xref: /linux/net/mptcp/protocol.c (revision 04317b129e4eb5c6f4a58bb899b2019c1545320b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static bool mptcp_is_tcpsk(struct sock *sk)
59 {
60 	struct socket *sock = sk->sk_socket;
61 
62 	if (unlikely(sk->sk_prot == &tcp_prot)) {
63 		/* we are being invoked after mptcp_accept() has
64 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
65 		 * not an mptcp one.
66 		 *
67 		 * Hand the socket over to tcp so all further socket ops
68 		 * bypass mptcp.
69 		 */
70 		WRITE_ONCE(sock->ops, &inet_stream_ops);
71 		return true;
72 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
73 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
74 		WRITE_ONCE(sock->ops, &inet6_stream_ops);
75 		return true;
76 #endif
77 	}
78 
79 	return false;
80 }
81 
82 static int __mptcp_socket_create(struct mptcp_sock *msk)
83 {
84 	struct mptcp_subflow_context *subflow;
85 	struct sock *sk = (struct sock *)msk;
86 	struct socket *ssock;
87 	int err;
88 
89 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
90 	if (err)
91 		return err;
92 
93 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
94 	WRITE_ONCE(msk->first, ssock->sk);
95 	subflow = mptcp_subflow_ctx(ssock->sk);
96 	list_add(&subflow->node, &msk->conn_list);
97 	sock_hold(ssock->sk);
98 	subflow->request_mptcp = 1;
99 	subflow->subflow_id = msk->subflow_id++;
100 
101 	/* This is the first subflow, always with id 0 */
102 	subflow->local_id_valid = 1;
103 	mptcp_sock_graft(msk->first, sk->sk_socket);
104 	iput(SOCK_INODE(ssock));
105 
106 	return 0;
107 }
108 
109 /* If the MPC handshake is not started, returns the first subflow,
110  * eventually allocating it.
111  */
112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
113 {
114 	struct sock *sk = (struct sock *)msk;
115 	int ret;
116 
117 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
118 		return ERR_PTR(-EINVAL);
119 
120 	if (!msk->first) {
121 		ret = __mptcp_socket_create(msk);
122 		if (ret)
123 			return ERR_PTR(ret);
124 
125 		mptcp_sockopt_sync(msk, msk->first);
126 	}
127 
128 	return msk->first;
129 }
130 
131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
132 {
133 	sk_drops_add(sk, skb);
134 	__kfree_skb(skb);
135 }
136 
137 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
138 {
139 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
140 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
141 }
142 
143 static void mptcp_rmem_charge(struct sock *sk, int size)
144 {
145 	mptcp_rmem_fwd_alloc_add(sk, -size);
146 }
147 
148 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
149 			       struct sk_buff *from)
150 {
151 	bool fragstolen;
152 	int delta;
153 
154 	if (MPTCP_SKB_CB(from)->offset ||
155 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
156 		return false;
157 
158 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
159 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
160 		 to->len, MPTCP_SKB_CB(from)->end_seq);
161 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
162 
163 	/* note the fwd memory can reach a negative value after accounting
164 	 * for the delta, but the later skb free will restore a non
165 	 * negative one
166 	 */
167 	atomic_add(delta, &sk->sk_rmem_alloc);
168 	mptcp_rmem_charge(sk, delta);
169 	kfree_skb_partial(from, fragstolen);
170 
171 	return true;
172 }
173 
174 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
175 				   struct sk_buff *from)
176 {
177 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
178 		return false;
179 
180 	return mptcp_try_coalesce((struct sock *)msk, to, from);
181 }
182 
183 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
184 {
185 	amount >>= PAGE_SHIFT;
186 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
187 	__sk_mem_reduce_allocated(sk, amount);
188 }
189 
190 static void mptcp_rmem_uncharge(struct sock *sk, int size)
191 {
192 	struct mptcp_sock *msk = mptcp_sk(sk);
193 	int reclaimable;
194 
195 	mptcp_rmem_fwd_alloc_add(sk, size);
196 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
197 
198 	/* see sk_mem_uncharge() for the rationale behind the following schema */
199 	if (unlikely(reclaimable >= PAGE_SIZE))
200 		__mptcp_rmem_reclaim(sk, reclaimable);
201 }
202 
203 static void mptcp_rfree(struct sk_buff *skb)
204 {
205 	unsigned int len = skb->truesize;
206 	struct sock *sk = skb->sk;
207 
208 	atomic_sub(len, &sk->sk_rmem_alloc);
209 	mptcp_rmem_uncharge(sk, len);
210 }
211 
212 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
213 {
214 	skb_orphan(skb);
215 	skb->sk = sk;
216 	skb->destructor = mptcp_rfree;
217 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
218 	mptcp_rmem_charge(sk, skb->truesize);
219 }
220 
221 /* "inspired" by tcp_data_queue_ofo(), main differences:
222  * - use mptcp seqs
223  * - don't cope with sacks
224  */
225 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
226 {
227 	struct sock *sk = (struct sock *)msk;
228 	struct rb_node **p, *parent;
229 	u64 seq, end_seq, max_seq;
230 	struct sk_buff *skb1;
231 
232 	seq = MPTCP_SKB_CB(skb)->map_seq;
233 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
234 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
235 
236 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
237 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
238 	if (after64(end_seq, max_seq)) {
239 		/* out of window */
240 		mptcp_drop(sk, skb);
241 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
242 			 (unsigned long long)end_seq - (unsigned long)max_seq,
243 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
244 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
245 		return;
246 	}
247 
248 	p = &msk->out_of_order_queue.rb_node;
249 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
250 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
251 		rb_link_node(&skb->rbnode, NULL, p);
252 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
253 		msk->ooo_last_skb = skb;
254 		goto end;
255 	}
256 
257 	/* with 2 subflows, adding at end of ooo queue is quite likely
258 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
259 	 */
260 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
261 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
262 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
263 		return;
264 	}
265 
266 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
267 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
268 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
269 		parent = &msk->ooo_last_skb->rbnode;
270 		p = &parent->rb_right;
271 		goto insert;
272 	}
273 
274 	/* Find place to insert this segment. Handle overlaps on the way. */
275 	parent = NULL;
276 	while (*p) {
277 		parent = *p;
278 		skb1 = rb_to_skb(parent);
279 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
280 			p = &parent->rb_left;
281 			continue;
282 		}
283 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
284 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
285 				/* All the bits are present. Drop. */
286 				mptcp_drop(sk, skb);
287 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
288 				return;
289 			}
290 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
291 				/* partial overlap:
292 				 *     |     skb      |
293 				 *  |     skb1    |
294 				 * continue traversing
295 				 */
296 			} else {
297 				/* skb's seq == skb1's seq and skb covers skb1.
298 				 * Replace skb1 with skb.
299 				 */
300 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
301 						&msk->out_of_order_queue);
302 				mptcp_drop(sk, skb1);
303 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
304 				goto merge_right;
305 			}
306 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
307 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
308 			return;
309 		}
310 		p = &parent->rb_right;
311 	}
312 
313 insert:
314 	/* Insert segment into RB tree. */
315 	rb_link_node(&skb->rbnode, parent, p);
316 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
317 
318 merge_right:
319 	/* Remove other segments covered by skb. */
320 	while ((skb1 = skb_rb_next(skb)) != NULL) {
321 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
322 			break;
323 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
324 		mptcp_drop(sk, skb1);
325 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
326 	}
327 	/* If there is no skb after us, we are the last_skb ! */
328 	if (!skb1)
329 		msk->ooo_last_skb = skb;
330 
331 end:
332 	skb_condense(skb);
333 	mptcp_set_owner_r(skb, sk);
334 }
335 
336 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
337 {
338 	struct mptcp_sock *msk = mptcp_sk(sk);
339 	int amt, amount;
340 
341 	if (size <= msk->rmem_fwd_alloc)
342 		return true;
343 
344 	size -= msk->rmem_fwd_alloc;
345 	amt = sk_mem_pages(size);
346 	amount = amt << PAGE_SHIFT;
347 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
348 		return false;
349 
350 	mptcp_rmem_fwd_alloc_add(sk, amount);
351 	return true;
352 }
353 
354 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
355 			     struct sk_buff *skb, unsigned int offset,
356 			     size_t copy_len)
357 {
358 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
359 	struct sock *sk = (struct sock *)msk;
360 	struct sk_buff *tail;
361 	bool has_rxtstamp;
362 
363 	__skb_unlink(skb, &ssk->sk_receive_queue);
364 
365 	skb_ext_reset(skb);
366 	skb_orphan(skb);
367 
368 	/* try to fetch required memory from subflow */
369 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
370 		goto drop;
371 
372 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
373 
374 	/* the skb map_seq accounts for the skb offset:
375 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
376 	 * value
377 	 */
378 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
379 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
380 	MPTCP_SKB_CB(skb)->offset = offset;
381 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
382 
383 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
384 		/* in sequence */
385 		msk->bytes_received += copy_len;
386 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
387 		tail = skb_peek_tail(&sk->sk_receive_queue);
388 		if (tail && mptcp_try_coalesce(sk, tail, skb))
389 			return true;
390 
391 		mptcp_set_owner_r(skb, sk);
392 		__skb_queue_tail(&sk->sk_receive_queue, skb);
393 		return true;
394 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
395 		mptcp_data_queue_ofo(msk, skb);
396 		return false;
397 	}
398 
399 	/* old data, keep it simple and drop the whole pkt, sender
400 	 * will retransmit as needed, if needed.
401 	 */
402 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
403 drop:
404 	mptcp_drop(sk, skb);
405 	return false;
406 }
407 
408 static void mptcp_stop_rtx_timer(struct sock *sk)
409 {
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 
412 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
413 	mptcp_sk(sk)->timer_ival = 0;
414 }
415 
416 static void mptcp_close_wake_up(struct sock *sk)
417 {
418 	if (sock_flag(sk, SOCK_DEAD))
419 		return;
420 
421 	sk->sk_state_change(sk);
422 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
423 	    sk->sk_state == TCP_CLOSE)
424 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
425 	else
426 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
427 }
428 
429 static bool mptcp_pending_data_fin_ack(struct sock *sk)
430 {
431 	struct mptcp_sock *msk = mptcp_sk(sk);
432 
433 	return ((1 << sk->sk_state) &
434 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
435 	       msk->write_seq == READ_ONCE(msk->snd_una);
436 }
437 
438 static void mptcp_check_data_fin_ack(struct sock *sk)
439 {
440 	struct mptcp_sock *msk = mptcp_sk(sk);
441 
442 	/* Look for an acknowledged DATA_FIN */
443 	if (mptcp_pending_data_fin_ack(sk)) {
444 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
445 
446 		switch (sk->sk_state) {
447 		case TCP_FIN_WAIT1:
448 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
449 			break;
450 		case TCP_CLOSING:
451 		case TCP_LAST_ACK:
452 			inet_sk_state_store(sk, TCP_CLOSE);
453 			break;
454 		}
455 
456 		mptcp_close_wake_up(sk);
457 	}
458 }
459 
460 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
461 {
462 	struct mptcp_sock *msk = mptcp_sk(sk);
463 
464 	if (READ_ONCE(msk->rcv_data_fin) &&
465 	    ((1 << sk->sk_state) &
466 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
467 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
468 
469 		if (msk->ack_seq == rcv_data_fin_seq) {
470 			if (seq)
471 				*seq = rcv_data_fin_seq;
472 
473 			return true;
474 		}
475 	}
476 
477 	return false;
478 }
479 
480 static void mptcp_set_datafin_timeout(struct sock *sk)
481 {
482 	struct inet_connection_sock *icsk = inet_csk(sk);
483 	u32 retransmits;
484 
485 	retransmits = min_t(u32, icsk->icsk_retransmits,
486 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
487 
488 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
489 }
490 
491 static void __mptcp_set_timeout(struct sock *sk, long tout)
492 {
493 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
494 }
495 
496 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
497 {
498 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
499 
500 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
501 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
502 }
503 
504 static void mptcp_set_timeout(struct sock *sk)
505 {
506 	struct mptcp_subflow_context *subflow;
507 	long tout = 0;
508 
509 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
510 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
511 	__mptcp_set_timeout(sk, tout);
512 }
513 
514 static inline bool tcp_can_send_ack(const struct sock *ssk)
515 {
516 	return !((1 << inet_sk_state_load(ssk)) &
517 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
518 }
519 
520 void __mptcp_subflow_send_ack(struct sock *ssk)
521 {
522 	if (tcp_can_send_ack(ssk))
523 		tcp_send_ack(ssk);
524 }
525 
526 static void mptcp_subflow_send_ack(struct sock *ssk)
527 {
528 	bool slow;
529 
530 	slow = lock_sock_fast(ssk);
531 	__mptcp_subflow_send_ack(ssk);
532 	unlock_sock_fast(ssk, slow);
533 }
534 
535 static void mptcp_send_ack(struct mptcp_sock *msk)
536 {
537 	struct mptcp_subflow_context *subflow;
538 
539 	mptcp_for_each_subflow(msk, subflow)
540 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
541 }
542 
543 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
544 {
545 	bool slow;
546 
547 	slow = lock_sock_fast(ssk);
548 	if (tcp_can_send_ack(ssk))
549 		tcp_cleanup_rbuf(ssk, 1);
550 	unlock_sock_fast(ssk, slow);
551 }
552 
553 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
554 {
555 	const struct inet_connection_sock *icsk = inet_csk(ssk);
556 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
557 	const struct tcp_sock *tp = tcp_sk(ssk);
558 
559 	return (ack_pending & ICSK_ACK_SCHED) &&
560 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
561 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
562 		 (rx_empty && ack_pending &
563 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
564 }
565 
566 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
567 {
568 	int old_space = READ_ONCE(msk->old_wspace);
569 	struct mptcp_subflow_context *subflow;
570 	struct sock *sk = (struct sock *)msk;
571 	int space =  __mptcp_space(sk);
572 	bool cleanup, rx_empty;
573 
574 	cleanup = (space > 0) && (space >= (old_space << 1));
575 	rx_empty = !__mptcp_rmem(sk);
576 
577 	mptcp_for_each_subflow(msk, subflow) {
578 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
579 
580 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
581 			mptcp_subflow_cleanup_rbuf(ssk);
582 	}
583 }
584 
585 static bool mptcp_check_data_fin(struct sock *sk)
586 {
587 	struct mptcp_sock *msk = mptcp_sk(sk);
588 	u64 rcv_data_fin_seq;
589 	bool ret = false;
590 
591 	/* Need to ack a DATA_FIN received from a peer while this side
592 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
593 	 * msk->rcv_data_fin was set when parsing the incoming options
594 	 * at the subflow level and the msk lock was not held, so this
595 	 * is the first opportunity to act on the DATA_FIN and change
596 	 * the msk state.
597 	 *
598 	 * If we are caught up to the sequence number of the incoming
599 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
600 	 * not caught up, do nothing and let the recv code send DATA_ACK
601 	 * when catching up.
