1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3 *
4 * Copyright (c) 2017 - 2019, Intel Corporation.
5 */
6
7 #define pr_fmt(fmt) "MPTCP: " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 struct mptcp_sock msk;
37 struct ipv6_pinfo np;
38 };
39 #endif
40
41 enum {
42 MPTCP_CMSG_TS = BIT(0),
43 MPTCP_CMSG_INQ = BIT(1),
44 };
45
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55
56 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 return READ_ONCE(msk->wnd_end);
60 }
61
mptcp_fallback_tcp_ops(const struct sock * sk)62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
65 if (sk->sk_prot == &tcpv6_prot)
66 return &inet6_stream_ops;
67 #endif
68 WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
69 return &inet_stream_ops;
70 }
71
__mptcp_try_fallback(struct mptcp_sock * msk,int fb_mib)72 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
73 {
74 struct net *net = sock_net((struct sock *)msk);
75
76 if (__mptcp_check_fallback(msk))
77 return true;
78
79 spin_lock_bh(&msk->fallback_lock);
80 if (!msk->allow_infinite_fallback) {
81 spin_unlock_bh(&msk->fallback_lock);
82 return false;
83 }
84
85 msk->allow_subflows = false;
86 set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
87 __MPTCP_INC_STATS(net, fb_mib);
88 spin_unlock_bh(&msk->fallback_lock);
89 return true;
90 }
91
__mptcp_socket_create(struct mptcp_sock * msk)92 static int __mptcp_socket_create(struct mptcp_sock *msk)
93 {
94 struct mptcp_subflow_context *subflow;
95 struct sock *sk = (struct sock *)msk;
96 struct socket *ssock;
97 int err;
98
99 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
100 if (err)
101 return err;
102
103 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
104 WRITE_ONCE(msk->first, ssock->sk);
105 subflow = mptcp_subflow_ctx(ssock->sk);
106 list_add(&subflow->node, &msk->conn_list);
107 sock_hold(ssock->sk);
108 subflow->request_mptcp = 1;
109 subflow->subflow_id = msk->subflow_id++;
110
111 /* This is the first subflow, always with id 0 */
112 WRITE_ONCE(subflow->local_id, 0);
113 mptcp_sock_graft(msk->first, sk->sk_socket);
114 iput(SOCK_INODE(ssock));
115
116 return 0;
117 }
118
119 /* If the MPC handshake is not started, returns the first subflow,
120 * eventually allocating it.
121 */
__mptcp_nmpc_sk(struct mptcp_sock * msk)122 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
123 {
124 struct sock *sk = (struct sock *)msk;
125 int ret;
126
127 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
128 return ERR_PTR(-EINVAL);
129
130 if (!msk->first) {
131 ret = __mptcp_socket_create(msk);
132 if (ret)
133 return ERR_PTR(ret);
134 }
135
136 return msk->first;
137 }
138
mptcp_drop(struct sock * sk,struct sk_buff * skb)139 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
140 {
141 sk_drops_skbadd(sk, skb);
142 __kfree_skb(skb);
143 }
144
__mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta)145 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 struct sk_buff *from, bool *fragstolen,
147 int *delta)
148 {
149 int limit = READ_ONCE(sk->sk_rcvbuf);
150
151 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
152 MPTCP_SKB_CB(from)->offset ||
153 ((to->len + from->len) > (limit >> 3)) ||
154 !skb_try_coalesce(to, from, fragstolen, delta))
155 return false;
156
157 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
158 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
159 to->len, MPTCP_SKB_CB(from)->end_seq);
160 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
161 return true;
162 }
163
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)164 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
165 struct sk_buff *from)
166 {
167 bool fragstolen;
168 int delta;
169
170 if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
171 return false;
172
173 /* note the fwd memory can reach a negative value after accounting
174 * for the delta, but the later skb free will restore a non
175 * negative one
176 */
177 atomic_add(delta, &sk->sk_rmem_alloc);
178 sk_mem_charge(sk, delta);
179 kfree_skb_partial(from, fragstolen);
180
181 return true;
182 }
183
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)184 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
185 struct sk_buff *from)
186 {
187 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
188 return false;
189
190 return mptcp_try_coalesce((struct sock *)msk, to, from);
191 }
192
193 /* "inspired" by tcp_rcvbuf_grow(), main difference:
194 * - mptcp does not maintain a msk-level window clamp
195 * - returns true when the receive buffer is actually updated
196 */
mptcp_rcvbuf_grow(struct sock * sk,u32 newval)197 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
198 {
199 struct mptcp_sock *msk = mptcp_sk(sk);
200 const struct net *net = sock_net(sk);
201 u32 rcvwin, rcvbuf, cap, oldval;
202 u64 grow;
203
204 oldval = msk->rcvq_space.space;
205 msk->rcvq_space.space = newval;
206 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
207 (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
208 return false;
209
210 /* DRS is always one RTT late. */
211 rcvwin = newval << 1;
212
213 /* slow start: allow the sender to double its rate. */
214 grow = (u64)rcvwin * (newval - oldval);
215 do_div(grow, oldval);
216 rcvwin += grow << 1;
217
218 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
219 rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
220
221 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
222
223 rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
224 if (rcvbuf > sk->sk_rcvbuf) {
225 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
226 return true;
227 }
228 return false;
229 }
230
231 /* "inspired" by tcp_data_queue_ofo(), main differences:
232 * - use mptcp seqs
233 * - don't cope with sacks
234 */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)235 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
236 {
237 struct sock *sk = (struct sock *)msk;
238 struct rb_node **p, *parent;
239 u64 seq, end_seq, max_seq;
240 struct sk_buff *skb1;
241
242 seq = MPTCP_SKB_CB(skb)->map_seq;
243 end_seq = MPTCP_SKB_CB(skb)->end_seq;
244 max_seq = atomic64_read(&msk->rcv_wnd_sent);
245
246 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
247 RB_EMPTY_ROOT(&msk->out_of_order_queue));
248 if (after64(end_seq, max_seq)) {
249 /* out of window */
250 mptcp_drop(sk, skb);
251 pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
252 (unsigned long long)end_seq - (unsigned long)max_seq,
253 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
255 return;
256 }
257
258 p = &msk->out_of_order_queue.rb_node;
259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
260 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
261 rb_link_node(&skb->rbnode, NULL, p);
262 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
263 msk->ooo_last_skb = skb;
264 goto end;
265 }
266
267 /* with 2 subflows, adding at end of ooo queue is quite likely
268 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
269 */
270 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
271 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
273 return;
274 }
275
276 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
277 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
279 parent = &msk->ooo_last_skb->rbnode;
280 p = &parent->rb_right;
281 goto insert;
282 }
283
284 /* Find place to insert this segment. Handle overlaps on the way. */
285 parent = NULL;
286 while (*p) {
287 parent = *p;
288 skb1 = rb_to_skb(parent);
289 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
290 p = &parent->rb_left;
291 continue;
292 }
293 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
294 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
295 /* All the bits are present. Drop. */
296 mptcp_drop(sk, skb);
297 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
298 return;
299 }
300 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
301 /* partial overlap:
302 * | skb |
303 * | skb1 |
304 * continue traversing
305 */
306 } else {
307 /* skb's seq == skb1's seq and skb covers skb1.
308 * Replace skb1 with skb.
309 */
310 rb_replace_node(&skb1->rbnode, &skb->rbnode,
311 &msk->out_of_order_queue);
312 mptcp_drop(sk, skb1);
313 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
314 goto merge_right;
315 }
316 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
317 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
318 return;
319 }
320 p = &parent->rb_right;
321 }
322
323 insert:
324 /* Insert segment into RB tree. */
325 rb_link_node(&skb->rbnode, parent, p);
326 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
327
328 merge_right:
329 /* Remove other segments covered by skb. */
330 while ((skb1 = skb_rb_next(skb)) != NULL) {
331 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
332 break;
333 rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
334 mptcp_drop(sk, skb1);
335 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
336 }
337 /* If there is no skb after us, we are the last_skb ! */
338 if (!skb1)
339 msk->ooo_last_skb = skb;
340
341 end:
342 skb_condense(skb);
343 skb_set_owner_r(skb, sk);
344 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
345 if (sk->sk_socket)
346 mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
347 }
348
mptcp_init_skb(struct sock * ssk,struct sk_buff * skb,int offset,int copy_len)349 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
350 int copy_len)
351 {
352 const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
353 bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
354
355 /* the skb map_seq accounts for the skb offset:
356 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
357 * value
358 */
359 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
360 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
361 MPTCP_SKB_CB(skb)->offset = offset;
362 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
363 MPTCP_SKB_CB(skb)->cant_coalesce = 0;
364
365 __skb_unlink(skb, &ssk->sk_receive_queue);
366
367 skb_ext_reset(skb);
368 skb_dst_drop(skb);
369 }
370
__mptcp_move_skb(struct sock * sk,struct sk_buff * skb)371 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
372 {
373 u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
374 struct mptcp_sock *msk = mptcp_sk(sk);
375 struct sk_buff *tail;
376
377 /* try to fetch required memory from subflow */
378 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
379 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
380 goto drop;
381 }
382
383 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
384 /* in sequence */
385 msk->bytes_received += copy_len;
386 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
387 tail = skb_peek_tail(&sk->sk_receive_queue);
388 if (tail && mptcp_try_coalesce(sk, tail, skb))
389 return true;
390
391 skb_set_owner_r(skb, sk);
392 __skb_queue_tail(&sk->sk_receive_queue, skb);
393 return true;
394 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
395 mptcp_data_queue_ofo(msk, skb);
396 return false;
397 }
398
399 /* old data, keep it simple and drop the whole pkt, sender
400 * will retransmit as needed, if needed.
401 */
402 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
403 drop:
404 mptcp_drop(sk, skb);
405 return false;
406 }
407
mptcp_stop_rtx_timer(struct sock * sk)408 static void mptcp_stop_rtx_timer(struct sock *sk)
409 {
410 struct inet_connection_sock *icsk = inet_csk(sk);
411
412 sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
413 mptcp_sk(sk)->timer_ival = 0;
414 }
415
mptcp_close_wake_up(struct sock * sk)416 static void mptcp_close_wake_up(struct sock *sk)
417 {
418 if (sock_flag(sk, SOCK_DEAD))
419 return;
420
421 sk->sk_state_change(sk);
422 if (sk->sk_shutdown == SHUTDOWN_MASK ||
423 sk->sk_state == TCP_CLOSE)
424 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
425 else
426 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
427 }
428
mptcp_shutdown_subflows(struct mptcp_sock * msk)429 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
430 {
431 struct mptcp_subflow_context *subflow;
432
433 mptcp_for_each_subflow(msk, subflow) {
434 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
435 bool slow;
436
437 slow = lock_sock_fast(ssk);
438 tcp_shutdown(ssk, SEND_SHUTDOWN);
439 unlock_sock_fast(ssk, slow);
440 }
441 }
442
443 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)444 static bool mptcp_pending_data_fin_ack(struct sock *sk)
445 {
446 struct mptcp_sock *msk = mptcp_sk(sk);
447
448 return ((1 << sk->sk_state) &
449 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
450 msk->write_seq == READ_ONCE(msk->snd_una);
451 }
452
mptcp_check_data_fin_ack(struct sock * sk)453 static void mptcp_check_data_fin_ack(struct sock *sk)
454 {
455 struct mptcp_sock *msk = mptcp_sk(sk);
456
457 /* Look for an acknowledged DATA_FIN */
458 if (mptcp_pending_data_fin_ack(sk)) {
459 WRITE_ONCE(msk->snd_data_fin_enable, 0);
460
461 switch (sk->sk_state) {
462 case TCP_FIN_WAIT1:
463 mptcp_set_state(sk, TCP_FIN_WAIT2);
464 break;
465 case TCP_CLOSING:
466 case TCP_LAST_ACK:
467 mptcp_shutdown_subflows(msk);
468 mptcp_set_state(sk, TCP_CLOSE);
469 break;
470 }
471
472 mptcp_close_wake_up(sk);
473 }
474 }
475
476 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)477 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
478 {
479 struct mptcp_sock *msk = mptcp_sk(sk);
480
481 if (READ_ONCE(msk->rcv_data_fin) &&
482 ((1 << inet_sk_state_load(sk)) &
483 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
484 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
485
486 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
487 if (seq)
488 *seq = rcv_data_fin_seq;
489
490 return true;
491 }
492 }
493
494 return false;
495 }
496
mptcp_set_datafin_timeout(struct sock * sk)497 static void mptcp_set_datafin_timeout(struct sock *sk)
498 {
499 struct inet_connection_sock *icsk = inet_csk(sk);
500 u32 retransmits;
501
502 retransmits = min_t(u32, icsk->icsk_retransmits,
503 ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
504
505 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
506 }
507
__mptcp_set_timeout(struct sock * sk,long tout)508 static void __mptcp_set_timeout(struct sock *sk, long tout)
509 {
510 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
511 }
512
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)513 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
514 {
515 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
516
517 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
518 icsk_timeout(inet_csk(ssk)) - jiffies : 0;
519 }
520
mptcp_set_timeout(struct sock * sk)521 static void mptcp_set_timeout(struct sock *sk)
522 {
523 struct mptcp_subflow_context *subflow;
524 long tout = 0;
525
526 mptcp_for_each_subflow(mptcp_sk(sk), subflow)
527 tout = max(tout, mptcp_timeout_from_subflow(subflow));
528 __mptcp_set_timeout(sk, tout);
529 }
530
tcp_can_send_ack(const struct sock * ssk)531 static inline bool tcp_can_send_ack(const struct sock *ssk)
532 {
533 return !((1 << inet_sk_state_load(ssk)) &
534 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
535 }
536
__mptcp_subflow_send_ack(struct sock * ssk)537 void __mptcp_subflow_send_ack(struct sock *ssk)
538 {
539 if (tcp_can_send_ack(ssk))
540 tcp_send_ack(ssk);
541 }
542
mptcp_subflow_send_ack(struct sock * ssk)543 static void mptcp_subflow_send_ack(struct sock *ssk)
544 {
545 bool slow;
546
547 slow = lock_sock_fast(ssk);
548 __mptcp_subflow_send_ack(ssk);
549 unlock_sock_fast(ssk, slow);
550 }
551
mptcp_send_ack(struct mptcp_sock * msk)552 static void mptcp_send_ack(struct mptcp_sock *msk)
553 {
554 struct mptcp_subflow_context *subflow;
555
556 mptcp_for_each_subflow(msk, subflow)
557 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
558 }
559
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)560 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
561 {
562 bool slow;
563
564 slow = lock_sock_fast(ssk);
565 if (tcp_can_send_ack(ssk))
566 tcp_cleanup_rbuf(ssk, copied);
567 unlock_sock_fast(ssk, slow);
568 }
569
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)570 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
571 {
572 const struct inet_connection_sock *icsk = inet_csk(ssk);
573 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
574 const struct tcp_sock *tp = tcp_sk(ssk);
575
576 return (ack_pending & ICSK_ACK_SCHED) &&
577 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
578 READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
579 (rx_empty && ack_pending &
580 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
581 }
582
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)583 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
584 {
585 int old_space = READ_ONCE(msk->old_wspace);
586 struct mptcp_subflow_context *subflow;
587 struct sock *sk = (struct sock *)msk;
588 int space = __mptcp_space(sk);
589 bool cleanup, rx_empty;
590
591 cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
592 rx_empty = !sk_rmem_alloc_get(sk) && copied;
593
594 mptcp_for_each_subflow(msk, subflow) {
595 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
596
597 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
598 mptcp_subflow_cleanup_rbuf(ssk, copied);
599 }
600 }
601
mptcp_check_data_fin(struct sock * sk)602 static void mptcp_check_data_fin(struct sock *sk)
603 {
604 struct mptcp_sock *msk = mptcp_sk(sk);
605 u64 rcv_data_fin_seq;
606
607 /* Need to ack a DATA_FIN received from a peer while this side
608 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
609 * msk->rcv_data_fin was set when parsing the incoming options
610 * at the subflow level and the msk lock was not held, so this
611 * is the first opportunity to act on the DATA_FIN and change
612 * the msk state.
