207 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3208 sock_hold(ssk); 3209 3210 /* new mpc subflow takes ownership of the newly 3211 * created mptcp socket 3212 */ 3213 mptcp_token_accept(subflow_req, msk); 3214 3215 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3216 * uses the correct data 3217 */ 3218 mptcp_copy_inaddrs(nsk, ssk); 3219 mptcp_propagate_sndbuf(nsk, ssk); 3220 3221 mptcp_rcv_space_init(msk, ssk); 3222 bh_unlock_sock(nsk); 3223 3224 /* note: the newly allocated socket refcount is 2 now */ 3225 return nsk; 3226 } 3227 3228 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3229 { 3230 const struct tcp_sock *tp = tcp_sk(ssk); 3231 3232 msk->rcvq_space.copied = 0; 3233 msk->rcvq_space.rtt_us = 0; 3234 3235 msk->rcvq_space.time = tp->tcp_mstamp; 3236 3237 /* initial rcv_space offering made to peer */ 3238 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3239 TCP_INIT_CWND * tp->advmss); 3240 if (msk->rcvq_space.space == 0) 3241 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3242 3243 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3244 } 3245 3246 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err, 3247 bool kern) 3248 { 3249 struct sock *newsk; 3250 3251 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3252 newsk = inet_csk_accept(ssk, flags, err, kern); 3253 if (!newsk) 3254 return NULL; 3255 3256 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3257 if (sk_is_mptcp(newsk)) { 3258 struct mptcp_subflow_context *subflow; 3259 struct sock *new_mptcp_sock; 3260 3261 subflow = mptcp_subflow_ctx(newsk); 3262 new_mptcp_sock = subflow->conn; 3263 3264 /* is_mptcp should be false if subflow->conn is missing, see 3265 * subflow_syn_recv_sock() 3266 */ 3267 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3268 tcp_sk(newsk)->is_mptcp = 0; 3269 goto out; 3270 } 3271 3272 newsk = new_mptcp_sock; 3273 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3274 } else { 3275 MPTCP_INC_STATS(sock_net(ssk), 3276 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3277 } 3278 3279 out: 3280 newsk->sk_kern_sock = kern; 3281 return newsk; 3282 } 3283 3284 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3285 { 3286 struct mptcp_subflow_context *subflow, *tmp; 3287 struct sock *sk = (struct sock *)msk; 3288 3289 __mptcp_clear_xmit(sk); 3290 3291 /* join list will be eventually flushed (with rst) at sock lock release time */ 3292 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3293 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3294 3295 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3296 mptcp_data_lock(sk); 3297 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3298 __skb_queue_purge(&sk->sk_receive_queue); 3299 skb_rbtree_purge(&msk->out_of_order_queue); 3300 mptcp_data_unlock(sk); 3301 3302 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3303 * inet_sock_destruct() will dispose it 3304 */ 3305 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3306 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3307 mptcp_token_destroy(msk); 3308 mptcp_pm_free_anno_list(msk); 3309 mptcp_free_local_addr_list(msk); 3310 } 3311 3312 static void mptcp_destroy(struct sock *sk) 3313 { 3314 struct mptcp_sock *msk = mptcp_sk(sk); 3315 3316 /* allow the following to close even the initial subflow */ 3317 msk->free_first = 1; 3318 mptcp_destroy_common(msk, 0); 3319 sk_sockets_allocated_dec(sk); 3320 } 3321 3322 void __mptcp_data_acked(struct sock *sk) 3323 { 3324 if (!sock_owned_by_user(sk)) 3325 __mptcp_clean_una(sk); 3326 else 3327 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3328 