602 	 */
603 
604 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
605 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
606 		WRITE_ONCE(msk->rcv_data_fin, 0);
607 
608 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
609 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
610 
611 		switch (sk->sk_state) {
612 		case TCP_ESTABLISHED:
613 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
614 			break;
615 		case TCP_FIN_WAIT1:
616 			inet_sk_state_store(sk, TCP_CLOSING);
617 			break;
618 		case TCP_FIN_WAIT2:
619 			inet_sk_state_store(sk, TCP_CLOSE);
620 			break;
621 		default:
622 			/* Other states not expected */
623 			WARN_ON_ONCE(1);
624 			break;
625 		}
626 
627 		ret = true;
628 		if (!__mptcp_check_fallback(msk))
629 			mptcp_send_ack(msk);
630 		mptcp_close_wake_up(sk);
631 	}
632 	return ret;
633 }
634 
635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
636 					   struct sock *ssk,
637 					   unsigned int *bytes)
638 {
639 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
640 	struct sock *sk = (struct sock *)msk;
641 	unsigned int moved = 0;
642 	bool more_data_avail;
643 	struct tcp_sock *tp;
644 	bool done = false;
645 	int sk_rbuf;
646 
647 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
648 
649 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
650 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
651 
652 		if (unlikely(ssk_rbuf > sk_rbuf)) {
653 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
654 			sk_rbuf = ssk_rbuf;
655 		}
656 	}
657 
658 	pr_debug("msk=%p ssk=%p", msk, ssk);
659 	tp = tcp_sk(ssk);
660 	do {
661 		u32 map_remaining, offset;
662 		u32 seq = tp->copied_seq;
663 		struct sk_buff *skb;
664 		bool fin;
665 
666 		/* try to move as much data as available */
667 		map_remaining = subflow->map_data_len -
668 				mptcp_subflow_get_map_offset(subflow);
669 
670 		skb = skb_peek(&ssk->sk_receive_queue);
671 		if (!skb) {
672 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
673 			 * a different CPU can have already processed the pending
674 			 * data, stop here or we can enter an infinite loop
675 			 */
676 			if (!moved)
677 				done = true;
678 			break;
679 		}
680 
681 		if (__mptcp_check_fallback(msk)) {
682 			/* Under fallback skbs have no MPTCP extension and TCP could
683 			 * collapse them between the dummy map creation and the
684 			 * current dequeue. Be sure to adjust the map size.
685 			 */
686 			map_remaining = skb->len;
687 			subflow->map_data_len = skb->len;
688 		}
689 
690 		offset = seq - TCP_SKB_CB(skb)->seq;
691 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
692 		if (fin) {
693 			done = true;
694 			seq++;
695 		}
696 
697 		if (offset < skb->len) {
698 			size_t len = skb->len - offset;
699 
700 			if (tp->urg_data)
701 				done = true;
702 
703 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
704 				moved += len;
705 			seq += len;
706 
707 			if (WARN_ON_ONCE(map_remaining < len))
708 				break;
709 		} else {
710 			WARN_ON_ONCE(!fin);
711 			sk_eat_skb(ssk, skb);
712 			done = true;
713 		}
714 
715 		WRITE_ONCE(tp->copied_seq, seq);
716 		more_data_avail = mptcp_subflow_data_available(ssk);
717 
718 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
719 			done = true;
720 			break;
721 		}
722 	} while (more_data_avail);
723 
724 	*bytes += moved;
725 	return done;
726 }
727 
728 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
729 {
730 	struct sock *sk = (struct sock *)msk;
731 	struct sk_buff *skb, *tail;
732 	bool moved = false;
733 	struct rb_node *p;
734 	u64 end_seq;
735 
736 	p = rb_first(&msk->out_of_order_queue);
737 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
738 	while (p) {
739 		skb = rb_to_skb(p);
740 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
741 			break;
742 
743 		p = rb_next(p);
744 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
745 
746 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
747 				      msk->ack_seq))) {
748 			mptcp_drop(sk, skb);
749 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
750 			continue;
751 		}
752 
753 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
754 		tail = skb_peek_tail(&sk->sk_receive_queue);
755 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
756 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
757 
758 			/* skip overlapping data, if any */
759 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
760 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
761 				 delta);
762 			MPTCP_SKB_CB(skb)->offset += delta;
763 			MPTCP_SKB_CB(skb)->map_seq += delta;
764 			__skb_queue_tail(&sk->sk_receive_queue, skb);
765 		}
766 		msk->bytes_received += end_seq - msk->ack_seq;
767 		msk->ack_seq = end_seq;
768 		moved = true;
769 	}
770 	return moved;
771 }
772 
773 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
774 {
775 	int err = sock_error(ssk);
776 	int ssk_state;
777 
778 	if (!err)
779 		return false;
780 
781 	/* only propagate errors on fallen-back sockets or
782 	 * on MPC connect
783 	 */
784 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
785 		return false;
786 
787 	/* We need to propagate only transition to CLOSE state.
788 	 * Orphaned socket will see such state change via
789 	 * subflow_sched_work_if_closed() and that path will properly
790 	 * destroy the msk as needed.
791 	 */
792 	ssk_state = inet_sk_state_load(ssk);
793 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
794 		inet_sk_state_store(sk, ssk_state);
795 	WRITE_ONCE(sk->sk_err, -err);
796 
797 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
798 	smp_wmb();
799 	sk_error_report(sk);
800 	return true;
801 }
802 
803 void __mptcp_error_report(struct sock *sk)
804 {
805 	struct mptcp_subflow_context *subflow;
806 	struct mptcp_sock *msk = mptcp_sk(sk);
807 
808 	mptcp_for_each_subflow(msk, subflow)
809 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
810 			break;
811 }
812 
813 /* In most cases we will be able to lock the mptcp socket.  If its already
814  * owned, we need to defer to the work queue to avoid ABBA deadlock.
815  */
816 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
817 {
818 	struct sock *sk = (struct sock *)msk;
819 	unsigned int moved = 0;
820 
821 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
822 	__mptcp_ofo_queue(msk);
823 	if (unlikely(ssk->sk_err)) {
824 		if (!sock_owned_by_user(sk))
825 			__mptcp_error_report(sk);
826 		else
827 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
828 	}
829 
830 	/* If the moves have caught up with the DATA_FIN sequence number
831 	 * it's time to ack the DATA_FIN and change socket state, but
832 	 * this is not a good place to change state. Let the workqueue
833 	 * do it.
834 	 */
835 	if (mptcp_pending_data_fin(sk, NULL))
836 		mptcp_schedule_work(sk);
837 	return moved > 0;
838 }
839 
840 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
841 {
842 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
843 	struct mptcp_sock *msk = mptcp_sk(sk);
844 	int sk_rbuf, ssk_rbuf;
845 
846 	/* The peer can send data while we are shutting down this
847 	 * subflow at msk destruction time, but we must avoid enqueuing
848 	 * more data to the msk receive queue
849 	 */
850 	if (unlikely(subflow->disposable))
851 		return;
852 
853 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
854 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
855 	if (unlikely(ssk_rbuf > sk_rbuf))
856 		sk_rbuf = ssk_rbuf;
857 
858 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
859 	if (__mptcp_rmem(sk) > sk_rbuf) {
860 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
861 		return;
862 	}
863 
864 	/* Wake-up the reader only for in-sequence data */
865 	mptcp_data_lock(sk);
866 	if (move_skbs_to_msk(msk, ssk))
867 		sk->sk_data_ready(sk);
868 
869 	mptcp_data_unlock(sk);
870 }
871 
872 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
873 {
874 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
875 	WRITE_ONCE(msk->allow_infinite_fallback, false);
876 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
877 }
878 
879 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
880 {
881 	struct sock *sk = (struct sock *)msk;
882 
883 	if (sk->sk_state != TCP_ESTABLISHED)
884 		return false;
885 
886 	/* attach to msk socket only after we are sure we will deal with it
887 	 * at close time
888 	 */
889 	if (sk->sk_socket && !ssk->sk_socket)
890 		mptcp_sock_graft(ssk, sk->sk_socket);
891 
892 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
893 	mptcp_sockopt_sync_locked(msk, ssk);
894 	mptcp_subflow_joined(msk, ssk);
895 	mptcp_stop_tout_timer(sk);
896 	return true;
897 }
898 
899 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
900 {
901 	struct mptcp_subflow_context *tmp, *subflow;
902 	struct mptcp_sock *msk = mptcp_sk(sk);
903 
904 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
905 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
906 		bool slow = lock_sock_fast(ssk);
907 
908 		list_move_tail(&subflow->node, &msk->conn_list);
909 		if (!__mptcp_finish_join(msk, ssk))
910 			mptcp_subflow_reset(ssk);
911 		unlock_sock_fast(ssk, slow);
912 	}
913 }
914 
915 static bool mptcp_rtx_timer_pending(struct sock *sk)
916 {
917 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
918 }
919 
920 static void mptcp_reset_rtx_timer(struct sock *sk)
921 {
922 	struct inet_connection_sock *icsk = inet_csk(sk);
923 	unsigned long tout;
924 
925 	/* prevent rescheduling on close */
926 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
927 		return;
928 
929 	tout = mptcp_sk(sk)->timer_ival;
930 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
931 }
932 
933 bool mptcp_schedule_work(struct sock *sk)
934 {
935 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
936 	    schedule_work(&mptcp_sk(sk)->work)) {
937 		/* each subflow already holds a reference to the sk, and the
938 		 * workqueue is invoked by a subflow, so sk can't go away here.
939 		 */
940 		sock_hold(sk);
941 		return true;
942 	}
943 	return false;
944 }
945 
946 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
947 {
948 	struct mptcp_subflow_context *subflow;
949 
950 	msk_owned_by_me(msk);
951 
952 	mptcp_for_each_subflow(msk, subflow) {
953 		if (READ_ONCE(subflow->data_avail))
954 			return mptcp_subflow_tcp_sock(subflow);
955 	}
956 
957 	return NULL;
958 }
959 
960 static bool mptcp_skb_can_collapse_to(u64 write_seq,
961 				      const struct sk_buff *skb,
962 				      const struct mptcp_ext *mpext)
963 {
964 	if (!tcp_skb_can_collapse_to(skb))
965 		return false;
966 
967 	/* can collapse only if MPTCP level sequence is in order and this
968 	 * mapping has not been xmitted yet
969 	 */
970 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
971 	       !mpext->frozen;
972 }
973 
974 /* we can append data to the given data frag if:
975  * - there is space available in the backing page_frag
976  * - the data frag tail matches the current page_frag free offset
977  * - the data frag end sequence number matches the current write seq
978  */
979 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
980 				       const struct page_frag *pfrag,
981 				       const struct mptcp_data_frag *df)
982 {
983 	return df && pfrag->page == df->page &&
984 		pfrag->size - pfrag->offset > 0 &&
985 		pfrag->offset == (df->offset + df->data_len) &&
986 		df->data_seq + df->data_len == msk->write_seq;
987 }
988 
989 static void dfrag_uncharge(struct sock *sk, int len)
990 {
991 	sk_mem_uncharge(sk, len);
992 	sk_wmem_queued_add(sk, -len);
993 }
994 
995 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
996 {
997 	int len = dfrag->data_len + dfrag->overhead;
998 
999 	list_del(&dfrag->list);
1000 	dfrag_uncharge(sk, len);
1001 	put_page(dfrag->page);
1002 }
1003 
1004 static void __mptcp_clean_una(struct sock *sk)
1005 {
1006 	struct mptcp_sock *msk = mptcp_sk(sk);
1007 	struct mptcp_data_frag *dtmp, *dfrag;
1008 	u64 snd_una;
1009 
1010 	snd_una = msk->snd_una;
1011 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1012 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1013 			break;
1014 
1015 		if (unlikely(dfrag == msk->first_pending)) {
1016 			/* in recovery mode can see ack after the current snd head */
1017 			if (WARN_ON_ONCE(!msk->recovery))
1018 				break;
1019 
1020 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1021 		}
1022 
1023 		dfrag_clear(sk, dfrag);
1024 	}
1025 
1026 	dfrag = mptcp_rtx_head(sk);
1027 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1028 		u64 delta = snd_una - dfrag->data_seq;
1029 
1030 		/* prevent wrap around in recovery mode */
1031 		if (unlikely(delta > dfrag->already_sent)) {
1032 			if (WARN_ON_ONCE(!msk->recovery))
1033 				goto out;
1034 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1035 				goto out;
1036 			dfrag->already_sent += delta - dfrag->already_sent;
1037 		}
1038 
1039 		dfrag->data_seq += delta;
1040 		dfrag->offset += delta;
1041 		dfrag->data_len -= delta;
1042 		dfrag->already_sent -= delta;
1043 
1044 		dfrag_uncharge(sk, delta);
1045 	}
1046 
1047 	/* all retransmitted data acked, recovery completed */
1048 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1049 		msk->recovery = false;
1050 
1051 out:
1052 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1053 	    snd_una == READ_ONCE(msk->write_seq)) {
1054 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1055 			mptcp_stop_rtx_timer(sk);
1056 	} else {
1057 		mptcp_reset_rtx_timer(sk);
1058 	}
1059 }
1060 
1061 static void __mptcp_clean_una_wakeup(struct sock *sk)
1062 {
1063 	lockdep_assert_held_once(&sk->sk_lock.slock);
1064 
1065 	__mptcp_clean_una(sk);
1066 	mptcp_write_space(sk);
1067 }
1068 
1069 static void mptcp_clean_una_wakeup(struct sock *sk)
1070 {
1071 	mptcp_data_lock(sk);
1072 	__mptcp_clean_una_wakeup(sk);
1073 	mptcp_data_unlock(sk);
1074 }
1075 
1076 static void mptcp_enter_memory_pressure(struct sock *sk)
1077 {
1078 	struct mptcp_subflow_context *subflow;
1079 	struct mptcp_sock *msk = mptcp_sk(sk);
1080 	bool first = true;
1081 
1082 	sk_stream_moderate_sndbuf(sk);
1083 	mptcp_for_each_subflow(msk, subflow) {
1084 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1085 
1086 		if (first)
1087 			tcp_enter_memory_pressure(ssk);
1088 		sk_stream_moderate_sndbuf(ssk);
1089 		first = false;
1090 	}
1091 }
1092 
1093 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1094  * data
1095  */
1096 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1097 {
1098 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1099 					pfrag, sk->sk_allocation)))
1100 		return true;
1101 
1102 	mptcp_enter_memory_pressure(sk);
1103 	return false;
1104 }
1105 
1106 static struct mptcp_data_frag *
1107 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1108 		      int orig_offset)
1109 {
1110 	int offset = ALIGN(orig_offset, sizeof(long));
1111 	struct mptcp_data_frag *dfrag;
1112 
1113 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1114 	dfrag->data_len = 0;
1115 	dfrag->data_seq = msk->write_seq;
1116 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1117 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1118 	dfrag->already_sent = 0;
1119 	dfrag->page = pfrag->page;
1120 
1121 	return dfrag;
1122 }
1123 
1124 struct mptcp_sendmsg_info {
1125 	int mss_now;
1126 	int size_goal;
1127 	u16 limit;
1128 	u16 sent;
1129 	unsigned int flags;
1130 	bool data_lock_held;
1131 };
1132 
1133 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1134 				    u64 data_seq, int avail_size)
1135 {
1136 	u64 window_end = mptcp_wnd_end(msk);
1137 	u64 mptcp_snd_wnd;
1138 
1139 	if (__mptcp_check_fallback(msk))
1140 		return avail_size;
1141 
1142 	mptcp_snd_wnd = window_end - data_seq;
1143 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1144 
1145 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1146 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1147 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1148 	}
1149 
1150 	return avail_size;
1151 }
1152 
1153 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1154 {
1155 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1156 
1157 	if (!mpext)
1158 		return false;
1159 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1160 	return true;
1161 }
1162 
1163 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1164 {
1165 	struct sk_buff *skb;
1166 
1167 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1168 	if (likely(skb)) {
1169 		if (likely(__mptcp_add_ext(skb, gfp))) {
1170 			skb_reserve(skb, MAX_TCP_HEADER);
1171 			skb->ip_summed = CHECKSUM_PARTIAL;
1172 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1173 			return skb;
1174 		}
1175 		__kfree_skb(skb);
1176 	} else {
1177 		mptcp_enter_memory_pressure(sk);
1178 	}
1179 	return NULL;
1180 }
1181 
1182 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1183 {
1184 	struct sk_buff *skb;
1185 
1186 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1187 	if (!skb)
1188 		return NULL;
1189 
1190 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1191 		tcp_skb_entail(ssk, skb);
1192 		return skb;
1193 	}
1194 	tcp_skb_tsorted_anchor_cleanup(skb);
1195 	kfree_skb(skb);
1196 	return NULL;
1197 }
1198 
1199 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1200 {
1201 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1202 
1203 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1204 }
1205 
1206 /* note: this always recompute the csum on the whole skb, even
1207  * if we just appended a single frag. More status info needed
1208  */
1209 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1210 {
1211 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1212 	__wsum csum = ~csum_unfold(mpext->csum);
1213 	int offset = skb->len - added;
1214 
1215 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1216 }
1217 
1218 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1219 				      struct sock *ssk,
1220 				      struct mptcp_ext *mpext)
1221 {
1222 	if (!mpext)
1223 		return;
1224 
1225 	mpext->infinite_map = 1;
1226 	mpext->data_len = 0;
1227 
1228 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1229 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1230 	pr_fallback(msk);
1231 	mptcp_do_fallback(ssk);
1232 }
1233 
1234 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1235 			      struct mptcp_data_frag *dfrag,
1236 			      struct mptcp_sendmsg_info *info)
1237 {
1238 	u64 data_seq = dfrag->data_seq + info->sent;
1239 	int offset = dfrag->offset + info->sent;
1240 	struct mptcp_sock *msk = mptcp_sk(sk);
1241 	bool zero_window_probe = false;
1242 	struct mptcp_ext *mpext = NULL;
1243 	bool can_coalesce = false;
1244 	bool reuse_skb = true;
1245 	struct sk_buff *skb;
1246 	size_t copy;
1247 	int i;
1248 
1249 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1250 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1251 
1252 	if (WARN_ON_ONCE(info->sent > info->limit ||
1253 			 info->limit > dfrag->data_len))
1254 		return 0;
1255 
1256 	if (unlikely(!__tcp_can_send(ssk)))
1257 		return -EAGAIN;
1258 
1259 	/* compute send limit */
1260 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1261 	copy = info->size_goal;
1262 
1263 	skb = tcp_write_queue_tail(ssk);
1264 	if (skb && copy > skb->len) {
1265 		/* Limit the write to the size available in the
1266 		 * current skb, if any, so that we create at most a new skb.