613 *
614 * If we are caught up to the sequence number of the incoming
615 * DATA_FIN, send the DATA_ACK now and do state transition. If
616 * not caught up, do nothing and let the recv code send DATA_ACK
617 * when catching up.
618 */
619
620 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
621 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
622 WRITE_ONCE(msk->rcv_data_fin, 0);
623
624 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
625 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
626
627 switch (sk->sk_state) {
628 case TCP_ESTABLISHED:
629 mptcp_set_state(sk, TCP_CLOSE_WAIT);
630 break;
631 case TCP_FIN_WAIT1:
632 mptcp_set_state(sk, TCP_CLOSING);
633 break;
634 case TCP_FIN_WAIT2:
635 mptcp_shutdown_subflows(msk);
636 mptcp_set_state(sk, TCP_CLOSE);
637 break;
638 default:
639 /* Other states not expected */
640 WARN_ON_ONCE(1);
641 break;
642 }
643
644 if (!__mptcp_check_fallback(msk))
645 mptcp_send_ack(msk);
646 mptcp_close_wake_up(sk);
647 }
648 }
649
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)650 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
651 {
652 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
653 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
654 mptcp_subflow_reset(ssk);
655 }
656 }
657
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)658 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
659 struct sock *ssk)
660 {
661 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
662 struct sock *sk = (struct sock *)msk;
663 bool more_data_avail;
664 struct tcp_sock *tp;
665 bool ret = false;
666
667 pr_debug("msk=%p ssk=%p\n", msk, ssk);
668 tp = tcp_sk(ssk);
669 do {
670 u32 map_remaining, offset;
671 u32 seq = tp->copied_seq;
672 struct sk_buff *skb;
673 bool fin;
674
675 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
676 break;
677
678 /* try to move as much data as available */
679 map_remaining = subflow->map_data_len -
680 mptcp_subflow_get_map_offset(subflow);
681
682 skb = skb_peek(&ssk->sk_receive_queue);
683 if (unlikely(!skb))
684 break;
685
686 if (__mptcp_check_fallback(msk)) {
687 /* Under fallback skbs have no MPTCP extension and TCP could
688 * collapse them between the dummy map creation and the
689 * current dequeue. Be sure to adjust the map size.
690 */
691 map_remaining = skb->len;
692 subflow->map_data_len = skb->len;
693 }
694
695 offset = seq - TCP_SKB_CB(skb)->seq;
696 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
697 if (fin)
698 seq++;
699
700 if (offset < skb->len) {
701 size_t len = skb->len - offset;
702
703 mptcp_init_skb(ssk, skb, offset, len);
704 skb_orphan(skb);
705 ret = __mptcp_move_skb(sk, skb) || ret;
706 seq += len;
707
708 if (unlikely(map_remaining < len)) {
709 DEBUG_NET_WARN_ON_ONCE(1);
710 mptcp_dss_corruption(msk, ssk);
711 }
712 } else {
713 if (unlikely(!fin)) {
714 DEBUG_NET_WARN_ON_ONCE(1);
715 mptcp_dss_corruption(msk, ssk);
716 }
717
718 sk_eat_skb(ssk, skb);
719 }
720
721 WRITE_ONCE(tp->copied_seq, seq);
722 more_data_avail = mptcp_subflow_data_available(ssk);
723
724 } while (more_data_avail);
725
726 if (ret)
727 msk->last_data_recv = tcp_jiffies32;
728 return ret;
729 }
730
__mptcp_ofo_queue(struct mptcp_sock * msk)731 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
732 {
733 struct sock *sk = (struct sock *)msk;
734 struct sk_buff *skb, *tail;
735 bool moved = false;
736 struct rb_node *p;
737 u64 end_seq;
738
739 p = rb_first(&msk->out_of_order_queue);
740 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
741 while (p) {
742 skb = rb_to_skb(p);
743 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
744 break;
745
746 p = rb_next(p);
747 rb_erase(&skb->rbnode, &msk->out_of_order_queue);
748
749 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
750 msk->ack_seq))) {
751 mptcp_drop(sk, skb);
752 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
753 continue;
754 }
755
756 end_seq = MPTCP_SKB_CB(skb)->end_seq;
757 tail = skb_peek_tail(&sk->sk_receive_queue);
758 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
759 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
760
761 /* skip overlapping data, if any */
762 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
763 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
764 delta);
765 MPTCP_SKB_CB(skb)->offset += delta;
766 MPTCP_SKB_CB(skb)->map_seq += delta;
767 __skb_queue_tail(&sk->sk_receive_queue, skb);
768 }
769 msk->bytes_received += end_seq - msk->ack_seq;
770 WRITE_ONCE(msk->ack_seq, end_seq);
771 moved = true;
772 }
773 return moved;
774 }
775
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)776 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
777 {
778 int err = sock_error(ssk);
779 int ssk_state;
780
781 if (!err)
782 return false;
783
784 /* only propagate errors on fallen-back sockets or
785 * on MPC connect
786 */
787 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
788 return false;
789
790 /* We need to propagate only transition to CLOSE state.
791 * Orphaned socket will see such state change via
792 * subflow_sched_work_if_closed() and that path will properly
793 * destroy the msk as needed.
794 */
795 ssk_state = inet_sk_state_load(ssk);
796 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
797 mptcp_set_state(sk, ssk_state);
798 WRITE_ONCE(sk->sk_err, -err);
799
800 /* This barrier is coupled with smp_rmb() in mptcp_poll() */
801 smp_wmb();
802 sk_error_report(sk);
803 return true;
804 }
805
__mptcp_error_report(struct sock * sk)806 void __mptcp_error_report(struct sock *sk)
807 {
808 struct mptcp_subflow_context *subflow;
809 struct mptcp_sock *msk = mptcp_sk(sk);
810
811 mptcp_for_each_subflow(msk, subflow)
812 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
813 break;
814 }
815
816 /* In most cases we will be able to lock the mptcp socket. If its already
817 * owned, we need to defer to the work queue to avoid ABBA deadlock.
818 */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)819 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
820 {
821 struct sock *sk = (struct sock *)msk;
822 bool moved;
823
824 moved = __mptcp_move_skbs_from_subflow(msk, ssk);
825 __mptcp_ofo_queue(msk);
826 if (unlikely(ssk->sk_err))
827 __mptcp_subflow_error_report(sk, ssk);
828
829 /* If the moves have caught up with the DATA_FIN sequence number
830 * it's time to ack the DATA_FIN and change socket state, but
831 * this is not a good place to change state. Let the workqueue
832 * do it.
833 */
834 if (mptcp_pending_data_fin(sk, NULL))
835 mptcp_schedule_work(sk);
836 return moved;
837 }
838
__mptcp_data_ready(struct sock * sk,struct sock * ssk)839 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
840 {
841 struct mptcp_sock *msk = mptcp_sk(sk);
842
843 /* Wake-up the reader only for in-sequence data */
844 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
845 sk->sk_data_ready(sk);
846 }
847
mptcp_data_ready(struct sock * sk,struct sock * ssk)848 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
849 {
850 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
851
852 /* The peer can send data while we are shutting down this
853 * subflow at msk destruction time, but we must avoid enqueuing
854 * more data to the msk receive queue
855 */
856 if (unlikely(subflow->disposable))
857 return;
858
859 mptcp_data_lock(sk);
860 if (!sock_owned_by_user(sk))
861 __mptcp_data_ready(sk, ssk);
862 else
863 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
864 mptcp_data_unlock(sk);
865 }
866
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)867 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
868 {
869 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
870 msk->allow_infinite_fallback = false;
871 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
872 }
873
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)874 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
875 {
876 struct sock *sk = (struct sock *)msk;
877
878 if (sk->sk_state != TCP_ESTABLISHED)
879 return false;
880
881 spin_lock_bh(&msk->fallback_lock);
882 if (!msk->allow_subflows) {
883 spin_unlock_bh(&msk->fallback_lock);
884 return false;
885 }
886 mptcp_subflow_joined(msk, ssk);
887 spin_unlock_bh(&msk->fallback_lock);
888
889 /* attach to msk socket only after we are sure we will deal with it
890 * at close time
891 */
892 if (sk->sk_socket && !ssk->sk_socket)
893 mptcp_sock_graft(ssk, sk->sk_socket);
894
895 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
896 mptcp_sockopt_sync_locked(msk, ssk);
897 mptcp_stop_tout_timer(sk);
898 __mptcp_propagate_sndbuf(sk, ssk);
899 return true;
900 }
901
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)902 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
903 {
904 struct mptcp_subflow_context *tmp, *subflow;
905 struct mptcp_sock *msk = mptcp_sk(sk);
906
907 list_for_each_entry_safe(subflow, tmp, join_list, node) {
908 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
909 bool slow = lock_sock_fast(ssk);
910
911 list_move_tail(&subflow->node, &msk->conn_list);
912 if (!__mptcp_finish_join(msk, ssk))
913 mptcp_subflow_reset(ssk);
914 unlock_sock_fast(ssk, slow);
915 }
916 }
917
mptcp_rtx_timer_pending(struct sock * sk)918 static bool mptcp_rtx_timer_pending(struct sock *sk)
919 {
920 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
921 }
922
mptcp_reset_rtx_timer(struct sock * sk)923 static void mptcp_reset_rtx_timer(struct sock *sk)
924 {
925 struct inet_connection_sock *icsk = inet_csk(sk);
926 unsigned long tout;
927
928 /* prevent rescheduling on close */
929 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
930 return;
931
932 tout = mptcp_sk(sk)->timer_ival;
933 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
934 }
935
mptcp_schedule_work(struct sock * sk)936 bool mptcp_schedule_work(struct sock *sk)
937 {
938 if (inet_sk_state_load(sk) != TCP_CLOSE &&
939 schedule_work(&mptcp_sk(sk)->work)) {
940 /* each subflow already holds a reference to the sk, and the
941 * workqueue is invoked by a subflow, so sk can't go away here.
942 */
943 sock_hold(sk);
944 return true;
945 }
946 return false;
947 }
948
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)949 static bool mptcp_skb_can_collapse_to(u64 write_seq,
950 const struct sk_buff *skb,
951 const struct mptcp_ext *mpext)
952 {
953 if (!tcp_skb_can_collapse_to(skb))
954 return false;
955
956 /* can collapse only if MPTCP level sequence is in order and this
957 * mapping has not been xmitted yet
958 */
959 return mpext && mpext->data_seq + mpext->data_len == write_seq &&
960 !mpext->frozen;
961 }
962
963 /* we can append data to the given data frag if:
964 * - there is space available in the backing page_frag
965 * - the data frag tail matches the current page_frag free offset
966 * - the data frag end sequence number matches the current write seq
967 */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)968 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
969 const struct page_frag *pfrag,
970 const struct mptcp_data_frag *df)
971 {
972 return df && pfrag->page == df->page &&
973 pfrag->size - pfrag->offset > 0 &&
974 pfrag->offset == (df->offset + df->data_len) &&
975 df->data_seq + df->data_len == msk->write_seq;
976 }
977
dfrag_uncharge(struct sock * sk,int len)978 static void dfrag_uncharge(struct sock *sk, int len)
979 {
980 sk_mem_uncharge(sk, len);
981 sk_wmem_queued_add(sk, -len);
982 }
983
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)984 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
985 {
986 int len = dfrag->data_len + dfrag->overhead;
987
988 list_del(&dfrag->list);
989 dfrag_uncharge(sk, len);
990 put_page(dfrag->page);
991 }
992
993 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)994 static void __mptcp_clean_una(struct sock *sk)
995 {
996 struct mptcp_sock *msk = mptcp_sk(sk);
997 struct mptcp_data_frag *dtmp, *dfrag;
998 u64 snd_una;
999
1000 snd_una = msk->snd_una;
1001 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1002 if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1003 break;
1004
1005 if (unlikely(dfrag == msk->first_pending)) {
1006 /* in recovery mode can see ack after the current snd head */
1007 if (WARN_ON_ONCE(!msk->recovery))
1008 break;
1009
1010 msk->first_pending = mptcp_send_next(sk);
1011 }
1012
1013 dfrag_clear(sk, dfrag);
1014 }
1015
1016 dfrag = mptcp_rtx_head(sk);
1017 if (dfrag && after64(snd_una, dfrag->data_seq)) {
1018 u64 delta = snd_una - dfrag->data_seq;
1019
1020 /* prevent wrap around in recovery mode */
1021 if (unlikely(delta > dfrag->already_sent)) {
1022 if (WARN_ON_ONCE(!msk->recovery))
1023 goto out;
1024 if (WARN_ON_ONCE(delta > dfrag->data_len))
1025 goto out;
1026 dfrag->already_sent += delta - dfrag->already_sent;
1027 }
1028
1029 dfrag->data_seq += delta;
1030 dfrag->offset += delta;
1031 dfrag->data_len -= delta;
1032 dfrag->already_sent -= delta;
1033
1034 dfrag_uncharge(sk, delta);
1035 }
1036
1037 /* all retransmitted data acked, recovery completed */
1038 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1039 msk->recovery = false;
1040
1041 out:
1042 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1043 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1044 mptcp_stop_rtx_timer(sk);
1045 } else {
1046 mptcp_reset_rtx_timer(sk);
1047 }
1048
1049 if (mptcp_pending_data_fin_ack(sk))
1050 mptcp_schedule_work(sk);
1051 }
1052
__mptcp_clean_una_wakeup(struct sock * sk)1053 static void __mptcp_clean_una_wakeup(struct sock *sk)
1054 {
1055 lockdep_assert_held_once(&sk->sk_lock.slock);
1056
1057 __mptcp_clean_una(sk);
1058 mptcp_write_space(sk);
1059 }
1060
mptcp_clean_una_wakeup(struct sock * sk)1061 static void mptcp_clean_una_wakeup(struct sock *sk)
1062 {
1063 mptcp_data_lock(sk);
1064 __mptcp_clean_una_wakeup(sk);
1065 mptcp_data_unlock(sk);
1066 }
1067
mptcp_enter_memory_pressure(struct sock * sk)1068 static void mptcp_enter_memory_pressure(struct sock *sk)
1069 {
1070 struct mptcp_subflow_context *subflow;
1071 struct mptcp_sock *msk = mptcp_sk(sk);
1072 bool first = true;
1073
1074 mptcp_for_each_subflow(msk, subflow) {
1075 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1076
1077 if (first)
1078 tcp_enter_memory_pressure(ssk);
1079 sk_stream_moderate_sndbuf(ssk);
1080
1081 first = false;
1082 }
1083 __mptcp_sync_sndbuf(sk);
1084 }
1085
1086 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1087 * data
1088 */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1089 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1090 {
1091 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1092 pfrag, sk->sk_allocation)))
1093 return true;
1094
1095 mptcp_enter_memory_pressure(sk);
1096 return false;
1097 }
1098
1099 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1100 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1101 int orig_offset)
1102 {
1103 int offset = ALIGN(orig_offset, sizeof(long));
1104 struct mptcp_data_frag *dfrag;
1105
1106 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1107 dfrag->data_len = 0;
1108 dfrag->data_seq = msk->write_seq;
1109 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1110 dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1111 dfrag->already_sent = 0;
1112 dfrag->page = pfrag->page;
1113
1114 return dfrag;
1115 }
1116
1117 struct mptcp_sendmsg_info {
1118 int mss_now;
1119 int size_goal;
1120 u16 limit;
1121 u16 sent;
1122 unsigned int flags;
1123 bool data_lock_held;
1124 };
1125
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1126 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1127 u64 data_seq, int avail_size)
1128 {
1129 u64 window_end = mptcp_wnd_end(msk);
1130 u64 mptcp_snd_wnd;
1131
1132 if (__mptcp_check_fallback(msk))
1133 return avail_size;
1134
1135 mptcp_snd_wnd = window_end - data_seq;
1136 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1137
1138 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1139 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1140 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1141 }
1142
1143 return avail_size;
1144 }
1145
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1146 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1147 {
1148 struct skb_ext *mpext = __skb_ext_alloc(gfp);
1149
1150 if (!mpext)
1151 return false;
1152 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1153 return true;
1154 }
1155
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1156 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1157 {
1158 struct sk_buff *skb;
1159
1160 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1161 if (likely(skb)) {
1162 if (likely(__mptcp_add_ext(skb, gfp))) {
1163 skb_reserve(skb, MAX_TCP_HEADER);
1164 skb->ip_summed = CHECKSUM_PARTIAL;
1165 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1166 return skb;
1167 }
1168 __kfree_skb(skb);
1169 } else {
1170 mptcp_enter_memory_pressure(sk);
1171 }
1172 return NULL;
1173 }
1174
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1175 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1176 {
1177 struct sk_buff *skb;
1178
1179 skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1180 if (!skb)
1181 return NULL;
1182
1183 if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1184 tcp_skb_entail(ssk, skb);
1185 return skb;
1186 }
1187 tcp_skb_tsorted_anchor_cleanup(skb);
1188 kfree_skb(skb);
1189 return NULL;
1190 }
1191
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1192 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1193 {
1194 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1195
1196 return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1197 }
1198
1199 /* note: this always recompute the csum on the whole skb, even
1200 * if we just appended a single frag. More status info needed
1201 */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1202 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1203 {
1204 struct mptcp_ext *mpext = mptcp_get_ext(skb);
1205 __wsum csum = ~csum_unfold(mpext->csum);
1206 int offset = skb->len - added;
1207
1208 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1209 }
1210
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1211 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1212 struct sock *ssk,
1213 struct mptcp_ext *mpext)
1214 {
1215 if (!mpext)
1216 return;
1217
1218 mpext->infinite_map = 1;
1219 mpext->data_len = 0;
1220
1221 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1222 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1223 mptcp_subflow_reset(ssk);
1224 return;
1225 }
1226
1227 mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1228 }
1229
1230 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1231
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1232 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1233 struct mptcp_data_frag *dfrag,
1234 struct mptcp_sendmsg_info *info)
1235 {
1236 u64 data_seq = dfrag->data_seq + info->sent;
1237 int offset = dfrag->offset + info->sent;
1238 struct mptcp_sock *msk = mptcp_sk(sk);
1239 bool zero_window_probe = false;
1240 struct mptcp_ext *mpext = NULL;
1241 bool can_coalesce = false;
1242 bool reuse_skb = true;
1243 struct sk_buff *skb;
1244 size_t copy;
1245 int i;
1246
1247 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1248 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1249
1250 if (WARN_ON_ONCE(info->sent > info->limit ||
1251 info->limit > dfrag->data_len))
1252 return 0;
1253
1254 if (unlikely(!__tcp_can_send(ssk)))
1255 return -EAGAIN;
1256
1257 /* compute send limit */
1258 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1259 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1260 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1261 copy = info->size_goal;
1262
1263 skb = tcp_write_queue_tail(ssk);
1264 if (skb && copy > skb->len) {
1265 /* Limit the write to the size available in the
1266 * current skb, if any, so that we create at most a new skb.