3329 if (mptcp_pending_data_fin_ack(sk)) 3330 mptcp_schedule_work(sk); 3331 } 3332 3333 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3334 { 3335 if (!mptcp_send_head(sk)) 3336 return; 3337 3338 if (!sock_owned_by_user(sk)) 3339 __mptcp_subflow_push_pending(sk, ssk, false); 3340 else 3341 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3342 } 3343 3344 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3345 BIT(MPTCP_RETRANSMIT) | \ 3346 BIT(MPTCP_FLUSH_JOIN_LIST)) 3347 3348 /* processes deferred events and flush wmem */ 3349 static void mptcp_release_cb(struct sock *sk) 3350 __must_hold(&sk->sk_lock.slock) 3351 { 3352 struct mptcp_sock *msk = mptcp_sk(sk); 3353 3354 for (;;) { 3355 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3356 msk->push_pending; 3357 struct list_head join_list; 3358 3359 if (!flags) 3360 break; 3361 3362 INIT_LIST_HEAD(&join_list); 3363 list_splice_init(&msk->join_list, &join_list); 3364 3365 /* the following actions acquire the subflow socket lock 3366 * 3367 * 1) can't be invoked in atomic scope 3368 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3369 * datapath acquires the msk socket spinlock while helding 3370 * the subflow socket lock 3371 */ 3372 msk->push_pending = 0; 3373 msk->cb_flags &= ~flags; 3374 spin_unlock_bh(&sk->sk_lock.slock); 3375 3376 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3377 __mptcp_flush_join_list(sk, &join_list); 3378 if (flags & BIT(MPTCP_PUSH_PENDING)) 3379 __mptcp_push_pending(sk, 0); 3380 if (flags & BIT(MPTCP_RETRANSMIT)) 3381 __mptcp_retrans(sk); 3382 3383 cond_resched(); 3384 spin_lock_bh(&sk->sk_lock.slock); 3385 } 3386 3387 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3388 __mptcp_clean_una_wakeup(sk); 3389 if (unlikely(msk->cb_flags)) { 3390 /* be sure to set the current sk state before tacking actions 3391 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3392 */ 3393 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3394 __mptcp_set_connected(sk); 3395 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3396 __mptcp_error_report(sk); 3397 } 3398 3399 __mptcp_update_rmem(sk); 3400 } 3401 3402 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3403 * TCP can't schedule delack timer before the subflow is fully established. 3404 * MPTCP uses the delack timer to do 3rd ack retransmissions 3405 */ 3406 static void schedule_3rdack_retransmission(struct sock *ssk) 3407 { 3408 struct inet_connection_sock *icsk = inet_csk(ssk); 3409 struct tcp_sock *tp = tcp_sk(ssk); 3410 unsigned long timeout; 3411 3412 if (mptcp_subflow_ctx(ssk)->fully_established) 3413 return; 3414 3415 /* reschedule with a timeout above RTT, as we must look only for drop */ 3416 if (tp->srtt_us) 3417 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3418 else 3419 timeout = TCP_TIMEOUT_INIT; 3420 timeout += jiffies; 3421 3422 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3423 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3424 icsk->icsk_ack.timeout = timeout; 3425 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3426 } 3427 3428 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3429 { 3430 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3431 struct sock *sk = subflow->conn; 3432 3433 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3434 mptcp_data_lock(sk); 3435 if (!sock_owned_by_user(sk)) 3436 __mptcp_subflow_push_pending(sk, ssk, true); 3437 else 3438 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3439 mptcp_data_unlock(sk); 3440 } 3441 if (status & BIT(MPTCP_DELEGATE_ACK)) 