1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp_states.h> 19 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 20 #include <net/transp_v6.h> 21 #endif 22 #include <net/mptcp.h> 23 #include <net/hotdata.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device *mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 } 111 112 return msk->first; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 122 struct sk_buff *from) 123 { 124 bool fragstolen; 125 int delta; 126 127 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 128 MPTCP_SKB_CB(from)->offset || 129 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 130 !skb_try_coalesce(to, from, &fragstolen, &delta)) 131 return false; 132 133 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 134 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 135 to->len, MPTCP_SKB_CB(from)->end_seq); 136 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 137 138 /* note the fwd memory can reach a negative value after accounting 139 * for the delta, but the later skb free will restore a non 140 * negative one 141 */ 142 atomic_add(delta, &sk->sk_rmem_alloc); 143 sk_mem_charge(sk, delta); 144 kfree_skb_partial(from, fragstolen); 145 146 return true; 147 } 148 149 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 150 struct sk_buff *from) 151 { 152 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 153 return false; 154 155 return mptcp_try_coalesce((struct sock *)msk, to, from); 156 } 157 158 /* "inspired" by tcp_data_queue_ofo(), main differences: 159 * - use mptcp seqs 160 * - don't cope with sacks 161 */ 162 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 163 { 164 struct sock *sk = (struct sock *)msk; 165 struct rb_node **p, *parent; 166 u64 seq, end_seq, max_seq; 167 struct sk_buff *skb1; 168 169 seq = MPTCP_SKB_CB(skb)->map_seq; 170 end_seq = MPTCP_SKB_CB(skb)->end_seq; 171 max_seq = atomic64_read(&msk->rcv_wnd_sent); 172 173 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 174 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 175 if (after64(end_seq, max_seq)) { 176 /* out of window */ 177 mptcp_drop(sk, skb); 178 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 179 (unsigned long long)end_seq - (unsigned long)max_seq, 180 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 181 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 182 return; 183 } 184 185 p = &msk->out_of_order_queue.rb_node; 186 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 187 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 188 rb_link_node(&skb->rbnode, NULL, p); 189 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 190 msk->ooo_last_skb = skb; 191 goto end; 192 } 193 194 /* with 2 subflows, adding at end of ooo queue is quite likely 195 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 196 */ 197 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 198 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 199 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 200 return; 201 } 202 203 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 204 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 205 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 206 parent = &msk->ooo_last_skb->rbnode; 207 p = &parent->rb_right; 208 goto insert; 209 } 210 211 /* Find place to insert this segment. Handle overlaps on the way. */ 212 parent = NULL; 213 while (*p) { 214 parent = *p; 215 skb1 = rb_to_skb(parent); 216 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 217 p = &parent->rb_left; 218 continue; 219 } 220 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 221 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 222 /* All the bits are present. Drop. */ 223 mptcp_drop(sk, skb); 224 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 225 return; 226 } 227 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 228 /* partial overlap: 229 * | skb | 230 * | skb1 | 231 * continue traversing 232 */ 233 } else { 234 /* skb's seq == skb1's seq and skb covers skb1. 235 * Replace skb1 with skb. 236 */ 237 rb_replace_node(&skb1->rbnode, &skb->rbnode, 238 &msk->out_of_order_queue); 239 mptcp_drop(sk, skb1); 240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 241 goto merge_right; 242 } 243 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 245 return; 246 } 247 p = &parent->rb_right; 248 } 249 250 insert: 251 /* Insert segment into RB tree. */ 252 rb_link_node(&skb->rbnode, parent, p); 253 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 254 255 merge_right: 256 /* Remove other segments covered by skb. */ 257 while ((skb1 = skb_rb_next(skb)) != NULL) { 258 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 259 break; 260 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 261 mptcp_drop(sk, skb1); 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 263 } 264 /* If there is no skb after us, we are the last_skb ! */ 265 if (!skb1) 266 msk->ooo_last_skb = skb; 267 268 end: 269 skb_condense(skb); 270 skb_set_owner_r(skb, sk); 271 } 272 273 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 274 struct sk_buff *skb, unsigned int offset, 275 size_t copy_len) 276 { 277 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 278 struct sock *sk = (struct sock *)msk; 279 struct sk_buff *tail; 280 bool has_rxtstamp; 281 282 __skb_unlink(skb, &ssk->sk_receive_queue); 283 284 skb_ext_reset(skb); 285 skb_orphan(skb); 286 287 /* try to fetch required memory from subflow */ 288 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 290 goto drop; 291 } 292 293 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 294 295 /* the skb map_seq accounts for the skb offset: 296 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 297 * value 298 */ 299 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 300 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 301 MPTCP_SKB_CB(skb)->offset = offset; 302 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 303 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 304 305 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 306 /* in sequence */ 307 msk->bytes_received += copy_len; 308 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 309 tail = skb_peek_tail(&sk->sk_receive_queue); 310 if (tail && mptcp_try_coalesce(sk, tail, skb)) 311 return true; 312 313 skb_set_owner_r(skb, sk); 314 __skb_queue_tail(&sk->sk_receive_queue, skb); 315 return true; 316 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 317 mptcp_data_queue_ofo(msk, skb); 318 return false; 319 } 320 321 /* old data, keep it simple and drop the whole pkt, sender 322 * will retransmit as needed, if needed. 323 */ 324 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 325 drop: 326 mptcp_drop(sk, skb); 327 return false; 328 } 329 330 static void mptcp_stop_rtx_timer(struct sock *sk) 331 { 332 struct inet_connection_sock *icsk = inet_csk(sk); 333 334 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 335 mptcp_sk(sk)->timer_ival = 0; 336 } 337 338 static void mptcp_close_wake_up(struct sock *sk) 339 { 340 if (sock_flag(sk, SOCK_DEAD)) 341 return; 342 343 sk->sk_state_change(sk); 344 if (sk->sk_shutdown == SHUTDOWN_MASK || 345 sk->sk_state == TCP_CLOSE) 346 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 347 else 348 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 349 } 350 351 /* called under the msk socket lock */ 352 static bool mptcp_pending_data_fin_ack(struct sock *sk) 353 { 354 struct mptcp_sock *msk = mptcp_sk(sk); 355 356 return ((1 << sk->sk_state) & 357 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 358 msk->write_seq == READ_ONCE(msk->snd_una); 359 } 360 361 static void mptcp_check_data_fin_ack(struct sock *sk) 362 { 363 struct mptcp_sock *msk = mptcp_sk(sk); 364 365 /* Look for an acknowledged DATA_FIN */ 366 if (mptcp_pending_data_fin_ack(sk)) { 367 WRITE_ONCE(msk->snd_data_fin_enable, 0); 368 369 switch (sk->sk_state) { 370 case TCP_FIN_WAIT1: 371 mptcp_set_state(sk, TCP_FIN_WAIT2); 372 break; 373 case TCP_CLOSING: 374 case TCP_LAST_ACK: 375 mptcp_set_state(sk, TCP_CLOSE); 376 break; 377 } 378 379 mptcp_close_wake_up(sk); 380 } 381 } 382 383 /* can be called with no lock acquired */ 384 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 385 { 386 struct mptcp_sock *msk = mptcp_sk(sk); 387 388 if (READ_ONCE(msk->rcv_data_fin) && 389 ((1 << inet_sk_state_load(sk)) & 390 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 391 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 392 393 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 394 if (seq) 395 *seq = rcv_data_fin_seq; 396 397 return true; 398 } 399 } 400 401 return false; 402 } 403 404 static void mptcp_set_datafin_timeout(struct sock *sk) 405 { 406 struct inet_connection_sock *icsk = inet_csk(sk); 407 u32 retransmits; 408 409 retransmits = min_t(u32, icsk->icsk_retransmits, 410 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 411 412 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 413 } 414 415 static void __mptcp_set_timeout(struct sock *sk, long tout) 416 { 417 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 418 } 419 420 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 421 { 422 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 423 424 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 425 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 426 } 427 428 static void mptcp_set_timeout(struct sock *sk) 429 { 430 struct mptcp_subflow_context *subflow; 431 long tout = 0; 432 433 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 434 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 435 __mptcp_set_timeout(sk, tout); 436 } 437 438 static inline bool tcp_can_send_ack(const struct sock *ssk) 439 { 440 return !((1 << inet_sk_state_load(ssk)) & 441 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 442 } 443 444 void __mptcp_subflow_send_ack(struct sock *ssk) 445 { 446 if (tcp_can_send_ack(ssk)) 447 tcp_send_ack(ssk); 448 } 449 450 static void mptcp_subflow_send_ack(struct sock *ssk) 451 { 452 bool slow; 453 454 slow = lock_sock_fast(ssk); 455 __mptcp_subflow_send_ack(ssk); 456 unlock_sock_fast(ssk, slow); 457 } 458 459 static void mptcp_send_ack(struct mptcp_sock *msk) 460 { 461 struct mptcp_subflow_context *subflow; 462 463 mptcp_for_each_subflow(msk, subflow) 464 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 465 } 466 467 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 468 { 469 bool slow; 470 471 slow = lock_sock_fast(ssk); 472 if (tcp_can_send_ack(ssk)) 473 tcp_cleanup_rbuf(ssk, copied); 474 unlock_sock_fast(ssk, slow); 475 } 476 477 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 478 { 479 const struct inet_connection_sock *icsk = inet_csk(ssk); 480 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 481 const struct tcp_sock *tp = tcp_sk(ssk); 482 483 return (ack_pending & ICSK_ACK_SCHED) && 484 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 485 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 486 (rx_empty && ack_pending & 487 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 488 } 489 490 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 491 { 492 int old_space = READ_ONCE(msk->old_wspace); 493 struct mptcp_subflow_context *subflow; 494 struct sock *sk = (struct sock *)msk; 495 int space = __mptcp_space(sk); 496 bool cleanup, rx_empty; 497 498 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 499 rx_empty = !sk_rmem_alloc_get(sk) && copied; 500 501 mptcp_for_each_subflow(msk, subflow) { 502 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 503 504 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 505 mptcp_subflow_cleanup_rbuf(ssk, copied); 506 } 507 } 508 509 static bool mptcp_check_data_fin(struct sock *sk) 510 { 511 struct mptcp_sock *msk = mptcp_sk(sk); 512 u64 rcv_data_fin_seq; 513 bool ret = false; 514 515 /* Need to ack a DATA_FIN received from a peer while this side 516 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 517 * msk->rcv_data_fin was set when parsing the incoming options 518 * at the subflow level and the msk lock was not held, so this 519 * is the first opportunity to act on the DATA_FIN and change 520 * the msk state. 521 * 522 * If we are caught up to the sequence number of the incoming 523 * DATA_FIN, send the DATA_ACK now and do state transition. If 524 * not caught up, do nothing and let the recv code send DATA_ACK 525 * when catching up. 526 */ 527 528 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 529 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 530 WRITE_ONCE(msk->rcv_data_fin, 0); 531 532 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 533 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 534 535 switch (sk->sk_state) { 536 case TCP_ESTABLISHED: 537 mptcp_set_state(sk, TCP_CLOSE_WAIT); 538 break; 539 case TCP_FIN_WAIT1: 540 mptcp_set_state(sk, TCP_CLOSING); 541 break; 542 case TCP_FIN_WAIT2: 543 mptcp_set_state(sk, TCP_CLOSE); 544 break; 545 default: 546 /* Other states not expected */ 547 WARN_ON_ONCE(1); 548 break; 549 } 550 551 ret = true; 552 if (!