1267 		 * Explicitly tells TCP internals to avoid collapsing on later
1268 		 * queue management operation, to avoid breaking the ext <->
1269 		 * SSN association set here
1270 		 */
1271 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1272 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1273 			TCP_SKB_CB(skb)->eor = 1;
1274 			goto alloc_skb;
1275 		}
1276 
1277 		i = skb_shinfo(skb)->nr_frags;
1278 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1279 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1280 			tcp_mark_push(tcp_sk(ssk), skb);
1281 			goto alloc_skb;
1282 		}
1283 
1284 		copy -= skb->len;
1285 	} else {
1286 alloc_skb:
1287 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1288 		if (!skb)
1289 			return -ENOMEM;
1290 
1291 		i = skb_shinfo(skb)->nr_frags;
1292 		reuse_skb = false;
1293 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1294 	}
1295 
1296 	/* Zero window and all data acked? Probe. */
1297 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1298 	if (copy == 0) {
1299 		u64 snd_una = READ_ONCE(msk->snd_una);
1300 
1301 		if (snd_una != msk->snd_nxt) {
1302 			tcp_remove_empty_skb(ssk);
1303 			return 0;
1304 		}
1305 
1306 		zero_window_probe = true;
1307 		data_seq = snd_una - 1;
1308 		copy = 1;
1309 
1310 		/* all mptcp-level data is acked, no skbs should be present into the
1311 		 * ssk write queue
1312 		 */
1313 		WARN_ON_ONCE(reuse_skb);
1314 	}
1315 
1316 	copy = min_t(size_t, copy, info->limit - info->sent);
1317 	if (!sk_wmem_schedule(ssk, copy)) {
1318 		tcp_remove_empty_skb(ssk);
1319 		return -ENOMEM;
1320 	}
1321 
1322 	if (can_coalesce) {
1323 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1324 	} else {
1325 		get_page(dfrag->page);
1326 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1327 	}
1328 
1329 	skb->len += copy;
1330 	skb->data_len += copy;
1331 	skb->truesize += copy;
1332 	sk_wmem_queued_add(ssk, copy);
1333 	sk_mem_charge(ssk, copy);
1334 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1335 	TCP_SKB_CB(skb)->end_seq += copy;
1336 	tcp_skb_pcount_set(skb, 0);
1337 
1338 	/* on skb reuse we just need to update the DSS len */
1339 	if (reuse_skb) {
1340 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1341 		mpext->data_len += copy;
1342 		WARN_ON_ONCE(zero_window_probe);
1343 		goto out;
1344 	}
1345 
1346 	memset(mpext, 0, sizeof(*mpext));
1347 	mpext->data_seq = data_seq;
1348 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1349 	mpext->data_len = copy;
1350 	mpext->use_map = 1;
1351 	mpext->dsn64 = 1;
1352 
1353 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1354 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1355 		 mpext->dsn64);
1356 
1357 	if (zero_window_probe) {
1358 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1359 		mpext->frozen = 1;
1360 		if (READ_ONCE(msk->csum_enabled))
1361 			mptcp_update_data_checksum(skb, copy);
1362 		tcp_push_pending_frames(ssk);
1363 		return 0;
1364 	}
1365 out:
1366 	if (READ_ONCE(msk->csum_enabled))
1367 		mptcp_update_data_checksum(skb, copy);
1368 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1369 		mptcp_update_infinite_map(msk, ssk, mpext);
1370 	trace_mptcp_sendmsg_frag(mpext);
1371 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1372 	return copy;
1373 }
1374 
1375 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1376 					 sizeof(struct tcphdr) - \
1377 					 MAX_TCP_OPTION_SPACE - \
1378 					 sizeof(struct ipv6hdr) - \
1379 					 sizeof(struct frag_hdr))
1380 
1381 struct subflow_send_info {
1382 	struct sock *ssk;
1383 	u64 linger_time;
1384 };
1385 
1386 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1387 {
1388 	if (!subflow->stale)
1389 		return;
1390 
1391 	subflow->stale = 0;
1392 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1393 }
1394 
1395 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1396 {
1397 	if (unlikely(subflow->stale)) {
1398 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1399 
1400 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1401 			return false;
1402 
1403 		mptcp_subflow_set_active(subflow);
1404 	}
1405 	return __mptcp_subflow_active(subflow);
1406 }
1407 
1408 #define SSK_MODE_ACTIVE	0
1409 #define SSK_MODE_BACKUP	1
1410 #define SSK_MODE_MAX	2
1411 
1412 /* implement the mptcp packet scheduler;
1413  * returns the subflow that will transmit the next DSS
1414  * additionally updates the rtx timeout
1415  */
1416 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1417 {
1418 	struct subflow_send_info send_info[SSK_MODE_MAX];
1419 	struct mptcp_subflow_context *subflow;
1420 	struct sock *sk = (struct sock *)msk;
1421 	u32 pace, burst, wmem;
1422 	int i, nr_active = 0;
1423 	struct sock *ssk;
1424 	u64 linger_time;
1425 	long tout = 0;
1426 
1427 	/* pick the subflow with the lower wmem/wspace ratio */
1428 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1429 		send_info[i].ssk = NULL;
1430 		send_info[i].linger_time = -1;
1431 	}
1432 
1433 	mptcp_for_each_subflow(msk, subflow) {
1434 		trace_mptcp_subflow_get_send(subflow);
1435 		ssk =  mptcp_subflow_tcp_sock(subflow);
1436 		if (!mptcp_subflow_active(subflow))
1437 			continue;
1438 
1439 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1440 		nr_active += !subflow->backup;
1441 		pace = subflow->avg_pacing_rate;
1442 		if (unlikely(!pace)) {
1443 			/* init pacing rate from socket */
1444 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1445 			pace = subflow->avg_pacing_rate;
1446 			if (!pace)
1447 				continue;
1448 		}
1449 
1450 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1451 		if (linger_time < send_info[subflow->backup].linger_time) {
1452 			send_info[subflow->backup].ssk = ssk;
1453 			send_info[subflow->backup].linger_time = linger_time;
1454 		}
1455 	}
1456 	__mptcp_set_timeout(sk, tout);
1457 
1458 	/* pick the best backup if no other subflow is active */
1459 	if (!nr_active)
1460 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1461 
1462 	/* According to the blest algorithm, to avoid HoL blocking for the
1463 	 * faster flow, we need to:
1464 	 * - estimate the faster flow linger time
1465 	 * - use the above to estimate the amount of byte transferred
1466 	 *   by the faster flow
1467 	 * - check that the amount of queued data is greter than the above,
1468 	 *   otherwise do not use the picked, slower, subflow
1469 	 * We select the subflow with the shorter estimated time to flush
1470 	 * the queued mem, which basically ensure the above. We just need
1471 	 * to check that subflow has a non empty cwin.
1472 	 */
1473 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1474 	if (!ssk || !sk_stream_memory_free(ssk))
1475 		return NULL;
1476 
1477 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1478 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1479 	if (!burst)
1480 		return ssk;
1481 
1482 	subflow = mptcp_subflow_ctx(ssk);
1483 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1484 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1485 					   burst + wmem);
1486 	msk->snd_burst = burst;
1487 	return ssk;
1488 }
1489 
1490 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1491 {
1492 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1493 	release_sock(ssk);
1494 }
1495 
1496 static void mptcp_update_post_push(struct mptcp_sock *msk,
1497 				   struct mptcp_data_frag *dfrag,
1498 				   u32 sent)
1499 {
1500 	u64 snd_nxt_new = dfrag->data_seq;
1501 
1502 	dfrag->already_sent += sent;
1503 
1504 	msk->snd_burst -= sent;
1505 
1506 	snd_nxt_new += dfrag->already_sent;
1507 
1508 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1509 	 * is recovering after a failover. In that event, this re-sends
1510 	 * old segments.
1511 	 *
1512 	 * Thus compute snd_nxt_new candidate based on
1513 	 * the dfrag->data_seq that was sent and the data
1514 	 * that has been handed to the subflow for transmission
1515 	 * and skip update in case it was old dfrag.
1516 	 */
1517 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1518 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1519 		msk->snd_nxt = snd_nxt_new;
1520 	}
1521 }
1522 
1523 void mptcp_check_and_set_pending(struct sock *sk)
1524 {
1525 	if (mptcp_send_head(sk))
1526 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1527 }
1528 
1529 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1530 				  struct mptcp_sendmsg_info *info)
1531 {
1532 	struct mptcp_sock *msk = mptcp_sk(sk);
1533 	struct mptcp_data_frag *dfrag;
1534 	int len, copied = 0, err = 0;
1535 
1536 	while ((dfrag = mptcp_send_head(sk))) {
1537 		info->sent = dfrag->already_sent;
1538 		info->limit = dfrag->data_len;
1539 		len = dfrag->data_len - dfrag->already_sent;
1540 		while (len > 0) {
1541 			int ret = 0;
1542 
1543 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1544 			if (ret <= 0) {
1545 				err = copied ? : ret;
1546 				goto out;
1547 			}
1548 
1549 			info->sent += ret;
1550 			copied += ret;
1551 			len -= ret;
1552 
1553 			mptcp_update_post_push(msk, dfrag, ret);
1554 		}
1555 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1556 
1557 		if (msk->snd_burst <= 0 ||
1558 		    !sk_stream_memory_free(ssk) ||
1559 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1560 			err = copied;
1561 			goto out;
1562 		}
1563 		mptcp_set_timeout(sk);
1564 	}
1565 	err = copied;
1566 
1567 out:
1568 	return err;
1569 }
1570 
1571 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1572 {
1573 	struct sock *prev_ssk = NULL, *ssk = NULL;
1574 	struct mptcp_sock *msk = mptcp_sk(sk);
1575 	struct mptcp_sendmsg_info info = {
1576 				.flags = flags,
1577 	};
1578 	bool do_check_data_fin = false;
1579 	int push_count = 1;
1580 
1581 	while (mptcp_send_head(sk) && (push_count > 0)) {
1582 		struct mptcp_subflow_context *subflow;
1583 		int ret = 0;
1584 
1585 		if (mptcp_sched_get_send(msk))
1586 			break;
1587 
1588 		push_count = 0;
1589 
1590 		mptcp_for_each_subflow(msk, subflow) {
1591 			if (READ_ONCE(subflow->scheduled)) {
1592 				mptcp_subflow_set_scheduled(subflow, false);
1593 
1594 				prev_ssk = ssk;
1595 				ssk = mptcp_subflow_tcp_sock(subflow);
1596 				if (ssk != prev_ssk) {
1597 					/* First check. If the ssk has changed since
1598 					 * the last round, release prev_ssk
1599 					 */
1600 					if (prev_ssk)
1601 						mptcp_push_release(prev_ssk, &info);
1602 
1603 					/* Need to lock the new subflow only if different
1604 					 * from the previous one, otherwise we are still
1605 					 * helding the relevant lock
1606 					 */
1607 					lock_sock(ssk);
1608 				}
1609 
1610 				push_count++;
1611 
1612 				ret = __subflow_push_pending(sk, ssk, &info);
1613 				if (ret <= 0) {
1614 					if (ret != -EAGAIN ||
1615 					    (1 << ssk->sk_state) &
1616 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1617 						push_count--;
1618 					continue;
1619 				}
1620 				do_check_data_fin = true;
1621 			}
1622 		}
1623 	}
1624 
1625 	/* at this point we held the socket lock for the last subflow we used */
1626 	if (ssk)
1627 		mptcp_push_release(ssk, &info);
1628 
1629 	/* ensure the rtx timer is running */
1630 	if (!mptcp_rtx_timer_pending(sk))
1631 		mptcp_reset_rtx_timer(sk);
1632 	if (do_check_data_fin)
1633 		mptcp_check_send_data_fin(sk);
1634 }
1635 
1636 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1637 {
1638 	struct mptcp_sock *msk = mptcp_sk(sk);
1639 	struct mptcp_sendmsg_info info = {
1640 		.data_lock_held = true,
1641 	};
1642 	bool keep_pushing = true;
1643 	struct sock *xmit_ssk;
1644 	int copied = 0;
1645 
1646 	info.flags = 0;
1647 	while (mptcp_send_head(sk) && keep_pushing) {
1648 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1649 		int ret = 0;
1650 
1651 		/* check for a different subflow usage only after
1652 		 * spooling the first chunk of data
1653 		 */
1654 		if (first) {
1655 			mptcp_subflow_set_scheduled(subflow, false);
1656 			ret = __subflow_push_pending(sk, ssk, &info);
1657 			first = false;
1658 			if (ret <= 0)
1659 				break;
1660 			copied += ret;
1661 			continue;
1662 		}
1663 
1664 		if (mptcp_sched_get_send(msk))
1665 			goto out;
1666 
1667 		if (READ_ONCE(subflow->scheduled)) {
1668 			mptcp_subflow_set_scheduled(subflow, false);
1669 			ret = __subflow_push_pending(sk, ssk, &info);
1670 			if (ret <= 0)
1671 				keep_pushing = false;
1672 			copied += ret;
1673 		}
1674 
1675 		mptcp_for_each_subflow(msk, subflow) {
1676 			if (READ_ONCE(subflow->scheduled)) {
1677 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1678 				if (xmit_ssk != ssk) {
1679 					mptcp_subflow_delegate(subflow,
1680 							       MPTCP_DELEGATE_SEND);
1681 					keep_pushing = false;
1682 				}
1683 			}
1684 		}
1685 	}
1686 
1687 out:
1688 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1689 	 * not going to flush it via release_sock()
1690 	 */
1691 	if (copied) {
1692 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1693 			 info.size_goal);
1694 		if (!mptcp_rtx_timer_pending(sk))
1695 			mptcp_reset_rtx_timer(sk);
1696 
1697 		if (msk->snd_data_fin_enable &&
1698 		    msk->snd_nxt + 1 == msk->write_seq)
1699 			mptcp_schedule_work(sk);
1700 	}
1701 }
1702 
1703 static void mptcp_set_nospace(struct sock *sk)
1704 {
1705 	/* enable autotune */
1706 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1707 
1708 	/* will be cleared on avail space */
1709 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1710 }
1711 
1712 static int mptcp_disconnect(struct sock *sk, int flags);
1713 
1714 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1715 				  size_t len, int *copied_syn)
1716 {
1717 	unsigned int saved_flags = msg->msg_flags;
1718 	struct mptcp_sock *msk = mptcp_sk(sk);
1719 	struct sock *ssk;
1720 	int ret;
1721 
1722 	/* on flags based fastopen the mptcp is supposed to create the
1723 	 * first subflow right now. Otherwise we are in the defer_connect
1724 	 * path, and the first subflow must be already present.