1267 * Explicitly tells TCP internals to avoid collapsing on later
1268 * queue management operation, to avoid breaking the ext <->
1269 * SSN association set here
1270 */
1271 mpext = mptcp_get_ext(skb);
1272 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1273 TCP_SKB_CB(skb)->eor = 1;
1274 tcp_mark_push(tcp_sk(ssk), skb);
1275 goto alloc_skb;
1276 }
1277
1278 i = skb_shinfo(skb)->nr_frags;
1279 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1280 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1281 tcp_mark_push(tcp_sk(ssk), skb);
1282 goto alloc_skb;
1283 }
1284
1285 copy -= skb->len;
1286 } else {
1287 alloc_skb:
1288 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1289 if (!skb)
1290 return -ENOMEM;
1291
1292 i = skb_shinfo(skb)->nr_frags;
1293 reuse_skb = false;
1294 mpext = mptcp_get_ext(skb);
1295 }
1296
1297 /* Zero window and all data acked? Probe. */
1298 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1299 if (copy == 0) {
1300 u64 snd_una = READ_ONCE(msk->snd_una);
1301
1302 /* No need for zero probe if there are any data pending
1303 * either at the msk or ssk level; skb is the current write
1304 * queue tail and can be empty at this point.
1305 */
1306 if (snd_una != msk->snd_nxt || skb->len ||
1307 skb != tcp_send_head(ssk)) {
1308 tcp_remove_empty_skb(ssk);
1309 return 0;
1310 }
1311
1312 zero_window_probe = true;
1313 data_seq = snd_una - 1;
1314 copy = 1;
1315 }
1316
1317 copy = min_t(size_t, copy, info->limit - info->sent);
1318 if (!sk_wmem_schedule(ssk, copy)) {
1319 tcp_remove_empty_skb(ssk);
1320 return -ENOMEM;
1321 }
1322
1323 if (can_coalesce) {
1324 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1325 } else {
1326 get_page(dfrag->page);
1327 skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1328 }
1329
1330 skb->len += copy;
1331 skb->data_len += copy;
1332 skb->truesize += copy;
1333 sk_wmem_queued_add(ssk, copy);
1334 sk_mem_charge(ssk, copy);
1335 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1336 TCP_SKB_CB(skb)->end_seq += copy;
1337 tcp_skb_pcount_set(skb, 0);
1338
1339 /* on skb reuse we just need to update the DSS len */
1340 if (reuse_skb) {
1341 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1342 mpext->data_len += copy;
1343 goto out;
1344 }
1345
1346 memset(mpext, 0, sizeof(*mpext));
1347 mpext->data_seq = data_seq;
1348 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1349 mpext->data_len = copy;
1350 mpext->use_map = 1;
1351 mpext->dsn64 = 1;
1352
1353 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1354 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1355 mpext->dsn64);
1356
1357 if (zero_window_probe) {
1358 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1359 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1360 mpext->frozen = 1;
1361 if (READ_ONCE(msk->csum_enabled))
1362 mptcp_update_data_checksum(skb, copy);
1363 tcp_push_pending_frames(ssk);
1364 return 0;
1365 }
1366 out:
1367 if (READ_ONCE(msk->csum_enabled))
1368 mptcp_update_data_checksum(skb, copy);
1369 if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1370 mptcp_update_infinite_map(msk, ssk, mpext);
1371 trace_mptcp_sendmsg_frag(mpext);
1372 mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1373 return copy;
1374 }
1375
1376 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
1377 sizeof(struct tcphdr) - \
1378 MAX_TCP_OPTION_SPACE - \
1379 sizeof(struct ipv6hdr) - \
1380 sizeof(struct frag_hdr))
1381
1382 struct subflow_send_info {
1383 struct sock *ssk;
1384 u64 linger_time;
1385 };
1386
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1387 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1388 {
1389 if (!subflow->stale)
1390 return;
1391
1392 subflow->stale = 0;
1393 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1394 }
1395
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1396 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1397 {
1398 if (unlikely(subflow->stale)) {
1399 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1400
1401 if (subflow->stale_rcv_tstamp == rcv_tstamp)
1402 return false;
1403
1404 mptcp_subflow_set_active(subflow);
1405 }
1406 return __mptcp_subflow_active(subflow);
1407 }
1408
1409 #define SSK_MODE_ACTIVE 0
1410 #define SSK_MODE_BACKUP 1
1411 #define SSK_MODE_MAX 2
1412
1413 /* implement the mptcp packet scheduler;
1414 * returns the subflow that will transmit the next DSS
1415 * additionally updates the rtx timeout
1416 */
mptcp_subflow_get_send(struct mptcp_sock * msk)1417 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1418 {
1419 struct subflow_send_info send_info[SSK_MODE_MAX];
1420 struct mptcp_subflow_context *subflow;
1421 struct sock *sk = (struct sock *)msk;
1422 u32 pace, burst, wmem;
1423 int i, nr_active = 0;
1424 struct sock *ssk;
1425 u64 linger_time;
1426 long tout = 0;
1427
1428 /* pick the subflow with the lower wmem/wspace ratio */
1429 for (i = 0; i < SSK_MODE_MAX; ++i) {
1430 send_info[i].ssk = NULL;
1431 send_info[i].linger_time = -1;
1432 }
1433
1434 mptcp_for_each_subflow(msk, subflow) {
1435 bool backup = subflow->backup || subflow->request_bkup;
1436
1437 trace_mptcp_subflow_get_send(subflow);
1438 ssk = mptcp_subflow_tcp_sock(subflow);
1439 if (!mptcp_subflow_active(subflow))
1440 continue;
1441
1442 tout = max(tout, mptcp_timeout_from_subflow(subflow));
1443 nr_active += !backup;
1444 pace = subflow->avg_pacing_rate;
1445 if (unlikely(!pace)) {
1446 /* init pacing rate from socket */
1447 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1448 pace = subflow->avg_pacing_rate;
1449 if (!pace)
1450 continue;
1451 }
1452
1453 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1454 if (linger_time < send_info[backup].linger_time) {
1455 send_info[backup].ssk = ssk;
1456 send_info[backup].linger_time = linger_time;
1457 }
1458 }
1459 __mptcp_set_timeout(sk, tout);
1460
1461 /* pick the best backup if no other subflow is active */
1462 if (!nr_active)
1463 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1464
1465 /* According to the blest algorithm, to avoid HoL blocking for the
1466 * faster flow, we need to:
1467 * - estimate the faster flow linger time
1468 * - use the above to estimate the amount of byte transferred
1469 * by the faster flow
1470 * - check that the amount of queued data is greater than the above,
1471 * otherwise do not use the picked, slower, subflow
1472 * We select the subflow with the shorter estimated time to flush
1473 * the queued mem, which basically ensure the above. We just need
1474 * to check that subflow has a non empty cwin.
1475 */
1476 ssk = send_info[SSK_MODE_ACTIVE].ssk;
1477 if (!ssk || !sk_stream_memory_free(ssk))
1478 return NULL;
1479
1480 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1481 wmem = READ_ONCE(ssk->sk_wmem_queued);
1482 if (!burst)
1483 return ssk;
1484
1485 subflow = mptcp_subflow_ctx(ssk);
1486 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1487 READ_ONCE(ssk->sk_pacing_rate) * burst,
1488 burst + wmem);
1489 msk->snd_burst = burst;
1490 return ssk;
1491 }
1492
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1493 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1494 {
1495 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1496 release_sock(ssk);
1497 }
1498
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1499 static void mptcp_update_post_push(struct mptcp_sock *msk,
1500 struct mptcp_data_frag *dfrag,
1501 u32 sent)
1502 {
1503 u64 snd_nxt_new = dfrag->data_seq;
1504
1505 dfrag->already_sent += sent;
1506
1507 msk->snd_burst -= sent;
1508
1509 snd_nxt_new += dfrag->already_sent;
1510
1511 /* snd_nxt_new can be smaller than snd_nxt in case mptcp
1512 * is recovering after a failover. In that event, this re-sends
1513 * old segments.
1514 *
1515 * Thus compute snd_nxt_new candidate based on
1516 * the dfrag->data_seq that was sent and the data
1517 * that has been handed to the subflow for transmission
1518 * and skip update in case it was old dfrag.
1519 */
1520 if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1521 msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1522 WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1523 }
1524 }
1525
mptcp_check_and_set_pending(struct sock * sk)1526 void mptcp_check_and_set_pending(struct sock *sk)
1527 {
1528 if (mptcp_send_head(sk)) {
1529 mptcp_data_lock(sk);
1530 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1531 mptcp_data_unlock(sk);
1532 }
1533 }
1534
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1535 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1536 struct mptcp_sendmsg_info *info)
1537 {
1538 struct mptcp_sock *msk = mptcp_sk(sk);
1539 struct mptcp_data_frag *dfrag;
1540 int len, copied = 0, err = 0;
1541
1542 while ((dfrag = mptcp_send_head(sk))) {
1543 info->sent = dfrag->already_sent;
1544 info->limit = dfrag->data_len;
1545 len = dfrag->data_len - dfrag->already_sent;
1546 while (len > 0) {
1547 int ret = 0;
1548
1549 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1550 if (ret <= 0) {
1551 err = copied ? : ret;
1552 goto out;
1553 }
1554
1555 info->sent += ret;
1556 copied += ret;
1557 len -= ret;
1558
1559 mptcp_update_post_push(msk, dfrag, ret);
1560 }
1561 msk->first_pending = mptcp_send_next(sk);
1562
1563 if (msk->snd_burst <= 0 ||
1564 !sk_stream_memory_free(ssk) ||
1565 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1566 err = copied;
1567 goto out;
1568 }
1569 mptcp_set_timeout(sk);
1570 }
1571 err = copied;
1572
1573 out:
1574 if (err > 0)
1575 msk->last_data_sent = tcp_jiffies32;
1576 return err;
1577 }
1578
__mptcp_push_pending(struct sock * sk,unsigned int flags)1579 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1580 {
1581 struct sock *prev_ssk = NULL, *ssk = NULL;
1582 struct mptcp_sock *msk = mptcp_sk(sk);
1583 struct mptcp_sendmsg_info info = {
1584 .flags = flags,
1585 };
1586 bool do_check_data_fin = false;
1587 int push_count = 1;
1588
1589 while (mptcp_send_head(sk) && (push_count > 0)) {
1590 struct mptcp_subflow_context *subflow;
1591 int ret = 0;
1592
1593 if (mptcp_sched_get_send(msk))
1594 break;
1595
1596 push_count = 0;
1597
1598 mptcp_for_each_subflow(msk, subflow) {
1599 if (READ_ONCE(subflow->scheduled)) {
1600 mptcp_subflow_set_scheduled(subflow, false);
1601
1602 prev_ssk = ssk;
1603 ssk = mptcp_subflow_tcp_sock(subflow);
1604 if (ssk != prev_ssk) {
1605 /* First check. If the ssk has changed since
1606 * the last round, release prev_ssk
1607 */
1608 if (prev_ssk)
1609 mptcp_push_release(prev_ssk, &info);
1610
1611 /* Need to lock the new subflow only if different
1612 * from the previous one, otherwise we are still
1613 * helding the relevant lock
1614 */
1615 lock_sock(ssk);
1616 }
1617
1618 push_count++;
1619
1620 ret = __subflow_push_pending(sk, ssk, &info);
1621 if (ret <= 0) {
1622 if (ret != -EAGAIN ||
1623 (1 << ssk->sk_state) &
1624 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1625 push_count--;
1626 continue;
1627 }
1628 do_check_data_fin = true;
1629 }
1630 }
1631 }
1632
1633 /* at this point we held the socket lock for the last subflow we used */
1634 if (ssk)
1635 mptcp_push_release(ssk, &info);
1636
1637 /* ensure the rtx timer is running */
1638 if (!mptcp_rtx_timer_pending(sk))
1639 mptcp_reset_rtx_timer(sk);
1640 if (do_check_data_fin)
1641 mptcp_check_send_data_fin(sk);
1642 }
1643
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1644 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1645 {
1646 struct mptcp_sock *msk = mptcp_sk(sk);
1647 struct mptcp_sendmsg_info info = {
1648 .data_lock_held = true,
1649 };
1650 bool keep_pushing = true;
1651 struct sock *xmit_ssk;
1652 int copied = 0;
1653
1654 info.flags = 0;
1655 while (mptcp_send_head(sk) && keep_pushing) {
1656 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1657 int ret = 0;
1658
1659 /* check for a different subflow usage only after
1660 * spooling the first chunk of data
1661 */
1662 if (first) {
1663 mptcp_subflow_set_scheduled(subflow, false);
1664 ret = __subflow_push_pending(sk, ssk, &info);
1665 first = false;
1666 if (ret <= 0)
1667 break;
1668 copied += ret;
1669 continue;
1670 }
1671
1672 if (mptcp_sched_get_send(msk))
1673 goto out;
1674
1675 if (READ_ONCE(subflow->scheduled)) {
1676 mptcp_subflow_set_scheduled(subflow, false);
1677 ret = __subflow_push_pending(sk, ssk, &info);
1678 if (ret <= 0)
1679 keep_pushing = false;
1680 copied += ret;
1681 }
1682
1683 mptcp_for_each_subflow(msk, subflow) {
1684 if (READ_ONCE(subflow->scheduled)) {
1685 xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1686 if (xmit_ssk != ssk) {
1687 mptcp_subflow_delegate(subflow,
1688 MPTCP_DELEGATE_SEND);
1689 keep_pushing = false;
1690 }
1691 }
1692 }
1693 }
1694
1695 out:
1696 /* __mptcp_alloc_tx_skb could have released some wmem and we are
1697 * not going to flush it via release_sock()
1698 */
1699 if (copied) {
1700 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1701 info.size_goal);
1702 if (!mptcp_rtx_timer_pending(sk))
1703 mptcp_reset_rtx_timer(sk);
1704
1705 if (msk->snd_data_fin_enable &&
1706 msk->snd_nxt + 1 == msk->write_seq)
1707 mptcp_schedule_work(sk);
1708 }
1709 }
1710
1711 static int mptcp_disconnect(struct sock *sk, int flags);
1712
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1713 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1714 size_t len, int *copied_syn)
1715 {
1716 unsigned int saved_flags = msg->msg_flags;
1717 struct mptcp_sock *msk = mptcp_sk(sk);
1718 struct sock *ssk;
1719 int ret;
1720
1721 /* on flags based fastopen the mptcp is supposed to create the
1722 * first subflow right now. Otherwise we are in the defer_connect
1723 * path, and the first subflow must be already present.