__mptcp_check_fallback(msk)) 553 mptcp_send_ack(msk); 554 mptcp_close_wake_up(sk); 555 } 556 return ret; 557 } 558 559 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 560 { 561 if (READ_ONCE(msk->allow_infinite_fallback)) { 562 MPTCP_INC_STATS(sock_net(ssk), 563 MPTCP_MIB_DSSCORRUPTIONFALLBACK); 564 mptcp_do_fallback(ssk); 565 } else { 566 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 567 mptcp_subflow_reset(ssk); 568 } 569 } 570 571 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 572 struct sock *ssk) 573 { 574 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 575 struct sock *sk = (struct sock *)msk; 576 bool more_data_avail; 577 struct tcp_sock *tp; 578 bool ret = false; 579 580 pr_debug("msk=%p ssk=%p\n", msk, ssk); 581 tp = tcp_sk(ssk); 582 do { 583 u32 map_remaining, offset; 584 u32 seq = tp->copied_seq; 585 struct sk_buff *skb; 586 bool fin; 587 588 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 589 break; 590 591 /* try to move as much data as available */ 592 map_remaining = subflow->map_data_len - 593 mptcp_subflow_get_map_offset(subflow); 594 595 skb = skb_peek(&ssk->sk_receive_queue); 596 if (unlikely(!skb)) 597 break; 598 599 if (__mptcp_check_fallback(msk)) { 600 /* Under fallback skbs have no MPTCP extension and TCP could 601 * collapse them between the dummy map creation and the 602 * current dequeue. Be sure to adjust the map size. 603 */ 604 map_remaining = skb->len; 605 subflow->map_data_len = skb->len; 606 } 607 608 offset = seq - TCP_SKB_CB(skb)->seq; 609 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 610 if (fin) 611 seq++; 612 613 if (offset < skb->len) { 614 size_t len = skb->len - offset; 615 616 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret; 617 seq += len; 618 619 if (unlikely(map_remaining < len)) { 620 DEBUG_NET_WARN_ON_ONCE(1); 621 mptcp_dss_corruption(msk, ssk); 622 } 623 } else { 624 if (unlikely(!fin)) { 625 DEBUG_NET_WARN_ON_ONCE(1); 626 mptcp_dss_corruption(msk, ssk); 627 } 628 629 sk_eat_skb(ssk, skb); 630 } 631 632 WRITE_ONCE(tp->copied_seq, seq); 633 more_data_avail = mptcp_subflow_data_available(ssk); 634 635 } while (more_data_avail); 636 637 if (ret) 638 msk->last_data_recv = tcp_jiffies32; 639 return ret; 640 } 641 642 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 643 { 644 struct sock *sk = (struct sock *)msk; 645 struct sk_buff *skb, *tail; 646 bool moved = false; 647 struct rb_node *p; 648 u64 end_seq; 649 650 p = rb_first(&msk->out_of_order_queue); 651 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 652 while (p) { 653 skb = rb_to_skb(p); 654 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 655 break; 656 657 p = rb_next(p); 658 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 659 660 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 661 msk->ack_seq))) { 662 mptcp_drop(sk, skb); 663 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 664 continue; 665 } 666 667 end_seq = MPTCP_SKB_CB(skb)->end_seq; 668 tail = skb_peek_tail(&sk->sk_receive_queue); 669 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 670 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 671 672 /* skip overlapping data, if any */ 673 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 674 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 675 delta); 676 MPTCP_SKB_CB(skb)->offset += delta; 677 MPTCP_SKB_CB(skb)->map_seq += delta; 678 __skb_queue_tail(&sk->sk_receive_queue, skb); 679 } 680 msk->bytes_received += end_seq - msk->ack_seq; 681 WRITE_ONCE(msk->ack_seq, end_seq); 682 moved = true; 683 } 684 return moved; 685 } 686 687 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 688 { 689 int err = sock_error(ssk); 690 int ssk_state; 691 692 if (!err) 693 return false; 694 695 /* only propagate errors on fallen-back sockets or 696 * on MPC connect 697 */ 698 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 699 return false; 700 701 /* We need to propagate only transition to CLOSE state. 702 * Orphaned socket will see such state change via 703 * subflow_sched_work_if_closed() and that path will properly 704 * destroy the msk as needed. 705 */ 706 ssk_state = inet_sk_state_load(ssk); 707 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 708 mptcp_set_state(sk, ssk_state); 709 WRITE_ONCE(sk->sk_err, -err); 710 711 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 712 smp_wmb(); 713 sk_error_report(sk); 714 return true; 715 } 716 717 void __mptcp_error_report(struct sock *sk) 718 { 719 struct mptcp_subflow_context *subflow; 720 struct mptcp_sock *msk = mptcp_sk(sk); 721 722 mptcp_for_each_subflow(msk, subflow) 723 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 724 break; 725 } 726 727 /* In most cases we will be able to lock the mptcp socket. If its already 728 * owned, we need to defer to the work queue to avoid ABBA deadlock. 729 */ 730 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 731 { 732 struct sock *sk = (struct sock *)msk; 733 bool moved; 734 735 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 736 __mptcp_ofo_queue(msk); 737 if (unlikely(ssk->sk_err)) { 738 if (!sock_owned_by_user(sk)) 739 __mptcp_error_report(sk); 740 else 741 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 742 } 743 744 /* If the moves have caught up with the DATA_FIN sequence number 745 * it's time to ack the DATA_FIN and change socket state, but 746 * this is not a good place to change state. Let the workqueue 747 * do it. 748 */ 749 if (mptcp_pending_data_fin(sk, NULL)) 750 mptcp_schedule_work(sk); 751 return moved; 752 } 753 754 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk) 755 { 756 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf)) 757 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf); 758 } 759 760 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 761 { 762 struct mptcp_sock *msk = mptcp_sk(sk); 763 764 __mptcp_rcvbuf_update(sk, ssk); 765 766 /* Wake-up the reader only for in-sequence data */ 767 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 768 sk->sk_data_ready(sk); 769 } 770 771 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 772 { 773 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 774 775 /* The peer can send data while we are shutting down this 776 * subflow at msk destruction time, but we must avoid enqueuing 777 * more data to the msk receive queue 778 */ 779 if (unlikely(subflow->disposable)) 780 return; 781 782 mptcp_data_lock(sk); 783 if (!sock_owned_by_user(sk)) 784 __mptcp_data_ready(sk, ssk); 785 else 786 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 787 mptcp_data_unlock(sk); 788 } 789 790 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 791 { 792 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 793 WRITE_ONCE(msk->allow_infinite_fallback, false); 794 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 795 } 796 797 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 798 { 799 struct sock *sk = (struct sock *)msk; 800 801 if (sk->sk_state != TCP_ESTABLISHED) 802 return false; 803 804 /* attach to msk socket only after we are sure we will deal with it 805 * at close time 806 */ 807 if (sk->sk_socket && !ssk->sk_socket) 808 mptcp_sock_graft(ssk, sk->sk_socket); 809 810 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 811 mptcp_sockopt_sync_locked(msk, ssk); 812 mptcp_subflow_joined(msk, ssk); 813 mptcp_stop_tout_timer(sk); 814 __mptcp_propagate_sndbuf(sk, ssk); 815 return true; 816 } 817 818 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 819 { 820 struct mptcp_subflow_context *tmp, *subflow; 821 struct mptcp_sock *msk = mptcp_sk(sk); 822 823 list_for_each_entry_safe(subflow, tmp, join_list, node) { 824 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 825 bool slow = lock_sock_fast(ssk); 826 827 list_move_tail(&subflow->node, &msk->conn_list); 828 if (!__mptcp_finish_join(msk, ssk)) 829 mptcp_subflow_reset(ssk); 830 unlock_sock_fast(ssk, slow); 831 } 832 } 833 834 static bool mptcp_rtx_timer_pending(struct sock *sk) 835 { 836 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 837 } 838 839 static void mptcp_reset_rtx_timer(struct sock *sk) 840 { 841 struct inet_connection_sock *icsk = inet_csk(sk); 842 unsigned long tout; 843 844 /* prevent rescheduling on close */ 845 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 846 return; 847 848 tout = mptcp_sk(sk)->timer_ival; 849 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 850 } 851 852 bool mptcp_schedule_work(struct sock *sk) 853 { 854 if (inet_sk_state_load(sk) != TCP_CLOSE && 855 schedule_work(&mptcp_sk(sk)->work)) { 856 /* each subflow already holds a reference to the sk, and the 857 * workqueue is invoked by a subflow, so sk can't go away here. 858 */ 859 sock_hold(sk); 860 return true; 861 } 862 return false; 863 } 864 865 static bool mptcp_skb_can_collapse_to(u64 write_seq, 866 const struct sk_buff *skb, 867 const struct mptcp_ext *mpext) 868 { 869 if (!tcp_skb_can_collapse_to(skb)) 870 return false; 871 872 /* can collapse only if MPTCP level sequence is in order and this 873 * mapping has not been xmitted yet 874 */ 875 return mpext && mpext->data_seq + mpext->data_len == write_seq && 876 !mpext->frozen; 877 } 878 879 /* we can append data to the given data frag if: 880 * - there is space available in the backing page_frag 881 * - the data frag tail matches the current page_frag free offset 882 * - the data frag end sequence number matches the current write seq 883 */ 884 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 885 const struct page_frag *pfrag, 886 const struct mptcp_data_frag *df) 887 { 888 return df && pfrag->page == df->page && 889 pfrag->size - pfrag->offset > 0 && 890 pfrag->offset == (df->offset + df->data_len) && 891 df->data_seq + df->data_len == msk->write_seq; 892 } 893 894 static void dfrag_uncharge(struct sock *sk, int len) 895 { 896 sk_mem_uncharge(sk, len); 897 sk_wmem_queued_add(sk, -len); 898 } 899 900 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 901 { 902 int len = dfrag->data_len + dfrag->overhead; 903 904 list_del(&dfrag->list); 905 dfrag_uncharge(sk, len); 906 put_page(dfrag->page); 907 } 908 909 /* called under both the msk socket lock and the data lock */ 910 static void __mptcp_clean_una(struct sock *sk) 911 { 912 struct mptcp_sock *msk = mptcp_sk(sk); 913 struct mptcp_data_frag *dtmp, *dfrag; 914 u64 snd_una; 915 916 snd_una = msk->snd_una; 917 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 918 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 919 break; 920 921 if (unlikely(dfrag == msk->first_pending)) { 922 /* in recovery mode can see ack after the current snd head */ 923 if (WARN_ON_ONCE(!msk->recovery)) 924 break; 925 926 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 927 } 928 929 dfrag_clear(sk, dfrag); 930 } 931 932 dfrag = mptcp_rtx_head(sk); 933 if (dfrag && after64(snd_una, dfrag->data_seq)) { 934 u64 delta = snd_una - dfrag->data_seq; 935 936 /* prevent wrap around in recovery mode */ 937 if (unlikely(delta > dfrag->already_sent)) { 938 if (WARN_ON_ONCE(!msk->recovery)) 939 goto out; 940 if (WARN_ON_ONCE(delta > dfrag->data_len)) 941 goto out; 942 dfrag->already_sent += delta - dfrag->already_sent; 943 } 944 945 dfrag->data_seq += delta; 946 dfrag->offset += delta; 947 dfrag->data_len -= delta; 948 dfrag->already_sent -= delta; 949 950 dfrag_uncharge(sk, delta); 951 } 952 953 /* all retransmitted data acked, recovery completed */ 954 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 955 msk->recovery = false; 956 957 out: 958 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 959 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 960 mptcp_stop_rtx_timer(sk); 961 } else { 962 mptcp_reset_rtx_timer(sk); 963 } 964 965 if (mptcp_pending_data_fin_ack(sk)) 966 mptcp_schedule_work(sk); 967 } 968 969 static void __mptcp_clean_una_wakeup(struct sock *sk) 970 { 971 lockdep_assert_held_once(&sk->sk_lock.slock); 972 973 __mptcp_clean_una(sk); 974 mptcp_write_space(sk); 975 } 976 977 static void mptcp_clean_una_wakeup(struct sock *sk) 978 { 979 mptcp_data_lock(sk); 980 __mptcp_clean_una_wakeup(sk); 981 mptcp_data_unlock(sk); 982 } 983 984 static void mptcp_enter_memory_pressure(struct sock *sk) 985 { 986 struct mptcp_subflow_context *subflow; 987 struct mptcp_sock *msk = mptcp_sk(sk); 988 bool first = true; 989 990 mptcp_for_each_subflow(msk, subflow) { 991 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 992 993 if (first) 994 tcp_enter_memory_pressure(ssk); 995 sk_stream_moderate_sndbuf(ssk); 996 997 first = false; 998 } 999 __mptcp_sync_sndbuf(sk); 1000 } 1001 1002 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1003 * data 1004 */ 1005 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1006 { 1007 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1008 pfrag, sk->sk_allocation))) 1009 return true; 1010 1011 mptcp_enter_memory_pressure(sk); 1012 return false; 1013 } 1014 1015 static struct mptcp_data_frag * 1016 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1017 int orig_offset) 1018 { 1019 int offset = ALIGN(orig_offset, sizeof(long)); 1020 struct mptcp_data_frag *dfrag; 1021 1022 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1023 dfrag->data_len = 0; 1024 dfrag->data_seq = msk->write_seq; 1025 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1026 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1027 dfrag->already_sent = 0; 1028 dfrag->page = pfrag->page; 1029 1030 return dfrag; 1031 } 1032 1033 struct mptcp_sendmsg_info { 1034 int mss_now; 1035 int size_goal; 1036 u16 limit; 1037 u16 sent; 1038 unsigned int flags; 1039 bool data_lock_held; 1040 }; 1041 1042 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1043 u64 data_seq, int avail_size) 1044 { 1045 u64 window_end = mptcp_wnd_end(msk); 1046 u64 mptcp_snd_wnd; 1047 1048 if (__mptcp_check_fallback(msk)) 1049 return avail_size; 1050 1051 mptcp_snd_wnd = window_end - data_seq; 1052 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1053 1054 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1055 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1056 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1057 } 1058 1059 return avail_size; 1060 } 1061 1062 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1063 { 1064 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1065 1066 if (!mpext) 1067 return false; 1068 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1069 return true; 1070 } 1071 1072 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1073 { 1074 struct sk_buff *skb; 1075 1076 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1077 if (likely(skb)) { 1078 if (likely(__mptcp_add_ext(skb, gfp))) { 1079 skb_reserve(skb, MAX_TCP_HEADER); 1080 skb->ip_summed = CHECKSUM_PARTIAL; 1081 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1082 return skb; 1083 } 1084 __kfree_skb(skb); 1085 } else { 1086 mptcp_enter_memory_pressure(sk); 1087 } 1088 return NULL; 1089 } 1090 1091 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1092 { 1093 struct sk_buff *skb; 1094 1095 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1096 if (!skb) 1097 return NULL; 1098 1099 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1100 tcp_skb_entail(ssk, skb); 1101 return skb; 1102 } 1103 tcp_skb_tsorted_anchor_cleanup(skb); 1104 kfree_skb(skb); 1105 return NULL; 1106 } 1107 1108 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1109 { 1110 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1111 1112 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1113 } 1114 1115 /* note: this always recompute the csum on the whole skb, even 1116 * if we just appended a single frag. More status info needed 1117 */ 1118 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1119 { 1120 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1121 __wsum csum = ~csum_unfold(mpext->csum); 1122 int offset = skb->len - added; 1123 1124 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1125 } 1126 1127 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1128 struct sock *ssk, 1129 struct mptcp_ext *mpext) 1130 { 1131 if (!mpext) 1132 return; 1133 1134 mpext->infinite_map = 1; 1135 mpext->data_len = 0; 1136 1137 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1138 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1139 pr_fallback(msk); 1140 mptcp_do_fallback(ssk); 1141 } 1142 1143 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1144 1145 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1146 struct mptcp_data_frag *dfrag, 1147 struct mptcp_sendmsg_info *info) 1148 { 1149 u64 data_seq = dfrag->data_seq + info->sent; 1150 int offset = dfrag->offset + info->sent; 1151 struct mptcp_sock *msk = mptcp_sk(sk); 1152 bool zero_window_probe = false; 1153 struct mptcp_ext *mpext = NULL; 1154 bool can_coalesce = false; 1155 bool reuse_skb = true; 1156 struct sk_buff *skb; 1157 size_t copy; 1158 int i; 1159 1160 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1161 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1162 1163 if (WARN_ON_ONCE(info->sent > info->limit || 1164 info->limit > dfrag->data_len)) 1165 return 0; 1166 1167 if (unlikely(!