1725 	 * Since the defer_connect flag is cleared after the first succsful
1726 	 * fastopen attempt, no need to check for additional subflow status.
1727 	 */
1728 	if (msg->msg_flags & MSG_FASTOPEN) {
1729 		ssk = __mptcp_nmpc_sk(msk);
1730 		if (IS_ERR(ssk))
1731 			return PTR_ERR(ssk);
1732 	}
1733 	if (!msk->first)
1734 		return -EINVAL;
1735 
1736 	ssk = msk->first;
1737 
1738 	lock_sock(ssk);
1739 	msg->msg_flags |= MSG_DONTWAIT;
1740 	msk->fastopening = 1;
1741 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1742 	msk->fastopening = 0;
1743 	msg->msg_flags = saved_flags;
1744 	release_sock(ssk);
1745 
1746 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1747 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1748 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1749 					    msg->msg_namelen, msg->msg_flags, 1);
1750 
1751 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1752 		 * case of any error, except timeout or signal
1753 		 */
1754 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1755 			*copied_syn = 0;
1756 	} else if (ret && ret != -EINPROGRESS) {
1757 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1758 		 * __inet_stream_connect() can fail, due to looking check,
1759 		 * see mptcp_disconnect().
1760 		 * Attempt it again outside the problematic scope.
1761 		 */
1762 		if (!mptcp_disconnect(sk, 0))
1763 			sk->sk_socket->state = SS_UNCONNECTED;
1764 	}
1765 	inet_clear_bit(DEFER_CONNECT, sk);
1766 
1767 	return ret;
1768 }
1769 
1770 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1771 {
1772 	struct mptcp_sock *msk = mptcp_sk(sk);
1773 	struct page_frag *pfrag;
1774 	size_t copied = 0;
1775 	int ret = 0;
1776 	long timeo;
1777 
1778 	/* silently ignore everything else */
1779 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1780 
1781 	lock_sock(sk);
1782 
1783 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1784 		     msg->msg_flags & MSG_FASTOPEN)) {
1785 		int copied_syn = 0;
1786 
1787 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1788 		copied += copied_syn;
1789 		if (ret == -EINPROGRESS && copied_syn > 0)
1790 			goto out;
1791 		else if (ret)
1792 			goto do_error;
1793 	}
1794 
1795 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1796 
1797 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1798 		ret = sk_stream_wait_connect(sk, &timeo);
1799 		if (ret)
1800 			goto do_error;
1801 	}
1802 
1803 	ret = -EPIPE;
1804 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1805 		goto do_error;
1806 
1807 	pfrag = sk_page_frag(sk);
1808 
1809 	while (msg_data_left(msg)) {
1810 		int total_ts, frag_truesize = 0;
1811 		struct mptcp_data_frag *dfrag;
1812 		bool dfrag_collapsed;
1813 		size_t psize, offset;
1814 
1815 		/* reuse tail pfrag, if possible, or carve a new one from the
1816 		 * page allocator
1817 		 */
1818 		dfrag = mptcp_pending_tail(sk);
1819 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1820 		if (!dfrag_collapsed) {
1821 			if (!sk_stream_memory_free(sk))
1822 				goto wait_for_memory;
1823 
1824 			if (!mptcp_page_frag_refill(sk, pfrag))
1825 				goto wait_for_memory;
1826 
1827 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1828 			frag_truesize = dfrag->overhead;
1829 		}
1830 
1831 		/* we do not bound vs wspace, to allow a single packet.
1832 		 * memory accounting will prevent execessive memory usage
1833 		 * anyway
1834 		 */
1835 		offset = dfrag->offset + dfrag->data_len;
1836 		psize = pfrag->size - offset;
1837 		psize = min_t(size_t, psize, msg_data_left(msg));
1838 		total_ts = psize + frag_truesize;
1839 
1840 		if (!sk_wmem_schedule(sk, total_ts))
1841 			goto wait_for_memory;
1842 
1843 		if (copy_page_from_iter(dfrag->page, offset, psize,
1844 					&msg->msg_iter) != psize) {
1845 			ret = -EFAULT;
1846 			goto do_error;
1847 		}
1848 
1849 		/* data successfully copied into the write queue */
1850 		sk_forward_alloc_add(sk, -total_ts);
1851 		copied += psize;
1852 		dfrag->data_len += psize;
1853 		frag_truesize += psize;
1854 		pfrag->offset += frag_truesize;
1855 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1856 
1857 		/* charge data on mptcp pending queue to the msk socket
1858 		 * Note: we charge such data both to sk and ssk
1859 		 */
1860 		sk_wmem_queued_add(sk, frag_truesize);
1861 		if (!dfrag_collapsed) {
1862 			get_page(dfrag->page);
1863 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1864 			if (!msk->first_pending)
1865 				WRITE_ONCE(msk->first_pending, dfrag);
1866 		}
1867 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1868 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1869 			 !dfrag_collapsed);
1870 
1871 		continue;
1872 
1873 wait_for_memory:
1874 		mptcp_set_nospace(sk);
1875 		__mptcp_push_pending(sk, msg->msg_flags);
1876 		ret = sk_stream_wait_memory(sk, &timeo);
1877 		if (ret)
1878 			goto do_error;
1879 	}
1880 
1881 	if (copied)
1882 		__mptcp_push_pending(sk, msg->msg_flags);
1883 
1884 out:
1885 	release_sock(sk);
1886 	return copied;
1887 
1888 do_error:
1889 	if (copied)
1890 		goto out;
1891 
1892 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1893 	goto out;
1894 }
1895 
1896 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1897 				struct msghdr *msg,
1898 				size_t len, int flags,
1899 				struct scm_timestamping_internal *tss,
1900 				int *cmsg_flags)
1901 {
1902 	struct sk_buff *skb, *tmp;
1903 	int copied = 0;
1904 
1905 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1906 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1907 		u32 data_len = skb->len - offset;
1908 		u32 count = min_t(size_t, len - copied, data_len);
1909 		int err;
1910 
1911 		if (!(flags & MSG_TRUNC)) {
1912 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1913 			if (unlikely(err < 0)) {
1914 				if (!copied)
1915 					return err;
1916 				break;
1917 			}
1918 		}
1919 
1920 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1921 			tcp_update_recv_tstamps(skb, tss);
1922 			*cmsg_flags |= MPTCP_CMSG_TS;
1923 		}
1924 
1925 		copied += count;
1926 
1927 		if (count < data_len) {
1928 			if (!(flags & MSG_PEEK)) {
1929 				MPTCP_SKB_CB(skb)->offset += count;
1930 				MPTCP_SKB_CB(skb)->map_seq += count;
1931 			}
1932 			break;
1933 		}
1934 
1935 		if (!(flags & MSG_PEEK)) {
1936 			/* we will bulk release the skb memory later */
1937 			skb->destructor = NULL;
1938 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1939 			__skb_unlink(skb, &msk->receive_queue);
1940 			__kfree_skb(skb);
1941 		}
1942 
1943 		if (copied >= len)
1944 			break;
1945 	}
1946 
1947 	return copied;
1948 }
1949 
1950 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1951  *
1952  * Only difference: Use highest rtt estimate of the subflows in use.
1953  */
1954 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1955 {
1956 	struct mptcp_subflow_context *subflow;
1957 	struct sock *sk = (struct sock *)msk;
1958 	u8 scaling_ratio = U8_MAX;
1959 	u32 time, advmss = 1;
1960 	u64 rtt_us, mstamp;
1961 
1962 	msk_owned_by_me(msk);
1963 
1964 	if (copied <= 0)
1965 		return;
1966 
1967 	msk->rcvq_space.copied += copied;
1968 
1969 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1970 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1971 
1972 	rtt_us = msk->rcvq_space.rtt_us;
1973 	if (rtt_us && time < (rtt_us >> 3))
1974 		return;
1975 
1976 	rtt_us = 0;
1977 	mptcp_for_each_subflow(msk, subflow) {
1978 		const struct tcp_sock *tp;
1979 		u64 sf_rtt_us;
1980 		u32 sf_advmss;
1981 
1982 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1983 
1984 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1985 		sf_advmss = READ_ONCE(tp->advmss);
1986 
1987 		rtt_us = max(sf_rtt_us, rtt_us);
1988 		advmss = max(sf_advmss, advmss);
1989 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1990 	}
1991 
1992 	msk->rcvq_space.rtt_us = rtt_us;
1993 	msk->scaling_ratio = scaling_ratio;
1994 	if (time < (rtt_us >> 3) || rtt_us == 0)
1995 		return;
1996 
1997 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1998 		goto new_measure;
1999 
2000 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
2001 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
2002 		u64 rcvwin, grow;
2003 		int rcvbuf;
2004 
2005 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2006 
2007 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2008 
2009 		do_div(grow, msk->rcvq_space.space);
2010 		rcvwin += (grow << 1);
2011 
2012 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2013 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2014 
2015 		if (rcvbuf > sk->sk_rcvbuf) {
2016 			u32 window_clamp;
2017 
2018 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2019 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2020 
2021 			/* Make subflows follow along.  If we do not do this, we
2022 			 * get drops at subflow level if skbs can't be moved to
2023 			 * the mptcp rx queue fast enough (announced rcv_win can
2024 			 * exceed ssk->sk_rcvbuf).
2025 			 */
2026 			mptcp_for_each_subflow(msk, subflow) {
2027 				struct sock *ssk;
2028 				bool slow;
2029 
2030 				ssk = mptcp_subflow_tcp_sock(subflow);
2031 				slow = lock_sock_fast(ssk);
2032 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2033 				tcp_sk(ssk)->window_clamp = window_clamp;
2034 				tcp_cleanup_rbuf(ssk, 1);
2035 				unlock_sock_fast(ssk, slow);
2036 			}
2037 		}
2038 	}
2039 
2040 	msk->rcvq_space.space = msk->rcvq_space.copied;
2041 new_measure:
2042 	msk->rcvq_space.copied = 0;
2043 	msk->rcvq_space.time = mstamp;
2044 }
2045 
2046 static void __mptcp_update_rmem(struct sock *sk)
2047 {
2048 	struct mptcp_sock *msk = mptcp_sk(sk);
2049 
2050 	if (!msk->rmem_released)
2051 		return;
2052 
2053 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2054 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2055 	WRITE_ONCE(msk->rmem_released, 0);
2056 }
2057 
2058 static void __mptcp_splice_receive_queue(struct sock *sk)
2059 {
2060 	struct mptcp_sock *msk = mptcp_sk(sk);
2061 
2062 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2063 }
2064 
2065 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2066 {
2067 	struct sock *sk = (struct sock *)msk;
2068 	unsigned int moved = 0;
2069 	bool ret, done;
2070 
2071 	do {
2072 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2073 		bool slowpath;
2074 
2075 		/* we can have data pending in the subflows only if the msk
2076 		 * receive buffer was full at subflow_data_ready() time,
2077 		 * that is an unlikely slow path.