1724 * Since the defer_connect flag is cleared after the first succsful
1725 * fastopen attempt, no need to check for additional subflow status.
1726 */
1727 if (msg->msg_flags & MSG_FASTOPEN) {
1728 ssk = __mptcp_nmpc_sk(msk);
1729 if (IS_ERR(ssk))
1730 return PTR_ERR(ssk);
1731 }
1732 if (!msk->first)
1733 return -EINVAL;
1734
1735 ssk = msk->first;
1736
1737 lock_sock(ssk);
1738 msg->msg_flags |= MSG_DONTWAIT;
1739 msk->fastopening = 1;
1740 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1741 msk->fastopening = 0;
1742 msg->msg_flags = saved_flags;
1743 release_sock(ssk);
1744
1745 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1746 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1747 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1748 msg->msg_namelen, msg->msg_flags, 1);
1749
1750 /* Keep the same behaviour of plain TCP: zero the copied bytes in
1751 * case of any error, except timeout or signal
1752 */
1753 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1754 *copied_syn = 0;
1755 } else if (ret && ret != -EINPROGRESS) {
1756 /* The disconnect() op called by tcp_sendmsg_fastopen()/
1757 * __inet_stream_connect() can fail, due to looking check,
1758 * see mptcp_disconnect().
1759 * Attempt it again outside the problematic scope.
1760 */
1761 if (!mptcp_disconnect(sk, 0)) {
1762 sk->sk_disconnects++;
1763 sk->sk_socket->state = SS_UNCONNECTED;
1764 }
1765 }
1766 inet_clear_bit(DEFER_CONNECT, sk);
1767
1768 return ret;
1769 }
1770
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1771 static int do_copy_data_nocache(struct sock *sk, int copy,
1772 struct iov_iter *from, char *to)
1773 {
1774 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1775 if (!copy_from_iter_full_nocache(to, copy, from))
1776 return -EFAULT;
1777 } else if (!copy_from_iter_full(to, copy, from)) {
1778 return -EFAULT;
1779 }
1780 return 0;
1781 }
1782
1783 /* open-code sk_stream_memory_free() plus sent limit computation to
1784 * avoid indirect calls in fast-path.
1785 * Called under the msk socket lock, so we can avoid a bunch of ONCE
1786 * annotations.
1787 */
mptcp_send_limit(const struct sock * sk)1788 static u32 mptcp_send_limit(const struct sock *sk)
1789 {
1790 const struct mptcp_sock *msk = mptcp_sk(sk);
1791 u32 limit, not_sent;
1792
1793 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1794 return 0;
1795
1796 limit = mptcp_notsent_lowat(sk);
1797 if (limit == UINT_MAX)
1798 return UINT_MAX;
1799
1800 not_sent = msk->write_seq - msk->snd_nxt;
1801 if (not_sent >= limit)
1802 return 0;
1803
1804 return limit - not_sent;
1805 }
1806
mptcp_rps_record_subflows(const struct mptcp_sock * msk)1807 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1808 {
1809 struct mptcp_subflow_context *subflow;
1810
1811 if (!rfs_is_needed())
1812 return;
1813
1814 mptcp_for_each_subflow(msk, subflow) {
1815 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1816
1817 sock_rps_record_flow(ssk);
1818 }
1819 }
1820
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1821 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1822 {
1823 struct mptcp_sock *msk = mptcp_sk(sk);
1824 struct page_frag *pfrag;
1825 size_t copied = 0;
1826 int ret = 0;
1827 long timeo;
1828
1829 /* silently ignore everything else */
1830 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1831
1832 lock_sock(sk);
1833
1834 mptcp_rps_record_subflows(msk);
1835
1836 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1837 msg->msg_flags & MSG_FASTOPEN)) {
1838 int copied_syn = 0;
1839
1840 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1841 copied += copied_syn;
1842 if (ret == -EINPROGRESS && copied_syn > 0)
1843 goto out;
1844 else if (ret)
1845 goto do_error;
1846 }
1847
1848 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1849
1850 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1851 ret = sk_stream_wait_connect(sk, &timeo);
1852 if (ret)
1853 goto do_error;
1854 }
1855
1856 ret = -EPIPE;
1857 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1858 goto do_error;
1859
1860 pfrag = sk_page_frag(sk);
1861
1862 while (msg_data_left(msg)) {
1863 int total_ts, frag_truesize = 0;
1864 struct mptcp_data_frag *dfrag;
1865 bool dfrag_collapsed;
1866 size_t psize, offset;
1867 u32 copy_limit;
1868
1869 /* ensure fitting the notsent_lowat() constraint */
1870 copy_limit = mptcp_send_limit(sk);
1871 if (!copy_limit)
1872 goto wait_for_memory;
1873
1874 /* reuse tail pfrag, if possible, or carve a new one from the
1875 * page allocator
1876 */
1877 dfrag = mptcp_pending_tail(sk);
1878 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1879 if (!dfrag_collapsed) {
1880 if (!mptcp_page_frag_refill(sk, pfrag))
1881 goto wait_for_memory;
1882
1883 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1884 frag_truesize = dfrag->overhead;
1885 }
1886
1887 /* we do not bound vs wspace, to allow a single packet.
1888 * memory accounting will prevent execessive memory usage
1889 * anyway
1890 */
1891 offset = dfrag->offset + dfrag->data_len;
1892 psize = pfrag->size - offset;
1893 psize = min_t(size_t, psize, msg_data_left(msg));
1894 psize = min_t(size_t, psize, copy_limit);
1895 total_ts = psize + frag_truesize;
1896
1897 if (!sk_wmem_schedule(sk, total_ts))
1898 goto wait_for_memory;
1899
1900 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1901 page_address(dfrag->page) + offset);
1902 if (ret)
1903 goto do_error;
1904
1905 /* data successfully copied into the write queue */
1906 sk_forward_alloc_add(sk, -total_ts);
1907 copied += psize;
1908 dfrag->data_len += psize;
1909 frag_truesize += psize;
1910 pfrag->offset += frag_truesize;
1911 WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1912
1913 /* charge data on mptcp pending queue to the msk socket
1914 * Note: we charge such data both to sk and ssk
1915 */
1916 sk_wmem_queued_add(sk, frag_truesize);
1917 if (!dfrag_collapsed) {
1918 get_page(dfrag->page);
1919 list_add_tail(&dfrag->list, &msk->rtx_queue);
1920 if (!msk->first_pending)
1921 msk->first_pending = dfrag;
1922 }
1923 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1924 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1925 !dfrag_collapsed);
1926
1927 continue;
1928
1929 wait_for_memory:
1930 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1931 __mptcp_push_pending(sk, msg->msg_flags);
1932 ret = sk_stream_wait_memory(sk, &timeo);
1933 if (ret)
1934 goto do_error;
1935 }
1936
1937 if (copied)
1938 __mptcp_push_pending(sk, msg->msg_flags);
1939
1940 out:
1941 release_sock(sk);
1942 return copied;
1943
1944 do_error:
1945 if (copied)
1946 goto out;
1947
1948 copied = sk_stream_error(sk, msg->msg_flags, ret);
1949 goto out;
1950 }
1951
1952 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1953
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,int copied_total,struct scm_timestamping_internal * tss,int * cmsg_flags)1954 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1955 size_t len, int flags, int copied_total,
1956 struct scm_timestamping_internal *tss,
1957 int *cmsg_flags)
1958 {
1959 struct mptcp_sock *msk = mptcp_sk(sk);
1960 struct sk_buff *skb, *tmp;
1961 int total_data_len = 0;
1962 int copied = 0;
1963
1964 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1965 u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
1966 u32 data_len = skb->len - offset;
1967 u32 count;
1968 int err;
1969
1970 if (flags & MSG_PEEK) {
1971 /* skip already peeked skbs */
1972 if (total_data_len + data_len <= copied_total) {
1973 total_data_len += data_len;
1974 continue;
1975 }
1976
1977 /* skip the already peeked data in the current skb */
1978 delta = copied_total - total_data_len;
1979 offset += delta;
1980 data_len -= delta;
1981 }
1982
1983 count = min_t(size_t, len - copied, data_len);
1984 if (!(flags & MSG_TRUNC)) {
1985 err = skb_copy_datagram_msg(skb, offset, msg, count);
1986 if (unlikely(err < 0)) {
1987 if (!copied)
1988 return err;
1989 break;
1990 }
1991 }
1992
1993 if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1994 tcp_update_recv_tstamps(skb, tss);
1995 *cmsg_flags |= MPTCP_CMSG_TS;
1996 }
1997
1998 copied += count;
1999
2000 if (!(flags & MSG_PEEK)) {
2001 msk->bytes_consumed += count;
2002 if (count < data_len) {
2003 MPTCP_SKB_CB(skb)->offset += count;
2004 MPTCP_SKB_CB(skb)->map_seq += count;
2005 break;
2006 }
2007
2008 /* avoid the indirect call, we know the destructor is sock_rfree */
2009 skb->destructor = NULL;
2010 skb->sk = NULL;
2011 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2012 sk_mem_uncharge(sk, skb->truesize);
2013 __skb_unlink(skb, &sk->sk_receive_queue);
2014 skb_attempt_defer_free(skb);
2015 }
2016
2017 if (copied >= len)
2018 break;
2019 }
2020
2021 mptcp_rcv_space_adjust(msk, copied);
2022 return copied;
2023 }
2024
2025 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
2026 *
2027 * Only difference: Use highest rtt estimate of the subflows in use.
2028 */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)2029 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2030 {
2031 struct mptcp_subflow_context *subflow;
2032 struct sock *sk = (struct sock *)msk;
2033 u8 scaling_ratio = U8_MAX;
2034 u32 time, advmss = 1;
2035 u64 rtt_us, mstamp;
2036
2037 msk_owned_by_me(msk);
2038
2039 if (copied <= 0)
2040 return;
2041
2042 if (!msk->rcvspace_init)
2043 mptcp_rcv_space_init(msk, msk->first);
2044
2045 msk->rcvq_space.copied += copied;
2046
2047 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2048 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2049
2050 rtt_us = msk->rcvq_space.rtt_us;
2051 if (rtt_us && time < (rtt_us >> 3))
2052 return;
2053
2054 rtt_us = 0;
2055 mptcp_for_each_subflow(msk, subflow) {
2056 const struct tcp_sock *tp;
2057 u64 sf_rtt_us;
2058 u32 sf_advmss;
2059
2060 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2061
2062 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2063 sf_advmss = READ_ONCE(tp->advmss);
2064
2065 rtt_us = max(sf_rtt_us, rtt_us);
2066 advmss = max(sf_advmss, advmss);
2067 scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2068 }
2069
2070 msk->rcvq_space.rtt_us = rtt_us;
2071 msk->scaling_ratio = scaling_ratio;
2072 if (time < (rtt_us >> 3) || rtt_us == 0)
2073 return;
2074
2075 if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2076 goto new_measure;
2077
2078 if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2079 /* Make subflows follow along. If we do not do this, we
2080 * get drops at subflow level if skbs can't be moved to
2081 * the mptcp rx queue fast enough (announced rcv_win can
2082 * exceed ssk->sk_rcvbuf).
2083 */
2084 mptcp_for_each_subflow(msk, subflow) {
2085 struct sock *ssk;
2086 bool slow;
2087
2088 ssk = mptcp_subflow_tcp_sock(subflow);
2089 slow = lock_sock_fast(ssk);
2090 /* subflows can be added before tcp_init_transfer() */
2091 if (tcp_sk(ssk)->rcvq_space.space)
2092 tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2093 unlock_sock_fast(ssk, slow);
2094 }
2095 }
2096
2097 new_measure:
2098 msk->rcvq_space.copied = 0;
2099 msk->rcvq_space.time = mstamp;
2100 }
2101
2102 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2103 __mptcp_first_ready_from(struct mptcp_sock *msk,
2104 struct mptcp_subflow_context *subflow)
2105 {
2106 struct mptcp_subflow_context *start_subflow = subflow;
2107
2108 while (!READ_ONCE(subflow->data_avail)) {
2109 subflow = mptcp_next_subflow(msk, subflow);
2110 if (subflow == start_subflow)
2111 return NULL;
2112 }
2113 return subflow;
2114 }
2115
__mptcp_move_skbs(struct sock * sk)2116 static bool __mptcp_move_skbs(struct sock *sk)
2117 {
2118 struct mptcp_subflow_context *subflow;
2119 struct mptcp_sock *msk = mptcp_sk(sk);
2120 bool ret = false;
2121
2122 if (list_empty(&msk->conn_list))
2123 return false;
2124
2125 subflow = list_first_entry(&msk->conn_list,
2126 struct mptcp_subflow_context, node);
2127 for (;;) {
2128 struct sock *ssk;
2129 bool slowpath;
2130
2131 /*
2132 * As an optimization avoid traversing the subflows list
2133 * and ev. acquiring the subflow socket lock before baling out
2134 */
2135 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2136 break;
2137
2138 subflow = __mptcp_first_ready_from(msk, subflow);
2139 if (!subflow)
2140 break;
2141
2142 ssk = mptcp_subflow_tcp_sock(subflow);
2143 slowpath = lock_sock_fast(ssk);
2144 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2145 if (unlikely(ssk->sk_err))
2146 __mptcp_error_report(sk);
2147 unlock_sock_fast(ssk, slowpath);
2148
2149 subflow = mptcp_next_subflow(msk, subflow);
2150 }
2151
2152 __mptcp_ofo_queue(msk);
2153 if (ret)
2154 mptcp_check_data_fin((struct sock *)msk);
2155 return ret;
2156 }
2157
mptcp_inq_hint(const struct sock * sk)2158 static unsigned int mptcp_inq_hint(const struct sock *sk)
2159 {
2160 const struct mptcp_sock *msk = mptcp_sk(sk);
2161 const struct sk_buff *skb;
2162
2163 skb = skb_peek(&sk->sk_receive_queue);
2164 if (skb) {
2165 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2166
2167 if (hint_val >= INT_MAX)
2168 return INT_MAX;
2169
2170 return (unsigned int)hint_val;
2171 }
2172
2173 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2174 return 1;
2175
2176 return 0;
2177 }
2178
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2179 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2180 int flags, int *addr_len)
2181 {
2182 struct mptcp_sock *msk = mptcp_sk(sk);
2183 struct scm_timestamping_internal tss;
2184 int copied = 0, cmsg_flags = 0;
2185 int target;
2186 long timeo;
2187
2188 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2189 if (unlikely(flags & MSG_ERRQUEUE))
2190 return inet_recv_error(sk, msg, len, addr_len);
2191
2192 lock_sock(sk);
2193 if (unlikely(sk->sk_state == TCP_LISTEN)) {
2194 copied = -ENOTCONN;
2195 goto out_err;
2196 }
2197
2198 mptcp_rps_record_subflows(msk);
2199
2200 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2201
2202 len = min_t(size_t, len, INT_MAX);
2203 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2204
2205 if (unlikely(msk->recvmsg_inq))
2206 cmsg_flags = MPTCP_CMSG_INQ;
2207
2208 while (copied < len) {
2209 int err, bytes_read;
2210
2211 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2212 copied, &tss, &cmsg_flags);
2213 if (unlikely(bytes_read < 0)) {
2214 if (!copied)
2215 copied = bytes_read;
2216 goto out_err;
2217 }
2218
2219 copied += bytes_read;
2220
2221 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2222 continue;
2223
2224 /* only the MPTCP socket status is relevant here. The exit
2225 * conditions mirror closely tcp_recvmsg()
2226 */
2227 if (copied >= target)
2228 break;
2229
2230 if (copied) {
2231 if (sk->sk_err ||
2232 sk->sk_state == TCP_CLOSE ||
2233 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2234 !timeo ||
2235 signal_pending(current))
2236 break;
2237 } else {
2238 if (sk->sk_err) {
2239 copied = sock_error(sk);
2240 break;
2241 }
2242
2243 if (sk->sk_shutdown & RCV_SHUTDOWN)
2244 break;
2245
2246 if (sk->sk_state == TCP_CLOSE) {
2247 copied = -ENOTCONN;
2248 break;
2249 }
2250
2251 if (!timeo) {
2252 copied = -EAGAIN;
2253 break;
2254 }
2255
2256 if (signal_pending(current)) {
2257 copied = sock_intr_errno(timeo);
2258 break;
2259 }
2260 }
2261
2262 pr_debug("block timeout %ld\n", timeo);
2263 mptcp_cleanup_rbuf(msk, copied);
2264 err = sk_wait_data(sk, &timeo, NULL);
2265 if (err < 0) {
2266 err = copied ? : err;
2267 goto out_err;
2268 }
2269 }
2270
2271 mptcp_cleanup_rbuf(msk, copied);
2272
2273 out_err:
2274 if (cmsg_flags && copied >= 0) {
2275 if (cmsg_flags & MPTCP_CMSG_TS)
2276 tcp_recv_timestamp(msg, sk, &tss);
2277
2278 if (cmsg_flags & MPTCP_CMSG_INQ) {
2279 unsigned int inq = mptcp_inq_hint(sk);
2280
2281 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2282 }
2283 }
2284
2285 pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2286 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2287
2288 release_sock(sk);
2289 return copied;
2290 }
2291
mptcp_retransmit_timer(struct timer_list * t)2292 static void mptcp_retransmit_timer(struct timer_list *t)
2293 {
2294 struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2295 icsk_retransmit_timer);
2296 struct sock *sk = &icsk->icsk_inet.sk;
2297 struct mptcp_sock *msk = mptcp_sk(sk);
2298
2299 bh_lock_sock(sk);
2300 if (!sock_owned_by_user(sk)) {
2301 /* we need a process context to retransmit */
2302 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2303 mptcp_schedule_work(sk);
2304 } else {
2305 /* delegate our work to tcp_release_cb() */
2306 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2307 }
2308 bh_unlock_sock(sk);
2309 sock_put(sk);
2310 }
2311
mptcp_tout_timer(struct timer_list * t)2312 static void mptcp_tout_timer(struct timer_list *t)
2313 {
2314 struct sock *sk = timer_container_of(sk, t, sk_timer);
2315
2316 mptcp_schedule_work(sk);
2317 sock_put(sk);
2318 }
2319
2320 /* Find an idle subflow. Return NULL if there is unacked data at tcp
2321 * level.