__tcp_can_send(ssk))) 1168 return -EAGAIN; 1169 1170 /* compute send limit */ 1171 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1172 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1173 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1174 copy = info->size_goal; 1175 1176 skb = tcp_write_queue_tail(ssk); 1177 if (skb && copy > skb->len) { 1178 /* Limit the write to the size available in the 1179 * current skb, if any, so that we create at most a new skb. 1180 * Explicitly tells TCP internals to avoid collapsing on later 1181 * queue management operation, to avoid breaking the ext <-> 1182 * SSN association set here 1183 */ 1184 mpext = mptcp_get_ext(skb); 1185 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1186 TCP_SKB_CB(skb)->eor = 1; 1187 tcp_mark_push(tcp_sk(ssk), skb); 1188 goto alloc_skb; 1189 } 1190 1191 i = skb_shinfo(skb)->nr_frags; 1192 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1193 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1194 tcp_mark_push(tcp_sk(ssk), skb); 1195 goto alloc_skb; 1196 } 1197 1198 copy -= skb->len; 1199 } else { 1200 alloc_skb: 1201 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1202 if (!skb) 1203 return -ENOMEM; 1204 1205 i = skb_shinfo(skb)->nr_frags; 1206 reuse_skb = false; 1207 mpext = mptcp_get_ext(skb); 1208 } 1209 1210 /* Zero window and all data acked? Probe. */ 1211 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1212 if (copy == 0) { 1213 u64 snd_una = READ_ONCE(msk->snd_una); 1214 1215 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1216 tcp_remove_empty_skb(ssk); 1217 return 0; 1218 } 1219 1220 zero_window_probe = true; 1221 data_seq = snd_una - 1; 1222 copy = 1; 1223 } 1224 1225 copy = min_t(size_t, copy, info->limit - info->sent); 1226 if (!sk_wmem_schedule(ssk, copy)) { 1227 tcp_remove_empty_skb(ssk); 1228 return -ENOMEM; 1229 } 1230 1231 if (can_coalesce) { 1232 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1233 } else { 1234 get_page(dfrag->page); 1235 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1236 } 1237 1238 skb->len += copy; 1239 skb->data_len += copy; 1240 skb->truesize += copy; 1241 sk_wmem_queued_add(ssk, copy); 1242 sk_mem_charge(ssk, copy); 1243 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1244 TCP_SKB_CB(skb)->end_seq += copy; 1245 tcp_skb_pcount_set(skb, 0); 1246 1247 /* on skb reuse we just need to update the DSS len */ 1248 if (reuse_skb) { 1249 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1250 mpext->data_len += copy; 1251 goto out; 1252 } 1253 1254 memset(mpext, 0, sizeof(*mpext)); 1255 mpext->data_seq = data_seq; 1256 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1257 mpext->data_len = copy; 1258 mpext->use_map = 1; 1259 mpext->dsn64 = 1; 1260 1261 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1262 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1263 mpext->dsn64); 1264 1265 if (zero_window_probe) { 1266 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1267 mpext->frozen = 1; 1268 if (READ_ONCE(msk->csum_enabled)) 1269 mptcp_update_data_checksum(skb, copy); 1270 tcp_push_pending_frames(ssk); 1271 return 0; 1272 } 1273 out: 1274 if (READ_ONCE(msk->csum_enabled)) 1275 mptcp_update_data_checksum(skb, copy); 1276 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1277 mptcp_update_infinite_map(msk, ssk, mpext); 1278 trace_mptcp_sendmsg_frag(mpext); 1279 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1280 return copy; 1281 } 1282 1283 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1284 sizeof(struct tcphdr) - \ 1285 MAX_TCP_OPTION_SPACE - \ 1286 sizeof(struct ipv6hdr) - \ 1287 sizeof(struct frag_hdr)) 1288 1289 struct subflow_send_info { 1290 struct sock *ssk; 1291 u64 linger_time; 1292 }; 1293 1294 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1295 { 1296 if (!subflow->stale) 1297 return; 1298 1299 subflow->stale = 0; 1300 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1301 } 1302 1303 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1304 { 1305 if (unlikely(subflow->stale)) { 1306 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1307 1308 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1309 return false; 1310 1311 mptcp_subflow_set_active(subflow); 1312 } 1313 return __mptcp_subflow_active(subflow); 1314 } 1315 1316 #define SSK_MODE_ACTIVE 0 1317 #define SSK_MODE_BACKUP 1 1318 #define SSK_MODE_MAX 2 1319 1320 /* implement the mptcp packet scheduler; 1321 * returns the subflow that will transmit the next DSS 1322 * additionally updates the rtx timeout 1323 */ 1324 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1325 { 1326 struct subflow_send_info send_info[SSK_MODE_MAX]; 1327 struct mptcp_subflow_context *subflow; 1328 struct sock *sk = (struct sock *)msk; 1329 u32 pace, burst, wmem; 1330 int i, nr_active = 0; 1331 struct sock *ssk; 1332 u64 linger_time; 1333 long tout = 0; 1334 1335 /* pick the subflow with the lower wmem/wspace ratio */ 1336 for (i = 0; i < SSK_MODE_MAX; ++i) { 1337 send_info[i].ssk = NULL; 1338 send_info[i].linger_time = -1; 1339 } 1340 1341 mptcp_for_each_subflow(msk, subflow) { 1342 bool backup = subflow->backup || subflow->request_bkup; 1343 1344 trace_mptcp_subflow_get_send(subflow); 1345 ssk = mptcp_subflow_tcp_sock(subflow); 1346 if (!mptcp_subflow_active(subflow)) 1347 continue; 1348 1349 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1350 nr_active += !backup; 1351 pace = subflow->avg_pacing_rate; 1352 if (unlikely(!pace)) { 1353 /* init pacing rate from socket */ 1354 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1355 pace = subflow->avg_pacing_rate; 1356 if (!pace) 1357 continue; 1358 } 1359 1360 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1361 if (linger_time < send_info[backup].linger_time) { 1362 send_info[backup].ssk = ssk; 1363 send_info[backup].linger_time = linger_time; 1364 } 1365 } 1366 __mptcp_set_timeout(sk, tout); 1367 1368 /* pick the best backup if no other subflow is active */ 1369 if (!nr_active) 1370 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1371 1372 /* According to the blest algorithm, to avoid HoL blocking for the 1373 * faster flow, we need to: 1374 * - estimate the faster flow linger time 1375 * - use the above to estimate the amount of byte transferred 1376 * by the faster flow 1377 * - check that the amount of queued data is greter than the above, 1378 * otherwise do not use the picked, slower, subflow 1379 * We select the subflow with the shorter estimated time to flush 1380 * the queued mem, which basically ensure the above. We just need 1381 * to check that subflow has a non empty cwin. 1382 */ 1383 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1384 if (!ssk || !sk_stream_memory_free(ssk)) 1385 return NULL; 1386 1387 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1388 wmem = READ_ONCE(ssk->sk_wmem_queued); 1389 if (!burst) 1390 return ssk; 1391 1392 subflow = mptcp_subflow_ctx(ssk); 1393 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1394 READ_ONCE(ssk->sk_pacing_rate) * burst, 1395 burst + wmem); 1396 msk->snd_burst = burst; 1397 return ssk; 1398 } 1399 1400 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1401 { 1402 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1403 release_sock(ssk); 1404 } 1405 1406 static void mptcp_update_post_push(struct mptcp_sock *msk, 1407 struct mptcp_data_frag *dfrag, 1408 u32 sent) 1409 { 1410 u64 snd_nxt_new = dfrag->data_seq; 1411 1412 dfrag->already_sent += sent; 1413 1414 msk->snd_burst -= sent; 1415 1416 snd_nxt_new += dfrag->already_sent; 1417 1418 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1419 * is recovering after a failover. In that event, this re-sends 1420 * old segments. 1421 * 1422 * Thus compute snd_nxt_new candidate based on 1423 * the dfrag->data_seq that was sent and the data 1424 * that has been handed to the subflow for transmission 1425 * and skip update in case it was old dfrag. 1426 */ 1427 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1428 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1429 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1430 } 1431 } 1432 1433 void mptcp_check_and_set_pending(struct sock *sk) 1434 { 1435 if (mptcp_send_head(sk)) { 1436 mptcp_data_lock(sk); 1437 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1438 mptcp_data_unlock(sk); 1439 } 1440 } 1441 1442 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1443 struct mptcp_sendmsg_info *info) 1444 { 1445 struct mptcp_sock *msk = mptcp_sk(sk); 1446 struct mptcp_data_frag *dfrag; 1447 int len, copied = 0, err = 0; 1448 1449 while ((dfrag = mptcp_send_head(sk))) { 1450 info->sent = dfrag->already_sent; 1451 info->limit = dfrag->data_len; 1452 len = dfrag->data_len - dfrag->already_sent; 1453 while (len > 0) { 1454 int ret = 0; 1455 1456 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1457 if (ret <= 0) { 1458 err = copied ? : ret; 1459 goto out; 1460 } 1461 1462 info->sent += ret; 1463 copied += ret; 1464 len -= ret; 1465 1466 mptcp_update_post_push(msk, dfrag, ret); 1467 } 1468 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1469 1470 if (msk->snd_burst <= 0 || 1471 !sk_stream_memory_free(ssk) || 1472 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1473 err = copied; 1474 goto out; 1475 } 1476 mptcp_set_timeout(sk); 1477 } 1478 err = copied; 1479 1480 out: 1481 if (err > 0) 1482 msk->last_data_sent = tcp_jiffies32; 1483 return err; 1484 } 1485 1486 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1487 { 1488 struct sock *prev_ssk = NULL, *ssk = NULL; 1489 struct mptcp_sock *msk = mptcp_sk(sk); 1490 struct mptcp_sendmsg_info info = { 1491 .flags = flags, 1492 }; 1493 bool do_check_data_fin = false; 1494 int push_count = 1; 1495 1496 while (mptcp_send_head(sk) && (push_count > 0)) { 1497 struct mptcp_subflow_context *subflow; 1498 int ret = 0; 1499 1500 if (mptcp_sched_get_send(msk)) 1501 break; 1502 1503 push_count = 0; 1504 1505 mptcp_for_each_subflow(msk, subflow) { 1506 if (READ_ONCE(subflow->scheduled)) { 1507 mptcp_subflow_set_scheduled(subflow, false); 1508 1509 prev_ssk = ssk; 1510 ssk = mptcp_subflow_tcp_sock(subflow); 1511 if (ssk != prev_ssk) { 1512 /* First check. If the ssk has changed since 1513 * the last round, release prev_ssk 1514 */ 1515 if (prev_ssk) 1516 mptcp_push_release(prev_ssk, &info); 1517 1518 /* Need to lock the new subflow only if different 1519 * from the previous one, otherwise we are still 1520 * helding the relevant lock 1521 */ 1522 lock_sock(ssk); 1523 } 1524 1525 push_count++; 1526 1527 ret = __subflow_push_pending(sk, ssk, &info); 1528 if (ret <= 0) { 1529 if (ret != -EAGAIN || 1530 (1 << ssk->sk_state) & 1531 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1532 push_count--; 1533 continue; 1534 } 1535 do_check_data_fin = true; 1536 } 1537 } 1538 } 1539 1540 /* at this point we held the socket lock for the last subflow we used */ 1541 if (ssk) 1542 mptcp_push_release(ssk, &info); 1543 1544 /* ensure the rtx timer is running */ 1545 if (!mptcp_rtx_timer_pending(sk)) 1546 mptcp_reset_rtx_timer(sk); 1547 if (do_check_data_fin) 1548 mptcp_check_send_data_fin(sk); 1549 } 1550 1551 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1552 { 1553 struct mptcp_sock *msk = mptcp_sk(sk); 1554 struct mptcp_sendmsg_info info = { 1555 .data_lock_held = true, 1556 }; 1557 bool keep_pushing = true; 1558 struct sock *xmit_ssk; 1559 int copied = 0; 1560 1561 info.flags = 0; 1562 while (mptcp_send_head(sk) && keep_pushing) { 1563 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1564 int ret = 0; 1565 1566 /* check for a different subflow usage only after 1567 * spooling the first chunk of data 1568 */ 1569 if (first) { 1570 mptcp_subflow_set_scheduled(subflow, false); 1571 ret = __subflow_push_pending(sk, ssk, &info); 1572 first = false; 1573 if (ret <= 0) 1574 break; 1575 copied += ret; 1576 continue; 1577 } 1578 1579 if (mptcp_sched_get_send(msk)) 1580 goto out; 1581 1582 if (READ_ONCE(subflow->scheduled)) { 1583 mptcp_subflow_set_scheduled(subflow, false); 1584 ret = __subflow_push_pending(sk, ssk, &info); 1585 if (ret <= 0) 1586 keep_pushing = false; 1587 copied += ret; 1588 } 1589 1590 mptcp_for_each_subflow(msk, subflow) { 1591 if (READ_ONCE(subflow->scheduled)) { 1592 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1593 if (xmit_ssk != ssk) { 1594 mptcp_subflow_delegate(subflow, 1595 MPTCP_DELEGATE_SEND); 1596 keep_pushing = false; 1597 } 1598 } 1599 } 1600 } 1601 1602 out: 1603 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1604 * not going to flush it via release_sock() 1605 */ 1606 if (copied) { 1607 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1608 info.size_goal); 1609 if (!mptcp_rtx_timer_pending(sk)) 1610 mptcp_reset_rtx_timer(sk); 1611 1612 if (msk->snd_data_fin_enable && 1613 msk->snd_nxt + 1 == msk->write_seq) 1614 mptcp_schedule_work(sk); 1615 } 1616 } 1617 1618 static int mptcp_disconnect(struct sock *sk, int flags); 1619 1620 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1621 size_t len, int *copied_syn) 1622 { 1623 unsigned int saved_flags = msg->msg_flags; 1624 struct mptcp_sock *msk = mptcp_sk(sk); 1625 struct sock *ssk; 1626 int ret; 1627 1628 /* on flags based fastopen the mptcp is supposed to create the 1629 * first subflow right now. Otherwise we are in the defer_connect 1630 * path, and the first subflow must be already present. 