2078 		 */
2079 		if (likely(!ssk))
2080 			break;
2081 
2082 		slowpath = lock_sock_fast(ssk);
2083 		mptcp_data_lock(sk);
2084 		__mptcp_update_rmem(sk);
2085 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2086 		mptcp_data_unlock(sk);
2087 
2088 		if (unlikely(ssk->sk_err))
2089 			__mptcp_error_report(sk);
2090 		unlock_sock_fast(ssk, slowpath);
2091 	} while (!done);
2092 
2093 	/* acquire the data lock only if some input data is pending */
2094 	ret = moved > 0;
2095 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2096 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2097 		mptcp_data_lock(sk);
2098 		__mptcp_update_rmem(sk);
2099 		ret |= __mptcp_ofo_queue(msk);
2100 		__mptcp_splice_receive_queue(sk);
2101 		mptcp_data_unlock(sk);
2102 	}
2103 	if (ret)
2104 		mptcp_check_data_fin((struct sock *)msk);
2105 	return !skb_queue_empty(&msk->receive_queue);
2106 }
2107 
2108 static unsigned int mptcp_inq_hint(const struct sock *sk)
2109 {
2110 	const struct mptcp_sock *msk = mptcp_sk(sk);
2111 	const struct sk_buff *skb;
2112 
2113 	skb = skb_peek(&msk->receive_queue);
2114 	if (skb) {
2115 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2116 
2117 		if (hint_val >= INT_MAX)
2118 			return INT_MAX;
2119 
2120 		return (unsigned int)hint_val;
2121 	}
2122 
2123 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2124 		return 1;
2125 
2126 	return 0;
2127 }
2128 
2129 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2130 			 int flags, int *addr_len)
2131 {
2132 	struct mptcp_sock *msk = mptcp_sk(sk);
2133 	struct scm_timestamping_internal tss;
2134 	int copied = 0, cmsg_flags = 0;
2135 	int target;
2136 	long timeo;
2137 
2138 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2139 	if (unlikely(flags & MSG_ERRQUEUE))
2140 		return inet_recv_error(sk, msg, len, addr_len);
2141 
2142 	lock_sock(sk);
2143 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2144 		copied = -ENOTCONN;
2145 		goto out_err;
2146 	}
2147 
2148 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2149 
2150 	len = min_t(size_t, len, INT_MAX);
2151 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2152 
2153 	if (unlikely(msk->recvmsg_inq))
2154 		cmsg_flags = MPTCP_CMSG_INQ;
2155 
2156 	while (copied < len) {
2157 		int bytes_read;
2158 
2159 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2160 		if (unlikely(bytes_read < 0)) {
2161 			if (!copied)
2162 				copied = bytes_read;
2163 			goto out_err;
2164 		}
2165 
2166 		copied += bytes_read;
2167 
2168 		/* be sure to advertise window change */
2169 		mptcp_cleanup_rbuf(msk);
2170 
2171 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2172 			continue;
2173 
2174 		/* only the master socket status is relevant here. The exit
2175 		 * conditions mirror closely tcp_recvmsg()
2176 		 */
2177 		if (copied >= target)
2178 			break;
2179 
2180 		if (copied) {
2181 			if (sk->sk_err ||
2182 			    sk->sk_state == TCP_CLOSE ||
2183 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2184 			    !timeo ||
2185 			    signal_pending(current))
2186 				break;
2187 		} else {
2188 			if (sk->sk_err) {
2189 				copied = sock_error(sk);
2190 				break;
2191 			}
2192 
2193 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2194 				/* race breaker: the shutdown could be after the
2195 				 * previous receive queue check
2196 				 */
2197 				if (__mptcp_move_skbs(msk))
2198 					continue;
2199 				break;
2200 			}
2201 
2202 			if (sk->sk_state == TCP_CLOSE) {
2203 				copied = -ENOTCONN;
2204 				break;
2205 			}
2206 
2207 			if (!timeo) {
2208 				copied = -EAGAIN;
2209 				break;
2210 			}
2211 
2212 			if (signal_pending(current)) {
2213 				copied = sock_intr_errno(timeo);
2214 				break;
2215 			}
2216 		}
2217 
2218 		pr_debug("block timeout %ld", timeo);
2219 		sk_wait_data(sk, &timeo, NULL);
2220 	}
2221 
2222 out_err:
2223 	if (cmsg_flags && copied >= 0) {
2224 		if (cmsg_flags & MPTCP_CMSG_TS)
2225 			tcp_recv_timestamp(msg, sk, &tss);
2226 
2227 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2228 			unsigned int inq = mptcp_inq_hint(sk);
2229 
2230 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2231 		}
2232 	}
2233 
2234 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2235 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2236 		 skb_queue_empty(&msk->receive_queue), copied);
2237 	if (!(flags & MSG_PEEK))
2238 		mptcp_rcv_space_adjust(msk, copied);
2239 
2240 	release_sock(sk);
2241 	return copied;
2242 }
2243 
2244 static void mptcp_retransmit_timer(struct timer_list *t)
2245 {
2246 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2247 						       icsk_retransmit_timer);
2248 	struct sock *sk = &icsk->icsk_inet.sk;
2249 	struct mptcp_sock *msk = mptcp_sk(sk);
2250 
2251 	bh_lock_sock(sk);
2252 	if (!sock_owned_by_user(sk)) {
2253 		/* we need a process context to retransmit */
2254 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2255 			mptcp_schedule_work(sk);
2256 	} else {
2257 		/* delegate our work to tcp_release_cb() */
2258 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2259 	}
2260 	bh_unlock_sock(sk);
2261 	sock_put(sk);
2262 }
2263 
2264 static void mptcp_tout_timer(struct timer_list *t)
2265 {
2266 	struct sock *sk = from_timer(sk, t, sk_timer);
2267 
2268 	mptcp_schedule_work(sk);
2269 	sock_put(sk);
2270 }
2271 
2272 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2273  * level.
2274  *
2275  * A backup subflow is returned only if that is the only kind available.
2276  */
2277 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2278 {
2279 	struct sock *backup = NULL, *pick = NULL;
2280 	struct mptcp_subflow_context *subflow;
2281 	int min_stale_count = INT_MAX;
2282 
2283 	mptcp_for_each_subflow(msk, subflow) {
2284 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2285 
2286 		if (!__mptcp_subflow_active(subflow))
2287 			continue;
2288 
2289 		/* still data outstanding at TCP level? skip this */
2290 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2291 			mptcp_pm_subflow_chk_stale(msk, ssk);
2292 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2293 			continue;
2294 		}
2295 
2296 		if (subflow->backup) {
2297 			if (!backup)
2298 				backup = ssk;
2299 			continue;
2300 		}
2301 
2302 		if (!pick)
2303 			pick = ssk;
2304 	}
2305 
2306 	if (pick)
2307 		return pick;
2308 
2309 	/* use backup only if there are no progresses anywhere */
2310 	return min_stale_count > 1 ? backup : NULL;
2311 }
2312 
2313 bool __mptcp_retransmit_pending_data(struct sock *sk)
2314 {
2315 	struct mptcp_data_frag *cur, *rtx_head;
2316 	struct mptcp_sock *msk = mptcp_sk(sk);
2317 
2318 	if (__mptcp_check_fallback(msk))
2319 		return false;
2320 
2321 	if (tcp_rtx_and_write_queues_empty(sk))
2322 		return false;
2323 
2324 	/* the closing socket has some data untransmitted and/or unacked:
2325 	 * some data in the mptcp rtx queue has not really xmitted yet.
2326 	 * keep it simple and re-inject the whole mptcp level rtx queue
2327 	 */
2328 	mptcp_data_lock(sk);
2329 	__mptcp_clean_una_wakeup(sk);
2330 	rtx_head = mptcp_rtx_head(sk);
2331 	if (!rtx_head) {
2332 		mptcp_data_unlock(sk);
2333 		return false;
2334 	}
2335 
2336 	msk->recovery_snd_nxt = msk->snd_nxt;
2337 	msk->recovery = true;
2338 	mptcp_data_unlock(sk);
2339 
2340 	msk->first_pending = rtx_head;
2341 	msk->snd_burst = 0;
2342 
2343 	/* be sure to clear the "sent status" on all re-injected fragments */
2344 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2345 		if (!cur->already_sent)
2346 			break;
2347 		cur->already_sent = 0;
2348 	}
2349 
2350 	return true;
2351 }
2352 
2353 /* flags for __mptcp_close_ssk() */
2354 #define MPTCP_CF_PUSH		BIT(1)
2355 #define MPTCP_CF_FASTCLOSE	BIT(2)
2356 
2357 /* subflow sockets can be either outgoing (connect) or incoming
2358  * (accept).
2359  *
2360  * Outgoing subflows use in-kernel sockets.
2361  * Incoming subflows do not have their own 'struct socket' allocated,
2362  * so we need to use tcp_close() after detaching them from the mptcp
2363  * parent socket.
2364  */
2365 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2366 			      struct mptcp_subflow_context *subflow,
2367 			      unsigned int flags)
2368 {
2369 	struct mptcp_sock *msk = mptcp_sk(sk);
2370 	bool dispose_it, need_push = false;
2371 
2372 	/* If the first subflow moved to a close state before accept, e.g. due
2373 	 * to an incoming reset or listener shutdown, the subflow socket is
2374 	 * already deleted by inet_child_forget() and the mptcp socket can't
2375 	 * survive too.
2376 	 */
2377 	if (msk->in_accept_queue && msk->first == ssk &&
2378 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2379 		/* ensure later check in mptcp_worker() will dispose the msk */
2380 		mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2381 		sock_set_flag(sk, SOCK_DEAD);
2382 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2383 		mptcp_subflow_drop_ctx(ssk);
2384 		goto out_release;
2385 	}
2386 
2387 	dispose_it = msk->free_first || ssk != msk->first;
2388 	if (dispose_it)
2389 		list_del(&subflow->node);
2390 
2391 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2392 
2393 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2394 		/* be sure to force the tcp_disconnect() path,
2395 		 * to generate the egress reset
2396 		 */
2397 		ssk->sk_lingertime = 0;
2398 		sock_set_flag(ssk, SOCK_LINGER);
2399 		subflow->send_fastclose = 1;
2400 	}
2401 
2402 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2403 	if (!dispose_it) {
2404 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2405 		 * disconnect should never fail
2406 		 */
2407 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2408 		mptcp_subflow_ctx_reset(subflow);
2409 		release_sock(ssk);
2410 
2411 		goto out;
2412 	}
2413 
2414 	subflow->disposable = 1;
2415 
2416 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2417 	 * the ssk has been already destroyed, we just need to release the
2418 	 * reference owned by msk;
2419 	 */
2420 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2421 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2422 		kfree_rcu(subflow, rcu);
2423 	} else {
2424 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2425 		__tcp_close(ssk, 0);
2426 
2427 		/* close acquired an extra ref */
2428 		__sock_put(ssk);
2429 	}
2430 
2431 out_release:
2432 	__mptcp_subflow_error_report(sk, ssk);
2433 	release_sock(ssk);
2434 
2435 	sock_put(ssk);
2436 
2437 	if (ssk == msk->first)
2438 		WRITE_ONCE(msk->first, NULL);
2439 
2440 out:
2441 	if (need_push)
2442 		__mptcp_push_pending(sk, 0);
2443 
2444 	/* Catch every 'all subflows closed' scenario, including peers silently
2445 	 * closing them, e.g. due to timeout.
2446 	 * For established sockets, allow an additional timeout before closing,
2447 	 * as the protocol can still create more subflows.
2448 	 */
2449 	if (list_is_singular(&msk->conn_list) && msk->first &&
2450 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2451 		if (sk->sk_state != TCP_ESTABLISHED ||
2452 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2453 			inet_sk_state_store(sk, TCP_CLOSE);
2454 			mptcp_close_wake_up(sk);
2455 		} else {
2456 			mptcp_start_tout_timer(sk);
2457 		}
2458 	}
2459 }
2460 
2461 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2462 		     struct mptcp_subflow_context *subflow)
2463 {
2464 	if (sk->sk_state == TCP_ESTABLISHED)
2465 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2466 
2467 	/* subflow aborted before reaching the fully_established status
2468 	 * attempt the creation of the next subflow
2469 	 */
2470 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2471 
2472 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2473 }
2474 
2475 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2476 {
2477 	return 0;
2478 }
2479 
2480 static void __mptcp_close_subflow(struct sock *sk)
2481 {
2482 	struct mptcp_subflow_context *subflow, *tmp;
2483 	struct mptcp_sock *msk = mptcp_sk(sk);
2484 
2485 	might_sleep();
2486 
2487 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2488 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2489 
2490 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2491 			continue;
2492 
2493 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2494 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2495 			continue;
2496 
2497 		mptcp_close_ssk(sk, ssk, subflow);
2498 	}
2499 
2500 }
2501 
2502 static bool mptcp_close_tout_expired(const struct sock *sk)
2503 {
2504 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2505 	    sk->sk_state == TCP_CLOSE)
2506 		return false;
2507 
2508 	return time_after32(tcp_jiffies32,
2509 		  inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2510 }
2511 
2512 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2513 {
2514 	struct mptcp_subflow_context *subflow, *tmp;
2515 	struct sock *sk = (struct sock *)msk;
2516 
2517 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2518 		return;
2519 
2520 	mptcp_token_destroy(msk);
2521 
2522 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2523 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2524 		bool slow;
2525 
2526 		slow = lock_sock_fast(tcp_sk);
2527 		if (tcp_sk->sk_state != TCP_CLOSE) {
2528 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2529 			tcp_set_state(tcp_sk, TCP_CLOSE);
2530 		}
2531 		unlock_sock_fast(tcp_sk, slow);
2532 	}
2533 
2534 	/* Mirror the tcp_reset() error propagation */
2535 	switch (sk->sk_state) {
2536 	case TCP_SYN_SENT:
2537 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2538 		break;
2539 	case TCP_CLOSE_WAIT:
2540 		WRITE_ONCE(sk->sk_err, EPIPE);
2541 		break;
2542 	case TCP_CLOSE:
2543 		return;
2544 	default:
2545 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2546 	}
2547 
2548 	inet_sk_state_store(sk, TCP_CLOSE);
2549 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2550 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2551 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2552 
2553 	/* the calling mptcp_worker will properly destroy the socket */
2554 	if (sock_flag(sk, SOCK_DEAD))
2555 		return;
2556 
2557 	sk->sk_state_change(sk);
2558 	sk_error_report(sk);
2559 }
2560 
2561 static void __mptcp_retrans(struct sock *sk)
2562 {
2563 	struct mptcp_sock *msk = mptcp_sk(sk);
2564 	struct mptcp_subflow_context *subflow;
2565 	struct mptcp_sendmsg_info info = {};
2566 	struct mptcp_data_frag *dfrag;
2567 	struct sock *ssk;
2568 	int ret, err;
2569 	u16 len = 0;
2570 
2571 	mptcp_clean_una_wakeup(sk);
2572 
2573 	/* first check ssk: need to kick "stale" logic */
2574 	err = mptcp_sched_get_retrans(msk);
2575 	dfrag = mptcp_rtx_head(sk);
2576 	if (!dfrag) {
2577 		if (mptcp_data_fin_enabled(msk)) {
2578 			struct inet_connection_sock *icsk = inet_csk(sk);
2579 
2580 			icsk->icsk_retransmits++;
2581 			mptcp_set_datafin_timeout(sk);
2582 			mptcp_send_ack(msk);
2583 
2584 			goto reset_timer;
2585 		}
2586 
2587 		if (!mptcp_send_head(sk))
2588 			return;
2589 
2590 		goto reset_timer;
2591 	}
2592 
2593 	if (err)
2594 		goto reset_timer;
2595 
2596 	mptcp_for_each_subflow(msk, subflow) {
2597 		if (READ_ONCE(subflow->scheduled)) {
2598 			u16 copied = 0;
2599 
2600 			mptcp_subflow_set_scheduled(subflow, false);