3442 schedule_3rdack_retransmission(ssk); 3443 } 3444 3445 static int mptcp_hash(struct sock *sk) 3446 { 3447 /* should never be called, 3448 * we hash the TCP subflows not the master socket 3449 */ 3450 WARN_ON_ONCE(1); 3451 return 0; 3452 } 3453 3454 static void mptcp_unhash(struct sock *sk) 3455 { 3456 /* called from sk_common_release(), but nothing to do here */ 3457 } 3458 3459 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3460 { 3461 struct mptcp_sock *msk = mptcp_sk(sk); 3462 3463 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3464 if (WARN_ON_ONCE(!msk->first)) 3465 return -EINVAL; 3466 3467 return inet_csk_get_port(msk->first, snum); 3468 } 3469 3470 void mptcp_finish_connect(struct sock *ssk) 3471 { 3472 struct mptcp_subflow_context *subflow; 3473 struct mptcp_sock *msk; 3474 struct sock *sk; 3475 3476 subflow = mptcp_subflow_ctx(ssk); 3477 sk = subflow->conn; 3478 msk = mptcp_sk(sk); 3479 3480 pr_debug("msk=%p, token=%u", sk, subflow->token); 3481 3482 subflow->map_seq = subflow->iasn; 3483 subflow->map_subflow_seq = 1; 3484 3485 /* the socket is not connected yet, no msk/subflow ops can access/race 3486 * accessing the field below 3487 */ 3488 WRITE_ONCE(msk->local_key, subflow->local_key); 3489 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3490 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3491 WRITE_ONCE(msk->snd_una, msk->write_seq); 3492 3493 mptcp_pm_new_connection(msk, ssk, 0); 3494 3495 mptcp_rcv_space_init(msk, ssk); 3496 } 3497 3498 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3499 { 3500 write_lock_bh(&sk->sk_callback_lock); 3501 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3502 sk_set_socket(sk, parent); 3503 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3504 write_unlock_bh(&sk->sk_callback_lock); 3505 } 3506 3507 bool mptcp_finish_join(struct sock *ssk) 3508 { 3509 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3510 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3511 struct sock *parent = (void *)msk; 3512 bool ret = true; 3513 3514 pr_debug("msk=%p, subflow=%p", msk, subflow); 3515 3516 /* mptcp socket already closing? */ 3517 if (!mptcp_is_fully_established(parent)) { 3518 subflow->reset_reason = MPTCP_RST_EMPTCP; 3519 return false; 3520 } 3521 3522 /* active subflow, already present inside the conn_list */ 3523 if (!list_empty(&subflow->node)) { 3524 mptcp_subflow_joined(msk, ssk); 3525 return true; 3526 } 3527 3528 if (!mptcp_pm_allow_new_subflow(msk)) 3529 goto err_prohibited; 3530 3531 /* If we can't acquire msk socket lock here, let the release callback 3532 * handle it 3533 */ 3534 mptcp_data_lock(parent); 3535 if (!sock_owned_by_user(parent)) { 3536 ret = __mptcp_finish_join(msk, ssk); 3537 if (ret) { 3538 sock_hold(ssk); 3539 list_add_tail(&subflow->node, &msk->conn_list); 3540 } 3541 } else { 3542 sock_hold(ssk); 3543 list_add_tail(&subflow->node, &msk->join_list); 3544 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3545 } 3546 mptcp_data_unlock(parent); 3547 3548 if (!ret) { 3549 err_prohibited: 3550 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3551 return false; 3552 } 3553 3554 return true; 3555 } 3556 3557 static void mptcp_shutdown(struct sock *sk, int how) 3558 { 3559 pr_debug("sk=%p, how=%d", sk, how); 3560 3561 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3562 __mptcp_wr_shutdown(sk); 3563 } 3564 3565 static int mptcp_forward_alloc_get(const struct sock *sk) 3566 { 3567 return READ_ONCE(sk->sk_forward_alloc) + 3568 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3569 } 3570 3571 