1631 * Since the defer_connect flag is cleared after the first succsful 1632 * fastopen attempt, no need to check for additional subflow status. 1633 */ 1634 if (msg->msg_flags & MSG_FASTOPEN) { 1635 ssk = __mptcp_nmpc_sk(msk); 1636 if (IS_ERR(ssk)) 1637 return PTR_ERR(ssk); 1638 } 1639 if (!msk->first) 1640 return -EINVAL; 1641 1642 ssk = msk->first; 1643 1644 lock_sock(ssk); 1645 msg->msg_flags |= MSG_DONTWAIT; 1646 msk->fastopening = 1; 1647 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1648 msk->fastopening = 0; 1649 msg->msg_flags = saved_flags; 1650 release_sock(ssk); 1651 1652 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1653 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1654 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1655 msg->msg_namelen, msg->msg_flags, 1); 1656 1657 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1658 * case of any error, except timeout or signal 1659 */ 1660 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1661 *copied_syn = 0; 1662 } else if (ret && ret != -EINPROGRESS) { 1663 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1664 * __inet_stream_connect() can fail, due to looking check, 1665 * see mptcp_disconnect(). 1666 * Attempt it again outside the problematic scope. 1667 */ 1668 if (!mptcp_disconnect(sk, 0)) { 1669 sk->sk_disconnects++; 1670 sk->sk_socket->state = SS_UNCONNECTED; 1671 } 1672 } 1673 inet_clear_bit(DEFER_CONNECT, sk); 1674 1675 return ret; 1676 } 1677 1678 static int do_copy_data_nocache(struct sock *sk, int copy, 1679 struct iov_iter *from, char *to) 1680 { 1681 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1682 if (!copy_from_iter_full_nocache(to, copy, from)) 1683 return -EFAULT; 1684 } else if (!copy_from_iter_full(to, copy, from)) { 1685 return -EFAULT; 1686 } 1687 return 0; 1688 } 1689 1690 /* open-code sk_stream_memory_free() plus sent limit computation to 1691 * avoid indirect calls in fast-path. 1692 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1693 * annotations. 1694 */ 1695 static u32 mptcp_send_limit(const struct sock *sk) 1696 { 1697 const struct mptcp_sock *msk = mptcp_sk(sk); 1698 u32 limit, not_sent; 1699 1700 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1701 return 0; 1702 1703 limit = mptcp_notsent_lowat(sk); 1704 if (limit == UINT_MAX) 1705 return UINT_MAX; 1706 1707 not_sent = msk->write_seq - msk->snd_nxt; 1708 if (not_sent >= limit) 1709 return 0; 1710 1711 return limit - not_sent; 1712 } 1713 1714 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1715 { 1716 struct mptcp_sock *msk = mptcp_sk(sk); 1717 struct page_frag *pfrag; 1718 size_t copied = 0; 1719 int ret = 0; 1720 long timeo; 1721 1722 /* silently ignore everything else */ 1723 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1724 1725 lock_sock(sk); 1726 1727 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1728 msg->msg_flags & MSG_FASTOPEN)) { 1729 int copied_syn = 0; 1730 1731 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1732 copied += copied_syn; 1733 if (ret == -EINPROGRESS && copied_syn > 0) 1734 goto out; 1735 else if (ret) 1736 goto do_error; 1737 } 1738 1739 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1740 1741 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1742 ret = sk_stream_wait_connect(sk, &timeo); 1743 if (ret) 1744 goto do_error; 1745 } 1746 1747 ret = -EPIPE; 1748 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1749 goto do_error; 1750 1751 pfrag = sk_page_frag(sk); 1752 1753 while (msg_data_left(msg)) { 1754 int total_ts, frag_truesize = 0; 1755 struct mptcp_data_frag *dfrag; 1756 bool dfrag_collapsed; 1757 size_t psize, offset; 1758 u32 copy_limit; 1759 1760 /* ensure fitting the notsent_lowat() constraint */ 1761 copy_limit = mptcp_send_limit(sk); 1762 if (!copy_limit) 1763 goto wait_for_memory; 1764 1765 /* reuse tail pfrag, if possible, or carve a new one from the 1766 * page allocator 1767 */ 1768 dfrag = mptcp_pending_tail(sk); 1769 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1770 if (!dfrag_collapsed) { 1771 if (!mptcp_page_frag_refill(sk, pfrag)) 1772 goto wait_for_memory; 1773 1774 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1775 frag_truesize = dfrag->overhead; 1776 } 1777 1778 /* we do not bound vs wspace, to allow a single packet. 1779 * memory accounting will prevent execessive memory usage 1780 * anyway 1781 */ 1782 offset = dfrag->offset + dfrag->data_len; 1783 psize = pfrag->size - offset; 1784 psize = min_t(size_t, psize, msg_data_left(msg)); 1785 psize = min_t(size_t, psize, copy_limit); 1786 total_ts = psize + frag_truesize; 1787 1788 if (!sk_wmem_schedule(sk, total_ts)) 1789 goto wait_for_memory; 1790 1791 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1792 page_address(dfrag->page) + offset); 1793 if (ret) 1794 goto do_error; 1795 1796 /* data successfully copied into the write queue */ 1797 sk_forward_alloc_add(sk, -total_ts); 1798 copied += psize; 1799 dfrag->data_len += psize; 1800 frag_truesize += psize; 1801 pfrag->offset += frag_truesize; 1802 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1803 1804 /* charge data on mptcp pending queue to the msk socket 1805 * Note: we charge such data both to sk and ssk 1806 */ 1807 sk_wmem_queued_add(sk, frag_truesize); 1808 if (!dfrag_collapsed) { 1809 get_page(dfrag->page); 1810 list_add_tail(&dfrag->list, &msk->rtx_queue); 1811 if (!msk->first_pending) 1812 WRITE_ONCE(msk->first_pending, dfrag); 1813 } 1814 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1815 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1816 !dfrag_collapsed); 1817 1818 continue; 1819 1820 wait_for_memory: 1821 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1822 __mptcp_push_pending(sk, msg->msg_flags); 1823 ret = sk_stream_wait_memory(sk, &timeo); 1824 if (ret) 1825 goto do_error; 1826 } 1827 1828 if (copied) 1829 __mptcp_push_pending(sk, msg->msg_flags); 1830 1831 out: 1832 release_sock(sk); 1833 return copied; 1834 1835 do_error: 1836 if (copied) 1837 goto out; 1838 1839 copied = sk_stream_error(sk, msg->msg_flags, ret); 1840 goto out; 1841 } 1842 1843 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1844 1845 static int __mptcp_recvmsg_mskq(struct sock *sk, 1846 struct msghdr *msg, 1847 size_t len, int flags, 1848 struct scm_timestamping_internal *tss, 1849 int *cmsg_flags) 1850 { 1851 struct mptcp_sock *msk = mptcp_sk(sk); 1852 struct sk_buff *skb, *tmp; 1853 int copied = 0; 1854 1855 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1856 u32 offset = MPTCP_SKB_CB(skb)->offset; 1857 u32 data_len = skb->len - offset; 1858 u32 count = min_t(size_t, len - copied, data_len); 1859 int err; 1860 1861 if (!(flags & MSG_TRUNC)) { 1862 err = skb_copy_datagram_msg(skb, offset, msg, count); 1863 if (unlikely(err < 0)) { 1864 if (!copied) 1865 return err; 1866 break; 1867 } 1868 } 1869 1870 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1871 tcp_update_recv_tstamps(skb, tss); 1872 *cmsg_flags |= MPTCP_CMSG_TS; 1873 } 1874 1875 copied += count; 1876 1877 if (count < data_len) { 1878 if (!(flags & MSG_PEEK)) { 1879 MPTCP_SKB_CB(skb)->offset += count; 1880 MPTCP_SKB_CB(skb)->map_seq += count; 1881 msk->bytes_consumed += count; 1882 } 1883 break; 1884 } 1885 1886 if (!(flags & MSG_PEEK)) { 1887 /* avoid the indirect call, we know the destructor is sock_wfree */ 1888 skb->destructor = NULL; 1889 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1890 sk_mem_uncharge(sk, skb->truesize); 1891 __skb_unlink(skb, &sk->sk_receive_queue); 1892 __kfree_skb(skb); 1893 msk->bytes_consumed += count; 1894 } 1895 1896 if (copied >= len) 1897 break; 1898 } 1899 1900 mptcp_rcv_space_adjust(msk, copied); 1901 return copied; 1902 } 1903 1904 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1905 * 1906 * Only difference: Use highest rtt estimate of the subflows in use. 1907 */ 1908 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1909 { 1910 struct mptcp_subflow_context *subflow; 1911 struct sock *sk = (struct sock *)msk; 1912 u8 scaling_ratio = U8_MAX; 1913 u32 time, advmss = 1; 1914 u64 rtt_us, mstamp; 1915 1916 msk_owned_by_me(msk); 1917 1918 if (copied <= 0) 1919 return; 1920 1921 if (!msk->rcvspace_init) 1922 mptcp_rcv_space_init(msk, msk->first); 1923 1924 msk->rcvq_space.copied += copied; 1925 1926 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1927 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1928 1929 rtt_us = msk->rcvq_space.rtt_us; 1930 if (rtt_us && time < (rtt_us >> 3)) 1931 return; 1932 1933 rtt_us = 0; 1934 mptcp_for_each_subflow(msk, subflow) { 1935 const struct tcp_sock *tp; 1936 u64 sf_rtt_us; 1937 u32 sf_advmss; 1938 1939 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1940 1941 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1942 sf_advmss = READ_ONCE(tp->advmss); 1943 1944 rtt_us = max(sf_rtt_us, rtt_us); 1945 advmss = max(sf_advmss, advmss); 1946 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1947 } 1948 1949 msk->rcvq_space.rtt_us = rtt_us; 1950 msk->scaling_ratio = scaling_ratio; 1951 if (time < (rtt_us >> 3) || rtt_us == 0) 1952 return; 1953 1954 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1955 goto new_measure; 1956 1957 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1958 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1959 u64 rcvwin, grow; 1960 int rcvbuf; 1961 1962 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1963 1964 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1965 1966 do_div(grow, msk->rcvq_space.space); 1967 rcvwin += (grow << 1); 1968 1969 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 1970 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1971 1972 if (rcvbuf > sk->sk_rcvbuf) { 1973 u32 window_clamp; 1974 1975 window_clamp = mptcp_win_from_space(sk, rcvbuf); 1976 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1977 1978 /* Make subflows follow along. If we do not do this, we 1979 * get drops at subflow level if skbs can't be moved to 1980 * the mptcp rx queue fast enough (announced rcv_win can 1981 * exceed ssk->sk_rcvbuf). 1982 */ 1983 mptcp_for_each_subflow(msk, subflow) { 1984 struct sock *ssk; 1985 bool slow; 1986 1987 ssk = mptcp_subflow_tcp_sock(subflow); 1988 slow = lock_sock_fast(ssk); 1989 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1990 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 1991 if (tcp_can_send_ack(ssk)) 1992 tcp_cleanup_rbuf(ssk, 1); 1993 unlock_sock_fast(ssk, slow); 1994 } 1995 } 1996 } 1997 1998 msk->rcvq_space.space = msk->rcvq_space.copied; 1999 new_measure: 2000 msk->rcvq_space.copied = 0; 2001 msk->rcvq_space.time = mstamp; 2002 } 2003 2004 static struct mptcp_subflow_context * 2005 __mptcp_first_ready_from(struct mptcp_sock *msk, 2006 struct mptcp_subflow_context *subflow) 2007 { 2008 struct mptcp_subflow_context *start_subflow = subflow; 2009 2010 while (!READ_ONCE(subflow->data_avail)) { 2011 subflow = mptcp_next_subflow(msk, subflow); 2012 if (subflow == start_subflow) 2013 return NULL; 2014 } 2015 return subflow; 2016 } 2017 2018 static bool __mptcp_move_skbs(struct sock *sk) 2019 { 2020 struct mptcp_subflow_context *subflow; 2021 struct mptcp_sock *msk = mptcp_sk(sk); 2022 bool ret = false; 2023 2024 if (list_empty(&msk->conn_list)) 2025 return false; 2026 2027 /* verify we can move any data from the subflow, eventually updating */ 2028 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 2029 mptcp_for_each_subflow(msk, subflow) 2030 __mptcp_rcvbuf_update(sk, subflow->tcp_sock); 2031 2032 subflow = list_first_entry(&msk->conn_list, 2033 struct mptcp_subflow_context, node); 2034 for (;;) { 2035 struct sock *ssk; 2036 bool slowpath; 2037 2038 /* 2039 * As an optimization avoid traversing the subflows list 2040 * and ev. acquiring the subflow socket lock before baling out 2041 */ 2042 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2043 break; 2044 2045 subflow = __mptcp_first_ready_from(msk, subflow); 2046 if (!subflow) 2047 break; 2048 2049 ssk = mptcp_subflow_tcp_sock(subflow); 2050 slowpath = lock_sock_fast(ssk); 2051 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2052 if (unlikely(ssk->sk_err)) 2053 __mptcp_error_report(sk); 2054 unlock_sock_fast(ssk, slowpath); 2055 2056 subflow = mptcp_next_subflow(msk, subflow); 2057 } 2058 2059 __mptcp_ofo_queue(msk); 2060 if (ret) 2061 mptcp_check_data_fin((struct sock *)msk); 2062 return ret; 2063 } 2064 2065 static unsigned int mptcp_inq_hint(const struct sock *sk) 2066 { 2067 const struct mptcp_sock *msk = mptcp_sk(sk); 2068 const struct sk_buff *skb; 2069 2070 skb = skb_peek(&sk->sk_receive_queue); 2071 if (skb) { 2072 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2073 2074 if (hint_val >= INT_MAX) 2075 return INT_MAX; 2076 2077 return (unsigned int)hint_val; 2078 } 2079 2080 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2081 return 1; 2082 2083 return 0; 2084 } 2085 2086 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2087 int flags, int *addr_len) 2088 { 2089 struct mptcp_sock *msk = mptcp_sk(sk); 2090 struct scm_timestamping_internal tss; 2091 int copied = 0, cmsg_flags = 0; 2092 int target; 2093 long timeo; 2094 2095 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2096 if (unlikely(flags & MSG_ERRQUEUE)) 2097 return inet_recv_error(sk, msg, len, addr_len); 2098 2099 lock_sock(sk); 2100 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2101 copied = -ENOTCONN; 2102 goto out_err; 2103 } 2104 2105 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2106 2107 len = min_t(size_t, len, INT_MAX); 2108 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2109 2110 if (unlikely(msk->recvmsg_inq)) 2111 cmsg_flags = MPTCP_CMSG_INQ; 2112 2113 while (copied < len) { 2114 int err, bytes_read; 2115 2116 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2117 if (unlikely(bytes_read < 0)) { 2118 if (!copied) 2119 copied = bytes_read; 2120 goto out_err; 2121 } 