2601 
2602 			ssk = mptcp_subflow_tcp_sock(subflow);
2603 
2604 			lock_sock(ssk);
2605 
2606 			/* limit retransmission to the bytes already sent on some subflows */
2607 			info.sent = 0;
2608 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2609 								    dfrag->already_sent;
2610 			while (info.sent < info.limit) {
2611 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2612 				if (ret <= 0)
2613 					break;
2614 
2615 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2616 				copied += ret;
2617 				info.sent += ret;
2618 			}
2619 			if (copied) {
2620 				len = max(copied, len);
2621 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2622 					 info.size_goal);
2623 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2624 			}
2625 
2626 			release_sock(ssk);
2627 		}
2628 	}
2629 
2630 	msk->bytes_retrans += len;
2631 	dfrag->already_sent = max(dfrag->already_sent, len);
2632 
2633 reset_timer:
2634 	mptcp_check_and_set_pending(sk);
2635 
2636 	if (!mptcp_rtx_timer_pending(sk))
2637 		mptcp_reset_rtx_timer(sk);
2638 }
2639 
2640 /* schedule the timeout timer for the relevant event: either close timeout
2641  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2642  */
2643 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2644 {
2645 	struct sock *sk = (struct sock *)msk;
2646 	unsigned long timeout, close_timeout;
2647 
2648 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2649 		return;
2650 
2651 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2652 			TCP_TIMEWAIT_LEN;
2653 
2654 	/* the close timeout takes precedence on the fail one, and here at least one of
2655 	 * them is active
2656 	 */
2657 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2658 
2659 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2660 }
2661 
2662 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2663 {
2664 	struct sock *ssk = msk->first;
2665 	bool slow;
2666 
2667 	if (!ssk)
2668 		return;
2669 
2670 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2671 
2672 	slow = lock_sock_fast(ssk);
2673 	mptcp_subflow_reset(ssk);
2674 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2675 	unlock_sock_fast(ssk, slow);
2676 }
2677 
2678 static void mptcp_do_fastclose(struct sock *sk)
2679 {
2680 	struct mptcp_subflow_context *subflow, *tmp;
2681 	struct mptcp_sock *msk = mptcp_sk(sk);
2682 
2683 	inet_sk_state_store(sk, TCP_CLOSE);
2684 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2685 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2686 				  subflow, MPTCP_CF_FASTCLOSE);
2687 }
2688 
2689 static void mptcp_worker(struct work_struct *work)
2690 {
2691 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2692 	struct sock *sk = (struct sock *)msk;
2693 	unsigned long fail_tout;
2694 	int state;
2695 
2696 	lock_sock(sk);
2697 	state = sk->sk_state;
2698 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2699 		goto unlock;
2700 
2701 	mptcp_check_fastclose(msk);
2702 
2703 	mptcp_pm_nl_work(msk);
2704 
2705 	mptcp_check_send_data_fin(sk);
2706 	mptcp_check_data_fin_ack(sk);
2707 	mptcp_check_data_fin(sk);
2708 
2709 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2710 		__mptcp_close_subflow(sk);
2711 
2712 	if (mptcp_close_tout_expired(sk)) {
2713 		mptcp_do_fastclose(sk);
2714 		mptcp_close_wake_up(sk);
2715 	}
2716 
2717 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2718 		__mptcp_destroy_sock(sk);
2719 		goto unlock;
2720 	}
2721 
2722 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2723 		__mptcp_retrans(sk);
2724 
2725 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2726 	if (fail_tout && time_after(jiffies, fail_tout))
2727 		mptcp_mp_fail_no_response(msk);
2728 
2729 unlock:
2730 	release_sock(sk);
2731 	sock_put(sk);
2732 }
2733 
2734 static void __mptcp_init_sock(struct sock *sk)
2735 {
2736 	struct mptcp_sock *msk = mptcp_sk(sk);
2737 
2738 	INIT_LIST_HEAD(&msk->conn_list);
2739 	INIT_LIST_HEAD(&msk->join_list);
2740 	INIT_LIST_HEAD(&msk->rtx_queue);
2741 	INIT_WORK(&msk->work, mptcp_worker);
2742 	__skb_queue_head_init(&msk->receive_queue);
2743 	msk->out_of_order_queue = RB_ROOT;
2744 	msk->first_pending = NULL;
2745 	msk->rmem_fwd_alloc = 0;
2746 	WRITE_ONCE(msk->rmem_released, 0);
2747 	msk->timer_ival = TCP_RTO_MIN;
2748 
2749 	WRITE_ONCE(msk->first, NULL);
2750 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2751 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2752 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2753 	msk->recovery = false;
2754 	msk->subflow_id = 1;
2755 
2756 	mptcp_pm_data_init(msk);
2757 
2758 	/* re-use the csk retrans timer for MPTCP-level retrans */
2759 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2760 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2761 }
2762 
2763 static void mptcp_ca_reset(struct sock *sk)
2764 {
2765 	struct inet_connection_sock *icsk = inet_csk(sk);
2766 
2767 	tcp_assign_congestion_control(sk);
2768 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2769 
2770 	/* no need to keep a reference to the ops, the name will suffice */
2771 	tcp_cleanup_congestion_control(sk);
2772 	icsk->icsk_ca_ops = NULL;
2773 }
2774 
2775 static int mptcp_init_sock(struct sock *sk)
2776 {
2777 	struct net *net = sock_net(sk);
2778 	int ret;
2779 
2780 	__mptcp_init_sock(sk);
2781 
2782 	if (!mptcp_is_enabled(net))
2783 		return -ENOPROTOOPT;
2784 
2785 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2786 		return -ENOMEM;
2787 
2788 	ret = mptcp_init_sched(mptcp_sk(sk),
2789 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2790 	if (ret)
2791 		return ret;
2792 
2793 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2794 
2795 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2796 	 * propagate the correct value
2797 	 */
2798 	mptcp_ca_reset(sk);
2799 
2800 	sk_sockets_allocated_inc(sk);
2801 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2802 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2803 
2804 	return 0;
2805 }
2806 
2807 static void __mptcp_clear_xmit(struct sock *sk)
2808 {
2809 	struct mptcp_sock *msk = mptcp_sk(sk);
2810 	struct mptcp_data_frag *dtmp, *dfrag;
2811 
2812 	WRITE_ONCE(msk->first_pending, NULL);
2813 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2814 		dfrag_clear(sk, dfrag);
2815 }
2816 
2817 void mptcp_cancel_work(struct sock *sk)
2818 {
2819 	struct mptcp_sock *msk = mptcp_sk(sk);
2820 
2821 	if (cancel_work_sync(&msk->work))
2822 		__sock_put(sk);
2823 }
2824 
2825 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2826 {
2827 	lock_sock(ssk);
2828 
2829 	switch (ssk->sk_state) {
2830 	case TCP_LISTEN:
2831 		if (!(how & RCV_SHUTDOWN))
2832 			break;
2833 		fallthrough;
2834 	case TCP_SYN_SENT:
2835 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2836 		break;
2837 	default:
2838 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2839 			pr_debug("Fallback");
2840 			ssk->sk_shutdown |= how;
2841 			tcp_shutdown(ssk, how);
2842 
2843 			/* simulate the data_fin ack reception to let the state
2844 			 * machine move forward
2845 			 */
2846 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2847 			mptcp_schedule_work(sk);
2848 		} else {
2849 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2850 			tcp_send_ack(ssk);
2851 			if (!mptcp_rtx_timer_pending(sk))
2852 				mptcp_reset_rtx_timer(sk);
2853 		}
2854 		break;
2855 	}
2856 
2857 	release_sock(ssk);
2858 }
2859 
2860 static const unsigned char new_state[16] = {
2861 	/* current state:     new state:      action:	*/
2862 	[0 /* (Invalid) */] = TCP_CLOSE,
2863 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2864 	[TCP_SYN_SENT]      = TCP_CLOSE,
2865 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2866 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2867 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2868 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2869 	[TCP_CLOSE]         = TCP_CLOSE,
2870 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2871 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2872 	[TCP_LISTEN]        = TCP_CLOSE,
2873 	[TCP_CLOSING]       = TCP_CLOSING,
2874 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2875 };
2876 
2877 static int mptcp_close_state(struct sock *sk)
2878 {
2879 	int next = (int)new_state[sk->sk_state];
2880 	int ns = next & TCP_STATE_MASK;
2881 
2882 	inet_sk_state_store(sk, ns);
2883 
2884 	return next & TCP_ACTION_FIN;
2885 }
2886 
2887 static void mptcp_check_send_data_fin(struct sock *sk)
2888 {
2889 	struct mptcp_subflow_context *subflow;
2890 	struct mptcp_sock *msk = mptcp_sk(sk);
2891 
2892 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2893 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2894 		 msk->snd_nxt, msk->write_seq);
2895 
2896 	/* we still need to enqueue subflows or not really shutting down,
2897 	 * skip this
2898 	 */
2899 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2900 	    mptcp_send_head(sk))
2901 		return;
2902 
2903 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2904 
2905 	mptcp_for_each_subflow(msk, subflow) {
2906 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2907 
2908 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2909 	}
2910 }
2911 
2912 static void __mptcp_wr_shutdown(struct sock *sk)
2913 {
2914 	struct mptcp_sock *msk = mptcp_sk(sk);
2915 
2916 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2917 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2918 		 !!mptcp_send_head(sk));
2919 
2920 	/* will be ignored by fallback sockets */
2921 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2922 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2923 
2924 	mptcp_check_send_data_fin(sk);
2925 }
2926 
2927 static void __mptcp_destroy_sock(struct sock *sk)
2928 {
2929 	struct mptcp_sock *msk = mptcp_sk(sk);
2930 
2931 	pr_debug("msk=%p", msk);
2932 
2933 	might_sleep();
2934 
2935 	mptcp_stop_rtx_timer(sk);
2936 	sk_stop_timer(sk, &sk->sk_timer);
2937 	msk->pm.status = 0;
2938 	mptcp_release_sched(msk);
2939 
2940 	sk->sk_prot->destroy(sk);
2941 
2942 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2943 	WARN_ON_ONCE(msk->rmem_released);
2944 	sk_stream_kill_queues(sk);
2945 	xfrm_sk_free_policy(sk);
2946 
2947 	sock_put(sk);
2948 }
2949 
2950 void __mptcp_unaccepted_force_close(struct sock *sk)
2951 {
2952 	sock_set_flag(sk, SOCK_DEAD);
2953 	mptcp_do_fastclose(sk);
2954 	__mptcp_destroy_sock(sk);
2955 }
2956 
2957 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2958 {
2959 	/* Concurrent splices from sk_receive_queue into receive_queue will
2960 	 * always show at least one non-empty queue when checked in this order.
2961 	 */
2962 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2963 	    skb_queue_empty_lockless(&msk->receive_queue))
2964 		return 0;
2965 
2966 	return EPOLLIN | EPOLLRDNORM;
2967 }
2968 
2969 static void mptcp_check_listen_stop(struct sock *sk)
2970 {
2971 	struct sock *ssk;
2972 
2973 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2974 		return;
2975 
2976 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2977 	ssk = mptcp_sk(sk)->first;
2978 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2979 		return;
2980 
2981 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2982 	tcp_set_state(ssk, TCP_CLOSE);
2983 	mptcp_subflow_queue_clean(sk, ssk);
2984 	inet_csk_listen_stop(ssk);
2985 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2986 	release_sock(ssk);
2987 }
2988 
2989 bool __mptcp_close(struct sock *sk, long timeout)
2990 {
2991 	struct mptcp_subflow_context *subflow;
2992 	struct mptcp_sock *msk = mptcp_sk(sk);
2993 	bool do_cancel_work = false;
2994 	int subflows_alive = 0;
2995 
2996 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2997 
2998 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2999 		mptcp_check_listen_stop(sk);
3000 		inet_sk_state_store(sk, TCP_CLOSE);
3001 		goto cleanup;
3002 	}
3003 
3004 	if (mptcp_check_readable(msk) || timeout < 0) {
3005 		/* If the msk has read data, or the caller explicitly ask it,
3006 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3007 		 */
3008 		mptcp_do_fastclose(sk);
3009 		timeout = 0;
3010 	} else if (mptcp_close_state(sk)) {
3011 		__mptcp_wr_shutdown(sk);
3012 	}
3013 
3014 	sk_stream_wait_close(sk, timeout);
3015 
3016 cleanup:
3017 	/* orphan all the subflows */
3018 	mptcp_for_each_subflow(msk, subflow) {
3019 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3020 		bool slow = lock_sock_fast_nested(ssk);
3021 
3022 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3023 
3024 		/* since the close timeout takes precedence on the fail one,
3025 		 * cancel the latter
3026 		 */
3027 		if (ssk == msk->first)
3028 			subflow->fail_tout = 0;
3029 
3030 		/* detach from the parent socket, but allow data_ready to
3031 		 * push incoming data into the mptcp stack, to properly ack it
3032 		 */
3033 		ssk->sk_socket = NULL;
3034 		ssk->sk_wq = NULL;
3035 		unlock_sock_fast(ssk, slow);
3036 	}
3037 	sock_orphan(sk);
3038 
3039 	/* all the subflows are closed, only timeout can change the msk
3040 	 * state, let's not keep resources busy for no reasons
3041 	 */
3042 	if (subflows_alive == 0)
3043 		inet_sk_state_store(sk, TCP_CLOSE);
3044 
3045 	sock_hold(sk);
3046 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3047 	if (msk->token)
3048 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3049 
3050 	if (sk->sk_state == TCP_CLOSE) {
3051 		__mptcp_destroy_sock(sk);
3052 		do_cancel_work = true;
3053 	} else {
3054 		mptcp_start_tout_timer(sk);
3055 	}
3056 
3057 	return do_cancel_work;
3058 }
3059 
3060 static void mptcp_close(struct sock *sk, long timeout)
3061 {
3062 	bool do_cancel_work;
3063 
3064 	lock_sock(sk);
3065 
3066 	do_cancel_work = __mptcp_close(sk, timeout);
3067 	release_sock(sk);
3068 	if (do_cancel_work)
3069 		mptcp_cancel_work(sk);
3070 
3071 	sock_put(sk);
3072 }
3073 
3074 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3075 {
3076 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3077 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3078 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3079 
3080 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3081 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3082 
3083 	if (msk6 && ssk6) {
3084 		msk6->saddr = ssk6->saddr;
3085 		msk6->flow_label = ssk6->flow_label;
3086 	}
3087 #endif
3088 
3089 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3090 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3091 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3092 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3093 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3094 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3095 }
3096 
3097 static int mptcp_disconnect(struct sock *sk, int flags)
3098 {
3099 	struct mptcp_sock *msk = mptcp_sk(sk);
3100 
3101 	/* Deny disconnect if other threads are blocked in sk_wait_event()
3102 	 * or inet_wait_for_connect().
3103 	 */
3104 	if (sk->sk_wait_pending)
3105 		return -EBUSY;
3106 
3107 	/* We are on the fastopen error path. We can't call straight into the
3108 	 * subflows cleanup code due to lock nesting (we are already under
3109 	 * msk->firstsocket lock).