2322 *
2323 * A backup subflow is returned only if that is the only kind available.
2324 */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2325 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2326 {
2327 struct sock *backup = NULL, *pick = NULL;
2328 struct mptcp_subflow_context *subflow;
2329 int min_stale_count = INT_MAX;
2330
2331 mptcp_for_each_subflow(msk, subflow) {
2332 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2333
2334 if (!__mptcp_subflow_active(subflow))
2335 continue;
2336
2337 /* still data outstanding at TCP level? skip this */
2338 if (!tcp_rtx_and_write_queues_empty(ssk)) {
2339 mptcp_pm_subflow_chk_stale(msk, ssk);
2340 min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2341 continue;
2342 }
2343
2344 if (subflow->backup || subflow->request_bkup) {
2345 if (!backup)
2346 backup = ssk;
2347 continue;
2348 }
2349
2350 if (!pick)
2351 pick = ssk;
2352 }
2353
2354 if (pick)
2355 return pick;
2356
2357 /* use backup only if there are no progresses anywhere */
2358 return min_stale_count > 1 ? backup : NULL;
2359 }
2360
__mptcp_retransmit_pending_data(struct sock * sk)2361 bool __mptcp_retransmit_pending_data(struct sock *sk)
2362 {
2363 struct mptcp_data_frag *cur, *rtx_head;
2364 struct mptcp_sock *msk = mptcp_sk(sk);
2365
2366 if (__mptcp_check_fallback(msk))
2367 return false;
2368
2369 /* the closing socket has some data untransmitted and/or unacked:
2370 * some data in the mptcp rtx queue has not really xmitted yet.
2371 * keep it simple and re-inject the whole mptcp level rtx queue
2372 */
2373 mptcp_data_lock(sk);
2374 __mptcp_clean_una_wakeup(sk);
2375 rtx_head = mptcp_rtx_head(sk);
2376 if (!rtx_head) {
2377 mptcp_data_unlock(sk);
2378 return false;
2379 }
2380
2381 msk->recovery_snd_nxt = msk->snd_nxt;
2382 msk->recovery = true;
2383 mptcp_data_unlock(sk);
2384
2385 msk->first_pending = rtx_head;
2386 msk->snd_burst = 0;
2387
2388 /* be sure to clear the "sent status" on all re-injected fragments */
2389 list_for_each_entry(cur, &msk->rtx_queue, list) {
2390 if (!cur->already_sent)
2391 break;
2392 cur->already_sent = 0;
2393 }
2394
2395 return true;
2396 }
2397
2398 /* flags for __mptcp_close_ssk() */
2399 #define MPTCP_CF_PUSH BIT(1)
2400 #define MPTCP_CF_FASTCLOSE BIT(2)
2401
2402 /* be sure to send a reset only if the caller asked for it, also
2403 * clean completely the subflow status when the subflow reaches
2404 * TCP_CLOSE state
2405 */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2406 static void __mptcp_subflow_disconnect(struct sock *ssk,
2407 struct mptcp_subflow_context *subflow,
2408 unsigned int flags)
2409 {
2410 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2411 (flags & MPTCP_CF_FASTCLOSE)) {
2412 /* The MPTCP code never wait on the subflow sockets, TCP-level
2413 * disconnect should never fail
2414 */
2415 WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2416 mptcp_subflow_ctx_reset(subflow);
2417 } else {
2418 tcp_shutdown(ssk, SEND_SHUTDOWN);
2419 }
2420 }
2421
2422 /* subflow sockets can be either outgoing (connect) or incoming
2423 * (accept).
2424 *
2425 * Outgoing subflows use in-kernel sockets.
2426 * Incoming subflows do not have their own 'struct socket' allocated,
2427 * so we need to use tcp_close() after detaching them from the mptcp
2428 * parent socket.
2429 */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2430 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2431 struct mptcp_subflow_context *subflow,
2432 unsigned int flags)
2433 {
2434 struct mptcp_sock *msk = mptcp_sk(sk);
2435 bool dispose_it, need_push = false;
2436
2437 /* If the first subflow moved to a close state before accept, e.g. due
2438 * to an incoming reset or listener shutdown, the subflow socket is
2439 * already deleted by inet_child_forget() and the mptcp socket can't
2440 * survive too.
2441 */
2442 if (msk->in_accept_queue && msk->first == ssk &&
2443 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2444 /* ensure later check in mptcp_worker() will dispose the msk */
2445 sock_set_flag(sk, SOCK_DEAD);
2446 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2447 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2448 mptcp_subflow_drop_ctx(ssk);
2449 goto out_release;
2450 }
2451
2452 dispose_it = msk->free_first || ssk != msk->first;
2453 if (dispose_it)
2454 list_del(&subflow->node);
2455
2456 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2457
2458 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2459 /* be sure to force the tcp_close path
2460 * to generate the egress reset
2461 */
2462 ssk->sk_lingertime = 0;
2463 sock_set_flag(ssk, SOCK_LINGER);
2464 subflow->send_fastclose = 1;
2465 }
2466
2467 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2468 if (!dispose_it) {
2469 __mptcp_subflow_disconnect(ssk, subflow, flags);
2470 release_sock(ssk);
2471
2472 goto out;
2473 }
2474
2475 subflow->disposable = 1;
2476
2477 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2478 * the ssk has been already destroyed, we just need to release the
2479 * reference owned by msk;
2480 */
2481 if (!inet_csk(ssk)->icsk_ulp_ops) {
2482 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2483 kfree_rcu(subflow, rcu);
2484 } else {
2485 /* otherwise tcp will dispose of the ssk and subflow ctx */
2486 __tcp_close(ssk, 0);
2487
2488 /* close acquired an extra ref */
2489 __sock_put(ssk);
2490 }
2491
2492 out_release:
2493 __mptcp_subflow_error_report(sk, ssk);
2494 release_sock(ssk);
2495
2496 sock_put(ssk);
2497
2498 if (ssk == msk->first)
2499 WRITE_ONCE(msk->first, NULL);
2500
2501 out:
2502 __mptcp_sync_sndbuf(sk);
2503 if (need_push)
2504 __mptcp_push_pending(sk, 0);
2505
2506 /* Catch every 'all subflows closed' scenario, including peers silently
2507 * closing them, e.g. due to timeout.
2508 * For established sockets, allow an additional timeout before closing,
2509 * as the protocol can still create more subflows.
2510 */
2511 if (list_is_singular(&msk->conn_list) && msk->first &&
2512 inet_sk_state_load(msk->first) == TCP_CLOSE) {
2513 if (sk->sk_state != TCP_ESTABLISHED ||
2514 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2515 mptcp_set_state(sk, TCP_CLOSE);
2516 mptcp_close_wake_up(sk);
2517 } else {
2518 mptcp_start_tout_timer(sk);
2519 }
2520 }
2521 }
2522
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2523 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2524 struct mptcp_subflow_context *subflow)
2525 {
2526 /* The first subflow can already be closed and still in the list */
2527 if (subflow->close_event_done)
2528 return;
2529
2530 subflow->close_event_done = true;
2531
2532 if (sk->sk_state == TCP_ESTABLISHED)
2533 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2534
2535 /* subflow aborted before reaching the fully_established status
2536 * attempt the creation of the next subflow
2537 */
2538 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2539
2540 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2541 }
2542
mptcp_sync_mss(struct sock * sk,u32 pmtu)2543 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2544 {
2545 return 0;
2546 }
2547
__mptcp_close_subflow(struct sock * sk)2548 static void __mptcp_close_subflow(struct sock *sk)
2549 {
2550 struct mptcp_subflow_context *subflow, *tmp;
2551 struct mptcp_sock *msk = mptcp_sk(sk);
2552
2553 might_sleep();
2554
2555 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2556 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2557 int ssk_state = inet_sk_state_load(ssk);
2558
2559 if (ssk_state != TCP_CLOSE &&
2560 (ssk_state != TCP_CLOSE_WAIT ||
2561 inet_sk_state_load(sk) != TCP_ESTABLISHED))
2562 continue;
2563
2564 /* 'subflow_data_ready' will re-sched once rx queue is empty */
2565 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2566 continue;
2567
2568 mptcp_close_ssk(sk, ssk, subflow);
2569 }
2570
2571 }
2572
mptcp_close_tout_expired(const struct sock * sk)2573 static bool mptcp_close_tout_expired(const struct sock *sk)
2574 {
2575 if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2576 sk->sk_state == TCP_CLOSE)
2577 return false;
2578
2579 return time_after32(tcp_jiffies32,
2580 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2581 }
2582
mptcp_check_fastclose(struct mptcp_sock * msk)2583 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2584 {
2585 struct mptcp_subflow_context *subflow, *tmp;
2586 struct sock *sk = (struct sock *)msk;
2587
2588 if (likely(!READ_ONCE(msk->rcv_fastclose)))
2589 return;
2590
2591 mptcp_token_destroy(msk);
2592
2593 mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2594 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2595 bool slow;
2596
2597 slow = lock_sock_fast(tcp_sk);
2598 if (tcp_sk->sk_state != TCP_CLOSE) {
2599 mptcp_send_active_reset_reason(tcp_sk);
2600 tcp_set_state(tcp_sk, TCP_CLOSE);
2601 }
2602 unlock_sock_fast(tcp_sk, slow);
2603 }
2604
2605 /* Mirror the tcp_reset() error propagation */
2606 switch (sk->sk_state) {
2607 case TCP_SYN_SENT:
2608 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2609 break;
2610 case TCP_CLOSE_WAIT:
2611 WRITE_ONCE(sk->sk_err, EPIPE);
2612 break;
2613 case TCP_CLOSE:
2614 return;
2615 default:
2616 WRITE_ONCE(sk->sk_err, ECONNRESET);
2617 }
2618
2619 mptcp_set_state(sk, TCP_CLOSE);
2620 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2621 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2622 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2623
2624 /* the calling mptcp_worker will properly destroy the socket */
2625 if (sock_flag(sk, SOCK_DEAD))
2626 return;
2627
2628 sk->sk_state_change(sk);
2629 sk_error_report(sk);
2630 }
2631
__mptcp_retrans(struct sock * sk)2632 static void __mptcp_retrans(struct sock *sk)
2633 {
2634 struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2635 struct mptcp_sock *msk = mptcp_sk(sk);
2636 struct mptcp_subflow_context *subflow;
2637 struct mptcp_data_frag *dfrag;
2638 struct sock *ssk;
2639 int ret, err;
2640 u16 len = 0;
2641
2642 mptcp_clean_una_wakeup(sk);
2643
2644 /* first check ssk: need to kick "stale" logic */
2645 err = mptcp_sched_get_retrans(msk);
2646 dfrag = mptcp_rtx_head(sk);
2647 if (!dfrag) {
2648 if (mptcp_data_fin_enabled(msk)) {
2649 struct inet_connection_sock *icsk = inet_csk(sk);
2650
2651 WRITE_ONCE(icsk->icsk_retransmits,
2652 icsk->icsk_retransmits + 1);
2653 mptcp_set_datafin_timeout(sk);
2654 mptcp_send_ack(msk);
2655
2656 goto reset_timer;
2657 }
2658
2659 if (!mptcp_send_head(sk))
2660 return;
2661
2662 goto reset_timer;
2663 }
2664
2665 if (err)
2666 goto reset_timer;
2667
2668 mptcp_for_each_subflow(msk, subflow) {
2669 if (READ_ONCE(subflow->scheduled)) {
2670 u16 copied = 0;
2671
2672 mptcp_subflow_set_scheduled(subflow, false);
2673
2674 ssk = mptcp_subflow_tcp_sock(subflow);
2675
2676 lock_sock(ssk);
2677
2678 /* limit retransmission to the bytes already sent on some subflows */
2679 info.sent = 0;
2680 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2681 dfrag->already_sent;
2682
2683 /*
2684 * make the whole retrans decision, xmit, disallow
2685 * fallback atomic
2686 */
2687 spin_lock_bh(&msk->fallback_lock);
2688 if (__mptcp_check_fallback(msk)) {
2689 spin_unlock_bh(&msk->fallback_lock);
2690 release_sock(ssk);
2691 return;
2692 }
2693
2694 while (info.sent < info.limit) {
2695 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2696 if (ret <= 0)
2697 break;
2698
2699 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2700 copied += ret;
2701 info.sent += ret;
2702 }
2703 if (copied) {
2704 len = max(copied, len);
2705 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2706 info.size_goal);
2707 msk->allow_infinite_fallback = false;
2708 }
2709 spin_unlock_bh(&msk->fallback_lock);
2710
2711 release_sock(ssk);
2712 }
2713 }
2714
2715 msk->bytes_retrans += len;
2716 dfrag->already_sent = max(dfrag->already_sent, len);
2717
2718 reset_timer:
2719 mptcp_check_and_set_pending(sk);
2720
2721 if (!mptcp_rtx_timer_pending(sk))
2722 mptcp_reset_rtx_timer(sk);
2723 }
2724
2725 /* schedule the timeout timer for the relevant event: either close timeout
2726 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2727 */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2728 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2729 {
2730 struct sock *sk = (struct sock *)msk;
2731 unsigned long timeout, close_timeout;
2732
2733 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2734 return;
2735
2736 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2737 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2738
2739 /* the close timeout takes precedence on the fail one, and here at least one of
2740 * them is active
2741 */
2742 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2743
2744 sk_reset_timer(sk, &sk->sk_timer, timeout);
2745 }
2746
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2747 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2748 {
2749 struct sock *ssk = msk->first;
2750 bool slow;
2751
2752 if (!ssk)
2753 return;
2754
2755 pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2756
2757 slow = lock_sock_fast(ssk);
2758 mptcp_subflow_reset(ssk);
2759 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2760 unlock_sock_fast(ssk, slow);
2761 }
2762
mptcp_do_fastclose(struct sock * sk)2763 static void mptcp_do_fastclose(struct sock *sk)
2764 {
2765 struct mptcp_subflow_context *subflow, *tmp;
2766 struct mptcp_sock *msk = mptcp_sk(sk);