2122 2123 copied += bytes_read; 2124 2125 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2126 continue; 2127 2128 /* only the MPTCP socket status is relevant here. The exit 2129 * conditions mirror closely tcp_recvmsg() 2130 */ 2131 if (copied >= target) 2132 break; 2133 2134 if (copied) { 2135 if (sk->sk_err || 2136 sk->sk_state == TCP_CLOSE || 2137 (sk->sk_shutdown & RCV_SHUTDOWN) || 2138 !timeo || 2139 signal_pending(current)) 2140 break; 2141 } else { 2142 if (sk->sk_err) { 2143 copied = sock_error(sk); 2144 break; 2145 } 2146 2147 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2148 /* race breaker: the shutdown could be after the 2149 * previous receive queue check 2150 */ 2151 if (__mptcp_move_skbs(sk)) 2152 continue; 2153 break; 2154 } 2155 2156 if (sk->sk_state == TCP_CLOSE) { 2157 copied = -ENOTCONN; 2158 break; 2159 } 2160 2161 if (!timeo) { 2162 copied = -EAGAIN; 2163 break; 2164 } 2165 2166 if (signal_pending(current)) { 2167 copied = sock_intr_errno(timeo); 2168 break; 2169 } 2170 } 2171 2172 pr_debug("block timeout %ld\n", timeo); 2173 mptcp_cleanup_rbuf(msk, copied); 2174 err = sk_wait_data(sk, &timeo, NULL); 2175 if (err < 0) { 2176 err = copied ? : err; 2177 goto out_err; 2178 } 2179 } 2180 2181 mptcp_cleanup_rbuf(msk, copied); 2182 2183 out_err: 2184 if (cmsg_flags && copied >= 0) { 2185 if (cmsg_flags & MPTCP_CMSG_TS) 2186 tcp_recv_timestamp(msg, sk, &tss); 2187 2188 if (cmsg_flags & MPTCP_CMSG_INQ) { 2189 unsigned int inq = mptcp_inq_hint(sk); 2190 2191 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2192 } 2193 } 2194 2195 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2196 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2197 2198 release_sock(sk); 2199 return copied; 2200 } 2201 2202 static void mptcp_retransmit_timer(struct timer_list *t) 2203 { 2204 struct inet_connection_sock *icsk = from_timer(icsk, t, 2205 icsk_retransmit_timer); 2206 struct sock *sk = &icsk->icsk_inet.sk; 2207 struct mptcp_sock *msk = mptcp_sk(sk); 2208 2209 bh_lock_sock(sk); 2210 if (!sock_owned_by_user(sk)) { 2211 /* we need a process context to retransmit */ 2212 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2213 mptcp_schedule_work(sk); 2214 } else { 2215 /* delegate our work to tcp_release_cb() */ 2216 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2217 } 2218 bh_unlock_sock(sk); 2219 sock_put(sk); 2220 } 2221 2222 static void mptcp_tout_timer(struct timer_list *t) 2223 { 2224 struct sock *sk = from_timer(sk, t, sk_timer); 2225 2226 mptcp_schedule_work(sk); 2227 sock_put(sk); 2228 } 2229 2230 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2231 * level. 2232 * 2233 * A backup subflow is returned only if that is the only kind available. 2234 */ 2235 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2236 { 2237 struct sock *backup = NULL, *pick = NULL; 2238 struct mptcp_subflow_context *subflow; 2239 int min_stale_count = INT_MAX; 2240 2241 mptcp_for_each_subflow(msk, subflow) { 2242 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2243 2244 if (!__mptcp_subflow_active(subflow)) 2245 continue; 2246 2247 /* still data outstanding at TCP level? skip this */ 2248 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2249 mptcp_pm_subflow_chk_stale(msk, ssk); 2250 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2251 continue; 2252 } 2253 2254 if (subflow->backup || subflow->request_bkup) { 2255 if (!backup) 2256 backup = ssk; 2257 continue; 2258 } 2259 2260 if (!pick) 2261 pick = ssk; 2262 } 2263 2264 if (pick) 2265 return pick; 2266 2267 /* use backup only if there are no progresses anywhere */ 2268 return min_stale_count > 1 ? backup : NULL; 2269 } 2270 2271 bool __mptcp_retransmit_pending_data(struct sock *sk) 2272 { 2273 struct mptcp_data_frag *cur, *rtx_head; 2274 struct mptcp_sock *msk = mptcp_sk(sk); 2275 2276 if (__mptcp_check_fallback(msk)) 2277 return false; 2278 2279 /* the closing socket has some data untransmitted and/or unacked: 2280 * some data in the mptcp rtx queue has not really xmitted yet. 2281 * keep it simple and re-inject the whole mptcp level rtx queue 2282 */ 2283 mptcp_data_lock(sk); 2284 __mptcp_clean_una_wakeup(sk); 2285 rtx_head = mptcp_rtx_head(sk); 2286 if (!rtx_head) { 2287 mptcp_data_unlock(sk); 2288 return false; 2289 } 2290 2291 msk->recovery_snd_nxt = msk->snd_nxt; 2292 msk->recovery = true; 2293 mptcp_data_unlock(sk); 2294 2295 msk->first_pending = rtx_head; 2296 msk->snd_burst = 0; 2297 2298 /* be sure to clear the "sent status" on all re-injected fragments */ 2299 list_for_each_entry(cur, &msk->rtx_queue, list) { 2300 if (!cur->already_sent) 2301 break; 2302 cur->already_sent = 0; 2303 } 2304 2305 return true; 2306 } 2307 2308 /* flags for __mptcp_close_ssk() */ 2309 #define MPTCP_CF_PUSH BIT(1) 2310 #define MPTCP_CF_FASTCLOSE BIT(2) 2311 2312 /* be sure to send a reset only if the caller asked for it, also 2313 * clean completely the subflow status when the subflow reaches 2314 * TCP_CLOSE state 2315 */ 2316 static void __mptcp_subflow_disconnect(struct sock *ssk, 2317 struct mptcp_subflow_context *subflow, 2318 unsigned int flags) 2319 { 2320 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2321 (flags & MPTCP_CF_FASTCLOSE)) { 2322 /* The MPTCP code never wait on the subflow sockets, TCP-level 2323 * disconnect should never fail 2324 */ 2325 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2326 mptcp_subflow_ctx_reset(subflow); 2327 } else { 2328 tcp_shutdown(ssk, SEND_SHUTDOWN); 2329 } 2330 } 2331 2332 /* subflow sockets can be either outgoing (connect) or incoming 2333 * (accept). 2334 * 2335 * Outgoing subflows use in-kernel sockets. 2336 * Incoming subflows do not have their own 'struct socket' allocated, 2337 * so we need to use tcp_close() after detaching them from the mptcp 2338 * parent socket. 2339 */ 2340 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2341 struct mptcp_subflow_context *subflow, 2342 unsigned int flags) 2343 { 2344 struct mptcp_sock *msk = mptcp_sk(sk); 2345 bool dispose_it, need_push = false; 2346 2347 /* If the first subflow moved to a close state before accept, e.g. due 2348 * to an incoming reset or listener shutdown, the subflow socket is 2349 * already deleted by inet_child_forget() and the mptcp socket can't 2350 * survive too. 2351 */ 2352 if (msk->in_accept_queue && msk->first == ssk && 2353 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2354 /* ensure later check in mptcp_worker() will dispose the msk */ 2355 sock_set_flag(sk, SOCK_DEAD); 2356 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2357 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2358 mptcp_subflow_drop_ctx(ssk); 2359 goto out_release; 2360 } 2361 2362 dispose_it = msk->free_first || ssk != msk->first; 2363 if (dispose_it) 2364 list_del(&subflow->node); 2365 2366 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2367 2368 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2369 /* be sure to force the tcp_close path 2370 * to generate the egress reset 2371 */ 2372 ssk->sk_lingertime = 0; 2373 sock_set_flag(ssk, SOCK_LINGER); 2374 subflow->send_fastclose = 1; 2375 } 2376 2377 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2378 if (!dispose_it) { 2379 __mptcp_subflow_disconnect(ssk, subflow, flags); 2380 release_sock(ssk); 2381 2382 goto out; 2383 } 2384 2385 subflow->disposable = 1; 2386 2387 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2388 * the ssk has been already destroyed, we just need to release the 2389 * reference owned by msk; 2390 */ 2391 if (!inet_csk(ssk)->icsk_ulp_ops) { 2392 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2393 kfree_rcu(subflow, rcu); 2394 } else { 2395 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2396 __tcp_close(ssk, 0); 2397 2398 /* close acquired an extra ref */ 2399 __sock_put(ssk); 2400 } 2401 2402 out_release: 2403 __mptcp_subflow_error_report(sk, ssk); 2404 release_sock(ssk); 2405 2406 sock_put(ssk); 2407 2408 if (ssk == msk->first) 2409 WRITE_ONCE(msk->first, NULL); 2410 2411 out: 2412 __mptcp_sync_sndbuf(sk); 2413 if (need_push) 2414 __mptcp_push_pending(sk, 0); 2415 2416 /* Catch every 'all subflows closed' scenario, including peers silently 2417 * closing them, e.g. due to timeout. 2418 * For established sockets, allow an additional timeout before closing, 2419 * as the protocol can still create more subflows. 2420 */ 2421 if (list_is_singular(&msk->conn_list) && msk->first && 2422 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2423 if (sk->sk_state != TCP_ESTABLISHED || 2424 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2425 mptcp_set_state(sk, TCP_CLOSE); 2426 mptcp_close_wake_up(sk); 2427 } else { 2428 mptcp_start_tout_timer(sk); 2429 } 2430 } 2431 } 2432 2433 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2434 struct mptcp_subflow_context *subflow) 2435 { 2436 /* The first subflow can already be closed and still in the list */ 2437 if (subflow->close_event_done) 2438 return; 2439 2440 subflow->close_event_done = true; 2441 2442 if (sk->sk_state == TCP_ESTABLISHED) 2443 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2444 2445 /* subflow aborted before reaching the fully_established status 2446 * attempt the creation of the next subflow 2447 */ 2448 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2449 2450 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2451 } 2452 2453 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2454 { 2455 return 0; 2456 } 2457 2458 static void __mptcp_close_subflow(struct sock *sk) 2459 { 2460 struct mptcp_subflow_context *subflow, *tmp; 2461 struct mptcp_sock *msk = mptcp_sk(sk); 2462 2463 might_sleep(); 2464 2465 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2466 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2467 int ssk_state = inet_sk_state_load(ssk); 2468 2469 if (ssk_state != TCP_CLOSE && 2470 (ssk_state != TCP_CLOSE_WAIT || 2471 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2472 continue; 2473 2474 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2475 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2476 continue; 2477 2478 mptcp_close_ssk(sk, ssk, subflow); 2479 } 2480 2481 } 2482 2483 static bool mptcp_close_tout_expired(const struct sock *sk) 2484 { 2485 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2486 sk->sk_state == TCP_CLOSE) 2487 return false; 2488 2489 return time_after32(tcp_jiffies32, 2490 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2491 } 2492 2493 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2494 { 2495 struct mptcp_subflow_context *subflow, *tmp; 2496 struct sock *sk = (struct sock *)msk; 2497 2498 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2499 return; 2500 2501 mptcp_token_destroy(msk); 2502 2503 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2504 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2505 bool slow; 2506 2507 slow = lock_sock_fast(tcp_sk); 2508 if (tcp_sk->sk_state != TCP_CLOSE) { 2509 mptcp_send_active_reset_reason(tcp_sk); 2510 tcp_set_state(tcp_sk, TCP_CLOSE); 2511 } 2512 unlock_sock_fast(tcp_sk, slow); 2513 } 2514 2515 /* Mirror the tcp_reset() error propagation */ 2516 switch (sk->sk_state) { 2517 case TCP_SYN_SENT: 2518 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2519 break; 2520 case TCP_CLOSE_WAIT: 2521 WRITE_ONCE(sk->sk_err, EPIPE); 2522 break; 2523 case TCP_CLOSE: 2524 return; 2525 default: 2526 WRITE_ONCE(sk->sk_err, ECONNRESET); 2527 } 2528 2529 mptcp_set_state(sk, TCP_CLOSE); 2530 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2531 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2532 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2533 2534 /* the calling mptcp_worker will properly destroy the socket */ 2535 if (sock_flag(sk, SOCK_DEAD)) 2536 return; 2537 2538 sk->sk_state_change(sk); 2539 sk_error_report(sk); 2540 } 2541 2542 static void __mptcp_retrans(struct sock *sk) 2543 { 2544 struct mptcp_sock *msk = mptcp_sk(sk); 2545 struct mptcp_subflow_context *subflow; 2546 struct mptcp_sendmsg_info info = {}; 2547 struct mptcp_data_frag *dfrag; 2548 struct sock *ssk; 2549 int ret, err; 2550 u16 len = 0; 2551 2552 mptcp_clean_una_wakeup(sk); 2553 2554 /* first check ssk: need to kick "stale" logic */ 2555 err = mptcp_sched_get_retrans(msk); 2556 dfrag = mptcp_rtx_head(sk); 2557 if (!dfrag) { 2558 if (mptcp_data_fin_enabled(msk)) { 2559 struct inet_connection_sock *icsk = inet_csk(sk); 2560 2561 icsk->icsk_retransmits++; 2562 mptcp_set_datafin_timeout(sk); 2563 mptcp_send_ack(msk); 2564 2565 goto reset_timer; 2566 } 2567 2568 if (!mptcp_send_head(sk)) 2569 return; 2570 2571 goto reset_timer; 2572 } 2573 2574 if (err) 2575 goto reset_timer; 2576 2577 mptcp_for_each_subflow(msk, subflow) { 2578 if (READ_ONCE(subflow->scheduled)) { 2579 u16 copied = 0; 2580 2581 mptcp_subflow_set_scheduled(subflow, false); 2582 2583 ssk = mptcp_subflow_tcp_sock(subflow); 2584 2585 lock_sock(ssk); 2586 2587 /* limit retransmission to the bytes already sent on some subflows */ 2588 info.sent = 0; 2589 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2590 dfrag->already_sent; 2591 while (info.sent < info.limit) { 2592 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2593 if (ret <= 0) 2594 break; 2595 2596 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2597 copied += ret; 2598 info.sent += ret; 2599 } 2600 if (copied) { 2601 len = max(copied, len); 2602 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2603 info.size_goal); 2604 WRITE_ONCE(msk->allow_infinite_fallback, false); 2605 } 2606 2607 release_sock(ssk); 2608 } 2609 } 2610 2611 msk->bytes_retrans += len; 2612 dfrag->already_sent = max(dfrag->already_sent, len); 2613 2614 reset_timer: 2615 mptcp_check_and_set_pending(sk); 2616 2617 if (!mptcp_rtx_timer_pending(sk)) 2618 mptcp_reset_rtx_timer(sk); 2619 } 2620 2621 /* schedule the timeout timer for the relevant event: either close timeout 2622 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2623 */ 2624 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2625 { 2626 struct sock *sk = (struct sock *)msk; 2627 unsigned long timeout, close_timeout; 2628 2629 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2630 return; 2631 2632 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2633 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2634 2635 /* the close timeout takes precedence on the