3110 	 */
3111 	if (msk->fastopening)
3112 		return -EBUSY;
3113 
3114 	mptcp_check_listen_stop(sk);
3115 	inet_sk_state_store(sk, TCP_CLOSE);
3116 
3117 	mptcp_stop_rtx_timer(sk);
3118 	mptcp_stop_tout_timer(sk);
3119 
3120 	if (msk->token)
3121 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3122 
3123 	/* msk->subflow is still intact, the following will not free the first
3124 	 * subflow
3125 	 */
3126 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3127 	WRITE_ONCE(msk->flags, 0);
3128 	msk->cb_flags = 0;
3129 	msk->push_pending = 0;
3130 	msk->recovery = false;
3131 	msk->can_ack = false;
3132 	msk->fully_established = false;
3133 	msk->rcv_data_fin = false;
3134 	msk->snd_data_fin_enable = false;
3135 	msk->rcv_fastclose = false;
3136 	msk->use_64bit_ack = false;
3137 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3138 	mptcp_pm_data_reset(msk);
3139 	mptcp_ca_reset(sk);
3140 	msk->bytes_acked = 0;
3141 	msk->bytes_received = 0;
3142 	msk->bytes_sent = 0;
3143 	msk->bytes_retrans = 0;
3144 
3145 	WRITE_ONCE(sk->sk_shutdown, 0);
3146 	sk_error_report(sk);
3147 	return 0;
3148 }
3149 
3150 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3151 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3152 {
3153 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3154 
3155 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3156 }
3157 #endif
3158 
3159 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3160 				 const struct mptcp_options_received *mp_opt,
3161 				 struct sock *ssk,
3162 				 struct request_sock *req)
3163 {
3164 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3165 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3166 	struct mptcp_sock *msk;
3167 
3168 	if (!nsk)
3169 		return NULL;
3170 
3171 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3172 	if (nsk->sk_family == AF_INET6)
3173 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3174 #endif
3175 
3176 	nsk->sk_wait_pending = 0;
3177 	__mptcp_init_sock(nsk);
3178 
3179 	msk = mptcp_sk(nsk);
3180 	msk->local_key = subflow_req->local_key;
3181 	msk->token = subflow_req->token;
3182 	msk->in_accept_queue = 1;
3183 	WRITE_ONCE(msk->fully_established, false);
3184 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3185 		WRITE_ONCE(msk->csum_enabled, true);
3186 
3187 	msk->write_seq = subflow_req->idsn + 1;
3188 	msk->snd_nxt = msk->write_seq;
3189 	msk->snd_una = msk->write_seq;
3190 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3191 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3192 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3193 
3194 	/* passive msk is created after the first/MPC subflow */
3195 	msk->subflow_id = 2;
3196 
3197 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3198 	security_inet_csk_clone(nsk, req);
3199 
3200 	/* this can't race with mptcp_close(), as the msk is
3201 	 * not yet exposted to user-space
3202 	 */
3203 	inet_sk_state_store(nsk, TCP_ESTABLISHED);
3204 
3205 	/* The msk maintain a ref to each subflow in the connections list */
3206 	WRITE_ONCE(msk->first, ssk);
3207 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3208 	sock_hold(ssk);
3209 
3210 	/* new mpc subflow takes ownership of the newly
3211 	 * created mptcp socket
3212 	 */
3213 	mptcp_token_accept(subflow_req, msk);
3214 
3215 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3216 	 * uses the correct data
3217 	 */
3218 	mptcp_copy_inaddrs(nsk, ssk);
3219 	mptcp_propagate_sndbuf(nsk, ssk);
3220 
3221 	mptcp_rcv_space_init(msk, ssk);
3222 	bh_unlock_sock(nsk);
3223 
3224 	/* note: the newly allocated socket refcount is 2 now */
3225 	return nsk;
3226 }
3227 
3228 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3229 {
3230 	const struct tcp_sock *tp = tcp_sk(ssk);
3231 
3232 	msk->rcvq_space.copied = 0;
3233 	msk->rcvq_space.rtt_us = 0;
3234 
3235 	msk->rcvq_space.time = tp->tcp_mstamp;
3236 
3237 	/* initial rcv_space offering made to peer */
3238 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3239 				      TCP_INIT_CWND * tp->advmss);
3240 	if (msk->rcvq_space.space == 0)
3241 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3242 
3243 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3244 }
3245 
3246 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err,
3247 				 bool kern)
3248 {
3249 	struct sock *newsk;
3250 
3251 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3252 	newsk = inet_csk_accept(ssk, flags, err, kern);
3253 	if (!newsk)
3254 		return NULL;
3255 
3256 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3257 	if (sk_is_mptcp(newsk)) {
3258 		struct mptcp_subflow_context *subflow;
3259 		struct sock *new_mptcp_sock;
3260 
3261 		subflow = mptcp_subflow_ctx(newsk);
3262 		new_mptcp_sock = subflow->conn;
3263 
3264 		/* is_mptcp should be false if subflow->conn is missing, see
3265 		 * subflow_syn_recv_sock()
3266 		 */
3267 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3268 			tcp_sk(newsk)->is_mptcp = 0;
3269 			goto out;
3270 		}
3271 
3272 		newsk = new_mptcp_sock;
3273 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3274 	} else {
3275 		MPTCP_INC_STATS(sock_net(ssk),
3276 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3277 	}
3278 
3279 out:
3280 	newsk->sk_kern_sock = kern;
3281 	return newsk;
3282 }
3283 
3284 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3285 {
3286 	struct mptcp_subflow_context *subflow, *tmp;
3287 	struct sock *sk = (struct sock *)msk;
3288 
3289 	__mptcp_clear_xmit(sk);
3290 
3291 	/* join list will be eventually flushed (with rst) at sock lock release time */
3292 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3293 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3294 
3295 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3296 	mptcp_data_lock(sk);
3297 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3298 	__skb_queue_purge(&sk->sk_receive_queue);
3299 	skb_rbtree_purge(&msk->out_of_order_queue);
3300 	mptcp_data_unlock(sk);
3301 
3302 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3303 	 * inet_sock_destruct() will dispose it
3304 	 */
3305 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3306 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3307 	mptcp_token_destroy(msk);
3308 	mptcp_pm_free_anno_list(msk);
3309 	mptcp_free_local_addr_list(msk);
3310 }
3311 
3312 static void mptcp_destroy(struct sock *sk)
3313 {
3314 	struct mptcp_sock *msk = mptcp_sk(sk);
3315 
3316 	/* allow the following to close even the initial subflow */
3317 	msk->free_first = 1;
3318 	mptcp_destroy_common(msk, 0);
3319 	sk_sockets_allocated_dec(sk);
3320 }
3321 
3322 void __mptcp_data_acked(struct sock *sk)
3323 {
3324 	if (!sock_owned_by_user(sk))
3325 		__mptcp_clean_una(sk);
3326 	else
3327 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3328 
3329 	if (mptcp_pending_data_fin_ack(sk))
3330 		mptcp_schedule_work(sk);
3331 }
3332 
3333 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3334 {
3335 	if (!mptcp_send_head(sk))
3336 		return;
3337 
3338 	if (!sock_owned_by_user(sk))
3339 		__mptcp_subflow_push_pending(sk, ssk, false);
3340 	else
3341 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3342 }
3343 
3344 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3345 				      BIT(MPTCP_RETRANSMIT) | \
3346 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3347 
3348 /* processes deferred events and flush wmem */
3349 static void mptcp_release_cb(struct sock *sk)
3350 	__must_hold(&sk->sk_lock.slock)
3351 {
3352 	struct mptcp_sock *msk = mptcp_sk(sk);
3353 
3354 	for (;;) {
3355 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3356 				      msk->push_pending;
3357 		struct list_head join_list;
3358 
3359 		if (!flags)
3360 			break;
3361 
3362 		INIT_LIST_HEAD(&join_list);
3363 		list_splice_init(&msk->join_list, &join_list);
3364 
3365 		/* the following actions acquire the subflow socket lock
3366 		 *
3367 		 * 1) can't be invoked in atomic scope
3368 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3369 		 *    datapath acquires the msk socket spinlock while helding
3370 		 *    the subflow socket lock
3371 		 */
3372 		msk->push_pending = 0;
3373 		msk->cb_flags &= ~flags;
3374 		spin_unlock_bh(&sk->sk_lock.slock);
3375 
3376 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3377 			__mptcp_flush_join_list(sk, &join_list);
3378 		if (flags & BIT(MPTCP_PUSH_PENDING))
3379 			__mptcp_push_pending(sk, 0);
3380 		if (flags & BIT(MPTCP_RETRANSMIT))
3381 			__mptcp_retrans(sk);
3382 
3383 		cond_resched();
3384 		spin_lock_bh(&sk->sk_lock.slock);
3385 	}
3386 
3387 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3388 		__mptcp_clean_una_wakeup(sk);
3389 	if (unlikely(msk->cb_flags)) {
3390 		/* be sure to set the current sk state before tacking actions
3391 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3392 		 */
3393 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3394 			__mptcp_set_connected(sk);
3395 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3396 			__mptcp_error_report(sk);
3397 	}
3398 
3399 	__mptcp_update_rmem(sk);
3400 }
3401 
3402 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3403  * TCP can't schedule delack timer before the subflow is fully established.
3404  * MPTCP uses the delack timer to do 3rd ack retransmissions
3405  */
3406 static void schedule_3rdack_retransmission(struct sock *ssk)
3407 {
3408 	struct inet_connection_sock *icsk = inet_csk(ssk);
3409 	struct tcp_sock *tp = tcp_sk(ssk);
3410 	unsigned long timeout;
3411 
3412 	if (mptcp_subflow_ctx(ssk)->fully_established)
3413 		return;
3414 
3415 	/* reschedule with a timeout above RTT, as we must look only for drop */
3416 	if (tp->srtt_us)
3417 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3418 	else
3419 		timeout = TCP_TIMEOUT_INIT;
3420 	timeout += jiffies;
3421 
3422 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3423 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3424 	icsk->icsk_ack.timeout = timeout;
3425 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3426 }
3427 
3428 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3429 {
3430 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3431 	struct sock *sk = subflow->conn;
3432 
3433 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3434 		mptcp_data_lock(sk);
3435 		if (!sock_owned_by_user(sk))
3436 			__mptcp_subflow_push_pending(sk, ssk, true);
3437 		else
3438 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3439 		mptcp_data_unlock(sk);
3440 	}
3441 	if (status & BIT(MPTCP_DELEGATE_ACK))
3442 		schedule_3rdack_retransmission(ssk);
3443 }
3444 
3445 static int mptcp_hash(struct sock *sk)
3446 {
3447 	/* should never be called,
3448 	 * we hash the TCP subflows not the master socket
3449 	 */
3450 	WARN_ON_ONCE(1);
3451 	return 0;
3452 }
3453 
3454 static void mptcp_unhash(struct sock *sk)
3455 {
3456 	/* called from sk_common_release(), but nothing to do here */
3457 }
3458 
3459 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3460 {
3461 	struct mptcp_sock *msk = mptcp_sk(sk);
3462 
3463 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3464 	if (WARN_ON_ONCE(!msk->first))
3465 		return -EINVAL;
3466 
3467 	return inet_csk_get_port(msk->first, snum);
3468 }
3469 
3470 void mptcp_finish_connect(struct sock *ssk)
3471 {
3472 	struct mptcp_subflow_context *subflow;
3473 	struct mptcp_sock *msk;
3474 	struct sock *sk;
3475 
3476 	subflow = mptcp_subflow_ctx(ssk);
3477 	sk = subflow->conn;
3478 	msk = mptcp_sk(sk);
3479 
3480 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3481 
3482 	subflow->map_seq = subflow->iasn;
3483 	subflow->map_subflow_seq = 1;
3484 
3485 	/* the socket is not connected yet, no msk/subflow ops can access/race
3486 	 * accessing the field below
3487 	 */
3488 	WRITE_ONCE(msk->local_key, subflow->local_key);
3489 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3490 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3491 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3492 
3493 	mptcp_pm_new_connection(msk, ssk, 0);
3494 
3495 	mptcp_rcv_space_init(msk, ssk);
3496 }
3497 
3498 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3499 {
3500 	write_lock_bh(&sk->sk_callback_lock);
3501 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3502 	sk_set_socket(sk, parent);
3503 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3504 	write_unlock_bh(&sk->sk_callback_lock);
3505 }
3506 
3507 bool mptcp_finish_join(struct sock *ssk)
3508 {
3509 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3510 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3511 	struct sock *parent = (void *)msk;
3512 	bool ret = true;
3513 
3514 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3515 
3516 	/* mptcp socket already closing? */
3517 	if (!mptcp_is_fully_established(parent)) {
3518 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3519 		return false;
3520 	}
3521 
3522 	/* active subflow, already present inside the conn_list */
3523 	if (!list_empty(&subflow->node)) {
3524 		mptcp_subflow_joined(msk, ssk);
3525 		return true;
3526 	}
3527 
3528 	if (!mptcp_pm_allow_new_subflow(msk))
3529 		goto err_prohibited;
3530 
3531 	/* If we can't acquire msk socket lock here, let the release callback
3532 	 * handle it
3533 	 */
3534 	mptcp_data_lock(parent);
3535 	if (!sock_owned_by_user(parent)) {
3536 		ret = __mptcp_finish_join(msk, ssk);
3537 		if (ret) {
3538 			sock_hold(ssk);
3539 			list_add_tail(&subflow->node, &msk->conn_list);
3540 		}
3541 	} else {
3542 		sock_hold(ssk);
3543 		list_add_tail(&subflow->node, &msk->join_list);
3544 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3545 	}
3546 	mptcp_data_unlock(parent);
3547 
3548 	if (!ret) {
3549 err_prohibited:
3550 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3551 		return false;
3552 	}
3553 
3554 	return true;
3555 }
3556 
3557 static void mptcp_shutdown(struct sock *sk, int how)
3558 {
3559 	pr_debug("sk=%p, how=%d", sk, how);
3560 
3561 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3562 		__mptcp_wr_shutdown(sk);
3563 }
3564 
3565 static int mptcp_forward_alloc_get(const struct sock *sk)
3566 {
3567 	return READ_ONCE(sk->sk_forward_alloc) +
3568 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3569 }
3570 
3571 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3572 {
3573 	const struct sock *sk = (void *)msk;
3574 	u64 delta;
3575 
3576 	if (sk->sk_state == TCP_LISTEN)
3577 		return -EINVAL;
3578 
3579 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3580 		return 0;
3581 
3582 	delta = msk->write_seq - v;
3583 	if (__mptcp_check_fallback(msk) && msk->first) {
3584 		struct tcp_sock *tp = tcp_sk(msk->first);
3585 
3586 		/* the first subflow is disconnected after close - see
3587 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3588 		 * so ignore that status, too.
3589 		 */
3590 		if (!((1 << msk->first->sk_state) &
3591 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3592 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3593 	}
3594 	if (delta > INT_MAX)
3595 		delta = INT_MAX;
3596 
3597 	return (int)delta;
3598 }
3599 
3600 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3601 {
3602 	struct mptcp_sock *msk = mptcp_sk(sk);
3603 	bool slow;
3604 
3605 	switch (cmd) {
3606 	case SIOCINQ:
3607 		if (sk->sk_state == TCP_LISTEN)
3608 			return -EINVAL;
3609 
3610 		lock_sock(sk);
3611 		__mptcp_move_skbs(msk);
3612 		*karg = mptcp_inq_hint(sk);
3613 		release_sock(sk);
3614 		break;
3615 	case SIOCOUTQ:
3616 		slow = lock_sock_fast(sk);
3617 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3618 		unlock_sock_fast(sk, slow);
3619 		break;
3620 	case SIOCOUTQNSD:
3621 		slow = lock_sock_fast(sk);
3622 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3623 		unlock_sock_fast(sk, slow);
3624 		break;
3625 	default:
3626 		return -ENOIOCTLCMD;
3627 	}
3628 
3629 	return 0;
3630 }
3631 
3632 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3633 					 struct mptcp_subflow_context *subflow)
3634 {
3635 	subflow->request_mptcp = 0;
3636 	__mptcp_do_fallback(msk);
3637 }
3638 
3639 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3640 {
3641 	struct mptcp_subflow_context *subflow;
3642 	struct mptcp_sock *msk = mptcp_sk(sk);
3643 	int err = -EINVAL;
3644 	struct sock *ssk;
3645 
3646 	ssk = __mptcp_nmpc_sk(msk);
3647 	if (IS_ERR(ssk))
3648 		return PTR_ERR(ssk);
3649 
3650 	inet_sk_state_store(sk, TCP_SYN_SENT);
3651 	subflow = mptcp_subflow_ctx(ssk);
3652 #ifdef CONFIG_TCP_MD5SIG
3653 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3654 	 * TCP option space.