2767
2768 mptcp_set_state(sk, TCP_CLOSE);
2769 mptcp_for_each_subflow_safe(msk, subflow, tmp)
2770 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2771 subflow, MPTCP_CF_FASTCLOSE);
2772 }
2773
mptcp_worker(struct work_struct * work)2774 static void mptcp_worker(struct work_struct *work)
2775 {
2776 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2777 struct sock *sk = (struct sock *)msk;
2778 unsigned long fail_tout;
2779 int state;
2780
2781 lock_sock(sk);
2782 state = sk->sk_state;
2783 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2784 goto unlock;
2785
2786 mptcp_check_fastclose(msk);
2787
2788 mptcp_pm_worker(msk);
2789
2790 mptcp_check_send_data_fin(sk);
2791 mptcp_check_data_fin_ack(sk);
2792 mptcp_check_data_fin(sk);
2793
2794 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2795 __mptcp_close_subflow(sk);
2796
2797 if (mptcp_close_tout_expired(sk)) {
2798 mptcp_do_fastclose(sk);
2799 mptcp_close_wake_up(sk);
2800 }
2801
2802 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2803 __mptcp_destroy_sock(sk);
2804 goto unlock;
2805 }
2806
2807 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2808 __mptcp_retrans(sk);
2809
2810 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2811 if (fail_tout && time_after(jiffies, fail_tout))
2812 mptcp_mp_fail_no_response(msk);
2813
2814 unlock:
2815 release_sock(sk);
2816 sock_put(sk);
2817 }
2818
__mptcp_init_sock(struct sock * sk)2819 static void __mptcp_init_sock(struct sock *sk)
2820 {
2821 struct mptcp_sock *msk = mptcp_sk(sk);
2822
2823 INIT_LIST_HEAD(&msk->conn_list);
2824 INIT_LIST_HEAD(&msk->join_list);
2825 INIT_LIST_HEAD(&msk->rtx_queue);
2826 INIT_WORK(&msk->work, mptcp_worker);
2827 msk->out_of_order_queue = RB_ROOT;
2828 msk->first_pending = NULL;
2829 msk->timer_ival = TCP_RTO_MIN;
2830 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2831
2832 WRITE_ONCE(msk->first, NULL);
2833 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2834 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2835 msk->allow_infinite_fallback = true;
2836 msk->allow_subflows = true;
2837 msk->recovery = false;
2838 msk->subflow_id = 1;
2839 msk->last_data_sent = tcp_jiffies32;
2840 msk->last_data_recv = tcp_jiffies32;
2841 msk->last_ack_recv = tcp_jiffies32;
2842
2843 mptcp_pm_data_init(msk);
2844 spin_lock_init(&msk->fallback_lock);
2845
2846 /* re-use the csk retrans timer for MPTCP-level retrans */
2847 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2848 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2849 }
2850
mptcp_ca_reset(struct sock * sk)2851 static void mptcp_ca_reset(struct sock *sk)
2852 {
2853 struct inet_connection_sock *icsk = inet_csk(sk);
2854
2855 tcp_assign_congestion_control(sk);
2856 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2857 sizeof(mptcp_sk(sk)->ca_name));
2858
2859 /* no need to keep a reference to the ops, the name will suffice */
2860 tcp_cleanup_congestion_control(sk);
2861 icsk->icsk_ca_ops = NULL;
2862 }
2863
mptcp_init_sock(struct sock * sk)2864 static int mptcp_init_sock(struct sock *sk)
2865 {
2866 struct net *net = sock_net(sk);
2867 int ret;
2868
2869 __mptcp_init_sock(sk);
2870
2871 if (!mptcp_is_enabled(net))
2872 return -ENOPROTOOPT;
2873
2874 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2875 return -ENOMEM;
2876
2877 rcu_read_lock();
2878 ret = mptcp_init_sched(mptcp_sk(sk),
2879 mptcp_sched_find(mptcp_get_scheduler(net)));
2880 rcu_read_unlock();
2881 if (ret)
2882 return ret;
2883
2884 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2885
2886 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2887 * propagate the correct value
2888 */
2889 mptcp_ca_reset(sk);
2890
2891 sk_sockets_allocated_inc(sk);
2892 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2893 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2894
2895 return 0;
2896 }
2897
__mptcp_clear_xmit(struct sock * sk)2898 static void __mptcp_clear_xmit(struct sock *sk)
2899 {
2900 struct mptcp_sock *msk = mptcp_sk(sk);
2901 struct mptcp_data_frag *dtmp, *dfrag;
2902
2903 msk->first_pending = NULL;
2904 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2905 dfrag_clear(sk, dfrag);
2906 }
2907
mptcp_cancel_work(struct sock * sk)2908 void mptcp_cancel_work(struct sock *sk)
2909 {
2910 struct mptcp_sock *msk = mptcp_sk(sk);
2911
2912 if (cancel_work_sync(&msk->work))
2913 __sock_put(sk);
2914 }
2915
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2916 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2917 {
2918 lock_sock(ssk);
2919
2920 switch (ssk->sk_state) {
2921 case TCP_LISTEN:
2922 if (!(how & RCV_SHUTDOWN))
2923 break;
2924 fallthrough;
2925 case TCP_SYN_SENT:
2926 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2927 break;
2928 default:
2929 if (__mptcp_check_fallback(mptcp_sk(sk))) {
2930 pr_debug("Fallback\n");
2931 ssk->sk_shutdown |= how;
2932 tcp_shutdown(ssk, how);
2933
2934 /* simulate the data_fin ack reception to let the state
2935 * machine move forward
2936 */
2937 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2938 mptcp_schedule_work(sk);
2939 } else {
2940 pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2941 tcp_send_ack(ssk);
2942 if (!mptcp_rtx_timer_pending(sk))
2943 mptcp_reset_rtx_timer(sk);
2944 }
2945 break;
2946 }
2947
2948 release_sock(ssk);
2949 }
2950
mptcp_set_state(struct sock * sk,int state)2951 void mptcp_set_state(struct sock *sk, int state)
2952 {
2953 int oldstate = sk->sk_state;
2954
2955 switch (state) {
2956 case TCP_ESTABLISHED:
2957 if (oldstate != TCP_ESTABLISHED)
2958 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2959 break;
2960 case TCP_CLOSE_WAIT:
2961 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2962 * MPTCP "accepted" sockets will be created later on. So no
2963 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2964 */
2965 break;
2966 default:
2967 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2968 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2969 }
2970
2971 inet_sk_state_store(sk, state);
2972 }
2973
2974 static const unsigned char new_state[16] = {
2975 /* current state: new state: action: */
2976 [0 /* (Invalid) */] = TCP_CLOSE,
2977 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2978 [TCP_SYN_SENT] = TCP_CLOSE,
2979 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2980 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2981 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2982 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
2983 [TCP_CLOSE] = TCP_CLOSE,
2984 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2985 [TCP_LAST_ACK] = TCP_LAST_ACK,
2986 [TCP_LISTEN] = TCP_CLOSE,
2987 [TCP_CLOSING] = TCP_CLOSING,
2988 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2989 };
2990
mptcp_close_state(struct sock * sk)2991 static int mptcp_close_state(struct sock *sk)
2992 {
2993 int next = (int)new_state[sk->sk_state];
2994 int ns = next & TCP_STATE_MASK;
2995
2996 mptcp_set_state(sk, ns);
2997
2998 return next & TCP_ACTION_FIN;
2999 }
3000
mptcp_check_send_data_fin(struct sock * sk)3001 static void mptcp_check_send_data_fin(struct sock *sk)
3002 {
3003 struct mptcp_subflow_context *subflow;
3004 struct mptcp_sock *msk = mptcp_sk(sk);
3005
3006 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3007 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3008 msk->snd_nxt, msk->write_seq);
3009
3010 /* we still need to enqueue subflows or not really shutting down,
3011 * skip this
3012 */
3013 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3014 mptcp_send_head(sk))
3015 return;
3016
3017 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3018
3019 mptcp_for_each_subflow(msk, subflow) {
3020 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3021
3022 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3023 }
3024 }
3025
__mptcp_wr_shutdown(struct sock * sk)3026 static void __mptcp_wr_shutdown(struct sock *sk)
3027 {
3028 struct mptcp_sock *msk = mptcp_sk(sk);
3029
3030 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3031 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3032 !!mptcp_send_head(sk));
3033
3034 /* will be ignored by fallback sockets */
3035 WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3036 WRITE_ONCE(msk->snd_data_fin_enable, 1);
3037
3038 mptcp_check_send_data_fin(sk);
3039 }
3040
__mptcp_destroy_sock(struct sock * sk)3041 static void __mptcp_destroy_sock(struct sock *sk)
3042 {
3043 struct mptcp_sock *msk = mptcp_sk(sk);
3044
3045 pr_debug("msk=%p\n", msk);
3046
3047 might_sleep();
3048
3049 mptcp_stop_rtx_timer(sk);
3050 sk_stop_timer(sk, &sk->sk_timer);
3051 msk->pm.status = 0;
3052 mptcp_release_sched(msk);
3053
3054 sk->sk_prot->destroy(sk);
3055
3056 sk_stream_kill_queues(sk);
3057 xfrm_sk_free_policy(sk);
3058
3059 sock_put(sk);
3060 }
3061
__mptcp_unaccepted_force_close(struct sock * sk)3062 void __mptcp_unaccepted_force_close(struct sock *sk)
3063 {
3064 sock_set_flag(sk, SOCK_DEAD);
3065 mptcp_do_fastclose(sk);
3066 __mptcp_destroy_sock(sk);
3067 }
3068
mptcp_check_readable(struct sock * sk)3069 static __poll_t mptcp_check_readable(struct sock *sk)
3070 {
3071 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3072 }
3073
mptcp_check_listen_stop(struct sock * sk)3074 static void mptcp_check_listen_stop(struct sock *sk)
3075 {
3076 struct sock *ssk;
3077
3078 if (inet_sk_state_load(sk) != TCP_LISTEN)
3079 return;
3080
3081 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3082 ssk = mptcp_sk(sk)->first;
3083 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3084 return;
3085
3086 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3087 tcp_set_state(ssk, TCP_CLOSE);
3088 mptcp_subflow_queue_clean(sk, ssk);
3089 inet_csk_listen_stop(ssk);
3090 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3091 release_sock(ssk);
3092 }
3093
__mptcp_close(struct sock * sk,long timeout)3094 bool __mptcp_close(struct sock *sk, long timeout)
3095 {
3096 struct mptcp_subflow_context *subflow;
3097 struct mptcp_sock *msk = mptcp_sk(sk);
3098 bool do_cancel_work = false;
3099 int subflows_alive = 0;
3100
3101 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3102
3103 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3104 mptcp_check_listen_stop(sk);
3105 mptcp_set_state(sk, TCP_CLOSE);
3106 goto cleanup;
3107 }
3108
3109 if (mptcp_data_avail(msk) || timeout < 0) {
3110 /* If the msk has read data, or the caller explicitly ask it,
3111 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3112 */
3113 mptcp_do_fastclose(sk);
3114 timeout = 0;
3115 } else if (mptcp_close_state(sk)) {
3116 __mptcp_wr_shutdown(sk);
3117 }
3118
3119 sk_stream_wait_close(sk, timeout);
3120
3121 cleanup:
3122 /* orphan all the subflows */
3123 mptcp_for_each_subflow(msk, subflow) {
3124 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3125 bool slow = lock_sock_fast_nested(ssk);
3126
3127 subflows_alive += ssk->sk_state != TCP_CLOSE;
3128
3129 /* since the close timeout takes precedence on the fail one,
3130 * cancel the latter
3131 */
3132 if (ssk == msk->first)
3133 subflow->fail_tout = 0;
3134
3135 /* detach from the parent socket, but allow data_ready to
3136 * push incoming data into the mptcp stack, to properly ack it
3137 */
3138 ssk->sk_socket = NULL;
3139 ssk->sk_wq = NULL;
3140 unlock_sock_fast(ssk, slow);
3141 }
3142 sock_orphan(sk);
3143
3144 /* all the subflows are closed, only timeout can change the msk
3145 * state, let's not keep resources busy for no reasons
3146 */
3147 if (subflows_alive == 0)
3148 mptcp_set_state(sk, TCP_CLOSE);
3149
3150 sock_hold(sk);
3151 pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3152 mptcp_pm_connection_closed(msk);
3153
3154 if (sk->sk_state == TCP_CLOSE) {
3155 __mptcp_destroy_sock(sk);
3156 do_cancel_work = true;
3157 } else {
3158 mptcp_start_tout_timer(sk);
3159 }
3160
3161 return do_cancel_work;
3162 }
3163
mptcp_close(struct sock * sk,long timeout)3164 static void mptcp_close(struct sock *sk, long timeout)
3165 {
3166 bool do_cancel_work;
3167
3168 lock_sock(sk);
3169
3170 do_cancel_work = __mptcp_close(sk, timeout);
3171 release_sock(sk);
3172 if (do_cancel_work)
3173 mptcp_cancel_work(sk);
3174
3175 sock_put(sk);
3176 }
3177
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3178 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3179 {
3180 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3181 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3182 struct ipv6_pinfo *msk6 = inet6_sk(msk);
3183
3184 msk->sk_v6_daddr = ssk->sk_v6_daddr;
3185 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3186
3187 if (msk6 && ssk6) {
3188 msk6->saddr = ssk6->saddr;
3189 msk6->flow_label = ssk6->flow_label;
3190 }
3191 #endif
3192
3193 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3194 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3195 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3196 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3197 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3198 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3199 }
3200
mptcp_disconnect(struct sock * sk,int flags)3201 static int mptcp_disconnect(struct sock *sk, int flags)
3202 {
3203 struct mptcp_sock *msk = mptcp_sk(sk);
3204
3205 /* We are on the fastopen error path. We can't call straight into the
3206 * subflows cleanup code due to lock nesting (we are already under
3207 * msk->firstsocket lock).