fail one, and here at least one of 2636 * them is active 2637 */ 2638 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2639 2640 sk_reset_timer(sk, &sk->sk_timer, timeout); 2641 } 2642 2643 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2644 { 2645 struct sock *ssk = msk->first; 2646 bool slow; 2647 2648 if (!ssk) 2649 return; 2650 2651 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2652 2653 slow = lock_sock_fast(ssk); 2654 mptcp_subflow_reset(ssk); 2655 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2656 unlock_sock_fast(ssk, slow); 2657 } 2658 2659 static void mptcp_do_fastclose(struct sock *sk) 2660 { 2661 struct mptcp_subflow_context *subflow, *tmp; 2662 struct mptcp_sock *msk = mptcp_sk(sk); 2663 2664 mptcp_set_state(sk, TCP_CLOSE); 2665 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2666 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2667 subflow, MPTCP_CF_FASTCLOSE); 2668 } 2669 2670 static void mptcp_worker(struct work_struct *work) 2671 { 2672 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2673 struct sock *sk = (struct sock *)msk; 2674 unsigned long fail_tout; 2675 int state; 2676 2677 lock_sock(sk); 2678 state = sk->sk_state; 2679 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2680 goto unlock; 2681 2682 mptcp_check_fastclose(msk); 2683 2684 mptcp_pm_worker(msk); 2685 2686 mptcp_check_send_data_fin(sk); 2687 mptcp_check_data_fin_ack(sk); 2688 mptcp_check_data_fin(sk); 2689 2690 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2691 __mptcp_close_subflow(sk); 2692 2693 if (mptcp_close_tout_expired(sk)) { 2694 mptcp_do_fastclose(sk); 2695 mptcp_close_wake_up(sk); 2696 } 2697 2698 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2699 __mptcp_destroy_sock(sk); 2700 goto unlock; 2701 } 2702 2703 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2704 __mptcp_retrans(sk); 2705 2706 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2707 if (fail_tout && time_after(jiffies, fail_tout)) 2708 mptcp_mp_fail_no_response(msk); 2709 2710 unlock: 2711 release_sock(sk); 2712 sock_put(sk); 2713 } 2714 2715 static void __mptcp_init_sock(struct sock *sk) 2716 { 2717 struct mptcp_sock *msk = mptcp_sk(sk); 2718 2719 INIT_LIST_HEAD(&msk->conn_list); 2720 INIT_LIST_HEAD(&msk->join_list); 2721 INIT_LIST_HEAD(&msk->rtx_queue); 2722 INIT_WORK(&msk->work, mptcp_worker); 2723 msk->out_of_order_queue = RB_ROOT; 2724 msk->first_pending = NULL; 2725 msk->timer_ival = TCP_RTO_MIN; 2726 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2727 2728 WRITE_ONCE(msk->first, NULL); 2729 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2730 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2731 WRITE_ONCE(msk->allow_infinite_fallback, true); 2732 msk->recovery = false; 2733 msk->subflow_id = 1; 2734 msk->last_data_sent = tcp_jiffies32; 2735 msk->last_data_recv = tcp_jiffies32; 2736 msk->last_ack_recv = tcp_jiffies32; 2737 2738 mptcp_pm_data_init(msk); 2739 2740 /* re-use the csk retrans timer for MPTCP-level retrans */ 2741 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2742 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2743 } 2744 2745 static void mptcp_ca_reset(struct sock *sk) 2746 { 2747 struct inet_connection_sock *icsk = inet_csk(sk); 2748 2749 tcp_assign_congestion_control(sk); 2750 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2751 sizeof(mptcp_sk(sk)->ca_name)); 2752 2753 /* no need to keep a reference to the ops, the name will suffice */ 2754 tcp_cleanup_congestion_control(sk); 2755 icsk->icsk_ca_ops = NULL; 2756 } 2757 2758 static int mptcp_init_sock(struct sock *sk) 2759 { 2760 struct net *net = sock_net(sk); 2761 int ret; 2762 2763 __mptcp_init_sock(sk); 2764 2765 if (!mptcp_is_enabled(net)) 2766 return -ENOPROTOOPT; 2767 2768 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2769 return -ENOMEM; 2770 2771 rcu_read_lock(); 2772 ret = mptcp_init_sched(mptcp_sk(sk), 2773 mptcp_sched_find(mptcp_get_scheduler(net))); 2774 rcu_read_unlock(); 2775 if (ret) 2776 return ret; 2777 2778 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2779 2780 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2781 * propagate the correct value 2782 */ 2783 mptcp_ca_reset(sk); 2784 2785 sk_sockets_allocated_inc(sk); 2786 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2787 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2788 2789 return 0; 2790 } 2791 2792 static void __mptcp_clear_xmit(struct sock *sk) 2793 { 2794 struct mptcp_sock *msk = mptcp_sk(sk); 2795 struct mptcp_data_frag *dtmp, *dfrag; 2796 2797 WRITE_ONCE(msk->first_pending, NULL); 2798 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2799 dfrag_clear(sk, dfrag); 2800 } 2801 2802 void mptcp_cancel_work(struct sock *sk) 2803 { 2804 struct mptcp_sock *msk = mptcp_sk(sk); 2805 2806 if (cancel_work_sync(&msk->work)) 2807 __sock_put(sk); 2808 } 2809 2810 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2811 { 2812 lock_sock(ssk); 2813 2814 switch (ssk->sk_state) { 2815 case TCP_LISTEN: 2816 if (!(how & RCV_SHUTDOWN)) 2817 break; 2818 fallthrough; 2819 case TCP_SYN_SENT: 2820 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2821 break; 2822 default: 2823 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2824 pr_debug("Fallback\n"); 2825 ssk->sk_shutdown |= how; 2826 tcp_shutdown(ssk, how); 2827 2828 /* simulate the data_fin ack reception to let the state 2829 * machine move forward 2830 */ 2831 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2832 mptcp_schedule_work(sk); 2833 } else { 2834 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2835 tcp_send_ack(ssk); 2836 if (!mptcp_rtx_timer_pending(sk)) 2837 mptcp_reset_rtx_timer(sk); 2838 } 2839 break; 2840 } 2841 2842 release_sock(ssk); 2843 } 2844 2845 void mptcp_set_state(struct sock *sk, int state) 2846 { 2847 int oldstate = sk->sk_state; 2848 2849 switch (state) { 2850 case TCP_ESTABLISHED: 2851 if (oldstate != TCP_ESTABLISHED) 2852 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2853 break; 2854 case TCP_CLOSE_WAIT: 2855 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2856 * MPTCP "accepted" sockets will be created later on. So no 2857 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2858 */ 2859 break; 2860 default: 2861 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2862 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2863 } 2864 2865 inet_sk_state_store(sk, state); 2866 } 2867 2868 static const unsigned char new_state[16] = { 2869 /* current state: new state: action: */ 2870 [0 /* (Invalid) */] = TCP_CLOSE, 2871 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2872 [TCP_SYN_SENT] = TCP_CLOSE, 2873 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2874 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2875 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2876 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2877 [TCP_CLOSE] = TCP_CLOSE, 2878 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2879 [TCP_LAST_ACK] = TCP_LAST_ACK, 2880 [TCP_LISTEN] = TCP_CLOSE, 2881 [TCP_CLOSING] = TCP_CLOSING, 2882 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2883 }; 2884 2885 static int mptcp_close_state(struct sock *sk) 2886 { 2887 int next = (int)new_state[sk->sk_state]; 2888 int ns = next & TCP_STATE_MASK; 2889 2890 mptcp_set_state(sk, ns); 2891 2892 return next & TCP_ACTION_FIN; 2893 } 2894 2895 static void mptcp_check_send_data_fin(struct sock *sk) 2896 { 2897 struct mptcp_subflow_context *subflow; 2898 struct mptcp_sock *msk = mptcp_sk(sk); 2899 2900 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2901 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2902 msk->snd_nxt, msk->write_seq); 2903 2904 /* we still need to enqueue subflows or not really shutting down, 2905 * skip this 2906 */ 2907 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2908 mptcp_send_head(sk)) 2909 return; 2910 2911 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2912 2913 mptcp_for_each_subflow(msk, subflow) { 2914 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2915 2916 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2917 } 2918 } 2919 2920 static void __mptcp_wr_shutdown(struct sock *sk) 2921 { 2922 struct mptcp_sock *msk = mptcp_sk(sk); 2923 2924 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2925 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2926 !!mptcp_send_head(sk)); 2927 2928 /* will be ignored by fallback sockets */ 2929 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2930 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2931 2932 mptcp_check_send_data_fin(sk); 2933 } 2934 2935 static void __mptcp_destroy_sock(struct sock *sk) 2936 { 2937 struct mptcp_sock *msk = mptcp_sk(sk); 2938 2939 pr_debug("msk=%p\n", msk); 2940 2941 might_sleep(); 2942 2943 mptcp_stop_rtx_timer(sk); 2944 sk_stop_timer(sk, &sk->sk_timer); 2945 msk->pm.status = 0; 2946 mptcp_release_sched(msk); 2947 2948 sk->sk_prot->destroy(sk); 2949 2950 sk_stream_kill_queues(sk); 2951 xfrm_sk_free_policy(sk); 2952 2953 sock_put(sk); 2954 } 2955 2956 void __mptcp_unaccepted_force_close(struct sock *sk) 2957 { 2958 sock_set_flag(sk, SOCK_DEAD); 2959 mptcp_do_fastclose(sk); 2960 __mptcp_destroy_sock(sk); 2961 } 2962 2963 static __poll_t mptcp_check_readable(struct sock *sk) 2964 { 2965 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2966 } 2967 2968 static void mptcp_check_listen_stop(struct sock *sk) 2969 { 2970 struct sock *ssk; 2971 2972 if (inet_sk_state_load(sk) != TCP_LISTEN) 2973 return; 2974 2975 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2976 ssk = mptcp_sk(sk)->first; 2977 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2978 return; 2979 2980 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2981 tcp_set_state(ssk, TCP_CLOSE); 2982 mptcp_subflow_queue_clean(sk, ssk); 2983 inet_csk_listen_stop(ssk); 2984 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 2985 release_sock(ssk); 2986 } 2987 2988 bool __mptcp_close(struct sock *sk, long timeout) 2989 { 2990 struct mptcp_subflow_context *subflow; 2991 struct mptcp_sock *msk = mptcp_sk(sk); 2992 bool do_cancel_work = false; 2993 int subflows_alive = 0; 2994 2995 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2996 2997 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2998 mptcp_check_listen_stop(sk); 2999 mptcp_set_state(sk, TCP_CLOSE); 3000 goto cleanup; 3001 } 3002 3003 if (mptcp_data_avail(msk) || timeout < 0) { 3004 /* If the msk has read data, or the caller explicitly ask it, 3005 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3006 */ 3007 mptcp_do_fastclose(sk); 3008 timeout = 0; 3009 } else if (mptcp_close_state(sk)) { 3010 __mptcp_wr_shutdown(sk); 3011 } 3012 3013 sk_stream_wait_close(sk, timeout); 3014 3015 cleanup: 3016 /* orphan all the subflows */ 3017 mptcp_for_each_subflow(msk, subflow) { 3018 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3019 bool slow = lock_sock_fast_nested(ssk); 3020 3021 subflows_alive += ssk->sk_state != TCP_CLOSE; 3022 3023 /* since the close timeout takes precedence on the fail one, 3024 * cancel the latter 3025 */ 3026 if (ssk == msk->first) 3027 subflow->fail_tout = 0; 3028 3029 /* detach from the parent socket, but allow data_ready to 3030 * push incoming data into the mptcp stack, to properly ack it 3031 */ 3032 ssk->sk_socket = NULL; 3033 ssk->sk_wq = NULL; 3034 unlock_sock_fast(ssk, slow); 3035 } 3036 sock_orphan(sk); 3037 3038 /* all the subflows are closed, only timeout can change the msk 3039 * state, let's not keep resources busy for no reasons 3040 */ 3041 if (subflows_alive == 0) 3042 mptcp_set_state(sk, TCP_CLOSE); 3043 3044 sock_hold(sk); 3045 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3046 mptcp_pm_connection_closed(msk); 3047 3048 if (sk->sk_state == TCP_CLOSE) { 3049 __mptcp_destroy_sock(sk); 3050 do_cancel_work = true; 3051 } else { 3052 mptcp_start_tout_timer(sk); 3053 } 3054 3055 return do_cancel_work; 3056 } 3057 3058 static void mptcp_close(struct sock *sk, long timeout) 3059 { 3060 bool do_cancel_work; 3061 3062 lock_sock(sk); 3063 3064 do_cancel_work = __mptcp_close(sk, timeout); 3065 release_sock(sk); 3066 if (do_cancel_work) 3067 mptcp_cancel_work(sk); 3068 3069 sock_put(sk); 3070 } 3071 3072 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3073 { 3074 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3075 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3076 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3077 3078 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3079 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3080 3081 if (msk6 && ssk6) { 3082 msk6->saddr = ssk6->saddr; 3083 msk6->flow_label = ssk6->flow_label; 3084 } 3085 #endif 3086 3087 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3088 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3089 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3090 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3091 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3092 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3093 } 3094 3095 static int mptcp_disconnect(struct sock *sk, int flags) 3096 { 3097 struct mptcp_sock *msk = mptcp_sk(sk); 3098 3099 /* We are on the fastopen error path. We can't call straight into the 3100 * subflows cleanup code due to lock nesting (we are already under 3101 * msk->firstsocket lock). 