3655 	 */
3656 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3657 		mptcp_subflow_early_fallback(msk, subflow);
3658 #endif
3659 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3660 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3661 		mptcp_subflow_early_fallback(msk, subflow);
3662 	}
3663 	if (likely(!__mptcp_check_fallback(msk)))
3664 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3665 
3666 	/* if reaching here via the fastopen/sendmsg path, the caller already
3667 	 * acquired the subflow socket lock, too.
3668 	 */
3669 	if (!msk->fastopening)
3670 		lock_sock(ssk);
3671 
3672 	/* the following mirrors closely a very small chunk of code from
3673 	 * __inet_stream_connect()
3674 	 */
3675 	if (ssk->sk_state != TCP_CLOSE)
3676 		goto out;
3677 
3678 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3679 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3680 		if (err)
3681 			goto out;
3682 	}
3683 
3684 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3685 	if (err < 0)
3686 		goto out;
3687 
3688 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3689 
3690 out:
3691 	if (!msk->fastopening)
3692 		release_sock(ssk);
3693 
3694 	/* on successful connect, the msk state will be moved to established by
3695 	 * subflow_finish_connect()
3696 	 */
3697 	if (unlikely(err)) {
3698 		/* avoid leaving a dangling token in an unconnected socket */
3699 		mptcp_token_destroy(msk);
3700 		inet_sk_state_store(sk, TCP_CLOSE);
3701 		return err;
3702 	}
3703 
3704 	mptcp_copy_inaddrs(sk, ssk);
3705 	return 0;
3706 }
3707 
3708 static struct proto mptcp_prot = {
3709 	.name		= "MPTCP",
3710 	.owner		= THIS_MODULE,
3711 	.init		= mptcp_init_sock,
3712 	.connect	= mptcp_connect,
3713 	.disconnect	= mptcp_disconnect,
3714 	.close		= mptcp_close,
3715 	.accept		= mptcp_accept,
3716 	.setsockopt	= mptcp_setsockopt,
3717 	.getsockopt	= mptcp_getsockopt,
3718 	.shutdown	= mptcp_shutdown,
3719 	.destroy	= mptcp_destroy,
3720 	.sendmsg	= mptcp_sendmsg,
3721 	.ioctl		= mptcp_ioctl,
3722 	.recvmsg	= mptcp_recvmsg,
3723 	.release_cb	= mptcp_release_cb,
3724 	.hash		= mptcp_hash,
3725 	.unhash		= mptcp_unhash,
3726 	.get_port	= mptcp_get_port,
3727 	.forward_alloc_get	= mptcp_forward_alloc_get,
3728 	.sockets_allocated	= &mptcp_sockets_allocated,
3729 
3730 	.memory_allocated	= &tcp_memory_allocated,
3731 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3732 
3733 	.memory_pressure	= &tcp_memory_pressure,
3734 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3735 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3736 	.sysctl_mem	= sysctl_tcp_mem,
3737 	.obj_size	= sizeof(struct mptcp_sock),
3738 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3739 	.no_autobind	= true,
3740 };
3741 
3742 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3743 {
3744 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3745 	struct sock *ssk, *sk = sock->sk;
3746 	int err = -EINVAL;
3747 
3748 	lock_sock(sk);
3749 	ssk = __mptcp_nmpc_sk(msk);
3750 	if (IS_ERR(ssk)) {
3751 		err = PTR_ERR(ssk);
3752 		goto unlock;
3753 	}
3754 
3755 	if (sk->sk_family == AF_INET)
3756 		err = inet_bind_sk(ssk, uaddr, addr_len);
3757 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3758 	else if (sk->sk_family == AF_INET6)
3759 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3760 #endif
3761 	if (!err)
3762 		mptcp_copy_inaddrs(sk, ssk);
3763 
3764 unlock:
3765 	release_sock(sk);
3766 	return err;
3767 }
3768 
3769 static int mptcp_listen(struct socket *sock, int backlog)
3770 {
3771 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3772 	struct sock *sk = sock->sk;
3773 	struct sock *ssk;
3774 	int err;
3775 
3776 	pr_debug("msk=%p", msk);
3777 
3778 	lock_sock(sk);
3779 
3780 	err = -EINVAL;
3781 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3782 		goto unlock;
3783 
3784 	ssk = __mptcp_nmpc_sk(msk);
3785 	if (IS_ERR(ssk)) {
3786 		err = PTR_ERR(ssk);
3787 		goto unlock;
3788 	}
3789 
3790 	inet_sk_state_store(sk, TCP_LISTEN);
3791 	sock_set_flag(sk, SOCK_RCU_FREE);
3792 
3793 	lock_sock(ssk);
3794 	err = __inet_listen_sk(ssk, backlog);
3795 	release_sock(ssk);
3796 	inet_sk_state_store(sk, inet_sk_state_load(ssk));
3797 
3798 	if (!err) {
3799 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3800 		mptcp_copy_inaddrs(sk, ssk);
3801 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3802 	}
3803 
3804 unlock:
3805 	release_sock(sk);
3806 	return err;
3807 }
3808 
3809 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3810 			       int flags, bool kern)
3811 {
3812 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3813 	struct sock *ssk, *newsk;
3814 	int err;
3815 
3816 	pr_debug("msk=%p", msk);
3817 
3818 	/* Buggy applications can call accept on socket states other then LISTEN
3819 	 * but no need to allocate the first subflow just to error out.
3820 	 */
3821 	ssk = READ_ONCE(msk->first);
3822 	if (!ssk)
3823 		return -EINVAL;
3824 
3825 	newsk = mptcp_accept(ssk, flags, &err, kern);
3826 	if (!newsk)
3827 		return err;
3828 
3829 	lock_sock(newsk);
3830 
3831 	__inet_accept(sock, newsock, newsk);
3832 	if (!mptcp_is_tcpsk(newsock->sk)) {
3833 		struct mptcp_sock *msk = mptcp_sk(newsk);
3834 		struct mptcp_subflow_context *subflow;
3835 
3836 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3837 		msk->in_accept_queue = 0;
3838 
3839 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3840 		 * This is needed so NOSPACE flag can be set from tcp stack.
3841 		 */
3842 		mptcp_for_each_subflow(msk, subflow) {
3843 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3844 
3845 			if (!ssk->sk_socket)
3846 				mptcp_sock_graft(ssk, newsock);
3847 		}
3848 
3849 		/* Do late cleanup for the first subflow as necessary. Also
3850 		 * deal with bad peers not doing a complete shutdown.
3851 		 */
3852 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3853 			__mptcp_close_ssk(newsk, msk->first,
3854 					  mptcp_subflow_ctx(msk->first), 0);
3855 			if (unlikely(list_is_singular(&msk->conn_list)))
3856 				inet_sk_state_store(newsk, TCP_CLOSE);
3857 		}
3858 	}
3859 	release_sock(newsk);
3860 
3861 	return 0;
3862 }
3863 
3864 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3865 {
3866 	struct sock *sk = (struct sock *)msk;
3867 
3868 	if (sk_stream_is_writeable(sk))
3869 		return EPOLLOUT | EPOLLWRNORM;
3870 
3871 	mptcp_set_nospace(sk);
3872 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3873 	if (sk_stream_is_writeable(sk))
3874 		return EPOLLOUT | EPOLLWRNORM;
3875 
3876 	return 0;
3877 }
3878 
3879 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3880 			   struct poll_table_struct *wait)
3881 {
3882 	struct sock *sk = sock->sk;
3883 	struct mptcp_sock *msk;
3884 	__poll_t mask = 0;
3885 	u8 shutdown;
3886 	int state;
3887 
3888 	msk = mptcp_sk(sk);
3889 	sock_poll_wait(file, sock, wait);
3890 
3891 	state = inet_sk_state_load(sk);
3892 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3893 	if (state == TCP_LISTEN) {
3894 		struct sock *ssk = READ_ONCE(msk->first);
3895 
3896 		if (WARN_ON_ONCE(!ssk))
3897 			return 0;
3898 
3899 		return inet_csk_listen_poll(ssk);
3900 	}
3901 
3902 	shutdown = READ_ONCE(sk->sk_shutdown);
3903 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3904 		mask |= EPOLLHUP;
3905 	if (shutdown & RCV_SHUTDOWN)
3906 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3907 
3908 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3909 		mask |= mptcp_check_readable(msk);
3910 		if (shutdown & SEND_SHUTDOWN)
3911 			mask |= EPOLLOUT | EPOLLWRNORM;
3912 		else
3913 			mask |= mptcp_check_writeable(msk);
3914 	} else if (state == TCP_SYN_SENT &&
3915 		   inet_test_bit(DEFER_CONNECT, sk)) {
3916 		/* cf tcp_poll() note about TFO */
3917 		mask |= EPOLLOUT | EPOLLWRNORM;
3918 	}
3919 
3920 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3921 	smp_rmb();
3922 	if (READ_ONCE(sk->sk_err))
3923 		mask |= EPOLLERR;
3924 
3925 	return mask;
3926 }
3927 
3928 static const struct proto_ops mptcp_stream_ops = {
3929 	.family		   = PF_INET,
3930 	.owner		   = THIS_MODULE,
3931 	.release	   = inet_release,
3932 	.bind		   = mptcp_bind,
3933 	.connect	   = inet_stream_connect,
3934 	.socketpair	   = sock_no_socketpair,
3935 	.accept		   = mptcp_stream_accept,
3936 	.getname	   = inet_getname,
3937 	.poll		   = mptcp_poll,
3938 	.ioctl		   = inet_ioctl,
3939 	.gettstamp	   = sock_gettstamp,
3940 	.listen		   = mptcp_listen,
3941 	.shutdown	   = inet_shutdown,
3942 	.setsockopt	   = sock_common_setsockopt,
3943 	.getsockopt	   = sock_common_getsockopt,
3944 	.sendmsg	   = inet_sendmsg,
3945 	.recvmsg	   = inet_recvmsg,
3946 	.mmap		   = sock_no_mmap,
3947 };
3948 
3949 static struct inet_protosw mptcp_protosw = {
3950 	.type		= SOCK_STREAM,
3951 	.protocol	= IPPROTO_MPTCP,
3952 	.prot		= &mptcp_prot,
3953 	.ops		= &mptcp_stream_ops,
3954 	.flags		= INET_PROTOSW_ICSK,
3955 };
3956 
3957 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3958 {
3959 	struct mptcp_delegated_action *delegated;
3960 	struct mptcp_subflow_context *subflow;
3961 	int work_done = 0;
3962 
3963 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3964 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3965 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3966 
3967 		bh_lock_sock_nested(ssk);
3968 		if (!sock_owned_by_user(ssk)) {
3969 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
3970 		} else {
3971 			/* tcp_release_cb_override already processed
3972 			 * the action or will do at next release_sock().
3973 			 * In both case must dequeue the subflow here - on the same
3974 			 * CPU that scheduled it.
3975 			 */
3976 			smp_wmb();
3977 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
3978 		}
3979 		bh_unlock_sock(ssk);
3980 		sock_put(ssk);
3981 
3982 		if (++work_done == budget)
3983 			return budget;
3984 	}
3985 
3986 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3987 	 * will not try accessing the NULL napi->dev ptr
3988 	 */
3989 	napi_complete_done(napi, 0);
3990 	return work_done;
3991 }
3992 
3993 void __init mptcp_proto_init(void)
3994 {
3995 	struct mptcp_delegated_action *delegated;
3996 	int cpu;
3997 
3998 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3999 
4000 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4001 		panic("Failed to allocate MPTCP pcpu counter\n");
4002 
4003 	init_dummy_netdev(&mptcp_napi_dev);
4004 	for_each_possible_cpu(cpu) {
4005 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4006 		INIT_LIST_HEAD(&delegated->head);
4007 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4008 				  mptcp_napi_poll);
4009 		napi_enable(&delegated->napi);
4010 	}
4011 
4012 	mptcp_subflow_init();
4013 	mptcp_pm_init();
4014 	mptcp_sched_init();
4015 	mptcp_token_init();
4016 
4017 	if (proto_register(&mptcp_prot, 1) != 0)
4018 		panic("Failed to register MPTCP proto.\n");
4019 
4020 	inet_register_protosw(&mptcp_protosw);
4021 
4022 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4023 }
4024 
4025 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4026 static const struct proto_ops mptcp_v6_stream_ops = {
4027 	.family		   = PF_INET6,
4028 	.owner		   = THIS_MODULE,
4029 	.release	   = inet6_release,
4030 	.bind		   = mptcp_bind,
4031 	.connect	   = inet_stream_connect,
4032 	.socketpair	   = sock_no_socketpair,
4033 	.accept		   = mptcp_stream_accept,
4034 	.getname	   = inet6_getname,
4035 	.poll		   = mptcp_poll,
4036 	.ioctl		   = inet6_ioctl,
4037 	.gettstamp	   = sock_gettstamp,
4038 	.listen		   = mptcp_listen,
4039 	.shutdown	   = inet_shutdown,
4040 	.setsockopt	   = sock_common_setsockopt,
4041 	.getsockopt	   = sock_common_getsockopt,
4042 	.sendmsg	   = inet6_sendmsg,
4043 	.recvmsg	   = inet6_recvmsg,
4044 	.mmap		   = sock_no_mmap,
4045 #ifdef CONFIG_COMPAT
4046 	.compat_ioctl	   = inet6_compat_ioctl,
4047 #endif
4048 };
4049 
4050 static struct proto mptcp_v6_prot;
4051 
4052 static struct inet_protosw mptcp_v6_protosw = {
4053 	.type		= SOCK_STREAM,
4054 	.protocol	= IPPROTO_MPTCP,
4055 	.prot		= &mptcp_v6_prot,
4056 	.ops		= &mptcp_v6_stream_ops,
4057 	.flags		= INET_PROTOSW_ICSK,
4058 };
4059 
4060 int __init mptcp_proto_v6_init(void)
4061 {
4062 	int err;
4063 
4064 	mptcp_v6_prot = mptcp_prot;
4065 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4066 	mptcp_v6_prot.slab = NULL;
4067 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4068 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4069 
4070 	err = proto_register(&mptcp_v6_prot, 1);
4071 	if (err)
4072 		return err;
4073 
4074 	err = inet6_register_protosw(&mptcp_v6_protosw);
4075 	if (err)
4076 		proto_unregister(&mptcp_v6_prot);
4077 
4078 	return err;
4079 }
4080 #endif
4081