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3572 { 3573 const struct sock *sk = (void *)msk; 3574 u64 delta; 3575 3576 if (sk->sk_state == TCP_LISTEN) 3577 return -EINVAL; 3578 3579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3580 return 0; 3581 3582 delta = msk->write_seq - v; 3583 if (__mptcp_check_fallback(msk) && msk->first) { 3584 struct tcp_sock *tp = tcp_sk(msk->first); 3585 3586 /* the first subflow is disconnected after close - see 3587 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3588 * so ignore that status, too. 3589 */ 3590 if (!((1 << msk->first->sk_state) & 3591 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3592 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3593 } 3594 if (delta > INT_MAX) 3595 delta = INT_MAX; 3596 3597 return (int)delta; 3598 } 3599 3600 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3601 { 3602 struct mptcp_sock *msk = mptcp_sk(sk); 3603 bool slow; 3604 3605 switch (cmd) { 3606 case SIOCINQ: 3607 if (sk->sk_state == TCP_LISTEN) 3608 return -EINVAL; 3609 3610 lock_sock(sk); 3611 __mptcp_move_skbs(msk); 3612 *karg = mptcp_inq_hint(sk); 3613 release_sock(sk); 3614 break; 3615 case SIOCOUTQ: 3616 slow = lock_sock_fast(sk); 3617 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3618 unlock_sock_fast(sk, slow); 3619 break; 3620 case SIOCOUTQNSD: 3621 slow = lock_sock_fast(sk); 3622 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3623 unlock_sock_fast(sk, slow); 3624 break; 3625 default: 3626 return -ENOIOCTLCMD; 3627 } 3628 3629 return 0; 3630 } 3631 3632 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3633 struct mptcp_subflow_context *subflow) 3634 { 3635 subflow->request_mptcp = 0; 3636 __mptcp_do_fallback(msk); 3637 } 3638 3639 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3640 { 3641 struct mptcp_subflow_context *subflow; 3642 struct mptcp_sock *msk = mptcp_sk(sk); 3643 int err = -EINVAL; 3644 struct sock *ssk; 3645 3646 ssk = __mptcp_nmpc_sk(msk); 3647 if (IS_ERR(ssk)) 3648 return PTR_ERR(ssk); 3649 3650 inet_sk_state_store(sk, TCP_SYN_SENT); 3651 subflow = mptcp_subflow_ctx(ssk); 3652 #ifdef CONFIG_TCP_MD5SIG 3653 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3654 * TCP option space. 3655 */ 3656 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3657 mptcp_subflow_early_fallback(msk, subflow); 3658 #endif 3659 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3660 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3661 mptcp_subflow_early_fallback(msk, subflow); 3662 } 3663 if (likely(!__mptcp_check_fallback(msk))) 3664 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3665 3666 /* if reaching here via the fastopen/sendmsg path, the caller already 3667 * acquired the subflow socket lock, too. 3668 */ 3669 if (!msk->fastopening) 3670 lock_sock(ssk); 3671 3672 /* the following mirrors closely a very small chunk of code from 3673 * __inet_stream_connect() 3674 */ 3675 if (ssk->sk_state != TCP_CLOSE) 3676 goto out; 3677 3678 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3679 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3680 if (err) 3681 goto out; 3682 } 3683 3684 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3685 if (err < 0) 3686 goto out; 3687 3688 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3689 3690 out: 3691 if (!msk->fastopening) 3692 release_sock(ssk); 3693 3694 /* on successful connect, the msk state will be moved to established by 3695 * subflow_finish_connect() 3696 */ 3697 if (unlikely(err)) { 3698 /* avoid leaving a dangling token in an unconnected socket */ 3699 