3102 */ 3103 if (msk->fastopening) 3104 return -EBUSY; 3105 3106 mptcp_check_listen_stop(sk); 3107 mptcp_set_state(sk, TCP_CLOSE); 3108 3109 mptcp_stop_rtx_timer(sk); 3110 mptcp_stop_tout_timer(sk); 3111 3112 mptcp_pm_connection_closed(msk); 3113 3114 /* msk->subflow is still intact, the following will not free the first 3115 * subflow 3116 */ 3117 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3118 WRITE_ONCE(msk->flags, 0); 3119 msk->cb_flags = 0; 3120 msk->recovery = false; 3121 WRITE_ONCE(msk->can_ack, false); 3122 WRITE_ONCE(msk->fully_established, false); 3123 WRITE_ONCE(msk->rcv_data_fin, false); 3124 WRITE_ONCE(msk->snd_data_fin_enable, false); 3125 WRITE_ONCE(msk->rcv_fastclose, false); 3126 WRITE_ONCE(msk->use_64bit_ack, false); 3127 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3128 mptcp_pm_data_reset(msk); 3129 mptcp_ca_reset(sk); 3130 msk->bytes_consumed = 0; 3131 msk->bytes_acked = 0; 3132 msk->bytes_received = 0; 3133 msk->bytes_sent = 0; 3134 msk->bytes_retrans = 0; 3135 msk->rcvspace_init = 0; 3136 3137 WRITE_ONCE(sk->sk_shutdown, 0); 3138 sk_error_report(sk); 3139 return 0; 3140 } 3141 3142 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3143 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3144 { 3145 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3146 3147 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3148 } 3149 3150 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3151 { 3152 const struct ipv6_pinfo *np = inet6_sk(sk); 3153 struct ipv6_txoptions *opt; 3154 struct ipv6_pinfo *newnp; 3155 3156 newnp = inet6_sk(newsk); 3157 3158 rcu_read_lock(); 3159 opt = rcu_dereference(np->opt); 3160 if (opt) { 3161 opt = ipv6_dup_options(newsk, opt); 3162 if (!opt) 3163 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3164 } 3165 RCU_INIT_POINTER(newnp->opt, opt); 3166 rcu_read_unlock(); 3167 } 3168 #endif 3169 3170 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3171 { 3172 struct ip_options_rcu *inet_opt, *newopt = NULL; 3173 const struct inet_sock *inet = inet_sk(sk); 3174 struct inet_sock *newinet; 3175 3176 newinet = inet_sk(newsk); 3177 3178 rcu_read_lock(); 3179 inet_opt = rcu_dereference(inet->inet_opt); 3180 if (inet_opt) { 3181 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3182 inet_opt->opt.optlen, GFP_ATOMIC); 3183 if (!newopt) 3184 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3185 } 3186 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3187 rcu_read_unlock(); 3188 } 3189 3190 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3191 const struct mptcp_options_received *mp_opt, 3192 struct sock *ssk, 3193 struct request_sock *req) 3194 { 3195 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3196 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3197 struct mptcp_subflow_context *subflow; 3198 struct mptcp_sock *msk; 3199 3200 if (!nsk) 3201 return NULL; 3202 3203 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3204 if (nsk->sk_family == AF_INET6) 3205 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3206 #endif 3207 3208 __mptcp_init_sock(nsk); 3209 3210 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3211 if (nsk->sk_family == AF_INET6) 3212 mptcp_copy_ip6_options(nsk, sk); 3213 else 3214 #endif 3215 mptcp_copy_ip_options(nsk, sk); 3216 3217 msk = mptcp_sk(nsk); 3218 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3219 WRITE_ONCE(msk->token, subflow_req->token); 3220 msk->in_accept_queue = 1; 3221 WRITE_ONCE(msk->fully_established, false); 3222 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3223 WRITE_ONCE(msk->csum_enabled, true); 3224 3225 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3226 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3227 WRITE_ONCE(msk->snd_una, msk->write_seq); 3228 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3229 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3230 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3231 3232 /* passive msk is created after the first/MPC subflow */ 3233 msk->subflow_id = 2; 3234 3235 sock_reset_flag(nsk, SOCK_RCU_FREE); 3236 security_inet_csk_clone(nsk, req); 3237 3238 /* this can't race with mptcp_close(), as the msk is 3239 * not yet exposted to user-space 3240 */ 3241 mptcp_set_state(nsk, TCP_ESTABLISHED); 3242 3243 /* The msk maintain a ref to each subflow in the connections list */ 3244 WRITE_ONCE(msk->first, ssk); 3245 subflow = mptcp_subflow_ctx(ssk); 3246 list_add(&subflow->node, &msk->conn_list); 3247 sock_hold(ssk); 3248 3249 /* new mpc subflow takes ownership of the newly 3250 * created mptcp socket 3251 */ 3252 mptcp_token_accept(subflow_req, msk); 3253 3254 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3255 * uses the correct data 3256 */ 3257 mptcp_copy_inaddrs(nsk, ssk); 3258 __mptcp_propagate_sndbuf(nsk, ssk); 3259 3260 mptcp_rcv_space_init(msk, ssk); 3261 3262 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3263 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3264 bh_unlock_sock(nsk); 3265 3266 /* note: the newly allocated socket refcount is 2 now */ 3267 return nsk; 3268 } 3269 3270 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3271 { 3272 const struct tcp_sock *tp = tcp_sk(ssk); 3273 3274 msk->rcvspace_init = 1; 3275 msk->rcvq_space.copied = 0; 3276 msk->rcvq_space.rtt_us = 0; 3277 3278 msk->rcvq_space.time = tp->tcp_mstamp; 3279 3280 /* initial rcv_space offering made to peer */ 3281 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3282 TCP_INIT_CWND * tp->advmss); 3283 if (msk->rcvq_space.space == 0) 3284 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3285 } 3286 3287 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3288 { 3289 struct mptcp_subflow_context *subflow, *tmp; 3290 struct sock *sk = (struct sock *)msk; 3291 3292 __mptcp_clear_xmit(sk); 3293 3294 /* join list will be eventually flushed (with rst) at sock lock release time */ 3295 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3296 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3297 3298 __skb_queue_purge(&sk->sk_receive_queue); 3299 skb_rbtree_purge(&msk->out_of_order_queue); 3300 3301 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3302 * inet_sock_destruct() will dispose it 3303 */ 3304 mptcp_token_destroy(msk); 3305 mptcp_pm_destroy(msk); 3306 } 3307 3308 static void mptcp_destroy(struct sock *sk) 3309 { 3310 struct mptcp_sock *msk = mptcp_sk(sk); 3311 3312 /* allow the following to close even the initial subflow */ 3313 msk->free_first = 1; 3314 mptcp_destroy_common(msk, 0); 3315 sk_sockets_allocated_dec(sk); 3316 } 3317 3318 void __mptcp_data_acked(struct sock *sk) 3319 { 3320 if (!sock_owned_by_user(sk)) 3321 __mptcp_clean_una(sk); 3322 else 3323 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3324 } 3325 3326 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3327 { 3328 if (!mptcp_send_head(sk)) 3329 return; 3330 3331 if (!sock_owned_by_user(sk)) 3332 __mptcp_subflow_push_pending(sk, ssk, false); 3333 else 3334 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3335 } 3336 3337 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3338 BIT(MPTCP_RETRANSMIT) | \ 3339 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3340 BIT(MPTCP_DEQUEUE)) 3341 3342 /* processes deferred events and flush wmem */ 3343 static void mptcp_release_cb(struct sock *sk) 3344 __must_hold(&sk->sk_lock.slock) 3345 { 3346 struct mptcp_sock *msk = mptcp_sk(sk); 3347 3348 for (;;) { 3349 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3350 struct list_head join_list; 3351 3352 if (!flags) 3353 break; 3354 3355 INIT_LIST_HEAD(&join_list); 3356 list_splice_init(&msk->join_list, &join_list); 3357 3358 /* the following actions acquire the subflow socket lock 3359 * 3360 * 1) can't be invoked in atomic scope 3361 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3362 * datapath acquires the msk socket spinlock while helding 3363 * the subflow socket lock 3364 */ 3365 msk->cb_flags &= ~flags; 3366 spin_unlock_bh(&sk->sk_lock.slock); 3367 3368 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3369 __mptcp_flush_join_list(sk, &join_list); 3370 if (flags & BIT(MPTCP_PUSH_PENDING)) 3371 __mptcp_push_pending(sk, 0); 3372 if (flags & BIT(MPTCP_RETRANSMIT)) 3373 __mptcp_retrans(sk); 3374 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3375 /* notify ack seq update */ 3376 mptcp_cleanup_rbuf(msk, 0); 3377 sk->sk_data_ready(sk); 3378 } 3379 3380 cond_resched(); 3381 spin_lock_bh(&sk->sk_lock.slock); 3382 } 3383 3384 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3385 __mptcp_clean_una_wakeup(sk); 3386 if (unlikely(msk->cb_flags)) { 3387 /* be sure to sync the msk state before taking actions 3388 * depending on sk_state (MPTCP_ERROR_REPORT) 3389 * On sk release avoid actions depending on the first subflow 3390 */ 3391 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3392 __mptcp_sync_state(sk, msk->pending_state); 3393 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3394 __mptcp_error_report(sk); 3395 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3396 __mptcp_sync_sndbuf(sk); 3397 } 3398 } 3399 3400 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3401 * TCP can't schedule delack timer before the subflow is fully established. 3402 * MPTCP uses the delack timer to do 3rd ack retransmissions 3403 */ 3404 static void schedule_3rdack_retransmission(struct sock *ssk) 3405 { 3406 struct inet_connection_sock *icsk = inet_csk(ssk); 3407 struct tcp_sock *tp = tcp_sk(ssk); 3408 unsigned long timeout; 3409 3410 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3411 return; 3412 3413 /* reschedule with a timeout above RTT, as we must look only for drop */ 3414 if (tp->srtt_us) 3415 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3416 else 3417 timeout = TCP_TIMEOUT_INIT; 3418 timeout += jiffies; 3419 3420 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3421 smp_store_release(&icsk->icsk_ack.pending, 3422 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3423 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3424 } 3425 3426 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3427 { 3428 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3429 struct sock *sk = subflow->conn; 3430 3431 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3432 mptcp_data_lock(sk); 3433 if (!sock_owned_by_user(sk)) 3434 __mptcp_subflow_push_pending(sk, ssk, true); 3435 else 3436 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3437 mptcp_data_unlock(sk); 3438 } 3439 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3440 mptcp_data_lock(sk); 3441 if (!sock_owned_by_user(sk)) 3442 __mptcp_sync_sndbuf(sk); 3443 else 3444 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3445 mptcp_data_unlock(sk); 3446 } 3447 if (status & BIT(MPTCP_DELEGATE_ACK)) 3448 schedule_3rdack_retransmission(ssk); 3449 } 3450 3451 static int mptcp_hash(struct sock *sk) 3452 { 3453 /* should never be called, 3454 * we hash the TCP subflows not the MPTCP socket 3455 */ 3456 WARN_ON_ONCE(1); 3457 return 0; 3458 } 3459 3460 static void mptcp_unhash(struct sock *sk) 3461 { 3462 /* called from sk_common_release(), but nothing to do here */ 3463 } 3464 3465 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3466 { 3467 struct mptcp_sock *msk = mptcp_sk(sk); 3468 3469 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3470 if (WARN_ON_ONCE(!msk->first)) 3471 return -EINVAL; 3472 3473 return inet_csk_get_port(msk->first, snum); 3474 } 3475 3476 void mptcp_finish_connect(struct sock *ssk) 3477 { 3478 struct mptcp_subflow_context *subflow; 3479 struct mptcp_sock *msk; 3480 struct sock *sk; 3481 3482 subflow = mptcp_subflow_ctx(ssk); 3483 sk = subflow->conn; 3484 msk = mptcp_sk(sk); 3485 3486 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3487 3488 subflow->map_seq = subflow->iasn; 3489 subflow->map_subflow_seq = 1; 3490 3491 /* the socket is not connected yet, no msk/subflow ops can access/race 3492 * accessing the field below 3493 */ 3494 WRITE_ONCE(msk->local_key, subflow->local_key); 3495 3496 mptcp_pm_new_connection(msk, ssk, 0); 3497 } 3498 3499 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3500 { 3501 write_lock_bh(&sk->sk_callback_lock); 3502 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3503 sk_set_socket(sk, parent); 3504 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3505 write_unlock_bh(&sk->sk_callback_lock); 3506 } 3507 3508 bool mptcp_finish_join(struct sock *ssk) 3509 { 3510 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3511 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3512 struct sock *parent = (void *)msk; 3513 bool ret = true; 3514 3515 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3516 3517 /* mptcp socket already closing? */ 3518 if (!mptcp_is_fully_established(parent)) { 3519 subflow->reset_reason = MPTCP_RST_EMPTCP; 3520 return false; 3521 } 3522 3523 /* active subflow, already present inside the conn_list */ 3524 if (!list_empty(&subflow->node)) { 3525 mptcp_subflow_joined(msk, ssk); 3526 mptcp_propagate_sndbuf(parent, ssk); 3527 return true; 3528 } 3529 3530 if (!mptcp_pm_allow_new_subflow(msk)) 3531 goto err_prohibited; 3532 3533 /* If we can't acquire msk socket lock here, let the release callback 3534 * handle it 3535 */ 3536 mptcp_data_lock(parent); 3537 if (!sock_owned_by_user(parent)) { 3538 ret = __mptcp_finish_join(msk, ssk); 3539 if (ret) { 3540 sock_hold(ssk); 3541 list_add_tail(&subflow->node, &msk->conn_list); 3542 } 3543 } else { 3544 sock_hold(ssk); 3545 list_add_tail(&subflow->node, &msk->join_list); 3546 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3547 } 3548 mptcp_data_unlock(parent); 3549 3550 if (!ret) { 3551 err_prohibited: 3552 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3553 return false; 3554 } 3555 3556 return true; 3557 } 3558 3559 static void mptcp_shutdown(struct sock *sk, int how) 3560 { 3561 pr_debug("sk=%p, how=%d\n", sk, how); 3562 3563 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3564 __mptcp_wr_shutdown(sk); 3565 } 3566 3567 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3568 { 3569 const struct sock *sk = (void *)msk; 3570 u64 delta; 3571 3572 if (sk->sk_state == TCP_LISTEN) 3573 return -EINVAL; 3574 3575 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3576 return 0; 3577 3578 delta = msk->write_seq - v; 3579 if (__mptcp_check_fallback(msk) && msk->first) { 3580 struct tcp_sock *tp = tcp_sk(msk->first); 3581 3582 /* the first subflow is disconnected after close - see 3583 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3584 * so ignore that status, too. 3585 */ 3586 if (!((1 << msk->first->sk_state) & 3587 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3588 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3589 } 3590 if (delta > INT_MAX) 3591 delta = INT_MAX; 3592 3593 return (int)delta; 3594 } 3595 3596 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3597 { 3598 struct mptcp_sock *msk = mptcp_sk(sk); 3599 bool slow; 3600 3601 switch (cmd) { 3602 case SIOCINQ: 3603 if (sk->sk_state == TCP_LISTEN) 3604 return -EINVAL; 3605 3606 lock_sock(sk); 3607 if (__mptcp_move_skbs(sk)) 3608 mptcp_cleanup_rbuf(msk, 0); 3609 *karg = mptcp_inq_hint(sk); 3610 release_sock(sk); 3611 break; 3612 case SIOCOUTQ: 3613 slow = lock_sock_fast(sk); 3614 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3615 unlock_sock_fast(sk, slow); 3616 break; 3617 case SIOCOUTQNSD: 3618 slow = lock_sock_fast(sk); 3619 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3620 unlock_sock_fast(sk, slow); 3621 break; 3622 default: 3623 return -ENOIOCTLCMD; 3624 } 3625 3626 return 0; 3627 } 3628 3629 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3630 { 3631 struct mptcp_subflow_context *subflow; 3632 struct mptcp_sock *msk = mptcp_sk(sk); 3633 int err = -EINVAL; 3634 struct sock *ssk; 3635 3636 ssk = __mptcp_nmpc_sk(msk); 3637 if (IS_ERR(ssk)) 3638 return PTR_ERR(ssk); 3639 3640 mptcp_set_state(sk, TCP_SYN_SENT); 3641 subflow = mptcp_subflow_ctx(ssk); 3642 #ifdef CONFIG_TCP_MD5SIG 3643 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3644 * TCP option space. 