3208 */
3209 if (msk->fastopening)
3210 return -EBUSY;
3211
3212 mptcp_check_listen_stop(sk);
3213 mptcp_set_state(sk, TCP_CLOSE);
3214
3215 mptcp_stop_rtx_timer(sk);
3216 mptcp_stop_tout_timer(sk);
3217
3218 mptcp_pm_connection_closed(msk);
3219
3220 /* msk->subflow is still intact, the following will not free the first
3221 * subflow
3222 */
3223 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3224
3225 /* The first subflow is already in TCP_CLOSE status, the following
3226 * can't overlap with a fallback anymore
3227 */
3228 spin_lock_bh(&msk->fallback_lock);
3229 msk->allow_subflows = true;
3230 msk->allow_infinite_fallback = true;
3231 WRITE_ONCE(msk->flags, 0);
3232 spin_unlock_bh(&msk->fallback_lock);
3233
3234 msk->cb_flags = 0;
3235 msk->recovery = false;
3236 WRITE_ONCE(msk->can_ack, false);
3237 WRITE_ONCE(msk->fully_established, false);
3238 WRITE_ONCE(msk->rcv_data_fin, false);
3239 WRITE_ONCE(msk->snd_data_fin_enable, false);
3240 WRITE_ONCE(msk->rcv_fastclose, false);
3241 WRITE_ONCE(msk->use_64bit_ack, false);
3242 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3243 mptcp_pm_data_reset(msk);
3244 mptcp_ca_reset(sk);
3245 msk->bytes_consumed = 0;
3246 msk->bytes_acked = 0;
3247 msk->bytes_received = 0;
3248 msk->bytes_sent = 0;
3249 msk->bytes_retrans = 0;
3250 msk->rcvspace_init = 0;
3251
3252 WRITE_ONCE(sk->sk_shutdown, 0);
3253 sk_error_report(sk);
3254 return 0;
3255 }
3256
3257 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3258 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3259 {
3260 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3261
3262 return &msk6->np;
3263 }
3264
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3265 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3266 {
3267 const struct ipv6_pinfo *np = inet6_sk(sk);
3268 struct ipv6_txoptions *opt;
3269 struct ipv6_pinfo *newnp;
3270
3271 newnp = inet6_sk(newsk);
3272
3273 rcu_read_lock();
3274 opt = rcu_dereference(np->opt);
3275 if (opt) {
3276 opt = ipv6_dup_options(newsk, opt);
3277 if (!opt)
3278 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3279 }
3280 RCU_INIT_POINTER(newnp->opt, opt);
3281 rcu_read_unlock();
3282 }
3283 #endif
3284
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3285 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3286 {
3287 struct ip_options_rcu *inet_opt, *newopt = NULL;
3288 const struct inet_sock *inet = inet_sk(sk);
3289 struct inet_sock *newinet;
3290
3291 newinet = inet_sk(newsk);
3292
3293 rcu_read_lock();
3294 inet_opt = rcu_dereference(inet->inet_opt);
3295 if (inet_opt) {
3296 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3297 inet_opt->opt.optlen, GFP_ATOMIC);
3298 if (!newopt)
3299 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3300 }
3301 RCU_INIT_POINTER(newinet->inet_opt, newopt);
3302 rcu_read_unlock();
3303 }
3304
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3305 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3306 const struct mptcp_options_received *mp_opt,
3307 struct sock *ssk,
3308 struct request_sock *req)
3309 {
3310 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3311 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3312 struct mptcp_subflow_context *subflow;
3313 struct mptcp_sock *msk;
3314
3315 if (!nsk)
3316 return NULL;
3317
3318 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3319 if (nsk->sk_family == AF_INET6)
3320 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3321 #endif
3322
3323 __mptcp_init_sock(nsk);
3324
3325 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3326 if (nsk->sk_family == AF_INET6)
3327 mptcp_copy_ip6_options(nsk, sk);
3328 else
3329 #endif
3330 mptcp_copy_ip_options(nsk, sk);
3331
3332 msk = mptcp_sk(nsk);
3333 WRITE_ONCE(msk->local_key, subflow_req->local_key);
3334 WRITE_ONCE(msk->token, subflow_req->token);
3335 msk->in_accept_queue = 1;
3336 WRITE_ONCE(msk->fully_established, false);
3337 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3338 WRITE_ONCE(msk->csum_enabled, true);
3339
3340 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3341 WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3342 WRITE_ONCE(msk->snd_una, msk->write_seq);
3343 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3344 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3345 mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3346
3347 /* passive msk is created after the first/MPC subflow */
3348 msk->subflow_id = 2;
3349
3350 sock_reset_flag(nsk, SOCK_RCU_FREE);
3351 security_inet_csk_clone(nsk, req);
3352
3353 /* this can't race with mptcp_close(), as the msk is
3354 * not yet exposted to user-space
3355 */
3356 mptcp_set_state(nsk, TCP_ESTABLISHED);
3357
3358 /* The msk maintain a ref to each subflow in the connections list */
3359 WRITE_ONCE(msk->first, ssk);
3360 subflow = mptcp_subflow_ctx(ssk);
3361 list_add(&subflow->node, &msk->conn_list);
3362 sock_hold(ssk);
3363
3364 /* new mpc subflow takes ownership of the newly
3365 * created mptcp socket
3366 */
3367 mptcp_token_accept(subflow_req, msk);
3368
3369 /* set msk addresses early to ensure mptcp_pm_get_local_id()
3370 * uses the correct data
3371 */
3372 mptcp_copy_inaddrs(nsk, ssk);
3373 __mptcp_propagate_sndbuf(nsk, ssk);
3374
3375 mptcp_rcv_space_init(msk, ssk);
3376
3377 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3378 __mptcp_subflow_fully_established(msk, subflow, mp_opt);
3379 bh_unlock_sock(nsk);
3380
3381 /* note: the newly allocated socket refcount is 2 now */
3382 return nsk;
3383 }
3384
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3385 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3386 {
3387 const struct tcp_sock *tp = tcp_sk(ssk);
3388
3389 msk->rcvspace_init = 1;
3390 msk->rcvq_space.copied = 0;
3391 msk->rcvq_space.rtt_us = 0;
3392
3393 msk->rcvq_space.time = tp->tcp_mstamp;
3394
3395 /* initial rcv_space offering made to peer */
3396 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3397 TCP_INIT_CWND * tp->advmss);
3398 if (msk->rcvq_space.space == 0)
3399 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3400 }
3401
mptcp_destroy_common(struct mptcp_sock * msk,unsigned int flags)3402 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3403 {
3404 struct mptcp_subflow_context *subflow, *tmp;
3405 struct sock *sk = (struct sock *)msk;
3406
3407 __mptcp_clear_xmit(sk);
3408
3409 /* join list will be eventually flushed (with rst) at sock lock release time */
3410 mptcp_for_each_subflow_safe(msk, subflow, tmp)
3411 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3412
3413 __skb_queue_purge(&sk->sk_receive_queue);
3414 skb_rbtree_purge(&msk->out_of_order_queue);
3415
3416 /* move all the rx fwd alloc into the sk_mem_reclaim_final in
3417 * inet_sock_destruct() will dispose it
3418 */
3419 mptcp_token_destroy(msk);
3420 mptcp_pm_destroy(msk);
3421 }
3422
mptcp_destroy(struct sock * sk)3423 static void mptcp_destroy(struct sock *sk)
3424 {
3425 struct mptcp_sock *msk = mptcp_sk(sk);
3426
3427 /* allow the following to close even the initial subflow */
3428 msk->free_first = 1;
3429 mptcp_destroy_common(msk, 0);
3430 sk_sockets_allocated_dec(sk);
3431 }
3432
__mptcp_data_acked(struct sock * sk)3433 void __mptcp_data_acked(struct sock *sk)
3434 {
3435 if (!sock_owned_by_user(sk))
3436 __mptcp_clean_una(sk);
3437 else
3438 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3439 }
3440
__mptcp_check_push(struct sock * sk,struct sock * ssk)3441 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3442 {
3443 if (!sock_owned_by_user(sk))
3444 __mptcp_subflow_push_pending(sk, ssk, false);
3445 else
3446 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3447 }
3448
3449 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3450 BIT(MPTCP_RETRANSMIT) | \
3451 BIT(MPTCP_FLUSH_JOIN_LIST) | \
3452 BIT(MPTCP_DEQUEUE))
3453
3454 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3455 static void mptcp_release_cb(struct sock *sk)
3456 __must_hold(&sk->sk_lock.slock)
3457 {
3458 struct mptcp_sock *msk = mptcp_sk(sk);
3459
3460 for (;;) {
3461 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3462 struct list_head join_list;
3463
3464 if (!flags)
3465 break;
3466
3467 INIT_LIST_HEAD(&join_list);
3468 list_splice_init(&msk->join_list, &join_list);
3469
3470 /* the following actions acquire the subflow socket lock
3471 *
3472 * 1) can't be invoked in atomic scope
3473 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3474 * datapath acquires the msk socket spinlock while helding
3475 * the subflow socket lock
3476 */
3477 msk->cb_flags &= ~flags;
3478 spin_unlock_bh(&sk->sk_lock.slock);
3479
3480 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3481 __mptcp_flush_join_list(sk, &join_list);
3482 if (flags & BIT(MPTCP_PUSH_PENDING))
3483 __mptcp_push_pending(sk, 0);
3484 if (flags & BIT(MPTCP_RETRANSMIT))
3485 __mptcp_retrans(sk);
3486 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3487 /* notify ack seq update */
3488 mptcp_cleanup_rbuf(msk, 0);
3489 sk->sk_data_ready(sk);
3490 }
3491
3492 cond_resched();
3493 spin_lock_bh(&sk->sk_lock.slock);
3494 }
3495
3496 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3497 __mptcp_clean_una_wakeup(sk);
3498 if (unlikely(msk->cb_flags)) {
3499 /* be sure to sync the msk state before taking actions
3500 * depending on sk_state (MPTCP_ERROR_REPORT)
3501 * On sk release avoid actions depending on the first subflow
3502 */
3503 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3504 __mptcp_sync_state(sk, msk->pending_state);
3505 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3506 __mptcp_error_report(sk);
3507 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3508 __mptcp_sync_sndbuf(sk);
3509 }
3510 }
3511
3512 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3513 * TCP can't schedule delack timer before the subflow is fully established.
3514 * MPTCP uses the delack timer to do 3rd ack retransmissions
3515 */
schedule_3rdack_retransmission(struct sock * ssk)3516 static void schedule_3rdack_retransmission(struct sock *ssk)
3517 {
3518 struct inet_connection_sock *icsk = inet_csk(ssk);
3519 struct tcp_sock *tp = tcp_sk(ssk);
3520 unsigned long timeout;
3521
3522 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3523 return;
3524
3525 /* reschedule with a timeout above RTT, as we must look only for drop */
3526 if (tp->srtt_us)
3527 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3528 else
3529 timeout = TCP_TIMEOUT_INIT;
3530 timeout += jiffies;
3531
3532 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3533 smp_store_release(&icsk->icsk_ack.pending,
3534 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3535 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3536 }
3537
mptcp_subflow_process_delegated(struct sock * ssk,long status)3538 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3539 {
3540 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3541 struct sock *sk = subflow->conn;
3542
3543 if (status & BIT(MPTCP_DELEGATE_SEND)) {
3544 mptcp_data_lock(sk);
3545 if (!sock_owned_by_user(sk))
3546 __mptcp_subflow_push_pending(sk, ssk, true);
3547 else
3548 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3549 mptcp_data_unlock(sk);
3550 }
3551 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3552 mptcp_data_lock(sk);
3553 if (!sock_owned_by_user(sk))
3554 __mptcp_sync_sndbuf(sk);
3555 else
3556 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3557 mptcp_data_unlock(sk);
3558 }
3559 if (status & BIT(MPTCP_DELEGATE_ACK))
3560 schedule_3rdack_retransmission(ssk);
3561 }
3562
mptcp_hash(struct sock * sk)3563 static int mptcp_hash(struct sock *sk)
3564 {
3565 /* should never be called,
3566 * we hash the TCP subflows not the MPTCP socket
3567 */
3568 WARN_ON_ONCE(1);
3569 return 0;
3570 }
3571
mptcp_unhash(struct sock * sk)3572 static void mptcp_unhash(struct sock *sk)
3573 {
3574 /* called from sk_common_release(), but nothing to do here */
3575 }
3576
mptcp_get_port(struct sock * sk,unsigned short snum)3577 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3578 {
3579 struct mptcp_sock *msk = mptcp_sk(sk);
3580
3581 pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3582 if (WARN_ON_ONCE(!msk->first))
3583 return -EINVAL;
3584
3585 return inet_csk_get_port(msk->first, snum);
3586 }
3587
mptcp_finish_connect(struct sock * ssk)3588 void mptcp_finish_connect(struct sock *ssk)
3589 {
3590 struct mptcp_subflow_context *subflow;
3591 struct mptcp_sock *msk;
3592 struct sock *sk;
3593
3594 subflow = mptcp_subflow_ctx(ssk);
3595 sk = subflow->conn;
3596 msk = mptcp_sk(sk);
3597
3598 pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3599
3600 subflow->map_seq = subflow->iasn;
3601 subflow->map_subflow_seq = 1;
3602
3603 /* the socket is not connected yet, no msk/subflow ops can access/race
3604 * accessing the field below
3605 */
3606 WRITE_ONCE(msk->local_key, subflow->local_key);
3607
3608 mptcp_pm_new_connection(msk, ssk, 0);
3609 }
3610
mptcp_sock_graft(struct sock * sk,struct socket * parent)3611 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3612 {
3613 write_lock_bh(&sk->sk_callback_lock);
3614 rcu_assign_pointer(sk->sk_wq, &parent->wq);
3615 sk_set_socket(sk, parent);
3616 write_unlock_bh(&sk->sk_callback_lock);
3617 }
3618
mptcp_finish_join(struct sock * ssk)3619 bool mptcp_finish_join(struct sock *ssk)
3620 {
3621 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3622 struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3623 struct sock *parent = (void *)msk;
3624 bool ret = true;
3625
3626 pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3627
3628 /* mptcp socket already closing? */
3629 if (!mptcp_is_fully_established(parent)) {
3630 subflow->reset_reason = MPTCP_RST_EMPTCP;
3631 return false;
3632 }
3633
3634 /* active subflow, already present inside the conn_list */
3635 if (!list_empty(&subflow->node)) {
3636 spin_lock_bh(&msk->fallback_lock);
3637 if (!msk->allow_subflows) {
3638 spin_unlock_bh(&msk->fallback_lock);
3639 return false;
3640 }
3641 mptcp_subflow_joined(msk, ssk);
3642 spin_unlock_bh(&msk->fallback_lock);
3643 mptcp_propagate_sndbuf(parent, ssk);
3644 return true;
3645 }
3646
3647 if (!mptcp_pm_allow_new_subflow(msk)) {
3648 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3649 goto err_prohibited;
3650 }
3651
3652 /* If we can't acquire msk socket lock here, let the release callback
3653 * handle it
3654 */
3655 mptcp_data_lock(parent);
3656 if (!sock_owned_by_user(parent)) {
3657 ret = __mptcp_finish_join(msk, ssk);
3658 if (ret) {
3659 sock_hold(ssk);
3660 list_add_tail(&subflow->node, &msk->conn_list);
3661 }
3662 } else {
3663 sock_hold(ssk);
3664 list_add_tail(&subflow->node, &msk->join_list);
3665 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3666 }
3667 mptcp_data_unlock(parent);
3668
3669 if (!ret) {
3670 err_prohibited:
3671 subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3672 return false;
3673 }
3674
3675 return true;
3676 }
3677
mptcp_shutdown(struct sock * sk,int how)3678 static void mptcp_shutdown(struct sock *sk, int how)
3679 {
3680 pr_debug("sk=%p, how=%d\n", sk, how);
3681
3682 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3683 __mptcp_wr_shutdown(sk);
3684 }
3685
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3686 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3687 {
3688 const struct sock *sk = (void *)msk;
3689 u64 delta;
3690
3691 if (sk->sk_state == TCP_LISTEN)
3692 return -EINVAL;
3693
3694 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3695 return 0;
3696
3697 delta = msk->write_seq - v;
3698 if (__mptcp_check_fallback(msk) && msk->first) {
3699 struct tcp_sock *tp = tcp_sk(msk->first);
3700
3701 /* the first subflow is disconnected after close - see
3702 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3703 * so ignore that status, too.
3704 */
3705 if (!((1 << msk->first->sk_state) &
3706 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3707 delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3708 }
3709 if (delta > INT_MAX)
3710 delta = INT_MAX;
3711
3712 return (int)delta;
3713 }
3714
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3715 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3716 {
3717 struct mptcp_sock *msk = mptcp_sk(sk);
3718 bool slow;
3719
3720 switch (cmd) {
3721 case SIOCINQ:
3722 if (sk->sk_state == TCP_LISTEN)
3723 return -EINVAL;
3724
3725 lock_sock(sk);
3726 if (__mptcp_move_skbs(sk))
3727 mptcp_cleanup_rbuf(msk, 0);
3728 *karg = mptcp_inq_hint(sk);
3729 release_sock(sk);
3730 break;
3731 case SIOCOUTQ:
3732 slow = lock_sock_fast(sk);
3733 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3734 unlock_sock_fast(sk, slow);
3735 break;
3736 case SIOCOUTQNSD:
3737 slow = lock_sock_fast(sk);
3738 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3739 unlock_sock_fast(sk, slow);
3740 break;
3741 default:
3742 return -ENOIOCTLCMD;
3743 }
3744
3745 return 0;
3746 }
3747
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3748 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3749 {
3750 struct mptcp_subflow_context *subflow;
3751 struct mptcp_sock *msk = mptcp_sk(sk);
3752 int err = -EINVAL;
3753 struct sock *ssk;
3754
3755 ssk = __mptcp_nmpc_sk(msk);
3756 if (IS_ERR(ssk))
3757 return PTR_ERR(ssk);
3758
3759 mptcp_set_state(sk, TCP_SYN_SENT);
3760 subflow = mptcp_subflow_ctx(ssk);
3761 #ifdef CONFIG_TCP_MD5SIG
3762 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3763 * TCP option space.