mptcp_token_destroy(msk); 3700 inet_sk_state_store(sk, TCP_CLOSE); 3701 return err; 3702 } 3703 3704 mptcp_copy_inaddrs(sk, ssk); 3705 return 0; 3706 } 3707 3708 static struct proto mptcp_prot = { 3709 .name = "MPTCP", 3710 .owner = THIS_MODULE, 3711 .init = mptcp_init_sock, 3712 .connect = mptcp_connect, 3713 .disconnect = mptcp_disconnect, 3714 .close = mptcp_close, 3715 .accept = mptcp_accept, 3716 .setsockopt = mptcp_setsockopt, 3717 .getsockopt = mptcp_getsockopt, 3718 .shutdown = mptcp_shutdown, 3719 .destroy = mptcp_destroy, 3720 .sendmsg = mptcp_sendmsg, 3721 .ioctl = mptcp_ioctl, 3722 .recvmsg = mptcp_recvmsg, 3723 .release_cb = mptcp_release_cb, 3724 .hash = mptcp_hash, 3725 .unhash = mptcp_unhash, 3726 .get_port = mptcp_get_port, 3727 .forward_alloc_get = mptcp_forward_alloc_get, 3728 .sockets_allocated = &mptcp_sockets_allocated, 3729 3730 .memory_allocated = &tcp_memory_allocated, 3731 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3732 3733 .memory_pressure = &tcp_memory_pressure, 3734 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3735 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3736 .sysctl_mem = sysctl_tcp_mem, 3737 .obj_size = sizeof(struct mptcp_sock), 3738 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3739 .no_autobind = true, 3740 }; 3741 3742 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3743 { 3744 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3745 struct sock *ssk, *sk = sock->sk; 3746 int err = -EINVAL; 3747 3748 lock_sock(sk); 3749 ssk = __mptcp_nmpc_sk(msk); 3750 if (IS_ERR(ssk)) { 3751 err = PTR_ERR(ssk); 3752 goto unlock; 3753 } 3754 3755 if (sk->sk_family == AF_INET) 3756 err = inet_bind_sk(ssk, uaddr, addr_len); 3757 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3758 else if (sk->sk_family == AF_INET6) 3759 err = inet6_bind_sk(ssk, uaddr, addr_len); 3760 #endif 3761 if (!err) 3762 mptcp_copy_inaddrs(sk, ssk); 3763 3764 unlock: 3765 release_sock(sk); 3766 return err; 3767 } 3768 3769 static int mptcp_listen(struct socket *sock, int backlog) 3770 { 3771 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3772 struct sock *sk = sock->sk; 3773 struct sock *ssk; 3774 int err; 3775 3776 pr_debug("msk=%p", msk); 3777 3778 lock_sock(sk); 3779 3780 err = -EINVAL; 3781 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3782 goto unlock; 3783 3784 ssk = __mptcp_nmpc_sk(msk); 3785 if (IS_ERR(ssk)) { 3786 err = PTR_ERR(ssk); 3787 goto unlock; 3788 } 3789 3790 inet_sk_state_store(sk, TCP_LISTEN); 3791 sock_set_flag(sk, SOCK_RCU_FREE); 3792 3793 lock_sock(ssk); 3794 err = __inet_listen_sk(ssk, backlog); 3795 release_sock(ssk); 3796 inet_sk_state_store(sk, inet_sk_state_load(ssk)); 3797 3798 if (!err) { 3799 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3800 mptcp_copy_inaddrs(sk, ssk); 3801 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3802 } 3803 3804 unlock: 3805 release_sock(sk); 3806 return err; 3807 } 3808 3809 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3810 int flags, bool kern) 3811 { 3812 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3813 struct sock *ssk, *newsk; 3814 int err; 3815 3816 pr_debug("msk=%p", msk); 3817 3818 /* Buggy applications can call accept on socket states other then LISTEN 3819 * but no need to allocate the first subflow just to error out. 3820 */ 3821 ssk = READ_ONCE(msk->first); 3822 if (!ssk) 3823 return -EINVAL; 3824 3825 newsk = mptcp_accept(ssk, flags, &err, kern); 3826 if (!newsk) 3827 return err; 3828 3829 lock_sock(newsk); 3830 3831 __inet_accept(sock, newsock, newsk); 3832 if (!mptcp_is_tcpsk(newsock->sk)) { 3833 struct mptcp_sock *msk = mptcp_sk(newsk); 3834 struct mptcp_subflow_context *subflow; 3835 3836 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3837 msk->in_accept_queue = 0; 3838 3839 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3840 * This is needed so NOSPACE flag can be set from tcp stack. 