3645 */ 3646 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3647 mptcp_subflow_early_fallback(msk, subflow); 3648 #endif 3649 if (subflow->request_mptcp) { 3650 if (mptcp_active_should_disable(sk)) { 3651 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3652 mptcp_subflow_early_fallback(msk, subflow); 3653 } else if (mptcp_token_new_connect(ssk) < 0) { 3654 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3655 mptcp_subflow_early_fallback(msk, subflow); 3656 } 3657 } 3658 3659 WRITE_ONCE(msk->write_seq, subflow->idsn); 3660 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3661 WRITE_ONCE(msk->snd_una, subflow->idsn); 3662 if (likely(!__mptcp_check_fallback(msk))) 3663 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3664 3665 /* if reaching here via the fastopen/sendmsg path, the caller already 3666 * acquired the subflow socket lock, too. 3667 */ 3668 if (!msk->fastopening) 3669 lock_sock(ssk); 3670 3671 /* the following mirrors closely a very small chunk of code from 3672 * __inet_stream_connect() 3673 */ 3674 if (ssk->sk_state != TCP_CLOSE) 3675 goto out; 3676 3677 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3678 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3679 if (err) 3680 goto out; 3681 } 3682 3683 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3684 if (err < 0) 3685 goto out; 3686 3687 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3688 3689 out: 3690 if (!msk->fastopening) 3691 release_sock(ssk); 3692 3693 /* on successful connect, the msk state will be moved to established by 3694 * subflow_finish_connect() 3695 */ 3696 if (unlikely(err)) { 3697 /* avoid leaving a dangling token in an unconnected socket */ 3698 mptcp_token_destroy(msk); 3699 mptcp_set_state(sk, TCP_CLOSE); 3700 return err; 3701 } 3702 3703 mptcp_copy_inaddrs(sk, ssk); 3704 return 0; 3705 } 3706 3707 static struct proto mptcp_prot = { 3708 .name = "MPTCP", 3709 .owner = THIS_MODULE, 3710 .init = mptcp_init_sock, 3711 .connect = mptcp_connect, 3712 .disconnect = mptcp_disconnect, 3713 .close = mptcp_close, 3714 .setsockopt = mptcp_setsockopt, 3715 .getsockopt = mptcp_getsockopt, 3716 .shutdown = mptcp_shutdown, 3717 .destroy = mptcp_destroy, 3718 .sendmsg = mptcp_sendmsg, 3719 .ioctl = mptcp_ioctl, 3720 .recvmsg = mptcp_recvmsg, 3721 .release_cb = mptcp_release_cb, 3722 .hash = mptcp_hash, 3723 .unhash = mptcp_unhash, 3724 .get_port = mptcp_get_port, 3725 .stream_memory_free = mptcp_stream_memory_free, 3726 .sockets_allocated = &mptcp_sockets_allocated, 3727 3728 .memory_allocated = &tcp_memory_allocated, 3729 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3730 3731 .memory_pressure = &tcp_memory_pressure, 3732 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3733 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3734 .sysctl_mem = sysctl_tcp_mem, 3735 .obj_size = sizeof(struct mptcp_sock), 3736 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3737 .no_autobind = true, 3738 }; 3739 3740 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3741 { 3742 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3743 struct sock *ssk, *sk = sock->sk; 3744 int err = -EINVAL; 3745 3746 lock_sock(sk); 3747 ssk = __mptcp_nmpc_sk(msk); 3748 if (IS_ERR(ssk)) { 3749 err = PTR_ERR(ssk); 3750 goto unlock; 3751 } 3752 3753 if (sk->sk_family == AF_INET) 3754 err = inet_bind_sk(ssk, uaddr, addr_len); 3755 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3756 else if (sk->sk_family == AF_INET6) 3757 err = inet6_bind_sk(ssk, uaddr, addr_len); 3758 #endif 3759 if (!err) 3760 mptcp_copy_inaddrs(sk, ssk); 3761 3762 unlock: 3763 release_sock(sk); 3764 return err; 3765 } 3766 3767 static int mptcp_listen(struct socket *sock, int backlog) 3768 { 3769 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3770 struct sock *sk = sock->sk; 3771 struct sock *ssk; 3772 int err; 3773 3774 pr_debug("msk=%p\n", msk); 3775 3776 lock_sock(sk); 3777 3778 err = -EINVAL; 3779 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3780 goto unlock; 3781 3782 ssk = __mptcp_nmpc_sk(msk); 3783 if (IS_ERR(ssk)) { 3784 err = PTR_ERR(ssk); 3785 goto unlock; 3786 } 3787 3788 mptcp_set_state(sk, TCP_LISTEN); 3789 sock_set_flag(sk, SOCK_RCU_FREE); 3790 3791 lock_sock(ssk); 3792 err = __inet_listen_sk(ssk, backlog); 3793 release_sock(ssk); 3794 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3795 3796 if (!err) { 3797 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3798 mptcp_copy_inaddrs(sk, ssk); 3799 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3800 } 3801 3802 unlock: 3803 release_sock(sk); 3804 return err; 3805 } 3806 3807 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3808 struct proto_accept_arg *arg) 3809 { 3810 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3811 struct sock *ssk, *newsk; 3812 3813 pr_debug("msk=%p\n", msk); 3814 3815 /* Buggy applications can call accept on socket states other then LISTEN 3816 * but no need to allocate the first subflow just to error out. 3817 */ 3818 ssk = READ_ONCE(msk->first); 3819 if (!ssk) 3820 return -EINVAL; 3821 3822 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3823 newsk = inet_csk_accept(ssk, arg); 3824 if (!newsk) 3825 return arg->err; 3826 3827 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3828 if (sk_is_mptcp(newsk)) { 3829 struct mptcp_subflow_context *subflow; 3830 struct sock *new_mptcp_sock; 3831 3832 subflow = mptcp_subflow_ctx(newsk); 3833 new_mptcp_sock = subflow->conn; 3834 3835 /* is_mptcp should be false if subflow->conn is missing, see 3836 * subflow_syn_recv_sock() 3837 */ 3838 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3839 tcp_sk(newsk)->is_mptcp = 0; 3840 goto tcpfallback; 3841 } 3842 3843 newsk = new_mptcp_sock; 3844 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3845 3846 newsk->sk_kern_sock = arg->kern; 3847 lock_sock(newsk); 3848 __inet_accept(sock, newsock, newsk); 3849 3850 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3851 msk = mptcp_sk(newsk); 3852 msk->in_accept_queue = 0; 3853 3854 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3855 * This is needed so NOSPACE flag can be set from tcp stack. 3856 */ 3857 mptcp_for_each_subflow(msk, subflow) { 3858 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3859 3860 if (!ssk->sk_socket) 3861 mptcp_sock_graft(ssk, newsock); 3862 } 3863 3864 /* Do late cleanup for the first subflow as necessary. Also 3865 * deal with bad peers not doing a complete shutdown. 3866 */ 3867 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3868 __mptcp_close_ssk(newsk, msk->first, 3869 mptcp_subflow_ctx(msk->first), 0); 3870 if (unlikely(list_is_singular(&msk->conn_list))) 3871 mptcp_set_state(newsk, TCP_CLOSE); 3872 } 3873 } else { 3874 tcpfallback: 3875 newsk->sk_kern_sock = arg->kern; 3876 lock_sock(newsk); 3877 __inet_accept(sock, newsock, newsk); 3878 /* we are being invoked after accepting a non-mp-capable 3879 * flow: sk is a tcp_sk, not an mptcp one. 3880 * 3881 * Hand the socket over to tcp so all further socket ops 3882 * bypass mptcp. 3883 */ 3884 WRITE_ONCE(newsock->sk->sk_socket->ops, 3885 mptcp_fallback_tcp_ops(newsock->sk)); 3886 } 3887 release_sock(newsk); 3888 3889 return 0; 3890 } 3891 3892 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3893 { 3894 struct sock *sk = (struct sock *)msk; 3895 3896 if (__mptcp_stream_is_writeable(sk, 1)) 3897 return EPOLLOUT | EPOLLWRNORM; 3898 3899 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3900 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3901 if (__mptcp_stream_is_writeable(sk, 1)) 3902 return EPOLLOUT | EPOLLWRNORM; 3903 3904 return 0; 3905 } 3906 3907 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3908 struct poll_table_struct *wait) 3909 { 3910 struct sock *sk = sock->sk; 3911 struct mptcp_sock *msk; 3912 __poll_t mask = 0; 3913 u8 shutdown; 3914 int state; 3915 3916 msk = mptcp_sk(sk); 3917 sock_poll_wait(file, sock, wait); 3918 3919 state = inet_sk_state_load(sk); 3920 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 3921 if (state == TCP_LISTEN) { 3922 struct sock *ssk = READ_ONCE(msk->first); 3923 3924 if (WARN_ON_ONCE(!ssk)) 3925 return 0; 3926 3927 return inet_csk_listen_poll(ssk); 3928 } 3929 3930 shutdown = READ_ONCE(sk->sk_shutdown); 3931 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3932 mask |= EPOLLHUP; 3933 if (shutdown & RCV_SHUTDOWN) 3934 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3935 3936 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3937 mask |= mptcp_check_readable(sk); 3938 if (shutdown & SEND_SHUTDOWN) 3939 mask |= EPOLLOUT | EPOLLWRNORM; 3940 else 3941 mask |= mptcp_check_writeable(msk); 3942 } else if (state == TCP_SYN_SENT && 3943 inet_test_bit(DEFER_CONNECT, sk)) { 3944 /* cf tcp_poll() note about TFO */ 3945 mask |= EPOLLOUT | EPOLLWRNORM; 3946 } 3947 3948 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3949 smp_rmb(); 3950 if (READ_ONCE(sk->sk_err)) 3951 mask |= EPOLLERR; 3952 3953 return mask; 3954 } 3955 3956 static const struct proto_ops mptcp_stream_ops = { 3957 .family = PF_INET, 3958 .owner = THIS_MODULE, 3959 .release = inet_release, 3960 .bind = mptcp_bind, 3961 .connect = inet_stream_connect, 3962 .socketpair = sock_no_socketpair, 3963 .accept = mptcp_stream_accept, 3964 .getname = inet_getname, 3965 .poll = mptcp_poll, 3966 .ioctl = inet_ioctl, 3967 .gettstamp = sock_gettstamp, 3968 .listen = mptcp_listen, 3969 .shutdown = inet_shutdown, 3970 .setsockopt = sock_common_setsockopt, 3971 .getsockopt = sock_common_getsockopt, 3972 .sendmsg = inet_sendmsg, 3973 .recvmsg = inet_recvmsg, 3974 .mmap = sock_no_mmap, 3975 .set_rcvlowat = mptcp_set_rcvlowat, 3976 }; 3977 3978 static struct inet_protosw mptcp_protosw = { 3979 .type = SOCK_STREAM, 3980 .protocol = IPPROTO_MPTCP, 3981 .prot = &mptcp_prot, 3982 .ops = &mptcp_stream_ops, 3983 .flags = INET_PROTOSW_ICSK, 3984 }; 3985 3986 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3987 { 3988 struct mptcp_delegated_action *delegated; 3989 struct mptcp_subflow_context *subflow; 3990 int work_done = 0; 3991 3992 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3993 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3994 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3995 3996 bh_lock_sock_nested(ssk); 3997 if (!sock_owned_by_user(ssk)) { 3998 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 3999 } else { 4000 /* tcp_release_cb_override already processed 4001 * the action or will do at next release_sock(). 4002 * In both case must dequeue the subflow here - on the same 4003 * CPU that scheduled it. 4004 */ 4005 smp_wmb(); 4006 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4007 } 4008 bh_unlock_sock(ssk); 4009 sock_put(ssk); 4010 4011 if (++work_done == budget) 4012 return budget; 4013 } 4014 4015 /* always provide a 0 'work_done' argument, so that napi_complete_done 4016 * will not try accessing the NULL napi->dev ptr 4017 */ 4018 napi_complete_done(napi, 0); 4019 return work_done; 4020 } 4021 4022 void __init mptcp_proto_init(void) 4023 { 4024 struct mptcp_delegated_action *delegated; 4025 int cpu; 4026 4027 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4028 4029 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4030 panic("Failed to allocate MPTCP pcpu counter\n"); 4031 4032 mptcp_napi_dev = alloc_netdev_dummy(0); 4033 if (!mptcp_napi_dev) 4034 panic("Failed to allocate MPTCP dummy netdev\n"); 4035 for_each_possible_cpu(cpu) { 4036 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4037 INIT_LIST_HEAD(&delegated->head); 4038 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4039 mptcp_napi_poll); 4040 napi_enable(&delegated->napi); 4041 } 4042 4043 mptcp_subflow_init(); 4044 mptcp_pm_init(); 4045 mptcp_sched_init(); 4046 mptcp_token_init(); 4047 4048 if (proto_register(&mptcp_prot, 1) != 0) 4049 panic("Failed to register MPTCP proto.\n"); 4050 4051 inet_register_protosw(&mptcp_protosw); 4052 4053 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4054 } 4055 4056 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4057 static const struct proto_ops mptcp_v6_stream_ops = { 4058 .family = PF_INET6, 4059 .owner = THIS_MODULE, 4060 .release = inet6_release, 4061 .bind = mptcp_bind, 4062 .connect = inet_stream_connect, 4063 .socketpair = sock_no_socketpair, 4064 .accept = mptcp_stream_accept, 4065 .getname = inet6_getname, 4066 .poll = mptcp_poll, 4067 .ioctl = inet6_ioctl, 4068 .gettstamp = sock_gettstamp, 4069 .listen = mptcp_listen, 4070 .shutdown = inet_shutdown, 4071 .setsockopt = sock_common_setsockopt, 4072 .getsockopt = sock_common_getsockopt, 4073 .sendmsg = inet6_sendmsg, 4074 .recvmsg = inet6_recvmsg, 4075 .mmap = sock_no_mmap, 4076 #ifdef CONFIG_COMPAT 4077 .compat_ioctl = inet6_compat_ioctl, 4078 #endif 4079 .set_rcvlowat = mptcp_set_rcvlowat, 4080 }; 4081 4082 static struct proto mptcp_v6_prot; 4083 4084 static struct inet_protosw mptcp_v6_protosw = { 4085 .type = SOCK_STREAM, 4086 .protocol = IPPROTO_MPTCP, 4087 .prot = &mptcp_v6_prot, 4088 .ops = &mptcp_v6_stream_ops, 4089 .flags = INET_PROTOSW_ICSK, 4090 }; 4091 4092 int __init mptcp_proto_v6_init(void) 4093 { 4094 int err; 4095 4096 mptcp_v6_prot = mptcp_prot; 4097 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4098 mptcp_v6_prot.slab = NULL; 4099 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4100 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4101 4102 err = proto_register(&mptcp_v6_prot, 1); 4103 if (err) 4104 return err; 4105 4106 err = inet6_register_protosw(&mptcp_v6_protosw); 4107 if (err) 4108 proto_unregister(&mptcp_v6_prot); 4109 4110 return err; 4111 } 4112 #endif 4113