3764 */
3765 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3766 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3767 #endif
3768 if (subflow->request_mptcp) {
3769 if (mptcp_active_should_disable(sk))
3770 mptcp_early_fallback(msk, subflow,
3771 MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3772 else if (mptcp_token_new_connect(ssk) < 0)
3773 mptcp_early_fallback(msk, subflow,
3774 MPTCP_MIB_TOKENFALLBACKINIT);
3775 }
3776
3777 WRITE_ONCE(msk->write_seq, subflow->idsn);
3778 WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3779 WRITE_ONCE(msk->snd_una, subflow->idsn);
3780 if (likely(!__mptcp_check_fallback(msk)))
3781 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3782
3783 /* if reaching here via the fastopen/sendmsg path, the caller already
3784 * acquired the subflow socket lock, too.
3785 */
3786 if (!msk->fastopening)
3787 lock_sock(ssk);
3788
3789 /* the following mirrors closely a very small chunk of code from
3790 * __inet_stream_connect()
3791 */
3792 if (ssk->sk_state != TCP_CLOSE)
3793 goto out;
3794
3795 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3796 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3797 if (err)
3798 goto out;
3799 }
3800
3801 err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3802 if (err < 0)
3803 goto out;
3804
3805 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3806
3807 out:
3808 if (!msk->fastopening)
3809 release_sock(ssk);
3810
3811 /* on successful connect, the msk state will be moved to established by
3812 * subflow_finish_connect()
3813 */
3814 if (unlikely(err)) {
3815 /* avoid leaving a dangling token in an unconnected socket */
3816 mptcp_token_destroy(msk);
3817 mptcp_set_state(sk, TCP_CLOSE);
3818 return err;
3819 }
3820
3821 mptcp_copy_inaddrs(sk, ssk);
3822 return 0;
3823 }
3824
3825 static struct proto mptcp_prot = {
3826 .name = "MPTCP",
3827 .owner = THIS_MODULE,
3828 .init = mptcp_init_sock,
3829 .connect = mptcp_connect,
3830 .disconnect = mptcp_disconnect,
3831 .close = mptcp_close,
3832 .setsockopt = mptcp_setsockopt,
3833 .getsockopt = mptcp_getsockopt,
3834 .shutdown = mptcp_shutdown,
3835 .destroy = mptcp_destroy,
3836 .sendmsg = mptcp_sendmsg,
3837 .ioctl = mptcp_ioctl,
3838 .recvmsg = mptcp_recvmsg,
3839 .release_cb = mptcp_release_cb,
3840 .hash = mptcp_hash,
3841 .unhash = mptcp_unhash,
3842 .get_port = mptcp_get_port,
3843 .stream_memory_free = mptcp_stream_memory_free,
3844 .sockets_allocated = &mptcp_sockets_allocated,
3845
3846 .memory_allocated = &net_aligned_data.tcp_memory_allocated,
3847 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
3848
3849 .memory_pressure = &tcp_memory_pressure,
3850 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
3851 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
3852 .sysctl_mem = sysctl_tcp_mem,
3853 .obj_size = sizeof(struct mptcp_sock),
3854 .slab_flags = SLAB_TYPESAFE_BY_RCU,
3855 .no_autobind = true,
3856 };
3857
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3858 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3859 {
3860 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3861 struct sock *ssk, *sk = sock->sk;
3862 int err = -EINVAL;
3863
3864 lock_sock(sk);
3865 ssk = __mptcp_nmpc_sk(msk);
3866 if (IS_ERR(ssk)) {
3867 err = PTR_ERR(ssk);
3868 goto unlock;
3869 }
3870
3871 if (sk->sk_family == AF_INET)
3872 err = inet_bind_sk(ssk, uaddr, addr_len);
3873 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3874 else if (sk->sk_family == AF_INET6)
3875 err = inet6_bind_sk(ssk, uaddr, addr_len);
3876 #endif
3877 if (!err)
3878 mptcp_copy_inaddrs(sk, ssk);
3879
3880 unlock:
3881 release_sock(sk);
3882 return err;
3883 }
3884
mptcp_listen(struct socket * sock,int backlog)3885 static int mptcp_listen(struct socket *sock, int backlog)
3886 {
3887 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3888 struct sock *sk = sock->sk;
3889 struct sock *ssk;
3890 int err;
3891
3892 pr_debug("msk=%p\n", msk);
3893
3894 lock_sock(sk);
3895
3896 err = -EINVAL;
3897 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3898 goto unlock;
3899
3900 ssk = __mptcp_nmpc_sk(msk);
3901 if (IS_ERR(ssk)) {
3902 err = PTR_ERR(ssk);
3903 goto unlock;
3904 }
3905
3906 mptcp_set_state(sk, TCP_LISTEN);
3907 sock_set_flag(sk, SOCK_RCU_FREE);
3908
3909 lock_sock(ssk);
3910 err = __inet_listen_sk(ssk, backlog);
3911 release_sock(ssk);
3912 mptcp_set_state(sk, inet_sk_state_load(ssk));
3913
3914 if (!err) {
3915 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3916 mptcp_copy_inaddrs(sk, ssk);
3917 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3918 }
3919
3920 unlock:
3921 release_sock(sk);
3922 return err;
3923 }
3924
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3925 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3926 struct proto_accept_arg *arg)
3927 {
3928 struct mptcp_sock *msk = mptcp_sk(sock->sk);
3929 struct sock *ssk, *newsk;
3930
3931 pr_debug("msk=%p\n", msk);
3932
3933 /* Buggy applications can call accept on socket states other then LISTEN
3934 * but no need to allocate the first subflow just to error out.
3935 */
3936 ssk = READ_ONCE(msk->first);
3937 if (!ssk)
3938 return -EINVAL;
3939
3940 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3941 newsk = inet_csk_accept(ssk, arg);
3942 if (!newsk)
3943 return arg->err;
3944
3945 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3946 if (sk_is_mptcp(newsk)) {
3947 struct mptcp_subflow_context *subflow;
3948 struct sock *new_mptcp_sock;
3949
3950 subflow = mptcp_subflow_ctx(newsk);
3951 new_mptcp_sock = subflow->conn;
3952
3953 /* is_mptcp should be false if subflow->conn is missing, see
3954 * subflow_syn_recv_sock()
3955 */
3956 if (WARN_ON_ONCE(!new_mptcp_sock)) {
3957 tcp_sk(newsk)->is_mptcp = 0;
3958 goto tcpfallback;
3959 }
3960
3961 newsk = new_mptcp_sock;
3962 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3963
3964 newsk->sk_kern_sock = arg->kern;
3965 lock_sock(newsk);
3966 __inet_accept(sock, newsock, newsk);
3967
3968 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3969 msk = mptcp_sk(newsk);
3970 msk->in_accept_queue = 0;
3971
3972 /* set ssk->sk_socket of accept()ed flows to mptcp socket.
3973 * This is needed so NOSPACE flag can be set from tcp stack.
3974 */
3975 mptcp_for_each_subflow(msk, subflow) {
3976 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3977
3978 if (!ssk->sk_socket)
3979 mptcp_sock_graft(ssk, newsock);
3980 }
3981
3982 mptcp_rps_record_subflows(msk);
3983
3984 /* Do late cleanup for the first subflow as necessary. Also
3985 * deal with bad peers not doing a complete shutdown.
3986 */
3987 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3988 __mptcp_close_ssk(newsk, msk->first,
3989 mptcp_subflow_ctx(msk->first), 0);
3990 if (unlikely(list_is_singular(&msk->conn_list)))
3991 mptcp_set_state(newsk, TCP_CLOSE);
3992 }
3993 } else {
3994 tcpfallback:
3995 newsk->sk_kern_sock = arg->kern;
3996 lock_sock(newsk);
3997 __inet_accept(sock, newsock, newsk);
3998 /* we are being invoked after accepting a non-mp-capable
3999 * flow: sk is a tcp_sk, not an mptcp one.
4000 *
4001 * Hand the socket over to tcp so all further socket ops
4002 * bypass mptcp.
4003 */
4004 WRITE_ONCE(newsock->sk->sk_socket->ops,
4005 mptcp_fallback_tcp_ops(newsock->sk));
4006 }
4007 release_sock(newsk);
4008
4009 return 0;
4010 }
4011
mptcp_check_writeable(struct mptcp_sock * msk)4012 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4013 {
4014 struct sock *sk = (struct sock *)msk;
4015
4016 if (__mptcp_stream_is_writeable(sk, 1))
4017 return EPOLLOUT | EPOLLWRNORM;
4018
4019 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4020 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4021 if (__mptcp_stream_is_writeable(sk, 1))
4022 return EPOLLOUT | EPOLLWRNORM;
4023
4024 return 0;
4025 }
4026
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4027 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4028 struct poll_table_struct *wait)
4029 {
4030 struct sock *sk = sock->sk;
4031 struct mptcp_sock *msk;
4032 __poll_t mask = 0;
4033 u8 shutdown;
4034 int state;
4035
4036 msk = mptcp_sk(sk);
4037 sock_poll_wait(file, sock, wait);
4038
4039 state = inet_sk_state_load(sk);
4040 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4041 if (state == TCP_LISTEN) {
4042 struct sock *ssk = READ_ONCE(msk->first);
4043
4044 if (WARN_ON_ONCE(!ssk))
4045 return 0;
4046
4047 return inet_csk_listen_poll(ssk);
4048 }
4049
4050 shutdown = READ_ONCE(sk->sk_shutdown);
4051 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4052 mask |= EPOLLHUP;
4053 if (shutdown & RCV_SHUTDOWN)
4054 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4055
4056 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4057 mask |= mptcp_check_readable(sk);
4058 if (shutdown & SEND_SHUTDOWN)
4059 mask |= EPOLLOUT | EPOLLWRNORM;
4060 else
4061 mask |= mptcp_check_writeable(msk);
4062 } else if (state == TCP_SYN_SENT &&
4063 inet_test_bit(DEFER_CONNECT, sk)) {
4064 /* cf tcp_poll() note about TFO */
4065 mask |= EPOLLOUT | EPOLLWRNORM;
4066 }
4067
4068 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4069 smp_rmb();
4070 if (READ_ONCE(sk->sk_err))
4071 mask |= EPOLLERR;
4072
4073 return mask;
4074 }
4075
4076 static const struct proto_ops mptcp_stream_ops = {
4077 .family = PF_INET,
4078 .owner = THIS_MODULE,
4079 .release = inet_release,
4080 .bind = mptcp_bind,
4081 .connect = inet_stream_connect,
4082 .socketpair = sock_no_socketpair,
4083 .accept = mptcp_stream_accept,
4084 .getname = inet_getname,
4085 .poll = mptcp_poll,
4086 .ioctl = inet_ioctl,
4087 .gettstamp = sock_gettstamp,
4088 .listen = mptcp_listen,
4089 .shutdown = inet_shutdown,
4090 .setsockopt = sock_common_setsockopt,
4091 .getsockopt = sock_common_getsockopt,
4092 .sendmsg = inet_sendmsg,
4093 .recvmsg = inet_recvmsg,
4094 .mmap = sock_no_mmap,
4095 .set_rcvlowat = mptcp_set_rcvlowat,
4096 };
4097
4098 static struct inet_protosw mptcp_protosw = {
4099 .type = SOCK_STREAM,
4100 .protocol = IPPROTO_MPTCP,
4101 .prot = &mptcp_prot,
4102 .ops = &mptcp_stream_ops,
4103 .flags = INET_PROTOSW_ICSK,
4104 };
4105
mptcp_napi_poll(struct napi_struct * napi,int budget)4106 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4107 {
4108 struct mptcp_delegated_action *delegated;
4109 struct mptcp_subflow_context *subflow;
4110 int work_done = 0;
4111
4112 delegated = container_of(napi, struct mptcp_delegated_action, napi);
4113 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4114 struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4115
4116 bh_lock_sock_nested(ssk);
4117 if (!sock_owned_by_user(ssk)) {
4118 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4119 } else {
4120 /* tcp_release_cb_override already processed
4121 * the action or will do at next release_sock().
4122 * In both case must dequeue the subflow here - on the same
4123 * CPU that scheduled it.
4124 */
4125 smp_wmb();
4126 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4127 }
4128 bh_unlock_sock(ssk);
4129 sock_put(ssk);
4130
4131 if (++work_done == budget)
4132 return budget;
4133 }
4134
4135 /* always provide a 0 'work_done' argument, so that napi_complete_done
4136 * will not try accessing the NULL napi->dev ptr
4137 */
4138 napi_complete_done(napi, 0);
4139 return work_done;
4140 }
4141
mptcp_proto_init(void)4142 void __init mptcp_proto_init(void)
4143 {
4144 struct mptcp_delegated_action *delegated;
4145 int cpu;
4146
4147 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4148
4149 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4150 panic("Failed to allocate MPTCP pcpu counter\n");
4151
4152 mptcp_napi_dev = alloc_netdev_dummy(0);
4153 if (!mptcp_napi_dev)
4154 panic("Failed to allocate MPTCP dummy netdev\n");
4155 for_each_possible_cpu(cpu) {
4156 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4157 INIT_LIST_HEAD(&delegated->head);
4158 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4159 mptcp_napi_poll);
4160 napi_enable(&delegated->napi);
4161 }
4162
4163 mptcp_subflow_init();
4164 mptcp_pm_init();
4165 mptcp_sched_init();
4166 mptcp_token_init();
4167
4168 if (proto_register(&mptcp_prot, 1) != 0)
4169 panic("Failed to register MPTCP proto.\n");
4170
4171 inet_register_protosw(&mptcp_protosw);
4172
4173 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4174 }
4175
4176 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4177 static const struct proto_ops mptcp_v6_stream_ops = {
4178 .family = PF_INET6,
4179 .owner = THIS_MODULE,
4180 .release = inet6_release,
4181 .bind = mptcp_bind,
4182 .connect = inet_stream_connect,
4183 .socketpair = sock_no_socketpair,
4184 .accept = mptcp_stream_accept,
4185 .getname = inet6_getname,
4186 .poll = mptcp_poll,
4187 .ioctl = inet6_ioctl,
4188 .gettstamp = sock_gettstamp,
4189 .listen = mptcp_listen,
4190 .shutdown = inet_shutdown,
4191 .setsockopt = sock_common_setsockopt,
4192 .getsockopt = sock_common_getsockopt,
4193 .sendmsg = inet6_sendmsg,
4194 .recvmsg = inet6_recvmsg,
4195 .mmap = sock_no_mmap,
4196 #ifdef CONFIG_COMPAT
4197 .compat_ioctl = inet6_compat_ioctl,
4198 #endif
4199 .set_rcvlowat = mptcp_set_rcvlowat,
4200 };
4201
4202 static struct proto mptcp_v6_prot;
4203
4204 static struct inet_protosw mptcp_v6_protosw = {
4205 .type = SOCK_STREAM,
4206 .protocol = IPPROTO_MPTCP,
4207 .prot = &mptcp_v6_prot,
4208 .ops = &mptcp_v6_stream_ops,
4209 .flags = INET_PROTOSW_ICSK,
4210 };
4211
mptcp_proto_v6_init(void)4212 int __init mptcp_proto_v6_init(void)
4213 {
4214 int err;
4215
4216 mptcp_v6_prot = mptcp_prot;
4217 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4218 mptcp_v6_prot.slab = NULL;
4219 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4220 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4221
4222 err = proto_register(&mptcp_v6_prot, 1);
4223 if (err)
4224 return err;
4225
4226 err = inet6_register_protosw(&mptcp_v6_protosw);
4227 if (err)
4228 proto_unregister(&mptcp_v6_prot);
4229
4230 return err;
4231 }
4232 #endif
4233