3841 */ 3842 mptcp_for_each_subflow(msk, subflow) { 3843 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3844 3845 if (!ssk->sk_socket) 3846 mptcp_sock_graft(ssk, newsock); 3847 } 3848 3849 /* Do late cleanup for the first subflow as necessary. Also 3850 * deal with bad peers not doing a complete shutdown. 3851 */ 3852 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3853 __mptcp_close_ssk(newsk, msk->first, 3854 mptcp_subflow_ctx(msk->first), 0); 3855 if (unlikely(list_is_singular(&msk->conn_list))) 3856 inet_sk_state_store(newsk, TCP_CLOSE); 3857 } 3858 } 3859 release_sock(newsk); 3860 3861 return 0; 3862 } 3863 3864 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3865 { 3866 struct sock *sk = (struct sock *)msk; 3867 3868 if (sk_stream_is_writeable(sk)) 3869 return EPOLLOUT | EPOLLWRNORM; 3870 3871 mptcp_set_nospace(sk); 3872 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3873 if (sk_stream_is_writeable(sk)) 3874 return EPOLLOUT | EPOLLWRNORM; 3875 3876 return 0; 3877 } 3878 3879 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3880 struct poll_table_struct *wait) 3881 { 3882 struct sock *sk = sock->sk; 3883 struct mptcp_sock *msk; 3884 __poll_t mask = 0; 3885 u8 shutdown; 3886 int state; 3887 3888 msk = mptcp_sk(sk); 3889 sock_poll_wait(file, sock, wait); 3890 3891 state = inet_sk_state_load(sk); 3892 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3893 if (state == TCP_LISTEN) { 3894 struct sock *ssk = READ_ONCE(msk->first); 3895 3896 if (WARN_ON_ONCE(!ssk)) 3897 return 0; 3898 3899 return inet_csk_listen_poll(ssk); 3900 } 3901 3902 shutdown = READ_ONCE(sk->sk_shutdown); 3903 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3904 mask |= EPOLLHUP; 3905 if (shutdown & RCV_SHUTDOWN) 3906 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3907 3908 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3909 mask |= mptcp_check_readable(msk); 3910 if (shutdown & SEND_SHUTDOWN) 3911 mask |= EPOLLOUT | EPOLLWRNORM; 3912 else 3913 mask |= mptcp_check_writeable(msk); 3914 } else if (state == TCP_SYN_SENT && 3915 inet_test_bit(DEFER_CONNECT, sk)) { 3916 /* cf tcp_poll() note about TFO */ 3917 mask |= EPOLLOUT | EPOLLWRNORM; 3918 } 3919 3920 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3921 smp_rmb(); 3922 if (READ_ONCE(sk->sk_err)) 3923 mask |= EPOLLERR; 3924 3925 return mask; 3926 } 3927 3928 static const struct proto_ops mptcp_stream_ops = { 3929 .family = PF_INET, 3930 .owner = THIS_MODULE, 3931 .release = inet_release, 3932 .bind = mptcp_bind, 3933 .connect = inet_stream_connect, 3934 .socketpair = sock_no_socketpair, 3935 .accept = mptcp_stream_accept, 3936 .getname = inet_getname, 3937 .poll = mptcp_poll, 3938 .ioctl = inet_ioctl, 3939 .gettstamp = sock_gettstamp, 3940 .listen = mptcp_listen, 3941 .shutdown = inet_shutdown, 3942 .setsockopt = sock_common_setsockopt, 3943 .getsockopt = sock_common_getsockopt, 3944 .sendmsg = inet_sendmsg, 3945 .recvmsg = inet_recvmsg, 3946 .mmap = sock_no_mmap, 3947 }; 3948 3949 static struct inet_protosw mptcp_protosw = { 3950 .type = SOCK_STREAM, 3951 .protocol = IPPROTO_MPTCP, 3952 .prot = &mptcp_prot, 3953 .ops = &mptcp_stream_ops, 3954 .flags = INET_PROTOSW_ICSK, 3955 }; 3956 3957 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3958 { 3959 struct mptcp_delegated_action *delegated; 3960 struct mptcp_subflow_context *subflow; 3961 int work_done = 0; 3962 3963 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3964 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3965 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3966 3967 bh_lock_sock_nested(ssk); 3968 if (!sock_owned_by_user(ssk)) { 3969 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 3970 } else { 3971 /* tcp_release_cb_override already processed 3972 * the action or will do at next release_sock(). 3973 * In both case must dequeue the subflow here - on the same 3974 * CPU that scheduled it. 3975 */ 3976 smp_wmb(); 3977 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 3978 } 3979 bh_unlock_sock(ssk); 3980 sock_put(ssk); 3981 3982 if (++work_done == budget) 3983 return budget; 3984 } 3985 3986 /* always provide a 0 'work_done' argument, so that napi_complete_done 3987 * will not try accessing the NULL napi->dev ptr 3988 */ 3989 napi_complete_done(napi, 0); 3990 return work_done; 3991 } 3992 3993 void __init mptcp_proto_init(void) 3994 { 3995 struct mptcp_delegated_action *delegated; 3996 int cpu; 3997 3998 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3999 4000 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4001 panic("Failed to allocate MPTCP pcpu counter\n"); 4002 4003 init_dummy_netdev(&mptcp_napi_dev); 4004 for_each_possible_cpu(cpu) { 4005 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4006 INIT_LIST_HEAD(&delegated->head); 4007 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4008 mptcp_napi_poll); 4009 napi_enable(&delegated->napi); 4010 } 4011 4012 mptcp_subflow_init(); 4013 mptcp_pm_init(); 4014 mptcp_sched_init(); 4015 mptcp_token_init(); 4016 4017 if (proto_register(&mptcp_prot, 1) != 0) 4018 panic("Failed to register MPTCP proto.\n"); 4019 4020 inet_register_protosw(&mptcp_protosw); 4021 4022 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4023 } 4024 4025 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4026 static const struct proto_ops mptcp_v6_stream_ops = { 4027 .family = PF_INET6, 4028 .owner = THIS_MODULE, 4029 .release = inet6_release, 4030 .bind = mptcp_bind, 4031 .connect = inet_stream_connect, 4032 .socketpair = sock_no_socketpair, 4033 .accept = mptcp_stream_accept, 4034 .getname = inet6_getname, 4035 .poll = mptcp_poll, 4036 .ioctl = inet6_ioctl, 4037 .gettstamp = sock_gettstamp, 4038 .listen = mptcp_listen, 4039 .shutdown = inet_shutdown, 4040 .setsockopt = sock_common_setsockopt, 4041 .getsockopt = sock_common_getsockopt, 4042 .sendmsg = inet6_sendmsg, 4043 .recvmsg = inet6_recvmsg, 4044 .mmap = sock_no_mmap, 4045 #ifdef CONFIG_COMPAT 4046 .compat_ioctl = inet6_compat_ioctl, 4047 #endif 4048 }; 4049 4050 static struct proto mptcp_v6_prot; 4051 4052 static struct inet_protosw mptcp_v6_protosw = { 4053 .type = SOCK_STREAM, 4054 .protocol = IPPROTO_MPTCP, 4055 .prot = &mptcp_v6_prot, 4056 .ops = &mptcp_v6_stream_ops, 4057 .flags = INET_PROTOSW_ICSK, 4058 }; 4059 4060 int __init mptcp_proto_v6_init(void) 4061 { 4062 int err; 4063 4064 mptcp_v6_prot = mptcp_prot; 4065 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4066 mptcp_v6_prot.slab = NULL; 4067 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4068 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4069 4070 err = proto_register(&mptcp_v6_prot, 1); 4071 if (err) 4072 return err; 4073 4074 err = inet6_register_protosw(&mptcp_v6_protosw); 4075 if (err) 4076 proto_unregister(&mptcp_v6_prot); 4077 4078 return err; 4079 } 4080 #endif 4081